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Abstract—Big data storage technologies inherently entail
high latency characteristics, preventing users from performing
efficient ad-hoc querying and interactive visualization on large
and distributed datasets. Most of the existing approaches
addressing this issue thrive on de-normalization of the static
data schema and creation of application specific (i.e. hard-
coded) materialized views, which certainly reduce data access
latency but at the expense of flexibility. In this regard, this
paper proposes an approach that relies on an iterative process
of data transformation intended to generate read-optimized data
schemas. The transformation process is able to automatically
identify optimization opportunities (e.g. materialized views,
missing indexes), by analyzing the original data schema and the
record of queries issued by users and client applications against
the data set. An experimental evaluation of the proposed
approach evidences a significant reduction in the query latency,
ranging from 81.60% to 99.99%.

Keywords-Low latency querying; Dynamic data transforma-
tion; Polyglot persistence; Big Data; Denormalization

I. INTRODUCTION

Extensive research efforts have been undertaken during
the last few years to come up with optimal mechanisms
for managing large (and predominantly unstructured) data
sets. There exists a wide range of technologies, tools and
frameworks in the big data ecosystem: from cost-efficient
and reliable distributed data storage, to end-user applications
dealing with specific domain requirements, as well as cloud-
based services in place to deploy, scale and manage these
technologies. One of the main open challenges big data tech-
nology faces nowadays is to lower the data access latency
inherent to these large and distributed data collections.

For data-driven business in application domains such as
social media, Internet of Things (IoT) and smart cities, being
able to make sense of data as soon as it is produced is
becoming of cardinal importance to ensure their optimal
operation, even as a critical part of their value proposition.
A common requirement of these data-intensive application
domains is to be able to support (near)real-time data analysis
and visualization, and efficient ad-hoc querying. The current
technology landscape offers a diversity of solutions claiming
to meet these requirements ranging from SQL-on-Hadoop
systems [1], to in-memory computing frameworks like
Apache Ignite [2], and software architectural patterns such
as the Lambda [3] and Kappa [4] architectures. However,

according to previous research and industry benchmarks [5],
[6], [7], [8], these solutions either failed to achieve low
latency for ad-hoc querying workloads, or effectively offer
interactive performance, but at the expense of flexibility by
relying on precomputed information views.

This paper introduces a systematic method for data trans-
formation intended to generate a dynamic read-optimized
schema enabling interactive-level latency for both data ex-
ploration and visualization tasks. The proposed approach
extends existing methods of data transformation for polyglot
persistence with no application downtime [9], and automatic
schema denormalization based on query workload analysis
[10].

The remainder of this paper is organized as follows:
Section II describes the motivation behind this work. Section
III addresses the related works. Section IV elaborates on
the proposed systematic data transformation approach. Sec-
tion V deals with the experimental setup and results. Finally
conclusions and pointers towards future work are provided
in Section VI.

II. MOTIVATION

With more and more companies perceiving an increased
value of data, high expectations are set on business in-
telligence (BI) and data analytics applications in general.
Business users typically demand from these solutions the
ability to perform ad-hoc queries and get visual insight
on business data as it becomes available, which implies
the execution of read-intensive operations. Being able to
carry out these tasks in a timely manner, which is required
for interactive applications, entails a big challenge for BI
software, imposed by the sheer and growing amount of data
it has to deal with. To cope with this, existing enterprise
applications often separate BI operations—mostly supported
by Online Analytical Processing systems (OLAP)—from
day-to-day transaction processing—a.k.a. Online Transac-
tion Processing (OLTP) [11].

OLTP systems rely mostly on write-optimized storage
and highly normalized data models, while BI software
works on top of read-optimized schemas featuring data
redundancy and precomputed information views derived
from the transactional system data. However, these read-
optimized schemas are mainly fixed, restricting the ability
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Figure 1. Open source BI tools: Average time per SSB query (SSB on PostgresSQL v9.6.2 with scaling factor SF = 1)

of BI systems to solve ad-hoc queries in consequence.
Furthermore, according to a comparative evaluation per-

formed on four open source technologies for data exploration
and dashboarding (Superset from Airbnb [12], Metabase
[13], Redash [14], and Pentaho Community Dashboard
Editor (CDE) [15]), despite the fact of using denormalized
schemas, these tools fail to run queries under low latency
constraints on moderate-size data collections. The mentioned
evaluation was conducted on six million records of the Star
Schema Benchmark (SSB) [16], stored on PostgreSQL [17].
Four instances of the SSB dataset were deployed, as well as
one instance of the four visualization tools under evaluation
on top of each one of them.

Figure 1 shows the average time (over 60 iterations) each
dashboarding tool takes to run the queries being part of
each one of the query flights defined in the Star Schema
Benchmark specification (Q1.1 ∼ Q4.3 in Figure 1). In
all cases query runtime widely exceeds the interactive time
limit criteria, set to 500 ms (in [18] it has been shown that
interactions with higher latency cause users to unconsciously
interact less with the tools), resulting in a poor user experi-
ence.

The previously mentioned platforms and some similar
ones like Tableau [19] are tailored for ad-hoc querying and
data visualization. However these tools only hold interactive
query resolution when running on moderate-sized collections
of aggregated data. Moreover, apart from using traditional
caching, these tools often lack effective mechanisms for
optimizing data retrieval tasks.

The work addressed in this paper shows that the query
response time can be lowered by incrementally and sys-
tematically optimizing the data schema according to query
construction patterns. This work primarily focuses on read-
intensive applications demanding ad-hoc querying under low

latency constraints, leaving write operations as part of further
research on the approach presented herein.

III. RELATED WORK

The problem of access latency in data exploration and
visualization has been addressed from several perspectives.
SQL-on-Hadoop platforms such as Apache Drill [20] and
Apache Impala [21] claim to have interactive performance
and to support ad-hoc queries by using a custom query
execution engine that bypasses MapReduce and its inherent
high latency. However, according to the AMP Lab Big Data
benchmarks [5], even though the response time of these
platforms outperforms those from similar frameworks like
Apache Hive [22], they cannot guarantee interactive-level
response times.

Other approaches tackle the latency problem derived from
accessing the wide variety of data storage technologies used
in big data applications. In [23], Giese et al. argue that
end-users depend on the assistance of IT experts to pose
ad-hoc queries to heterogeneous data stores. The above is
regarded as a bottleneck limiting the ability of users to
efficiently and promptly access big data sets. Giese et al.
propose to approach this problem using ontology-based data
access (OBDA): capturing end-user conceptualizations in
an ontology and use declarative mappings to connect the
ontology to the underlying data sources. Then, end-users can
pose queries in terms of concepts of the ontology which are
then rewritten to queries against the sources, avoiding the
intervention of IT experts. This approach however entails a
number of limitations in terms of (i) usability, as end-users
need to formulate queries using a formal query language,
(ii) costs of creating and maintaining both ontology and
mappings, and (iii) efficiency of both the translation process
and the execution of the resulting queries.
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Figure 2. Dynamic data transformation for read-optimization: Architecture overview

In [9] the usage of multiple storage technologies in a
single application is regarded as polyglot persistence. When
optimally applied, polyglot persistence boosts application
performance by storing each different data type into the data
store technology best suited for it. This way for instance,
highly accessed data may be loaded into a read-optimized
data store. In this respect, Vanhove et al. propose a dynamic
schema and data transformation approach for bringing the
benefits of polyglot persistence to legacy applications, i.e.
those storing their data in one relational data store. The
mechanism conceived in [9] is able to transform schema
and data between a source and a target data store without
application downtime and avoiding code changes, as client
applications are not required to change the query language
they use, thanks to an ever running live query transformation.
The transformation process is based on the Lambda Archi-
tecture [3]: the batch layer is in charge of transforming a
snapshot of the data available in the source data store, while
the speed layer performs transformations on the stream of
new queries issued after the snapshot was taken.

The approach discussed in this paper builds on top of this
work, leveraging on its dynamic transformation capability to
incrementally generate a read-optimized version of a source
data collection.

The mechanism proposed herein involves discovering
relationships between data entities encoded both in the
dimension/table structure and in query constructs composing
SELECT statements. Then, a number of read-optimization
methods (such as table partitioning, table collapsing, mate-
rialized views, and indexing) are iteratively applied on the
dataset under consideration, based on the learned relation-
ships. In this way, a system implementing this approach is
able to incrementally deliver interactive-level response times

for ad-hoc querying and visualization tasks.

IV. DYNAMIC READ-OPTIMIZATION

As indicated previously, current business intelligence soft-
ware mainly operates on top of denormalized dimensional
data schemas. The dynamic transformation approach in-
troduced in this paper is intended to incrementally read-
optimize the schema specifying the structure of a dimen-
sionally modeled dataset, in order to minimize the query
runtime. Figure 2 presents an overview of the architecture
of the proposed mechanism. The diagram depicts the four
main components of this approach:

• A source data store complying the star (dimensional)
schema (Dsrc).

• A query performance monitoring system in charge of
gathering measurements like query runtime, frequency,
and result set size. This component leverages on ex-
isting tools and libraries for collecting performance
statistics in open-source database technologies, such as
pg stat statements from PostgreSQL and the MySQL
Performance Schema.

• A schema optimization module, in charge of analyzing
the information about query performance, identifying
query usage/construction patterns and relationships be-
tween data entities, and defining which optimization
method to apply.

• A data transformation component, responsible for ap-
plying the actions designated by the schema optimiza-
tion module. This component builds further on the data
transformation mechanism conceived by Vanhove et al.
in [9], by turning it into an iterative process.



A. Transformation Workflow

The transformation process conducted by the proposed
mechanism can be described in terms of iterations.

First iteration:
1) All data retrieval queries are directed towards the source

data collection (Dsrc), while information regarding
their execution is collected by the query performance
monitoring system. Then, this performance information
is fed to the schema optimization module.

2) Inside the schema optimization module, the query
performance information is processed (see in Section
IV-B). Then, a specification of the optimization actions
to be applied on the (Dsrc) schema is generated and
fed into an append-only log (schema migration register
in Figure 2).

3) Finally, each of the schema migration specifications
loaded into the schema migration register triggers the
capture of a snapshot of Dsrc, which is then handed to
the batch layer of the data transformation component.
In this layer a job is submitted to transform both the
structure and data present in the snapshot. This job
results in a read-optimized version of Dsrc (target data
collection, Dtrg in Figure 2).

Subsequent iterations: All iterations following the first
one start with a handover process, where Dtrg becomes Dsrc

and further optimization actions are applied on it. Once this
handover process is complete, the data retrieval queries are
directed towards the new Dsrc through the speed layer of the
data transformation component, where queries are translated
according to the structure of the new read-optimized data set.
Then, the subsequent process comprises the same three steps
previously described for the first iteration.

Thanks to the continuous query transformation applied
in the speed layer, client applications (business intelligence
software) are able to query the new read-optimized data
collection (Dtrg) as if they were querying the original Dsrc,
this way avoiding code changes and ensuring uninterrupted
operation.

It is worth noting that in case of performance degradation,
it is possible to replay all the schema migrations applied
over the original Dsrc, dismissing first the one causing the
performance breakdown.

B. Query Analysis

Considering that the conceived transformation mechanism
aims at lowering the latency for data access operations,
only data retrieval queries, i.e. SELECT statements, are
considered in this analysis.

In the specification of the Star Schema Benchmark (SSB),
a set of queries is defined to evaluate the performance
of databases products [16], which comprises typical data

retrieval operations performed in business intelligence ap-
plications. All statements composing this query set conform
to the following structure:

Listing 1. SSB query structure
SELECT select_list
FROM table_expression
[ WHERE search_conditions ]
[ [ GROUP BY column_list]
[ ORDER BY column_list] ]

where select_list, table_expression and
search_conditions are constructs that refer to
entities and properties defined in the schema of the data
collection, and also operations performed on them. The
elements composing these constructs may encode data
relationships which are not explicitly defined in the schema
shaping the collection at hand. Approaches like [10]
define automatic denormalization methods that leverage on
such implicit relationships to improve the performance of
JOIN operations. Aligned with this idea, the dynamic data
transformation proposed in this work starts by analyzing
the content of these query constructs, identifying a number
of cases in which their values commonly fall into.

Select list: The elements composing the select_list
construct frequently fall into two cases: projection and
aggregation:

• Projection (PROJ): comprises a set of columns or fields
belonging to one or more tables (facts or dimensions).
Consider the following query for instance:

SELECT lo_revenue, d_year, p_brand
FROM lineorder_fct, date_dim, part_dim
WHERE lo_orderdate = d_datekey
AND lo_partkey = p_partkey

• Aggregation (AGGR): when the select list contains a
function call (e.g. COUNT, SUM, AVG) that performs a
calculation on one or more columns, for example:

SELECT SUM(lo_revenue), lo_orderdate
FROM lineorder_fct
GROUP BY lo_orderdate;

Table expression: In general terms, this construct may
deal with one (SING) or multiple (MULT) tables, depending
on the elements included in the select_list and
search_conditions constructs. It also may be the case
that the table expression contains a SELECT statement (i.e.
a nested query) instead of a list of tables. In such cases,
nested queries are regarded as independent queries.

Search conditions: Search conditions are logical tests
applied to each data record. These conditions consist of two
value expressions and one relational operator that tests the
relationship between the two values, for example:



value_1 = value_2
column_x > 2

Three cases are considered for this construct:
• Filter on a range of values (RNGE) (val exp1: Column;

val exp2: ordinal/nominal/interval/ratio value), as in
the following statement:
SELECT *
FROM lineorder_fct
WHERE lo_revenue > 15

• Match between columns from different tables (val exp1:
Column from Table X; val exp2: Column from Table
Y), used in JOIN queries, for example:
SELECT lo_revenue, d_year, p_brand, s_name
FROM lineorder_fct, date_dim, part_dim,

supplier_dim
WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey

Search conditions containing this kind of value ex-
pressions frequently reveal data relationships that may
or may not be explicit on the schema specification.
From the conditions in the previous query for instance,
it may be possible to imply a relationship between
lineorder_fct and each one of the dimension ta-
bles date_dim, part_dim, supplier_dim. Iden-
tifying these kind of relationships is key for the subse-
quent read-optimization process.

• No filter criteria specified: thoughtful queries always
include at least one search condition, however it might
be the case for a query to apply an aggregate function
over all the records from a data entity, for instance:
SELECT COUNT(*)
FROM lineorder_fct

The query analysis mechanism keeps track of the
occurrence of the above cases in queries issued against
Dsrc, as well as execution statistics associated to each
distinct query running on the data collection. The input of
this analysis consist of tuples of the form:

qi = (qsti, eti, rsi, ci)

where,
qsti is the text of a SELECT statement,
eti refers to the qi execution time,
rsi is the size of the result set retrieved by executing
qi,
and ci is the number of times qi has been executed.

Tuples for which the execution time is below the
interactive time limit criteria (et < 500ms) are
ruled out. For each of the remaining tuples the
qst element is extracted and parsed to obtain the
select_list (sli), table_expression (tei),
and search_conditions (sci) constructs.

Finally, each one of these sets (sl, te, sc) is processed
and their elements are classified according to the cases
previously discussed, turning each set into an associative
array:

q′i = (qsti, (sl
′
i, te

′
i, sc

′
i), eti, rsi, ci)

with,
sl′i = {AGGR : slia , PROJ : slip}
te′i = {SING : tei} ‖ {MULT : tei}
sc′i = {RNGE : scir , JOIN : scij} ‖ ∅

With this input, the procedure that comes next, defines an
action or set of actions aimed at read-optimizing the schema
of the data collection.

C. Read Optimization

The read optimization conceived in this approach consists
in dynamically applying a number of methods for altering
the structure of the data set, according to the characteristics
of the queries being issued against it.

The methods used for read optimization can be classified
into two categories: (1) redundant structures: column/field
indexing and query precomputing (materialized views),
and (2) non-redundant structures: denormalization (table
collapsing and table partitioning). Methods from the first
category involve storage costs and processing overhead
when dealing with data updates, which is why the current
approach has to compromise between low latency querying
and storage/processing costs in order to decide on the right
method to use.

Indexing: Indexes are one of the primary and most com-
mon means to improve data access performance in relational
databases. Missing indexes are often the reason for queries
to run slow, since this commonly imply the execution of
costly full table scans. However, indexing is not always
a suitable method for read-optimization, in the sense that
it only improves the performance of queries retrieving a
small percentage of rows from a table. In this way, the read
optimization mechanism relies on the concept of selectivity
ratio to decide whether or not to apply indexing on candidate
columns.

The selectivity ratio is defined as follows:

selectivity ratio =
Number of unique values in column

Number of rows in table

As a general guideline, if the selectivity ratio for a column
is less than 0.85, then processing a query with a condition
on such column using a full-table scan is less expensive than
using an index scan.

Thus, given the tuple representation of a query (q′′), the
read optimization mechanism first looks for columns lacking
of indexes, listed in the search_conditions (sc′)



under the RNGE category. Then, the selectivity ratio is
computed for each of the resulting columns and the creation
of an index is prescribed as a schema transformation
specification, for those columns whose selectivity ratio is
greater than 0.85.

Materialized views: When indexing is not a suitable
method for speeding up data retrieval operations, the op-
timization mechanism resorts to query precomputing so that
queries are no longer evaluated against the raw data, but
against snapshots of the result sets corresponding to those
queries. These snapshots are known as materialized views
and may be regarded as read-only tables.

Particularly, this method is applied on time-consuming
queries featuring aggregate operations (e.g. COUNT, SUM,
AVG) and/or JOIN conditions. In this regard, when a query
meeting these attributes enters the schema optimization
mechanism, the creation of a materialized view is issued
as a schema transformation specification, which is then
appended to the schema migration register.

Denormalization: The last method for read optimization
may involve a major transformation of the schema of the
data collection. In this case, depending on the features of
the query under inspection, two operations are applied as
follows:

• Table merging: this is a common operation used to
speed up query execution time by collapsing tables, this
way dismissing joins between them. The optimization
mechanism prescribes this operation when identifying
time consuming queries featuring recurring JOIN-like
search conditions. Consider for instance the following
query:
SELECT SUM(lo_revenue), d_year
FROM lineorder_fct, date_dim
WHERE lo_orderdate = d_datekey
GROUP BY d_year

In this case, the query performs a join between
the lineorder_fct and the date_dim through
the lo_orderdate and d_datekey columns
respectively.

• Table partitioning: splitting data tables row-wise
(horizontal partitioning) or column-wise (vertical
partitioning) is also a common operation used
depending on the needs of the accessing application,
to speed up query execution. The optimization
mechanism prescribes table partitioning as a more
storage efficient alternative to materialized views when
indexing is not applicable. Horizontal partitioning is
applied on the fact or collapsed tables (i.e. fact joined
to dimension tables) based on columns composing
recurrent search condition predicates. On the other

hand, vertical partitioning is used to lower the costs
of query execution by isolating frequently queried
columns from those seldom accessed. In this way
queries are issued against a usable/compacted version
of the data collection, thus taking less time to run.

D. Schema and Data Transformation

The mechanism for data transformation proposed by Van-
hove et al. in [9] is adapted and used in this work. Such
mechanism relies on a centralized canonical data model for
performing the translation from a source data store to a target
data store. The canonical data model is represented as a
directional graph encoding data entities, their attributes and
relations between them. This graph-based canonical model
enables ontology-like reasoning on the data, and allows
for a technology independent data transformation process,
endowing it with flexibility and extensibility to any data store
technology. Figure 3 illustrates an example of the canonical
model representing a data set comprising two entities.

Figure 3. Canonical model for the structure of a data set. source: [9]

The read-optimization mechanism introduced in this work
leverages on this canonical data model and the transforma-
tion approach proposed by Vanhove et al. [9], not to translate
data between different data stores, but to modify a given
data set schema according to the optimization operations
detailed in the previous section. This introduces a new step
to the original data transformation workflow proposed in [9]:
the iterative alteration of the canonical model representing
the structure of the source data set. Conceptually, these
successive transformations can be seen as a layered sequence
of canonical data models, with the one of the original data
store (CMsrc) lying on the first layer, and the subsequently
derived canonical models (CMtrg<i>) being stacked upon
one another as illustrated in Figure 4. Notice how relation-
ships exist between entities from consecutive layers. Such
relationships represent the optimization operations applied
over previous data models, making the continuous transla-
tion of queries conducted in the speed layer possible, and



also allowing for traceability and reversibility in case of
performance degradation.
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Figure 4. Layered sequence of canonical model transformations

Algorithm 1 Pseudo-code for the data transformation pro-
cedure

1: Schemasrc ← get Dsrc schema
2: DataTuples← read Dsrc snapshot
3: CMsrc ← transform Schemasrc into canonical model
4: detect relations in CMsrc

5: CurrentCM ← CMsrc . Current Canonical Model
6: for each schema transformation specification (sts) do
7: CMtrgi ← apply transformations from sts to

CurrentCM
8: generate relations between entities from CMtrgi and

CurrentCM
9: Schematrg ← generate new schema for Dtrg from

CMtrgi

10: load Schematrg into Dtrg

11: for each tuple in DataTuples do
12: transform to Dtrg

13: end for
14: load data into Dtrg

15: CurrentCM ← CMtrgi

16: DataTuples← read Dtrg snapshot
17: end for

The pseudo-code in Algorithm 1 details the procedure
conducted in the batch layer for transforming a given data set
(Dsrc) into a read-optimized version of it (Dtrg). Notice how
the layered sequence of canonical model transformations is
assembled through CurrentDM (see lines 5, 8 and 15). The
procedure inside the for loop at line 6 manages the gen-
eration of the read-optimized version of the canonical data
model (CMtrgi at line 7), the target schema (Schematrg
at line 9), as well as the translation of the data records and
their further storage into Dtrg (see lines 12 and 14).

V. EVALUATION

This section reports on the estimation of the efficiency
of the read-optimizing operations detailed in section IV-C,
using the Star Schema Benchmark (SSB) as an objective
testing dataset. The SSB was designed to measure the perfor-
mance of data storage technologies against a data warehouse
scheme, which comprises a dimensional data model (four
dimensions, one fact table), an extensible dataset (size de-
pending on a scaling factor—SF), and a set of queries typical
from business intelligence applications. Those queries are
arranged in four categories/families designated as Query
Flights. A succinct description of the SSB query flights is
presented next (a detailed definition of the SSB is available
at [16]).

A. SSB Query Flights

Q1: Performs an aggregate summation over the full fact
table while filtering on columns of a single dimension
(date_dim), and the lo_discount and lo_quantity
columns of the fact table:

SELECT SUM(lo_extendedprice*lo_discount) AS
revenue

FROM lineorder_fct, date_dim
WHERE lo_orderdate = d_datekey
AND {d_year | d_yearmonthnum } = {YEAR |

YEAR_MONTH_NUM}
[AND d_weeknuminyear = {WEEK_NUM_IN_YEAR}]
AND lo_discount BETWEEN {random(2..9) - 1} AND {

random(2..9) + 1}
AND lo_quantity BETWEEN {random(2..49) - 1} AND

{random(2..49) + 1}

Q2: This type of query features an aggregate summation
over a multiple-table join, with restrictions on two dimen-
sion tables (part_dim and supplier_dim), grouping
and sorting the results by columns of date_dim and
part_dim:

SELECT SUM(lo_revenue), d_year, p_brand1
FROM lineorder_fct, date_dim, part_dim,

supplier_dim
WHERE lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND {p_category | p_brand1} = {CATEGORY | BRAND}
AND s_region = {REGION}

GROUP BY d_year, p_brand1
ORDER BY d_year, p_brand1

Q3: As in the previous query flight, these queries sum-
marize over a multiple join, this time filtering and group-
ing by columns from three dimension tables (date_dim,
customer_dim and supplier_dim), and sorting the
outcome by the resulting aggregate summation:

SELECT {c_nation, s_nation | c_city, s_city},
d_year, SUM(lo_revenue) AS revenue

FROM lineorder_fct, customer_dim, supplier_dim,
date_dim

WHERE lo_custkey = c_custkey
AND lo_suppkey = s_suppkey
AND lo_orderdate = d_datekey



AND {condition on c_region, c_nation or c_city}
AND {condition on s_region, s_nation or s_city}
AND {d_year range | d_yearmonth condition}

GROUP BY {c_nation, s_nation | c_city, s_city},
d_year

ORDER BY d_year ASC, revenue DESC

Q4: The last query flight comprises an aggregate summa-
tion over a multiple table join involving the full set of dimen-
sions, grouped and sorted by columns from 2-3 dimensions,
and filtering by fields belonging to 3-4 dimensions:

SELECT d_year, c_nation, SUM(lo_revenue-
lo_supplycost) AS profit1

FROM lineorder_fct, date_dim, customer_dim,
supplier_dim, part_dim

WHERE lo_custkey = c_custkey
AND lo_suppkey = s_suppkey
AND lo_partkey = p_partkey
AND lo_orderdate = d_datekey
AND c_region = {REGION}
AND s_region = {REGION}
AND {condition on p_mfgr or p_category}
[AND {condition d_year}]
GROUP BY d_year, {c_nation | s_nation} [, {

p_category | p_brand1}]
ORDER BY d_year, {c_nation | s_nation} [, {

p_category | p_brand1}]

Thirteen SELECT statements conforming to these query
structures compose the full query set of the SSB: Q1:
3 queries, Q2: 3 queries, Q3: 4 queries, Q4: 3 queries.
For evaluation purposes 130 queries were derived from the
original query set, composing an evaluation workload which
ran against six different dimensions of the SSB dataset: 6
million rows (SF = 1), 12 million rows (SF = 2), 24 million
rows (SF = 4), 48 million rows (SF = 8), 96 million rows
(SF = 16), and 192 million rows (SF = 32). These datasets
were stored into PostgreSQL1 databases deployed on two
n1-highmem-22 Google Compute Engine instances. In
this way a query latency baseline was built to measure the
impact on the data retrieval performance upon applying the
read-optimization operations over the testing dataset.

B. Results

Once the read optimization operations were applied to
the different settings of the SSB dataset, it was possible to
link each SSB query flight to the operations that deliver the
best latency performance for their particular features.

Q1: Queries from this flight are conditioned on columns
of the fact table (lo_discount and lo_quantity).
Two methods are deemed suitable for this scenario: ma-
terialized views and table partitioning. Figure 5 shows
the effect on the query latency upon applying different
horizontal partitioning schemes to the 48 million record
SSB dataset. The best performance is achieved when par-
titioning on the combination of distinct values of the

1PostgreSQL v9.5.8 working with the default configuration
2see https://cloud.google.com/compute/docs/machine-types#highmem

search condition columns. This outcome can be explained
in terms of the higher selectivity ratio of the composition of
lo_discount and lo_quantity ( 550

48×106 ), in contrast
to their selectivity ratio measured individually ( 11

48×106 and
50

48×106 respectively). With this setting, latency values are
comparable to the interactivity threshold (500ms), which
means a relative reduction in the query running time ranging
from 81.6% to 94.3%. As argued earlier in section IV-C
non-redundant structures methods are favored over redun-
dant structures methods, therefore in this particular case,
horizontal partitioning is regarded as the most suitable of
the read optimization methods at hand.

Figure 5. Q1: Horizontal partitioning latency, SSB with SF = 8

Q2: Range predicates (RNGE search conditions) in this
family of queries comprise columns from dimension tables
only. Thus, data retrieval will not benefit from applying
denormalization methods like table partitioning in this par-
ticular case, which leads to the generation of materialized
views. Figure 6 reports on the effect of using this read
optimization method on the latency of the queries belonging
to Q2, in contrast with the performance of the original
dataset schema. One materialized view was generated for
answering any query derived from the structure of this
query flight (query-flight view). Results show how latency
declines remarkably upon applying this method, from 400s
(around 7min) to 6ms per query on average, far below the
interactivity threshold.

Figure 6. Q2: Materialized views latency, SSB with SF = 32

https://cloud.google.com/compute/docs/machine-types#highmem


SSB storage per table (SF = 32) Aggregated 

size 

Materialized 

views size 

% storage 

overhead lineorder_fct date_dim customer_dim supplier_dim part_dim 

39GB 432KB 135MB 8600KB 160MB 39.3GB 2.07GB 5.27% 

Table I
MATERIALIZED VIEWS: STORAGE OVERHEAD

Q3: Like Q2, this flight poses conditions on columns from
dimension tables only, covering in this case a wider variety
of queries. As a result and for experimentation purposes,
two kinds of views were created: one query-fight view
enabled for answering any query derived from this flight
structure, and four views for dealing with queries based on
the SELECT statements linked to Q3: Q3.1, Q3.2, Q3.3 and
Q3.4. Figure 7 shows the variation on the latency resulting
from using both generic and specific views, compared to
the performance of querying the original dataset. By using
materialized views, latency decreases by up to 99.86% for
the query-flight view, and up to 99.99% for query-specific
views. This means that one query that used to take 13min to
run, now would take around 1.0s using a generic view, and
from 2.0ms to 1.0s with specific views. It is worth noting
that in some cases, latency is roughly the same for both
generic and specific views (see Q3.2 and Q3.4 in Fig. 7).
This is because in those cases, the size of the corresponding
query-specific view match the size of the query-flight view
(about 5 million records).

Figure 7. Q3: Materialized views latency, SSB with SF = 32

Q4: Due to the way a materialized view is computed for
queries involving summarizing and grouping operations, its
size is upper bounded by the number of different (distinct)
values taken by the concatenation of the columns composing
the view. In that sense, it is expected that the more columns a
view includes, the larger it would become. Queries from Q4
feature the largest set of columns in the search conditions
in comparison with the other query flights. In consequence,
the query-flight view computed for Q4 comprises multiple
columns from the four dimensions available in the dataset,
reaching a size comparable to the size of the fact table. The

above is the reason why query latency registers almost no
improvement when using a generic view for this query flight
(see Figure 8). As for the query-specific views, latency drops
under the interactivity threshold in most of the cases, except
for Q4.3, where again the amount of columns included on
its corresponding SELECT statement, leads to the generation
of an overly-large materialized view.

Figure 8. Q4: Materialized views latency, SSB with SF = 32

In cases where the use of materialized views leads to
a significant reduction in query latency, the storage space
overhead associated to these redundant structures doesn’t
exceed 6% of the total dataset size, which can be regarded
as a reasonable cost considering the benefit they offer. Table
I contrasts the size of the materialized views derived in the
experimental evaluation reported in this section, in relation
to each data structure of the largest SSB dataset used.

VI. CONCLUSIONS

The ability to efficiently conduct ad-hoc querying and
get visual insights from ever-increasing amounts of data is
nowadays key for organizations to support their business
decisions. Being able to carry out these read-intensive op-
erations under low latency constraints entails a consider-
able challenge for current data technologies including BI
software. In this regard, this paper explores an approach
for coping with data retrieval tasks from a dimensionally
modeled dataset, under such low latency constraints. The
proposed approach relies on a systematic method of data
transformation intended to generate read-optimized data
schemas. The formulated method takes as input the latency
performance and construction patterns from queries being
issued against the data collection, and adapts and optimizes



the source dataset accordingly, by iteratively altering a
canonical model representing its structure.

The experimental evaluation focuses on measuring to
what extent the query latency is affected as a result of
applying the read-optimization operations defined in the
data transformation process. Results show how operations
involving redundant-structures (namely, materialized views)
lead to a substantial improvement in terms of data retrieval
latency (from 81.6% to 99.9% drop), enabling query ex-
ecution times to go from several minutes to hundreds of
milliseconds. However, considering the storage cost and
maintenance overhead such redundant-structures entail, the
proposed mechanism favors when possible alternative non
redundant-structure methods, particularly table partitioning
which proves effective for lowering query latency when
SELECT statements are mainly conditioned on columns of
the fact table.

Upcoming work on this research will incorporate polyglot
persistence (i.e. intelligently scatter data over multiple data
store technologies) to the optimization plans addressing also
write-operations, and will develop a method for optimizing
for multiple client services, with potentially competing be-
havior, which will involve the definition of a mechanism of
classification on the user information needs.
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