Centering lower-level interactions in multilevel models

Haeike Josephy
Tom Loeys

International Meetings of the Psychometric Society 2017

Longitudinal diary study on sexual behavior in Flanders

- Info on 66 heterosexual couples
- Here, we only focus on men's data
- Daily measures during 3 weeks:
- Daily morning reports on sexual and intimate behavior: amount of intimate acts (kissing, cuddling and caressing) measured on a 7 -point scale
- Daily evening reports on positive relationship feelings: average score of 9 items (happy, satisfied, understood, ...) measured on a 7 -point scale

Longitudinal diary study on sexual behavior in Flanders

- Info on 66 heterosexual couples
- Here, we only focus on men's data
- Daily measures during 3 weeks:
- Daily morning reports on sexual and intimate behavior: amount of intimate acts (kissing, cuddling and caressing) measured on a 7-point scale
- Daily evening reports on positive relationship feelings: average score of 9 items (happy, satisfied, understood, ...) measured on a 7-point scale

Question: What is the contribution of intimacy to next-day positive relationship feelings?

Standard multilevel modeling

In our example:

- $X_{i j}$: daily measurement of intimacy of individual j at time i
- $Y_{i j}$: next day's positive relational feelings

Standard analysis by a multilevel model with random intercept b_{j} :

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, b_{j}\right)=\gamma_{0}+\gamma X_{i j}+b_{j} \tag{1}
\end{equation*}
$$

Standard multilevel modeling

In our example:

- $X_{i j}$: daily measurement of intimacy of individual j at time i
- $Y_{i j}$: next day's positive relational feelings

Standard analysis by a multilevel model with random intercept b_{j} :

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, b_{j}\right)=\gamma_{0}+\gamma X_{i j}+b_{j} \tag{1}
\end{equation*}
$$

Unfortunately, there may be upper level endogeneity!

Standard multilevel modeling

In our example:

- $X_{i j}$: daily measurement of intimacy of individual j at time i
- $Y_{i j}$: next day's positive relational feelings

Standard analysis by a multilevel model with random intercept b_{j} :

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, b_{j}\right)=\gamma_{0}+\gamma X_{i j}+b_{j} \tag{1}
\end{equation*}
$$

(1) assumes that b_{j} and $X_{i j}$ are independent \Rightarrow biased estimator for γ under upper-level endogeneity!

Centring of lower level effects

A solution to the upper-level endogeneity problem is to separate withinfrom between-effects:

$$
\begin{align*}
& E\left(Y_{i j} \mid X_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{w} X_{i j}^{c}+\gamma_{B} \bar{X}_{j}+b_{j} \tag{2}\\
& \quad \text { with } \bar{X}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \text { and } X_{i j}^{c}=X_{i j}-\bar{X}_{j}
\end{align*}
$$

- γ_{w} captures the within-subject effect
- γ_{B} captures the between-subject effect

Centring of lower level effects

A solution to the upper-level endogeneity problem is to separate withinfrom between-effects:

$$
\begin{align*}
& E\left(Y_{i j} \mid X_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{W} X_{i j}^{c}+\gamma_{B} \bar{X}_{j}+b_{j} \tag{2}\\
& \quad \text { with } \bar{X}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \text { and } X_{i j}^{c}=X_{i j}-\bar{X}_{j}
\end{align*}
$$

- As $X_{i j}-\bar{X}_{j}$ removes all upper level effects, it no longer depends on b_{j} in case of upper level endogeneity.

Centring of lower level effects

A solution to the upper-level endogeneity problem is to separate withinfrom between-effects:

$$
\begin{align*}
& E\left(Y_{i j} \mid X_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{w} X_{i j}^{c}+\gamma_{B} \bar{X}_{j}+b_{j} \tag{2}\\
& \quad \text { with } \bar{X}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \text { and } X_{i j}^{c}=X_{i j}-\bar{X}_{j}
\end{align*}
$$

- As $X_{i j}-\bar{X}_{j}$ removes all upper level effects, it no longer depends on b_{j} in case of upper level endogeneity.
- The OLS-estimator for γ_{w} will converge to (in balanced designs):

$$
\begin{equation*}
\hat{\gamma} w=\frac{\operatorname{cov}\left(Y_{i j}, X_{i j}-\bar{X}_{j}\right)}{\operatorname{var}\left(X_{i j}-\bar{X}_{j}\right)} \rightarrow \gamma \tag{3}
\end{equation*}
$$

Centring of lower level effects

A solution to the upper-level endogeneity problem is to separate withinfrom between-effects:

$$
\begin{align*}
& E\left(Y_{i j} \mid X_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{w} X_{i j}^{c}+\gamma_{B} \bar{X}_{j}+b_{j} \tag{2}\\
& \quad \text { with } \bar{X}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \text { and } X_{i j}^{c}=X_{i j}-\bar{X}_{j}
\end{align*}
$$

- As $X_{i j}-\bar{X}_{j}$ removes all upper level effects, it no longer depends on b_{j} in case of upper level endogeneity.
- The OLS-estimator for γ_{w} will converge to (in balanced designs):

$$
\begin{align*}
& \hat{\gamma} w=\frac{\operatorname{cov}\left(Y_{i j}, X_{i j}-\bar{X}_{j}\right)}{\operatorname{var}\left(X_{i j}-\bar{X}_{j}\right)} \rightarrow \gamma \tag{3}\\
& \Rightarrow \text { No bias! }
\end{align*}
$$

Centring of lower level effects

A solution to the upper-level endogeneity problem is to separate withinfrom between-effects:

$$
\begin{align*}
& E\left(Y_{i j} \mid X_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{w} X_{i j}^{c}+\gamma_{B} \bar{X}_{j}+b_{j} \tag{2}\\
& \quad \text { with } \bar{X}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \text { and } X_{i j}^{c}=X_{i j}-\bar{X}_{j}
\end{align*}
$$

- As $X_{i j}-\bar{X}_{j}$ removes all upper level effects, it no longer depends on b_{j} in case of upper level endogeneity.
- The OLS-estimator for γ_{B} will converge to (in balanced designs):

$$
\begin{equation*}
\hat{\gamma}_{B}=\frac{\operatorname{cov}\left(\bar{Y}_{j}, \bar{X}_{j}\right)}{\operatorname{var}\left(\bar{X}_{j}\right)} \rightarrow \gamma+\frac{\operatorname{cov}\left(b_{j}, \bar{X}_{j}\right)}{\operatorname{var}\left(\bar{X}_{j}\right)} \tag{3}
\end{equation*}
$$

Centring of lower level effects

A solution to the upper-level endogeneity problem is to separate withinfrom between-effects:

$$
\begin{align*}
& E\left(Y_{i j} \mid X_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{w} X_{i j}^{c}+\gamma_{B} \bar{X}_{j}+b_{j} \tag{2}\\
& \quad \text { with } \bar{X}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \text { and } X_{i j}^{c}=X_{i j}-\bar{X}_{j}
\end{align*}
$$

- As $X_{i j}-\bar{X}_{j}$ removes all upper level effects, it no longer depends on b_{j} in case of upper level endogeneity.
- The OLS-estimator for γ_{B} will converge to (in balanced designs):

$$
\begin{equation*}
\hat{\gamma}_{B}=\frac{\operatorname{cov}\left(\bar{Y}_{j}, \bar{X}_{j}\right)}{\operatorname{var}\left(\bar{X}_{j}\right)} \rightarrow \gamma+\frac{\operatorname{cov}\left(b_{j}, \bar{X}_{j}\right)}{\operatorname{var}\left(\bar{X}_{j}\right)} \tag{3}
\end{equation*}
$$

\Rightarrow Bias under upper level endogeneity!

Centring of lower level effects

A solution to the upper-level endogeneity problem is to separate withinfrom between-effects:

$$
\begin{align*}
& E\left(Y_{i j} \mid X_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{w} X_{i j}^{c}+\gamma_{B} \bar{X}_{j}+b_{j} \tag{2}\\
& \quad \text { with } \bar{X}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} X_{i j} \text { and } X_{i j}^{c}=X_{i j}-\bar{X}_{j}
\end{align*}
$$

- As $X_{i j}-\bar{X}_{j}$ removes all upper level effects, it no longer depends on b_{j} in case of upper level endogeneity.
- The OLS-estimator for γ_{B} will converge to (in balanced designs):

$$
\begin{equation*}
\hat{\gamma}_{B}=\frac{\operatorname{cov}\left(\bar{Y}_{j}, \bar{X}_{j}\right)}{\operatorname{var}\left(\bar{X}_{j}\right)} \rightarrow \gamma+\frac{\operatorname{cov}\left(b_{j}, \bar{X}_{j}\right)}{\operatorname{var}\left(\bar{X}_{j}\right)} \tag{3}
\end{equation*}
$$

\Rightarrow Bias under upper level endogeneity!
(note that \bar{X}_{j} can also be excluded from (2), as $\bar{X}_{j} \Perp X_{i j}^{c}$)

Revisited: Longitudinal study on sexual behavior in Flanders

New question: Does the effect of intimacy on next-day positive relationship feelings differ according to whether or not the participant has masturbated the previous day?

- $X_{i j}$: daily measurement of intimacy of individual j at time i
- $Y_{i j}$: next day's positive relational feelings
- $Z_{i j}: 1$ when individual j has masturbated on day $i, 0$ if not

Revisited: Longitudinal study on sexual behavior in Flanders

New question: Does the effect of intimacy on next-day positive relationship feelings differ according to whether or not the participant has masturbated the previous day?

- $X_{i j}$: daily measurement of intimacy of individual j at time i
- $Y_{i j}$: next day's positive relational feelings
- $Z_{i j}: 1$ when individual j has masturbated on day $i, 0$ if not

Adjusted multilevel model:

$$
\begin{gather*}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{1} X_{i j}+\gamma_{2} Z_{i j}+\gamma_{3} X_{i j} Z_{i j}+b_{j} \tag{4}\\
\Rightarrow \text { Lower level interaction term! }
\end{gather*}
$$

Revisited: Longitudinal study on sexual behavior in Flanders

New question: Does the effect of intimacy on next-day positive relationship feelings differ according to whether or not the participant has masturbated the previous day?

- $X_{i j}$: daily measurement of intimacy of individual j at time i
- $Y_{i j}$: next day's positive relational feelings
- $Z_{i j}: 1$ when individual j has masturbated on day $i, 0$ if not

Adjusted multilevel model:

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{1} X_{i j}+\gamma_{2} Z_{i j}+\gamma_{3} X_{i j} Z_{i j}+b_{j} \tag{4}
\end{equation*}
$$

- b_{j} may again be correlated with X, Y and/or Z in case of upper level endogeneity
- The 'naive' model may then again yield biased estimators for the γ 's

Centring of lower-level interactions

There a two possible centring approaches:

- Product first, center next (P1C2):

$$
X_{i j} * Z_{i j}
$$

Centring of lower-level interactions

There a two possible centring approaches:

- Product first, center next (P1C2):

$$
{\overline{x z_{j}}}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}}{\overleftarrow{x_{i j} z_{i j}}}_{x_{i j *} * z_{i j}}^{(X Z)_{i j}^{c}=x_{i j} z_{i j}-\overline{X Z}_{j}}
$$

Centring of lower-level interactions

There a two possible centring approaches:

- Product first, center next (P1C2):

- Center first, take the product next (C1P2):

Centring of lower-level interactions

There a two possible centring approaches:

- Product first, center next (P1C2):

$$
{\overline{x z_{j}}}_{j}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}}{\overleftarrow{x_{i j} z_{i j}}}_{x_{i j *} * z_{i j}}^{(X Z)_{i j}^{c}=x_{i j} z_{i j}-\overline{X Z}_{j}}
$$

- Center first, take the product next (C1P2):

$$
x_{i j} \quad z_{i j}
$$

Centring of lower-level interactions

There a two possible centring approaches:

- Product first, center next (P1C2):

- Center first, take the product next (C1P2):

Centring of lower-level interactions

There a two possible centring approaches:

- Product first, center next (P1C2):

- Center first, take the product next (C1P2):

Centring of lower-level interactions

There a two possible centring approaches:

- Product first, center next (P1C2):

- Center first, take the product next (C1P2):

Question: which approach should we take? Do they differ in any way?

The P1C2-approach

- P1C2 model:

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3}(X Z)_{i j}^{c}+b_{j} \tag{5}
\end{equation*}
$$

with $(X Z)_{i j}^{c}=X_{i j} z_{i j}-\overline{X Z_{j}}$ (and $\overline{X Z_{j}}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} x_{i j} z_{i j}$)
$\Rightarrow \hat{\gamma}_{1}, \hat{\gamma}_{2}$ and $\hat{\gamma}_{3}$ are unbiased estimators for γ_{1}, γ_{2} and γ_{3}

The P1C2-approach

- P1C2 model:

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3}(X Z)_{i j}^{c}+b_{j} \tag{5}
\end{equation*}
$$

with $(X Z)_{i j}^{c}=X_{i j} z_{i j}-\overline{X Z_{j}}$ (and $\overline{X Z_{j}}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} x_{i j} z_{i j}$)
$\Rightarrow \hat{\gamma}_{1}, \hat{\gamma}_{2}$ and $\hat{\gamma}_{3}$ are unbiased estimators for γ_{1}, γ_{2} and γ_{3}

- P1C2+ model:

$$
\begin{aligned}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)= & \gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3}(X Z)_{i j}^{c}+ \\
& \gamma_{4} \bar{X}_{j}+\gamma_{5} \bar{Z}_{j}+\gamma_{6} \overline{X Z_{j}}+b_{j}
\end{aligned}
$$

\Rightarrow in balanced designs, the estimated within-effects $\hat{\gamma}_{1}, \hat{\gamma}_{2}$ and $\hat{\gamma}_{3}$ are identical in both models

The C1P2-approach

- C1P2 model:

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c}+b_{j} \tag{6}
\end{equation*}
$$

The C1P2-approach

- C1P2 model:

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c}+b_{j} \tag{6}
\end{equation*}
$$

- C1P2+ model:

$$
\begin{aligned}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)= & \gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c} \\
& +\gamma_{4} \bar{X}_{j}+\gamma_{5} \bar{Z}_{j}+\gamma_{6} \bar{X}_{j} \bar{Z}_{j}+b_{j}
\end{aligned}
$$

The C1P2-approach

- C1P2 model:

$$
\begin{equation*}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c}+b_{j} \tag{6}
\end{equation*}
$$

- C1P2+ model:

$$
\begin{aligned}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)= & \gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c} \\
& +\gamma_{4} \bar{X}_{j}+\gamma_{5} \bar{Z}_{j}+\gamma_{6} \bar{X}_{j} \bar{Z}_{j}+b_{j}
\end{aligned}
$$

- C1P2++ model:

$$
\begin{aligned}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)=\gamma_{0} & +\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c}+\gamma_{4} \bar{X}_{j}+\gamma_{5} \bar{Z}_{j} \\
& +\gamma_{6} \bar{X}_{j} \bar{Z}_{j}+\gamma_{7} \bar{X}_{j} Z_{i j}^{c}+\gamma_{8} \bar{Z}_{j} X_{i j}^{c}+b_{j}
\end{aligned}
$$

Example - Results

	Intimacy $=X$		Masturbation $=Z$		Interaction $=X Z$	
	Estimate	p-value	Estimate	p-value	Estimate	p-value
P1C2	$0.079(0.015)$	$<.001$	$-0.151(0.079)$.057	$.0 .075(0.039)$.054
P1C2+	$0.079(0.015)$	$<.001$	$-0.150(0.079)$.059	.$-0.075(0.039)$.054
C1P2	$0.080(0.015)$	$<.001$	$-0.163(0.080)$.042	$.0 .102(0.050)$.042
C1P2+	$0.080(0.015)$	$<.001$	$-0.160(0.080)$.045	$.0 .098(0.045)$.049
C1P2++	$0.080(0.015)$	$<.001$	$-0.167(0.080)$.037	.$-0.096(0.050)$.056

- Different approaches lead to different estimates
- Different approaches lead to different conclusions (at the 5% significance level)!

Simulation Study - Settings

Simulation	α_{1}	Distribution of X
Sim 1	0.0	$N(0,1)$
Sim 2	0.0	$B(1,0.5)-0.5$
Sim 3	-0.2	$B(1,0.5)-0.5$
Sim 4	-1.5	$B(1,0.5)-0.5$

Simulation study - Results

- X and Z are grand-mean centred to facilitate interpretation
- Focus on within-effects only

Simulation study - Results

- X and Z are grand-mean centred to facilitate interpretation
- Focus on within-effects only
- $\mathrm{P} 1 \mathrm{C} 2=\mathrm{P} 1 \mathrm{C} 2+$ and $\mathrm{C} 1 \mathrm{P} 2=\mathrm{C} 1 \mathrm{P} 2+$

Simulation study - Results

- X and Z are grand-mean centred to facilitate interpretation
- Focus on within-effects only
- $\mathrm{P} 1 \mathrm{C} 2=\mathrm{P} 1 \mathrm{C} 2+$ and $\mathrm{C} 1 \mathrm{P} 2=\mathrm{C} 1 \mathrm{P} 2+$
- Bias for interaction effect in C1P2=C1P2+ when Z is a mediator:

$$
\begin{equation*}
E\left(\hat{\gamma}_{3}\right)=\gamma_{3} \frac{\operatorname{cov}\left[X_{i j} Z_{i j}, X_{i j}^{c} Z_{i j}^{c}\right]}{\operatorname{var}\left[X_{i j}^{c} Z_{i j}^{c}\right]} \tag{7}
\end{equation*}
$$

Simulation study - Results

- X and Z are grand-mean centred to facilitate interpretation
- Focus on within-effects only
- $\mathrm{P} 1 \mathrm{C} 2=\mathrm{P} 1 \mathrm{C} 2+$ and $\mathrm{C} 1 \mathrm{P} 2=\mathrm{C} 1 \mathrm{P} 2+$
- Bias for interaction effect in C1P2=C1P2+ when Z is a mediator:

$$
\begin{equation*}
E\left(\hat{\gamma}_{3}\right)=\gamma_{3} \frac{\operatorname{cov}\left[X_{i j} Z_{i j}, X_{i j}^{c} Z_{i j}^{c}\right]}{\operatorname{var}\left[X_{i j}^{c} Z_{i j}^{c}\right]} \tag{7}
\end{equation*}
$$

- No bias for P1C2 = P1C2+ and C1P2++

Simulation study - Results

- X and Z are grand-mean centred to facilitate interpretation
- Focus on within-effects only
- $\mathrm{P} 1 \mathrm{C} 2=\mathrm{P} 1 \mathrm{C} 2+$ and $\mathrm{C} 1 \mathrm{P} 2=\mathrm{C} 1 \mathrm{P} 2+$
- Bias for interaction effect in C1P2=C1P2+ when Z is a mediator:

$$
\begin{equation*}
E\left(\hat{\gamma}_{3}\right)=\gamma_{3} \frac{\operatorname{cov}\left[X_{i j} Z_{i j}, X_{i j}^{c} Z_{i j}^{c}\right]}{\operatorname{var}\left[X_{i j}^{c} Z_{i j}^{c}\right]} \tag{7}
\end{equation*}
$$

- No bias for P1C2 = P1C2+ and C1P2++
- Precision of interaction effect estimator is about 30\% smaller for P1C2 compared to C1P2++

Conclusions

1. P1C2 yields more precise estimators of the interaction effect compared to the C1P2-approaches
2. In contrast to C1P2, P1C2 is not affected by misspecification or omission of upper level effects (i.e. upper level endogeneity)

Conclusions

1. P1C2 yields more precise estimators of the interaction effect compared to the C1P2-approaches
2. In contrast to C1P2, P1C2 is not affected by misspecification or omission of upper level effects (i.e. upper level endogeneity)

Thank you!

Possible complication when the predictors are NOT centred

- Again consider C1P2 or C1P2+:

$$
\begin{aligned}
& E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)= \gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c}+b_{j} \\
& \qquad \begin{aligned}
E\left(Y_{i j} \mid X_{i j}, Z_{i j}, u_{j}\right)= & \gamma_{0}+\gamma_{1} X_{i j}^{c}+\gamma_{2} Z_{i j}^{c}+\gamma_{3} X_{i j}^{c} Z_{i j}^{c} \\
& +\gamma_{4} \bar{X}_{j}+\gamma_{5} \bar{Z}_{j}+\gamma_{6} \bar{X}_{j} \bar{Z}_{j}+b_{j}
\end{aligned}
\end{aligned}
$$

- Bias in main effects for these approaches:

$$
\begin{aligned}
& E\left[\hat{\gamma}_{1}\right]=\beta_{1}+\beta_{3} E\left(\bar{Z}_{j}\right) \\
& E\left[\hat{\gamma}_{2}\right]=\beta_{2}+\beta_{3} E\left(\bar{X}_{j}\right)
\end{aligned}
$$

Results - Simulation Study

Estimator		γ_{1}			Power	Estimate ($s d_{E}$)	$s e^{\hat{\gamma}_{2}}$	Coverage	Power	Estimate ($s d_{E}$)	se χ^{13}	Coverage	Power
		Estimate ($s d_{E}$)	se	Coverage									
$\stackrel{-}{\text { E }}$	P1C2	0.101 (0.031)	0.028	0.92	0.93	0.150 (0.027)	0.028	0.96	1.00	-0.101 (0.019)	0.020	0.95	1.00
	C1P2	0.101 (0.032)	0.028	0.92	0.92	0.150 (0.027)	0.028	0.96	1.00	-0.101 (0.029)	0.029	0.95	0.94
	C1P2++	0.101 (0.031)	0.028	0.93	0.93	0.150 (0.027)	0.028	0.96	1.00	-0.101 (0.029)	0.029	0.95	0.94
NE	P1C2	0.103 (0.056)	0.055	0.95	0.46	0.150 (0.027)	0.028	0.96	1.00	-0.101 (0.040)	0.039	0.95	0.72
	C1P2	0.103 (0.056)	0.055	0.95	0.47	0.100 (0.027)	0.028	0.96	1.00	-0.099 (0.058)	0.058	0.95	0.41
	C1P2++	0.103 (0.056)	0.056	0.95	0.46	0.150 (0.027)	0.028	0.96	1.00	$\underline{-0.099(0.058)}$	0.058	0.95	0.41
${ }_{i}^{m}$	P1C2	0.103 (0.056)	0.055	0.95	0.46	0.150 (0.027)	0.028	0.96	1.00	-0.101 (0.040)	0.039	0.95	0.72
	C1P2	0.103 (0.056)	0.055	0.95	0.46	0.150 (0.027)	0.028	0.96	1.00	-0.099 (0.058)	0.058	0.95	0.41
	C1P2++	0.103 (0.056)	0.055	0.95	0.46	0.150 (0.027)	0.028	0.96	1.00	$\underline{-0.099(0.058)}$	0.058	0.95	0.41
$\begin{aligned} & \pm \\ & i= \end{aligned}$	P1C2	0.103 (0.068)	0.069	0.95	0.33	0.150 (0.027)	0.028	0.96	1.00	-0.101 (0.040)	0.039	0.95	0.72
	C1P2	0.103 (0.068)	0.069	0.95	0.33	0.150 (0.027)	0.028	0.96	1.00	-0.090 (0.055)	0.055	0.95	0.37
	C1P2++	0.103 (0.068)	0.069	0.96	0.33	0.150 (0.027)	0.028	0.96	1.00	-0.099 (0.055)	0.056	0.96	0.41

