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where cancer no longer means  
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Chapter 1  Introduction  
 

Cancer, a word that immediately awakes a lot of mainly negative emotions by people. 

During our lifetime, most of us are directly or indirectly confronted with this 

destructive disease. We all know someone who has suffered or is suffering from 

cancer. Fortunately, science has helped increasing the survival rate for most cancer 

entities. For paediatric cancer, the main improvements have been seen in leukaemia.  

However, the need for more efficient and less toxic treatment is still urgent, as a lot of 

patients are enduring side effects from the current therapy regimes or are not 

receiving the most appropriate and effective compounds for their (sub)type of cancer, 

resulting in a worse clinical outcome. Therefore, to improve the clinical outcome for 

individual patients, to minimize the side effects and to avoid exposure to costly and 

potentially toxic compounds to those less likely to response to this treatment, the 

“precision medicine initiative” has been initiated 1. Such targeted therapy is directed 

against components of various deregulated signaling pathways 2. One of the first and 

still very important targets for precision drugging are receptor tyrosine kinases of 

which many are often constitutively activated in cancer, examples being HER/NEU, 

EGFR, FGFR, and ALK. 

 
The first part of this introduction covers receptor tyrosine kinases, their normal 

function, their role in cancer and cancer therapy as well as resistance mechanisms to 

these targeted compounds. In the second part, I provide a short introduction on basic 

features of neuroblastoma, a paediatric tumour of the peripheral nervous system, 

which was the topic of my investigations, and an overview of the different receptor 

tyrosine kinases implicated in normal neuronal development. Finally, I will introduce 

the receptor tyrosine kinase ALK and the transcription factor MYCN, both recurrently 

implicated in neuroblastoma, as well as HBP1, an ALK downstream target and newly 

identified tumour suppressor gene that negatively regulates MYC(N), as described in 

this thesis.  
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1.1 Cancer hallmarks as governed by the interplay between 
oncogenes and tumour suppressors 

 

Cancer is driven by alterations and deregulation of an interplay between the classical 

oncogenes (e.g. MYC, RAS, ABL1) and tumour suppressors (RB1, TP53, BRCA1) or 

in other terms drivers, (lineage) dependency genes, care takers, gate keepers and so 

on 3. Oncogenes can become activated by chromosomal translocations, gene 

amplifications, gain-of-function mutations and hypomethylation, while tumour 

suppressor genes are inactivated by loss-of-function mutations, deletions, insertions 

or epigenetic silencing. Following the classical Knudson two-hit hypothesis, tumour 

suppression is lost upon inactivation of both alleles of a tumour suppressor locus, 

while for other suppressors, haplo-insufficiency may be sufficient to provide cells with 

a selective growth advantage and initiate or contribute to clonal expansion 3. Stability 

genes or caretakers are involved in mechanisms responsible for repairing subtle 

mistakes made during normal DNA replication or induced by mutagenic exposure, 

including mismatch repair, nucleotide-excision repair, base-excision repair, and in 

processes like mitotic recombination and chromosomal segregation. As these genes 

control accumulation of genetic alterations, inactivation leads to a higher genomic 

instability, implicating multiple genes over time, including tumour suppressors and 

oncogenes, driving the tumour formation process 3. These alterations can arise in the 

germline, leading to hereditary predispositions for cancer, or in somatic cells. 

Typically, several genetic insults affecting different genes are required to breach the 

protection of normal cells against malignant transformation. A germline mutation will 

affect every cell of the body and in most instances, will cause the first hit of a given 

tumour suppressor and subsequent alterations in other genes will lead to hyperplasia 

and finally aggressive and metastazing cancer cells. While germline mutations can 

lead to highly increased risks for cancer, similar processes can arise in somatic cells 

either by chance or due to exposure to mutagenic substances and drive cancer 

formation in individuals with normal populations risk for cancer 3. While multiple hits 

are required, also various gene functions can be affected such as receptors, signal 

transduction molecules, transcription factors, epigenetic regulators, genes implicated 

in metabolism and so on 3. As indicated above, industry has invested a lot of efforts 

to identify druggable targets for cancer therapy. Amongst these, receptor tyrosine 
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kinases have been a prime target, the BCR/ABL1 fusion gene being the prototypical 

target for which the first FDA approved target drug imatinib was developed 3-5. 

 

1.2 Receptor Tyrosine Kinases (RTK) as signal transducers 
 

The Epidermal Growth Factor Receptor (EGFR) was the first receptor tyrosine 

kinase, discovered in 1978 6. Since then 57 additional receptor tyrosine kinases 

(RTKs) have been found, which are part of one of the 20 subfamilies 4,5. All these 

receptors are characterized by the same molecular structure, consisting of an 

extracellular ligand-binding domain, a single-pass transmembrane helix and an 

intracellular part which contains the tyrosine kinase domain (TKD) and the 

juxtamembrane regulatory regions 4,5. 

Binding of a ligand to the inactive receptor is the first and essential step in receptor 

activation and essential to initiate further steps towards signal transduction, most 

often due to subsequent receptor dimerization through different mechanisms (Figure 

1) 5. First, the dimerization can be completely “ligand mediated”. The bivalent ligand 

interacts with both receptors and crosslinks them, thereby circumventing that the 

extracellular regions of the two receptors contact each other (Figure 1A) 5. Secondly, 

the formation of the dimer can be entirely “receptor mediated”. In this situation, the 

bivalent activating ligands bind two sites in only a single receptor, thereby boosting a 

conformation change, so that the two receptors bind to each other (Figure 1C) 5. 

Thirdly, the dimerization can be a consequence of the combination of ligand-receptor 

crosslinking and receptor-receptor binding (Figure 1B) 5. Sometimes, even an 

accessory molecule can be involved to further link the receptors and ligands to each 

other. Furthermore, in the case of the RET (Rearranged during Transfection, see 

section “RET”) receptor, the ligands first have to form a complex with a co-receptor, 

namely the GDNF-family receptors (GFRs), before they can activate the dimerization 

of the receptor itself 5. 
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Figure 1: dimerization of the extracellular domain of receptor tyrosine kinases. 
In general, dimerization is induced upon binding of the ligand to the receptor tyrosine 

kinases. This can happen through different mechanisms.  

A. A dimer of ligands crosslinks two receptors, while these do not make any contact with 

each other (ligand mediated only). B. Crosslinking of two receptors is caused by a dimer of 

ligands and an interaction of the two receptors themselves (ligand and receptor mediated). 

C. Each ligand binds to only one receptor, causing them to dimerize, while the ligands are 

not forming a dimer (receptor mediated only). Adapted from 5. 

 

Dimerization is always followed by activation of the intracellular kinase domains 4,5. 

Most receptors are in an inactive configuration, which means that the kinase is folded 

in such a way that the substrate-binding and/or the ATP-binding sites are 

inaccessible 7. As each tyrosine kinase domain is uniquely cis-auto-inhibited by a set 

of specific intramolecular interactions, the release of this inhibition as consequence of 

the dimerization can happen via diverse processes and is the most important event in 

the activation procedure of the signaling pathway. Several parts of the kinase domain 

(Figure 2) can be involved in this activation procedure. One method involves the 

activation loop (Figure 2, green), which can either interact with other residues in the 

active site, blocking both the substrate-binding as the ATP-binding sites (Figure 2, 

orange), or participate in intramolecular interactions thereby hindering the protein-

substrate-binding place. In both scenario’s, dimerization induces trans-

phosphorylation of the tyrosines in the activation loop, which will together with the 

aC-helix (Figure 2, blue) adopt to an active configuration state, making the ATP-

binding and protein-substrate-binding sites available for ATP and substrates. For 

other receptor tyrosine kinases, the tyrosine kinase domain is inhibited by 

interactions of his juxtamembrane region with amongst others the activation loop. 
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Upon dimerization, trans-phosphorylation will disrupt these interactions, inducing 

receptor activation 4,5. Moreover, some receptors, including Tie2K, have their 

activation loop already in an active-like state, so the substrate- and/or ATP-binding 

sites are not blocked by this activation loop 8. However, a region in the C-terminal 

part is hindering the substrates to bind to this active-like site. Upon auto-

phosphorylation of sites in the C-terminal, the blockade will be removed and the 

receptor will become fully activated. There are two kind of receptors that do not 

require such trans-phosphorylation, namely the EGFR family and RET 4,5. For the 

RET receptor, it was shown that the kinase domain is in an active configuration, even 

without phosphorylation 9. Moreover, the substrate- or ATP-binding sites are not 

structurally hindered 9. However, the kinase domains of RET associate as dimers 

with mutually occluded binding sites 9. Disruption of these trans-inhibitory interactions 

is required for RET activation, while for EGFR yet another mechanism is implicated 
4,5. 

 

 
Figure 2: detailed figure of the ALK kinase domain. 
The ALK kinase domain is shown in more detail, with the A-loop or activation loop in green, 

the aC-helix in blue, the glycine loop in yellow and the ATP-binding site in orange. The ALK 

hotspot mutations are shown in red. Figure provided by prof. dr. Bengt Hallberg. 

 

Upon activation of the receptor, different phosphorylation steps are initiated by the 

RTK 4,5.The receptors are the first substrates that are phosphorylated. Importantly, 

these phosphorylations are occurring in a precise order. The first-phase auto-
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phosphorylation involves the activation loop and the juxtamembrane region, which 

enhances the catalytic activity of the kinase. This is followed by auto-phosphorylation 

of other cytoplasmic regions in the RTK, resulting in the generation of the phospho-

tyrosine-based binding sites that recruit other signaling molecules. Moreover, to 

further boost the ability of the kinase to phosphorylate downstream targets, some 

RTKs undergo trans-phosphorylation 4,5. 

The phospho-tyrosines in the cytoplasmic part of the receptor recruit and activate 

downstream signal-transducing proteins, which have SH2 or PTB domains to bind 

these phosphorylated tyrosines in the RTK 4,5,10. The recruitment can be directly or 

indirectly by the involvement of docking proteins, which are phosphorylated by the 

RTK itself. These docking proteins can be mobilized by multiple receptors or 

restricted to a subset.  

These recruited molecules will bind to other downstream targets, mainly by protein-

protein interactions or phospho-lipid-binding, to pass the signal through the cell 4,5. 

As RTKs have multiple auto-phosphorylation sites that can recruit several docking 

proteins or molecules harbouring SH2/PTB domains, which are able as well to 

interact with multiple other downstream targets, complex signaling networks are built. 

The SH2 domains have a high degree of selectivity for their interactions with the 

downstream targets 11. These SH2 domains cluster in different families based on 

peptide binding, defined by their consensus binding motif 11. Moreover, binding of the 

SH2 domain to the peptide can be blocked through steric conflict or charge repulsion, 

further increasing the selectivity of the binding 11. 

Furthermore, the outcome is determined by the dynamics and extent of the network 

activation. These networks are further complicated by the existence of cross-talk 

between the different signaling pathways a well as positive and negative feedback 

mechanisms 4,5. 

The auto-phosphorylation events of the RTK are normally reversed by 

dephosphorylation by protein tyrosine phosphatases (PTPs) 4,5. In some situations, 

these PTPs can be temporary or constantly repressed. Other mechanisms of such 

positive feedback include autocrine activation of the receptor and translocation of the 

adaptor proteins to the membrane. In this way, the signaling response is further 

enhanced and prolonged and the cell is more sensitive to input. In contrast, negative 

feedback is needed to prevent activation of the signaling pathways by small changes 

in the environment. Activation of the PTPs, phosphorylation of certain sites of the 
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receptor or docking proteins by downstream protein kinases and signal-dependent 

transcription of negative regulators are types of negative feedback. Furthermore, 

receptor endocytosis and ubiquitination will result in downregulation of the signaling. 

Activation of the cell-surface receptor is generally followed by ligand-stimulated 

endocytosis, where after the receptor is dephosphorylated and ubiquitinated. Next, 

the receptors will be recycled from these endosomes to the plasma membrane or 

they will be degraded, in order to terminate RTK activation. However, some receptors 

will continue the recruitment of intracellular pathway molecules from within these 
endosomes, in this way further activating downstream signaling pathways 4,5. 

1.2.1 Receptor tyrosine kinases and diseases, kinasopathies and cancer 

 

Giving the important role of these receptors in controlling the cellular response upon 

a stimulus during normal homeostasis and given the strict regulation of these RTKs, 

not surprisingly, aberrations in a receptor or his downstream pathways are involved in 

diseases. 

 

The “developmental receptor tyrosine kinasopathies” (DRTK) are congenital 

malformations, caused by germline mutations disrupting such RTK signaling 

pathways 4. These malignancies are characterized by a phenotypic heterogeneity, as 

the location and type of the mutation together with the impact of the aberration on the 

receptor and his kinase activity influences the phenotype. While different mutations 

affecting the same RTK can result in different phenotypes, one malignancy can be 

caused by mutations in different receptors or by mutations in diverse signaling 

components of the involved pathway 4. Moreover, somatic mutations can also cause 

developmental disorders, presented in a milder or atypical form of the disease 4. 

More importantly, these RTKs are frequently mutated in cancer. This dysregulation 

can be caused by four different mechanisms: overexpression, genomic 

rearrangements, autocrine activation and gain- or loss-of-function mutations, which 

result in constitutively stimulated or activated RTKs 4,5,10. 

Furthermore, abnormalities in these receptors or their downstream signaling 

pathways can also cause other diseases, including diabetes, immune-deficiencies 
and inflammation 5,10. 
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1.2.2 Receptor tyrosine kinase inhibitors as cancer drug targets 

 

Given their pivotal role in tumorigenesis and strong addiction of cancer cells to 

particular constitutively activating mutations, RTKs are the ideal target for precision 

medicine. A plethora of drugs have been developed targeting these molecules and 

they can be divided into two distinct groups: the small molecule inhibitors or tyrosine 

kinase inhibitors (TKI) and the monoclonal antibodies (mAb) 5. In contrast to 

conventional chemotherapy, that kills all rapidly dividing cells, including normal cells, 

these TKIs and mAbs target specific molecules, mainly located in the tumour cell or 

in endothelial cells in the neighbourhood. Therefore, they cause less toxic side 

effects as compared to conventional chemotherapy. Moreover, they are often 

combined with chemotherapy or radiation to more effectively kill the cancer cells, 

while keeping the toxicity and adverse effects as low as possible 2. 

 

The monoclonal antibodies can repress RTK signaling directly as well as indirectly 

(Figure 3) 10,12. As first mechanism, they can block the signaling by impeding the 

interaction between the ligand and his receptor, by inhibiting the receptor 

dimerization or by increasing the downregulation and internalisation of the receptors 

(Figure 3A-B-C) 10,12. Secondly, by cross-linking to the RTK, they can modulate the 

signaling in order to trigger apoptosis or growth inhibition instead of increasing 

survival in cells (Figure 3D) 10,12. Thirdly, when conjugated with toxins, DNA 

molecules or small molecules, they can selectively eliminate the tumour cells upon 

interaction with the receptor (Figure 3E) 10,12. For the indirect effect, the mAbs are 

using the immune system, including complement-dependent cytotoxicity (CDC) and 

antibody-dependent cellular cytotoxicity (ADCC) 12.  
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Figure 3: different mechanisms used by monoclonal antibodies to repress RTK. 
The monoclonal antibodies can repress RTK signaling through direct and indirect 

mechanisms.  

A. The mAb can repress the signaling by impeding the interaction between the ligand and his 

receptor. B. The dimerization of the receptors can be hindered by the mAb. C. The mAbs can 

increase the downregulation and internalisation of the receptors. D. The mAb can modulate 

the RTK signaling in order to trigger apoptosis or growth inhibition instead of increasing 

survival in cells by cross-linking the receptor. E. The mAbs can, when conjugated with toxins, 

DNA molecules or small molecules, selectively eliminate the tumour cells upon interaction 

with the receptor. Figure based on 10,12. 

 

Nevertheless, the small molecule RTK inhibitors have the advantage that they can 

penetrate the plasma membrane to interact with the intracellular kinase domain. More 

specific, most of them will bind in close proximity to the ATP-binding domain within 

the tyrosine kinase domain, thereby competitively inhibiting the substrate-binding site 

and competing with endogenous ATP for binding 10,12. Additionally, through binding at 

alternative sites in the receptor, a subset of the inhibitors will induce conformational 

changes, resulting in a decrease in kinase activity of the involved RTK 13. 

Furthermore, irreversible inhibitors have been generated that covalently bind to the 

kinase domain of the RTK in order to completely abolish his catalytic activity 10. 

Moreover, these inhibitors have a smaller molecular weight compared to the mAbs, 
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making it possible for them to bypass the blood-brain barrier (BBB) to treat brain 

cancers 12. Despite that inhibitors have the same molecular weight, difference in anti-

tumour activity against brain metastases have also been observed for different ALK 

small molecule inhibitors 14. The ALK inhibitor lorlatinib has a superior anti-tumour 

activity against brain metastases compared to other ALK inhibitors, including 

crizotinib or alectinib 14. This superior intracranial efficacy is probably caused by the 

enhanced potency of the compound and its increased ability to cross the BBB by 

avoiding transporter-mediated efflux 14. 

 

In addition to these receptor tyrosine kinases, protein tyrosine phosphatases (PTPs) 

are also involved in cancer. These proteins are enzymes that remove phosphate 

groups from proteins 15. Most of the time, these dephosphorylation events result in 

termination of the signaling pathways, activated by the RTKs. Next to these tumour 

suppressive PTPs, they can also function as oncogenes by promoting tumour 

initiation, progression and metastasis 15. For this last group of PTPs, small molecule 

inhibitors have been generated. However, the main problem is the specificity, as the 

active site is conserved both in the tumour suppressive as the oncogenic PTPs, 

resulting in adverse effects and unsafety 15. Therefore, the inhibitors must be 

designed so that they bind to regions located outside this active site, in order to 

increase their specificity towards the oncogenic PTPs 15. 

 

However, the use of such small molecules and monoclonal antibodies targeting either 

the RTKs or the PTPs as single compounds are not always as successful. The first 

step towards an efficient compound is to identify the crucial event driving tumour 

progression. Further, to evaluate the compound properly, a suitable selection of 

patients for the clinical trial is required, as there will be lack of tumour response in the 

general population, emphasizing the need for appropriate biomarkers for the drugs 2. 

Moreover, tumours harbour multiple mutations, so the compound should be able to 

target them all or combination therapy should be advised. More importantly, 

resistance rapidly occur when using single compound therapy. Nevertheless, in 

patients with relapsed anaplastic large cell lymphoma (ALCL), treatment with the ALK 

inhibitor crizotinib as a single agent achieved a response rate of 90%, while in ALK-

positive unresectable inflammatory myofibroblastic tumour (IMT), the response rate 

was 86% 16. These response rates exceeded those seen in early-phase clinical trials 
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in children with relapsed/refractory disease, suggesting that durability of response is 
tissue-context dependent 16.  

1.2.3 Resistance to targeted drugs and strategies to circumvent resistance 

 

Despite the generation of receptor tyrosine kinase inhibitors and monoclonal 

antibodies, the long-term efficacy of these drugs is still disappointingly low due to 

primary and acquired resistance 10,17-19. Primary resistance means there is no initial 

response, while acquired is an “escape” mechanism during the treatment, resulting in 

disease progression after an initial response. Different mechanisms of resistance are 

found, which can be pharmacological- or biological-driven (Figure 4) 18,20.  

 

Patient-specific pharmacokinetic differences in drug absorption, distribution, 

metabolism and excretion (ADME), cause changes in drug plasma levels, while drug 

delivery can be hindered by the blood-brain barrier 10,17-19. All these pharmacological-

based processes, together with drug – drug interactions, compliance or missed 

doses, result in an inadequate drug exposure of the cancer cell, leading to reduced 

efficacy of the compounds. In addition, tumour-intrinsic factors, including the 

coexistence of multiple genetic aberrations in the drug target or his downstream 

signaling molecules, will result in a lack of tumour response 10,17-19. Moreover, during 

drug exposure, certain tumour cells from the heterogeneous tumour mass will often 

escape therapeutic effects leading to the emergence of resistant clones or genomic 

instable tumour cells will actively acquire resistance mutations (Figure 4) 18,20. For 

example, the occurrence of a secondary mutation in the targeted RTK can result in a 

conformation change, hindering the binding for the inhibitor or increasing the affinity 

for ATP, while amplification of the target gene will increase the number of receptors 

expressed at the cell surface and thus the need for higher concentrations of the 

inhibitor 10,17-19 (Figure 4A-B) 18,20. Moreover, aberrations in the downstream signaling 

or the activation of bypass pathways will cause resistance, resulting in a continued 

signaling through downstream networks. Similarly, the inhibitor-mediated inactivation 

of a negative feedback loop can reactivate the downstream networks, as seen for 

RAF inhibitors 21. RAF inhibitors are able to block the proliferation of BRAF mutant 

cell lines, but are surprisingly ineffective against RAS mutant cells 21. In these cells, 

RAF inhibitors cause activation of the RAF-MEK-ERK pathway, since mutant RAS 
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recruits and activates CRAF, which is only partially inactivated by the RAF inhibitors 
21. This is the so-called RAF paradox 21. Furthermore, while a given mutant RTK is 

blocked, one or more RTKs may become activated, taking over the downstream 

signaling (Figure 4C-D) 18,20. Another mechanism involves phenotypic and histologic 

transformation 10,17-19. In non-small cell lung cancer (NSCLC), it has been shown that 

the tumour cell underwent epithelial-to-mesenchymal transformation (EMT) at the 

time of acquired resistance (Figure 4E) 18,20. However, the exact underlying process 

is not yet fully resolved. Finally, increased production of the appropriate ligand has 

also been observed to cause resistance against TKIs 10,17-19 (Figure 4F) 18,20. 

 

 
Figure 4: biological-driven resistance mechanisms to receptor tyrosine kinases 
A. Resistance can be caused by a second-site mutation, blocking the drug binding. B. 
Amplification of the targeted kinase can cause resistance. C. A mutation downstream the 

targeted kinase can reactivate the downstream pathways D. Another (redundant) RTK can 

be activated upon treatment, resulting in a bypass mechanism and reactivation of the 

downstream pathways. E. Histologic changes, including epithelial-to-mesenchymal 

transformation (EMT) can cause resistance. F. Increased expression of the ligand can result 

as well in resistance. Adapted from 18,20. 
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There are several options to avoid these resistance mechanisms. If the resistance is 

the consequence of gene amplifications or secondary mutations, adapting the dose 

and schedule or using a more potent, second-generation inhibitor can solve the 

problem 10,17-19. To solve the above-mentioned RAF paradox 21, several second-

generation inhibitors have been developed, which are known as paradox-breaking 

RAF inhibitors 22,23. These inhibitors efficiently block RAF-MAPK pathway in RAF and 

RAS mutant cell lines, by hindering the MAPK reactivation through inhibiting SRC-

family kinase signaling 22 or by evading the paradoxical MAPK activation 23. 

Moreover, using the monoclonal antibodies alone or in combination with a TKI, so 

called dual target blockade, can enhance efficiency, as the mAbs will use the immune 

system as indirect tool to further boost the elimination of the targeted tumour cell. 

However, most of the tumours are the consequence of defects in more than one 

signaling pathway or use a compensatory pathway to evade the inhibitor 10,12,17-19. 

Therefore, combination therapy might be more promising to efficiently eliminate the 

cancer cells and to circumvent resistance. Indeed, combining a TKI with an inhibitor 

targeting the bypass pathway has proved to be efficient for several cancers, including 

melanoma 10,17-20. Moreover, the combination of a TKI with an inhibitor targeting the 

molecular chaperone HSP90, which is necessary for protein folding and stabilisation, 

has been proposed to delay or overcome acquired resistance 10,17-20. Indeed, HSP90 

inhibitors have been shown to overcome ligand-triggered resistance to ALK inhibitors 

in EML4-ALK NSCLC, resulting in a more successful treatment 24,25. Similarly, HSP90 

inhibitors can effectively block the paradoxical MAPK reactivation seen upon 

treatment with RAF inhibitors 26. Additionally, a phase I clinical study in paediatric 

patients with recurrent and refractory solid tumours, including neuroblastoma, 

showed that such HSP90 inhibitors can be safely administered twice weekly for 2 of 3 

weeks 27. Furthermore, these HSP90 inhibitors are effective against a variety of 

oncogene addicted cancers, including those that have developed resistance to 

specific receptors 28. Moreover, the combination of small molecule inhibitors with 

chemo- or immune therapy, has shown promising results in several cancers. 

 

However, to combine the TKI with a small molecule inhibitor targeting the bypass 

pathway, a good understanding of the downstream signaling networks is needed. 

Therefore, a deep investigation of the transcriptome and proteome downstream of 

the targeted receptor is pivotal. 
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1.3 Neuroblastoma 
 

Almost ten years ago, in 2008, activating point mutations in the receptor tyrosine 

kinase “Anaplastic Lymphoma Kinase” (ALK) were described to be involved in 

neuroblastoma, a devastating childhood cancer 29-34. In Belgium alone, between 2004 

and 2009, 130 children and young adolescents were diagnosed with a sympathetic 
nervous system (SNS) tumour and 98% of them were classified as neuroblastoma 22. 

1.3.1 Neuroblastoma, a leading cause of cancer-related death by children 

 

Neuroblastoma (NB) is an embryonic tumour of the developing sympathetic nervous 

system and is the most common extracranial solid cancer of early childhood. It is the 

primary cause of cancer-related death by young children between one and five years 

old and accounts for approximately 13% of all paediatric cancer mortality 35,36. The 

median age at diagnosis is 18 months 37, but neuroblastoma rarely occurs in 

adolescents and young adults and regresses in some infants before being medically 

noticed 35,36. In the majority of the patients, neuroblastoma arises sporadically. 

However, in at least 1% to 2% of the patients, a familial history of neuroblastoma, 

characterized by bilateral or multifocal primary tumours and an earlier median age at 

diagnosis, is observed, which points toward a hereditary predisposition 36,38. The 

pattern of inheritance is autosomal dominant with incomplete penetrance 36. 

Furthermore, neuroblastoma is characterized by a clinical heterogeneity with respect 

to age at diagnosis, location of the primary tumour, stage of the disease, as well as a 

heterogeneous genetic landscape of the tumour, impacting on tumour behaviour that 

can vary from spontaneously regression to a highly aggressive, metastatic disease 

unresponsive to therapy 39. 

 

The tumour arises from cells of the sympatho-adrenal lineage of developing neural 

crests, that fail to differentiate into sympathetic ganglion and adrenal chromaffin cells 
36,37. Primary tumours can therefore arise anywhere along the sympathetic nervous 

system, with most arising in the adrenal medulla or the abdominal paraspinal ganglia, 

while others develop from sympathetic ganglia in the chest, pelvis or neck (Figure 5) 
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35. The site of this primary tumour is associated with age and outcome 36. 

Furthermore, metastatic lesions are detected in approximately 50% of patients at 

diagnosis and occur frequently in the regional lymph nodes, bone marrow and bone, 

while liver and skin metastases are most frequently seen in young children < 18 

months at diagnosis 37. At relapse, metastases in the central nervous system (CNS) 

are increasingly common 36. The metastases occur through both the lymphatic and 

haematogenous routes 36. 

 

 
Figure 5: locations of neuroblastoma tumours. 
Neuroblastoma tumours arise along the sympathetic nervous system. The primary locations 

are the abdomen, more specific the adrenal glands, the neck, chest and pelvis. Figure from 

www.cancer.net. 

 

The clinical signs and symptoms of this cancer entity are dependent on the locations 

of the primary tumour and his metastases 36,37. As mentioned before, primary 

tumours occur mainly in the medulla of the adrenal glands, which are associated with 

a poorer survival than those arising in other sites 35. Localized primary tumours often 

give no clinical symptoms, while large abdominal masses can lead to hypertension 

and pain. If the tumour arises in the neck, it might cause damage to the cervical 

ganglion, leading to the Horner syndrome, while neuroblastoma tumours in the 
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paraspinal sympathetic ganglia can cause spinal cord compression. Metastatic 
disease can give rise to constitutional signs, as pain, weight loss or fever 36,37.  

1.3.2 Risk staging 

 

The oldest classification system is the widely accepted International Neuroblastoma 

Staging System (INSS), in which tumours are classified into a stage based on the 

aggressiveness of the surgical approach needed 35,36. Stage 1 tumours are localized 

tumours without metastasis, which can be completely surgically excised, while stage 

2 tumours are localized tumours that cannot be completely surgically removed and 

are further subdivided into two groups 36,37. The stage 2A neuroblastoma tumours 

have no metastasis to the lymph nodes, while the stage 2B have metastatic lesions in 

the ipsilateral lymph nodes 36,37. Stage 3 tumours are unresectable tumours with or 

without lymph node metastasis, while stage 4 tumours have metastatic lesions in 

distant lymph nodes and/or other organs 36,37. A special subgroup of stage 4 is stage 

4S, which consists of localized primary tumours, which mostly spontaneously 

regress, in young patients (age < 1year) and with metastases limited to the skin, liver 

or bone marrow 36,37. 

 

To have a more standardised and international used classification system, the 

International Neuroblastoma Risk Group (INRG) Staging System has been initiated, 

which subdivide the tumours in four different stages, irrespective of the surgery 

needed 33,35-37,40. Stage L1 and L2 are localized tumours, but they differ as L2 

tumours involve vital structures 35. Stage M consist of tumours with metastases at 

distant places, while patients younger than 18 months, who have metastatic disease 

in the skin, liver and/or bone marrow, are grouped as stage MS 35. 

 

However, to define which tumour benefit from which treatment regimen, disease 

stage is combined with other prognostic factors, including age at diagnosis, stage, 

histopathology and genomic characterization like MYCN amplification and DNA index 

(table 1) 36,37,41. In this way, tumours can be classified as (very)-low-risk, 

intermediate- or high-risk neuroblastoma. Very-low- and low-risk neuroblastoma 

cover stage L1, L2 and MS tumours with favourable genomic features, while the 

intermediate tumours are the MYCN non-amplified stage L2, the MS with 
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unfavourable genomic features and those patients younger than 18 months at 

diagnosis with MYCN non-amplified stage M disease 35,37,40. The high-risk group are 

patients older than 18 months with stage M tumours as well as the children younger 

than 18 months with stage M tumours with unfavourable biological features, such as 

MYCN amplification 35,37,40. Despite intensive treatment and incorporation of current 

immunotherapies, long-term survival for these high-risk patients remains 40 to 50% 
36. In contrast, the overall survival for patients with (very)-low- to intermediate-risk 

disease is greater than 90% with only surgical or minimal medical interventions 36. 

 

 
Table 1: International Neuroblastoma Risk Group (INRG) consensus 
pretreatment classification scheme. 
Abbreviations and definitions: GN, ganglioneuroma; GNB, ganglioneuroblastoma; GNBnod, 

GNB nodular; GNBinter, GNB intermixed; NB, neuroblastoma; +, amplified; -, non-amplified; 

diff, differentiation; 1, poorly or undifferentiated; 2, differentiating; hyper, hyperdiploid. No 

SCA corresponds to absence and SCA to the presence of segmental chromosome 

alterations. *Some clinical trials consider patients with stage L2 neuroblastoma with 

unfavourable pathology who are >18 months as high-risks, since excellent prognosis was 

achieved with intensive chemotherapy, often followed by radiation and autologous 

haematopoietic stem cell transplantation 37. Table adapted from 36,37,41. 

Risk group INRG Distant 

metastases 

Age 

(months) 

Histological 

category 

Grade 

of diff 

MYCN Genomic 

profile 

Ploidy 

Very-low L1 Absent Any GNBnod, NB Any - Any Any 

Very-low L1/L2 Absent Any GN, GNBinter Any - Any Any 

Low L2 Absent <18 GNBnod, NB Any - No SCA Any 

Low L2 Absent ³18 GNBnod, NB 2 - No SCA Any 

Low MS Present <12 Any Any - No SCA Any 

Intermediate L2 Absent <18 GNBnod, NB Any - SCA Any 

Intermediate L2 Absent ³18 GNBnod, NB 2 - SCA Any 

Intermediate* L2 Absent ³18 GNBnod, NB 1 - Any Any 

Intermediate M Present <18 Any Any - Any Hyper 

Intermediate M Present <12 Any Any - SCA and/or diploid 

Intermediate MS Present 12-18 Any Any - No SCA Any 

Intermediate MS Present <12 Any Any - SCA Any 

High L1 Absent Any GNBnod, NB Any + Any Any 

High L2 Absent ³18 GNBnod, NB 1 + Any Any 

High M Present 12-18 Any Any - SCA and/or diploid 

High M Present <18 Any Any + Any Any 

High M Present ³18 Any Any Any Any Any 

High MS Present 12-18 Any Any - SCA Any 

High MS Present <18 Any Any + Any Any 
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Moreover, epigenetic differences, like hypermethylation to downregulate tumour 

suppressor genes and hypomethylation to upregulate the expression of oncogenes, 

are discovered 40. These DNA methylation changes are not only able to distinguish 

neuroblastoma tumours from healthy individuals, but are also linked to distinguish 

these clinically and biologically relevant neuroblastoma subgroups 40. High-risk 

neuroblastoma tumours show hypermethylation of several genes compared to the 

low-risk group, which is characterized by some specific hypomethylated regions 40. 

Moreover, genes are differentially methylated between the 4 and 4S stage 

neuroblastoma tumours. Additionally, such differences are discovered as well 

between MYCN amplified and non-amplified cancers 40.  

1.3.3 Current therapy regimes  

 

Induction chemotherapy to reduce the tumour size is often the first treatment that is 

given to neuroblastoma patients, followed by a surgical removal of the primary 

tumour 37. This removal is often difficult for patients with high-risk neuroblastoma, 

even after chemotherapy. Therefore, high-risk neuroblastoma patients frequently 

undergo myeloablative therapy and autologous haematopoietic stem cell 

transplantation (AHSCT). After these treatments, maintenance therapy, which 

consists of an oral differentiation compound like 13-cis-retinoic acid and 

immunotherapy, including the use of anti-GD2 monoclonal antibodies, is given to 

prevent relapse. If the patient relapses, chemotherapy alone or together with small 

molecules like ALK inhibitors, is considered 37,42. Recurrently, such targeted 

approaches rapidly lead to resistance due to activation of other downstream 

pathways or bypass mutations. Therefore, current treatment regimens are reoriented 

to combine different small molecules, trying to circumvent this signal rewiring and 

completely blocking the downstream pathways. Such approach in combination with 

chemotherapy or immune therapy will hopefully lead to a better and longer survival of 

the patients 10,17-20. Indeed, recently, it has been shown that the combination of 

melphalan, a chemotherapeutic used to treat high-risk neuroblastoma, with BSO, a 

GSH synthesis inhibitor, was tolerable with haematopoietic stem cell support and 

achieved good responses in patients with recurrent/refractory high-risk 

neuroblastoma 43. 
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Next to further research to improve targeted therapy and since anti-GD2 is quite toxic 

due to the presence of this cell surface protein on noci-receptor-containing peripheral 

nerves, alternative immunotherapeutic strategies are urgently needed 44 (described in 

more detail in discussion). Bosse and colleagues have identified GPC2 as a 

promising immunotherapeutic target by searching for genes encoding proteins with 

extracellular domains, which are differentially expressed on neuroblastoma compared 

to normal tissue 44. Indeed, a GPC2 targeting antibody-drug conjugate resulted in 

cellular cytotoxicity in vitro in neuroblastoma cells and was efficacious and safe in 

vivo in neuroblastoma mouse models 44. 

1.3.4 The genetic landscape of neuroblastoma 

 

Recent sequencing efforts have further characterized the genomic landscape of 

neuroblastoma in great detail. At the mutational level, the diagnostic tumour exhibit 

few recurrent driver mutations in a background of highly recurrent DNA copy number 

alterations 45. These recurrent copy number alterations include gains of 17q, 1q, 2p 

or losses of 1p, 11q, 3p, 4p, 14q 36,37. Moreover, in familial NB, candidate 

chromosomal predisposition regions have been identified at 16p, 12p and 2p 36. More 

importantly, outcome is associated with type of chromosomal alterations 36,46. 

Tumours with numerical chromosomal abnormalities due to whole chromosome gains 

and losses have an excellent outcome, while patients with segmental chromosomal 

alterations due to gains and losses of parts of chromosomes, have an inferior 

outcome 36,46. Additionally, the acquisition of new segmental chromosomal 

aberrations occurs at the time of relapse 46. Furthermore, hyperdiploid tumours have 

a more favourable prognosis compared to diploid tumours 36,46. 

The most common focal genetic lesion is the amplification of MYCN (>10 copies), 

located on 2p24, which occurs in approximately 20% of neuroblastoma tumours and 

half of the high-stage tumours. MYCN amplifications are linked with a particularly 

poor prognosis (as described in more detail in the “MYCN” paragraph further in this 

thesis) 35,39. In addition, amplification or overexpression of LIN28B is frequently found 

in high-risk neuroblastoma, leading to increased MYCN levels and depletion of the 

let-7 family of microRNAs (miRNAs) 35,47. Moreover, such let-7 family disruption 

seems to be an important mechanism for neuroblastoma developments, since 

multiple mechanisms have been found to neutralize let-7 48. In addition to the 
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repression by LIN28B, loss of chromosomes 3p and 11q, containing let-7 family 

members, is frequently observed in neuroblastoma tumours 48. Moreover, in 

MYCNamplified neuroblastoma tumours, MYCN mRNA sponges let-7 members, in this 

way hindering the activity of these miRNAs 48. 

 

Activating mutations in the Anaplastic Lymphoma Kinase (ALK) receptor have been 

found to be oncogenic drivers in both familial as sporadic cases of neuroblastoma (as 

described in more detail in the “ALK” section) 35,36. In addition, germline mutations 

can be found in the Paired-like Homeobox 2B (PHOX2B) gene in familial tumours 

and in approximately 4% of sporadic neuroblastoma 35,36. This transcription factor, 

located on chromosome 4p12, is necessary for normal development of the autonomic 

nervous system 46,49. Moreover, patients harbouring such a mutation have a higher 

risk for developing neurocristopathies, which are diseases arising from tissues 

consisting of cells derived from the neural crest 36,38,49. Additionally, whole exome 

sequencing of families with no PHOX2B or ALK mutations revealed functionally 

damaging mutations in GALNT14 38,49. Rare germline mutations in association with 

occurrence of neuroblastoma have been found in genes involved in the RAS 

pathway, including HRAS, PTPN11, ODZ3, SOS1, KRAS, NRAS, RAF1, BRAF, 

MEK1, RIT1 and NF1 38,46,49. In small percentages of neuroblastoma patients, rare 

germline mutations have been found in TP53, CDKN1C, SDHB, APC, BRCA1, 

BRCA2, CHEK2 and PINK1 38,49. Of particular interest, genome-wide association 

studies (GWAS) identified CASC15, BARD1, LMO1, LIN28B, HACE1, DUSP12, 

DDX4, IL31RA, HSD17B12, NEFL, TP53 and NBPF23 as associated with high-risk 

and low-risk neuroblastoma predisposition 36,46,49. Moreover, individuals with risk 

alleles in BARD1 and LMO1 are more likely to develop neuroblastoma and more 

likely to have metastatic disease and worse clinical outcome 46. However, BARD1 

has mostly tumour suppressive functions in cancer. Nevertheless, in neuroblastoma, 

the disease-associated variations are correlated with the expression of an 

oncogenetically activated isoform, namely BARD1b, that has growth-promoting 

effects through cooperation with the Aurora kinases 46. Additionally, a single G>T 

transversion in a super-enhancer element in the LMO1 gene allows GATA3 

transcription factor binding, enhancing the expression of LMO1 46. Moreover, LMO1 

synergizes with MYCN to promote neuroblastoma development and metastasis 50,51. 

Furthermore, in MYCN non-amplified cases, structural variants affecting TERT 
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expression are highly recurrent and ATRX inactivating mutations are mostly found in 

tumours from adolescent and young adult patients 36,46,52,53. Next to ATRX, other 

genes in the Rho/Rac signaling cascade, a pathway important for migration and 

differentiation of neural crest cells, are frequently mutated in neuroblastoma tumours 
54. Moreover, high expression of ROCK2, a kinase of the Rho/Rac pathway, is 

associated with poor survival 54. Further recurrent mutations include those 

inactivating ARID1A and ARID1B 36,39,46, while an emergence of ALK mutations at 

relapse have been demonstrated, suggesting that ALK mutations might occur as 

subclones at diagnosis, contributing to tumour progression 55. Moreover, RAS/MAPK 

pathway mutations were shown to be enriched in relapsed cases 46,56.  

 

1.3.5 Models of neuroblastoma disease 

 

The first transgenic neuroblastoma mice model system has been established in 1997 

by Weiss and colleagues 57, to test the effect of MYCN on the transformation of 

neuroblasts in vivo. Therefore, they cloned the human MYCN gene after the tyrosine 

hydroxylase (Th) promoter, since this promoter is active in migrating cells of the 

neural crest. In this way, the mice will develop targeted expression of MYCN in the 

sympathetic ganglia and the adrenal, the places where neuroblastoma tumours 

appear 57. They were able to show that overexpression of MYCN in these cells leads 

to neuroblastoma tumours which resemble the human ones. In 2012 58, a Th-

ALKF1174L mouse model was created by injecting a Th-ALKF1174L construct, which 

consist of the human ALKF1174L cDNA cloned after the Th promoter, in mice 

blastocysts. These mice were crossed with the Th-MYCN mice of Weiss and 

colleagues 57, to create ALKF1174L/MYCN compound hemizygote mice. In this way, 

the interaction between the ALK and MYCN downstream pathways can be 

investigated (see further). Recently, Althoff and colleagues 59 created the LSL-

MYCN;Dbh-iCre mice, which is a Cre-conditional MYCN-driven neuroblastoma 

mouse model with the neuroblastoma-specific marker dopamine b-hydroxylase (Dbh) 

as promoter and has several advantages compared to the Th-MYCN mice. One 

important advantage is that the LSL-MYCN;Dbh-iCre tumours arise not only from the 

adrenals, but as well from the celiac and the superior cervical ganglia, from which a 

minority of human neuroblastoma tumours develops 59. From a LSL-MYCN;Dbh-iCre 
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tumour, a cell line has been generated, named mNB-A1. The growth of these cells 

was MYCN-dependent, showing oncogene addiction. Therefore, this cell line is an 

ideal model system to test new drugs targeting MYCN. Additionally, these cells can 

be used to be re-engrafted into nude mice, to test the compounds in vivo 59. As last, 

the LSL-Lin28b;Dbh-iCre mouse model was created to test the effect of LIN28B on 

neuroblastoma 47. 

 

Next to mice, zebrafish are often used as model system, because they are easier to 

house, have a larger number of offspring and they reproduce rapidly compared to 

mice. In 2012, Zhu and colleagues 60 created a stable transgenic zebrafish line, 

Tg(dbh:EGFP-MYCN), which overexpresses the human MYCN gene under the 

control of the dbh promoter and fused to EGFP to monitor the tumour formation 

easily with microscopy. Simultaneously, they created the Tg(dbh:EGFP; 

dbh:ALKF1174L) zebrafish line. After breeding these zebrafish with the MYCN 

heterogeneous zebrafish line, zebrafish overexpressing both MYCN and ALKF1174L 

were generated 60. This strategy can also be used for crossing MYCN zebrafish with 

a zebrafish with an overexpression or knock-out from your gene of interest to 

evaluate tumour acceleration, onset and penetrance compared to MYCN only 

zebrafish. Recently, the high-risk neuroblastoma susceptibility gene LMO1 has been 

injected into zebrafish embryos, creating the Tg(dbh:LMO1),Tg(dbh:mCherry) 

zebrafish lines 50,51. Interbreeding of the LMO1 and MYCN transgenic fish showed 

that high levels of LMO1 enhance neuroblastoma initiation in vivo 50,51. Transgenic 

LMO1 expression increases the proliferation of sympatho-adrenal cells, thereby 

overcoming the MYCN-induced apoptotic response 50,51. Moreover, LMO1 expression 

promote expression of LOX family members, which contribute to metastasis by 

promoting tumour cell invasion and migration 50,51. Thereafter, it is shown 61 that 

zebrafish can be used to evaluate the metastatic capacity of human cancer cells. The 

adaptive immune system of zebrafish arises after 14 days’ post-fertilization, so 

human cancer cells can survive and form metastatic lesions when transplanted into 

zebrafish larvae. In this way, it is possible to evaluate in a rapid, robust and 

inexpensive way the effect of a genetic manipulation on metastasis 61. 
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To evaluate the effect of the mutations and DNA copy number alterations on initiation 

and/or tumour progression in neural crest progenitor cells, murine JoMa1 cells, which 

are kept in an undifferentiated state by special culture medium and by 

supplementation with 4-OHT to have low c-MYC activity, were transfected with DNA 

for MYCN or ALKF1174L 62. The low levels of c-MYC hold the cells in undifferentiated 

state, but make it impossible to initiate transformation. The JoMa-ALKF1174L and 

JoMa-MYCN were able to proliferate even after inactivation of c-MYC by withdrawal 

of 4-OHT, which shows that both MYCN and ALK are capable of inducing an 

immortalized phenotype 62. Furthermore, injection of these cell lines in mice resulted 

in tumours, which resemble human neuroblastoma tumours. In this way, it was 

shown that both mutated ALK and MYCN are capable of driving neuroblastoma 

development 62. 

 

More recently, the group of Kevin Freeman 63 was able to generate tumours that 

molecularly and phenotypically mimic human neuroblastoma tumours by enforced 

expression of MYCN in wild type neuronal crest cells, which are highly migratory, 

multipotent cells and the proposed embryonic precursor cell of neuroblastoma 63. 

Moreover, this approach should be ideal to study the early phases of neuroblastoma 

development as well as to evaluate the functional role of established and newly 

identified oncogenic drivers in these first steps towards a full-blown tumour 63. 

 

Since half of the patients present with metastatic disease, a model system to 

investigate the metastatic processes is crucial. The mechanisms driving metastasis in 

neuroblastoma are challenging and poorly recapitulated in the existing mouse model 

systems 64, but can be modelled in zebrafish 50,51. Additionally, Delloye-Bourgeois 

and colleagues have shown the power of the chick embryo to model neuroblastoma 

metastasis 64,65. They have injected neuroblastoma cell lines and patient-derived 

xenografts into chick embryos, which are naturally immune-deficient 64,65. These 

neuroblastoma cells followed migration patterns of the endogenous avian neural 

crest cells to reach sympathetic ganglia, where they formed dense, proliferating 

masses. Metastatic spread was often seen 7 days’ post-engraftment and proceeded 

through the dorsal aorta and peripheral nerves 64,65. Moreover, neuroblastoma 

dissemination is induced by downregulation of SEMA3C, a pro-cohesion autocrine 
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signal, known to regulate axon and cell migration, including that of the neural crest 
64,65. 

 

Another option to evaluate the characteristics of the manipulation of a certain gene or 

chromosome in vivo as follow up to cell culture experiments is by using xenografted 

mice. Well-established neuroblastoma cell lines are subcutaneously injected in 

immune-deficient mice, to prevent destruction by the immune system of the mice 
66,67. These subcutaneously xenografted mice have several benefits as they are easy 

to use and relatively inexpensive, while being reproducible 68. However, they also 

have several drawbacks, with the most important being the inappropriate 

microenvironment of the sympathetic ganglion, the location of the injection and the 

lack of metastasis 69,70. One way to circumvent these caveats, is by generating an 

orthotopically xenografted mouse model. In this model system, the tumour cells are 

injected directly into the organ of origin, so they recapitulate more faithfully the 

human disease 66,67. The tumour evolved from the subcutaneously or orthotopically 

injected human neuroblastoma cells, can be excised and brought into culture to 

create a mouse tumour cell line. These cells can then be re-engrafted in immune-

deficient mice to create new tumours or to test drugs in vivo on these tumour cells. 

 

As these model systems are still based on the use of cell lines that have been 

cultured for several years and that can undergo irreversible genetic changes 71, 

generation of a patient-derived xenografted (PDX) mouse is a better alternative. In 

this model system, a part of the viable tumour from a cancer patient is directly 

implanted into the mice, which circumvent the generation of in vitro induced 

modifications. As establishment of neuroblastoma PDXs are challenging due to the 

sporadic access to fresh tumour material form this rare disease, Braekeveldt and 

colleagues 71-73 recently generated patient-derived orthotopic xenografts (PDOXs) by 

orthotopically implanting viably cryopreserved neuroblastoma samples. The tumours 

of these PDXs and PDOXs retain the characteristics of their corresponding patient 

tumour. From these PD(O)X-tumours, cell lines can be derived. These cells preserve 

the genotypic as well as the phenotypic features of the tumour they arise from and 

have tumour initiating and metastatic characteristics if re-injected in mice 71-73. These 

mice and the derived cell lines are especially valuable to test therapeutic compounds 

in a patient-dependent manner 71-73. Other well-established mouse models are the 
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transgenic mice (discussed above), which have the advantage that the gene is 

induced in immunocompetent mice, so the effect of the immune system can be 

monitored as well 68. Additionally, their tumours have histologically and genetically 

the same characteristic as the human neuroblastoma cancers, in contrast to 

xenografts 68. 

 

An overview of the different models of neuroblastoma disease can be found in table 

2.  

 

 
Table 2: overview of the model systems for neuroblastoma. 
Different models for neuroblastoma disease exist. First, to evaluate effects in vitro, 

neuroblastoma cell lines, JoMa-ALKF1174L or JoMa-MYCN, neural crest cells and PDX cell 

lines have been used. Secondly, different transgenic mouse models have been generated. 

Thirdly, in parallel, zebrafish lines have been created. Additionally, xenografted mice, PDX 

mice, PDOX mice and chick embryos have been generated to evaluate diverse aspects of 

neuroblastoma disease or the effect of gene manipulation on tumorigenesis. 

 

1.4 RTKs in sympathetic nervous system development and 
neuroblastoma  

 

1.4.1 The TRK neurotrophin receptors are associated with neuroblastoma prognosis 

 

The Neurotrophin Tyrosine Receptor Kinases family, NTRK or TRK, consists of three 

homologous members, namely TRKA or NTRK1, TRKB or NTRK2 and TRKC or 

In vitro model systems Transgenic mice Zebrafish  Others 

neuroblastoma cell lines Th-MYCN Tg(dbh:EGFP-MYCN) Subcutaneously  
xenografted mice 

JoMa-ALKF1174L  Th-ALKF1174L Tg(dbh:EGFP; dbh:ALKF1174L) Orthotopically  
xenografted mice 

JoMa-MYCN Th-ALKF1174L/MYCN Tg(dbh:LMO1),Tg(dbh:mCherry) PDX mice 
 

Neural crest cells LSL-MYCN;Dbh-iCre  PDOX mice 
 

PDX cell lines LSL-Lin28b;Dbh-iCre  Chick embryo 
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NTRK3 74,75. These three receptors have a crucial role in the normal development of 

the peripheral nervous system as shown by knockout mice models. These model 

systems showed both unique and overlapping nervous system abnormalities, 

suggesting that the three receptors have redundant as well as unique functionalities 
74,75. Additionally, these mice models revealed that TRKA is the most important 

receptor involved in later stages of sympathetic neuron development, while TRKC is 

needed during the early stages of sympathetic and sensory neuron development and 

TRKB is more important for normal development of motor neurons 74-76. Therefore, 

the TRK gene expression profile reflects the stage of neuronal differentiation of the 

sympathetic neurons 77. 

Similar to other receptor tyrosine kinases, signal transduction starts with binding of 

the appropriate ligand to the receptor. The nerve growth factor (NGF) binds to TRKA, 

while brain-derived neurotrophic factor (BDNF) interacts with TRKB and 

neurotrophin-3 (NT3) with TRKC. Moreover, neurotrophin-4 (NT4) can bind as well to 

TRKB and NT3 can activate all three receptors 74,75. Upon binding of the ligand, 

receptor homodimerization activates the receptor, leading to auto-phosphorylation as 

well as phosphorylation of other downstream effectors. In this way, the RAS-MAPK, 

PI3K-AKT as well as the PLCg1-PKC signaling pathways are activated, leading to 

proliferation, aggressiveness, metastases and neuronal differentiation, depending on 

which genes are activated and/or repressed by these activated signaling pathways 
74,75. 

These receptors have been shown to be constitutively activated through gene fusions 

or to be highly (over)-expressed in several cancers, including glioma, lung cancer, 

breast cancer and neuroblastoma. The gene fusions and (over)-expressions lead to 

more active receptors on the surface, highly activated pathways and induced gene 

expression. These gene expression changes result in malignant transformation, 

chemotaxis, metastasis and survival 77,78. In neuroblastoma, the expression of these 

receptors has been associated with clinical outcome. TRKB is highly expressed 

together with his ligand BDNF in 36% of all neuroblastoma cases and 50-60% of the 

unfavourable high-risk group, more specific in those with MYCN amplification. The 

higher expression of the receptor leads to increased BNDF expression, resulting in 

further autocrine activation of the involved pathways 74-76. Moreover, activation of this 

TRKB-BDNF pathway is associated with drug resistance, metastasis, angiogenesis 

and invasion. In contrast, high expression of TRKA and TRKC has been observed in 
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favourable neuroblastoma. Furthermore, TRKA expression is inversely associated 

with MYCN amplification status. Interestingly, TRK receptors have also been 

suggested to be involved in spontaneous regression frequently observed in stage 4S 

tumours. The TRKA and TRKC receptors are dependence receptors, meaning that in 

absence of their ligands, neuroblastoma cells undergo apoptosis, leading to 

spontaneous regression, while upon ligand activation, these cells will undergo 

neuronal differentiation, which is a feature of favourable neuroblastoma tumours 
74,75,79. However, no genomic rearrangements or mutations involving one of these 

receptors have been observed in neuroblastoma so far.  

Given their important role in tumorigenesis, both small drug molecules as monoclonal 

antibodies and specific siRNAs targeting these TRKs have been developed and 

evaluated in several paediatric and adult cancer entities, including neuroblastoma 
77,78. Growth of neuroblastoma cells in vitro and in vivo was compromised by 

treatment with the pan-TRK inhibitor leslaurtinib in combination with or without 

chemotherapy 80. In a later phase, this inhibitor was evaluated in a phase 1 clinical 

trial for refractory neuroblastoma, showing promising results, but clinical trials were 

stopped due to corporate takeover 80,81. Additionally, other pan-TRK inhibitors, such 

as GNF-4256 82 and AZ623 78, were evaluated in neuroblastoma, both in vitro and in 

vivo, confirming the effective growth inhibition and the enhanced anti-tumour efficacy 

in combination with chemotherapeutics such as irinotecan, temozolomide or 

topotecan 78,80,82. Moreover, combining AZ623 with topotecan resulted in nearly 

complete inhibition of tumour regrowth after discontinuation of the therapy 78. 

Additionally, entrectinib, which is a second-generation pan-TRK inhibitor that also 

targets ALK and ROS, resulted in dose-dependent inhibition of TRK phosphorylation 

and growth in neuroblastoma cell lines and xenografts 80. A more enhanced tumour 

inhibiting effect was observed in combination with the chemotherapeutics irinotecan 

and temozolomide 80. 

1.4.2 The oncogene RET is involved in TRK-induced differentiation in 

neuroblastoma 

 

Another receptor tyrosine kinase which is required for normal development, 

maturation and maintenance of different cell types, including neurons of both the 

central and the peripheral nervous system, is the REarranged during Transfection 
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(RET) proto-oncogene, located on chromosome 10q. The receptor is expressed 

during early embryogenesis in neural crest cells and is necessary for the migration of 

these cells to the developing enteric nervous system 83. Once the cells reach their 

final destination, RET is needed for their proliferation, differentiation and survival. 

Moreover, the receptor is a guide for axon growth and is required for the survival of 

neurons of the adult brain and peripheral neurons of the sympathetic and 

parasympathetic nervous systems 83. 

Similar to other receptor tyrosine kinases, RET signaling is activated by binding of his 

ligands, a group of soluble proteins of the glial cell line-derived neurotrophic factor 

(GDNF) family ligands (GFLs), namely GDNF, neurturin (NTRN), artemin (ARTN) 

and persephin (PSPN). However, in contrast to other RTKs, RET needs an additional 

co-receptor for this binding, one of the four GDNF family receptor-a (GFRa) family 

members, which are anchored in the cell membrane on the cell surface by a 

glycosylphosphatidylinositol binding 83. GDNF, NRTN, ARTN and PSPN bind 

respectively to GFRa1, GFRa2, GFRa3 and GFRa4, providing selectivity and 

specificity for RET-activation complexes in different cells. Upon binding of one of 

these ligand–co-receptor complexes, RET will dimerize and auto-phosphorylate 

intracellular tyrosine residues, which will recruit adaptors and other signaling proteins 

leading to stimulation of the different downstream pathways, including STAT3, RAS-

MAPK and PI3K-AKT 83. 

Due to its pivotal role in regulating several cellular processes, dysregulated 

expression of RET results in human diseases and cancers. Germline loss-of-function 

mutations lead to the congenital abnormality Hirschsprung disease or to congenital 

abnormalities of the kidney and urinary tract. Promoter methylation and heterozygous 

missense mutations, resulting in reduced RET expression, are frequently found in 

colon and colorectal cancer. However, in many other sporadic and heritable cancers, 

gain-of-function mutations and the formation of fusion proteins are most frequently 

found, further pointing at an important oncogenic role of RET 83. Activation of RET 

results in cancer cell proliferation and survival, local and distant metastasis, 

increased tumour-associated inflammation and invasion 83. Whereas no RET 

mutations have been observed in neuroblastoma tumours, RET has been found to 

play an important role in neuroblastoma tumorigenesis. Indeed, RET is highly 

expressed in neuroblastoma cells and constitutively active RET leads to enhanced 

tumour metastasis in neuroblastoma 84. In addition, neuroblastoma tumours arise in 
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mice with transgenic RET overexpression 84. Moreover, expression of activated RET 

suppresses cell growth, while inducing differentiation in the SK-N-BE neuroblastoma 

cell line 85. Treatment of this cell line with retinoic acid (RA) further boosted the 

observed differentiation 85. More importantly, it has been shown that RET cooperates 

with both TRKA 86 and TRKB 87 to regulate neuroblastoma differentiation. GDNF-

mediated RET activation causes a G0/G1 cell cycle arrest in neuroblastoma cells and 

further boosts ciliary neurotrophic factor (CTNF)-induced TRKA expression. The 

cooperation between RET and TRKA results in a decrease in MYCN expression and 

enhances neuronal differentiation in several neuroblastoma cell lines, showing that 

the cross-talk is necessary to promote neuronal differentiation 86. Interestingly, 

treatment with RA overexpresses and activates TRKB, which in his way 

phosphorylates and activates RET in a GDNF-independent manner, leading to 

differentiation of neuroblastoma cells. Moreover, both TRKB and RET activation are 

necessary for the differentiation caused by RA treatment 87. 

Analogously to other RTKs, the RET receptor has an ATP-binding domain and can 

be targeted by several small molecule inhibitors that have been generated to block 

other RTKs, such as vandetanib, cabozantinib and sorafenib. Both vandetanib and 

cabozantinib have been approved for treatment of medullary thyroid carcinoma 

(MTC) and are in phase II clinical trial for NSCLC, while sorafenib is in clinical trials 

for thyroid cancer. Moreover, acquired resistance is also observed for these 

inhibitors, further emphasizing the need for combination therapy options 83. In 

neuroblastoma, treatment with vandetanib causes dephosphorylation of RET and 

reduced cell viability in vitro and in vivo, while inducing apoptosis 84,88. Moreover, 

Zage and colleagues 88 combined vandetanib with cis-retinoic acid (CRA). They 

observed that while CRA increases RET phosphorylation, this could be blocked by 

treatment with vandetanib. Furthermore, the combination resulted in a synergistic 

decrease in number of viable cells in vitro and in a synergistic inhibition of tumour 

growth in vivo, led to a potent anti-angiogenic effect and induced apoptosis in 

xenografts 88. 
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1.4.3 The ALK tyrosine kinase receptor in normal neuronal development and 

neuroblastoma 

 

The Anaplastic Lymphoma Kinase (ALK) gene is located on human chromosome 

2p23 and on mouse chromosome 17 89. It encodes for the receptor tyrosine kinase 

ALK, a member of the insulin receptor protein-tyrosine kinase superfamily and is 

most related to the leukocyte tyrosine kinase (LTK) 90. The full-length receptor has 

the typical structure of an RTK, whereby it consists of a signal peptide, a long 

extracellular domain, a transmembrane segment and the intracellular part (Figure 6) 
39. The extracellular domain consists of two MAM segments, one low-density 

lipoprotein (LDL) domain and a glycine-rich part (GR), which is unique for both LTK 

and ALK 90. Only the function of the MAM segments is known, as they are involved in 

cell-cell interactions. The intracellular part contains a juxtamembrane segment, a 

carboxy-terminal tail and the protein kinase domain, with the latter being important to 

modify other proteins by adding a phosphate group (= phosphorylation) to them. This 

domain consists of an amino-terminal lobe that is linked by a ‘hinge’ region to the 

carboxy-terminal lobe, creating a binding pocket for ATP, which is needed to 

phosphorylate its substrates 91 (Figure 2 for detailed structure). The molecular weight 

of ALK is 176 kDa, while as the result of N-linked glycosylation of the extracellular 

domain, the weight changes to 220 kDa 90. Additionally, a 140 kDa form of ALK is 

formed due to cleavage within the extracellular domain of the full-length receptor. 

This isoform becomes phosphorylated as well upon ALK stimulation 92. 
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Figure 6: structure of the ALK receptor 
A schematic representation of the ALK structure. The extracellular part consists of two MAM 

domains and a low-density lipoprotein (LDL) domain. The transmembrane domain passes 

through the cell membrane. The intracellular domain harbours the kinase domain. The 

hotspot mutations found in neuroblastoma are depicted. Several ALK inhibitors have been 

generated, targeting this kinase domain. Adapted from 39. 

 

ALK is mainly expressed in the central and peripheral nervous system of developing 

mice 93,94, but mRNA and protein levels decrease soon after birth. In human, ALK has 

a role in the development of the nervous system, but is also expressed at low levels 

in the adult central nervous system, while it is undetectable in other human tissues 
93,94. Its expression pattern, together with its structure, supports the hypothesis that 

ALK may function as a receptor for ligands with a specific role in regulating the 

proliferation or differentiation of neural cells 94. However, ALK has long been 

considered an orphan receptor, as identified ligands such as midkine and 

pleiotrophin could not be confirmed to activate ALK signaling 90. Nevertheless, in 

2015, heparin 95 was identified as an ALK modulatory ligand, while FAM150A or 

augmentor-b (AUG-b) and FAM150B or augmentor-a (AUG-a) 96,97 were discovered 

and confirmed as major ALK activating ligands, resolving the problem of unknown 

ligands for this receptor. As described for all RTKs, the ALK receptor can be 

phosphorylated at different tyrosines and can have numerous docking proteins. 

Consequently, these docking proteins can activate a large number of downstream 
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signaling pathways, which are often interconnected and overlapping 5,90. As such, 

ALK activates the RAS-MAPK, PI3K-AKT, JAK-STAT and the PLC-g pathways 89,90. 

Moreover, giving the important role of ALK in the development of the nervous 

systems, deregulated expression of ALK can result in the formation of neuroblastoma 

tumours, further described in the next chapter. 
 

1.5 ALKoma: cancers with activated ALK  
 

ALK was described for the first time as an oncogene in 1994. It was identified as 

fusion partner of nucleophosmin (NPM) in anaplastic large cell lymphoma (ALCL) 
91,94. Since then, diverse ALK fusion proteins as well as ALK activating mutations or 

alterations have been described in various cancer entities, called ALKoma, which 

include ALCL, NSCLC, rhabdomyosarcoma, renal cell carcinoma, inflammatory 

myofibroblastic tumour (IMT), inflammatory breast cancers and of particular interest, 
neuroblastoma 94,98. 

1.5.1 ALK rearrangements and gene fusions 

 

Chromosomal rearrangements leading to fusion genes are the most recurrent ALK 

alterations observed in cancer. These fusions comprise the 3’ part of ALK and the 5’ 

half of a different gene. In this way, the promoter of another gene is placed before the 

kinase domain of ALK. Around 30 different fusion partners have been identified, 

which can result in fusions with differential stability and a broad range of sensitivity to 

ALK inhibitors 91, including NPM-ALK in ALCL, EML4-ALK in NSCLC, TPM3/4-ALK in 

IMT and VCL-ALK in renal cell carcinoma 94. Other ALK fusions have been found in 

diffuse, large B-cell lymphoma and thyroid tumours 98,99. More intriguingly, both in 

neuroblastoma cell lines and tumours, ALK rearrangements have been found. While 

the intergenic rearrangements do not result in the formation of fusion proteins, as the 

genes involved are in opposite transcriptional directions, they can lead to truncated 

proteins (e.g. ALKdel2-3, ALKdel4-11 and ALKdel1-5), which are phosphorylated and 

strongly active, resulting in increased downstream signaling and tumorigenicity 100-102. 
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1.5.2 ALK copy number alterations 

 

In some cancer types, additional copies of the ALK locus or ALK amplifications have 

been observed 98. Such alterations have been found in NSCLC, oesophageal cancer, 

colorectal cancer and breast cancer. However, in these entities, increased ALK copy 

numbers do not result in increased ALK mRNA or protein expression, while it is often 

correlated with poor prognosis and sensitivity to ALK inhibitors 98. In contrast, ALK 

amplification in rhabdomyosarcoma and neuroblastoma does correlate with higher 

ALK mRNA and protein expression and poor prognosis 98. Next to copy number 

alterations, wild type ALK can be overexpressed, as frequently observed in 

metastatic neuroblastoma and this overexpression is correlated with poor clinical 
outcome 99,103,104. 

1.5.3 Activating ALK mutations 

 

The most frequent genomic ALK aberrations found in neuroblastoma are point 

mutations. Also in lung cancer and anaplastic thyroid cancer, gain-of-function 

mutations have been reported 91,94,98. In neuroblastoma, the mutations are located 

mainly in the kinase domain, with the hotspot mutations being F1174, R1275 and 

F1245 91,98 (Figure 2 & 6) 39 and they can be grouped in 3 classes: ligand-

independent activating mutations, ligand-dependent mutations and a kinase-dead 

mutation 105,106. These mutations are observed in 8-10% of sporadic neuroblastoma 

tumours, while the ALKR1275Q mutation is also frequently found in familial cases 29-32. 

ALKF1174L mutations have been shown to have a higher degree of ALK 

phosphorylation and a higher potential to drive tumorigenesis in neuroblastoma 

compared to the other hotspot mutation ALKR1275Q 107. 

Deep sequencing of neuroblastoma tumours at diagnosis revealed the presence of 

small ALK mutant subclones that could not be detected at normal sequencing depth 

and might lead to therapy resistance and relapse 108. Indeed, other studies confirmed 

that relapsed neuroblastoma tumours and post-chemotherapy tumours more 

frequently present with ALK mutations, but also mutations in the RAS-MAPK and 

YAP pathway or EMT 55,56,109-111. 
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1.5.4 ALK as therapeutic target  

 

The discovery of these ALK aberrations has opened new venues for therapeutic 

targeting of patients harbouring an ALKoma tumour. One of the first generated ALK 

inhibitors was TAE684, which is a small molecule inhibitor that binds in the ATP-

binding pocket of ALK, thereby competing with ATP and inhibiting phosphorylation of 

ALK and its substrates 112. This compound was first tested in NPM-ALK fusion 

positive ALCL 112, but also showed effect in neuroblastoma cell lines with ALKF1174L or 

ALKR1275Q mutations 32. However, TAE684 was shown not to be clinically useful due 

to some toxic effects arising over time 113. Another compound with more clinical 

potential is crizotinib, which like TAE684 binds the ATP-binding pocket of ALK. This 

compound has been tested in several clinical trials, where it has shown promising 

effects for diverse ALKoma tumours, including neuroblastoma 114. Importantly, it has 

been shown that the ALK inhibitors have different effects on the different ALK 

mutations 113,115-117. For example, tumour cells with ALKF1174L mutation are resistant 

to crizotinib. This can be explained by an increased ATP-binding affinity of this 

mutation, which reduces the potency of ATP-competitive inhibitors 115-119. Moreover, 

not only the mutations status, but also the expression levels of ALK mRNA and 

protein determine how the response on the inhibitor will be, as shown by Duijkers and 

colleagues 120. 

As seen for multiple small molecule inhibitors, cells rapidly acquire resistance to 

compounds upon an initial promising response of the tumour. This can be due to 

diverse mechanisms, ranging from activation of bypass signaling or the development 

of resistance mutations in the tyrosine kinase domain of the ALK receptor 20,119,121-124. 

These mutations hinder the binding of the compound to the ATP-binding pocket of 

the receptor or they increase the affinity of this binding place for ATP 20,119,121. 

Therefore, second- and third-generation ALK inhibitors have been developed, 

including alectinib, ceritinib (LDK-378) and lorlatinib (PF-06463922), which are 

currently evaluated in paediatric clinical trials 109,122. Alectinib has been shown to 

effectively inhibit cell growth and colony formation, while inducing apoptosis by 

blocking the PI3K/AKT/mTOR pathway in neuroblastoma cells with different ALK 

mutation status, in neuroblastoma xenografts and the Th-MYCN transgenic 

neuroblastoma mice model 125. Moreover, in NSCLC, it has been shown that ceritinib 
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can overcome crizotinib resistance 126,127, while in neuroblastoma the same has been 

shown for lorlatinib 128. 

In addition, other options to target ALK and circumvent the resistance have been 

developed, including antagonistic ALK monoclonal antibodies 129. Moreover, HSP90 

inhibitors 24,25 might be useful to target ALKF1274L mutant neuroblastoma tumours that 

have become resistant to ALK inhibitors. These tumours present AXL activation and 

induction of EMT, which make these cells more sensitive to HSP90 inhibitors 130. Last 

but not least, ALK-positive tumours can also be targeted by blocking the signaling 

pathways downstream of ALK, like PI3K inhibitors 131. 

However, in most single compound treatment regiments, resistance and subsequent 

relapse frequently occur. There is thus an urgent need for new therapy regimens, 

where different compounds are combined to attack the signaling pathways from 

different angles, avoiding escape mechanisms.  

A first way of targeting the ALK pathway from different angles, is by combining an 

ALK inhibitor, which inhibits the ALK protein and his activity, with siRNA-mediated 

knockdown of ALK mRNA in neuroblastoma. These siRNAs were packed in 

liposomes and they specifically targeted neuroblastoma cells, in this way diminishing 

side-effects. Indeed, this combination enhanced the anti-tumorigenic potential of the 

single compounds 132. Additionally, combining an ALK inhibitor, such as crizotinib, 

with an ALK inhibitory antibody, results in almost complete growth inhibition in 

neuroblastoma cells 133. Crizotinib induces accumulation of ALK at the cell surface, in 

this way sensitizing the neuroblastoma cells for ALK antibody treatment 133. 

Moreover, ALK antibody treatment can restore crizotinib resistance as well 133. 

Interestingly, another study has shown that blocking PI3K pathway components 

restored the sensitivity of the neuroblastoma cells for TAE684 treatment, resulting in 

synergistic inhibition of proliferation by combining an PI3K inhibitor with an ALK 

inhibitor 131. Moreover, in MYCNamplified and ALKmutant neuroblastoma cells, the use of 

the ALK inhibitor crizotinib alone does not inactivate mTORC1 134. In order to 

shutdown mTORC1 signaling, crizotinib has been combined with a mTOR inhibitor, 

showing reduced tumour growth and prolonged survival in ALKF1174L/MYCN-positive 

models compared to single treatment 134. Recently, it has been observed that ALK 

inhibition in combination with the chemotherapeutics topotecan and 

cyclophosphamide enhanced survival by reducing tumour growth in TP53 wild type 

neuroblastoma cells, xenografts and PDX models with both sensitive ALK mutations 
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as de novo-resistant ALK aberrations 135. Furthermore, using an ALK inhibitor in 

combination with a dual inhibitor of cyclin-dependent kinase (CDK) 4 and 6 

synergistically decreased pALK and pRB levels in neuroblastoma cells, while 

promoting cell-cycle arrest in vitro 136. Moreover, this synergistic combination showed 

complete and sustained tumour regression in two PDX neuroblastoma models, 

harbouring ALKF1174L and ALKF1245C as de novo crizotinib resistance mutations 136. 

Similarly, the combination of an ALK inhibitor with a MDM2 inhibitor synergistically 

increased anti-tumour activity in ALK mutant, TP53 wild type neuroblastoma cells and 

xenografts by inducing antiproliferative and pro-apoptotic proteins 124. Interestingly, 

the MDM2 inhibitor restored the sensitivity to the ALK inhibitor by downregulating 

MYCN, which was identified as driving resistance in a subset of neuroblastoma cells 

and xenografts 124.  
 

1.6 ALK and MYCN cooperate to control tumorigenesis 
 

Intriguingly, a subset of neuroblastoma patients has both an ALKF1174L mutation and 

MYCN amplification, leading to worse prognosis compared to tumours with only one 

of these alterations 89,107, suggesting that a cooperative mechanism is involved. This 

cooperative effect was confirmed in both mice and zebrafish neuroblastoma models 
58,60. The zebrafish harbouring both activated ALK and MYCN show accelerated 

onset of tumour formation and increased tumour penetrance 60. Furthermore, ALK 

expression enhanced the MYCN oncogenic activity by blocking the MYCN-induced 

apoptotic death 60. Also in the mice model 58, it was confirmed that combined 

expression results in higher tumour penetrance as well as earlier time of onset. 

Additionally, these mice had a decreased survival probability compared to mice with 

expression of only one of the oncogenes 58. In these double transgenic mice, genes 

involved in the PI3K-AKT and MAPK pathways were upregulated compared to 

MYCN-only mice 58. Moreover, it was recently shown that the cooperation between 

MYCN and ALK leads to proliferation and survival of neuroblasts, which may 

represent initial steps toward neuroblastoma development 137. 

Until now, 3 mechanisms have been described in literature, explaining the observed 

cooperativity between MYCN and ALK (Figure 7) 58,138-143. Firstly, ALK activates the 

PI3K-AKT pathway, which will phosphorylate and inactivate GSK3b 141. 
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Consequently, GSK3b can no longer phosphorylate MYCN, which is needed for poly-

ubiquitination and subsequent proteasomal degradation 141,144. In this way, the MYCN 

protein stability is enhanced by mutant ALKF1174L 58. Additionally, mutant ALKF1174L 

increases MYCN mRNA levels through increased initiation of transcription of the 

promoter upstream of the MYCN gene, driven by ALK-mediated ERK activity 138. 

Likewise, stimulated ALK phosphorylates and activates ERK5 through the PI3K-AKT-

MEKK3-MEK5 pathway and ERK5 will on his turn increase transcriptional initiation of 

MYCN 139. Furthermore, the ERK5 inhibitor XMD8-92 leads to a decrease in MYCN 

levels and a simultaneous reduction in cell viability, while combination with an ALK 

inhibitor further boosts these effects leading to a synergistic decline in MYCN 

abundance and cell survival in vitro and in vivo 139. Additionally, MYCN can activate 

apoptosis through downregulation of anti-apoptotic proteins 58,60,145. Moreover, a 

positive feedback loop has been found, as MYCN itself also directly regulates ALK 

mRNA expression by binding to the ALK promoter as shown by ChIP assays with 

anti-MYCN antibodies 142. 
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Figure 7: cooperation between ALK and MYCN in neuroblastoma 
Different mechanisms are found for the ALK and MYCN cooperativity in neuroblastoma. 

Firstly, ALK induces MYCN mRNA levels by increased transcriptional initiation of the MYCN 

gene. Secondly, ALK enhances MYCN protein levels through the PI3K-AKT-GSK3b pathway. 

Thirdly, MYCN transcription is further boosted by the PI3K-AKT-MEKK3-MEK5-ERK5 

pathway. Moreover, MYCN itself enhances ALK transcription, creating a positive feedback 

loop. Based on 58,138-143. 
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1.7 MYCN as oncogenic driver of neuroblastoma 
 

1.7.1 The role of MYC family members in normal development and cancer 

 

The MYCN gene is located on the short arm of chromosome 2 at band p24 145,146 and 

is part of the MYC family of proto-oncogenes, which further also includes c-MYC and 

L-MYC. These MYC proteins belong to the basic-helix-loop-helix-zipper (bHLH-Zip) 

class of transcription factors and regulate the expression of genes involved in several 

cellular processes, including proliferation, differentiation, growth and apoptosis 145,146. 

Structurally, the MYCN gene encodes for a nuclear protein with a size of 64 kDa. 

MYCN consists of an N-terminal transcriptional domain for interaction with co-

activators or co-repressors, containing the MYC boxes and a nuclear localization 

sequence, and a C-terminal DNA-binding domain with the bHLH-Zip motif, required 

for dimerization with MAX and for interaction with DNA 146-148. There is a high 

sequence as well a structural homology between MYCN and c-MYC, but their 

expression pattern is different 145,146. While expression of c-MYC is generally high in 

most rapidly proliferating cells, MYCN is expressed following a restricted temporal, 

tissue-specific pattern. During embryogenesis, the highest expression of MYCN is 

observed in developing brains, while it is not expressed in adults 145,146. Of interest, 

MYCN is expressed in the developing sympathetic nervous system 145,146 and 
required for proliferation of immature neuronal precursor cells in the neural crest 146.  

1.7.2 Regulatory mechanisms for MYCN expression, protein stability and activity 

 

MYCN is involved in several key cellular processes with its expression being tightly 

controlled through different mechanisms 146. A first level of regulation is by controlling 

MYCN protein stabilization and degradation (Figure 8) 141,145,146,149-151. MYCN 

proteins are stabilized by phosphorylation of a serine (S62) by CK1 or MAPK, 

followed by a phosphorylation of a threonine (T58) by GSK3b 141,146. In order to target 

MYCN for protein degradation, the protein phosphatase 2A (PP2A) dephosphorylates 

the S62, which allows that F-box and WD repeat domain-containing 7 (FBXW7) or 

other ligases can bind this MYCN harbouring only the T58 phosphorylation 145,146. 

Next, FBXW7 ubiquitinylates MYCN, thereby targeting it for proteasomal degradation 
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via the ubiquitin-proteasome system. Normally, GSK3b is repressed by AKT, so 

activation of the PI3K-AKT pathway results in MYCN protein stabilization. Moreover, 

the ERK pathway is involved as well in regulation of protein levels, as it can either 

stabilize or destabilize MYCN proteins by phosphorylation of serine 62 or threonine 

58 through the ERK pathway respectively 149. Additionally, ZAR1, a possible 

transcriptional regulator, is involved in regulating MYCN protein levels, as ZAR1 

knockdown result in differentiation through loss of MYCN protein, but the exact 

mechanism of this regulation is still unknown 152. Moreover, the MYCNOS gene has a 

dual role in regulating MYCN. First of all, it encodes for a protein, also named NCYM, 

which is always co-amplified with MYCN and interacts with GSK3b, thereby 

stabilizing MYCN protein without effect on MYCN mRNA levels 150,151. Furthermore, 

NCYM and MYCN enhances each other’s protein expression 150,151. Secondly, 

MYCNOS also functions as a lncRNA by recruiting protein complexes to the 

upstream MYCN promoter instead of to its internal promoter, leading to a switch in 

MYCN isoform transcription 151. Another lncRNA, LncUSMycN is frequently co-

amplified with MYCN and located upstream of the MYCN transcription start site. 

Reduction of this lncRNA results in downregulation of MYCN mRNA and protein 

levels by interacting with NonO, a RNA binding protein that binds MYCN 153,154. 

Aurora kinase A (AURKA) provides an additional level of MYCN regulation, by 

preventing the FBXW7-mediated MYCN protein degradation 145,146. However, 

dephosphorylation of AURKA by protein tyrosine phosphatase receptor type D 

(PTPRD) destabilizes AURKA, leading to subsequently degradation of MYCN 145,146. 

Furthermore, interaction of MYC(N) with MIZ-1 enhances MYC(N) stabilization by 

inhibiting its ubiquitination and degradation 148.  

 



Chapter 1: introduction 

45 

 
Figure 8: regulation of MYCN protein levels 
Different mechanisms regulate MYCN protein levels. CK1 or MAPK phosphorylates a serine 

in the MYCN protein (S62), followed by phosphorylation of a threonine (T58) by GSK3b. 

Protein phosphatase 2A (PP2A) dephosphorylates the S62, which allows that F-box and WD 

repeat domain-containing 7 (FBXW7) or other ligases can ubiquitinylate MYCN harbouring 

only the T58 phosphorylation, thereby targeting it for proteasomal degradation via the 

ubiquitin-proteasome system. GSK3b is repressed by AKT, while the ERK pathway can 

phosphorylate serine 62 or threonine 58. The MYCNOS protein, also named NCYM interacts 

with GSK3b. Based on 117,121,122,125-12. 

 

Another mechanism of controlling MYCN expression is through transcriptional 

regulation. ALK itself as well as through ERK5, a member of the MAPK pathway, 

increases MYCN transcription initiation 138,139. Moreover, the Wnt/b-catenin pathway 

enhances the transcription factor Tcf-4 to bind to tissue-specific enchancers 

upstream of the MYC(N) gene in order to promote MYC(N) transcription 149. 

Additionally, it has been shown that microRNAs (miRNAs), like miR-34a or let-7 

family members, can bind to the 3’UTR of MYCN, leading to mRNA degradation 
146,155. Recently, our group has identified 29 miRNAs targeting the 3’UTR of MYCN, 

of which 12 miRNAs are inversely correlated with MYCN expression or activity in 

neuroblastoma 156. Furthermore, 10 of these miRNAs are downregulated during 

mouse MYCN-driven neuroblastoma tumour formation, suggesting that MYCN 

negatively controls the expression of these miRNAs to safeguard his own expression 
156. Moreover, another neuroblastoma oncogene, LIN28B, regulates MYCN 

expression through downregulation of let-7 35,47. 
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1.7.3 MYC(N) acts as transcriptional activator and repressor 

 

Despite the high structural and sequence homology and the functional redundancy of 

c-MYC and MYCN, they exert independent and tissue-specific functions through their 

regulation of different target genes 146,157. High expression of MYCN results in 

manipulation of the expression of genes regulating apoptosis, cell differentiation cell-

cycle and proliferation 146,148. To modulate the expression of these genes, MYCN 

uses a number of strategies. One of these approaches is by heterodimerization with 

MAX through the bHLH-Zip domains of both proteins, forming a functional 

transcriptional activator 146. This stable complex binds to specific DNA sequences, 

known as E-boxes, and is essential for stimulation of transcription at these E-boxes 

proximal of promoters of genes involved in diverse cellular processes 146-148. MYCN 

normally binds to the canonical CACGTG as well as the E-box CATGTG, while when 

amplified, it recognizes additional E-box motifs, like CATTTG, CATCTG and 

CAACTG 146. Moreover, MYCN can bind to the nuclear co-factor TRRAP, which is 

part of a complex involving histone acetyl transferases (HATs), which are responsible 

for acetylating the histones around promoters, resulting in an open chromatin 

structure so that transcription can be enhanced 148,158. Furthermore, MYCN recruits 

pTEF-b, which induces phosphorylation of the RNA polymerase C-terminal domain, 

in this way enhancing transcriptional elongation 148. Next to transcriptional activation, 

MYCN also transcriptionally represses the expression of genes, independent from 

recognition of E-box places. Therefore, MYCN recruits through his bHLH-Zip domain 

the transcriptional activator Myc-interacting zinc finger protein 1 or Miz-1 to the 

promoters of these genes to form together a repressive complex, which leads to 

transcriptional silencing partly through recruitment of DNA methyltransferases, like 

DNMT3a or EZH2, as well as histone deacetylases (HDACs) 146,148,157,159-161. 

Similarly, MYCN can interact via its MB2 domain with the basal transcription factor 1 

(SP1) and can in this way recruit HDACs, including HDAC1, HDAC2, HDAC3 and 

SIRT1 148. More intriguingly, MYCN directly interacts with both Miz-1 and SP1 to 

recruit HDAC1 to silence expression of amongst others TRKA 162. Additionally, 

MYCN indirectly modulates expression by protein-protein interactions. In this way, it 

upregulates AURKA, thereby creating a positive feedback loop 146. Moreover, MYCN 

not only directly activates or represses the transcription of genes, but also indirectly 

influences the expression of multiple genes by modulating the expression of several 
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miRNAs, including miR-17~92 146,155,163,164 and lncRNAs 146. Furthermore, as 

mentioned earlier, MYCN downregulates the expression of 10 miRNAs, that are 

themselves negative regulators of MYCN, to safeguard his own expression 156. 

Additionally, MYCN enhances the expression of LIN28B by two mechanisms 165. 

Firstly, it directly interacts with the promoter of LIN28B to promote its transcription. 

Secondly, MYCN indirectly represses miR-26a-5p, which is a negative regulator of 

LIN28B, in this way creating a double regulatory feed-forward loop as LIN28B 

enhances MYCN by repressing let-7 family members 35,47,165. Recently, it has been 

discovered that MYCN mRNA itself sponges the let-7 family in MYCNamplified 

neuroblastoma tumours to hinder the activity of these miRNAs 48. In summary, MYCN 

is a transcriptional activator and repressor of several genes implicated in normal 
development. 

1.7.4 MYCN acts as oncogene in neuroblastoma and other cancers 

 

As MYCN regulates the expression of a large number of genes involved in key 

cellular processes including positive regulation of the cell cycle, it is not surprising 

that MYCN overexpression results in cancer formation 148. MYCN overexpression has 

been reported predominantly in tumours originating from neuronal or neuroendocrine 

origin including neuroblastoma, medulloblastoma, glioblastoma multiforme, small-cell 

lung cancer, neuroendocrine/small-cell prostate cancer and retinoblastoma as well as 

rhabdomyosarcoma and breast cancer 146. 

In neuroblastoma, MYCN is an independent prognostic factor and is involved in 

almost every cancer hallmark as described by Huang and Weiss (Figure 9) 145. First 

of all, MYCN expression levels correlate with invasive and metastatic behaviour 145.  

MYCN is involved in every step of metastasis: adhesion, motility and invasion, by 

direct or indirect repression of specific genes. To achieve this, MYCN downregulates 

amongst others integrins, caveolin-1 and a specific subset of ABC transporters 

controlling cell motility and invasion, while increasing other factors like miRNAs and 

matrix metalloproteinase activity, which finally leads to detachment from the 

extracellular matrix in order to allow the cells to migrate and invade other tissues 
145,148. Secondly, MYCN also modulates antigens expressed on the tumour cells in 

order to mislead our immune system 145. Thirdly, anti-angiogenic factors are 

transcriptionally repressed, while pro-angiogenic factors become upregulated 
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following MYCN amplification or overexpression 145,148. Additionally, MYCN promotes 

self-renewal and pluripotency, while blocking differentiation, which are stem cell 

characteristics 145. MYCN is able to form several complexes which regulate both 

directly and indirectly the expression of genes involved in neuronal differentiation, 

including downregulation of the TRKA receptor 148,162. Furthermore, MYCN can 

repress apoptosis by inhibiting several pro-apoptotic genes, including nerve growth 

factor receptor (NGFR), while it can activate as well apoptosis due downregulation of 

anti-apoptotic proteins, such as Galectin-3 145,148. This MYCN-induced apoptotic 

response can turn into a complete proliferative response, especially if the anti-

apoptotic factors are also upregulated by other mechanisms like the acquisition of an 

ALK mutation 58,60,145. Additionally, MYCN promotes cell cycle progression and 

proliferation, as it enhances the re-entry of quiescent cells into the cell cycle and 

shortens the time needed to progress through the cell cycle by up- or downregulation 

of the expression of several cell cycle-related genes 145,148. Recently, it has been 

shown that c-MYC is involved as well in neuroblastoma by driving the expression of 

an ESC-like cancer-activated signature in the high-risk tumours, which are 

characterized by poor prognosis 166.  
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Figure 9: MYCN is involved in every cancer hallmark 
MYCN has an important role in cancer, since it is involved in every cancer hallmark. Firstly, 

MYCN activates transcription of genes involved in metastasis, survival, proliferation, 

pluripotency, self-renewal and angiogenesis. Secondly, MYCN represses genes promoting 

differentiation, cell cycle arrest and immune surveillance, and blocks the transcription of 

genes that inhibit metastasis and angiogenesis. Figure adapted from 145. 

 

1.7.5 Therapeutic targeting of MYC(N) 

 

Considering the important role of MYCN in several tumour-driven cellular pathways, 

targeting MYCN has long been proposed as a valid therapeutic option for several 

tumour entities harbouring MYCN overexpression or amplification, amongst others 

MYCN-driven neuroblastoma 145,146. However, as MYCN is a transcription factor and 

structurally consists of a-helices without a binding place for ligands and thus for small 
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molecule inhibitors, it has long been considered to be undruggable 145,146. Moreover, 

MYCN is mainly localized in the nucleus, making it inaccessible for antibody-based 

compounds 149,158. Therefore, several approaches have been developed to indirectly 

target MYCN. As MYC and MYCN are closely related, a lot of studies focusing on 

targeting MYC can be extrapolated to MYCN therapy. 

A first strategy could be by hindering the interaction between MYCN and MAX by 

using small molecules like 10058-F4 and KJ-Pyr9 149,158 or by Omomyc, which is a 

dominant-negative MYC mutant and as a result of binding to MYC(N) impairs the 

dimerization with MAX 146,158,167. However, these small molecules are non-specific as 

several proteins contain the bHLH-Zip domain that they target and Omomyc is 

ineffective as it is unable to penetrate human tumours 158. Another strategy that has 

been developed, acts through targeting MYCN through its coactivator proteins, 

required for transcriptional initiation and elongation driven by MYCN 149. One such 

approach is based on displacement of BET bromodomains from chromatin by 

competitively binding of the compound with the acetyl lysines in histone tails 145,146,167-

169. BRD4 contains BET bromodomains and has been shown to bind to the promoter 

of MYCN as well as to several MYCN target genes to promote active transcription of 

these genes. JQ1 is the first reported BET bromodomain inhibitor, which represses 

transcription of MYCN and MYCN targets, followed by cell cycle arrest and apoptosis 

in mainly MYCNamplified neuroblastoma cell lines 168. Moreover, treatment of 

MYCNamplified neuroblastoma mouse models with JQ1 resulted in a prolonged overall 

survival 168. Furthermore, dBET1, a novel compound that targets BRD4 for protein 

degradation, also strongly affects the MYC proteins and their targets 158. Similarly, 

MYC proteins interact with TRRAP, which is part of a complex with HATs, to open 

chromatin and enhance transcription 149. Therefore, HAT inhibitors may also be 

considered for therapeutic targeting of MYCN activity 149. Furthermore, giving the 

predisposition of the MYC locus for the formation of G-quadruplexes, small molecules 

stabilizing these complexes have been shown to have MYC-specific effects 149. 

However, MYCN not only activates genes, but also silences tumour suppressor 

genes by recruiting DNA methyltransferases and by elevating HDAC expression. This 

opens the way to use HDAC inhibitors to indirectly target MYCN activity 145. As 

shown by Cortés and colleagues 170, the HDAC inhibitor SAHA decreased MYCN 

mRNA and protein levels, while simultaneously decreasing cell viability in 

neuroblastoma cell lines with or without MYCN amplification. However, such 
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epigenetic-based compounds are often non-specific, targeting multiple genes and 

proteins at the same moment 171. Therefore, another method to destabilize MYCN is 

by targeting genes involved in MYCN degradation 145,146,167. As mentioned above, 

AURKA is needed to protect MYCN from degradation 145,146. AURKA inhibitors hinder 

the interaction between MYCN and AURKA by inducing a conformational change in 

the kinase domain of the latter, thereby making MYCN available for degradation while 

simultaneously decreasing cell viability in neuroblastoma cells 145,146,167. Another kind 

of inhibitors influencing MYCN degradation, are those inhibiting proteins from the 

PI3K-AKT pathway, which through GSK3b play an important role in MYCN 

stabilization, while via ERK5 this pathway has an impact on MYCN transcription 

initiation 139. Therefore, several PI3K-AKT, mTOR, ERK5 or GSK3b inhibitors have 

been evaluated and showed potential as therapeutic interventions for MYCN-driven 

tumours, including neuroblastoma 139-141,143,145,146,167,172,173. Moreover, ROCK 

inhibitors have shown to inhibit GSK3b-dependent MYCN phosphorylation, resulting 

in differentiation of the neuroblastoma cells and a reduction in cell growth, migration 

and invasion 54. However, NCYM expression makes cell lines and tumours less 

sensitive to the PI3K-AKT inhibitors 150. Nevertheless, combination of an ERK5 

inhibitor with an ALK inhibitor synergistically reduced MYCN levels, cell viability in 

vitro and tumour growth in vivo 139. Furthermore, GSK3b inhibitors not only effect 

MYCN protein stabilization, but have as well an effect on MYCN mRNA stability, 

probably by transcriptional regulation of miRNAs of other MYCN repressing genes 
173. Moreover, the MAPK pathway is involved as well in regulating MYCN protein 

stability, so inhibitors targeting this signaling network are another opportunity for 

MYCN targeting 149. More intriguingly, MDM2 repression showed significant effect on 

MYCNamplified neuroblastoma 145. The working mechanism of this inhibition consists of 

two parts. First of all, MDM2 loss destabilizes MYCN mRNA, while in parallel blocking 

MYCN protein expression. Secondly, MDM2 blockade stabilizes p53, which results in 

p53-dependent apoptosis. Another approach is by using compounds targeting the 

expression or function of MYCN 145,167. THZ1 and THZ2 are CDK7 inhibitors that 

downregulate MYCN in MYCN-driven neuroblastoma, an effect which is attributed by 

the presence of super-enhancers upstream of MYCN 174. Furthermore, inhibitors of 

the Wnt/b-catenin pathway will block the binding of Tcf-4 to enhancers upstream of 

MYC, which will result in less MYC transcription 149. Moreover, retinoic acids induce 
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differentiation, so counteracting the differentiation block by MYCN, and reduce as 

well MYCN levels. A final approach is based on the observation that MYC-dependent 

cancer cells are addicted to the MYC oncogene 149,158. In this way, it has been 

observed that small molecules against the Aurora kinase B (AURKB) and Cdk-1 

kinases have antiproliferative effects in MYC-addicted cancers 149. Moreover, it has 

been shown that compounds against the AMP-dependent kinase (AMPK) protein, 

spliceosome core factors or metabolic pathways are effective in MYC-overexpressing 

cells 158. Furthermore, cells depending on high MYC expression for their survival 

were sensitive to the multikinase inhibitor, dasatinib 158. However, until now, there are 

no small molecule inhibitors available that directly target the MYCN protein, but 

diverse strategies are generated to target its transcription, stabilization or activity. 
 

1.8 The discovery of HBP1 and its proposed role as tumour 
suppressor 

 

1.8.1 Interaction partners of the HBP1 transcription factor 

 

The High-Mobility Group (HMG)-box protein 1 or HBP1 gene was discovered in 1994 

through a screen for new mammalian potassium channels in yeast 175. Subsequent 

analysis of the gene revealed a HMG-box DNA-binding domain and thus assigned 

HBP1 to the transcription factor family of HMG proteins 175. These transcription 

factors have a role in the assembly of multifactor transcriptional complexes, ensuring 

correct enhancer specificity 176. 

 

Transcriptional regulation by HBP1 acts through two mechanisms, namely by direct 

binding to the promoter of its target or by physical inhibitory interaction with 

transcriptional activators 177 through its HMG-box DNA-binding domain as well as its 

AXH transcriptional repression domain 178. Furthermore, this AXH domain is needed 

to form a repression complex with SIN3 and HDACs through PAH2 domains 163,179. In 

addition, HBP1 has also two RB1 and one p38 binding site 176,180,181. By associating 

with RB1, HBP1 can recruit as well HDAC1 to repress various target genes. 

Intriguingly, HBP1 has also a role in DNA methylation, as it inhibits DNMT1, leading 
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to a gene-specific as well as global DNA hypomethylation pattern in lung fibroblast 

cells 182. Moreover, through activation of the Histone H10 gene, HBP1 may play a role 

in remodelling of chromatin 181. 

1.8.2 The role of HBP1 in controlling proliferation and differentiation during normal 

development 

 

HBP1 has been defined as transcriptional repressor as well as cell cycle regulator 

involved in control of proliferation and differentiation 175,176,180,181,183-185.  

 

As indicated above, the HBP1 protein harbours two binding sites allowing interaction 

with the so-called pocket proteins RB1 and p130 176,180. These proteins suppress cell 

growth by negatively regulating the G1/S transition by controlling the activity of 

several cell cycle involved transcription factors including the E2F family, thus 

inducing a G1 phase cell cycle arrest as a critical step during differentiation 175,176. In 

addition, the p38 MAPK signaling cascade induces G1 arrest by extending the 

protein stability of HBP1 through binding and phosphorylation 181, further suggesting 

a role of HBP1 in cell cycle regulation and differentiation. Indeed, HBP1 is 

responsible for cell cycle progression regulation during normal development of 

different cell types and tissues 175,176,183,185. In the liver, expression of HBP1 in 

differentiating cells results in a significant delay in S phase, caused by a prolonged 

G1 progression, which has been supported by the extended immediate-early 

response and delayed cyclin E expression 185. Moreover, HBP1 mRNA expression 

was highly increased during differentiation of both adipocytes and myogenic cells 175. 

Additionally, in C2 muscle cells, overexpression of HBP1 results in a reduction in 

number of cells in the S-phase, suggesting cell cycle arrest 176. Furthermore, in skin 

keratinocytes, HBP1 is repressed by p63, a homologue of the DNA-damage 

response regulator p53, to promote growth of the lower layers of the epidermis, while 

it is activated in differentiating skin keratinocytes in order to further boost their 

differentiation, showing that HBP1 has a key role in the stratification of the human 

skin 183.  

 

In summary, HBP1 is important in driving differentiation of most cell types through 

controlling cell cycle progression and cell proliferation. This effect is partly mediated 
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by the repression of c-MYC and MYCN, two genes involved in proliferation and 

whose expression levels decrease during differentiation 176. The regulation of the c-

MYC gene by HBP1 is dual (Figure 10) 176,184 : first, through interaction with the b-

catenin/TCF complex, the transcription of c-MYC itself is blocked, secondly, HBP1 

interacts with the c-MYC/MAX complex, preventing its interaction with DNA 

sequences like the E-box in the promoter region of genes, resulting in the inability of 

activation of c-MYC downstream target genes 184. In addition, HBP1 has been shown 

to have docking sites in the promoter of MYCN (Figure 10) 176,184, showing 

transcriptional repression of MYCN  101.  

 

 
Figure 10: HBP1 negatively regulates c-MYC, c-MYC targets and MYCN 
The effect of HBP1 on c-MYC is dual. First, HBP1 interacts with the TCF4- bcatenin complex, 

thereby preventing its binding with the promoters of target genes, including c-MYC. 

Secondly, by binding with c-MYC, HBP1 prevents the interaction of c-MYC with DNA, 

thereby impeding the activation of c-MYC target genes. Furthermore, HBP1 represses 

MYCN transcription by binding with its promoter. Figure adapted from 184 and based on 176. 

 

Next to its role in controlling cell cycle, proliferation and differentiation, the 

observation that HBP1 levels rise during RAS-induced premature senescence, 



Chapter 1: introduction 

55 

suggested a possible role of HBP1 in this cellular process (Figure 11) 163,175,176,179-

181,183-189, that is frequently overcome by additional mutations to promote 

tumorigenesis 187,188. Further experiments confirmed that binding of HBP1 to RB1 is 

required downstream of the RAS-p38 MAPK signaling in order to trigger senescence 
188. Therefore, HBP1 interacts through its DNA-binding domain with the affinity sites 

in the p16INK4A promoter, resulting in activation of this gene 187. Simultaneously, to 

further boost premature senescence, HBP1 interacts via its repression domain with 

MDM2, thus repressing the negative control of MDM2 on TP53. As a consequence, 

the ubiquitination and degradation of p53 is blocked, leading to enhanced protein 

stability and more transcriptional activity, resulting in more p21 expression. 

Additionally, through inhibition of the WNT pathway, HBP1 represses EZH2, followed 

by loss of H3K27me3 on p21, further increasing p21 levels 186. Additionally, the p38 

MAPK – HBP1 pathway is also involved in induction of senescence following DNA 

damage, through the formation of senescence-associated heterochromatin foci after 

binding of HBP1 to RB1 189. 
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Figure 11: HBP1 controls differentiation, cell cycle progression and premature 
senescence 
The MAPK p38 enhances HBP1 levels to drive differentiation or premature senescence, 

while it represses the G1/S progression, resulting in cell cycle arrest. HBP1 can therefore 

bind with RB1 and p130 to mainly activate genes, while interaction with HDACs and SIN3B 

results in repression of targets. Based on 163,175,176,179-181,183-189. 

 

1.8.3 HBP1 as tumour suppressor gene in several cancer types by inducing cell 

cycle arrest and differentiation 

 

Given the central role of HBP1 in transcriptional control of differentiation and cell 

cycle arrest, deregulated expression of HBP1 has been found in diverse cancer 

entities. Moreover, the chromosomal location of HBP1 pinpoints towards a possible 

role as tumour suppressor, as 7q31 is a region that is frequently deleted, mutated or 

translocated in cancers.  



Chapter 1: introduction 

57 

 

One of the cancer types that is characterized by frequent 7q31 deletions, is myeloid 

leukaemia and indeed, HBP1 alterations are found in acute myeloid leukaemia (AML) 
181. Therefore, the role of HBP1 in these tumours was further studied by 

overexpressing in myeloid cells 190. HBP1 was shown to have tumour suppressive 

characteristics, as overexpression resulted in decreased cell proliferation and cell 

cycle progression by downregulation of cyclin D1 and D3, while upregulating p21. 

HBP1 simultaneously induces apoptosis, by increasing FasL and in this way 

activating the Fas/FasL apoptosis pathway 190. Furthermore, HBP1 simultaneously 

influences the expression of lineage-specific transcription factors involved in 

differentiation. Upon HBP1 overexpression, GATA-1, which promotes erythroid, 

megakaryocytic or combined differentiation in myeloid cells, is upregulated 190. 

Similarly, the expression of RUNX1, JunB, C/EBPa, involved in respectively 

megakaryocytic and myeloid cell differentiation, is increased, while the important 

factor for granulocyte differentiation, PU.1, is repressed. Moreover, the expression of 

c-MYB and c-MYC is decreased, which is seen during myeloid differentiation 190. 

Furthermore, in leukemic and lymphoid cells, HBP1 interaction with SIN3B promotes 

HDAC recruitment to repress the transcription of AURKB, MYBL2, CDC6 and 

BUB1B, which are genes implicated in cell proliferation 163. Moreover, in MYC-driven 

leukaemia and lymphoma, MYC maintains a neoplastic state by upregulating the 

miR-17~92 cluster, which amongst others negatively regulates HBP1, thereby 

creating a feedback loop to further boost the MYC levels 163.  

 

Another tumour type that frequently harbours 7q deletions is breast cancer 181. 

Indeed, reduced HBP1 levels or mutant HBP1 proteins were found in a subset of 

invasive breast cancers 181,191. These HBP1 variants and mutants were unable to 

fulfil their transcriptional repressive role, which resulted in a deregulation of the WNT 

pathway, more invasion and tumorigenic growth 191. Furthermore, reduced HBP1 

expression significantly predicted poor breast cancer outcome and relapse 191. 

Additionally, another mechanism through which HBP1 levels are decreased in breast 

cancer cells is by inducing the PI3K-AKT axis, which in its turn represses FOXO 

transcription factors by phosphorylation on certain conserved sites, which results in 

export from the nucleus to the cytoplasm, where sequestration or ubiquitination is 

followed by proteasomal degradation 192,193. In this way, FOXO1 and FOXO3 
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transcription factors no longer bind directly to the promoter of their targets, including 

HBP1 192. Additionally, diverse breast cancers harbour dysregulated miR-17~92 

expression, which also results in increased proliferation, invasion and migration 194. 

These oncogenic effects can partly be explained by the capacity of this miR-17~92 

cluster to repress HBP1 and in this way, deregulate the WNT pathway 194. The 

inhibition of the WNT pathway is mediated by repressive binding of HBP1 to the b-

catenin/TCF complex 195. As these data show the importance of deregulated HBP1 

expression and overactivity of the WNT pathway in breast cancer, a search for drugs 

was initiated in order to promote HBP1 function and thus boost its tumour suppressor 

function to repress invasiveness and proliferation of tumour cells through the WNT 

pathway. The green tea component, epigallocatechin-3-gallate or EGCG, was found 

to inhibit the WNT pathway by inducing HBP1 mRNA and protein levels through an 

increase in HBP1 mRNA stability and not through transcriptional initiation 196. 

Moreover, sensitivity of tumour cells to EGCG are dependent upon HBP1 levels, 

suggesting that HBP1 is an important target for the activity of EGCG 196. 

 

Such deregulated expression of the WNT pathway and activation of its downstream 

targets, including c-MYC and cyclin D2, by repressed HBP1 has been observed in 

several other cancer types, including osteosarcoma, glioma, melanoma and NSCLC 
197-201. In osteosarcoma, WNT signaling is reactivated by suppression of HBP1 

through miR-155 binding to its 3’UTR, resulting in proliferation, cell cycle progression 

and drug resistance by inducing autophagy 198. Also in glioma, miR-155 was higher 

expressed to reactivate the WNT signaling by suppression of HBP1 to boost 

proliferation of the tumour cells 200. Moreover, this HBP1–WNT pathway seems to be 

intriguingly important in glioma, as, next to miR-155, also miR-96 inhibits HBP1 in 

order to activate WNT signaling to upregulate in this way the proliferation and 

tumorigenicity of the glioma cells 201. Similarly, in melanoma, HBP1 is repressed by 

NRAS mutations to boost tumorigenesis by reactivation of this WNT pathway 197. 

Additionally, also in NSCLC, promoter hypermethylation is responsible for low levels 

of the HBP1 tumour suppressor gene, resulting in activation of the WNT signaling 199. 

Moreover, low HBP1 expression correlates with poor prognosis of these NSCLC 

patients 199. 
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Furthermore, in prostate cancer, loss of HBP1 binding to the promoter of MIF1 results 

in an upregulation of this oncogenic, pro-inflammatory cytokine, which results in more 

cancer cell growth and invasion 177. Furthermore, HBP1 and MIF expression levels 

were negatively correlated in a cohort of patients harbouring prostate tumours 177. 

More importantly, prostate malignancies that have low HBP1 and high MIF 

expression, have a statistically significant increased chance to relapse, leading to a 

worse relapse-free survival 177. 

 

In EGFR-overexpressing oral cancer, EGFR activates the AKT signaling pathway, 

resulting in HBP1 downregulation. More intriguingly, the anti-cancer adjuvant NAC 

represses AKT activity to re-induce HBP1, which results in growth inhibition in this 

cancer type 178.  

 

Intriguingly, HBP1 was identified as being upregulated in stage 4S neuroblastoma 

tumours, mainly in the ones that were spontaneously regressing 202. However, no 

further investigation had been performed to understand the role of HBP1 in 

neuroblastoma.  

 

In this thesis, we show that HBP1 is downregulated by mutant ALK with effects on 

proliferation and clonogenicity and impact on MYCN activity, thus representing a 

fourth mechanism for ALK-driven MYCN activation. Furthermore, we show that HBP1 

is also regulated through the miR-17∼92 cluster which itself is a major direct 

upregulated MYCN target (see Chapter 5). 
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until it is done. 

~Robert A. Heinlein~ 
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Chapter 2  Research objectives 
 

The discovery of constitutive activating mutations in the ALK receptor tyrosine kinase 

in familial and sporadic neuroblastoma offers the possibility to design novel 

therapeutic strategies. However, as indicated above, despite the development of 

potent inhibitors, tumours often acquire resistance due to second-line aberrations in 

ALK or due to interference with downstream components of targeted signaling 

pathways or bypass networks. Therefore, in-depth research into the ALK downstream 

events is aimed at detecting new vulnerable nodes for therapy of neuroblastoma 
patients.  

2.1.1 Unravelling the mutant ALK downstream signaling pathways in neuroblastoma 

 

The first aim of my PhD thesis was to contribute to the in-depth characterization of 

the transcriptomic landscape of ALK in neuroblastoma (paper 1). For this purpose, 

gene expression profiling was performed on 10 neuroblastoma cell lines with different 

ALK status, before and after ALK aberration, both by shRNA-mediated knockdown as 

pharmacological inhibition. Further, this human, mutant ALK-driven transcriptome 

was compared with the transcriptionally perturbed genes common in 

MYCN/ALKF1174L-double transgenic versus MYCN transgenic mouse. By this 

strategy, a 77-gene signature was established, which are genes being either 

consistently up- or downregulated in ALK mutant neuroblastoma. Further, the PI3K-

AKT-mTOR, MAPK and MYC(N) signaling pathways were identified as major ALK 

downstream axes in neuroblastoma. Moreover, a strong upregulation of MAPK 

negative feedback loop regulators, RET and RET-driven cholinergic neuronal 

markers was uncovered in mutant ALK neuroblastoma cells.  

2.1.2 Dissecting dynamic gene regulation following ALK inhibition in neuroblastoma 

 

Resistance against a small molecule targeting a receptor tyrosine kinase like ALK, 

occurs within two years following an initial response. Different resistance 

mechanisms upon ALK inhibition have been revealed in ALK-driven tumours. For 

neuroblastoma, it has been shown that the type of mutation can influence the 

efficiency of a given small molecule. To discover additional genes or pathways 
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implicated in acquired resistance, the dynamic response upon pharmacological ALK 

inhibition was investigated in the neuroblastoma CLB-GA (ALKR1275Q) cell line (paper 
2). This analysis confirmed the downregulation of the PI3K-AKT-mTOR, MAPK and 

MYC(N) signaling pathways upon ALK repression in neuroblastoma, starting within 2 

hours after treatment. More intriguingly, there was an initial upregulation of positively 

regulated MYCN target genes, which was followed by the expected downregulation 

of the overall MYCN activity. Additionally, adrenomedullin (ADM), previously reported 

to be involved in sunitinib resistance in renal cancer, was identified as the earliest 
differentially expressed gene upon ALK inhibition.  

2.1.3 Investigating the role of HBP1, a possible tumour suppressor gene in 

neuroblastoma and providing a fourth mechanism for the ALK – MYCN 

cooperativity. 

 

An ultra-high-risk patient subgroup with both MYCN amplification as ALKF1174L 

mutation has been observed in a previously reported meta-analysis. Subsequently, 

accelerated tumour formation was observed in a mouse and a zebrafish 

neuroblastoma model system, when both MYCN and ALKF1174L were expressed in 

sympathetic neuronal progenitor cells. Moreover, ALK controls MYCN transcription 

levels directly and through ERK5, while ALK regulates MYCN protein stabilization via 

the PI3K-AKT-GSK3b pathway. Moreover, MYCN transcriptionally activates ALK. To 

identify additional mechanisms for this ALK – MYCN cooperativity, we explored our 

previously established 77-ALK gene signature. In this way, we identified HBP1, a 

negative regulator of MYC(N) activity and unravelled a fourth mechanism through 

which ALK further boosts MYCN (paper 3). This study shows that HBP1 is negatively 

regulated by ALK through the PI3K-AKT-FOXO3 signaling axis and by MYCN through 

induction of the miR-17~92 cluster. Moreover, HBP1 inhibits both the transcriptional 

activation as repressing activity of MYCN, partly through repression of the PRC2 

complex. HBP1 overexpression was performed in a neuroblastoma cell line, showing 

tumour repressive characteristics. More importantly, combined targeting of HBP1 by 

PI3K antagonists and MYCN signaling by BET or HDAC inhibitors synergistically 

represses MYCN activity and significantly reduces tumour growth, suggesting a novel 

targeted therapy option for the ultra-high-risk patient subgroup with both MYCN 

amplification and ALKF1174L mutation. 
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Success is the sum of small efforts, 

repeated day in and day out. 

~Robert Collier~ 
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Part III: results 
 

Chapter 3: Upregulation of MAPK negative feedback regulators and RET in 
mutant ALK neuroblastoma: implications for targeted treatment 
The discovery of constitutive activating mutations in the ALK receptor tyrosine kinase 

in familial and sporadic neuroblastoma offers the possibility to design novel 

therapeutic strategies. However, despite potent ALK inhibitors, neuroblastoma 

tumours often acquire resistance by other aberrations or bypass networks. Therefore, 

an in-depth characterization of the transcriptomic landscape of ALK in neuroblastoma 

is needed. In our first paper, we revealed the downstream pathways of mutant ALK in 

neuroblastoma, by performing gene expression profiling on 10 neuroblastoma cell 

lines with different ALK status, before and 6 hours after ALK inhibition.  

Translational relevance: ALK mutations were the first druggable genetic targets in 

neuroblastoma patients. While clinical studies were rapidly initiated based on 

previous experience in adult cancer (mainly lymphoma and lung cancer), the 

understanding of the downstream consequences of constitutive ALK signaling in 

neuroblastoma was very limited. This study was amongst the first to provide a 

detailed insight into the transcriptional effects of activated ALK in neuroblastoma cells 

and yields the required insights in order to anticipate to putative resistance to ALK 

targeted therapy or as a guide to further study the causes of emerging drug 

resistance in the current ongoing trials.  

 

Chapter 4: Early and late effects of pharmacological ALK inhibition on the 
neuroblastoma transcriptome 
To discover additional genes or pathways implicated in acquired resistance upon 

ALK small molecules, the dynamic response upon pharmacological ALK inhibition 

was investigated in the neuroblastoma CLB-GA (ALKR1275Q) cell line by gene 

expression profiling on different time points, between 0 and 6 hours upon treatment 

with TAE684. 

Translational relevance: This study was a follow-up on our first paper describing the 

ALK-driven transcriptome in neuroblastoma cells and explored the dynamic 

regulation of ALK target genes. It yielded an unexpected finding of adrenomedullin as 

regulated gene with putative impact on drugging efficacy and warrants further 
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investigation. Also, this work should trigger further, more in-depth similar analysis 

using the newly identified ALK ligands which allow ALK activation studies. 

 
Chapter 5: ALK positively regulates MYCN activity through repression of HBP1 
expression 
Different groups have confirmed the cooperativity between ALK and MYCN in 

neuroblastoma tumorigenesis. To identify additional mechanisms for this ALK – 

MYCN cooperativity and to find possible druggable nodes, we explored our 

previously established 77-ALK gene signature and identified HBP1, a negative 

regulator of MYC(N) activity, as a fourth mechanism through which ALK further 

boosts MYCN.  

Translational relevance: Given the previously established observation of the host lab 

that combined MYCN amplification and ALK mutation marks a patient subgroup with 

very poor outcome, a deeper understanding of the mechanistic basis of this genetic 

interaction is of utmost importance. My work allowed to unravel a novel mechanism 

of ALK-driven regulation of MYCN activity and, in a more broader context, identified 

for the first time HBP1 as an important regulator of MYCN signaling in 

neuroblastoma, with a potential to exploit novel drugging options towards targeting 

MYCN, the major driver oncogene in this tumour. 
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3.1.2 Abstract  

 
Purpose: Activating ALK mutations are present in almost 10% of primary 

neuroblastomas and mark patients for treatment with small molecule ALK inhibitors in 

clinical trials. However, recent studies have shown that multiple mechanisms drive 

resistance to these molecular therapies. We anticipated that detailed mapping of the 

oncogenic ALK-driven signaling in neuroblastoma can aid to identify potential fragile 

nodes as additional targets for combination therapies. 

 
Experimental design: To achieve this goal, transcriptome profiling was performed in 

neuroblastoma cell lines with the ALKF1174L or ALKR1275Q hotspot mutations, ALK 

amplification or wild type ALK following pharmacological inhibition of ALK using four 

different compounds. Next, we performed cross-species genomic analyses to identify 

commonly transcriptionally perturbed genes in MYCN/ALKF1174L double transgenic 

versus MYCN transgenic mouse tumours as compared to the mutant ALK-driven 

transcriptome in human neuroblastomas. 

 
Results: A 77-gene ALK signature was established and successfully validated in 

primary neuroblastoma samples, in a neuroblastoma cell line with ALKF1174L and 

ALKR1275Q regulatable overexpression constructs and in other ALKomas. In addition 

to the previously established PI3K/AKT/mTOR, MAPK/ERK and MYC/MYCN 

signaling branches, we identified that mutant ALK drives a strong upregulation of 

MAPK negative feedback regulators and upregulates RET and RET-driven 

sympathetic neuronal markers of the cholinergic lineage. 

 
Conclusions: We provide important novel insights into the transcriptional 

consequences and the complexity of mutant ALK signaling in this aggressive 

paediatric tumour. The negative feedback loop of MAPK pathway inhibitors may 

impact on novel ALK inhibition therapies while mutant ALK induced RET signaling 

can offer novel opportunities for testing ALK-RET oriented molecular combination 

therapies.  
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3.1.3 Statement of translational relevance  

 
Single molecule therapies almost invariably lead to resistance due to oncogene 

switching and modulation of various regulatory loops. Therefore, a deeper 

understanding of the nature and plasticity of targeted pathways is required in order to 

identify fragile nodes that may act as additional targets for combination therapies and 

to design robust and sustainable treatment strategies. In this study, we established 

and validated a 77-gene ALK signature in ALK mutant neuroblastomas. We identified 

a strong upregulation of MAPK negative feedback regulators. While this did not 

render the cells more sensitive to MEK inhibitors, ablation of negative feedback 

regulation upon ALK inhibition can impact on other signaling axes within the mutant 

cells and should be taken into account when monitoring the molecular effects of such 

treatment or treatment failure. Next, we also discovered mutant ALK upregulation of 

RET and RET-driven cholinergic markers offering novel opportunities for testing ALK-

RET oriented molecular combination therapies.  
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3.1.4 Introduction  

 

Neuroblastoma is a paediatric malignancy arising from sympatho-adrenergic neural 

crest progenitor cells of the peripheral nervous system (1). Neuroblastoma originates 

from a subset of neural progenitor cells that normally differentiate into adrenal 

chromaffin cells and sympathetic ganglia (2). 

Treating neuroblastoma remains a major therapeutic challenge for paediatric 

oncologists as overall survival for patients with aggressive disease remains 

disappointingly low despite intensified and optimized treatment protocols (1). 

Previous research work from our laboratory and others have identified activating 

mutations in the tyrosine kinase domain of the ALK transmembrane receptor tyrosine 

kinase, which are found in the majority of hereditary neuroblastoma and occur as 

somatic defects in 7–10% of sporadic cases (3-6). During embryonic development, 

ALK is expressed in the central and peripheral nervous system (7), where it may 

regulate the interplay between cell proliferation and differentiation of the developing 

sympatho-adrenal cells of the neural crest (1, 8, 9). 

The identification of activated ALK in neuroblastoma as a tractable therapeutic target 

has raised hope for more successful treatment: several small molecule ALK inhibitors 

have recently gone into clinical trials such as a recent phase 1 clinical trial for 

crizotinib in patients with refractory neuroblastoma (10, 11). Moreover, these small 

molecules are also emerging as important novel treatment options for other tumour 

entities with aberrant ALK activity, including a subset of lung cancers (12). 

Notwithstanding these encouraging findings, intrinsic and acquired resistance almost 

inevitably occurs when using single compound treatment for receptor tyrosine 

kinases or other kinases (13-15), warranting the development of higher affinity 

inhibitors and the exploration of opportunities for rationally designed combinatorial 

treatment approaches. To achieve this goal, a more comprehensive understanding of 

the mutant ALK controlled regulatory network is required including feedforward and 

feedback loops as well as pathway cross-talk, as these are critical in the adaptive 

responses of cancer cells leading to therapy resistance.  

In this study, we established a robust 77-gene signature marking ALK activity in 

neuroblastoma cells, using transcriptome profiling. Next, we showed that this 

signature is preserved in other ALK-driven tumour entities and across ALKF1174L -
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driven human and murine neuroblastoma tumours and cell lines. First, we confirm the 

activation of the PI3K/AKT/mTOR, MAPK/ERK and MYC/MYCN signaling pathways. 

Secondly, we describe important novel specific insights related to mutant ALK 

signaling: we demonstrate a strong upregulation of MAPK negative feedback 

regulators and cross-species genomic analysis revealed that mutant ALK drives the 

expression of the tyrosine kinase RET as well as a set of RET controlled cholinergic 

markers. We consider these novel findings as important leads for further studies 

exploring novel therapeutic combination strategies in ALK mutant neuroblastomas 

and also offering first insights towards a deeper understanding of the role of ALK 

signaling in normal sympathetic nervous system development. 

 

3.1.5 Materials and Methods 

 
Cell lines and cell culture 
Human neuroblastoma cell lines, anaplastic large cell lymphoma (ALCL) cell lines 

and non-small cell lung cancer (NSCLC) cell lines (Supplemental Data 1) were 

cultured in RPMI 1640 medium (Invitrogen) supplemented with foetal bovine serum 

(10%), kanamycin (1%), penicillin/streptomycin (1%), L-glutamin (1%) and HEPES 

(25mM) (Life Technologies). Cells were kept at 37°C in a 5%C02/95%02 humidified 

environment. Details on determining GI50 values are described in the Supplemental 

M&M file. 
 
Pharmacological ALK and RET inhibition and shRNA mediated ALK 
knockdown in neuroblastoma cell lines 
Detailed information can be found in Supplemental M&M. In summary: Human wild 

type ALK (SK-N-AS, NGP, IMR-32), ALKR1275Q (CLB-GA, LAN-5, UKF-NB-3), 

ALKF1174L (SK-N-SH, Kelly, SMS-KCNR) and ALK amplified (NB-1) neuroblastoma 

cell lines were treated in triplicate with 0.3μM NPV-TAE-684 (Novartis/SelleckChem, 

further referred to as TAE-684) or DMSO (VWR) for 6 hours, followed by RNA 

isolation and gene expression profiling (see further). CLB-GA was further treated with 

ALK, MEK, PI3K/mTOR or RET inhibitors. A gene expression time series for ALK 

inhibition was performed in CLB-GA cells at 0 – 10’ – 30’ – 60’ – 120’ – 240’ – 360’ 
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time points. For shRNA mediated knockdown, pGIPZ-ALK shRNAmir and pGIPZ-

non-silencing control shRNAmir vectors were used (Open Biosystems).  

 
Establishment of inducible SK-N-AS ALKwt, ALKF1174L and ALKR1275Q cell lines 
Human neuroblastoma SK-N-AS cells were electroporated with pcDNA6/TR 

(Invitrogen) using the Neon® Transfection System (Life Techologies). Single cell 

clones were generated using blasticidin (7.5µg/ml) and limited dilution. Using a TetR 

antibody (Clonetech), the clone with the highest TetR expression was selected 

(named SK-N-AS-TR) and used for the transfection with pT-REx-DEST30-ALK, 

ALKF1174L or ALKR1275Q. After transfection of SK-N-AS-TR with the ALK variants, 

single cell clones were raised using geneticin (500 µg/ml) and limited dilution, while 

blasticidin treatment was continued as described above. Clones with moderate 

expression of the ALK variants were selected for further experiments using RT-qPCR 

(ALK_fwd: ccatcattttggagaggattgaat; ALK_rev: gaaccccctcagggtcctt) and Western 

Blot. 

 
Th-MYCN neuroblastoma progression model 
Homozygous Th-MYCN transgenic mice (16) were sacrificed at day seven (n=4) and 

day fourteen (n=4) of life to harvest sympathetic ganglia containing foci of neuroblast 

hyperplasia and at week 6 to harvest advanced neuroblastoma tumours (n=4). 

Additionally, we have dissected the same sympathetic ganglia from wild type mice at 

day seven (n=4), day fourteen (n=4) and week 6 (n=4) to control for mRNA 

expression changes during normal development (17).  

 
RNA extraction, RT-qPCR and gene expression profiling 
Details on RNA extraction and RT-qPCR are described in Supplemental M&M. Gene 

expression profiling was performed using Affymetrix HG-U133plus2 arrays or 

Sureprint G3 human GE or G3 Mouse GE 8x60K microarrays (Agilent Technologies). 

Data were summarized and normalized with the gcRMA and vsn method (for Affy and 

Agilent data, respectively) (18), in the R statistical programming language using the 

affy, gcrma and limma packages. Data can be accessed via ArrayExpress (E-MTAB-

3205, E-MTAB-3206, E-MTAB-3207). 
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Protein isolation, antibodies and Western blotting 
Total protein lysates were harvested after washing with ice-cold PBS and total protein 

isolation was carried out using RIPA lysis buffer, containing Complete Protease 

Inhibitor Cocktail (Roche Diagnostics) and PhosSTOP Phosphatase Inhibitor (Roche 

Diagnostics). Antibodies directed against phosphorylated ALK (Y1604), total ALK 

(C26G7), phosphorylated RET (Y905), total RET (C31B4), secondary anti-rabbit and 

anti-mouse antibodies were obtained from Cell Signaling. Antibodies directed against 

the loading control proteins β-actin and α-tubulin were obtained from Sigma Aldrich.  

 
Published datasets  
Validation of the ALK signature was performed using signature score analysis in 

published datasets of neuroblastoma tumours (E-MTAB-161 (19), Oberthuer 

dataset), neuroblastoma mice tumours (GSE32386 (20)) and other ALK-driven 

tumour entities, including NSCLC (GSE25118 (21)) and ALCL (GSE14879 (22), 

GSE6184 (23)). In addition, signature score analysis was performed in a partly 

published dataset of mRNA expression data of 283 neuroblastoma tumour samples 

(NRC dataset (24, 25)). In addition, GSE42762 (26) was used to check RET levels 

upon FOXO3a activation and PI3K/AKT inhibition. 

 
Data-mining 
ALK-, RET-, MAPK/ERK-, PI3K/AKT/mTOR- signature identification 

An ALK signaling signature was established using differential expression analysis 

with the Rank Product (RP) algorithm. Genes that were significantly (p<0.05) up- or 

downregulated after TAE-684 treatment in at least 3 cell lines and that showed a 

(log)fold-change of at least 1.2 after shRNA treatment were included in the ALK 

signature (Figure 1A). MAPK/ERK, PI3K/AKT/mTOR and RET signature genes were 

established by differential expression analysis (Limma) of CLB-GA cells treated with 

the respective inhibitor versus DMSO treatment.  

 

Signature score analyses 

Signature score analysis was performed using a rank-scoring algorithm as described 

in Fredlund and colleagues (27). In short, for each sample expression values were 

transformed to ranks (a rank of 1 matching with the lowest expressing gene). Next, 
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rank scores for the signature genes were summed for each sample generating a 

signature score. Correlation of the score with survival was tested using Kaplan-Meier 

plots and log-rank analysis by grouping the samples in four quartiles (R-survival 

package). Comparison of signature scores or expression between groups of samples 

was done using the Mann-Whitney test (R-base package). Signature score 

correlation analysis was performed using Pearson correlation analysis (R-base 

package). 

 

Pathway analysis: GO, GSEA, CMAP and cross-species genomics analysis 

The probe-id lists of the ALK signature were submitted to DAVID for gene ontology 

(GO) analysis (28) and to the Connectivity Map database (29) for identification of 

drugs with similar transcriptional responses as ALK inhibition. Geneset enrichment 

analysis (30, 31) was performed using the C2 geneset catalogue (genetic and 

chemical perturbations). This analysis was performed on each cell line separately 

using the fold changes of TAE-684 versus DMSO treatment and the shALK versus 

scrambled control transduction. Genesets that were overrepresented in at least 3 cell 

lines after both ALK inhibitor treatment and shRNA knockdown were withheld. Cross-

species genomic analysis was performed by looking for the overlap of the ALK 

signature genes and the list of differentially expressed genes (RP analysis) for MYCN 

versus ALKF1174L-driven or double transgenic tumours.  
 

3.1.6 Results 

 
A 77-gene signature marks constitutive ALK signaling in neuroblastoma cells 
The transcriptional consequences of constitutive oncogenic ALK signaling were 

determined through ALK perturbation experiments in 10 neuroblastoma cell lines with 

either of the two hotspot mutations ALKF1174 and ALKR1275, high-level ALK 

amplification (ALKamp) or wild type ALK (ALKwt) [protein levels of phospho-ALK 

(pALK) and ALK are provided in Supplemental Data 3]. We performed 

pharmacological inhibition with ALK inhibitor TAE-684 and controlled for off-target 

effects by shRNA treatment directed against ALK. Gene expression profiling was 

performed following 6 hours of TAE-684 treatment or 2 days post shRNA 

transduction (mRNA and protein expression levels of ALK are provided in 
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Supplemental Data 4). Importantly, TAE-684 treatment resulted in a marked 

transcriptome perturbation in all ALK activated cell lines whereas no significant 

effects on the transcriptome were observed in the SK-N-AS cell line with 

undetectable ALK protein expression. Overall, transcriptional responses in shALK 

treated cell lines showed similar direction of responses in the majority of up- or 

downregulated genes albeit with lower fold changes, probably due to incomplete 

knockdown of ALK (Supplemental Data 5).  

Next, we established a gene expression signature recapitulating constitutive ALK 

signaling in neuroblastoma. Using differential expression analysis of the above 

described transcriptome data (of both TAE-684 treated cell lines and shALK treated 

cells to control for off-target effects), we generated an ALK signature, consisting of 32 

downregulated (49 probe-ids) and 45 upregulated (61 probe-ids) genes (see M&M 

and Figure 1A for details). The expression of these signature genes is visualized in 

Figure 1B for CLB-GA upon ALK inhibition and for the 10 cell lines in Supplemental 

Data 6 for TAE-684 ALK inhibition. The differential expression pattern for these 77-

genes was highly reminiscent in the CLB-GA cell line treated with three additional 

ALK small molecule inhibitors currently under evaluation in clinical trials: crizotinib, X-

396 and LDK-378 (10, 32) further supporting the validity of the established 77-gene 

ALK signature (Figure 1B). In addition, significant correlation was found between the 

signature scores for TAE-684 versus the three other compounds in 2 independent 

datasets as shown in Figure 1C and D. about 44%, 49% and 66% of the 77 signature 

genes were shown to be significantly differentially expressed in CLB-GA upon 

crizotinib, X-396 and LDK-378 treatment, respectively (with significant overlap 

according to Fisher’s exact test, data not shown). 
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Figure 1: The 77-gene signature marks constitutive ALK signaling in 
neuroblastoma. 
A. Data-mining workflow. B. Hierarchical clustering and heatmap representation of the 

expression levels of the 32 down- and 45 upregulated genes from the ALK signature in the 

neuroblastoma cell line CLB-GA after pharmacological ALK inhibition using four different 

small molecule inhibitors (TAE-684, crizotinib, X-396 and LDK-378). C. & D. Signature 

scores for each of the three different ALK compounds are all significantly correlated with the 

77-gene ALK signature scores in 2 independent neuroblastoma patient sample sets (i.e. the 

Oberthuer dataset and the NRC dataset). 
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The ALK signature score is elevated in SK-N-AS cells overexpressing the 
ALKF1174L and ALKR1275Q hotspot mutations, but not in ALKwt-overexpressing 
SK-N-AS cells 
Next, we investigated whether the ALK signature also marks de novo constitutive 

activation of the mutant ALK receptor. To this end, we generated and performed 

transcriptome profiling of the SK-N-AS cell lines with tetracycline-inducible 

overexpression of ALKF1174L, ALKR1275Q and ALKwt. Whereas overexpression of all 

ALK isoforms resulted in robust accumulation of the protein upon tetracycline-

induction, only ALKF1174L and ALKR1275Q showed constitutive Y1604 phosphorylation 

(Supplemental data 7A). Indeed, it has been shown previously that even upon 

overexpression, wild type ALK displays significantly reduced (to absent) kinase 

activity compared to the mutant ALK isoforms and is inefficient in transforming 

NIH3T3 cells (4). Consistent with these data, de novo mutant ALK activation in the 

SK-N-AS cell line showed to be very well represented by an increased ALK signature 

score (i.e. a summary score of the expression of the 77-gene ALK signature) when 

compared to cells overexpressing wild type ALK, thus confirming the robustness of 

the developed gene signature list (Figure 2A; Supplemental Data 7B & C). 

 

ALK signature scores are elevated in primary human and murine mutant ALK 
neuroblastomas and downregulated in crizotinib treated MYCN/ALK-driven 
mice tumours 
To validate how well the cell line-based ALK downstream transcriptional profile 

recapitulates ALK oncogenic activity, we evaluated ALK signature scores in two 

independent gene expression datasets consisting of respectively 252 and 283 

neuroblastoma tumours (19, 24, 25), as well as data of two in vivo neuroblastoma 

model systems (20). In human primary tumours with ALK amplification or ALK 

mutations, ALK signature scores were significantly higher as compared to ALK wild 

type tumours (Figure 2B & D). Moreover, increased ALK signature scores correlate to 

poor overall (OS) (Figure 2C & E) and event-free survival (EFS) (Supplemental Data 

8A & B) also in tumours with wild type ALK, pointing at a possible role of ALK 

signaling in wild type ALK tumours. Additionally, we could show that Dbh-ALKF1174L-

driven murine neuroblastoma tumours have significantly higher ALK signature scores 
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than Th-MYCN-driven murine neuroblastoma tumours and normal adrenal tissue 

(published in (20)). 

Most interestingly, we could confirm the validity of the ALK signature in compound 

treated tumour samples. Indeed, crizotinib treated Th-MYCN;KI-AlkR1297Q tumours 

have reduced ALK signature scores compared to untreated tumours (Figure 2F). 

 

 
Figure 2: In vitro and in vivo validation of the ALK signature in SK-N-AS cells 
overexpressing mutant ALK, in primary human tumours and crizotinib treated 
mice tumours. 
A. Relative ALK signature scores (relative to non-induced SK-N-AS) are significantly higher 

in SK-N-AS cells after tetracycline induction of ALKF1174L and ALKR1275Q as compared to SK-

N-AS cells with tetracycline-induced ALKwt. B & D. ALK signature scores are significantly 

higher in tumours with ALK mutations compared to tumours without ALK mutations 

(uncommon ALK mutation types include: F1245V, G1128A, I1170S, I1170T, L1240V and 

T1151M). C & E. ALK signature score significantly correlates with overall survival of the 

neuroblastoma patients (Q1 – Q4= lowest– highest quartile of scores) in 2 independent 

datasets. F. ALK signature scores in tumours of Th-MYCN;KI-AlkR1297Q transgenic mice 

treated with crizotinib are lower than in control (DMSO) treated tumours. 
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ALK signature score assessment in other primary ALKomas and compound 
treated tumours shows a common ALK-deregulated transcriptome 
Next, we analysed publically available gene expression datasets from other ALK-

driven tumour entities (ALKomas). Indeed, we identified high activity scores in 

primary ALK rearranged anaplastic large cell lymphoma tumours (ALCLs) (Figure 3A) 

(22). Furthermore, activity scores also decreased in non-small cell lung carcinoma 

(NSCLC) xenografts and in ALCL cell lines following ALK abrogation (either through 

tyrosine kinase inhibitors or ALK shRNA) (21, 23) (Figure 3B & C). This observation 

suggests a significant overlap in activated downstream signaling pathways in 

different ALKoma entities. 

  
Figure 3: In vitro and in vivo validation of the ALK signature in other primary 
ALKomas and ALK-inhibited tumours and cell lines.  
A. ALK signature scores are significantly higher in ALK-positive ALCL tumours and cell lines 

compared to ALK negative ALCL tumours (cALCL = cutaneous ALCL tumours, tcr-cHL = 

tumour cell rich-classical Hodgkin Lymfoma tumours). B. ALK signature scores are 

significantly lower for NCI-H2228 (NSCLC) xenografts treated with 20 mg/kg of the ALK 

inhibitor CH5424802 (alectinib). C. ALK signature scores are significantly lower in ALCL cell 

lines TS and Su-DHL1 treated with ALK inhibitor or DOX activated shALK compared to 

control treated cell lines. 

 

Mutant ALK activates PI3K/AKT/mTOR, MAPK and MYC/MYCN signaling  
Gene set enrichment analysis (GSEA) on ALK inhibitor treated cell lines yielded 

enriched gene sets linked to EGFR, PI3K/AKT/mTOR, and MYC/MYCN signaling 
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pathways (Supplemental Data 9) in keeping with previous reports (3-6, 20, 33, 34). 

Subsequent gene ontology (GO) analysis applied to the list of 77 ALK regulated 

genes showed that MAPK signaling genes were enriched among the ALK 

upregulated genes, whereas genes driving cell cycle arrest and apoptosis were 

represented in the downregulated gene set (Supplemental Data 10).  

To further examine which genes are under control of the MAPK and PI3K/AKT/mTOR 

signaling branches activated by mutant ALK, we measured the transcriptional effects 

of trametinib (MEK inhibitor) and BEZ-235 (a dual PI3K/mTOR inhibitor) in the 

ALKR1275Q-mutant CLB-GA cell line. Using this approach, we identified 19 and 42 ALK 

signature genes, which were differentially expressed following trametinib or BEZ-235 

treatment respectively (Supplemental data 11). A prominent role for mutant ALK-

driven PI3K/AKT/mTOR signaling also emerged from Connectivity Map analysis, 

yielding LY-294002, sirolimus and wortmannin as top ranked inhibitors targeting the 

PI3K/AKT/mTOR pathway (Supplemental data 12).   

 
Mutant ALK upregulates MAPK feedback inhibition regulators 
Time series analysis (10’-30’-60’-120’-240’-360’) of gene expression profiles after 

exposure of the ALKR1275Q positive CLB-GA cells to TAE-684 showed a gradual 

decrease in ALK signature score starting from 2h towards near extinction 6h after 

treatment (Figure 4A). This is also represented in the time-dependent modulation of 

transcription levels of ALK regulated genes (Figure 4B). Furthermore, GSEA analysis 

reveals that the overall transcriptional response following ALK inhibition is obvious 

from 2h at which point MAPK pathway driven gene expression shows the most 

prominent decrease (Supplemental Data 13). Indeed, six of these genes, DUSP4, 

DUSP5, DUSP6, SPRY2, SPRY4 and MAFF, mark the earliest transcriptional 

responses with a strong decrease two hours after ALK inhibition (Supplemental Data 

14; Figure 4B red arrows). Interestingly, these genes are upregulated in SK-N-AS cell 

lines upon regulable mutant ALK overexpression, indicating that this negative 

feedback loop is readily installed subsequent to ALK-driven pathway activation 

(Figure 4C). 

These genes are known negative regulators of growth factor signaling, controlling 

transcription-dependent feedback attenuation. This observation is reminiscent to the 

effects of MAPK feedback inhibition as described in BRAFV600E-mutant melanoma 
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(35), but has so far not been observed in mutant receptor tyrosine kinase signaling. 

This observation prompted us to test MEK inhibitor (trametanib) in a panel of 

neuroblastoma cell lines. However, responses to the compound were very modest 

(Supplemental Data 16). 

 

 
Figure 4: Time series analysis of ALK inhibitor treated CLB-GA reveals 
increased expression of MAPK inhibitors. 
A. ALK signature score significantly decreases from 120 minutes after pharmacological ALK 

inhibition of the CLB-GA cell line using TAE-684 (red = DMSO, blue = TAE-684). B. Heatmap 

representation of the expression levels of the ALK signature genes at different time points 
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after pharmacological ALK inhibition using TAE-684 in the neuroblastoma cell line CLB-GA. 

The red arrows in the heatmap indicate 6 MAPK pathway genes that are inhibited 2 hours 

after ALK inhibition. C. The expression of the 6 genes that mark the earliest transcriptional 

response upon ALK inhibition is increased upon mutant ALK activation and not upon wild 

type ALK activation in the SK-N-AS model system. 

 
Mutant ALK upregulates markers of adrenergic and cholinergic neuronal 
differentiation 
Next, a stringent cross-species genomics analyses for differentially expressed genes 

in MYCN- versus ALKF1174L-driven murine neuroblastoma tumours (16, 20), yielded 7 

genes expressed significantly higher in ALKF1174L;Dbh-iCre positive neuroblastoma 

tumours. In addition to 3 known MAPK regulated genes (SPRY4, DUSP6, ETV5) also 

4 neuronal markers were identified: RET, ENC1, VGF and VIP. Interestingly, 

additional comparison between the 77-gene ALK signature and the differentially 

expressed genes between Th-MYCN;ALKF1174L;Dbh-iCre-driven versus Th-MYCN-

driven murine tumours, further reduced this list to RET, ETV5, VGF and VIP. 

Importantly, RET and VIP are part of a gene regulatory network determining 

noradrenergic and cholinergic sympathetic subtypes during neuronal development  

(36). Moreover, VGF is expressed in the developing adrenal gland and it is 

transcriptionally regulated by RET in PC12 cells (37, 38). 

Further investigation of additional adrenergic and cholinergic markers in the mice 

tumours showed higher expression levels for both cholinergic and adrenergic marker 

genes in double transgenic Th-MYCN;ALKF1174L;Dbh-iCre tumours compared to 

those from Th-MYCN mice (Figure 5A). This was confirmed in an independent set of 

tumours obtained from Th-MYCN;Th-ALKF1174L mice (Figure 5B) (20, 33). Moreover, 

in a dataset of primary human neuroblastoma tumours, we observed that the 

expression of the cholinergic genes is significantly higher in human primary 

neuroblastoma with aberrant ALK activation (Figure 5C) (19).  

Further, we also observed low expression of both cholinergic and adrenergic markers 

in Th-MYCN tumours. Interestingly, in pre-neoplastic lesions isolated from Th-MYCN 

mice (17), dramatic downregulation of both the adrenergic and cholinergic markers 

was observed in full-blown tumours as compared to early hyperplastic lesions in 

sympathetic ganglia of transgenic mice, whereas expression levels remained 

unchanged during development of wild type mice ganglia (Figure 5D).  



Chapter 3: Upregulation of MAPK Negative Feedback Regulators and RET in 
Mutant ALK Neuroblastoma: Implications for Targeted Treatment  

 

98 

Collectively, these data point to a very distinct cholinergic/adrenergic phenotype in 

MYCN versus MYCN;ALK-driven neuroblastomas.  

 
Figure 5: Mutant ALK upregulates markers of adrenergic and cholinergic 
neuronal differentiation including RET. 
A-B. Hierarchical clustering and heatmap representation of the expression levels of 

cholinergic and adrenergic marker genes in two independent sets of MYCN/ALKF1174L double 

transgenic versus Th-MYCN-driven mice tumours. There is an upregulation of these markers 

in the double transgenic mice tumours compared to the Th-MYCN mice tumours. C. 
Cholinergic signature scores are significantly higher in human primary neuroblastomas 

tumours with mutant ALK (uncommon ALK mutation types include: F1245V, G1128A, 

I1170S, I1170T, L1240V and T1151M). D. The expression of the adrenergic and cholinergic 

marker genes decrease steeply during tumour initiation from pre-neoplastic lesions (at week 

1 and 2) to full-blown tumours in the Th-MYCN mouse model (at week 6). E & F. RET 

expression levels are significantly higher in primary tumours with mutant ALK versus tumours 
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with wild type ALK in 2 independent primary tumour datasets. G. RET protein expression and 

phosphorylation status in 12 ALKwt and 12 ALKmutant cell lines. H. Upregulation of RET 

expression levels in NIH3T3 cell line transformed by ALKF1174L (RT-qPCR).  

 
Increased RET expression in primary neuroblastomas and cell lines 
An important driver of the sympathetic neuronal markers of the cholinergic lineage is 

the RET gene. Comparison of RET expression levels in ALK mutated and wildtype 

neuroblastoma tumour samples showed a significant higher expression in ALK 

mutant versus ALK wild type samples in 2 independent datasets of primary 

neuroblastoma tumour samples (Figure 5E & F).  

In addition, RET expression levels showed strong correlation with the 77-gene ALK 

signature scores in two independent patient sample datasets, providing strong 

support for ALK regulation of RET transcription (Figure 6D & E). 

Importantly, we also confirmed RET total protein expression in 8 out of 12 ALK wild 

type neuroblastoma cell lines (66.7%) and in 10 out of 12 neuroblastoma cell lines 

with ALK mutation (83%), with moderate to strong RET phosphorylation (Tyr905) 

observed in 7 out of 12 ALK mutant cell lines (58%) and in one ALK wild type cell line 

(8%) (Figure 5G). Taken together, these data show more pRET-positive mutant ALK 

cell lines and also more pronounced pRET levels in ALK mutant cell lines versus ALK 

wild type cell lines (Fischer exact test: p-value = 2.72e-2).  

 
Mutant ALK regulates the expression of RET through FOXO3 and renders cells 
sensitive to RET pharmacological inhibition  
Given the above findings, we sought for further mechanistic evidence for regulation of 

RET mRNA levels by mutant ALK. To this end, we determined RET expression levels 

in NIH3T3 cells transformed by mutant ALKF1174L. These cells were previously 

reported by Chen and colleagues (4) as a cellular model that demonstrates the 

transforming capacity of the ALKF1174L mutation. Using this model system, we 

observed a robust 2-fold upregulation of RET mRNA levels in NIH3T3-ALKF1174L cells 

compared to the parental NIH3T3 cell line (Figure 5H). 

Given the previously described regulation of FOXO3a by PI3K/AKT signaling (26) and 

the observation that the related FOXO1 controls RET expression in mouse 

spermatogonial stem cells (39), we tested the possibility that FOXO3a could regulate 

RET under the control of mutant ALK. Pharmacological inhibition of mutant ALK 
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using LDK-378 clearly leads to the expected loss of FOXO3a phosphorylation 

(leading to activation of FOXO3a) (Supplemental Data 15 B). Next, we investigated 

published data on overexpression of FOXO3a in neuroblastoma cells (26) and 

observed strong repression of RET mRNA expression following activation of 

FOXO3a in combination with PI3K/AKT inhibition (Supplemental Data 15 A). Taken 

together, these data convincingly show that RET expression is under direct control of 

mutant ALK.  

Next, we explored the effect of RET inhibition for the clinically approved drug 

vandetanib (RET knock-down in Figure 6A) in 5 neuroblastoma cell lines (4 ALK 

mutant cell lines with varying RET phosphorylation levels, and 1 ALK wild type cell 

line with RET phosphorylation). All mutant ALK cell lines responded to vandetanib, 

with strongest effects observed for CLB-GA cells, while the ALK wild type cell line 

SK-N-BE2C showed no significant response to the compound (Figure 6B). 

Finally, to determine on a more global scale whether RET-driven-signaling partially 

recapitulates mutant ALK signaling, we performed gene expression analysis of CLB-

GA cells following vandetanib treatment. Strikingly, the 77-ALK signature genes 

identified following TAE-684 treatment also showed to be regulated in the same 

direction following vandetanib treatment, strongly suggesting that RET contributes to 

ALK-driven neuroblastoma tumours (Figure 6C). This was further illustrated by the 

strong correlation observed between vandetanib and ALK signature scores in two 

independent tumour datasets (Figure 6D & E). 
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Figure 6: Expression of ALK signature genes after RET-inhibition. 
A. Western blot analysis of phospho-RET and total RET in CLB-GA cell line after 

pharmacological inhibition of RET using the small molecule inhibitor vandetanib shows clear 

decrease of (p)RET expression. B. Sensitivity of wild type and mutant ALK cell lines to 
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vandetanib in cell lines SK-N-SH (with low pRET levels) and SK-N-BE2c, NB-1, LAN-6, CLB-

GA (with high pRET levels). C. Hierarchical clustering and heatmap representation of the 

expression levels of the 77 genes of the ALK signature in neuroblastoma cell line CLB-GA 

after pharmacological RET inhibition using the small molecule inhibitor vandetanib. D & E. 
scatter plots of the TAE-684 and vandetanib signature scores and ALK and RET expression 

levels in 2 independent datasets. Correlation coefficients are indicated on top of the scatter 

plots. 

3.1.7 Discussion 

 

Detailed insights into ALK signaling and its possible interference with other signaling 

pathways is of utmost importance when introducing small molecule inhibitors in the 

clinic, as this may yield improved tools for measuring and predicting therapy 

response. Also, a deeper understanding of signaling cascades driven by genetic 

changes and their complex intertwined compensatory regulatory programs activated 

during tumorigenesis will be a prerequisite for identification of druggable downstream 

targets for novel combination therapies.  

 

Here, we describe the repertoire of ALK-driven transcriptional alterations in 

neuroblastoma cells. Using a combined approach of pharmacological inhibition and 

shRNA knockdown of ALK, we identified a signature of 32 up- and 45 downregulated 

genes (ALK signature) and validated this signature in an in vitro cellular model for 

regulable ALKF1174L as well as human and murine neuroblastomas. Of further 

interest, also other ALK-driven tumour entities displayed higher ALK signature 

scores, thus underscoring the robustness of the developed gene list and revealing a 

significant overlap in activated downstream signaling pathways in different ALKoma 

entities. Finally, pathway dissection of the mutant ALK-driven transcriptome was in 

accordance with activation of the MAPK/ERK, PI3K/AKT/mTOR and MYC/MYCN 

signaling as described (3-6, 20, 33, 34, 40). Connectivity Map analysis as well as 

comparison of the ALK gene signature and the transcriptionally regulated genes 

upon PI3K/mTOR inhibition pointed at a major role of the PI3K/AKT/mTOR pathway 

downstream of ALK in neuroblastoma. These findings are in concordance with the 

observations of Berry and colleagues (33), who showed a synergistic effect of 

crizotinib and Torin2 treatment of double transgenic mouse tumours. Both 
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observations further emphasize the possible role of PI3K/mTOR inhibitors in new 

combinatorial treatment schemes for ALK-positive neuroblastoma tumours.  

 

Importantly, our study uncovered two major novel insights, that is, (i) the observation 

of upregulation of MAPK feedback inhibitors including DUSPs, SPRYs and MAFF 

and (ii) regulation of RET and cholinergic/adrenergic neuronal differentiation genes 

through mutant ALK. Of notice, despite the fact that DUSP genes function as 

negative regulators of MAPKs, their gain of expression has often been correlated with 

cancer progression, drug resistance and poor prognosis (41). A similar constitutively 

activated MAPK feedback loop has been observed in BRAFV600E-mutant melanoma 

cells (35). The exact role of this aberrant feedback loop is poorly understood but 

could reflect the cellular response to cell cycle arrest and oncogene-induced 

senescence, keeping in mind that these can be triggered by sustained over-activation 

of ERK and presence of BRAFV600E-mutations (41). In this scenario, elevated 

expression of DUSPs and other negative feedback regulators might dampen the 

primary cellular response to sustained MAPK activation, allowing mutant cells to 

proliferate. For BRAFV600E-mutant melanoma it has been shown that MEK inhibition 

can counteract the effects from relief of negative feedback loop components as 

shown in recent clinical trials (42). Therefore, we tested the effects of MEK inhibition 

in vitro on selected neuroblastoma cell lines but, overall, effects of MEK inhibition 

were modest. 

Feedback loop mechanisms present in normal cells to control for unwanted or 

temporarily interruption (or activation) of signaling may negatively impact upon 

molecular treatment and ultimately lead to therapy resistance. In this context, recent 

work from the Rosen team showed that BRAF inhibitors in BRAFV600E-mutant 

melanoma cells leads to derepression of RAS signaling due to downregulation of the 

negative feedback components as evidenced by a pERK rebounce (43, 44). 

Moreover and even more worrysome, this same mechanism can also unleash the 

activity of other receptor tyrosine kinase receptors, further aggravating the unwanted 

effects of the initial pathway inhibition. Recent work, has pointed to increased 

occurrence of RAS mutations in relapsed neuroblastomas (45). Such mutations may 

invoke stronger effects on MAPK pathway activation and render cells more sensitive 

to MEK inhibition. Taken together, the present new insights into downstream 
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signaling of mutant ALK in neuroblastoma cells, points at potential risks of abrogating 

intrinsic mutant ALK induced negative feedback regulation of MAPK signaling which 

may render these cells more sensitive to subsequent accumulation of upstream RAS 

pathway mutations leading to therapy resistance. Also, our findings are in keeping 

with our initial finding of predominant AKT signaling in neuroblastoma (24) and more 

recent papers (33, 46, 47). 

A second important novel finding from our study was that mutant ALK controls 

expression of the RET tyrosine kinase receptor. We first reported a possible role for 

RET in ALK mutant neuroblastomas first based on cross-species comparative 

genomic analysis on MYCN versus ALKF1174L and MYCN/ALKF1174L-driven mouse 

tumours and neuroblastoma cell lines (48). Further evidence was provided for this 

regulation, including the finding that mutant ALK likely controls RET expression levels 

through FOXO3a signaling. The FOXO3a forkhead transcription factor was 

previously shown as a key target of the PI3K/AKT pathway in neuroblastoma and 

essential for their survival (26). Here, we showed that mutant ALK signaling blocks 

FOXO3a phosphorylation through PI3K/AKT and that FOXO3a regulates RET 

expression thus strongly indicating the existence of a mutant ALK-PI3K/AKT-

FOXO3a-RET signaling axis in neuroblastoma cells. 

This finding has several important consequences. First, this provides novel insights 

into the regulatory networks controlling early differentiation of sympathetic neuronal 

progenitors, particularly in relation to ALK and RET. RET regulates cholinergic 

properties in mouse sympathetic neurons and participates in cross-regulatory 

interactions which segregate cells towards adrenergic or cholinergic fate in the 

developing sympathetic ganglia (36, 49). In addition to RET, several genes implicated 

in cholinergic fate acquisition were identified as being part of the ALK signature 

including VGF and VIP. Early neural crest RET/TRKC positive progenitors committed 

to sympathetic fate express a hybrid noradrenergic/cholinergic phenotype marked by 

adrenergic markers TH, DBH, VMAT2 and cholinergic markers ChAT, VAChT, RET, 

NT3, TRKC and PRPH expression and are marked by high proliferation levels (36). 

Shortly hereafter at E15.5, VAChT positive neurons segregate with RET, PRPH, VIP 

and SST and develop towards cholinergic neurons whereas TRKA expression is 

initiated in VMAT2 positive neurons that will differentiate towards DBH/TH-positive 

noradrenergic neurons (50).  
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Secondly, the discovery of an ALK-RET regulatory pathway paves the way for novel 

experiments to deepen our understanding of MYCN and mutant ALK-driven tumour 

formation. Indeed, analysis of both cholinergic and adrenergic neuronal differentiation 

genes showed dramatic downregulation during MYCN-driven tumour formation, 

whereas these marker genes show relatively higher expression levels in 

MYCN/ALKF1174L double transgenic mice tumours. This could indicate a possible 

mutant ALK-driven attenuation of the steep decline of the expression levels of these 

genes but requires further investigation in hyperplastic preneoplastic lesions from 

these double transgenic mice tumours. During tumour formation in Th-MYCN mice, 

we speculate that overexpression of MYCN imposes a very immature phenotype with 

steeply decreased levels of both adrenergic and cholinergic differentiation markers. 

We hypothesize, based on our current findings, that mutant ALK may drive the cells 

slightly further along the differentiation path with installment of the biphenotypic 

RET/TRKC positive proliferative progenitor cell type (see Supplemental Data 17). 

Possibly, this sustained ALK signaling and upregulation of RET may positively impact 

on the survival of the cells during tumour initiation, thereby counteracting the initially 

observed apoptotic loss of most of the tumour precursor cells in early stages of 

tumour formation (51). Further investigations probing deeper into the mechanisms of 

the interrelationship between MYCN, ALK and RET in normal neuron diversification 

are needed to understand how perturbation of this early gene regulatory network 

governing the adrenergic/cholinergic switch may impact on neuroblastoma tumour 

formation. 

Thirdly, this study should trigger further work investigating novel therapeutic angles 

based on our observations. In particular, our data suggest possible co-regulation 

between mutant ALK and RET (52) and show vandetanib sensitivity in ALK mutant 

neuroblastoma cell lines. Moreover, a recent study showed impaired tumour growth 

in vivo in both MYCN/KI-AlkR1279Q and MYCN/KI-AlkF1178L mice upon inhibition of RET 

by vandetanib (48). Further dissection of the role of RET signaling in neuroblastoma 

and its impact on therapeutic targeting of the mutant ALK receptor with small 

molecules is therefore warranted. 

 

In conclusion, we provide the first in depth analysis of the mutant ALK-driven 

transcriptome in neuroblastoma cells offering an important resource for future studies 
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towards designing and assessing novel therapies for ALK-driven tumours. In the 

present study, we were able to (i) establish a mutant ALK activity score which is also 

recapitulated in other ALKomas, (ii) uncover a MAPK negative feedback loop which 

may potentially play an important role in molecular rewiring of mutant ALK 

neuroblastoma cells following prolonged exposure to inhibitors, (iii) show that ALK 

regulates RET and propose RET as a bona fide target for molecular treatment of 

neuroblastoma. Taken together, these novel findings should fuel further studies 

towards understanding the complex interrelationship between ALK and RET 

signaling in the early steps of sympathetic nervous system and tumour development 

and provide a basis for further exploration of novel therapeutic strategies, especially 

in relation to the interplay between ALK and RET signaling. 
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3.1.12 Supplemental Material and Methods 

 
Determining GI50 values for compounds in neuroblastoma cell lines 
In order to determine GI50 values in neuroblastoma cell lines for the compounds 

used, cell lines were seeded in 96-well tissue culture plates at 30% confluency, 

allowed to recover overnight and subsequently treated with a range of inhibitor 

concentrations. Cell viability was assessed in triplicate using Cell-Titer Glo at 24h and 

48h and 72h following treatment (Promega), according to the manufacturer’s 

protocol. The GI50 values were calculated for each cell line using the CalcuSyn 

software (BioSoft). 

 
Pharmacological ALK, MEK, PI3K/mTOR and RET inhibition and shRNA 
mediated ALK knockdown in neuroblastoma cell lines 
Human wild type ALK (SK-N-AS, NGP, IMR-32), ALKR1275Q (CLB-GA, LAN-5, 

UKF-NB-3), ALKF1174L (SK-N-SH, Kelly, SMS-KCNR) and ALK amplified (NB-1) 

neuroblastoma cell lines were treated in triplicate with 0.3μM NPV-TAE-684 

(Novartis/SelleckChem, further referred to as TAE-684) or DMSO (VWR) for 6 hours, 

followed by RNA isolation and gene expression profiling (see further). Sensitivity to 

TAE-684 was monitored by determination of the GI50 values (see above), which 

showed to be stronger in ALK mutant versus wild type cell lines, as expected 

(Supplemental Data 2). Treatment of cells with 0.3μM TAE-684 for 6h was selected 

based on the survival response of cells to a range of concentrations as well as 

expression data in the neuroblastoma cell lines of published ALK regulated genes 

from a study on NPM-ALK-driven ALCL. 

Treatment of the CLB-GA cell line with complementary ALK, MEK, PI3K/mTOR or 

RET inhibitors (and DMSO (VWR) as control) was performed in duplicate for each 

drug using the GI50 concentrations (see further): 0.5μM Crizotinib (Pfizer/Sigma-

Aldrich); 0.06μM X-396 (VWR); 0.2μM LDK378 (Hoelzel Biotech); 0.05uM Trametinib 

(SelleckChem); 0.5μM BEZ-235 (SelleckChem); 9.5μM Vandetanib (SelleckChem). 

Cells were collected at 6h following treatment and further profiled. The selected 

inhibitor concentrations were used based on determined GI50 values. 
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For generation of gene expression time series following ALK inhibition, CLB-GA cells 

were treated with 0.3uM TAE-684 (and DMSO as control treatment) and RNA was 

harvested at 0 – 10’ – 30’ – 60’ – 120’ – 240’ – 360’ time points.  

For shRNA mediated knockdown, pGIPZ-ALK shRNAmir and pGIPZ-non-silencing 

control shRNAmir vectors were used (Open Biosystems). The ALK shRNA was 

directed against a part of exon 26 in the tyrosine kinase domain of ALK (target 

sequence: TGGAAGGAATATTCACTTCTAA). Lentiviral particles were produced 

according to manufacturer’s protocol (Open Biosystems). On day 2 post-transduction 

of neuroblastoma cells, the transduction efficiency was determined by flow cytometry 

and microscopic analysis of GFP-positive cells (>90% so no further selection was 

performed). Cells were subsequently harvested for expression profiling. 

 

RNA extraction and RT-qPCR 

Total RNA of (treated) cell lines, transgenic mice tumours and ganglia was isolated 

using the miRNeasy kit (Qiagen) according to the manufacturer’s instructions, 

including on-column DNase treatment. The RNA integrity was verified using Experion 

(Bio-Rad). cDNA was synthesized from total RNA using an iScript cDNA synthesis kit 

(Bio-Rad). qPCR reactions were performed with Sybr green detection chemistry, 

using the LC480 real-time PCR detection system (Bio-Rad). qPCR reactions were 

performed in duplicate in a total volume of 5 μl consisting of 2.5 μl of Sso advanced 

qPCR master mix (Bio-Rad), 0.25 µl forward and reverse primer (5 μM) and 2 μl of 

2.5 ng/μl cDNA (total RNA equivalents), with cycling conditions: 2 minutes at 95°C, 

44 cycles of 5 seconds at 95°C, 30 seconds at 60°C and 1 second at 72°C. Primers 

for the genes were obtained from IDT (Belgium). mRNA expression levels of target 

genes ETV5 (ID 8595), ALK (ID 8596), RET (ID 8761) were normalized to at least 

two internal reference genes (TBP (ID 653), YWHAZ (ID 9), B2M (ID 2) and UBC (ID 

8)). All primer sequences are available in RTPrimerDB (http://www.rtprimerdb.org) 

(1). The primers used for detection of mouse Ret have previously been described (2). 

Expression analysis as well as error propagation was done using qbasePLUS 

software 1.5 (http://www.biogazelle.com) (3). 
 
1. Lefever S, Vandesompele J, Speleman F, Pattyn F. RTPrimerDB: the portal for real-time PCR 

primers and probes. Nucleic Acids Res. 2009;37(Database issue):D942-5. 
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2.  Uesaka T, Nagashimada M, Yonemura S, Enomoto H. Diminished Ret expression 

compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest. 

2008;118(5):1890-8. 

3. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative 

quantification framework and software for management and automated analysis of real-time 

quantitative PCR data. Genome Biol. 2007;8(2):R19. 

 

3.1.13 Supplemental figures, tables and data 

 

 
Supplemental data 1: Cell line information. 
Summary of the characteristics of cell lines used in this study including origin, tumour type, 

ALK and MYCN status (wt = wild type, NA = non amplified, A = amplified). 

 

 

 

 

 

 

 

 

 

 

 

#

#
Supplemental*data*1:*Cell*line*information:*#
Summary#of#the#characteristics#of#cell#lines#used#in#this#study#including#origin,#tumor#
type,#ALK#and#MYCN#status#(wt#=#wild#type,#NA#=#non#amplified,#A#=#amplified).#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

SampleID Origin tumor ALK status MYCN status
CLB-GA Combaret NB R1275Q NA
IMR-32 Versteeg NB wt A
LAN-5 Versteeg NB R1275Q A
NB-1 JHSF NB wt A
NGP Versteeg NB wt A

SK-N-AS ATCC NB wt NA
SK-N-BE Versteeg NB wt A
SK-N-SH Versteeg/ Cohn/ Pålman NB F1174L NA

SMS-KCNR Versteeg NB F1174L A
UKF-NB-3 Michaelis NB R1275Q A

Kelly Eggert/Schramm NB F1174L A
Karpas-299 / ALCL NPM-ALK fusion gene /

H3122 / NSCLC EML4-ALK fusion gene /

Supplemental data 1
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Supplemental data 2: GI50 concentration of TAE-684 in neuroblastoma cell 
lines. 
A. GI50 – values at different time points following pharmacological ALK inhibition using TAE-

684 in 10 neuroblastoma cell lines. (A = amplified, wt= wild type) B. Cell growth graphs at 72 

hours following pharmacological ALK inhibition using TAE-684 in different cell lines.   

 

 
 
 

#

#
Supplemental*data*2:*GI50*concentration*of*TAEK684*in*neuroblastoma*cell*lines:#
A.# GI50# –# values# at# different# time# points# following# pharmacological# ALK# inhibition#
using#TAE<684# in#10#neuroblastoma#cell# lines.# (A#=#amplified,#wt=#wild<type)* B.#Cell#
growth#graphs#at#72#hours#following#pharmacological#ALK#inhibition#using#TAE<684#in#
different#cell#lines.###
#
*
*
*
*
*

Cell line ALK status GI50 ( M) 24h M) 48h M) 72hGI50 ( GI50 (

UKF-NB3 R1275Q 3.76 0.69 0.64

CLB-GA R1275Q 21.82 0.44 0.33
LAN-5 R1275Q 1.39 0.33 0.19

SK-N-SH F1174L 1.80 0.58 0.68
KELLY F1174L 28.91 0.56 0.20

SMS-KCNR F1174L 1.66 0.28 0.19
NB-1 A 4.19 0.18 0.00

SK-N-AS wt 1.94 0.77 0.63
NGP wt 1.65 0.81 0.63

IMR-32 wt 3.61 0.60 0.44

A

B

Supplemental data 2
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Supplemental data 3: phospho-ALK and total ALK expression in a panel of 10 
neuroblastoma cell lines. 
Western blot analysis of phospho-ALK and total ALK protein levels (β-actin as loading 

control) for different neuroblastoma cell lines.  

Three bands are visualized upon ALK Western blotting: doublet at 220 kDa (upper: plasma-

membrane ALK, lower: intracellular pool of ALK) and a singlet at 140 kDa (extracellular 

cleavage of 220 kDa). 

 

 

 

  

*

#
Supplemental* data* 3:* phosphoKALK* and* total* ALK* expression* in* a* panel* of* 10*
neuroblastoma*cell*lines:#
Western#blot#analysis#of#phospho<ALK#and#total#ALK#protein#levels#(β<actin#as#loading#
control)#for#different#neuroblastoma#cell#lines.##
Three#bands#are#visualized#upon#ALK#Western#blotting:#doublet#at#220#kDa# (upper:#
plasma<membrane# ALK,# lower:# intracellular# pool# of# ALK)# and# a# singlet# at# 140# kDa#
(extracellular#cleavage#of#220#kDa).#
#
#
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Supplemental data 4: ALK expression upon ALK inhibition using shALK. 
A. ALK expression in different neuroblastoma cell lines after ALK inhibition using shALK. The 

expression decreases after shALK compared to shControl (shCtr). B. Western blot analysis 

of total ALK protein levels in different neuroblastoma cell lines after ALK inhibition using 

shALK (β-actin as loading control). ALK protein levels decrease after shALK compared to 

shControl (shCtr). 

 

Supplemental data 5: Differential expression analysis upon ALK inhibition. 

Differentially expressed genes were identified using Rank Product analysis and fold-change 

analysis on the data generated after pharmacological inhibition of 10 neuroblastoma cell 

lines using TAE-684 and shALK. The full list can be sent upon request.  

*

*
*
Supplemental*data*4:*ALK*expression*upon*ALK*inhibition*using*shALK:#
A.# ALK# expression# in# different# neuroblastoma# cell# lines# after# ALK# inhibition# using#
shALK.# The# expression# decreases# after# shALK# compared# to# shControl# (shCtr).# B.#
Western#blot#analysis#of#total#ALK#protein#levels#in#different#neuroblastoma#cell#lines#
after# ALK# inhibition# using# shALK# (β<actin# as# loading# control).# ALK# protein# levels#
decrease#after#shALK#compared#to#shControl#(shCtr).#
#
*
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Supplemental data 6: Expression of 77 ALK regulated genes in a panel of 10 
neuroblastoma cell lines treated with ALK inhibitor TAE-684. 
Hierarchical clustering and heatmap representation of the expression levels of the 77 genes 

of the ALK signature in 10 neuroblastoma cell lines with different ALK status after 

pharmacological ALK inhibition using the small molecule inhibitor TAE-684.  

*

# *
Supplemental* data* 6:* Expression* of* 77* ALK* regulated* genes* in* a* panel* of* 10*
neuroblastoma*cell*lines*treated*with*ALK*inhibitor*TAEK684:*
Hierarchical# clustering# and#heatmap# representation#of# the#expression# levels#of# the#
77# genes# of# the# ALK# signature# in# 10# neuroblastoma# cell# lines# with# different# ALK#
status#after#pharmacological#ALK# inhibition#using# the# small#molecule# inhibitor#TAE<
684.##
* *
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Supplemental data 7: Expression of 77 ALK regulated genes in SK-N-AS with 
induced ALK. 
A. Western blot analysis for phospho-ALK and total ALK protein levels before and after TET-

induction of ALKF1174L, ALKR1275Q or ALKwt in SK-N-AS. B. Relative ALK expression levels (as 

compared to non-induced SK-N-AS) were higher for SK-N-AS cells with tetracycline-induced 

ALKF1174L and ALKR1275Q as compared to SK-N-AS cells with tetracycline-induced ALKwt. C. 
Hierarchical clustering and heatmap representation of the expression levels of the 77 genes 

of the ALK signature as measured in the SK-N-AS cell line before and after induction of 

ALKF1174L, ALKR1275Q or ALKwt.  

*
*

*
Supplemental* data* 7:* Expression* of* 77* ALK* regulated* genes* in* SKKNKAS* with*
induced*ALK:*#
A.#Western# blot# analysis# for# phospho<ALK# and# total# ALK# protein# levels# before# and#
after# TET<induction# of# ALKF1174L,# ALKR1275Q# or# ALKwt# in# SK<N<AS.# B.# Relative# ALK#
expression# levels# (as# compared# to# non<induced# SK<N<AS)# were# higher# for# SK<N<AS#
cells#with#tetracycline<induced#ALKF1174L#and#ALKR1275Q#as#compared#to#SK<N<AS#cells#
with# tetracycline<induced# ALKwt.# C.# Hierarchical# clustering# and# heatmap#
representation# of# the# expression# levels# of# the# 77# genes# of# the# ALK# signature# as#
measured#in#the#SK<N<AS#cell#line#before#and#after#induction#of#ALKF1174L,#ALKR1275Q(or#
ALKwt.#* #

A B

12h  24h 48h 12h  24h 48h 12h  24h 48h 

pALK

ALK

ĺ
ĺ

220 kDa
140 kDa

50
50

0

ĺ
ĺ

220 kDa
140 kDa

ALKF1174L ALKR1275Q ALKWT

Tetracyline
ethanol

20
0

35
0

24 4812 24 4812 24 4812
ALKF1174 ALKR1275 ALKWT

hours

Relative ALK expression (as compared to control)

Supplemental data 7

Tetracyline
ethanol

ALDH6A1
ARHGEF7
ARID2
BMF
C5ORF4
C5ORF41
CCNG2
DEPTOR
FAM100B
FOXP1
FRAT1
FRZB
GEM
GKAP1
GLCCI1
HBP1
KLF9
KLHL24
MALAT1
NBR1
NEAT1
NEK7
NFIA
PCMTD1
PDCD4
PIK3C2A
SEMA6A
SESN3
TP53INP1
YPEL2
YPEL3
YPEL4
BAALC
BRI3BP
C11ORF75
CCNE2
CHST11
CXCR4
CYB561
DUSP4
DUSP5
DUSP6
EGR1
ELK3
ENC1
ESRRG
ETV1
ETV5
GFOD1
HSPA5
KLF7
LRP8
MAFF
MFSD2A
NAA50
OBFC2A
PI15
PNO1
PPEF1
PTPRE
RET
RGS16
RHEBL1
SGK1
SH2B3
SHROOM3
SLC7A11
SLC7A5
SPRED2
SPRY2
SPRY4
STARD4
STRA6
TPM3
TUBB6
VGF
VIP

12h

 

24h

 

48h

      ALKF1174L ALKR1275Q ALKWT

12h 12h24h 24h48h 48h

C



Chapter 3: Upregulation of MAPK Negative Feedback Regulators and RET in 
Mutant ALK Neuroblastoma: Implications for Targeted Treatment  

 

119 

 

 
Supplemental Data 8: Progression-free survival versus ALK signature scores. 
A-B. ALK signature score significantly correlates with progression-free survival in the NRC 

dataset as well as in the Oberthuer dataset (30) (Q1 – Q4= lowest quartile of scores – 

highest quartile of scores). 

 

Supplemental data 9: Summary of Gene Set Enrichment analysis results 
performed on expression data upon ALK inhibition in 10 cell lines.  
The full list can be sent upon request. 

 

Supplemental data 10: Results of gene ontology analysis performed on the 77 
ALK signature genes. 
The full list can be sent upon request.  
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AKB.#ALK#signature#score#significantly#correlates#with#progression<free#survival#in#the#
NRC#dataset#as#well#as# in# the#Oberthuer#dataset# (30)# (Q1#–#Q4=# lowest#quartile#of#
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Supplemental data 11: ALK signature gene analysis upon inhibition of two ALK 
downstream pathways. 
Hierarchical clustering and heatmap representation of the expression levels of the 77 genes 

of the ALK signature in neuroblastoma cell line CLB-GA after pharmacological pathway 

inhibition using small molecule inhibitors targeting ALK downstream pathways MAPK/ERK 

and PI3K/AKT/mTOR (using Trametinib and BEZ-235 respectively). Significantly differentially 

expressed genes are indicated with green/yellow/brown dots. 
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Supplemental data 12: Results of Connectivity map analysis performed on ALK 
signature genes. 
The full list can be sent upon request. 

 
Supplemental data 13: Summary of Gene Set Enrichment analysis results 
obtained on expression profiling data of CLB-GA on different time points (10’ – 30’ – 

60’ – 2h – 4h – 6h) after pharmacological inhibition using TAE-684. 

The full list can be sent upon request. 
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Supplemental data 14: Expression of MAPK genes in CLB-GA after ALK 
inhibition.  
A-F. Expression levels of 6 MAPK genes (DUSP4, DUSP5, DUSP6, MAFF, SPRY2 and 

SPRY4) over the different time points (10’ – 30’ – 60’ – 120’ – 240’ – 360’) in the 

neuroblastoma cell line CLB-GA after pharmacological ALK inhibition with TAE384.  These 6 

genes show a significant decrease in expression from 60 min or 120 min after ALK inhibition. 
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Supplemental data 15. 
A. RET mRNA expression levels upon FOXO3 activation (+Dox) and Pi3K/AKT inhibition 

(+PI) in cell line SY5Y (Santo et al., 2013, GEO-id: GSE42762); B. pFOXO3a levels upon 

ALK inhibition with the LDK-378 compound are downregulated 
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Supplemental data 16: Cell growth upon treatment of neuroblastoma cell lines with 

different concentrations of Trametinib (MAPK/MEK inhibitor) is only modestly affected  
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Supplemental Data 17: Scheme to clarify our hypothesis: During tumour formation in Th-

MYCN mice, we speculate that overexpression of MYCN imposes a very immature 

phenotype with steeply decreased levels of both adrenergic and cholinergic differentiation 

markers. We hypothesize, based on our current findings, that mutant ALK may drive the cells 

somewhat further along the differentiation path with installment of the biphenotypic 

RET/TRKC positive proliferative progenitor cell type. Possibly, this sustained ALK signaling 

and upregulation of RET may positively impact on the survival of the cells during tumour 

initiation, thereby counteracting the initially observed apoptotic loss of most of the tumour 

precursor cells in early stages of tumour formation. 
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4.1.2 Abstract 

 

Background: Neuroblastoma is an aggressive childhood malignancy of the 

sympathetic nervous system. Despite multi-modal therapy, survival of high-risk 

patients remains disappointingly low, underscoring the need for novel treatment 

strategies. The discovery of ALK activating mutations opened the way to precision 

treatment in a subset of these patients. Previously, we investigated the transcriptional 

effects of pharmacological ALK inhibition on neuroblastoma cell lines, six hours after 

TAE684 administration, resulting in the 77-gene ALK signature, which was shown to 

gradually decrease from 120 minutes after TAE684 treatment, to gain deeper insight 

into the molecular effects of oncogenic ALK signaling. 

 

Aim: Here, we further dissected the transcriptional dynamic profiles of neuroblastoma 

cells upon TAE684 treatment in a detailed timeframe of ten minutes up to six hours 

after inhibition, in order to identify additional early targets for combination treatment. 

 

Results: We observed an unexpected initial upregulation of positively regulated 

MYCN target genes following subsequent downregulation of overall MYCN activity. In 

addition, we identified adrenomedullin (ADM), previously shown to be implicated in 

sunitinib resistance, as the earliest response gene upon ALK inhibition. 

 

Conclusion: We describe the early and late effects of ALK inhibitor TAE684 treatment 

on the neuroblastoma transcriptome. The observed unexpected upregulation 

of ADM warrants further investigation in relation to putative ALK resistance in 

neuroblastoma patients currently undergoing ALK inhibitor treatment. 
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4.1.3 INTRODUCTION  

 

Neuroblastoma (NB) is a childhood cancer arising from malignant transformation of 

cells from the sympatho-adrenergic lineage of the developing neural crest [1] and is 

characterized by a large clinical heterogeneity, including patients with tumours that 

spontaneously regress as well as patients with metastasis and refractory disease 

despite intensive therapy regimens [2]. For these high-risk neuroblastoma cases, a 

better understanding of the genes and pathways that are involved in disease 

development and progression is currently fuelling the identification of new molecular 

targets for therapy [3].  

Overall, given the low frequency of mutations in neuroblastoma, options for targeted 

therapy are relatively limited. However, the recurrent somatic mutations of the 

tyrosine kinase receptor ALK identified in 8-10% of primary neuroblastoma tumours 

[4–8] and the emergence of ALK mutations at relapse mark ALK as an important 

novel drug target [9,10]. Several orally available small molecule ALK inhibitors have 

been developed and successfully applied in patients with other ALK mutant tumour 

entities, so-called ALKoma tumours, most notably a subset of lung cancers [11–17]. 

Several of these small molecule ALK inhibitors have recently gone into phase 1 

clinical trials for patients with refractory neuroblastoma, inflammatory myofibroblastic 

tumour, non-small-cell lung cancer (NSCLC) and anaplastic large-cell lymphoma 

(ALCL) [18,19].  

 

Despite the promising therapeutic potential of ALK inhibitors, an important drawback 

is the rapid occurrence of resistance due to escape mechanisms including secondary 

mutations or activation of other kinase signaling pathways [17,20–30]. A better 

understanding of the downstream ALK signaling cascades can inspire the 

development of more rationally designed combinatorial treatment approaches. In a 

previous study, ALK downstream signaling was characterized by in depth 

transcriptome analysis of neuroblastoma cells treated for six hours with the ALK 

inhibitor TAE684, resulting in the 77-gene ALK signature and the identification of a 

negative MAPK feedback loop and of RET as ALK activated target gene [31]. 

Moreover, we generated transcriptome data between 10 minutes and 6 hours after 

pharmacological ALK inhibition to show that our established 77-gene signature is 

gradually decreasing starting from 2 hours after the treatment. Here, we further 
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explore this dynamic transcriptome data generated upon treatment with the ALK 

inhibitor TAE684 in order to look in more detail into the dynamics of early 

transcriptional responses following ALK inhibition to improve our understanding on 

downstream ALK signaling and identify novel targets for combination therapy. To this 

end, we performed differential gene expression analysis at different time points 

following TAE684 treatment of the neuroblastoma cell line CLB-GA with an activating 

ALKR1275Q mutation. 

4.1.4 RESULTS AND DISCUSSION 

 

MAPK, PI3K, RET and MYC(N) signaling pathways are downregulated starting 
from 1 to 2 hours after TAE684 treatment 
In order to gain more insights into the early dynamics of transcriptional changes after 

pharmacological inhibition of ALK signaling in neuroblastoma cells, the 

neuroblastoma cell line CLB-GA, which harbours an ALKR1275Q mutation, was treated 

with the ALK inhibitor TAE684 and DMSO as control. While TAE684 did not go into 

clinical trials, TAE684 is a valid ALK inhibitor as we previously showed that the 

transcriptional responses for this drug and the more clinically relevant ones, such as 

crizotinib, LDK378 and X396, are very similar [31]. RNA expression profiling was 

performed on cells harvested 10 and 30 minutes, 1, 2, 4 and 6 hours after treatment 

(Supplementary Fig. 1). 

Our previously established 77-gene ALK signature [31] significantly decreases from 2 

hours after ALK inhibitor treatment, as shown earlier by Lambertz et al. [31]. In this 

study, we evaluated the dynamic regulation of known ALK downstream pathways, i.e. 

MAPK, PI3K, RET and MYC/MYCN signaling pathways [4–7,31–34], by calculating 

signature activity scores for drugs specifically blocking these pathways. These drug 

signature scores summarize the transcriptional response of the components of a 

given signaling pathway upon pharmacological pathway inhibition. Our data confirm 

ALK regulation of these pathways and furthermore show that MAPK, PI3K and RET 

pathway activity is decreased as early as 1 to 2 hours after the start of TAE684 

treatment, as the corresponding inhibitor scores become activated at those time 

points (Figs. 1A, 1B, 1C; Supplementary Figs. 2A, 2B, 2C, 3A, 3B, 3C). Furthermore, 

we observed that MYCN expression levels significantly drop 1 hour after the 

treatment (p=0.0015) (Fig. 1D; Supplementary Fig. 2D). As expected, MYC(N) 
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activity scores [35,36] follow a delayed response at later time points (Figs. 1E, 1F; 

Supplementary Figs. 2E, 2F ,3D, 3E). These results are in line with the previously 

established regulatory role on MYCN transcription initiation for ALK, in addition to its 

effect on MYCN activity via phosphorylation [32,34,37–39].  

 

 
Figure 1: Signature score analysis for MAPK, PI3K, RET and MYC(N) signaling 
pathways, downregulated starting from 1 or 2 hours after TAE684 treatment 
A.-E. MEK inhibitor (trametinib) (A), PI3K/mTOR inhibitor (BEZ-235) (B) and RET inhibitor 

(vandetanib) (C) signatures are upregulated from 1 or 2 hours after treatment of the CLB-GA 

cell line with 320 nM TAE684, while MYCN mRNA expression levels (D) are downregulated 

from 1 hour after treatment and the MYCN activity score from Valentijn et al. [35] (E) and the 

MYC signature score from Fredlund et al. [36] (F) from respectively 2 and 4 hours after 
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pharmacological ALK blockade. Log2 transformed ratios of expression levels of TAE684 

treated vs DMSO control samples are plotted.  

 

To identify other dynamically regulated pathways upon ALK inhibition, functional 

enrichment analysis was performed on a set of k-means clusters of genes with 

similar transcriptional responses over the timeframe. After k-means clustering with 9 

centers, as defined by the elbow method, we combined clusters with similar 

expression patterns over time yielding a total of 6 different clusters (Fig. 2A; 

Supplementary Figs. 4A, 4B, 5A). Moreover, 4 of these clusters, namely cluster A, B, 

D and E, are showing a clear dynamic pattern, with a change in expression starting at 

120 or 240 minutes and increasing over time, while the other 2 are showing a more 

modest pattern over time with only a small change at the latest time point (Fig. 2A, 

Supplementary Fig. 5A). Functional characterization of these 4 clusters through 

evaluating the enrichment for gene ontology terms (MSigDB ‘c5 Gene Ontology (GO) 

Biological Process Ontology (BP) v6.0’), oncogenic signatures (MSigDB ‘c6 

Oncogenic Signatures v5.0’) and pathways of the Reactome Database  [40,41] 

confirmed that these clusters consist of MYC, MAPK or mTOR targets and are 

involved in regulation of the MAPK cascade, in keeping with the downregulation of 

the MYC(N), PI3K-AKT-mTOR and MAPK pathway (Fig. 2B; Supplementary Figs. 5B, 

5C). Moreover, cluster E is also enriched for genesets linked to epigenetic processes, 

regulating amongst others chromatin structure and gene expression (Fig. 2B; 

Supplementary Figs. 5B, 5C).  

Taken together, this analysis provides insights into the dynamics of inactivation of 

ALK-driven downstream pathways in ALK mutant neuroblastoma cells upon ALK 

inhibition and validates the applicability of the presented dataset to further scrutinize 

early temporal effects of ALK inhibition. 
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Figure 2: Functional characterization of the genes in the clusters with the 
MSigDB ‘c5 Gene Ontology (GO) Biological Process Ontology (BP) v6.0’, 
A. The cluster plots represent the dynamic pattern of the expression of the genes belonging 

to 1 of the 6 clusters. The mean of the ratio of the expression in the TAE684 vs DMSO 

treated sample is plotted for each gene. The red lines show the average dynamic pattern of 
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the expression of the genes belonging to these clusters, calculated by the average of the 

mean of the ratio of the expression in the TAE684 vs DMSO treated sample. B. Plot showing 

the MSigDB ‘c5 Gene Ontology (GO) Biological Process Ontology (BP) v6.0’ genesets that 

are enriched in at least one of the four clusters, which are showing a clear dynamic pattern 

(clusters A, B, D, E). The size of each node corresponds to the number of genes overlapping 

between the cluster and the gene set and the colour represents the adjusted p-value of the 

enrichment test. Green stars indicate the genesets related to the MYC(N), KRAS-MAPK, 

PI3K/mTOR pathways. 

 

MYC(N) signaling is upregulated immediately following ALK inhibition  
To functionally scrutinize the transcriptional changes upon ALK inhibitor treatment, 

Gene Set Enrichment Analysis (GSEA [42]) was performed using the ‘Hallmarks v5.0’ 

genesets from the Molecular Signatures Database (MSigDB) 

(software.broadinstitute.org/gsea/msigdb) at the different time points. This analysis 

further validates that the signaling pathways KRAS (MAPK) and PI3K-mTOR are 

significantly repressed (Fig. 3A). Remarkably, one of the MYC genesets 

(HALLMARK_MYC_TARGETS_1) is significantly enriched for genes upregulated 30 

minutes after treatment and significantly enriched for genes downregulated 6 hours 

after pharmacological ALK blockade (Fig. 3A, indicated in red). Moreover, we 

observed a significant increase in the Fredlund MYC signature [36] 2 hours after ALK 

inhibition (p=0.0038) (Fig. 1F, Supplementary Fig. 2F). Therefore, we also performed 

GSEA on other MYC(N) activity signatures and confirmed for 4 other genesets an 

initial upregulation (at 10 or 30 minutes after ALK inhibitor treatment) followed by a 

downregulation (from 2 hours after ALK inhibitor treatment) (Fig. 3B). The 

observation of this initial upregulation of MYCN activity scores is intriguing and needs 

further investigation.  
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Figure 3: Gene Set Enrichment Analysis (GSEA) with the hallmarks and the 
MYC(N) signaling genesets shows that MYC(N) signaling is upregulated 
immediately following ALK inhibition  
A. and B. Heatmap showing the genesets of the ‘Hallmarks v5.0’ genesets from MSigDB (A) 

and an in house compiled gene set collection containing all MYC target genesets from this 
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hallmark catalogue as well as publically available MYC(N) activity or target signatures 

[35,60–66] (B), that are enriched among the genes upregulated after ALK inhibition 

(positively enriched) (red) or that are enriched among the genes downregulated after ALK 

inhibition (negatively enriched) (blue)  according to GSEA (with FDR < 0.1) [41]. Indicated in 

red are the genesets that are upregulated at earlier and downregulated at the later time 

points following ALK inhibition. Green stars indicate the genesets related to the MYC(N), 

KRAS-MAPK, PI3K/mTOR pathways. 

 
Adrenomedullin (ADM) is the earliest upregulated gene upon pharmacological 
ALK inhibition of NB cells 
In order to identify the set of early and late genes that significantly change 

transcriptionally, differential gene expression analysis comparing TAE684 treated 

cells with DMSO treated controls was performed at each time point. This analysis 

revealed that no significant transcriptional changes occur as early as 10 or 30 

minutes after treatment (using adjusted p-value (False Discovery Rate (FDR)) < 

0.05), while starting from 2 hours after treatment an increasing number of 

significantly, differentially expressed genes are identified (Supplementary Table I). 

Our observations are in line with these from Lai et al. [43], who have shown that 

transcriptional events occur between 2 and 4 hours after inhibition of a receptor 

tyrosine kinase.  

Interestingly, one gene showed significant differential upregulation 1 hour post-

TAE684 treatment, i.e. adrenomedullin (ADM) (Fig. 4A; Supplementary Fig. 6A). 

Interestingly, using second- and third-generation ALK inhibitors [31], the upregulation 

of ADM upon ALK inhibition was confirmed in CLB-GA and Kelly (Supplementary 

Figs. 6B, 6C). Moreover, we could validate ADM upregulation 6 hours after treatment 

with TAE684 in more NB cell lines with an ALK amplification, an ALKR1275Q or 

ALKF1174L mutation (Fig. 4B). Furthermore, the early upregulation of ADM was 

validated in the cell line NB-1 upon pharmacological ALK inhibition with TAE684 (Fig. 

4C), as the increase was already detectable 1 hour after the treatment. In addition, 

ADM expression levels are also significantly induced in the CLB-GA cell line, 

following PI3K/mTOR inhibitor BEZ-235, MEK antagonist trametinib and RET 

repressor vandetanib treatment [31] (Supplementary Fig. 6D). Interestingly, ADM 

upregulation was also observed in the Anaplastic Large Cell Lymphoma (ALCL) cell 

line TS treated with three different ALK inhibitors for 6 hours [44] (Fig. 4D). 
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Adrenomedullin is upregulated under hypoxic conditions in neuroblastoma 
As ADM is known to be induced under hypoxia [45–51], we investigated publically 

available transcriptome data from hypoxic versus normoxic neuroblastoma cells [52] 

and confirmed ADM upregulation under hypoxic conditions in these cells (Fig. 4E). Of 

further interest, ADM is higher expressed in more aggressive neuroblastoma tumours 

(stage 4 versus other stages) (Fig. 4F).  

Furthermore, the observed ADM upregulation is intriguing and has a potentially 

important translational consequence. In addition to ADM activation upon hypoxia 

[45–51], ADM was also shown to act as growth factor, prevent apoptosis-mediated 

cell death, increase tumour cell motility and metastasis and induce angiogenesis in 

various cancer types [47–49,51,53–59]. Of further importance, it has been reported 

that hypoxia, which can activate ADM [45–51], induces resistance to ALK inhibitors in 

non-small cell lung cancer [60] and that ADM expression levels are increased in 

tyrosine kinase inhibitor sunitinib resistant renal cell carcinoma [61]. In view of these 

observations, we evaluated whether combining an adrenomedullin receptor 

antagonist (ADM22-52) [61] together with TAE684 would sensitize NB cells to ALK 

inhibition. No additional effects on decrease in cell viability were observed (data not 

shown). This observation could be due to the fact that elevated ADM levels have no 

effect on sensitivity for ALK inhibitors in neuroblastoma cells. Alternatively, given that 

the cell lines tested are very sensitive to the inhibitor with immediate strong and 

massive apoptotic effects, under these conditions elevated ADM levels may have no 

immediate effects on cell viability, while in a later stage in cells rendered resistant to 

ALK inhibition, combined exposure to both ALK inhibition and the ADM inhibitor might 

have effect. 
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Figure 4: Adrenomedullin (ADM) is the earliest upregulated gene upon 
pharmacological ALK inhibition of NB cells 
A. ADM mRNA is significantly upregulated starting from 1 hour after TAE684 treatment of the 

CLB-GA cell line. Ratios of log2 transformed expression levels of TAE684 treated vs DMSO 

control samples are plotted. B. ADM mRNA expression levels shown in several ALK wild 
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type (NGP, SK-N-AS, IMR-32) and ALK mutant (NB-1, CLB-GA, LAN-5, UKF-NB3, SMS-

KCNR, Kelly, SK-N-SH) cell lines treated for 6 hours with 0.32 μM TAE684 or DMSO. C. 
ADM mRNA expression levels are upregulated in NB cell line NB-1 (ALKamp) 1 hour and 6 

hours after treatment with 0.32 μM TAE684 compared to the DMSO control. D. ADM 

expression levels are upregulated 6 hours upon ALK inhibition with three different ALK 

inhibitors in the ALCL cell line TS. E. ADM mRNA expression levels are upregulated in 11 

NB cell lines under hypoxic conditions. F. ADM expression levels are higher in stage 4 

primary neuroblastoma tumours versus neuroblastoma tumours of stage 1, 2, 3 and 4S. 

Boxplots represent mean ± 95% confidence interval.  

Statistical analyses: unpaired one-way ANOVA with Bonferroni correction (B. & C. & D.), 

paired t-test (E.) and unpaired t-test (F.). * P < 0.05, ** P < 0.01, *** P < 0.001  

 

4.1.5 CONCLUSION 

 

In summary, dynamic expression profiling following ALK inhibition of ALK mutated 

neuroblastoma cells revealed (1) unexpected early ADM upregulation with potential 

implications for design of more effective ALK targeted therapy, (2) an initial increase 

of MYC(N) activity immediately after ALK inhibition and (3) confirmed inhibition after 1 

to 2 hours of the ALK downstream MAPK, PI3K-AKT, RET and MYC(N) pathways.  

4.1.6 MATERIAL AND METHODS 

 

CLB-GA time series dataset 
The CLB-GA time series dataset has been described before [31]. The neuroblastoma 

CLB-GA cell line (ALKR1275Q) was cultured in RPMI-1640 medium (Invitrogen), 

supplemented with fetal bovine serum (10%), kanamycin (100 μg/ml) 

penicillin/streptomycin (100 IU/ml), L-glutamine (2 mM) and HEPES (25 mM) (Life 

Technologies), and maintained at 37°C in a 5% C02-humidified environment. At 

different time points (10, 30 minutes, 1, 2, 4 and 6 hours) after treatment with 0.32 

μM of the small molecule ALK inhibitor NVP-TAE684 (hereafter TAE684) 

(SelleckChem, S1108) or DMSO (VWR) as solvent control, cells were harvested and 

RNA quality was analysed using Experion (Bio-Rad) prior to gene-expression 

profiling. Samples were labelled and hybridized to the Sureprint G3 human GE 8x60K 

microarrays (Agilent Technologies), according to the manufacturer’s guidelines and 

starting from 200 ng RNA. The data was normalized with the vsn method in R version 
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3.3.3 (packages vsn and limma). The R package BioMart was used to annotate gene 

names to their corresponding probes. Probes detecting at least a two-fold higher 

expression than the negative control probes of the array in at least 60% of the DMSO 

or TAE samples, were selected as background correction. Data can be accessed 

through ArrayExpress (accession number E-MTAB-3206) [31]. 

 
Signature score analysis 
To establish MAPK, PI3K/mTOR and RET inhibitor signatures, we used published 

gene expression profiling data (ArrayExpress accession number E-MTAB-3206) [31]. 

This dataset contains expression profiling data of the CLB-GA cell line 6 hours after 

treatment with MAPK inhibitor trametinib, the dual PI3K/mTOR repressor BEZ-235 or 

RET antagonist vandetanib and DMSO as control. Using the limma R-package, 

differential expression analysis was performed comparing the DMSO-control and the 

inhibitor treated samples. The established signatures consist of the differentially 

expressed genes with adjusted p-value (False Discovery Rate (FDR)) < 0.05. In 

addition, a published MYCN and a published MYC signature were used to establish 

the MYC(N) pathway activity [35,36]. Signatures score analysis was conducted using 

a rank-scoring algorithm as described previously [31,36]. For each time point and 

each duplicate separately, both the ratio between the TAE684 treated sample and his 

corresponding control sample (Figure 1) as the absolute values (Supplementary 

Figure 2) were plotted using GraphPad Prism 7.  

 
Gene set enrichment analysis  
Gene set enrichment analysis (GSEA [42]) was performed using the MSigDB 

‘Hallmarks v5.0’ gene sets (software.broadinstitute.org/gsea/msigdb) and an in house 

compiled gene set catalogue containing all MYC target genesets from this hallmark 

catalogue as well as publically available MYC(N) activity or target signatures 

[35,36,62–67]. The genesets, showing positively or negatively enrichment at 

minimum one time point and with a FDR < 0.1 are plotted in a heatmap. Data was 

plotted as the mean of the ratio of the TAE684 treated sample and his corresponding 

control sample at every time point. 
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Cluster analysis and pathway enrichment analysis in the clusters 
Using the Bayesian Information Criterion (BIC) and the elbow method, 9 was defined 

as the optimal number of clusters in the dataset (Supplementary Figs. 4A, 4B). K-

means clustering was performed on the expression level ratios of TAE684/DMSO 

samples for each time point in R (with k=9). However, visual inspection of the 

expression patterns of the genes in the clusters showed that some clusters have a 

similar pattern over time (clusters 1 and 2, 4 and 7, 6 and 9) (Supplementary Fig. 4B) 

and were therefore merged, ending with 6 final clusters (Supplementary Fig. 5A). For 

every cluster, the average response of the genes was plotted as a line (red line). The 

4 clusters that are showing a clear dynamic pattern over time, were screened for 

MSigDB ‘c5 Gene Ontology (GO) Biological Process Ontology (BP) v6.0’ 

(software.broadinstitute.org/gsea/msigdb), MSigDB ‘c6 Oncogenic Signatures v5.0’ 

and overrepresented Reactome pathways [40,41] using the R-packages 

clusterProfiler and Reactome Pathway Analysis [68,69]. 

 
Differential expression analysis 
At every time point, differential expression analysis was performed using the R 

package limma, comparing the DMSO-control and the TAE684-treated sample. The 

duplicate experiments, independently generated at different time points, were set as 

blocking factor. Significantly differentially expressed genes refer to those with an 

adjusted p-value (FDR) < 0.001. Results are shown in Supplementary Table I. 

 
Analysis of ADM expression levels after ALK inhibition using qPCR  
ADM expression levels were measured in CLB-GA (ALKR1275Q) and Kelly (ALKF1174L) 

cells that were treated for 6 hours with DMSO as control solvent and 0.09 μM of ALK 

inhibitor, PF06463922 acetate (Sigma-Aldrich, PZ0271) (dissolved in sterile DMSO 

and diluted to the final concentration in culture medium) and in NB-1 (ALKamp) cells 

that were treated for 1 and 6 hours with DMSO as control solvent and 0.32 μM of 

TAE684 (dissolved in sterile DMSO and diluted to the final concentration in culture 

medium). 

RNA extraction, cDNA synthesis and RT-qPCR of these samples was performed as 

described earlier [31]. The Cq-values for ADM expression were normalized with data 
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of at least two reference genes (TBP, YWHAZ, B2M, HPRT1 and SDHA) (primer 

sequences: Supplementary Table II) using qBasePlus software (Biogazelle). 

 
Evaluation of ADM expression in public mRNA expression datasets 
ADM expression levels were evaluated in (1) CLB-GA cells treated with 0.2 μM 

LDK378, 0.32 μM TAE684, 0.06 μM X396, 0.5 μM crizotinib, 0.05 μM trametinib 

(MEK inhibitor), 0.5 μM BEZ-235 (dual PI3K/mTOR inhibitor) and 9.5 μM vandetanib 

for 6 hours (ArrayExpress accession number E-MTAB-3206) [31], (2) 10 NB cell lines 

treated with 0.32 μM TAE684 for 6 hours (ArrayExpress accession number E-MTAB-

3205) [31], (3) the ALCL TS cell line treated with three different ALK inhibitors for 6 

hours (GEO accession number GSE6184)  [44], (4) 11 NB cell lines that were 

cultured under normoxic and hypoxic conditions (1% O2 instead of 20%) for 18 hours 

(GEO accession number GSE17714)  [52] and (5) a cohort of 283 neuroblastoma 

tumour samples (GEO accession number GSE85047).  

 
Statistical analyses 
Statistical significance was calculated with GraphPad Prism7 by unpaired one-way 

ANOVA with Bonferroni correction when comparing more than two unmatched 

groups, while (un)-paired t-test was chosen when comparing two groups. 
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4.1.11 TABLES 

 

Supplementary Table I: Significantly, differentially expressed genes (excel) 
Supplementary data table listing the significantly differentially expressed genes upon ALK 

inhibition at every time point (FDR < 0.001). The first sheet is a summary of the significantly 

differentially expressed genes, the second sheet contains the genes upregulated upon ALK 

inhibition and the third sheet shows the downregulated genes.  

 
Supplementary Table II: primer sequences 
Primer sequences used for qPCR expression analysis of the ADM gene and 5 reference 

genes. 

 

Gene Primer Sequence 

ADM 

 
Forward GAATCCGAGTGTTTGCCAGG 

Reverse ACACGCATTGCACTTTTCCT 

TBP 

 
Forward CACGAACCACGGCACTGATT 

Reverse TTTTCTTGCTGCCAGTCTGGAC 

YWHAZ 

 
Forward ACTTTTGGTACATTGTGGCTTCAA 

Reverse CCGCCAGGACAAACCAGTAT 

SDHA 

 
Forward TGGGAACAAGAGGGCATCTG 

Reverse CCACCACTGCATCAAATTCATG 

B2M Forward TGCTGTCTCCATGTTTGATGTATCT 

 Reverse TCTCTGCTCCCCACCTCTAAGT 

HPRT1 Forward TGACACTGGCAAAACAATGCA 

 Reverse GGTCCTTTTCACCAGCAAGCT 
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4.1.12 SUPPLEMENTARY FIGURES & LEGENDS  

 

 
Supplementary Figure 1: Workflow to generate the time course dataset upon 
pharmacological ALK inhibition 
CLB-GA, an ALKR1275Q mutated NB cell line, was treated in duplicate with 0.32 μM TAE684 or 

DMSO. Cells were collected for RNA 10 and 30 minutes, 1, 2, 4 and 6 hours after the 

treatment. RNA was extracted, quality was checked and samples were used for mRNA 

expression profiling with the Sureprint G3 human GE 8x60K microarrays (Agilent 

Technologies).  
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Supplementary Figure 2: Signature score analysis for MAPK, PI3K, RET and 
MYC(N) signaling pathways, downregulated starting from 1 or 2 hours after 
TAE684 treatment (absolute values) 
A.-F. MEK inhibitor (trametinib) (A), PI3K/mTOR inhibitor (BEZ-235) (B) and RET inhibitor 

(vandetanib) (C) signatures are upregulated from 1 or 2 hours after treatment of the CLB-GA 

cell line with 320 nM TAE684, while MYCN mRNA expression levels (D) are downregulated 

from 1 hour after treatment and the MYCN activity score from Valentijn et al. [35] (E) and the 

MYC signature score from Fredlund et al. [36] (F) from respectively 2 and 4 hours after 

pharmacological ALK blockade. Log2 transformed expression levels of TAE684 treated and 

DMSO control samples are plotted.  
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Supplementary Figure 3: Heatmaps representing the genes from the signature 
score analysis for MAPK, PI3K, RET and MYC(N) signaling pathways 
A.-E. Heatmaps showing the dynamic expression over time for the genes from the MEK 

inhibitor (trametinib) (A.), the PI3K-AKT inhibitor (B.), the RET inhibitor (vandetanib) (C.), the 

Versteeg MYCN [35] signature (D.) and the Fredlund MYC [36] signature (E.). The mean of 

the ratio of the expression in the TAE684 vs DMSO treated sample is plotted for each gene 

over time. 
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Supplementary Figure 4: K-means clustering of the expression data 
A. Plot illustrating the choice to perform k-means clustering with k=9 (red arrow) as 

determined by the elbow method. The y-axis shows the variability within the groups and the 

x-axis the number of clusters. B. The cluster plots represent the dynamic pattern of the 

expression of the genes belonging to 1 of the 9 clusters. The mean of the ratio of the 

expression in the TAE684 vs DMSO treated sample is plotted for each gene.  
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Supplementary Figure 5: Functional characterization of the genes in the 
clusters with the Reactome Pathways and MSigDB ‘c6 Oncogenic Signatures 
v5.0’  
A. The cluster plots represent the dynamic pattern of the expression of the genes belonging 

to 1 of the 6 clusters. The mean of the ratio of the expression in the TAE684 vs DMSO 

treated sample is plotted for each gene. The red lines show the average dynamic pattern of 

the expression of the genes belonging to these clusters, calculated by the average of the 

mean of the ratio of the expression in the TAE684 vs DMSO treated sample. B. The plot 

shown pathways of the Reactome Database that are enriched in at least one of the four 
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clusters, which are showing a clear dynamic pattern (clusters A, B, D, E). The size of each 

node corresponds to the number of genes overlapping between the cluster and the gene set 

and the colour represents the adjusted p-value of the enrichment test. C. The plot shown the 

MSigDB ‘c6 Oncogenic Signatures v5.0’ genesets that are enriched in at least one of the four 

clusters, which are showing a clear dynamic pattern (clusters A, B, D, E). The size of each 

node corresponds to the number of genes overlapping between the cluster and the gene set 

and the colour represents the adjusted p-value of the enrichment test. Green stars indicate 

the genesets related to the MYC(N), KRAS-MAPK, PI3K/mTOR pathways. 
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Supplementary Figure 6: ADM expression upon pharmacological blockade of 
ALK and ALK downstream signaling in NB cells  
A. ADM mRNA is significantly upregulated starting from 1 hour after TAE684 treatment of the 

CLB-GA cell line. Log2 transformed expression levels of TAE684 treated and DMSO control 

samples are plotted. B. ADM mRNA expression levels are increased in CLB-GA treated for 

6h with 0.32 μM TAE684, 0.5 μM crizotinib, 0.06 μM X396, 0.2 μM LDK378 compared to the 

DMSO control. C. ADM mRNA expression levels are upregulated in NB cell lines CLB-GA 

(ALKR1275Q) and Kelly (ALKF1174L) treated for 6 hours with 0.09 μM PF06463922 (new-

generation ALK inhibitor) compared to the DMSO control. D. ADM mRNA expression levels 

are increased in CLB-GA treated with 0.5 μM BEZ-235, 0.05 μM trametinib, 9.5 μM 

vandetanib compared to DMSO for 6h. 

Statistical analyses: unpaired one-way ANOVA with Bonferroni correction (B. & C. & D.). * P 

< 0.05, ** P < 0.01, *** P < 0.001  
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5.1.3 ABSTRACT  

 

ALK mutations occur in 10% of primary neuroblastoma and represent a major target 

for precision treatment. In combination with MYCN amplification, ALK mutations infer 

an ultra-high-risk phenotype resulting in very poor patient prognosis. To open up 

opportunities for future precision drugging, a deeper understanding of the molecular 

consequences of constitutive ALK signaling and its relationship to MYCN activity in 

this aggressive pediatric tumor entity will be essential. We show that mutant ALK 

downregulates the ‘HMG-box transcription factor 1’ (HBP1) through the PI3K-AKT-

FOXO3a signaling axis. HBP1 inhibits both the transcriptional activating and 

repressing activity of MYCN, the latter being mediated through PRC2 activity. HBP1 

itself is under negative control of MYCN through miR-17~92. Combined targeting of 

HBP1 by PI3K antagonists and MYCN signaling by BET or HDAC inhibitors blocks 

MYCN activity and significantly reduces tumor growth, suggesting a novel targeted 

therapy option for high-risk neuroblastoma. 

 
  



Chapter 5: ALK positively regulates MYCN activity through repression of HBP1 
expression  
 

 

170 

5.1.4 INTRODUCTION  

 

Neuroblastoma (NB) is a childhood tumor arising from the embryonic sympatho-

adrenal lineage of the neural crest and represents the primary cause of cancer-

related death in young children ages one to five 1. These tumors are characterized by 

a heterogeneous clinical course, ranging from spontaneous regression to highly 

aggressive, metastatic disease refractory to therapy 2. Sequencing efforts have 

resulted in a detailed molecular characterization of the neuroblastoma genomic 

landscape, exhibiting few recurrent driver mutations in a background of highly 

recurrent DNA copy number alterations 3. MYCN amplification is observed in half of 

the high-stage tumors and more than 10% exhibit activating anaplastic lymphoma 

kinase (ALK) receptor mutations 2,4–7. These mutations are preferred targets for 

precision medicine and clinical trials using ALK inhibitors have been initiated 8,9. 

However, as single compound approaches almost invariably lead to therapy 

resistance 10–20, a more detailed understanding of components implicated in ALK 

downstream signaling is warranted.  

Previous studies have suggested genetic interaction between MYCN and ALK in 

neuroblastoma cells. We previously identified an ultra-high-risk patient subgroup with 

combined MYCN amplification and ALKF1174L mutation 21. Subsequently, a mouse 

and zebrafish neuroblastoma model revealed accelerated tumor formation when both 

MYCN and ALKF1174L were expressed in sympathetic neuronal progenitor cells 
22,23. Further, ALK was shown to control MYCN transcription levels and MYCN protein 

stabilization through the PI3K-AKT pathway 24–27, providing insight into the possible 

mechanism of mutant ALK mediated increased tumor aggressiveness. In this study, 

we further explored the interrelationship between ALK and MYCN based on our 

previously established ALK-driven 77-gene signature 28. We identified consistent ALK 

controlled downregulation of HBP1 (‘high-mobility-group (HMG) box protein’), a 

previously established negative regulator of MYC(N) activity 29,30 and investigated the 

transcriptional and phenotypical effects of HBP1 modulation in ALK mutated and 

MYCN amplified neuroblastoma cells. Finally, we also investigated the effects of 

different single and combined drug combinations on HBP1 levels.  
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5.1.5 RESULTS 

 

ALK downregulates HBP1 mRNA and protein expression levels 
To further investigate the possible regulatory relationship between ALK and MYCN, 

we looked for hitherto unrecognized proteins implicated in MYCN regulation in 

neuroblastoma cells. To this end, we verified our previously published ALK-driven 77-

gene signature28 and identified the negative MYC regulator HBP1 as an ALK down 

regulated target. We first confirmed upregulation of HBP1 expression levels after 

pharmacological inhibition of ALK with TAE684 in six selected neuroblastoma cell 

lines. These included three ALK mutant cell lines with ALK amplification (NB-1), an 

ALKF1174L mutation (SK-N-SH) and an ALKR1275Q mutation (CLB-GA). Furthermore, 

we also selected two ALK wild type non-responding to the TAE684 ALK inhibitor (SK-

N-AS, IMR-32) and one ALK wild type cell line that responded to ALK inhibition 

(Supplementary Fig. 1A) 28,31. We confirmed increase in HBP1 mRNA expression 

levels in the ALK mutant cell lines and the ALK wild type responder NGP, while no 

notable effects were observed in wild type non-responders SK-N-AS and IMR32 (Fig. 

1A). We then analyzed the HBP1 expression over several time points in ALKR1275Q 

mutant CLB-GA cells following TAE684 treatment and observed HBP1 upregulation 

as early as two hours after drug exposure (Supplementary Fig. 1B). ALK mediated 

HBP1 repression was confirmed by several next generation ALK inhibitors in CLB-GA 

cells 8,32 (Fig. 1B-C). We could also confirm the effect of inhibition of mutant ALK 

signaling on HBP1 expression levels in vivo in mouse xenografted SH-SY5Y 

neuroblastoma cells treated with TAE684 and crizotinib (Fig. 1D).  

The effects of ALK induction on HBP1 expression was tested in vitro using SK-N-AS 

(ALKwt) neuroblastoma cells transduced with tetracycline-inducible overexpression 

constructs for ALKwt, ALKF1174L and ALKR1275Q (Fig. 1E). Furthermore, in a cohort of 

283 primary human neuroblastoma tumors (GSE85047), a significant negative 

correlation between HBP1 and ALK gene expression was observed in keeping with 

the proposed negative regulatory effects of ALK on HBP1 (Supplementary Fig. 1C). 

Given the role of ALK activation in a subset of lung carcinomas, we analyzed a 

dataset of EML4/ALK fusion positive non-small-cell lung carcinoma cells (NSCLC) 33 

and observed higher HBP1 expression levels upon ALK inhibition (Fig. 1F). In Ba/F3 

(murine pro-B) cells with ALKF1174L, ALKR1275Q or EML4/ALK, HBP1 levels decreased 
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in ALK mutant cells, while HBP1 levels were restored upon ALK inhibition 

(Supplementary Fig. 1D). Taken together, our data support that ALK leads to 

downregulation of HBP1 expression levels in neuroblastoma cells as well as in other 

cell types including NSCLC.  

 
HBP1 levels are controlled through ALK-PI3K/AKT-FOXO3a  
To test which of the two major ALK downstream pathways (MAPK versus PI3K/AKT) 
4–7,28,34,35 controls HBP1 expression, ALK mutant cells were treated with either a MEK 

inhibitor (U0126) or a PI3K/mTOR inhibitor (BEZ-235). HBP1 upregulation was 

observed after exposure to the PI3K/mTOR inhibitor, while MEK inhibition only slightly 

affect HBP1 levels (Fig. 1G-H). Similar results were obtained using the PI3K inhibitor 

pictilisib (Supplementary Fig. 1E). In further support of these findings, the PI3K/AKT 

inhibitor signature score 36 positively correlated with HBP1 gene levels in the cohort 

of 283 NB patients (GSE85047) (Supplementary Fig. 1F).  

Based on previously reported observations showing negative regulation of FOXO3a 

by ALK through the PI3K-AKT pathway in neuroblastoma 28,36 and anaplastic large 

cell lymphoma (ALCL) 37 and the control of HBP1 by FOXO3a in fibroblasts 38, we 

explored the role of FOXO3a in ALK controlled HBP1 regulation in neuroblastoma. 

First, we assessed a FOXO3a signature 36 in a cohort of 283 NB patients and 

observed positive correlation of the signature with HBP1 gene levels (GSE85047) 

(Supplementary Fig. 1G). Next, we looked into an available transcriptome dataset 

based on doxycycline-inducible FOXO3a overexpression in combination with the 

PI3K/mTOR inhibitor PI-103 in the NB cells SH-SY5Y (ALKF1174L) 36 and confirmed 

transcriptional upregulation of HBP1 upon enhanced FOXO3a expression and PI-103 

treatment in these cells (Fig. 1I). Collectively, our data support that ALK negatively 

regulates HBP1 expression levels through the PI3K-AKT-FOXO3a pathway in 

neuroblastoma.  
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Figure 1: ALK signaling downregulates HBP1 expression through PI3K/AKT - 
FOXO3a signaling in neuroblastoma and other ALKoma tumours. 
A, HBP1 mRNA expression in several ALK wild type (NGP, IMR-32, SK-N-AS) and ALK 

mutant (SK-N-SH, CLB-GA, NB-1) cell lines treated for 6 hours with 0.3 μM TAE684 or 

DMSO relative to the levels in DMSO treated cells. B, HBP1 mRNA levels in CLB-GA treated 

with 0.2 μM LDK378, 0.32 μM TAE684, 0.5 μM crizotinib or DMSO for 6h, relative to the 

DMSO control of each compound. C, Western blot analysis showing HBP1 protein levels 24h 

after treating the CLB-GA cell line with different ALK inhibitors (0.2 μM LDK378, 0.32 μM 

TAE684, 0.5 μM crizotinib or DMSO). D, HBP1 mRNA levels in SH-SY5Y xenografted mice 

treated with TAE68, crizotinib or carrier solution, relative to the carrier solution. E, HBP1 

mRNA levels in SK-N-AS cell lines with TET-inducible ALKwt, ALKF1174L or ALKR1275Q 



Chapter 5: ALK positively regulates MYCN activity through repression of HBP1 
expression  
 

 

174 

constructs treated with tetracycline or ethanol for 24h, relative to the ethanol control of each 

cell line. F, HBP1 expression in EML4/ALK fusion positive non-small-cell lung carcinoma 

cells (NSCLC)-xenografted mice treated with 4 or 20 mg/kg of the ALK inhibitor alectinib. 

Data represents mean ± SD of 2 biological replicates. G, HBP1 mRNA levels in a small panel 

of NB cell lines (one ALKamp, ALKR1275Q, ALKF1174L cell line) treated with 8 μM MEK inhibitor 

U0126, 0.5 μM PI3K/mTOR inhibitor BEZ-235 or DMSO for 6 hours, relative to the DMSO 

control of each cell line. H, Western blot analysis showing HBP1 protein levels 24h after 

treating NB-1 and CLB-GA with the PI3K/mTOR inhibitor (0.5 μM BEZ-235 or DMSO). I, 
HBP1 mRNA levels in cells treated with 0.1 μg/ml doxycycline or nothing for 24 hours to 

induce overexpression of HA-tagged FOXO3A and then treated with either 1 μM PI3K 

inhibitor PI-103 or DMSO for 6 additional hours.  

Error bars represents mean ± SD of respectively 2 technical replicates (A, B, G), 2 biological 

replicates (F), 2 biological replicates, each containing 2 technical replicates (D, E) or 3 

biological replicates (I) and are calculated following error propagation. * P < 0.05, ** P < 0.01, 

*** P < 0.001 

 
HBP1 is negatively regulated by MYCN through the miR-17~92 cluster 
In view of the previously reported negative regulation of HBP1 through the miR-

17~92 cluster in breast cancer, leukemia and lymphoma cells 39,40 and the known 

positive regulation of miR-17~92 by MYCN in NB, leukemia and lymphoma cells 40–42, 

we decided to investigate this MYCN - miR-17~92 - HBP1 regulatory axis in more 

detail in the context of NB cells. To this end, we first evaluated HBP1 protein 

expression levels following shRNA-mediated MYCN knockdown in the 

neuroblastoma IMR-5/75 cell line and found elevated HBP1 protein levels upon 

MYCN knockdown (Fig. 2A). In line with this finding, we also show that in MYCN-

driven mouse tumor formation, Hbp1 is transcriptionally downregulated 

(Supplementary Fig. 2A). The presumed MYCN control of HBP1 by the miR-17~92 

cluster was then confirmed using the previously validated tetracycline-inducible miR-

17~92 overexpression model in SH-EP neuroblastoma cells 41, showing HBP1 

downregulation upon induction of miR-17~92 (Fig. 2B-C, Supplementary Fig. 2B-C). 

In summary, these data are in keeping with negative HBP1 regulation through MYCN 

induced elevated miR-17~92 levels.  
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HBP1 is a suppressor of MYCN activity in neuroblastoma cells 
Previous studies showed that HBP1 acts as a transcriptional repressor through direct 

interaction with other transcription factors, including MYC(N) 29,30. As the functional 

interaction of HBP1 with MYCN in neuroblastoma has not been investigated thus far, 

we first performed co-immunoprecipitation for MYCN in the NGP NB cell line with 

stable HBP1 overexpression (NGP-HBP1up) and confirmed HBP1 and MYCN as 

interaction partners (Supplementary Fig. 2D). To further explore the role of HBP1 in 

regulation of MYCN activity in neuroblastoma, we analyzed the transcriptomes of the 

NGP-HBP1up versus NGP-parental cell line. Gene set enrichment analysis (GSEA 
43) of the genes upregulated upon HBP1 overexpression in NGP-HBP1up revealed 

enrichment (FDR < 0.25) for 11 out of 26 gene sets related to MYC(N) regulation and 

activity 44,45 (Fig. 2D, Supplementary Fig. 2E-F).  

To explore the functional relationship between HBP1 and MYCN in primary human 

tumors, we established a HBP1up pathway signature based on the differentially 

expressed genes in NGP-HBP1up cells as compared to the NGP-parental cells and 

tested this signature in a cohort of 283 primary human NB tumor samples 

(GSE85047), demonstrating strong inverse correlation between the HBP1up pathway 

signature and MYCN gene expression and MYCN activity score 44 (Fig. 2E-F).  

Taken together, our data are in keeping with HBP1 acting as a suppressor of MYCN 

activity in neuroblastoma cells.  

 
The PRC2 complex cooperates with HBP1 in repression of gene activity  
Gene set enrichment analysis (GSEA) of the NGP-HBP1up versus NGP-parental 

data using the ‘c6 Oncogenic Signatures v5.0’ from the Molecular Signatures 

Database (MSigDB), revealed positive enrichment for two PRC2 gene sets (Fig. 2G, 

Supplementary Fig. 2G) containing genes reported to be occupied by the Polycomb 

Repressive Complex 2 (PRC2) components SUZ12 or EZH2 46, thus suggesting an 

upregulation by HBP1 of genes occupied by the PRC2 complex. Next, motif analysis 

using iRegulon 47 on the NGP-HBP1up versus NGP-parental differentially expressed 

genes revealed enrichments for SUZ12 motifs among the downregulated genes 

(Supplementary Fig. 2H). To test whether HBP1 and SUZ12 physically interact to 

mediate these transcriptional changes, we performed co-immunoprecipitation in 

NGP-HBP1up cell line and confirmed HBP1 and SUZ12 interaction (Supplementary 
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Fig. 2I). Moreover, a positive correlation between HBP1 gene levels as well as the 

HBP1up pathway signature scores and an EZH2 inhibitor signature score, generated 

upon EPZ6438 EZH2 inhibitor treatment in SK-N-BE(2c) cells 48, was observed in the 

cohort of 283 NB patients (GSE85047) (Fig. 2H-I).  

In summary, we identified HBP1 as a negative regulator of MYCN activity and 

suggest that HBP1 interacts with the PRC2 complex in gene repression. 
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Figure 2: HBP1 is negatively regulated by MYCN through the miR-17~92 miRNA 
cluster and represses MYCN activity. 
A, Western blot showing HBP1 and MYCN protein levels in the neuroblastoma IMR-5/75 

cells upon shRNA-mediated MYCN knockdown. B, HBP1 mRNA levels in SHEP cells treated 

with tetracycline (or ethanol as control) to induce the miR-17~92 cluster, expressed relative 
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to the corresponding control. C, Western blot analysis showing HBP1 protein levels at the 

same time points after inducing the miR-17~92 cluster in the SHEP cell line as in B. D, 
Heatmap showing the genesets of an in house compiled gene set collection containing all 

publically available MYC(N) activity or target signatures44,45,52,64–68, that are positively or 

negatively enriched upon HBP1 overexpression according to GSEA (with FDR < 0.25). E 
and F, Spearman correlation between the HBP1 pathway signature and the MYCN gene 

levels (E) or the MYCN signature (F) in a cohort of 283 NB patients. G, GSEA for the EZH2 

down geneset in the HBP1 overexpression data and heatmap showing the leading edge (top 

22 genes) of this geneset plotted in the HBP1 overexpression dataset. H and I, Spearman 

correlation between HBP1 gene levels (H) or HBP1 pathway signature (I) and the EZH2 

signature in a cohort of 283 NB patients. 

Error bars represents mean ± SD of 3 biological replicates, each containing 2 technical 

replicates (B) and are calculated following error propagation. * P < 0.05, ** P < 0.01, *** P < 

0.001 

 
Increased HBP1 levels represses tumor aggressiveness  
To elucidate the role of HBP1 on the neuroblastoma cellular phenotype, we 

evaluated the functional characteristics of the NGP-HBP1up cell line versus the NGP-

parental cells. HBP1 overexpression increased the apoptotic response, negatively 

affected colony forming capacity and repressed cell growth both with normal and 

lower serum concentrations, as shown by a marked reduction in viability rate (Fig. 

3A-C, Supplementary Fig. 3A-B). Moreover, NGP-parental cells form compacted 

spheres within 3 days, an activity which is prevented by overexpression of HBP1 as 

indicated by the presence of loose aggregates where individual cells are 

recognizable (Fig. 3D). 

Notably, HBP1 activity has previously been connected to cell differentiation in 

leukemic myeloid cells and in the cortical region of mouse brains 49,50. In keeping with 

this, we also observed higher scores for the differentiation signature of Frumm 51, in 

HBP1 overexpressing versus NGP-parental cells (Supplementary Fig. 3C).  

Importantly, we also revealed that the lowest HBP1 mean expression was observed 

in the MYCN amplified subgroup and in the stage 4 subgroup in a cohort of 283 

neuroblastoma patients (GSE85047) (Supplementary Fig. 3D-E). Additionally, high 

levels of HBP1 expression significantly correlated with better event-free and overall 

survival in all tumor types and in stage 4 tumors only (Fig. 3E-F, Supplementary Fig. 
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3F-G). Moreover, HBP1 expression is a significant predictor of overall survival, 

independently of INSS stage, MYCN amplification and age (p = 0.02). To the best of 

our knowledge, no deletions nor inactivating mutations in HBP1 have been reported 

so far in NB primary tumors or cell lines.  

Collectively, these data indicate that lower HBP1 levels mark tumor aggressiveness 

and that HBP1 could act as tumor suppressor in neuroblastoma.  
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Figure 3: Increased HBP1 levels represses tumor aggressiveness  
A and B, Cell viability (A) and cell death (B) of NGP-parental cell line and the NGP cell line 

with stable HBP1 overexpression at the indicated time points C, Clonogenic survival assays 

in the parental and HBP1 overexpressing NGP cell lines, with the quantification of three 

independent experiments, each consisting of 5 replicates, shown in the graph. D, NGP cell 

line with stable HBP1 overexpression forms a loose aggregate, while the NGP-parental cell 

line forms a dense spheroid on ultra-low-attachment plates. E and F, Kaplan Meier plot 
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showing percentage of overall survival in patients with high or low HBP1 expression in 

tumors of all stages (E) and only stage 4 tumors (F) in the cohort of 283 NB patients.  

Error bars represents mean ± SD of at least 3 biological replicates, each consisting of 2 

technical replicates (A, B) and are calculated following error propagation. * P < 0.05, ** P < 

0.01, *** P < 0.001 

 
Combined pharmacological upregulation of HBP1 and repression of MYCN 
induces synergistic effects 
In view of the new insights into HBP1 regulation and MYCN regulation in 

neuroblastoma cells (Fig. 4A-B), we decided to explore possibilities for drugging this 

regulatory axis. We initially tested the green tea polyphenol epigallocatechin-3-gallate 

(EGCG) previously shown to reduce breast cancer cell proliferation through increase 

of HBP1 mRNA stability. As a more clinically relevant compound, the PI3K/mTOR 

dual inhibitor BEZ-235 was found to induce HBP1 expression (Fig. 1G). First, we 

demonstrate HBP1 upregulation and decreased cell viability after EGCG treatment in 

the ALK mutant cell lines NB-1 and CLB-GA, while no effects were noted in the ALK 

wild type TAE684 ALK inhibitor non-responder SK-N-AS cells (Fig. 4C-D). Next, we 

performed combination drugging for EGCG and BEZ-235 with the BET inhibitor JQ1, 

known to repress transcription elongation and MYCN expression, in MYCN amplified 

cell lines 52, and observed synergistic effects (Combination Index (CI) < 1) on cell 

growth and on MYCN protein levels as compared to treatment with the individual 

compounds in neuroblastoma cell lines (Fig. 4E-F-G-H; Supplementary Fig. 4A-B-C-

D). We tested EGCG and JQ1 combination further in vivo in LSL-MYCN;dßh-iCre 

tumors engrafted in immunocompromised mice and showed significant effects on 

tumor growth, proliferation, apoptosis and survival of mice receiving this combination 

(Fig. 5A-B-C-D; Supplementary Fig. 4E-F). We further observed a partial rescue for 

synergistic BEZ-235/JQ1 effects on viability (Fig. 5E, Supplementary Fig. 4G) in NGP 

cells with stable HBP1 knock down (shHBP1) as compared with the parental cell line.  
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Figure 4: Combined pharmacological upregulation of HBP1 and repression of 
MYCN induces synergistic effects on tumor growth 
A. ALK regulates MYCN activity through several mechanisms. It enhances MYCN protein 

stability by blocking GSK3b through PI3K, while it simultaneously phosphorylates FOXO3 

through this same pathway. In this way, FOXO3 stays cytoplasmatic and can’t activate 

HBP1, which is a negative regulator of MYCN activity. MYCN itself inhibits HBP1 through 

induction of the miR-17-92 cluster, thereby forming a negative feedback loop. To block these 

pathways in order to upregulate HBP1 while negatively affecting MYCN activity, there are 

several nodes that can be targeted by compounds: ALK inhibitors (TAE684, crizotinib, 
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LDK378, alectinib), GSK3b inhibitors, PI3K inhibitors (BEZ-235, PI-103, pictilisib), HDAC 

inhibitors (SAHA, panobinostat), JQ1 which inhibits BRD3 and in this way MYCN indirectly, 

while the green tea component EGCG upregulates HBP1 expression directly. B, Hypothetical 

scheme showing how HBP1 has an impact on the dual role of MYCN: HBP1 causes 

downregulation of genes involved in cell cycle that are positively regulated by MYCN, while it 

upregulates differentiation genes that are repressed by MYCN. C, HBP1 mRNA levels in a 

small panel of NB cell lines (one ALKwt, ALKamp, ALKR1275Q cell line) treated with 25 μM EGCG 

or DMSO, relative to the DMSO control of each cell line. D, Cell viability assay of the same 

cell lines as in C, showing the EGCG dose response curves 48h after treatment. E, Cell 

viability of the NGP cell line, showing the dose response curves of EGCG, JQ1 and the 

combination 48h after treatment. F, Combination index (CI)-values at IC-50 showing 

synergistic effect in a panel of 7 NB cell lines with different ALK and MYCN status. Synergy: 

CI < 1.0, additive: CI = 1.0, antagonism: CI > 1.0. G, Cell viability of the NGP cell line, 

showing the dose response curves of BEZ-235, JQ1 and the combination 48h after 

treatment. H, Western blot analysis showing MYCN protein levels 48h after treating the 

mNB-A1 cells with DMSO, 0.405 μM BEZ-235, 1.215 μM JQ1 or the combination. 

Error bars represents mean ± SD of 2 technical replicates (C) or of at least 3 biological 

replicates, each consisting of 2 technical replicates (D, E, G) and are calculated following 

error propagation. * P < 0.05, ** P < 0.01, *** P < 0.001 

 

Given the reported effect of HDAC inhibitors on MYCN protein levels 53, we also 

tested the effects of combined BEZ-235 and HDAC inhibitor SAHA (vorinostat) 

treatment in a panel of 8 cell lines and in the patient-derived xenograft (PDX)-derived 

cell line (LU-NB-2) 54,55, showing synergistic effects on cell survival (Fig. 5F; 

Supplementary Fig. 5A-B-C-D) and a synergistic effect on HBP1 and MYCN levels in 

the CLB-GA cell line (Supplementary Fig. 5E). Moreover, analysis of transcriptomes 

of the treated cells demonstrates downregulation of MYCN expression and more 

importantly, the MYCN activity score44, thus indicating the expected reduction in 

MYCN activity (Fig. 5G-H). Finally, as for the BEZ-235 and JQ1 combination, we also 

observed increased cell viability in the shHBP1 cell line compared with the parental 

cell line for this BEZ-235 and SAHA combination (Fig. 5I, Supplementary Fig. 5F). 

Finally, we also tested the more recently developed potent HDAC inhibitor 

panobinostat 56, also demonstrating the expected synergism on cell viability in the 

tested neuroblastoma cell lines and the patient-derived xenograft (PDX)-derived cell 
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line (LU-NB-2) 54,55 (Fig.5J; Supplementary Fig. 5G-H-I) and synergistic upregulation 

of HBP1 mRNA the CLB-GA cell line upon the BEZ-235 and panobinostat 

combination (Supplementary Fig. 5J).  
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Figure 5: BEZ-235 in combination with JQ1 or HDACi synergistically 
upregulates HBP1 levels with concomitant repression of MYCN activity  
A, Kaplan Meier plot showing percentage survival of LSL-MYCN;dßh-iCre grafted mice 

treated with DMSO, EGCG (20 mg/kg), JQ1 (50 mg/kg) or the combination. Black stars: 

survival DMSO vs combination, blue stars: survival EGCG vs combination, n = 7 mice/group. 
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B and C, Graphs showing Ki-67 positive cells (B) and cleaved caspase-3 positive cells (C) in 

immunohistochemistry (IHC) staining in tumor sections of the forced treatment group of mice. 

D, IHC staining for the proliferative cells (Ki-67) and apoptotic cells (cleaved caspase-3) 

mentioned in B and C. Scale bar = 200 µm. E, Barplots showing % cell viability in the NGP-

parental and shHBP1 cell line upon treatment with 2.8 μM BEZ-235, 8 μM JQ1 or the 

combination. F, Cell viability of the NGP cell line, showing the dose response curves of BEZ-

235, SAHA and the combination 48h after treatment. G and H, MYCN expression (G) and 

MYCN activity score (H) in NB-1 cells treated with DMSO, 0.5 μM BEZ-235, 0.5 μM SAHA or 

the combination. I, Barplots showing % cell viability in the NGP-parental and shHBP1 cell line 

upon treatment with 2.8 μM BEZ-235, 2.8 μM SAHA or the combination. J, Cell viability of the 

NGP cell line, showing the dose response curves of BEZ-235, panobinostat and the 

combination 48h after treatment. 

Error bars represents mean ± SD of 7 biological replicates (B, C), of at least 2 biological 

replicates, each consisting of 2 technical replicates (E, F, I, J) or of 3 biological replicates (G, 

H) and are calculated following error propagation. * P < 0.05, ** P < 0.01, *** P < 0.001 

 

5.1.6 DISCUSSION  

 

We provide in vitro and in vivo evidence for the existence of another mechanism for 

activation of MYCN activity through ALK-PI3K-FOXO3a controlled down regulation of 

the negative regulator of MYC(N) activity HBP1. Together with the previously 

described ALK-ERK5-driven transcriptional induction of MYCN and regulation of the 

oncogenic activity of MYCN through increased mRNA levels and protein 

phosphorylation by the ALK-PI3K/mTOR-GSK3b axis24–27,57,58, this represents a third 

mechanism of ALK controlled MYCN activation. We also show that in neuroblastoma 

cells MYCN itself indirectly represses HBP1 expression levels through its 

downstream upregulated miRNA cluster miR-17∼92 that targets HBP1.As such, a 

complex inter-regulatory network emerges where ALK regulates MYCN through three 

distinct mechanisms24–27,55,56, MYCN transcriptionally activates ALK59 and both ALK 

and MYCN repress HBP1 expression levels. Given the proven role of MYCN as 

driver oncogene in neuroblastoma oncogenesis2, our data provide a further 

mechanistic explanation for the previously reported increased tumor aggressiveness 

in patients with combined MYCN amplification and ALKF1174 mutations and mouse 
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and zebrafish modeling which demonstrated a key role for mutated ALK in 

accelerated MYCN-driven neuroblastoma formation21–23.  

In this study, we investigated for the first time the functional interaction of HBP1 with 

MYCN in the context of neuroblastoma. We showed evidence for physical interaction 

between MYCN and HBP1, while HBP1 overexpression revealed significant 

enrichment for gene sets related to MYC(N) regulation and activity. Furthermore, in a 

cohort of 283 primary human NB tumor samples, we demonstrated strong inverse 

correlation between the HBP1 upregulated pathway signature and MYCN gene 

expression and MYCN activity score. Taken together, these data support the role of 

HBP1 as a suppressor of MYCN activity in neuroblastoma cells.  

Unexpectedly, the data mining of the transcriptome alterations upon HBP1 

overexpression and EZH2 inhibitor signature scores suggest that HBP1 abrogates 

the MYCN/PRC2 controlled repression of pro-differentiation genes. Our findings 

provide further evidence for a role for EZH2 and SUZ12 as components of the PRC2 

complex in the MYCN mediated gene repression48,60 and for the first time assigns a 

putative function to HBP1 as regulatory factor mediating the release of transcriptional 

repression by the MYCN/EZH2 complex. Further, HBP1 upregulation also leads to 

repression of MYCN activated genes, possibly through recruitment of HDAC and 

SIN3B as described for MYC 40. Taken together, while the exact mode-of-action of 

HBP1 in relation to MYCN and PRC2 remains to be resolved, our data support 

previous findings that HBP1 affects both the MYC(N) transcriptional activating and 

repressing activity 29. As such, our findings also support the recently suggested role 

for PRC2 in MYCN controlled gene repression 48,60.  

Unraveling of the ALK signaling cascade has previously provided novel putative 

drugging approaches as illustrated by the finding of RET and ERK5 as druggable 

downstream ALK targets 28,57. In this study, we explored several drug combinations 

targeting HBP1 and/or MYCN to explore possible synergistic interactions. We tested 

a PI3K/mTOR inhibitor aimed to activate (amongst others) HBP1 expression in 

combination with BET inhibitor JQ1, a known negative regulator of MYC(N) activity in 

MYCN amplified cell lines 52, in order to further decrease cell viability as well as 

MYC(N) activity and observed strong synergistic effects in neuroblastoma cells. 

Secondly, we combined the same PI3K/mTOR inhibitor with different HDAC inhibitors 

mediating MYCN suppression 53 and previously shown to give promising effects on 
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MYC-driven medulloblastoma56 and Burkitt lymphoma61 and also observed 

synergistic effects, both on conventional neuroblastoma as well as PDX-derived cell 

lines54. In addition to these combinations (Fig. 4A-B), other approaches can be 

envisioned to target MYCN or MYCN activity, thus offering the potential for 

consecutive series of different drug combinations to achieve sustained blocking of 

MYCN activity in neuroblastoma. Such approaches and other potent drug 

combinations as well as novel immunotherapeutic approaches may ultimately lead to 
accomplish the final goal to achieve better and long-term survival for NB patients. 

5.1.7 MATERIAL AND METHODS 

 

Cell lines and reagents 
Human neuroblastoma cells were cultured in RPMI-1640 medium (Invitrogen), 

supplemented with fetal bovine serum (10%), kanamycin (100 µg/ml), 

penicillin/streptomycin (100 IU/ml), L-glutamin (2 mM) and HEPES (25 mM) (Life 

Technologies), while the mouse mNB-A1 cells were cultured in this medium 

supplemented with N-2 Supplement and B-27 Serum-Free Supplement (Life 

Technologies). The PDX-derived LU-NB-2 cell line, derived from a MYCN amplified 

neuroblastoma, orthotopically xenografted in NSG mice forming metastasizing 

tumors, was cultured under serum-free, stem-cell promoting culture conditions 54,55. 

Cells were maintained at 37°C in a 5% C02-humidified environment. 

The compounds NVP-TAE684 (ALK inhibitor, S1108), BEZ-235 (PI3K/mTOR 

inhibitor, S1009), pictilisib (PI3K inhibitor, S1065), U0126 (MEK inhibitor, S1102), 

EGCG (S2250) and panobinostat (HDAC inhibitor, S1030) were purchased from 

SelleckChem, crizotinib (ALK inhibitor, PZ0191) and SAHA (vorinostat, HDAC 

inhibitor, SML0061) from Sigma-Aldrich, LDK-378 (ALK inhibitor, A-1189-5) from 

Hoelzel Biotech and JQ1 (BET inhibitor, 27401) from BPS Bioscience. Compounds 

were dissolved in sterile DMSO, stored at -20°C and further diluted to an appropriate 

final concentration in culture medium at the time of use. DMSO was used as solvent 

control for every treatment.  
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Evaluation of HBP1 expression upon ALK and downstream pathway inhibition 
HBP1 expression levels were evaluated in (1) 6 NB cell lines with different ALK 

status (ALKwt, ALKF1174L, ALKR1275Q, ALKamp) treated with 0.32 μM TAE684 for 6 

hours, (2) the CLB-GA cell line (ALKR1275Q) treated with 0.32 μM TAE684 and 

harvested at different time points (10, 30, 60, 120, 240, 360 min) (E-MTAB-3205 28), 

(3) CLB-GA cells treated with 0.2 μM LDK378, 0.32 μM TAE684, 0.06 μM X396, 0.5 

μM crizotinib, 0.05 μM trametinib, 0.5 μM BEZ-235 and 9.5 μM vandetanib for 6 

hours (E-MTAB-3206 28), (4) SK-N-AS cell lines with tetracycline-inducible ALKwt, 

ALKF1174L or ALKR1275Q constructs treated with 2 μg/ml tetracycline or ethanol for 24 

hours (E-MTAB-3207 28), (5) NB-1 and CLB-GA treated with 0.5 μM BEZ-235, 0.5 μM 

pictilisib or 8 μM U0126 for 6 hours for RNA and protein, (6) mice with 

subcutaneously xenografted SH-SY-5Y neuroblastoma cells, treated with TAE684 

and crizotinib, (7) Ba/F3 (murine pro-B) cells with an ALKwt, ALKF1174L, ALKR1275Q or 

EML4/ALK fusion-protein construct treated with 0.32 μM TAE684 for 6 hours, (8) 

publically available data of NSCLC treated with Alectinib (GSE25118 33), (9) a 

published dataset of a FOXO3-inducible SH-SY5Y cell line (GSE42762 36) and (10) a 

cohort of 283 neuroblastoma tumor samples (GSE85047)  

 
Testing synergism of drug combinations in vitro 
Neuroblastoma cells were seeded in 96-well tissue culture plates in triplicate at 30% 

confluency, allowed to recover overnight and subsequently treated with a range of 

concentrations of the two inhibitors while keeping the final concentration of DMSO 

constant. 48 hours after treatment, cell viability was measured using Cell-Titer Glo 

(Promega), according to the manufacturer’s protocol and luminescence was 

measured with the GloMax®-Multi Detection System (Promega). To evaluate 

possible synergism, combination indexes (CI) for each combination were calculated 

using the CalcuSyn software (Biosoft, Ferguson, MO), which uses the Median Effect 

method 62. Synergism is defined as a CI-value less than 1.0, while additive effects 

result in a CI-value equal to 1.0.   
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Synergistic effects of EGCG and JQ1 in vivo 
LSL-MYCN;dßh-iCre tumors were re-grafted in the flank of immuno-deficient mice.  

The short-term treatment experiment consisted of 4 groups each containing 3 mice: 

vehicle (12,5% DMSO in 5% glucose), EGCG (20 mg/kg), JQ1 (50 mg/kg) or the 

combination (EGCG + JQ1). When tumors reached a volume of around 500 mm3, 

mice were treated twice daily (100 μl i.p.) during 3 days. Hereafter, mice were 

sacrificed by cervical dislocation. Tumors were excised, formalin-fixed, analyzed for 

histology (H&E) and immunohistochemically stained for Ki-67 and cleaved caspase-

3.  

To monitor the effects on tumor growth and survival, a long-term experiment was 

performed. After tumors reached a volume of around 100-150 mm3, 28 mice were 

randomly assigned to the 4 groups. Mice were treated daily (100 μl i.p.) for a period 

of maximal 23 days. When tumor sizes exceeded 3000 mm3, mice were sacrificed by 

cervical translocation.  

 
SHEP-miR-17~92 system 

The miR-17∼92 cluster was induced with 2 μg/ml tetracycline or ethanol (control) in 

the previously described SHEP-TR-miR-17~92 model system41 and cells were 

harvested at different time points (0, 24, 48, 72 hours).  

 

RNA isolation, cDNA synthesis and RT-qPCR  
RNA isolation, cDNA synthesis and RT-qPCR of the generated samples was 

performed as we described earlier 28. The Cq-values for target gene expression were 

normalized with at least three reference genes (primer sequences: Supplementary 

Table I.) and qBasePlus software (Biogazelle) was used to analyze the results 63.  

 
Establishment of stable HBP1 overexpressing cell lines 
NGP cells were transduced with Precision LentiORF Human HBP1 viral particles 

(ThermoScientific). Transduced cells were selected using blasticidin (20 µg/ml), 

subsequently maintained and harvested for further experiments.  
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In vitro assessment of HBP1 effect  
NGP-parental and NGP HBP1 cells were seeded in white 96-well tissue culture 

plates in triplicate at 30% confluency and allowed to recover overnight. Cell viability 

was measured in triplicate using Cell-Titer Glo (Promega) 24h, 48h, 72h and 96h 

after seeding, while Caspase Glo (Promega) was used to evaluate cell death, both 

according to the manufacturer’s protocol. Additionally, NGP-HBP1up and the NGP-

parental cell lines were seeded at 70000 cells/well in sextuple in 96-well tissue 

culture plates in the presence of 10, 5, 1 or 0.1% serum and monitored and 

quantified using IncuCyte ZOOM technology (Essen BioScience). 

To assess the colony formation capacity, cells were seeded in 5-fold at a 

concentration of 2000 cells per 6-cm dish. Cells were allowed to recover and to form 

colonies during a period of at least one week, followed by fixation of the cells by 

adding 0,5 ml 4% formaldehyde to each dish. After 1 hour, dishes were washed and 

colonies were colored with 0,005% crystal violet. After washing and air-drying, the 

dishes were scanned and evaluated with ImageJ and OpenCFU to quantify the 

differences. 

For the spheroid formation, NGP-parental and NGP-HBP1up cells were seeded at 

4000 cells/well in 48-fold in hydrogel coated 96 well plates, termed ultra-low 

attachment plates (ULA, Corning 7007) and monitored and quantified using IncuCyte 

ZOOM technology (Essen BioScience).  

 
Co-immunoprecipitation  
10 million NGP HBP1 cells were grown in T175s. After washing in ice-cold PBS, 

harvesting and centrifugation, cells were lysed with RIPA-buffer. 1/10 of the lysate 

was kept for input. Samples were incubated for 4 hours with 2 μg of the appropriate 

antibody (anti-MYCN (B8.4.B, sc-53993) from Santa Cruz Biotechnology or anti-

HBP1 (11746-1-AP) from ProteinTech), followed by incubation with ProteinA Ultralink 

Resin beads (Thermo Scientific, 53139) at 4°C overnight. After washing, proteins 

were denatured with denaturation buffer (per condition: 20 μl 2x laemmli buffer + 19 

μl RIPA buffer + 1 μl beta-mercapto-ethanol) and shaking the samples in a heat-

block at 95°C. The eluate was used for Western. 
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Protein isolation, antibodies and western blotting 
Protein isolation and western blotting was performed as we described earlier 28. 

MYCN (9405, 1:1000), SUZ12 (3737, 1:1000), secondary anti-rabbit (7074, 1:50000) 

and anti-mouse (7076, 1:50000) antibodies were obtained from Cell Signaling, while 

antibodies against the loading proteins vinculin (V9141, 1:10000) and α-tubulin 

(T4026, 1:10000) from Sigma Aldrich and the HBP1 (A-5) antibody (sc-376831, 

1:400) from Santa Cruz Biotechnology.  

 

Microarray-based gene expression profiling  
RNA quality was analyzed using Experion (Bio-Rad). Samples from the parental and 

NGP HBP1 cell lines were labelled and hybridized to the Sureprint G3 human GE 

8x60K microarrays (Agilent Technologies), according to the manufacturer’s 

guidelines and starting from 200 ng RNA. The data were normalized with the vsn 

method, using the vsn and Limma packages in R.  

 
Signature score generation and analysis and GSEA 
Using the limma R-package, differential expression analysis was performed 

comparing the parental and NGP HBP1 samples. The established signatures consist 

of the differentially expressed genes with adjusted p-value (False Discovery Rate 

(FDR)) < 0.05. Next, we generated an EZH2 inhibitor signature, based on public data 

of EHZ2 inhibition with EPZ6438 in the SK-N-BE(2c) cell line48 and a differentiation 

signature, based on public data of treating SK-N-BE(2c) and SH-SY5Y with pro-

differentiating agents 51. Signature score analyses were conducted using a rank-

scoring algorithm28. Gene set enrichment analysis (GSEA 43) was performed using 

the MSigDB ‘c6 Oncogenic Signatures v5.0’ gene sets 

(software.broadinstitute.org/gsea/msigdb) and an in house compiled gene set 

catalogue containing all MYC target genesets from the MSigDB ‘Hallmark v5.0’ 

catalogue as well as publically available MYC(N) activity or target signatures 
44,45,52,64–68. The genesets, showing positively or negatively enrichment and with a 

FDR < 0.25 are plotted in a heatmap.  
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RNA sequencing after SAHA and BEZ 
RNA quality was evaluated using the Fragment Analyzer (Advanced Analytics). 

Library prep was performed with the TruSeq Stranded mRNA Library Prep Kit LT 

(Illumina), following manufacturer’s instructions. Quality of the library was assessed 

with BioAnalyzer (Agilent) and concentrations were checked with the Kapa Library 

Quantification Kit (Kapa Biosystems). After pooling the samples, RNA sequencing 

was performed with the NextSeq 500 High Output kit, V2, 75 cycli, single-end 

(Illumina), following manufacturer’s instructions, on the NextSeq 500 (Illumina). 

Quality of the data was checked by fastQC. Thereafter, the data was mapped to 

Hg38 by STAR and count data was generated using RSEM. Differential expression 

analysis was performed with Limma-voom in R.  

 
Statistical analyses 
Statistical significance was calculated with GraphPad Prism7 by unpaired one-way 

ANOVA with Bonferroni correction when comparing more than two unmatched 
groups, while unpaired t-test was chosen when comparing two groups.  
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5.1.11 SUPPLEMENTARY INFORMATION accompanies the paper on the Oncogene 

website (http://www.nature.com/onc). 
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5.1.13 TABLES 

 

Supplementary Table I.: primer sequences 
Primer sequences for the target and reference genes. 

 

Gene Primer Sequence  

HBP1 
 

Forward TAGAGCTGAAGGCTGTGATA 

Target genes 
Reverse ACAGACTCGCCAAATGATAC 

MYCN 
 

Forward AGGCATCGTTTGAGGATCAG 

Reverse AGGACACCCTGAGCGATTC 

UBC 
 

Forward ATTTGGGTCGCGGTTCTTG 

Reference genes 

Reverse TGCCTTGACATTCTCGATGGT 

TBP 
 

Forward CACGAACCACGGCACTGATT 

Reverse TTTTCTTGCTGCCAGTCTGGAC 

B2M 
 

Forward TGCTGTCTCCATGTTTGATGTATCT 

Reverse TCTCTGCTCCCCACCTCTAAGT 

YWHAZ 
 

Forward ACTTTTGGTACATTGTGGCTTCAA 

Reverse CCGCCAGGACAAACCAGTAT 

HPRT1 
 

Forward TGACACTGGCAAAACAATGCA 

Reverse GGTCCTTTTCACCAGCAAGCT 

HMBS 
 

Forward GGCAATGCGGCTGCAA 

Reverse GGGTACCCACGCGAATCAC 

SDHA 
 

Forward TGGGAACAAGAGGGCATCTG 

Reverse CCACCACTGCATCAAATTCATG 

 

Supplementary Table II.: GSEA results (excel) 
Supplemental data containing the results of the GSEA for the NGP HBP1 data. First two files 

contain the genesets from an in-house build collection that are respectively positively and 

negatively enriched in the NGP HBP1 dataset, while the last two files the genesets from c6 

collection (Broad Institute) that are respectively positively and negatively enriched in the NGP 

HBP1 dataset.   
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5.1.14 SUPPLEMENTARY FIGURES 
 

 
Supplementary figure 1: HBP1 is downregulated by mutant through PI3K-AKT-
FOXO3a. 
A, ALK 77-gene signature score in several ALK wild type (NGP, IMR-32, SK-N-AS) and ALK 

mutant (SK-N-SH, CLB-GA, NB-1) cell lines treated for 6 hours with 0.3 μM TAE684 or 

DMSO relative to the levels in DMSO treated cells. B, HBP1 expression in CLB-GA cells 

after treatment with 0.32 μM TAE684 or DMSO at the indicated time points, relative to the 

DMSO control at the 0 minutes time point. C, Spearman correlation between HBP1 and ALK 

gene expression in a cohort of 283 NB tumors. D, HBP1 mRNA levels in Ba/F3 (murine pro-

B) cells with an ALKwt, ALKF1174L, ALKR1275Q or the EML4/ALK fusion-protein construct treated 

with 0.32 μM of the ALK inhibitor TAE684 or DMSO for 6 hours. E, HBP1 mRNA levels in a 
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small panel of NB cell lines (one ALKamp and one ALKR1275Q) treated with 0.5 μM PI3K inhibitor 

pictilisib or DMSO, relative to the DMSO control of each cell line. F and G, Spearman 

correlation between PI3K/AKT inhibitor signature score and the HBP1 gene expression level 

in a NB cell line panel (F) and in a cohort of 283 NB tumors (G).  

Error bars represents mean ± SD of respectively 3 biological replicates (A), 2 biological 

replicates (B) or 2 technical replicates (D, E) and are calculated following error propagation. * 

P < 0.05, ** P < 0.01, *** P < 0.001 
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Supplementary figure 2: HBP1 is negatively regulated by MYCN through the 
miR-17~92 miRNA cluster and represses MYCN activity. 
A, Expression of Hbp1 in normal ganglia and neuroblasts hyperplasia from 1 week, 2 weeks 

and 6 weeks old wild type or Th-MYCN mice. Data represent mean gene expression ± SD of 

4 samples. B and C, miR-17 (B) and miR-92a1 (C) mRNA levels in SHEP cells treated with 

tetracycline (or ethanol as control) to induce the miR-17~92 cluster, expressed relative to the 

corresponding control. D, Co-immunoprecipitation between HBP1 and MYCN in NGP HBP1 
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cell line. E, GSEA for the MYC down geneset (Dang) in the HBP1 overexpression data and 

heatmap showing the leading edge (top 28 genes) of this geneset plotted in the HBP1 

overexpression dataset. F, GSEA for the MYCN up geneset (Versteeg) in the HBP1 

overexpression data and heatmap showing the leading edge (top 2O genes) of this geneset 

plotted in the HBP1 overexpression dataset. G, GSEA for the SUZ12 down geneset in the 

HBP1 overexpression data and heatmap showing the leading edge (top 22 genes) of this 

geneset plotted in the HBP1 overexpression dataset. H, Table showing top 3 results of the 

iRegulon analysis on the genes differentially downregulated upon HBP1 overexpression in 

NGP, enriched track ID SUZ12: WgEncodeSydhTfbsNt2d1Suz12UcdPh. I, Co-

immunoprecipitation between HBP1 and SUZ12 in NGP HBP1 cell line. 

Error bars represents mean gene expression ± SD of 4 samples (A) or mean ± SD of 3 

biological replicates, each containing 2 technical replicates (B, C) and are calculated 

following error propagation. * P < 0.05, ** P < 0.01, *** P < 0.001 
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Supplementary figure 3: Increased HBP1 levels represses tumor 
aggressiveness  
A and B, Cell proliferation index of NGP-parental cell line and the NGP cell line with stable 

HBP1 overexpression at the indicated time points with normal FBS percentages (A) or lower 

serum concentrations (B). C, The differentiation signature score in the parental and HBP1 

overexpressing cell lines. D, HBP1 expression in the cohort of 283 NB patients with MYCN 

amplified vs MYCN single copy tumors. E, HBP1 expression in the cohort of 283 NB patients 

with low stage (stage 1, 2, 3 & 4S) vs high stage (stage 4) tumors. F and G, Kaplan Meier 
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plot showing percentage of event-free survival in patients with high or low HBP1 expression 

in tumors of all stages (F) and only stage 4 tumors (G) in the cohort of 283 NB patients.  

Error bars represents mean ± SD of at least 3 technical replicates (A, B), 2 biological 

replicates (C), while boxplots represent mean ± 95% confidence interval (D, E) and are 

calculated following error propagation. * P < 0.05, ** P < 0.01, *** P < 0.001 
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Supplementary figure 4: Combined pharmacological upregulation of HBP1 and 
repression of MYCN induces synergistic effects on tumor growth 
A and B, Cell viability of the CLB-GA cell line (A) and the NB-1 cell line (B), showing the 

dose response curves of EGCG, JQ1 and the combination 48h after treatment. C and D, Cell 

viability of the CLB-GA cell line (C) and the NB-1 cell line (D), showing the dose response 
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curves of BEZ-235, JQ1 and the combination 48h after treatment. E, Plot showing tumor 

volume (mm3) of LSL-MYCN;dßh-iCre grafted mice treated with DMSO, EGCG (20 mg/kg), 

JQ1 (50 mg/kg) or the combination, n = 7 mice/group. F, Plot showing the weight (g) of LSL-

MYCN;dßh-iCre grafted mice treated with DMSO, EGCG (20 mg/kg), JQ1 (50 mg/kg) or the 

combination, n = 7 mice/group. G, Cell viability of the NGP-parental and shHBP1, showing 

the dose response curves of BEZ-235, JQ1 and the combination 48h after treatment. 

Error bars represents mean ± SD of at least 3 biological replicates, each consisting of 2 

technical replicates (A, B, C, D, F) and are calculated following error propagation. * P < 0.05, 

** P < 0.01, *** P < 0.001 
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Supplementary figure 5: BEZ-235 induced HBP1 levels in combination with 
HDACi induces synergistic effects on tumor growth  
A, CI-values at IC-50 of the BEZ-235 and SAHA combination, showing synergistic effect in a 

panel of 8 NB cell lines with different ALK and MYCN status. Synergy: CI < 1.0, additive: CI = 

1.0, antagonism: CI > 1.0. B and C, Cell viability of the CLB-GA cell line (B) and the NB-1 

cell line (C), showing the dose response curves of BEZ-235, SAHA and the combination 48h 

after treatment. D, Cell viability of the PDX-derived cell line LU-NB-2, showing the dose 
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response curves of BEZ-235, SAHA and the combination 48h after treatment. E, Western 

blot analysis showing HBP1 and MYCN protein levels 48h after treating NB-1 and CLB-GA 

with DMSO, 0.5 μM BEZ-235, 0.5 μM SAHA or the combination. F, Cell viability of the NGP-

parental and shHBP1, showing the dose response curves of BEZ-235, SAHA and the 

combination 48h after treatment. G and H, Cell viability of the CLB-GA cell line (G) and the 

NB-1 cell line (H), showing the dose response curves of BEZ-235, panobinostat and the 

combination 48h after treatment. I, Cell viability of the PDX-derived cell line LU-NB-2, 

showing the dose response curves of BEZ-235, panobinostat and the combination 48h after 

treatment. J, HBP1 mRNA levels in CLB-GA cells treated with DMSO, 0.243 μM BEZ-235, 

0.00243 μM panobinostat or the combination for 48h, showed relative to the DMSO control.  

Error bars represents mean ± SD of at least 3 biological replicates, each consisting of 2 

technical replicates (B, C, D, F, G, H, I) or of 2 technical replicates (J) and are calculated 

following error propagation. * P < 0.05, ** P < 0.01, *** P < 0.001 
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Chapter 6  Discussion and future perspectives 
 

ALK has become a subject of intensive neuroblastoma research since the discovery 

of constitutively activating mutations in its kinase domain in 2008 by several groups, 

including the teams at Ghent University 1–4. Two important questions were addressed 

during my research project. The first aim was triggered by the availability of an FDA 

approved small molecule inhibitor targeting the kinase domain of ALK tested in other 

ALK-driven cancer entities, which accelerated the opening of phase 1 clinical trials in 

children with neuroblastoma 5,6. At the time such trials were initiated, our knowledge 

of the oncogenic regulated networks and target genes downstream of ALK in 

neuroblastoma however was still incomplete. Given that resistant clones often 

emergence after initial successful treatment with small molecule inhibitors, I first 
focussed on more detailed dissection of ALK signaling in order to predict 

possible resistance mechanism and detect new vulnerable downstream targets. Next, 

several observations, including studies from the Ghent team 7, 8,9, provided evidence 

that the presence of ALK mutations could contribute to tumour aggressiveness, 

specifically in combination with MYCN amplification. Therefore, I exploited the ALK-
driven transcriptome signature to identify novel ALK targets that could provide 

insight into the contribution of mutant ALK in tumour aggressiveness. 

 

6.1 General discussion 
 

6.1.1  Deciphering mutant ALK activated signaling in neuroblastoma cells  

 
One of the primary aims of my thesis was to unravel the activated pathways 

downstream of mutated ALK in neuroblastoma. To this end, we established the ALK 

77-gene signature, which captures the transcriptomic effects of pharmacological 

inhibition of ALK. This signature was generated through profiling of a panel of 

neuroblastoma cell lines with different ALK mutational status and was further 

validated in ALK-driven human and mouse tumours (paper 1) 10. Previous knowledge 

of ALK downstream networks was mainly based on studies of the role of oncogenic 

ALK fusion proteins in non-small cell lung carcinoma (NSCLC) and anaplastic large 

cell lymphoma (ALCL), showing the involvement of different downstream pathways, 
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including the MAPK, PI3K/mTOR, PLCg, SHH, CRKl-C3G-RAP1, JAK-STAT and Jun 

pathways 11,12. In neuroblastoma, PLCg, SHH, CRKl-C3G-RAP1, JAK-STAT and Jun 

were not detected as downstream effectors of the signal, while we mainly observed 

ALK-driven MAPK, PI3K/mTOR and MYC(N) signaling, in keeping with findings by 

others 1–4,9,13,14. Differences in signaling pathways downstream of a given receptor 

can be explained by cellular context, the tumour type and the identity of the mutation 

or fusion partner of ALK 11,12.  

 

The MAPK signaling axis is of particular importance in neuroblastoma tumorigenesis, 

given the observation that mutations in RAS/MAPK pathway components are 

enriched in relapsed cases 15. More intriguingly, our ALK 77-gene signature 10 

revealed that several MAPK negative regulators are downregulated upon 

pharmacological ALK inhibition, suggesting that the negative feedback will be 

abolished and the MAPK pathway may become re-activated. Therefore, we have 

tested the use of MAPK inhibitors in neuroblastoma cell lines with different ALK 

status. However, this treatment only resulted in modest changes in cell viability. 

Nevertheless, a combination of a compound targeting the MAPK pathway with an 

ALK inhibitor could be beneficial to keep the MAPK pathway repressed and in this 

way, circumvent relapse caused by MAPK activation. Moreover, recently, it has been 

shown that neuroblastoma cells without ERK phosphorylation were almost not 

sensitive to MEK inhibitors, while a significant growth inhibition and suppression of 

MYCN was observed in cells with ERK phosphorylation 16. Moreover, a dual inhibitor 

of RAS and MEK results in more effective tumour suppression of neuroblastoma, 

since the upregulation of the negative feedback loop observed upon MEK inhibition 

alone is counteracted by the effect on RAS 16. 

 

The activation of MYC(N) signaling is in line with previous findings and in keeping 

with the reported effects of activation of PI3K-AKT-GSK3ß controlled MYCN protein 

stabilization and MAPK-ERK5 enhanced MYCN transcription 14,17–20. Importantly, 

further exploration of the 77-gene signature allowed us to identify HBP1 as a mutant 

ALK downregulated gene implicated in yet another pathway driving MYCN activity 

(see further). In view of these novel findings, one could envision that combined 

treatments targeting MYCN activity, e.g. using ALK inhibitors in combination with BET 

or HDAC inhibitors, could act synergistically and offer novel venues for therapeutic 
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intervention in relapsed or ultra-high-risk patients with ALKmutant and MYCNamplified 

tumours. 

 

Of further notice, we also detected ETV5, a member of the PEA3 family of ETS 

transcription factors and a known oncogene 21,22, as being upregulated by mutant 

ALK. ETV5 is involved in diverse cellular processes, including cell cycle control, 

proliferation and tissue remodelling and is involved in differentiation of neural crest 

progenitors 21–23. Further studies by our team (not part of this thesis), recently 

showed that ETV5 contributes to proliferation and invasion of neuroblastoma cells, 

thus possibly explaining the increased incidence of ALK mutations in relapsed 

tumours 24 (Mus et al., in preparation).  

6.1.2 RET is regulated through the ALK-PI3K-AKT-FOXO3a axis downstream of 

mutant ALK in neuroblastoma 

 
We identified a mutant ALK-PI3K-AKT-FOXO3a-RET signaling axis in neuroblastoma 

cells and a strong correlation between RET expression and our ALK 77-gene 

signature (paper 1) 10. Furthermore, the 77 genes from the signature show the same 

response upon treatment with the RET inhibitor vandetanib as upon ALK inhibition, 

suggesting cross-talk between RET and ALK. This underscores our hypothesis that 

combining an ALK inhibitor with a RET inhibitor could synergistically shut down the 

involved pathways. Therefore, further dissection of the role of RET in neuroblastoma 

and more specifically in ALK signaling in neuroblastoma needs further investigation. 

Moreover, since ALK is necessary for proliferation of immature sympathetic neurons 
25 and RET is needed for migration, proliferation, differentiation and survival of neural 

crest cells 26, the cross-talk between ALK and RET observed by us and the group of 

Janoueix-Lerosey 10,27 suggests that ALK mediates its effects on neuronal 
proliferation at least partly through RET. 

6.1.3 MYCN activated genes are unexpectedly upregulated upon pharmacological 

ALK inhibition  

 

To further unravel the dynamic transcriptional responses following ALK inhibition, we 

explored mRNA profiling data at different time points after drug admission in the 

neuroblastoma cell line CLB-GA carrying an ALKR1275Q mutation (paper 2). First, we 
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confirmed the presence of PI3K/mTOR, MAPK and MYC(N) signaling downstream of 

ALK, thus also validating the experimental setting. Next, we could show effects on 

the transcriptome as early as 1 to 2 hours after treatment with the ALK inhibitor 

TAE684. An intriguing and unexpected finding was the increase in genes activated 

by MYCN after 30 to 60 minutes (paper 2), before the overall MYCN activity goes 

down at 60 to 120 minutes as initially reported (paper 1) 10. While interesting and 

intriguing, this result should be further investigated. At present, we can only speculate 

on the underlying mechanism for this observation. As depicted in figure A, several 

mechanisms are now known through which ALK impacts on MYCN activity. The 

current finding described in paper 2 could possibly be explained by a feedback 

mechanism that senses ALK inactivation and further transiently enhances the 

transcription or stabilisation of targets activated by MYCN, while leaving the MYCN 

repressed targets untouched. Moreover, this observation was only evaluated in one 

cell line, so additional analyses in other neuroblastoma cell lines and if possible, 

neuroblastoma tumours are necessary.  

6.1.4 ALK wild type responders to pharmacological ALK inhibition 

 
An interesting observation, which was not investigated in detail in this thesis, was the 

finding that not only mutant ALK, but also some ALK wild type neuroblastoma cell 

lines responded to the tested ALK inhibitors, showing effects on reduced survival and 

similar downstream transcriptional responses (paper 1, supplemental data 6; paper 3, 

figure 1 and supplementary figure 1). Moreover, it has been shown that wild type ALK 

can be oncogenic if a certain, critical threshold of ALK expression has been achieved 
28. Furthermore, several cell lines expressing the ALK wild type receptor express 

abundantly ALK on their cell surface 29. The molecular basis of this finding is not 

completely understood, but could have important impact as it may increase the 

number of patients eligible to ALK inhibitor treatment as only 8-10% of patients 
present with ALK mutated tumours at diagnosis. 

6.1.5 Resistance against ALK inhibitors 

 
Despite an initial response to the ALK inhibitors, ultimately most if not all of the 

tumours will develop resistance, as also observed for other TKIs 30. These resistance 

mechanisms can be classified in two major groups, namely ALK dominant or ALK 
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non-dominant mechanisms 31. The ALK dominant mechanisms include secondary 

mutations and copy number gains or amplifications of the ALK gene. Indeed, new 

secondary mutations in the ALK gene have been reported in relapsed neuroblastoma 

cases 24. ALK non-dominant resistance is caused by activation of bypass pathways, 

such as EGFR, KRAS, KIT, MET, IGF-1R, SRC and AXL 30–33. Moreover, 

pharmacological resistance is caused by suboptimal exposure of the drug in the 

central nervous system (CNS) and is mainly observed upon treatment with the ALK 

inhibitor crizotinib due to low penetration through the blood-brain barrier (BBB) and 
high efflux by P-glycoprotein 30,32. 

6.1.6 Newer ALK inhibitors 

 
During the course of my investigation, several new next-generation ALK inhibitors 

have been developed 30. Ceritinib or LDK378 is an ATP-competitive ALK inhibitor, 

which is more potent than crizotinib 30. Moreover, this drug was shown to be efficient 

against most of the crizotinib resistance-mediating ALK mutations 30. Furthermore, 

ceritinib was also active in cases with IGF1-R bypass activation 30.  

Alectinib, another second-generation ALK inhibitor, also showed activity against most 

of the known resistance-mediating ALK mutations and more importantly, against CNS 

metastases 30. Additionally, alectinib is also more effective than crizotinib in ALK 

inhibitor naive tumours 30. Administration of this compound to neuroblastoma cells 

and xenografts resulted in apoptosis by blocking the ALK-mediated PI3K-AKT-mTOR 

pathway 34. Furthermore, survival of Th-MYCN mice receiving this compound was 

prolonged 34. 

PF-06463922 or lorlatinib is a third next-generation ATP-competitive ALK inhibitor 
30,32, showing dramatic tumour inhibition in xenografts and in the Th-ALKF1174L/MYCN 

neuroblastoma mouse model 6. Moreover, this inhibitor is more potent than the three 

above mentioned inhibitors (crizotinib, ceritinib and alectinib) against wild type ALK 

and is effective against all clinically relevant crizotinib-, ceritinib- and/or alectinib-

resistant ALK mutations 6,32,35. More importantly, this compound demonstrated 

superior anti-tumour activity against brain metastases compared to either crizotinib or 

alectinib 32, probably due to the enhanced potency of the compound and its 
increased ability to cross the BBB by avoiding transporter-mediated efflux 32. 
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6.1.7 ADM, earliest upregulated gene and a possible resistance mechanism upon 

ALK inhibition in neuroblastoma. 

 

Next to the development of second- and third-generation ALK inhibitors, it is a priority 

to identify unknown resistance mechanisms. Therefore, we explored the dynamic 

transcriptional responses upon ALK inhibition and identified ADM as the first gene 

emerging as differentially upregulated following ALK inhibition as early as one hour 

after the treatment (paper 2). This finding was of particular interest given the known 

role of ADM in resistance to sunitinib in renal cancer 36. Moreover, this gene is higher 

expressed during hypoxia 37–43, which is a known resistance mechanism against ALK 

inhibitors in NSCLC 44. Therefore, we evaluated the combination of an 

adrenomedullin receptor antagonist (ADM22-52)  36 together with the ALK inhibitor 

TAE684 in a small panel of neuroblastoma cell lines, but in this experiment, no 

additional decreasing effects on cell viability were observed. Given that the 

neuroblastoma cell lines tested are already very sensitive to the ALK inhibitor, we 

propose that the combination should be tested in ALK inhibitor resistant 

neuroblastoma cells. 

 

ADM upregulation could also reactivate the MYCN activity as ADM increases MAX 

levels 45, which will lead to more formation of MYC(N)-MAX heterodimers and higher 

MYC(N) activity. However, in a later phase, due to the steep ADM increase, MAX 

levels will become too high to complex with the present MYC(N) proteins leading to 

the formation of MAX-MAD complexes that will inhibit MYC(N)-MAX heterodimers, 

unless the MYC(N) proteins are upregulated by another mechanism. However, this 

hypothesis needs further investigation to see if MYCN activity is indeed influenced by 

ADM upregulation upon ALK inhibition in neuroblastoma cell lines or mouse models.  

 

Taken together, monitoring of ADM levels during therapy in the context of emerging 

ALK inhibitor resistant subclones could be of interest. While repeated biopsies to this 

end are not possible, the use of liquid biopsies to this purpose could offer an 

interesting possibility for such monitoring 46. Indeed, a simple blood sample can be 

used, as tumours shed tumour material into the blood, including circulating tumour 

cells (CTCs), circulating or cell-free tumour DNA (ctDNA) and tumour-derived 

exosomes 47. Such liquid biopsies have a broad range of clinical applications, ranging 
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from screening and early detection of cancer to prognosis, detection of residual 

disease and identifications of therapeutic targets 48,49. More importantly, they can be 

used for real-time monitoring of therapies in order to detect drug resistance and the 

mechanisms behind 48,49. Moreover, for neuroblastoma, the detection of 17q gain in 

circulating DNA helps to define patient prognosis, optimize therapy stratification and 

provide more appropriate treatment 50. Similarly, the detection of circulating MYCN 

DNA in peripheral blood is a valuable prognostic marker for neuroblastoma and can 

also be used as a non-invasive assay to follow-up patients with a higher risk for 

relapse 51. Intriguingly, the sensitivity to determine MYCN DNA in serum depends on 

stage of disease, since higher levels of circulating MYCN DNA is found in patients 

with metastatic neuroblastoma compared with those with localized neuroblastoma, 

particularly those with low tumour burden 52. Therefore, this assay may be particularly 

interesting for patients with stage 3 neuroblastoma and metastatic disease, for whom 

a wait and see strategy is currently recommended, to assess their MYCN status 52. 

Additionally, ALKF1174L and ALKR1275Q hotspot mutations can be identified in patients 

with neuroblastoma by analysis of ctDNA from only 200 µl serum or plasma at 

diagnosis 53.  

6.1.8 Mutant ALK downregulation of HBP1 is a fourth component of ALK controlled 

MYCN activity. 

 

Given the existence of an ultra-high-risk group of neuroblastoma patients with 

tumours harbouring both MYCN amplification and ALKF1174L mutation 7 and the 

observation that mouse and zebrafish models show accelerated tumour formation 

when both MYCN and ALKF1174L are expressed in sympathetic neuronal progenitor 

cells 8,9, we looked for mechanisms explaining this cooperativity. Three ALK-driven 

regulatory mechanisms impacting on MYCN activity have been described. ALK 

increases the initiation of transcription activity of the promoter upstream of the MYCN 

gene 14 and regulates MYCN transcription level as well through the PI3K-AKT-

MEKK3-MEK5-ERK5 pathway 20, while ALK stabilizes MYCN protein levels through 

the PI3K-AKT-GSK3b pathway 17–19 (Figure A).  
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Figure A: mechanisms for cooperativity between ALK and MYCN. 
Different mechanisms are found for the ALK and MYCN cooperativity in neuroblastoma. 

Firstly, ALK induces MYCN mRNA levels by increased transcriptional initiation of the MYCN 

gene. Secondly, ALK enhances MYCN protein levels through the PI3K-AKT-GSK3b pathway. 

Thirdly, MYCN transcription is further boosted by the PI3K-AKT-MEKK3-MEK5-ERK5 

pathway. As fourth mechanism, ALK negatively controls HBP1, a MYCN repressor, through 

the PI3K-AKT-FOXO3a axis. Moreover, MYCN itself enhances ALK transcription, creating a 

positive feedback loop. Figure adapted from 14,17–20. 

 

Exploration of the ALK 77-gene signature 10 revealed HBP1, a known negative 

regulator of c-MYC and MYCN 54,55 and was therefore thoroughly investigated in the 

context of neuroblastoma (paper 3). We first confirmed that HBP1 was negatively 

regulated by ALK through the PI3K-AKT-FOXO3a pathway. More importantly, we 

could confirm in neuroblastoma that HBP1 represses MYCN activity. Surprisingly, 

HBP1 inhibits both the repressor as activator function of MYCN, since MYCN 

repressed genes were upregulated, while MYCN activated targets became 

downregulated upon HBP1 overexpression in neuroblastoma cells. Moreover, MYCN 

itself negatively regulates HBP1 by inducing the miR-17~92 cluster. 
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We therefore identified a fourth and important new mechanism for the ALK-MYCN 

cooperativity (Figure A). Further studies, including chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) in neuroblastoma cells with regulable HBP1 

constructs could shed more light onto how and with which MYCN target genes HBP1 
interacts and to understand the role of the PRC2 complex in this regulation.  

6.1.9 MYCN targeting, drugging the undruggable? 

 
Several research groups have focused on finding ways to reduce MYCN levels and 

activity in neuroblastoma, giving its role as main oncogenic driver. However, as 

mentioned in the introduction, directly targeting MYCN has long been difficult and 

alternative ways to negatively regulate MYCN activity are therefore necessary. Based 

on our observations that HBP1 negatively impacts the dual MYCN activity, we 

therefore looked for drugs regulating HBP1 levels to use as single compound or in 

combinations with other drugs to decrease MYCN levels. 

 

As tool compound, we selected the green tea component EGCG, as it was shown to 

increase HBP1 mRNA stability in order to block the WNT pathway in breast cancer 
56. Therefore, we verified the effect of EGCG on HBP1 and cell viability in 

neuroblastoma and indeed, we could confirm HBP1 upregulation and a decrease in 

cell viability upon EGCG administration. Moreover, the combination of this compound 

together with JQ1, a BET inhibitor that negatively impacts MYCN levels, further 

decreased cell viability as well as MYCN expression and activity. 

 

However, the effect of EGCG is not only caused by HBP1 upregulation, as this green 

tea component targets many additional genes and pathways. EGCG can have 

antiproliferative, anti-mutagenic, antioxidant, antibacterial, antiviral and chemo-

preventive effects 57,58, through regulating the JAK-STAT, MAPK, PI3K-AKT, WNT, 

Notch, NF-kB and AP-1 pathways 57,58. Moreover, EGCG induces the tumour 

suppressive genes p53, p21, p16 and RB1 57,58. Furthermore, EGCG induces 

epigenetic changes, by inhibiting DNMT1 and RNA polymerase III, by modulating 

hTERT activity and by repressing promoter methylation of p16 and p15 57,58. 

Moreover, in breast cancer and NSCLC, EGCG suppresses angiogenesis by 
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inhibiting HIF1a 59,60. EGCG can also be used as therapeutic adjuvant, as it 

enhances 5-fluorouracil–chemosensitivity in colorectal cancer 61. 

More importantly, in the context of neuroblastoma, EGCG treatment results in a 

dose-dependent decrease in cell proliferation, an increase in apoptosis and a 

complete inhibition of sphere formation 62. Moreover, the addition of EGCG to 

neuroblastoma cells results in a decrease in cell viability and induction of cell death 

by blocking GRP78 63, one of the other interesting genes of our ALK 77-gene 

signature. Moreover, the effects of EGCG can be enhanced in neuroblastoma by 

overexpression of miR-7-1 64 or by knockdown of BIRC5 65.  

Next to these anti-carcinogenic effects, EGCG has neuroprotective effects, showing 

promising results as dietary supplement for Alzheimer Disease 66,67.  

In summary, EGCG has a lot of benefits for your health, but response depends on 

the levels achieved in plasma and tissue 68. 

 

Nevertheless, to confirm that the effects of EGCG on neuroblastoma cell viability and 

MYCN activity are partly caused by upregulation of HBP1, we tested a more specific, 

clinically relevant compound, namely the dual PI3K/mTOR inhibitor BEZ-235, based 

on our observation of the existence of the PI3K-AKT-FOXO3a-HBP1 axis in 

neuroblastoma. Indeed, we were able to confirm the upregulation of HBP1 and the 

simultaneously decrease in MYCN activity and cell viability. However, BEZ-235 not 

only causes a decrease in MYCN activity through HBP1, but destabilises as well 

MYCN proteins through upregulating GSK3b and MYCN transcription via repressing 

the PI3K-AKT-MEKK3-MEK5-ERK5 pathway 14,17–20. Nevertheless, knockdown of 

HBP1 partly rescued the effect on cell viability observed upon the combination, 

confirming that at least a part of the effect is caused by upregulating HBP1 levels. 
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6.2 Future perspectives 
 

6.2.1 Digging deeper into ALK signaling 

 
While I was able to discover several important novel translationally relevant findings 

in relation to ALK signaling in neuroblastoma cells, this work also represents a step 

towards further investigations in relation to mutant ALK in neuroblastoma cells.  

 

First, as the ligand for ALK was not known when we started our study, we made use 

of ALK inhibitors and ALK stimulation using monoclonal antibodies to a lesser extent 
69–71. Given the availability of the ALK ligands 72,73, it is now possible to study the 

dynamic regulation of ALK signaling upon activation as was previously reported for 

e.g. EGFR 74,75. Such studies indeed revealed transcriptional waves following RTK 

activation (Figure B) 74,75. Upon binding of the ligand and the subsequent activation of 

the receptor, the first wave observed consists of the immediate turnover of the 

immediately downregulated microRNAs (ID-miRs). The targets of these ID-miRs are 

the immediate early genes (IEGs). Therefore, upon degradation of these ID-miRs, the 

expression of the IEGs will increase. Subsequently, these IEGs are responsible for 

the transcription of the third wave, the delayed early genes (DEGs), which will cause 

a decrease in expression of the IEGs. The latest group that is activated, harbours the 

secondary response genes (SRG), which are responsible for the phenotypic outcome 
74,75.  
 



Chapter 6: Discussion and future perspectives 

224 

 
Figure B: transcriptional waves upon RTK activation. 
First, a set of miRNAs are immediately downregulated (immediately downregulated miRNAs 

or ID-miRs), which subsequently causes an increase in the immediate early genes (IEGs). 

This is followed by transcription of the delayed early genes (DEGs). As last group, the 

secondary response genes (SRGs) are activated. Figure adapted from 74,75. 

 

In our study, we also discovered response to ALK inhibitors in neuroblastoma cell 

lines expressing wild type ALK (so called responders). This is potentially important 

given that we described a prognostic significance for the 77-gene signature in a 

cohort of patients with primary neuroblastoma. This suggests that in certain tumours 

with wild type ALK, downstream signaling is active and that such patients could 

possibly benefit from ALK inhibitors. 

 

Further, in our studies, we investigated protein coding mRNAs and did not explore in-

depth the noncoding transcriptome. As shown by the host lab and other teams, 

noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs 

(lncRNAs) are also important effectors downstream of various signaling pathways. 
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Therefore, further studies investigating the “dark side” of the genome could reveal 

further important novel findings in the context of ALK.  

 

As referred to in the introduction, RTKs transduce extracellular signals through a 

cascade of phosphorylation events, which finally elicit effects on gene expression. 

Therefore, a thorough investigation of the phospho-proteomic and proteomic 

landscape is necessary. During my PhD thesis, I participated in an EU project, 

ASSET, of which part aimed at deciphering ALK downstream effects on 

phosphorylation using quantitative mass spectrometry-based proteomics in 

collaboration with the Olson lab (Denmark). To this end, I fine-tuned the experimental 

set-up, using the neuroblastoma cell line NB-1 (harbouring amplification of full-length 

ALK) and selected a time point at 30 minutes after compound administration with 

three ALK inhibitors TAE684, crizotinib and LDK378 (Emdal K.B. et al., Science 

Signaling, submitted). By this strategy, four signaling layers were investigated: 

interactome, phosphotyrosine-interactome, phospho-proteome and proteome. In this 

way, we created a multi-layered proteomic resource of aberrant ALK signaling in 

neuroblastoma. Moreover, through this study, IRS2 was identified as a new 

immediate downstream transmitter, linking ALK to the PI3K-AKT-FOXO3 axis. 

Additionally, we integrated our transcriptomic data with the phospho-proteomic data 

in the NB-1 cell line to find differentially phosphorylated transcription factors with 

targets enriched in the up- or downregulated genes after ALK inhibition (unpublished 

data). This analysis showed that differentially phosphorylated FOXO3 and CDC5L 

have enriched target genes in the upregulated genes, while the downregulated genes 

are enriched for the targets of the differentially phosphorylated CIC, ERF and ETV3. 

Moreover, MYC(N), MAZ, MEIS1 and JUN are differentially phosphorylated and have 

targets both in the up- and downregulated genes. Moreover, targets from the 

transcription factor HBP1, which is not differentially phosphorylated, but 

transcriptionally upregulated, are strongly enriched in the genes downregulated upon 

ALK inhibition.  
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6.2.2 New emerging therapeutic strategies for patients with high-risk or relapsed 

neuroblastoma 

 

In this thesis, we mainly focused on the use of small molecule inhibitors against ALK 

or his downstream pathways. However, additional strategies exist to target a RTK.  

First of all, as discussed in the introduction, monoclonal antibodies directed against 

the extracellular domain have been developed targeting several RTKs. In 2005, 

Moog-Lutz and colleagues 69 have tested several activating and inhibiting monoclonal 

antibodies against the ALK receptor. The activating ones, mAb46 and mAb48 induce 

activation through dimerization, while the inactivating one, mAb30, blocks the 

receptor in an inactive state by dimerization 69. However, already 6 hours after 

exposure to these monoclonal antibodies, they monitored a slight decrease in the 

effect on phosphorylated ERK 69, maybe explaining why these monoclonal antibodies 

are not used in the clinic. Moreover, we have not used the inactivating monoclonal 

antibody, because we wanted to discover the affected downstream pathways and the 

possible resistance mechanisms, specific for small molecule inhibition of ALK. 

Secondly, antisense oligonucleotides, which are designed to interact with mRNA to 

reduce expression of the targeted RNA, are made to target EGFR, VEGFR, IGF-1R 

and TGF-aR 76,77. However, the molecules need to pass through the cell membrane 

of their targeted cell to fulfil their action, which is often difficult with the current safe 

delivery strategies 78. Moreover, until today, these are not used to target ALK. 

 

Furthermore, as nicely reviewed by Brodeur and colleagues 79, several additional, 

potential targets in neuroblastoma exist, which can be classified in four categories: 

(1) genes activated by mutation, amplification, translocation or overexpression, (2) 

genes inactivated by deletion, mutation or epigenetic silencing, (3) membrane-

molecules selectively expressed on most neuroblastoma tumours and (4) targets 

common to neuroblastoma and other cancers (Figure C). 
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Figure C: Targets for precision therapy in neuroblastoma. 
Scheme showing the intracellular location of therapeutic targets in neuroblastoma. Activated 

genes and their proteins are depicted in red, while inactivated ones are shown in green. 

Proteins expressed selectively on the membrane of neuroblastoma cells are in purple, while 

targets common to neuroblastoma and other cancers are depicted in blue. Figure adapted 

from 79. 

 

Indeed, as detailed summarised by Castel and colleagues in 2014 80 and by Berlanga 

and colleagues in 2017 81, several inhibitors against these potential targets are tested 

as single compound or in combination with other agents in preclinical and clinical 

phases to treat neuroblastoma patients, with the main focus on high-risk 

neuroblastoma. Amongst these are second- and third-generation ALK inhibitors, 

mTOR as well as AKT inhibitors, HDAC inhibitors including SAHA or vorinostat, 

Aurora A and EGFR inhibitors, ODC1 inactivators, angiogenesis and proteasome 

repressors 80,81. 

Moreover, recent research confirmed the effectiveness of PARP inhibitors alone and 

in combination with CHK1 targeted therapy in MYCN-driven neuroblastoma 82. 

Additionally, histone demethylases inhibitors repress MYCN signaling simultaneously 

with oxidative phosphorylation, resulting in a decrease in cell viability and in tumour 

growth and an increase in differentiation in MYCN-driven neuroblastoma 83. 

Furthermore, the use of compounds targeting PHOX2B expression resulted in more 

apoptosis and less proliferation of neuroblastoma cells, suggesting that these 
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compounds could be beneficial for neuroblastoma patients 84. Moreover, components 

of the Rho/Rac signaling cascade, important for migration and differentiation of 

neural crest cells, are mutated in neuroblastoma tumours 85. Further research 

showed that inhibitors of ROCK2, a kinase involved in this pathway, induced 

differentiation of neuroblastoma cells, while repressing migration, cell growth and 

invasion 85. Moreover, this effect is caused by inhibiting GSK3b-dependent MYCN 

phosphorylation 85.  

Further research has also focused on finding the appropriate single drug that binds to 

multiple proteins or the perfect combination of highly selective inhibitors in order to 

target the tumour cell at multiple levels. In this way, they hope to simultaneously 

circumvent the resistance rapidly occurring against drugs targeting only one molecule 
77. In this way, sorafinib, a multikinase inhibitor, has been identified to be effective as 

antiproliferative and anti-angiogenesis molecule and is currently evaluated in a phase 

I trial in combination with cyclophosphamide and topotecan 81. Moreover, the p53 

tumour suppressor is mostly non-mutated in neuroblastoma. However, amplification 

and increased expression of MDM2, which interacts with p53 to inactivate the tumour 

suppressor, and suppression of CDKN2A, which is an inactivator of MDM2, are 

frequently observed in neuroblastoma 86. Therefore, the combination of a MDM2 

inhibitor with a BLC2 inhibitor was evaluated and resulted in a highly synergistic 

increase in apoptosis in a panel of neuroblastoma cell lines and in orthotopic 

neuroblastoma xenografts 86. Simultaneously, another group have combined such 

MDM2 antagonists together with mTORC1 inhibitors 87. This combination also 

caused synergistic inhibition of tumour growth in p53 wild type neuroblastoma 87. 

 

An important challenge given the rapidly growing number of molecular targets in 

neuroblastoma is to translate the preclinical findings into the clinic through initial 

phase I studies to determine undesired effects and critical doses 88. This requires 

careful coordination through international collaborative studies e.g. under supervision 

of SIOPEN or COG. Disappointingly, the overall average rate of successful 

translation from animal models to clinical cancer trials is less than 8% 89. Such failure 

could be caused by an inappropriate design of the clinical trial and thus better 

designs should be pursued in the future 90. Moreover, crucial genetic, molecular, 

immunologic and cellular differences between humans and mice prevent the 

successful translation 90. An important issue here is that genetic heterogeneity is 
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difficult to model in animals 90. Thus, ideally, the compound or the combination 

should be tested in multiple animals, with different ages and diverse genetic 

backgrounds, better mimicking the human situation 90. Additionally, the laboratory 

environment can cause stress, which will have a significant effect on experimental 

results 89. Currently, these confounding issues are under evaluation by the ITCC 

consortium (http://www.itcc-consortium.org/about-itcc.php), which aims to carefully 

select novel drug targets on one hand and tries to accelerate phase I studies on the 

other hand. Only by a thoroughly investigation and properly designed clinical trials 
89,90, new treatments can be found that are more effective and less toxic on short- 

and long-term, resulting in better survival and higher quality of life.  

 

Next to the development of targeted therapy, major advances have been made in 

immunotherapy. Different strategies of immunotherapy exist to amplify the existent 

anti-tumour immune response or to induce anti-tumour immune response 91. One 

way is by using monoclonal antibodies against antigens specific for the tumour cells, 

such as ch14.18 to target GD2 on neuroblastoma cells 79,91,92. This anti-GD2 

monoclonal antibody therapy demonstrated promising effects in high-risk 

neuroblastoma, suggesting it should be considered to be included in frontline therapy 

for patients with such high-risk tumours 91. Moreover, such monoclonal antibodies 

can be conjugated to toxins or drugs to specifically kill the tumour cells 91. 

Additionally, bispecific antibodies activate a receptor on an immune effector cell, 

while recognizing an antigen on the tumour cell 91. However, since anti-GD2 therapy 

is toxic due to the presence of GD2 on noci-receptor-containing peripheral nerves, 

the search for new immunotherapeutic targets is urgently needed 93. By searching for 

genes encoding proteins with extracellular domains, that are differentially expressed 

on neuroblastoma compared to normal tissues, GPC2 has been identified as a 

promising new immunotherapeutic target 93. Indeed, cellular cytotoxicity was 

observed in neuroblastoma cells in vitro upon treatment with a GPC2 targeting 

antibody-drug conjugate 93. Moreover, in vivo administration to neuroblastoma mouse 

models improved their survival 93. Another strategy is to reactivate the T cells present 

in and around the tumour by using immune checkpoint inhibitors 91,94. They block cell 

surface molecules like CTLA4 and PD-1, which are expressed on the T cells and 

transmit inhibitory signals 91,94. A third method are the tumour vaccines, targeting the 

defined tumour antigens 91. Several studies are ongoing in children, but first results 
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show that these tumour vaccines are safe to administer, but tumour regression is 

rarely observed 91. Chimeric antigen receptor T-cells (CAR-Ts) represent another 

strategy. T-cells are expanded ex vivo and genetically engineered, so that they 

express the CAR on their surface. These CARs will recognize the antigens on the 

targeted tumour cells and the T-cells can kill them 91,92.  

Moreover, the combination of such immunotherapy and molecularly targeted agents 

represent a new strategy to treat these patients. Recently, the combination of 

melphalan, a chemotherapeutic used to treat high-risk neuroblastoma, with BSO, a 

glutathione synthesis inhibitor, was investigated in patients with recurrent/refractory 

high-risk neuroblastoma, showing good responses in this subgroup of patients, even 

after extensive prior therapy 95. However, such combinations need further 
investigation to evaluate the survival and the durability of responses 94. 

6.2.3 New kids on the block: epigenetics and single cell analysis 

 

Recent papers have described core regulatory circuits controlling (two) different 

phenotypes present within neuroblastoma tumours cells 96,97. These core regulatory 

circuits are controlled by super-enhancer marked transcription factors and other key 

genes implicated in neuroblastoma biology, such as ALK. In view of this finding and 

given that epigenetic mutations are amongst the most common genetic alterations in 

cancer, further dissection of the epigenetic control of normal sympathetic nervous 

development and key events leading to neuroblastoma development will be of utmost 

importance. As part of these investigations, further study of ALK in these processes 

in the context of epigenetics should be performed in order to further complete the 

complex picture of deregulated gene regulatory and signaling pathways in 

neuroblastoma. 

 

Bulk analysis methods, such as the microarray and RNA sequencing approaches 

applied in this thesis, capture a global picture of the entire tumour sample. However, 

it has long been known that tumours are heterogeneous subpopulations of cells at 

the phenotypic and (epi)genomic level 46,98. Indeed, a tumour is a complex 

ecosystem, with interaction between the malignant cells and their microenvironment, 

including amongst others the immune, epithelial and stromal cells 99. This intra-

tumour heterogeneity has an impact on tumour progression, metastasis, response 
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and relapse 98,100, as this is the underlying driving force for selection of therapy 

resistant cancer cells leading to relapse and often death of the patient 98. For long, 

this has represented a major challenge in cancer research towards deeper 

understanding of tumour behaviour. Until recently, single cell analyses were limited 

due to the lack of appropriate methodology and equipment 46,101,102.This picture is 

now rapidly changing with recent introduction of new procedures for the study of 

genome, methylome, transcriptome and even protein analysis at single cell level 
46,101.  

Yet another challenge is spatial tumour heterogeneity with differences between 

different sites in the tumour or between a primary tumour and his metastasis 103. 

Another spectacular recent technical evolution that can yield insights into this spatial 

tumour heterogeneity is the study of liquid biopsies which may yield a more broader 

picture of genomic tumour features. Moreover, liquid biopsies also offer a powerful 

option for the study of cancer progression, therapy response and resistance, either 

through the analysis of circulating DNA, RNA or even single circulating tumour cells 
48. As a prelude to the power of this methodology, the host lab explored liquid biopsy 

analysis for detection of copy number alterations at diagnosis 104 and Chicard and 

colleagues showed that genomic copy number profiling using ctDNA highlights 

heterogeneity in neuroblastoma 103. Moreover, deep sequencing of neuroblastoma 

tumours showed the existence of subclonal ALK mutations at diagnosis 105 and the 

mutational difference between tumours at diagnosis and relapse 15,106. Given the 

success of these early studies, it can be assumed that further exploration of the 

power of liquid biopsies will have great impact on the study of tumour heterogeneity 

and tumour follow-up in neuroblastoma. 

 

6.3 Concluding remarks 
 
ALK mutations represented a major new finding in the understanding of the biology of 

neuroblastoma when I started this thesis. I was able to make substantial contributions 

to novel insights into ALK, helping to better understand neuroblastoma biology and 

offering new venues for therapeutic interventions. During this thesis, novel 

discoveries in the study of neuroblastoma have significantly increased our 

understanding of neuroblastoma, but also raise new questions. The emergence of 

novel drug targets has initiated initiatives for precision medicine in several countries 
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and has spurred discussion towards selecting drug combinations for inclusion into 

phase 1 clinical trials, e.g. as part of the ITCC initiative (http://www.itcc-

consortium.org/about-itcc.php), in which the host lab is participating. Moreover, 

immunotherapy is rapidly changing the face of contemporary cancer treatment and 

has also been introduced for neuroblastoma. Together with our contributions in this 

field and the many ongoing research collaborations worldwide, we can be hopeful, 

that, like for childhood leukaemia, we can dramatically increase survival rates for 

neuroblastoma patients in the near future and reduce toxic short- and long-time 

effects to save lives and increase quality of life for children surviving neuroblastoma. 
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Science is not only a discipline of reason, 

but, also, one of romance and passion. 

~Stephen Hawking~ 
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Chapter 7  Summary 
 

In this thesis, we describe the study of a particular receptor tyrosine kinase (RTK), 

ALK, which is recurrently mutated in up to 10% of neuroblastoma tumours, a 

paediatric tumour of the sympathetic nervous system. Like many other RTKs, ALK 

controls a complex downstream signaling cascade implicated in development and 

normal cell functions and implicated in various cancers through constitutive activating 

mutations or fusion proteins. Mutated ALK is an important target in neuroblastoma as 

few other recurrent mutations have been detected and given that this receptor, like 

many other RTKs, can be inhibited by new targeted drugs (small molecule inhibitors).  

Despite this promising outlook, optimism must be tempered as recent studies have 

shown that precision treatment using single drugs almost invariable leads to 

resistance due to second-line mutations, gene amplifications, aberrations in the 

downstream pathway or the activation of a bypass network. In order to circumvent 

such resistance mechanisms and to find additional vulnerable nodes for targeted 

treatment, in-depth knowledge of the networks regulated by ALK in neuroblastoma is 

essential. 

 

We therefore further analysed the transcriptional network downstream of ALK and 

established a 77-gene signature for mutant ALK inhibition in neuroblastoma. Further 

dissection of this gene signature yielded several new important observations. In 

addition to confirmation of implication of the PI3K-AKT-mTOR, MAPK and MYC(N) 

signaling pathways downstream of ALK in neuroblastoma, we observed a strong 

upregulation of (a) MAPK negative feedback loop regulators and (b) RET and RET-

driven cholinergic neuronal markers.  

 

In a second part, we decided to study in more detail the dynamic regulated 

transcriptome of ALKR1275Q mutant CLB-GA neuroblastoma cells following treatment 

with the first-generation ALK inhibitor TAE684. We observed the expected 

downregulation of the downstream pathways, PI3K-AKT-mTOR, MAPK and MYC(N) 

signaling, within 2 hours following treatment. Intriguingly, the positively regulated 

MYCN target genes showed initial upregulation, followed by the expected decrease 

in overall MYCN activity. Of further interest, the first differentially expressed gene, 
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adrenomedullin (ADM), was previously reported to be involved in sunitinib resistance 

in renal cancer. Therefore, we hypothesize that this gene could be implicated in the 

resistance mechanisms against ALK small molecules in neuroblastoma. 

 

The discovery by our group that there is an ultra-high-risk patient subgroup, which 

has both MYCN amplification and ALKF1174L mutation, suggested that ALK and 

MYCN cooperate in neuroblastoma tumorigenesis. Moreover, in a mouse and 

zebrafish neuroblastoma model system, the expression of both MYCN and ALKF1174L 

in sympathetic neuronal progenitor cells accelerated tumour formation. Additionally, it 

was shown that ALK controls MYCN through two different mechanisms. First, ALK 

regulates MYCN transcription levels directly and through the PI3K-AKT-MEKK3-

MEK5-ERK5 pathway. Secondly, MYCN protein is stabilized by ALK via the 

PI3K/AKT/GSK3b pathway. Moreover, MYCN itself transcriptionally activates ALK.  

As a last part of this thesis, we focused on identifying additional mechanisms for this 

ALK – MYCN cooperativity with possible additional value of identifying new druggable 

nodes in this cross-talk. We therefore went back to our ALK 77-gene signature and 

identified HBP1 as a central component of a third mechanism of ALK regulated 

MYCN activity. We discovered that ALK negatively controls HBP1 levels through the 

PI3K-AKT-FOXO3 signaling axis, while MYCN represses HBP1 through induction of 

the miR-17~92 cluster. More importantly, HBP1 inhibits both the transcriptional 

activation as repressing activity of MYCN, partly through interaction with the PRC2 

complex. Moreover, forced overexpression of HBP1 in neuroblastoma cells showed 

an increase in cell death and a higher differentiation signature score, concomitant 

with decreased cell viability, colony formation capacity and spheroid formation, 

suggesting a possible tumour suppressive role in neuroblastoma. Of further interest, 

lowest HBP1 expression was observed in MYCN amplified and high stage 

neuroblastoma tumours, while high HBP1 levels were correlated with better event-

free and overall survival, further confirming the repression of tumour aggressiveness 

by HBP1. Finally, combined targeting of HBP1 by PI3K antagonists and MYCN 

signaling using BET or HDAC inhibitors synergistically represses MYCN activity and 

significantly reduces tumour growth, suggesting a novel targeted therapy option for 

the ultra-high-risk patient subgroup with both MYCN amplification and ALKF1174L 

mutation.
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Chapter 8  Samenvatting 
 

In deze thesis beschrijven we de studie van ALK, een receptor tyrosine kinase (RTK) 

dat frequent gemuteerd is in 10% van de neuroblastoma tumoren, een pediatrische 

tumor van het sympathisch zenuwstelsel. Zoals vele andere RTKs, controleert ALK 

een complexe downstream signalisatie cascade, enerzijds betrokken in ontwikkeling 

en normale cellulaire functies maar anderzijds ook in verschillende kankers door 

constitutieve activerende mutaties of als fusiegen. Gezien een beperkt aantal andere 

frequente mutaties zijn ontdekt in neuroblastoma, is gemuteerd ALK een belangrijk 

doelwit in neuroblastoma. Daarenboven heeft deze receptor, zoals vele andere 

RTKs, het grote voordeel dat deze kan onderdrukt worden door nieuwe doelgerichte 

medicijnen (small molecule inhibitors). 

Ondanks dit veelbelovend vooruitzicht, moet het optimisme getemperd worden. 

Recente studies hebben aangetoond dat “precisie-behandeling” door gebruik te 

maken van slechts één medicijn bijna steeds leidt tot resistentie door het ontstaan 

van andere mutaties, genamplificaties, aberraties in de downstream signaalwegen of 

door de activatie van een bypass netwerk. Om deze resistentie mechanismen te 

ontwijken en om nieuwe, additionele eiwitten te vinden die geschikt zijn voor 

doelgerichte therapie, is een grondige kennis van de netwerken die door ALK 

gereguleerd worden in neuroblastoma prioritair.  

 

Daarom hebben we de transcriptionele netwerken die door ALK gereguleerd worden 

verder geanalyseerd en genereerden we een 77-genen signatuur voor gemuteerd 

ALK in neuroblastoma. Verdere dissectie van deze gensignatuur gaf aanleiding tot 

verschillende, nieuwe observaties. Naast de confirmatie van de betrokkenheid van de 

PI3K-AKT-mTOR, MAPK en MYC(N) signaalwegen downstream van ALK in 

neuroblastoma, observeerden we ook een sterke opregulatie van (a) negatieve 

feedback regulatoren van de MAPK signaalweg en van (b) RET en RET-gestuurde 

cholinerge, neuronale merkers.  

 

In het tweede deel, besloten we om het dynamisch transcriptioneel profiel van de 

ALKR1275Q gemuteerde CLB-GA neuroblastoma cellen in meer detail te onderzoeken 

na behandeling met TAE684, een van de eerst ontwikkelde ALK inhibitoren. We 
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observeerden de verwachte neerregulatie van de downstream signaalwegen, PI3K-

AKT-mTOR, MAPK en MYC(N) reeds binnen 2 uur na behandeling. Intrigerend was 

ook de ontdekking dat de positief gereguleerde MYCN doelwitgenen eerst een initiële 

opregulatie vertoonden, die gevolgd werd door de verwachte daling in de volledige 

MYCN-activiteit. Ook interessant was dat het eerste gen dat differentieel tot 

expressie kwam adrenomedullin (ADM) was. Dit is een gen waarvan recent 

beschreven is dat het een rol heeft in sunitib resistentie in nierkanker. Daarom 

postuleren we dat dit gen ook betrokken kan zijn in resistentie mechanismen tegen 

ALK inhibitoren in neuroblastoma. 

 

Onze onderzoeksgroep kwam tot de ontdekking dat er een ultra-high-risk patiënten 

subgroep bestaat, die zowel MYCN amplificaties als ALKF1174L mutaties heeft, wat 

suggereert dat deze twee eiwitten samenwerken tijdens de ontwikkeling van 

neuroblastoma. Daarnaast werd in een muis en een zebravis modelsysteem 

aangetoond dat de simultane expressie van MYCN en ALKF1174L in sympathische 

adrenerge precursor cellen zorgt voor een versnelde vorming van neuroblastoma 

tumoren. Bovendien wordt MYCN door ALK gecontroleerd via twee verschillende 

mechanismen. Enerzijds reguleert ALK de transcriptie van MYCN direct alsook via de 

PI3K-AKT-MEKK3-MEK5-ERK5 axis. Anderzijds, wordt het MYCN eiwit 

gestabiliseerd door ALK via de PI3K/AKT/GSK3b signaalweg. Daarnaast activeert 

MYCN zelf ook de transcriptie van ALK.  

 

In het laatste gedeelte van deze thesis focusseerden we ons op het identificeren van 

nieuwe mechanismen voor de samenwerking tussen ALK en MYCN, waardoor we 

mogelijks andere eiwitten kunnen identificeren in deze cross-talk die kunnen gebruikt 

worden voor doelgerichte therapie. Daarvoor hebben we onze ALK 77-genen 

signatuur verder onderzocht en hebben we zo HBP1 geïdentificeerd als een derde 

manier waarop ALK MYCN aandrijft. We ontdekten dat ALK de HBP1 expressie 

negatief reguleert via de PI3K-AKT-FOXO3 signalisatie weg, terwijl MYCN zorgt voor 

een onderdrukking van HBP1 door de inductie van de miR-17~92 cluster. Nog 

belangrijker is de ontdekking dat HBP1 zowel de transcriptionele activator als 

repressor functie van MYCN onderdrukt, deels door interactie met het PRC2 

complex. Verder veroorzaakte overexpressie van HBP1 in neuroblastoma cellen 

meer celdood en een hogere differentiatie signatuurscore. Deze resultaten waren in 
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lijn met verminderde cel viabiliteit, kolonie vormende capaciteit en vorming van 

sferoïden, wat suggereert dat HBP1 mogelijks een tumorsuppressor gen is in 

neuroblastoma. Verder van belang was dat lage HBP1 expressie niveaus 

geobserveerd werden in tumoren met MYCN amplificatie en in stadium 4 

neuroblastoma tumoren, terwijl hoge HBP1 levels gecorreleerd waren met een betere 

overleving. Dit alles benadrukt het belang van HBP1 in het onderdrukken van de 

agressiviteit van de tumor. Finaal toonden we aan dat de combinatie van PI3K 

antagonisten om HBP1 op te reguleren samen met onderdrukking van MYCN 

signalisatie met BET of HDAC inhibitoren, zorgt voor een synergistische 

onderdrukking van de MYCN activiteit en voor een significantie reductie van 

tumorgroei, wat suggereert dat dit een optie is voor nieuwe doelgerichte therapie 

voor de ultra-high-risk patiënten subgroep met zowel MYCN amplificatie als ALKF1174L 

mutatie. 
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