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Abstract—The Monte Carlo (MC) simulation of the error per-
formance of a concatenated coding system with finite interleaving
depth between the outer and inner codes is time-consuming,
especially when targeting low error rates and examining several
interleaver settings. In this contribution we present a semi-
analytical evaluation of the word error rate (WER) performance
of a system with Reed-Solomon (RS) outer coding, finite block
interleaving and systematic low-density parity check (LDPC)
inner coding. The proposed evaluation method relies on a simple
semi-analytical statistical model for the number of bit errors in
a segment of the information word after LDPC decoding on the
AWGN channel. Only the WER and bit error rate (BER) of the
inner subsystem (LDPC code and the considered constellation)
are required to compute the WER of the concatenated code,
corresponding to different parameters of the RS code and
the interleaver. We show that the semi-analytical WER of the
concatenated system closely matches the WER resulting from
MC simulations, for both the AWGN channel and the Rayleigh
block-fading channel.

I. INTRODUCTION

Concatenated coding, involving an outer code and an inner
code which are separated by an interleaver, is a common error
correction scheme, used to improve the error performance of
digital communication systems. The role of the interleaver
is to distribute burst errors, occuring at the output of the
inner decoder, over multiple codewords of the outer code,
hence increasing the chance that the outer decoder can correct
the residual errors from the inner decoder. Contemporary
technologies using concatenated coding include the G.993.2
(VDSL2) and the G.fast standards (RS outer code, trellis-
coded modulation (TCM) as inner code) [1], [2], and the DOC-
SIS 3.1 and DVB standards (Bose-Chaudhuri-Hocquenghem
(BCH) outer code, LDPC inner code) [3] [4].

Evaluating the error performance of a concantenated coding
scheme through MC simulations is very time-consuming, espe-
cially at low error rates. Alternatively, the error performance
of such a scheme can be obtained from a statistical model
of the error patterns at the inner decoder output. For TCM
and convolutional inner codes, which use the Viterbi algorithm
for decoding, these error patterns can be accurately modeled
by means of geometrical distributions [5], [6]. However, this
model only applies to trellis-based codes and not to block
codes such as LDPC codes, which use iterative belief propa-
gation [7], [8] for decoding.

In this contribution we consider the RS/LDPC concatenated
coding scheme with a finite block interleaver, described in
section II. Based on MC simulations, we provide in section
III a simple statistical model for the number of bit errors in
a segment of the information word after LDPC decoding on
the AWGN channel, involving the binomial distribution. This
model allows to evaluate semi-analytically the WER of the
concatenated RS/LDPC coding scheme for various interleaver
parameter settings, on both the AWGN and the Rayleigh
fading channel. The proposed method is validated in section
IV, where the WER resulting from the model is compared
to the WER obtained from MC simulations. Conclusions are
drawn in section V.

Notation: We denote by B(i;N, p) the probability mass
function (pmf) of the binomial distribution, i.e., B(i;N, p) =
CiNp

i(1 − p)N−i, for i ∈ {0, 1, ..., N}, with CiN = N !
i!(N−i)!

the binomial coefficient. The operator E[.] refers to statistical
expectation, and bxc is the largest integer not exceeding x.

II. SYSTEM DESCRIPTION

We consider a concatenated coding system, with interleav-
ing between the outer and the inner code. The outer code
is a systematic RS(NRS,KRS) code defined over a finite
field of size 2S , so that each symbol of the RS codeword
can be associated with S bits; the RS code has a length of
NRS symbols, representing KRS information symbols, and can
correct any combination of up to t =

⌊
NRS−KRS

2

⌋
symbol

errors. The RS codewords are applied to a block interleaver.
As indicated in Fig. 1, the block interleaver has D rows, each
containing one RS codeword; D is referred to as the interleaver
depth. The NRSDS bits contained in the interleaver constitute
the information words for L codewords of the inner code. The
inner code is a systematic binary LDPC(NI, KI) code, with
codewords of length NI bits, representing KI = NRSDS/L
information bits. The KI information bits from the lth LDPC
codeword are contained in the lth column of the interleaver;
hence, each column has a width of J = NRS/L = KI/(SD)
symbols. The NI bits from the lth LDPC codeword are mapped
to data symbols from an M -point signal constellation; the
resulting data symbols are stacked into the data symbol vector
xl, having NI/ log2(M) components.

The components of the symbol vectors are transmitted
sequentially over a memoryless channel. The received signal
yl associated with the data symbol vector xl is given by
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Figure 1. Block interleaving scheme.

yl = hlxl + wl (1)

for l = 1, 2, .., L, where the components of the noise vector
wl are independent identically distributed (i.i.d.) complex-
valued circular-symmetric (CVCS) Gaussian random variables
with zero mean and variance N0, and hl is the channel gain
experienced by the symbol vector xl. For an AWGN channel,
we have hl = 1 for l = 1, ..., L, and the corresponding signal-
to-noise ratio (SNR) is defined as γAWGN = E[|xl|2]/E[|nl|2].
For Rayleigh block-fading, the channel gains (h1, h2, ..., hL)
are i.i.d. CVCS Gaussian random variables with zero mean
and variance equal to 1; we denote by γ̄ = E[|xl|2]/E[|nl|2]
the average SNR of the fading channel; the instantaneous SNR
related to the symbol vector xl equals γl = |hl|2γ̄.

The receiver performs a soft-demapping operation, followed
by iterative LDPC decoding based on the sum-product algo-
rithm [7], [8]. The information part of the LDPC decoder
output related to the lth LDPC codeword is written into the
lth column of a block deinterleaver, which has the same
dimensions as the interleaver at the transmitter. An algebraic
RS decoder [7], [8], operating on the rows of the deinterleaver,
tries to correct the errors at the LDPC decoder output.

III. ERROR MODEL AND PERFORMANCE ANALYSIS

A decoding error of the concatenated coding scheme occurs
when the RS codeword at the input of the outer decoder is
affected by more than t symbol errors. The RS codeword
consists of L segments of J symbols, each originating from
a different LDPC codeword. A RS decoding error requires at
least L0 = 1 + bt/Jc segments to contain symbol errors. In
the case of Rayleigh block-fading the diversity orders for the
systems with and without concatenation therefore equal L0 and
1, respectively. Hence, to achieve a substantial improvement
in error performance with a concatenated scheme, we need
L0 > 1, which is obtained by selecting J such that J ≤ t.
Based on this observation, we focus on values of JS which
are small compared to the number KI of information bits in
the LDPC codeword, as typically we have St� KI.

Let us investigate by means of MC simulation the number
of bit errors in segments of the information word, after

0 200 400 600 800 1000
0

1

2

3

4

5

6

Variable node #

V
a

ri
a

b
le

 n
o

d
e

 d
e

g
re

e

Figure 2. Degree of variable node versus position in LDPC(1120,840)
codeword

decoding of the quasi-cyclic binary rate 3/4 LDPC(1120,840)
code (DOCSIS standard [3]) with Gray mapping to a 4-QAM
constellation on an AWGN channel. Decoding stops when a
valid codeword is detected, or after 50 iterations; per SNR
value we simulated until 104 erroneous codewords occurred.
For this specific code, Fig. 2 shows the degree of each variable
node versus its position in the codeword. Considering JS-
bit segments of the information part of erroneous codewords,
Fig. 3 (upper) superposes the D = KI/(JS) histograms of
the number (qb) of bit errors in such segments, for (JS,D)
= (120, 7) and with γAWGN set such that WERI = 10−2.
The 7 histograms are not identical, because Fig. 2 indicates
that the variable degree distribution within a segment depends
strongly on which segment has been selected. This dependence
gives rise to an unequal WER for the RS codewords in
the concatenated system. This can be avoided by applying
a random permutation to the information bits prior to LDPC
encoding (and applying the inverse permutation to the infor-
mation bits after LDPC decoding). Fig. 3 (lower) shows that
the histograms, resulting from applying the same permutation
to all transmitted codewords, essentially coincide.

Denoting by e the event of an LDPC codeword error (e
indicates correct LDPC decoding) and by qI the number
of information bit errors after LDPC decoding, the random
permutation of the information bits gives rise to the following
pmf of qb, the number of bit errors in a segment:

Pr[qb = i|e] =

KI−JS+i∑
k=i

H(i; k, JS,KI) Pr[qI = k|e] (2)

for i ∈ {0, ..., JS}. In (2), the function H(i; k, JS,KI) =
CiJSC

k−i
KI−JS/C

k
KI

represents the hypergeometrical distribu-
tion, which for KI � JS is well approximated by the bino-
mial distribution B(i; JS, k/KI). Assuming only a moderate
spread of the pmf Pr[qI = k|e] around its mean E[qI|e], so
that H(i; k, JS,KI) (considered as a function of k) is, for
any i, much wider than Pr[qI = k|e], we further approximate
Pr[qb = i|e] by the following single-parameter model:

Pr[qb = i|e] ≈ B(i; JS, pb) (3)

where pb = E[qI|e]/KI. Using E[qI|e] = 0, and expressing
the WER and the BER of the LDPC code as WERI =
Pr[e] = 1 − Pr[e] and BERI = E[qI]/KI, it follows that
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Figure 3. Superposed histograms (small circles, dashed lines) and semi-
analytical model (large crosses) for Pr[qb = i|e] with JS = 120, showing
moderate/good agreement without/with permutation of the information bits
(LDPC(1120,840), 4-QAM, AWGN channel, WERI = 10−2).

pb = BERI/WERI, which depends on γAWGN. It can be
verified from (2) that the model (3) is exact when Pr[qI =
k|e] = B(k;KI, pb). According to (3), the bit errors in
a segment occur independently with probability pb in case
of a codeword error. Consequently, the unconditional pmf
Pr[qb = i] is obtained as

Pr[qb = i] = Pr[qb = i|ē] Pr[ē] + Pr[qb = i|e] Pr[e]

≈ (1−WERI)δi + WERIB(i; JS, pb) (4)

where δi is the Kronecker delta function. The model (4)
will be instrumental in deriving the WER performance of the
concatenated coding scheme for several interleaver settings.
Denoting by qs the number of symbol errors in a J-symbol
segment, it follows from the proposed model (4) that

Pr[qs = i] ≈ (1−WERI)δi + WERIB(i; J, ps) (5)

with ps = 1 − (1 − pb)S . As such, pb and ps represent the
average fraction of erroneous bits and symbols, respectively,
in the erroneous codewords.

Fig. 3 also displays the binomial distribution B(i;SJ, pb),
showing a good fit with the histogram corresponding to the
permuted information bits. The accuray of the fit of the model
(3) with the histograms can be expressed by the Kullback-
Leibler divergence (KLD) [9], defined as

DKL(P |Q) =
∑
i

P (i) ln
P (i)

Q(i)
(6)

Here, Q(i) equals Pr[qb = i|e] from the model (3) and
P (i) is obtained by averaging the D available histograms
corresponding to the JS-bit segments. Table I shows the
KLD from (6) for a number of JS and WERI values, and
two different LDPC codes. The table indicates that for the
LDPC(1120,840) and LDPC(5940,5040) codes from [3], the
accuracy of the model (3) improves with decreasing JS and
increasing WERI. Denoting by σHG(i) the rms spread of
H(i; k, JS,KI) w.r.t. the variable k for given i, we have
verified that, as a rule of thumb, the model (3) is very accurate

LDPC(1120,840) LDPC(5940,5040)
γAWGN (dB) 4.44 4.77 5.51 5.66

WERI 1.00E-01 1.00E-02 1.00E-01 1.00E-02
BERI 3.72E-03 3.81E-04 1.81E-03 2.00E-04

KLD @ JS = 120 2.00E-02 4.16E-02 7.08E-03 9.96E-03
KLD @ JS = 40 1.86E-03 4.44E-03 7.16E-04 9.73E-04

Table I
KLD BETWEEN HISTOGRAM (WITH PERMUTATION OF INFORMATION

BITS) AND MODEL INDICATES BETTER ACCURACY FOR SMALLER JS ,
LARGER KI AND LARGER WERI

(i.e., KLD is in the order of 10−3 or less), when the standard
deviation of Pr[qI = k|e] is less than (1/2) mini σHG(i),
with mini σHG(i) ≈ D. We have observed (results not shown
for conciseness) that this rule of thumb remains valid for
other constellations (e.g., 16-QAM and 64-QAM) and for
other LDPC codes (e.g., the (1280, 1024) and (1536, 1024)
AR4JA [10] codes, the (1152, 960) and (5184, 4320) G.hn
codes [11])). As these G.hn codes are almost regular, their
histograms of qb for the individual segments are essentially
the same, even without a permutation of the information word.

Now we focus on the error performance of the concatenated
coding scheme. Each RS codeword consists of L segments of
J symbols, with each segment originating from a different
LDPC codeword. Denoting by qRS the number of symbol
errors in a RS codeword at the outer decoder input, we
have qRS =

∑L
l=1 q

(l)
s , where q(l)s is the number of symbol

errors in the J-symbol segment from the lth LDPC codeword,
which is part of the considered RS codeword. For the AWGN
channel, the pmf of qRS, denoted Pr[qRS = n], equals
the L-fold convolution of Pr[qs = i] from (5), because
the random variables {q(l)s , l ∈ {1, ..., L}} are i.i.d. For
the Rayleigh block-fading channel with given instantaneous
SNRs {γl}, the random variables {q(l)s } are independent, with
Pr[q

(l)
s = i|γl] given by (5), where WER and ps correspond

to an AWGN channel operating at SNR = γl; hence, the pmf
of qRS conditioned on {γl} is obtained as the convolution
of {Pr[q

(l)
s = i|γl], l ∈ {1, ..., L}}. As the instantaneous

SNRs {γl} are i.i.d., the unconditional pmf of qRS, denoted
Pr[qRS = n], equals the L-fold convolution of the uncondi-
tional pmf Pr[qs = i] = Eγ [Pr[qs = i|γ]], with Eγ [.] denoting
averaging over the instantaneous SNR γ. The resulting WER
of the concatenated coding scheme is then obtained as

WERconc =

NRS∑
n=t+1

Pr[qRS = n] (7)

with the derivation of Pr[qRS = n] depending on the type of
channel (AWGN or Rayleigh block-fading).

The above analysis shows that it is sufficient to know the
WER and the BER of the inner LDPC code on the AWGN
channel as a function of γAWGN for the considered constella-
tion (e.g., in the form of a lookup table), to characterize the
semi-analytical model (4) for the pmf of qb, from which we
can compute the WER of the concatenated coding system (for
the AWGN channel and the Rayleigh block-fading channel)
for various values of the interleaver depth D and the RS code
parameters; this represents considerable computational savings
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Figure 4. Semi-analytical WER (solid lines) agrees very well with WER from
MC simulation (markers) for the concatenated system on AWGN channel with
different interleaver depths (RS(210,188) plus LDPC(5940,5040), 4-QAM).

compared to straightforward MC simulations.

IV. NUMERICAL ERROR PERFORMANCE RESULTS

We consider a concatenated scheme where the RS outer
code is obtained by shortening the RS(255,223) code with
symbol size S = 8; the resulting RS outer code can correct up
to t = 16 symbol errors.

For the AWGN channel, Fig. 4 shows the WER of the
concatenated system versus the WER of the inner code, for
the RS(210,188) outer code and the LDPC(5940,5040) inner
code with 4-QAM mapping, with (D,J) = (7, 15), (21, 5). A
very good fit between the simulations and the semi-analytical
result is observed, even for settings yielding a KLD (6) up
to about 10−2. Note from Fig. 4 that a WERI in the range
(10−2, 10−1) is a convenient operating point for the inner code
in the concatenated system, as the corresponding WERconc

can be made significantly smaller by selecting a proper value
of J .

Fig. 5 shows the WER of the concatenated system versus
Eb/N0 (with Eb the energy per information bit) in the case of
Rayleigh block-fading for two configurations: in configuration
A we use the RS(210,288) outer code and LDPC(1120,840)
inner code from [3], with 4-QAM mapping and (D,J) =
(7,15) and (21,5), yielding diversity orders L0 = 2 and 4,
respectively; in configuration B we use the RS(240,208) outer
code and LDPC(5184,4320) inner code from [11], with 16-
QAM mapping and (D,J) = (54,10) and (135,4) yieding L0

= 2 and 5, respectively. The WER of the LDPC code (without
concatenation) shows a diversity order of only 1. The MC
simulations and the semi-analytical result agree very well, for
both configurations A and B. We also obtained similar results
for other LDPC codes (not shown here for conciseness )

V. CONCLUSIONS AND REMARKS

In this contribution we have modeled the pmf of the number
of bit errors in a segment of the information word after
LDPC decoding at a given instantaneous SNR as a mixture
of a Kronecker delta function and a binomial distribution;
an excellent fit is obtained when the standard deviation of
the total number of information bit errors in an erroneous
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Figure 5. Semi-analytical WER (solid lines) agrees very well with WER
from MC simulation (markers) for configurations A and B on Rayleigh block-
fading channel with different interleaver depths.

codeword does not exceed half the interleaving depth D. This
model allows the fast evaluation of the WER performance of
a concatenated system, consisting of outer RS coding, finite
block interleaving, inner LDPC coding and mapping to a
constellation. For this WER evaluation we only need the WER
and the BER performance of the inner subsystem, determined
by the LDPC code and the considered constellation. The
accuracy of the WER evaluation of the concatenated coding
system has been validated by means of MC simulations, for
both the AWGN and the Rayleigh block-fading channel.

The proposed method can be straightforwardly generalized
to other families of outer codes with known error correcting
capabilities (such as BCH codes).
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