
Accepted Manuscript

Efficiency analysis methodology of FPGAs based on lost frequencies, area
and cycles

Jan Lemeire, Bruno da Silva, An Braeken, Jan G. Cornelis, Abdellah Touhafi

PII: S0743-7315(17)30324-6
DOI: https://doi.org/10.1016/j.jpdc.2017.11.012
Reference: YJPDC 3784

To appear in: J. Parallel Distrib. Comput.

Received date : 30 June 2016
Revised date : 20 October 2017
Accepted date : 15 November 2017

Please cite this article as: J. Lemeire, B. da Silva, A. Braeken, J.G. Cornelis, A. Touhafi, Efficiency
analysis methodology of FPGAs based on lost frequencies, area and cycles, J. Parallel Distrib.
Comput. (2017), https://doi.org/10.1016/j.jpdc.2017.11.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jpdc.2017.11.012


HIGHLIGHTS 

• A methodology to study the impact of overheads on runtime performance is proposed. 
• Three types of efficiency are introduced - area efficiency, frequency efficiency and cycle 

efficiency - and combined to define a global efficiency. 
• Analytical formulas are presented to measure and to compute the respective efficiencies. 
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Abstract

We propose a methodology to study and to quantify efficiency and the impact of over-

heads on runtime performance. Most work on High-Performance Computing (HPC)

for FPGAs only studies runtime performance or cost, while we are interested in how

far we are from peak performance and, more importantly, why. The efficiency of run-

time performance is defined with respect to the ideal computational runtime in absence

of inefficiencies. The analysis of the difference between actual and ideal runtime re-

veals the overheads and bottlenecks. A formal approach is proposed to decompose the

efficiency into three components: frequency, area and cycles. After quantification of

the efficiencies, a detailed analysis has to reveal the reasons for the lost frequencies,

lost area and lost cycles. We propose a taxonomy of possible causes and practical meth-

ods to identify and quantify the overheads. The proposed methodology is applied on

a number of use cases to illustrate the methodology. We show the interaction between

the three components of efficiency and show how bottlenecks are revealed.
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1. Introduction

Field-Programmable Gate Arrays (FPGAs) can be used as accelerators that provide

a high computational performance combined with power efficiency. In this context, in-

sight into all performance aspects is crucial. Traditionally, a performance analysis is,

however, mostly limited to measuring or estimating performance (e.g. throughput),5

comparing performance with that of CPUs or GPUs, identifying the overheads and

measuring the performance per watt. See for instance the HPC applications reported

in [1]. Insight into how good the performance of a proposed design is, is often lacking.

The goal of our endeavor is to put forward a formal methodology to analyze the effi-

ciency of FPGA implementations. The methodology intends to explain and quantify10

why peak performance is not obtained, i.e. why the efficiency is lower than 100%. As

we want to get the maximal performance out of an FPGA for a certain algorithm, we

want know to how far we are from the peak performance, why the peak performance

is not reached and whether improvement is possible. The factors that cause inefficien-

cies are the overheads. Insight into efficiency will help developers in improving FPGA15

implementations and comparing different implementations for a given algorithm.

The proposed methodology starts with defining the peak performance and the effi-

ciency of an FPGA implementation. The global efficiency is then decomposed into 3

components (frequency, area and cycles) which can be used to quantify the efficiency

losses and steer the identification of the different reasons for efficiency losses. We show20

that lost frequencies, area or cycles can be identified and analyzed separately although

they are not independent when optimizing the performance: changing one component

might affect another component.

The main scenario discussed in this paper is to achieve maximal computational

performance. We focus on maximum computational throughput regardless of cost,25

power or other considerations. Nevertheless, our methodology can also be used for

alternative scenarios such as striving to deliver the maximum possible performance

within a space and/or power budget (Performance-per-Watt). Because we focus on

computational performance, we limit ourselves to implementations that are compute

bound rather than memory bound.30
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We start by discussing related work. Then, in Section 3 we propose our methodol-

ogy. It is followed by discussion of its practical usage. Section 5 analyzes the overheads

responsible for inefficiencies. Application on FPGA implementations is demonstrated

in Section 6.

2. Related work35

FPGAs are used for HPC in several domains, such as bioinformatics [2], linear

algebra [3], stock market analysis [4] and image processing. It is shown that FPGAs

can provide significant speedups in these domains [1]. The researchers report runtime

performance and speedups when compared to CPUs. Efficiency and the corresponding

bottlenecks (limiting factors) are often not addressed, as the performance analysis is40

in most cases only devoted to the exploration of the design space. Skalicky et al. [5]

for instance provides an analytical model of the performance of several pipelined lin-

ear algebra designs which intends to identify design bottlenecks and improve perfor-

mance. They focus on estimating execution time. They state that the ‘performance of

a computation depends on the implementation’s efficient use of available resources’,45

but are unable to give figures on the efficiency [6]. Another methodology, called Re-

configurable computer Amenability Test (RAT), is intended to model the critical set of

algorithms and platform attributes in order to estimate the performance of a specific

design, not a generic algorithm [7]. By measuring the resource consumption, RAT

seeks to determine the scalability of an application design. In summary, RAT provides50

a methodology for rapidly analyzing an application’s design compatibility with a spe-

cific FPGA platform. It estimates the throughput of an accelerator based on parameters

like the interconnect’s speed, amount of data to be transferred, the number of opera-

tions performed per data element and the clock frequency of the accelerator. Again,

they do not estimate efficiency, although their work could easily be extended with the55

efficiency analysis proposed in this paper. On the other hand, they also consider band-

width, while we concentrate on computational performance.

Interesting work in efficiency analysis is [8]. They designed a framework for run-

time performance analysis of High-Level Language applications for FPGAs, including
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an automated tool for performance analysis. It is able to determine the main bottlenecks60

and to recognize common performance problems such as potentially slow communica-

tion functions or idle hardware processes through instrumentation, measurement, anal-

ysis, and visualization. Indeed, instrumentation enables access to application data at

runtime. Through tracing, occurrences of events are logged together with any associ-

ated data. In this way they are able to count the number of cycles spent waiting for65

a transfer to complete. It enables the tracking of overheads due to control hardware

employed to maintain program order, pipelines, and communication channels. Our

methodology provides the overarching metrics which allows to put the overheads in

context and quantify their impact on the global performance.

The work of Koehler et al. [9, 10] on bottleneck detection is related to the search70

for the causes of the bottlenecks, which belongs to the second part of our methodology.

They define a bottleneck as some portion of the application that reduces performance

for the application as a whole. It is the most important work on enumerating and cat-

egorizing bottlenecks for FPGA applications. In our methodology we link bottlenecks

to the decrease in efficiency and as such quantify the impact of overheads on the run-75

time performance. Koehler et al. [9, 10] estimate the possible speedup of removing

bottlenecks by a kind of simulation which is based on the traced execution profile. The

same approach is possible in our methodology, as will become clear when analyzing

the lost cycles.

Also the work on design space exploration [18, 19, 23] lacks estimates for the80

efficiency. Sirowy and Forin [18] show the impact of optimization strategies on the

global runtime but do not discuss the effect on area and cycle efficiencies. Zhong et

al. [23] propose two definitions for area efficiencies. One as a sum over all component

types of the ratio of used components versus number of components (Eq. 18). A second

definition takes the maximum over all these ratios. We prove in Sec. 3.6.1 that the85

impact of these ratios on global efficiency is more complex than a sum or a maximum

(Eq. 25). Our work adds a quantified efficiency analysis in a rigorous and ‘complete’

way.

As we will discuss, our analysis is influenced by concepts of a performance anal-

ysis in parallel computing. The work of Beltran et al. [11] defines performance and90
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efficiency metrics for FPGA-based multiprocessor systems. As base reference they

consider uniprocessor performance. Efficiency is defined as speedup divided by the

number of processors. This is one of the fundamental definitions in parallel comput-

ing [12]. We are different, we define efficiency as compared to what performance the

FPGA’s computing elements could deliver in ideal situations.95

Our methodology is also based on the philosophy of Crovella and LeBlanc’s Lost

Cycle Analysis [13]. The idea is that a number of instructions have to be executed

(called the useful work). The reference ideal situation is based on these useful instruc-

tions: a number of cycles (Lopt) are needed to execute these instructions. We assume

no overhead. It relates to the sequential implementation of the algorithm which runs on100

a single processor. This ideal situation is compared with the actual number of cycles

(Limp) of the implementation under study. Then the overhead is Limp − Lopt/p with

p the number of processors. This overhead is expressed in lost cycles: all p processors

consume Limp cycles of which Lopt/p are necessary to execute the useful instructions.

The other cycles could have been used. Consequently, these cycles present the over-105

head of the implementation. A performance analysis should study these lost cycles and

try to identify their causes.

3. Formal definitions of the efficiency analysis methodology

Before defining and decomposing performance efficiency, we start by defining a

model of an FPGA and the implementation under study.110

Table 1 summarizes all concepts of the methodology.

3.1. FPGA model

An FPGA consists of Rj components of type j. The maximum frequency at which

the FPGA can run is fpeak. An FPGA requires a certain number of components to

implement an operation. As there are several types of components and several config-115

urations possible, each type of operation i is mapped onto vectors of resources. This is

also referred to as the cost vector of an operation. For the sake of simplicity, we assume

that only 1 type of component is needed to execute an operation instead of considering
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FPGA

Rj number of components of type j p.5

fpeak maximum frequency p.5

rij number of components of type j needed to execute instruction type i p.7

λi,j latency of issuing instruction of type i on component type j p.7

λi,jop operational latency (= rij · λi,j) p.8

Implementation

N i
op useful operations of type i p.7

U percentage of FPGA area that is used p.9

Ri,jimp number of components j that are used for the useful computations i p.9

Optimal performance

Topt optimal runtime based on the total FPGA p.8

T ′opt optimal runtime when using U percentage of the FPGA area p.9

Riopt the number of components that each instruction uses for the optimal configuration p.12

Execution

Trun actual runtime of the implementation p.9

fimp the actual frequency p.9

Limp the number of cycles used to execute the implementation p.9

Efficiency

E total FPGA efficiency p.9

E ′ occupied FPGA efficiency p.9

Efreq frequency efficiency p.10

Ejarea area efficiency p.10

E ′jarea used area efficiency p.10

E i,jcycle cycle efficiency p.10

Table 1: Overview of the different parameters of the efficiency analysis with page number of definition. Index

i refers to instruction type and j to component type. The index is dropped when representing aggregated

values or when only one type is considered.
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complex cost vectors. We denote with rij the number of components of type j that

are needed to execute an operation of type i. The parameter rij is set to infinity if the120

component in unable to execute the operation. In reality components of multiple types

might be needed to execute an operation. Another simplification is the assumption that

cost vectors are constant, while in practice they sometimes depend on factors such as

the target frequency. Each rij comes with a certain issue latency λi,j . The issue latency

is defined as the number of cycles after which the execution of the next operation can125

be initiated. Note that the issue latency is different from the completion or end-to-end

latency, which equals the total number of cycles required to terminate the complete

execution.

As we will see, for analyzing the efficiency it is sufficient to concentrate on the

components and operations that limit the performance. The others can be disregarded130

in the analysis. In many cases this will greatly simplify the performance analysis.

3.2. Useful work of an implementation

For the implementation under study, we first have to identify how many operations

have to be executed for each operation type i (e.g. additions, multiplications, ...). This

is denoted by N i
op. We focus on the operations inherently present in the algorithm135

while discarding all overheads that are caused by the implementation. We call them

the useful operations. The choice of which instructions are useful is somewhat arbi-

trary. For instance, considering loop control operations as useful is a matter of choice.

Operations that are not counted as useful contribute to the overhead and decrease the

overall efficiency. Sometimes it is interesting to know the loop control overhead. In140

parallel computing we regard the sequential algorithm as the reference algorithm of

which all instructions are necessary and ‘useful’ [13]. Additional instructions intro-

duced by a parallel implementation are considered overhead and not useful. Here we

can also consider a sequential C-implementation of the algorithm as the reference. The

useful operations are independent from the implementation. They are ‘inevitable’ and145

the minimal number of operations required to execute the algorithm.

To explain our methodology and its philosophy, we start by assuming that the im-

plementation under study consists of 1 operation type (e.g. floating-point) which can be
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executed by just 1 component type. Later we will extend it to heterogeneous operations

and components.150

3.3. Peak performance

The efficiency of an implementation will be defined with respect to the optimal

performance that would be reached in the ideal case. The implementation under study

has to execute Nop useful operations. If there are R components available and r com-

ponents are needed to execute the operation under study with an issue latency of λ (as

we focus on 1 type of operation and component, we drop the subscripts i and j), the

ideal run time would be:

Topt =
Nop · λ

fpeak · bR/rc
≈ Nop · λ · r

fpeak ·R
=
Nop · λop
fpeak ·R

(1)

where bR/rc gives the number of computational units that can be made. Since r is

often small andR large, the approximation error will remain small. The approximation

eases the further elaboration. λop is defined as the product of issue latency and the

number of components required to execute the operation (λop , λ · r). We call it155

the operational latency. For the analysis it is equivalent whether two components are

needed to execute an operation with an issue latency of one cycle, or one component

can do it with an issue latency of two cycles.

Despite the fact that attaining the theoretical peak performance is not realistic [21],

it offers a reference or yardstick. In the ideal case, each component can start a useful160

operation each λ cycles. At first we do not consider any practical issues that would

prevent a component from doing so. This is done in the next step, when we analyze

the efficiency, i.e. the reasons why the ideal case is not possible. By comparing the

actual execution with the ideal case this gives us the necessary insight into all issues to

consider when using FPGAs for HPC. The values obtained for peak performance using165

this method should not be used to represent the achievable performance of a given

device. We do not want to put forward this peak performance as a realisable peak

performance, but as a yardstick to compare the performance of actual implementations

and to be used for the discussion of inefficiencies. Another advantage of this definition
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is that the proposed approach offers a methodological way of performing a qualitative170

and quantitative efficiency analysis.

3.4. Total FPGA Efficiency

The total FPGA efficiency of an implementation is defined as

E , Topt/Trun (2)

where Trun is the actual runtime of the implementation. Alternatively, the efficiency

can be calculated based on the performance (expressed in operations per second).

Performancepeak = fpeak ·R/λop (3)

Performanceimp = Nop/Trun (4)

E =
Performanceimp
Performancepeak

=
Nop · λop

Trun · fpeak ·R
. (5)

3.5. Occupied FPGA Efficiency

The performance efficiency targets an effective use of the whole FPGA. However,

often one wants to optimize the used area. For instance, when for energy reasons, one

wants to limit area consumption. With U we denote the fraction of the FPGA area that

is used for the implementation. If we define R′ = U · R, then the ideal run time of

Eq. 1 becomes

T ′opt =
Nop · λop
fpeak ·R′

. (6)

Occupied FPGA efficiency is then defined as175

E ′ , T ′opt/Trun . (7)

It follows that E = U · E ′. Depending on the main optimization goal, one of both effi-

ciencies should be considered. This consideration will be further discussed in Sec. 6.1.

3.6. Efficiency Decomposition

The efficiency is decomposed into three basic components (time, area and fre-

quency). Define Rimp (≤ R′) as the number of components that are used for the
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useful computations. Define fimp as the actual frequency at which the FPGA executes

the implementation, and Limp the number of cycles used to execute. The relation with

the runtime is given by:

Trun = Limp/fimp (8)

It follows that the performance efficiency can be decomposed as

E =
Nop · λop/fpeak/R

Limp/fimp
(9)

=
Nop · λop
Limp ·Rimp

· Rimp
R
· fimp
fpeak

(10)

= Efreq · Earea · Ecycle (11)

These components allow us to analyse overheads in detail. The frequency efficiency is

known at design time:

Efreq , fimp/fpeak . (12)

The area efficiency is defined as the number of FPGA components that participate in

doing the useful computations, divided by the total number of FPGA components:

Earea , Rimp/R . (13)

If occupied FPGA efficiency is considered, R′ should be considered in the definitions

and area efficiency becomes:

E ′area , Rimp/R
′ . (14)

In the following subsections one has to substitute R with R′ to retrieve the definitions

for used are efficiency. The cycle efficiency is defined as

Ecycle ,
Nop · λop
Limp.Rimp

=
λop
λimp

(15)

With λimp the average operational latency for the useful computations on the Rimp

components:

λimp =
Limp.Rimp

Nop
(16)
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Note that Nop ·λop/Rimp equals Lopt, the number of cycles needed at peak perfor-

mance, given only Rimp components are used. It follows that Ecycle = Lopt/Limp.180

So, besides measuring the global efficiency by comparing the runtimes (Eq. 2),

the 3 basic components of efficiency can be obtained separately with Eq. 12, 13 and

15. Multiplying the 3 efficiency components should give the same value for the global

efficiency. Each loss in efficiency is due to some overheads. The second phase of the

analysis consists of identifying the causes for losses in frequency, area and cycles. This185

is tackled in Sec. 5.

3.7. Extensions to multiple operations and component types

Our methodology supports multiple operations and multiple component types. Sub-

script i is used to denote operation type and j to denote component type. For the general

heterogeneous case, the efficiency components are defined as:

Efreq , fimp/fpeak (17)

Ejarea ,
I∑

i

Ri,jimp/R
j (18)

E ′jarea ,
I∑

i

Ri,jimp/(U.R
j) (19)

E i,jcycle ,
N i,j
op · λi,jop

Limp ·Ri,jimp
(20)

where N i,j
op is the number of instructions of type i executed on component j such that

N i
op =

∑
j N

i,j
op . The same computational unit can be constructed out of different

components. Frequency efficiency is an overall efficiency, while area efficiency is per190

component type and cycle efficiency per component and operation type.

In the following we derive the peak performance and the equations that relate the

efficiency components with the global efficiency (defined by Eq. 2).

3.7.1. One operation type and multiple component types

Given the component types, the ideal runtime becomes (subscript j denotes com-195

ponent type, we drop subscript i):

Topt = Nop/(
∑

j

Rj/λjop)/fpeak (21)
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The global efficiency turns out to be a kind of weighted average of area and cycle

efficiency, where N j
op/Nop is the weight.

Efficiency =
Topt
Trun

(22)

=
Nop/(

∑
j R

j/λjop)/fpeak

Limp/fimp
(23)

=
1

∑
j
Rj ·Limp

λj
op·Nop

· fimp
fpeak

(24)

=
1

∑
j
Nj

op

Nop

1

Ejcycle·E
j
area

· Efreq (25)

3.7.2. Multiple operation types and one component type

N i
op denote the useful operations per instruction type i. Since we focus on only one

component type, we take the cost vector with the minimal λiop if minimal implementa-

tions would be possible. For optimal execution, the components are divided among the200

different instruction types according to N i
op · λiop:

Topt =

∑
iN

i
op · λiop

R · fpeak
(26)

Let Riopt be the number of components that each instruction uses. To reach peak per-

formance, we should divide the available components according to the following rate:

Riopt =
N i
op.λ

i
op∑

iN
i
op.λ

i
op

(27)

In the implementation under study, Riimp components are used to execute instructions

of type i. The impact of the local efficiencies on the global efficiency is given by the

following equations:

E =
(
∑I
i N

i
op · λiop)/R/fpeak
Limp/fimp

(28)

=

∑
iN

i
op · λiop/R
Limp

· fimp
fpeak

(29)

=
∑

i

(E icycle
Riimp
R

) · Efreq (30)

=
∑

i

(E icycle
Riimp∑I
i R

i
imp

) · Earea · Efreq (31)
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The factors
Ri

imp∑
i R

i
imp

are based on the actual ‘distribution’ of the components across the205

total number of components. This rate might be different than the optimal distribution

given by Eq. 27. When more components are devoted to an operation than the ideal

balance, the cycle efficiency will be lower than that of the other operations. Either there

is more overhead, or the reason is an unequal distribution: the other operations are

executed at maximal performance, but the components executing one of the operations210

cannot be kept busy because too many resources were reserved for it.

Eq. 29 shows that it makes sense to define an aggregate cycle efficiency as

Ecycle =
∑

i

N i
op · λiop

R · Limp
(32)

The global efficiency remains a multiplication of the 3 efficiency components.

3.7.3. Multiple instruction types and multiple component types

Finally, we consider the most general case in which each component type can ex-

ecute several instruction types. The optimal configuration (mapping of instructions on215

components) determines the peak performance. Some of the component types will be

fully used. They determine the peak performance. Peak performance is reached with a

configuration that minimizes the runtime:

Topt = arg min
conf

(argmax
i,j

((N i,j
op λ

i,j
op/R

i,j)/fpeak)) (33)

With conf iterating over all possible configurations resulting in different values for

N i,j
op and Ri,j . Also,

∑
j N

i,j
op = N i

op and
∑
iR

i,j = Rj .220

The component that bounds peak performance is denoted by j = J and the opera-

tion by i = I , then efficiency becomes:

E =
(N I,J

op λ
I,J
op /R

I,J
opt)/fpeak

Limp/fimp
(34)

=
N I,J
op · λI,Jop /RI,Jopt

Limp
· fimp
fpeak

(35)

= EI,Jcycle
RI,Jimp

RI,Jopt
· Efreq (36)

= EI,Jcycle
RI,Jimp∑I
I R

I,J
imp

· R
J

RI,Jopt
· EJarea · Efreq (37)
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The weight factors in the equation have an explicit meaning: the actual rate of used

components times the inverse of the rate of the optimal configuration. The product is 1

if they are equal. An actual implementation will typically be based on a different con-

figuration. If more components are used (
RI,J

imp∑I
I R

I,J
imp

>
RI,J

opt

RJ ), then the cycle efficiency

is increased. The total efficiency can, however, not be greater than one since such a225

non-optimal configuration will induce additional overheads of another type.

As discussed in Sec. 5.3, the values I and J that determine the optimal runtime do

not mean that they are the bounding instruction and component type. Other instruction

and component types might have to be considered as well.

4. Practical usage230

Our efficiency analysis is not linked to any particular step in the design flow. How-

ever, the accuracy of the performance values is determined by at what stage is the data

collected. Figure 1 shows the impact of optimizations on the throughput based on the

stage of Xilinx’s design flow [15]. Modifications at high-level have the highest impact

on the final performance. It motivates a deeper analysis of the potential designs at235

an early stage before going through the whole design flow. Additionally, High-Level

Synthesis (HLS) tools offer a fast design-space exploration, which facilitates such an

analysis. The examples used to introduce our analysis consider traditional design tools

such as Xilinx ISE and the Xilinx HLS tool called Vivado HLS. This HLS tool accepts

C based languages like C, C++ or SystemC as input and converts each source code into240

a synthesizable RTL module.

Vivado HLS generates reports with estimations of the FPGA resource utilization,

latency, and throughput of the resulting RTL module. The HLS design can go through

the next stages (RTL, place and route) which will produce more accurate statistics on

the design. Together with the Analysis viewer (discussed later) it provides enough245

information to obtain the parameters of our analysis:

• Rj , fpeak, λi,jop : These hardware parameters are usually specified in technical

reports.
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HLS 

(C,C++) 1000x

10x

1.2x

1.1x

Impact of change on 

performance

RTL

Synthesis

Placement

Routing

Figure 1: Design flow and level of the impact of the design decisions on performance.

• N i
op: The number of useful operations is retrieved from the Vivado HLS report,

based on the number of instances, and from the Analysis viewer, by measuring250

how many times a particular operation i is executed per iteration. The number

of iterations is known (or estimated for variable loops). Both values define the

total number of useful operations of type i. One can separate useful operations

from overheads (such as control operations) in two ways. First, one can label

the source code parts with the useful operations (such as the computations of255

a loop body) in Vivado HLS such that the computational units are labeled in

the generated report. An alternative is to count useful operations in C code.

The difference with the numbers from the HLS tool represents the number of

overhead operations.

• Riimp: The resource consumption per operation is reported in the Analysis viewer.260

• fimp, Limp and Trun: The cycles and frequency is reported by Vivado HLS, the

runtime can be calculated from them.
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From these parameters, the optimal runtime can be calculated (Eq. 1, Eq. 26, Eq. 21

or Eq. 33), the global efficiency (Eq. 2) as well as the three efficiency components (

Eq. 17, Eq. 18, Eq. 32) and Eq. 20 for a detailed lost cycle efficiency.265

5. Overhead analysis

Now that our methodology has clearly defined what deteriorates the global perfor-

mance - namely lost frequencies, lost area and lost cycles - we want to dive deeper into

the analysis. The question arises what causes these lost performances. A causal expla-

nation has a counterfactual interpretation: if the cause could be eliminated, we expect270

the lost performance to disappear. In the sense that if 100 lost cycles are due to C, then

by removing bottleneck C, the 100 lost cycles would disappear, cycle efficiency would

increase accordingly and hence the global efficiency. The counterfactual increase of

performance is called speedup by Koehler et al. [9]. For instance, non-overlapped

communication will block some computational components and hence induces lost cy-275

cles. In this case we have to identify the reason of the non-overlapped communication.

This might be non-ideal communication (below the potential bandwidth) which causes

long transfer periods.

In this section we establish a classification of possible causes for lost frequencies,

lost area and lost cycles. We want to know the reasons for a frequency drop and the280

role of the used components that are not used for useful computations. We want to

label each lost cycle with the actual reason of being idle. In this sense we will analyze

each component in turn.

5.1. Lost frequencies

An FPGA is forced to function at a lower frequency because the design takes up285

a large percentage of the available logic resources, increasing the critical path which

determines the clock rate.

5.2. Lost area

In the equations we considered the area (Rimp) that contributes to the execution of

useful instructions. The rest of the components can either be used for other, non-useful290
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unused area

used area

overhead

Figure 2: The area of an FPGA is partly used for doing useful computations or overhead operations.

operations or not used at all. As shown in Fig. 2, we call the former overhead area

and the latter unused area.

Classification of lost area

1. Unused area

(a) No more replication possible due to depletion of other area (which is neces-295

sary for more replication). Here, another resource type is (at least partially)

bounding the performance. Therefore it is useful to keep track of the usage

of all resources. This resource might be part of the cost vector or needed

for support functionality such as memory or control logic.

(b) Prevent frequency drop300

2. Used area, instead of doing useful operations, components are being used for

(a) routing

(b) control

(c) memory

When considering performance efficiency, area that is not used is considered ‘lost’305

17



Figure 3: Vivado HLS Analysis viewer reflecting the used and lost cycles.

because it could have been used to increase the performance. When optimizing used

area efficiency, the unused area is not considered overhead.

5.3. Lost cycles

The concept of lost cycles comes from the overhead analysis in parallel computing

established by Crovella and LeBlanc [13]. On CPUs, the frequency is constant and one310

does not consider area. So the only inefficiencies that remain are cycles of the proces-

sors that are not used to execute useful instructions. The rationale of a lost cycle is that

ideally the processor could issue an operation during that cycle, but it didn’t because of

‘this or that’. The ‘this or that’ is what we are interested in: the reasons for not reaching

the peak performance. In parallel computing, when the parallel runtime takes x cycles,315

each processor can exploit these x cycles usefully. An efficiency analysis is devoted

to analyze the portion of the x cycles that are not used usefully. For FPGAs we want

to apply the same idea: Rimp components are devoted to the useful operations. The

execution takes Limp cycles. Thus, Rimp ·Limp is the total number of cycles at which

an operation could be executed on the useful area. In reality, when executing the Nop320

operations, only λ · rij · Nop cycles were effectively used. The ratio of the former to

the latter defines the cycle efficiency (expressed by Eq. 15). The lost cycle analysis is

therefore performed on the execution profile, checking the cycle consumption of each

Rimp component. Note that the other components should not be considered since they

are already counted in the area efficiency.325

This is illustrated by Fig. 3 showing the execution profile provided by the Vivado

HLS analysis viewer. The viewer details the schedule of the design’s execution. It

shows how the resources are consumed, the I/O access and what is executed at every
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Figure 4: Execution profile with 2 components having dependent operations. Component 2 is bounding the

performance. Cycles in gray are useful, in white are idle.

Figure 5: Execution profile with 2 components having dependent operations. The idle periods can be filled

with an overlapping iteration through pipelining. Cycles in gray are useful, in white are idle.

clock cycle. The top bar reflects the control states of the execution, where each state

corresponds to one clock cycle. Four different floating-point operations are used to330

compute a L2 normalization of HOG (which is discussed next). Each floating-point op-

eration consumes dedicated resources; particularly specific IP-cores which are mostly

implemented with DSPs. Every control step (at the top bar) represents one state of the

Finite State Machine (FSM) and consumes one clock cycle. Cycles are colored gray

when the components are executing the operation. However, only the issue latency (λ335

= 1 cycle) has to be considered as a useful cycle, since operations can be pipelined.

This happens for instance at clock cycle 46, when a new addition is started and over-

laps with the previous addition initiated at cycle 44. For the lost cycle analysis we have

to consider the Rimp components that are performing the useful operations and have

Limp cycles at their disposal. From these Rimp × Limp cycles only 5 cycles were de-340

voted to issuing new operations. All the other cycles are lost cycles because they could

have been used.

Classification of lost cycles:
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1. imperfect execution of operations: happens with longer issue latencies than345

normal, e.g. with memory access.

2. idle cycles: component cannot proceed with the next operation due to a depen-

dency with another component. A dependency is caused when the data to be

processed is not ready yet. It can be static or dynamic (control, synchroniza-

tion, ...). There are 2 possibilities: either the other component is bounding the350

performance or there is not enough parallelism to overlap operations.

A. bounded by another instruction on a certain component, as shown in

Fig. 4. The bounding instructions could be useful instructions as well as

data movement or overhead operations.

I. due to non-optimal execution (e.g. non-optimal data movement)355

II. due to an imbalance: another, better configuration is possible. Moving

operations to other components will lead to fewer idle cycles and a

better global performance. This was discussed in Subsection 3.7.2.

B. not enough parallelism, as shown in Fig. 5. Since the involved compo-

nents all exhibit idle periods, the idle periods could be filled with overlap-360

ping iterations through pipelining.

I. no independent iterations in the algorithm: the algorithm is inher-

ently sequential. Then the lost cycles are due to non-overlapping use-

ful or overhead instructions (data movement, loop control, ...)

II. insufficient concurrent execution possible due to resource limitations.365

III. imperfect overlap: although there is sufficient parallelism, the con-

current execution cannot prevent the idle cycles.

To analyze idle cycles and differentiate between cases of type A and type B, the

lost cycle analysis must be performed per component and not per component type.

This will be shown in the first example of the next section.370

Note that the same analysis applies to the performance of GPUs: either GPU pro-

grams are compute bound, memory bound or latency bound [14]. The latter happens

when there are not enough concurrent hardware threads to hide all latencies. This hap-

pens because of resource limitations.
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Figure 6: Graphical description of HOG. Example of how the sliding windows can be processed

in parallel since each individually processes a block of 2× 2 cells.

6. Applying the methodology in practice.375

Our methodology is evaluated for several designs on a Xilinx Virtex6-LX240T.

The tool chain is composed of the Xilinx HLS tool called Vivado HLS 2014.4 and the

Xilinx ISE 14.7, in order to support our target FPGA. The resources available on this

FPGA are 768 DSPs, 150k LUTs, 301k FFs and 832 Block RAMs. For our Virtex6 the

maximum measured frequency that DSPs can operate is 484 Mhz.380

Despite that our methodology is independent of the development tool, we consid-

ered the use of Vivado HLS for some of our examples for the sake of simplicity. This

type of tools accelerate the design-space exploration thanks to the high-level represen-

tation of the algorithms and to the large set of available optimizations of such HLS

tools. The optimizations considered are pipelining, partial loop unrolling and optimiz-385

ing the I/O interface.

6.1. Efficiency analysis of a real-world HPC FPGA implementation

Our methodology is firstly applied to a real-world algorithm, a Histogram-Oriented

Gradients (HOG) descriptor.
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Algorithm description390

The HOG algorithm is one of the most popular algorithms for object detection. The

first step, the HOG descriptor is a sliding window algorithm that processes the gradient

orientations and magnitudes obtained for each pixel from a pre-processed image (Fig-

ure 6). The output generated from the HOG descriptor is used by a classifier algorithm

such as a Support-Vector Machine (SVM) to assign a matching score to the descrip-395

tor. The HOG algorithm is an application with high computational demands that needs

to be executed on a hardware accelerator such as GPU [16] or FPGA [17] to achieve

real-time object detection.

Although the whole object detection requires several steps, we only target the de-

scriptor calculations since it is the performance limiting step. The HOG descriptor400

processes gradients obtained by calculating the orientation and the magnitude gradi-

ents for each pixel of the original image. The image is divided in square cells of 8 by

8 pixels, and a sliding window of 2 by 2 cells is slid over the image (Figure 6). The

sliding window is moved one cell at a time and four histograms corresponding to the

cells contained by this window are computed. Two loops, L0 and L1 are defined to405

traverse all the gradients of the 2 by 2 cells. The histograms are generated based on

the orientation and magnitude values of each gradient. For each cell, the histogram

bin is computed and the contribution in terms of the gradient orientation and magni-

tude is added to the histogram bin. Each combination of orientation and magnitude not

only determines which histograms must be incremented but is also used to determine410

the value of the increment. Since there is an overlap of one cell for each sliding win-

dow, each cell contributes to the histogram of four sliding windows. These calculations

demand several floating-point operations, which dominate the overall execution time.

The HOG implementation analyzed in this paper is the floating-point version of the one

presented in [17].415

FPGA implementations

The C/C++ code describing HOG is compiled and synthesized using the Vivado HLS

2014.4 tool. The first implementation is one without optimizations. Secondly, the inner

loop L1 is pipelined and, thirdly, the outer loop L0 is pipelined. Here we discuss the

optimization of a single core. As shown in our previous work [17], this core can then420
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be replicated. For this reason we will try to optimize occupied FPGA efficiency E ′.
Efficiency analysis

The reports from Vivado HLS are used to create a table such as Table 2, where the

parameters of the efficiency analysis, derived and calculated as explained in Sec. 4 are

summarized. The upper table shows the detailed resource consumption and cycle effi-425

ciencies (which are calculated with Eq. 32). Since the DSPs are the limiting resources,

we focus on this component. Two types of floating point instructions have to be con-

sidered: additions and multiplications. Used area (U ) is calculated based on consumed

DSPs. All consumed DSPs participate in the additions or multiplications, E ′a is there-

fore 100% for the three implementations. The lower table shows the aggregate results.430

The aggregated cycle efficiency Ec is based on Eq. 20 and is a weighted average of

the detailed cycle efficiencies (see Sec. 3.7.2). Note that the occupied FPGA efficiency

E ′ can be calculated in two ways: as T ′opt/Trun or as the multiplication of the three

efficiency components Ef , E ′a and Ec.
Because of not overlapping iterations, the first version has a very low efficiency.435

The first optimization results in the highest efficiency. The second optimization is

consuming more area; it leaves less area for replication. This is reflected in a lower E ′,
while the run time is nearly the same.

Accuracy validation

Vivado HLS cannot guarantee that the reported numbers of the HLS design are correct440

before proceeding with the next steps towards the actual implementation (e.g. it does

not know what the actual routing delays will be). To validate the results, we proceeded

with the RTL design and place and route stage of the standalone core generated by

Vivado HLS. The I/Os are assigned to the available pins of the FPGA and the target

clock frequency is determined by the maximum reported frequency in Vivado HLS. The445

recalculated efficiency values are shown in Table 3. It shows that the only difference

in terms of efficiency is a decrement of frequency by about 10% for the first and third

implementation. The resource consumption is slightly different since the estimation of

the area consumption is based on a component library. For this example, E ′a remains

the same because the consumed DSP remains the same. Nevertheless, the estimations450

provided by Vivado HLS tool are good a good reference in terms of efficiency.
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Impl i N i
op λi

op DSP LUT FF Limp[cc] Eic[%]

No optim Add/Sub 3072 2 2 212 227 13.5

Mul 1024 3 3 135 128 4.5

Mul 512 3 3 135 128 2.3

Mul 512 3 3 135 128 2.3

Mul 512 3 3 135 128 22306 2.3

Sub 256 2 2 212 227 1.1

Sub 256 2 2 212 227 1.1

Sub 256 2 2 212 227 1.1

Total - - 20 1388 1420

Pipeline L1 Add/Sub 1280 2 2 212 227 49

Add/Sub 2560 2 2 212 227 2601 98

Mul 2560 3 3 135 128 98

Total - - 7 1101 553

Pipeline L0 Add 16 2 2 212 227 0.6

Add/Sub 1632 2 2 212 227 63.0

Add/Sub 1456 2 2 212 227 56.1

Add/Sub 384 2 2 212 227 14.8

Add/Sub 272 2 2 212 227 2591 10.5

Add/Sub 64 2 2 212 227 2.5

Mul 1312 3 3 135 128 50.6

Mul 1264 3 3 135 128 48.8

Total - - 18 1542 1618

Impl U [%] T ′opt[ms] Trun[ms] fimp[MHz] Ef [%] E ′a[%] Ec[%] E ′[%]

No optim 2.60 15.8e-4 0.1887 118.2 24.42 100 3.44 0.84

Pipeline L1 0.91 4.53e-4 0.02494 104.28 21.54 100 84.36 18.2

Pipeline L0 2.34 1.76e-4 0.02485 104.28 21.54 100 32.97 7.1

Table 2: The reports from Vivado HLS are used to analyze the efficiency of three HOG implemen-

tations: useful operations and resource consumption (top) and efficiency components (bottom).

The peak frequency is 484MHz and the FPGA contains 768 DSPs.
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Impl U [%] T ′opt[ms] Trun[ms] fimp Ef [%] E ′a[%] Ec[%] E ′[%]

No optim 2.60 1.58e-3 0.205 109.46 22.62 100 3.44 0.77

Pipeline L1 0.91 4.53e-3 0.02494 104.21 21.53 100 84.36 18.2

Pipeline L0 2.34 1.76e-3 0.0292 91.32 18.87 100 32.97 6.02

Table 3: Efficiencies obtained after the placement and routing of the design solutions presented

in Table 2.

Figure 7: Analysis viewer of the HOG descriptor without any optimization.

Lost cycle analysis

The next step in our methodology is to identify the overheads, the reasons for the

efficiency drops. The low area efficiency indicate that it might be possible to have

more pipelining or more replication of the HOG blocks. The frequency drop is caused455

by the length of the critical path.

Regarding the cycle efficiency, we identify the lost cycles based on the classification

in Sec. 5.3. The poor cycle efficiency of the non-optimized first implementation is due

to lack of overlapping iterations (type 2.B.I). This also becomes apparent in Fig. 7,

which depicts part of the Analysis viewer. In this part there are only 3 useful cycles.460

Cycle efficiency is much better for the second implementation. The 98% of the

second and third unit show almost complete utilization. Only the first unit is underuti-

lized (49%). This is due to an imbalance in the distribution of the instructions among

the components (type 2.A.II). A better distribution could in principle increase the per-

formance. Imbalances also clearly appear for the third version, ‘Pipeline L0’. 4 of the465

units have a utilization between 50% and 60%, while 4 units between 0.6% and 14.5%.

As none of the units attain an efficiency close to 100%, more overlap seems to be pos-
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Impl U [%] T ′opt[ms] Trun[ms] fimp Ef [%] E ′a[%] Ec[%] E ′[%]

Pipeline L0 2.34 1.76e-3 0.0292 91.3 18.9 100 32.97 6.02

Limiting adders 2.60 1.58e-3 0.0324 91.3 18.9 100 26.0 4.87

Partitioning memory 3.39 1.21e-3 0.031 49.9 10.3 100 37.9 3.90

Table 4: Efficiencies obtained after optimizing version ‘Pipeline L0’ (first row) by limiting the

number of adders and partitioning the memory.

sible (type 2.B.I). However, close inspection of the execution profile in the Analysis

viewer reveals that the lost computational cycles are due to the memory components

which are fully busy during those cycles (type 2.A).470

Optimization

Finally, we try to optimize the design based on the aforementioned bottlenecks. Two

optimizations were tried on the ‘Pipeline L0’ version. First, to remove the imbalance

of the DSPs doing additions, we forced Vivado HLS to limit the used DSPs doing

additions to 4 computational units. Secondly, we let Vivado HLS partition the memory475

to overcome the memory bottleneck. The results of both are reported in Table 4. We

copied the results for the original ‘Pipeline L0’ version in the first row. However,

no optimization results in a better performance. Limiting the adders resulted in more

multipliers: 4 instead of the original 2. This decreased the cycle efficiency instead

of increasing it. Memory partitioning increased the area consumption (7 adders and480

4 multipliers) which were better used (higher cycle efficiency). But, conversely, the

obtained frequency had to be almost halved.

6.2. Interaction of Efficiency Components

As clearly demonstrated by the HOG use case, the three efficiency components, Ec,
Ea and Ef , are not independent. Changing or optimizing one component might affect485

another component. We discuss the 3 possible interactions.

6.2.1. Area and Frequency

The dependency between area and frequency efficiency is demonstrated by con-

structing a benchmark to attain the theoretical peak performance. A cascade of single-
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Figure 8: Our benchmark consists of a cascade of a variable number of single precision floating-

point adders.
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Figure 9: Evolution of the floating-point performance by generating single precision adders with

DSPs or with logic resources.Values obtained after placement and routing.

precision floating-point adders is built as proposed in [21].490

Fig. 8 shows the benchmark used to measure the attainable floating-point perfor-

mance on a particular FPGA. These IPs are implemented as single precision floating-

point adders configured to consume DSPs or logic resources (8). In order to maximize

the floating-point performance, the best choice is to use the add/subtract operation.

This floating-point operation can be implemented on an FPGA using DSPs and/or logic495

resources. The FPGA vendors’ floating-point intellectual property (IP) user guide al-

ready offers an estimation of logic consumption and maximum frequency.

The performance is obtained after the placements and routing of the handmade

VHDL benchmark, showing the real attainable performance and reflecting not only

the routing congestion but also the impact on the frequency. Such effects can hardly500

be estimated at high-level, since the resource consumption are based on component’s
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Figure 10: Evolution of the efficiencies when increasing the number of single precision adders

with DSPs.Values obtained after placement and routing.

estimations. As a result, effects like routing congestion cannot be accurately estimated.

Nevertheless, our model is designed to be applied at any level of design. Therefore,

despite the results would be more accurate when using values after placement and

route, the overall effort increases and a higher implementation time is needed.505

The theoretical way to estimate the peak performance is by consuming all the avail-

able DSPs operating at their theoretical maximum frequency. However, by benchmark-

ing the floating-point peak performance is not achieved when all DSPs are consumed.

Fig. 9 shows how the floating-point performance increases linearly up to a certain point

where the frequency starts to decrease due to routing congestion. The peak is achieved510

just before the maximum frequency starts to drop drastically when all DSPs are con-

sumed.

Our Virtex6 lx240t offers 768 DSPs, or 384 single point additions, able to operate

at 484 MHz. This represents a theoretical floating-point peak performance of 185.8

GFLOPS. Our measurements show that the peak is close to 158 GFLOPS when using515

only DSPs, while using only logic resources it approximates to 133 GFLOPS. Conse-

quently, only 85% or 71% of the peak performance using DSPs or logic is respectively

achieved respectively.

Fig. 10 shows how our benchmark exploits the available resources in order to reach
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Figure 11: Trade-off consuming DSPs and logic resources to obtain the single precision floating-

point peak performance. By reducing the DSP consumption more logic is available for routing

and additional adders. While up to 484 adders can be implemented, the peak performance is

dominated by the maximum frequency. Values obtained after placement and routing.

the highest efficiency when using DSPs for building the adders. The increment of520

the consumed area to execute useful operations leads to a higher area efficiency, but

not necessarily to the highest performance. Ec remains constant at the highest value

since there are no lost cycles due to the pipelining of the adders. Pipelining allows

to start a new addition after the issue latency of the previous operation. Therefore,a

floating-point operation is executed each λ cycles. The global efficiency is determined525

by Ea and Ef . Ea increases linearly with the number of DSPs used to implement single

precision floating-point adders. Ef starts to decrease just before Ea reaches the highest

efficiency as shown in Fig. 10. The increment of additions due to a higher consumption

of DSPs leads to a routing congestion, which enlarges the critical path and decreases

the maximum frequency. Consequently, it is not possible to reach 100% of efficiency.530

Due to the dependency between area and frequency, the highest performance is only

achievable assuming a trade-off between those parameters.

The strategy to reach the peak performance proposed in [21] is to consume all avail-

able DSPs by building as many adders as possible while dedicating the remaining logic

resources to build more adders. An adder can be built with either 2 DSPs and about535

212 LUTs, or with 385 LUTs. We neglect the amount of flipflops because they are

not constraining the implementations. The equations when using a mix of component
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ND&L
op NLUT

op fimp Perfimp E Ef EDSP
a RLUT

imp ELUT
a Ec

a 374 90 222 103 37.7 45.8 97 118636 79 100

b 374 110 305 148 54.2 63.1 97 123751 82 100

c 376 95 392 184 67.7 80.9 98 119615 79 100

d 376 100 315 150 54.9 65.1 98 122691 81 100

e 384 85 343 161 58.9 70.8 100 118624 79 100

f 384 95 270 129 47.3 55.8 100 120182 80 100

g 384 100 202 98 35.8 41.7 100 122000 81 100

Table 5: Efficiencies obtained by constructing ND&L
op adders with DSPs and Logic, and NLUT

op

adders with only Logic (LUTs). Each row correspond to a point in the graph of Fig. 11. fimp is

in MHz and Perfimp is in GFLOPS. Peak performance is 272 GFLOPS.

types were discussed in Sec. 3.7.1, although not when cost vectors have to be consid-

ered. With cost vectors, the calculation of the optimal runtime is in general less straight

forward than Eq. 21, since one has to find the optimal usage of the different compo-540

nents first. In our case it is fairly simple, one first consumes all DSPs, 374 adders are

built, and then uses the remaining LUTs for additional adders. This results in theoreti-

cally 185 additional adders and a peak performance of 272 GFLOPS. In practice it was

only possible to synthesize 110 additional adders after consuming all DPSs. Figure 11

shows that the peak performance rounds 184.5 GFLOPS when using only 752 out of545

768 DSPs, and combined with remaining logic. Next, we apply our methodology to

acquire insight into the obtained efficiency. Table 5 summarizes the efficiency values

for 7 points of Fig. 11. After filling the adder pipeline, each adder executes 1 operation

each cycle. Cycle efficiency is then 100%. Perfimp is the product of frequency and

the number of adders. Efficiency is calculated by comparing the attained performance550

with the theoretical peak performance of 272 GFLOPS. EDSPa and ELUTa represent the

fraction of components used (Eq. 18), RDSPimp = 2.ND&L
op and the given RLUTimp . Note

that the total efficiency can also be calculated from its components with Eq. 25.
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Figure 12: Evolution of Ecycle when increasing Efreq for a matrix size of 32 × 32.

6.2.2. Cycles and Frequency

Changing the frequency affects the total number of cycles and cycle efficiency. This555

is demonstrated with a fundamental linear-algebra operation, a matrix multiplication.

We consider a matrix multiplication of a matrix A of m rows by k columns and a

matrix B of k rows by n columns resulting in a matrix C of m rows by n columns. We

assume all elements of matrix C to be equal to 0 before the computation begins. The

implementation we consider, consists of three nested loops: L0, L1 and L2. L0 iterates560

over all rows of matrix C, while L1 iterates over all elements (columns) of the row

corresponding to the current iteration of L0. An element at a given row and column

is determined by computing the scalar product of the corresponding row of matrix A

and the corresponding column of matrix B. For this purpose loop L2 adds the products

of corresponding elements of said row and column to the target element of matrix C.565

Given that no intermediate values are used, each iteration of L2 accesses an element of

matricesA,B andC. For the sake of simplicity, we will only consider square matrices.

Fig. 12 shows the evolution of Ec when increasing Ef with and without optimiza-

tions. Notice how the increment of Ef reduces Ec. The increment on Ef is obtained

by increasing the target frequency of the Vivado HLS design, which forces the tool to570

achieve a lower maximum clock period for every compilation. The frequency defines

the clock period, which is the basic time unit. Therefore, a higher number of clock

cycles is needed to execute the same code because of the increment of the frequency.

Ec decreases because of two main reasons:

• The impact of the lost cycles increases since their number increases due to a575
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shorter clock period.

• A higher frequency demands additional logic, mainly registers, to decrease the

critical clock path. This leads to overhead, resulting in additional lost cycles.

6.2.3. Area and Cycles

As has been detailed before, E reflects the quality of an implementation, while580

the area, latency and frequency reflect where the design needs to be improved. The

analysis of the peak performance for a floating-point matrix multiplication reveals that

the limiting efficiency is Ea. The original design does not fully exploit the available

area.

Our efficiency analysis shows that pipelining loops is the most effective optimiza-585

tion for this algorithm, Ec achieves the highest efficiency. The overall efficiency, how-

ever, can be improved by increasing Ea or Ef . The increment of the resource consump-

tion increases Ea because these resources are dedicated to compute useful operations in

parallel. On the other hand, Ef can increase up to a certain limit, as has been previously

shown.590

Optimizations at memory level need to be made to increase Ea. In the previous

design, memory was accessed serially, but with the proper optimization it is possible

to reduce the memory accesses. By partitioning the memory blocks, the memory can

be accessed in parallel. Partitioning the memory allows to operate in parallel, con-

suming more resources for useful operations and reducing the overall execution cycles.595

However, only the proper level of partitioning leads to the peak performance.

Table 6 shows how the overall efficiency increases when the memory is partitioned.

The greater parallelism increases the resources dedicated to execute useful operations,

improving Ea. However, Ec slightly decreases. Since most of the lost cycles are con-

stant when pipelining this algorithm [22], their relative impact increases when the ex-600

ecution time decreases. Thus, while increasing the parallelism, more area is used but

the impact of control overhead increases. Actually, this is an example of Amdahl’s

law. Loop control overhead is constant, it does not decrease with more parallelism.

Therefore, its impact on the overall efficiency increases with more parallelism.
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Partition Level Ef [%] Ea[%] Ec[%] E [%]

1 59.20 0.52 99.28 0.31

2 59.20 1.04 98.47 0.61

4 59.20 2.08 96.89 1.19

8 59.20 4.17 93.97 2.32

16 59.20 8.33 88.62 4.37

32 59.20 16.67 79.56 7.85

Table 6: Efficiency analysis of a 32 × 32 matrix multiplication when pipelining L1 and with

different levels of memory partitioning.
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Figure 13: Evolution of the efficiencies for each matrix size. The values have been obtained from

the most efficient design with a particular matrix size. The optimizations applied are pipelining

of the loop L1, several target frequencies and different levels of memory partition.

6.3. Bottleneck identification605

Our efficiency analysis helps in identifying bottlenecks. The results in the previous

example only considers matrix multiplication of 32 × 32 matrices. Despite that the

maximum parallelism has been reached, Ea only reaches 16.7%. Here we analyze what

happens when processing large matrices. Our analysis targets the optimizations in the

middle loop L1, because, as shown in the previous section, the highest performance610

is obtained through loop pipelining and memory partitioning. Consequently, these are

the optimizations considered for this analysis.

Fig. 13 shows the evolution of the efficiencies in function of matrix size for the ma-
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Figure 14: Resource consumption Eju in function of matrix size. The optimizations applied are

pipelining of loop L1, several target frequencies and different levels of memory partition.

trix multiplication implementation. As depicted in Table 6, Ec slightly decreases due

to the latency overhead introduced by the extra control logic required for the memory615

partitioning. When increasing the matrix size, the impact of this overhead is reduced

and Ec converges to 100%. Regarding Ea, the level of the memory partition is defined

by the matrix size or by the area consumption. By default, 5 DSPs are consumed to

execute the single floating-point additions and multiplications. The level of the mem-

ory partition increases the DSP consumption, and consequently Ea. The maximum620

level of the memory partition is close to 150. This is obtained by considering the DSP

consumption of each operation and the available DSPs on the target FPGA. Conse-

quently, the highest Ea is expected to be achieved by completely partitioning a matrix

of 150× 150 floating-point elements.

Fig. 14 shows the limiting resource based on the matrix size. Thus, matrices smaller625

than 150 × 150 elements are limited by the number of available DSPs, while larger

matrices are limited by LUTs. A high level of memory partition for large matrices is

causing LUTs to become the limiting factor. Matrices larger than 150× 150 elements

consume all the available DSPs plus certain number of LUTs. For instance, matrices

larger than 256 × 256 do not support the same level of memory partition than for630

matrices of 150 × 150 due to the LUTs consumption. This fact results in a reduction

of Ea due to a lower level of memory partition. It decreases the number of parallel
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operations and, therefore, reduces the number of consumed DSPs. Ef is also affected

by this turning point. The achievable design frequency decreases with the increment of

the matrix size due to the additional resource consumption. The resource overhead is635

slightly reduced when the target frequency is decreased, allowing higher partition levels

of the memory until the LUT limit is reached again. Only the proper combination of

both parameters leads to the highest efficiency, and, therefore, the peak performance

for this algorithm. Notice that the decrease of Ef , however, is not as abrupt as for Ea.

7. Conclusions640

When using FPGAs for HPC, one should compare the obtained performance with

the peak performance and identify what blocks optimal execution. For this, we pro-

posed a formal methodology to study the efficiency of an FPGA implementation. Our

work provides a formal umbrella to complement existing work by extending the perfor-

mance analysis with a quantification and decomposition of the efficiency. The value of645

the methodology is demonstrated with several studies. We were able to identify bottle-

necks in different types of implementations. Next, we compared different alternatives

in order to find the best compromise. It is also shown how the interrelations between

area, frequency, and performance can be better understood thanks to our methodology.

Nevertheless, the utility of this methodology will depend on its ability to be auto-650

mated and integrated into a tool.
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