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Abstract: In this paper we propose tight upper and lower bounds for the Wasserstein
distance between any two univariate continuous distributions with probability densities p1
and p2 having nested supports. These explicit bounds are expressed in terms of the derivative
of the likelihood ratio p1/p2 as well as the Stein kernel τ1 of p1. The method of proof relies
on a new variant of Stein’s method which manipulates Stein operators.

We give several applications of these bounds. Our main application is in Bayesian statis-
tics : we derive explicit data-driven bounds on the Wasserstein distance between the posterior
distribution based on a given prior and the no-prior posterior based uniquely on the sampling
distribution. This is the first finite sample result confirming the well-known fact that with
well-identified parameters and large sample sizes, reasonable choices of prior distributions
will have only minor effects on posterior inferences if the data are benign.

Keywords and phrases: Stein’s method, Bayesian analysis, Prior distribution, Posterior
distribution.

1. Introduction

A key question in Bayesian analysis is the effect of the prior on the posterior, and how this effect
could be assessed. As more and more data are collected, will the posterior distributions derived
with different priors be very similar? This question has a long history; see for example ([26, 4, 3]).
While asymptotic results which give conditions under which the effect of the prior wanes as the
sample size tends to infinity can be found for example in [4, 3], here we are interested, at fixed
sample size, in explicit bounds on some measure of the distributional distance between posteriors
based on a given prior and the no-prior data-only based posterior, allowing to detect at fixed
sample size the effect of the prior.
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In the simple setting of prior and posterior being univariate and continuous, the basic relation
that the posterior is proportional to the prior times the likelihood leads to the more general problem
of comparing two distributions P1 and P2 whose densities p1 and p2 have nested supports. Letting
I1 (resp., I2) be the support of p1 (resp., p2) and assuming I2 ⊂ I1 we can write

p2 = π0p1

for π0 = p2/p1 a non-negative finite function called likelihood ratio in statistics. To assess the
distance between such distributions, we choose the Wasserstein-1 distance defined as

dW(P1, P2) = sup
h∈H

|E[h(X2)]− E[h(X1)]| (1.1)

for H = Lip(1) the class of Lipschitz-1 functions, where X1 has distribution P1 (resp., probability
distribution function (pdf) p1) and X2 has distribution P2 (resp., pdf p2). The central aim of this
paper is to provide meaningful bounds on dW(P1, P2) in terms of π0.

Our approach to this problem relies on Stein’s density approach introduced in [27, 28], as further
developed in [15, 16, 17, 18]. Let P1 have density p1 with interval support I1 with closure [a1, b1]
for some −∞ ≤ a1 < b1 ≤ +∞. Suppose also that P1 has mean µ. Then a notion which will be of
particular importance is the Stein kernel of P1 which is the function τ1 : [a1, b1] → R given by

τ1(x) =
1

p1(x)

∫ x

a1

(µ− y)p1(y)dy.

Our main results assume that p1 and p2 are absolutely continuous densities, and that π0 is a
differentiable function satisfying

Assumption A : limx→a1 π0(x)
∫ x

a1
(h(y)−E[h(X1)])p1(y)dy = 0 = limx→b1 π0(x)

∫ b1
x
(h(y)−E[h(X1)])p1(y)dy

for all Lipschitz-continuous functions h with |E[h(X1)]| < ∞. Here X1 ∼ P1.

Under these assumptions we prove the following result (Theorem 3.1).

Theorem. The Wasserstein distance between P1 with pdf p1 and P2 with pdf p2 = π0p1 satisfies
the following inequalities:

|E [π′
0(X1)τ1(X1)]| ≤ dW(P1, P2) ≤ E [|π′

0(X1)| τ1(X1)]

where τ1 is the Stein kernel associated with p1 and X1 ∼ P1.

If P1 = N (µ, σ2) is a normal distribution then the above result simplifies considerably because
τ1(x) = σ2 is constant, yielding

σ2 |E [π′
0(X1)]| ≤ dW(P1, P2) ≤ σ2

E [|π′
0(X1)|] .

The Gaussian is characterized by the fact that its Stein kernel is constant. More generally, all
distributions belonging to the classical Pearson family possess a polynomial Stein kernel (see [27]).
The problem of determining the Stein kernel is, in general, difficult. Even when the Stein kernel
τ1 is not available we can give the following simpler bound (Corollary 3.5).

Corollary. Under the same assumptions as in Theorem 3.1,

|E[X1]− E[X2]| ≤ dW(P1, P2) ≤ ‖π′
0‖∞Var[X1].

More generally, because the Stein kernel is always positive, the upper and lower bounds in the
Theorem turn out to be the same whenever the likelihood ratio π0 is monotone, which is equivalent
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to requiring that P1 and P2 are stochastically ordered in the sense of likelihood ratios. This brings
our next result (Corollary 3.6).

Corollary. Let X1 ∼ P1 and X2 ∼ P2. If X1 ≤LR X2 or X2 ≤LR X1 then

dW(P1, P2) = |E[X2]− E[X1]| = E [|π′
0(X1)|τ1(X1)] = E

[∣

∣(log π0(X2))
′∣
∣ τ1(X2)

]

.

In case of a monotone likelihood ratio between P1 and P2, the first of the above identities is easy
to derive directly from the known alternative definitions of the Wasserstein distance (see e.g. [29])

dW(P1, P2) =

∫ ∞

−∞

|FP1(x) − FP2(x)| dx =

∫ 1

0

∣

∣F−1
P1

(u)− F−1
P2

(u)
∣

∣ du

with FP1 and F−1
P1

(resp., FP2 and F−1
P2

) the cumulative distribution function and quantile function
of P1 (resp., P2).

We illustrate the effectiveness of our bounds in several examples at the end of Section 3.1,
comparing e.g. Gaussian random variables or Azzalini’s skew-symmetric densities with their sym-
metric counterparts. In Section 4 we treat as main application the Bayes example wherein we
measure explicitly the effect of priors on posterior distributions. Suppose we observe data points
x := (x1, x2, . . . , xn) with sampling density f(x; θ) (proportional to the likelihood), where θ is the
one-dimensional parameter of interest. Let p0(θ) be a certain prior distribution, possibly improper,
and let Θ2 be the resulting posterior guess for θ perceived as a random variable. By Bayes’ theorem,
this has density p2(θ;x) = κ2(x)f(x; θ)p0(θ) with κ2(x) the normalizing constant which depends
on the data. Under moderate assumptions, we provide computable expressions for the Wasserstein
distance dW(Θ2,Θ1) between this posterior distribution and Θ1, whose law is the no-prior pos-
terior distribution with density (proportional to the likelihood) given by p1(θ;x) = κ1(x)f(x; θ),
again with normalizing constant κ1(x) depending on the data. The bounds we derive are expressed
in terms of the data, the prior and the Stein kernel τ1 of the sampling distribution.

We study the normal model with general and normal priors, the binomial model under a general
prior, a conjugate prior, and the Jeffreys’ prior. We also consider the Poisson model with an
exponential prior, in which case we can make use of the likelihood ratio ordering. For example,
with a normal N (µ, δ2) prior and a random sample x1, . . . , xn from a normal N (θ, σ2) model with
fixed σ2, we obtain in (4.4) that

σ2

nδ2 + σ2
|x̄− µ| ≤ dW(Θ1,Θ2) ≤

σ2

nδ2 + σ2
|x̄− µ|+

√
2√
π

σ3

nδ
√
δ2n+ σ2

.

Not only do we see that for n → ∞, the distance becomes zero, as is well known, but we also
have an explicit dependence on the difference between the sample mean x̄ and the prior mean µ,
indicating the importance of a reasonable choice for the prior. For a normal N (θ, σ2) model and
a general prior on θ, we obtain in (4.3) that

σ2

n
|E[ρ0(Θ2)]| ≤ dW(Θ1,Θ2) ≤

σ2

n
E[|ρ0(Θ2)|]

with ρ0 the score function of the prior distribution. Here the data are hidden in the distribution
of Θ2. In the binomial case with conjugate prior we obtain

1

n+ 2

∣

∣

∣

∣

∣

(2− α− β)
α
n + x̄

1 + α+β
n

+ (α− 1)

∣

∣

∣

∣

∣

≤ dW(Θ1,Θ2)

≤ 1

n+ 2

(

|2− β − α|
α
n + x̄

1 + α+β
n

+ |α− 1|
)

,
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with α and β the parameters of the conjugate (beta) prior. Finally in the Poisson case we obtain

dW(Θ1,Θ2) =
λ

n+ λ
x̄+

λ

n(n+ λ)
.

with λ > 0 the parameter of the exponential prior.

The main tool in this paper is a specification of the general approach in [15] which allows to
manipulate Stein operators. Distributions can be compared through their Stein operators which
are far from being unique; for a single distribution there is a whole family of operators which could
serve as Stein operators, see for example [15]. In this paper, for probability distribution P with
pdf p we choose the Stein operator TP as

TP : f 7→ TP f =
(fp)′

p

with the convention that TP f(x) = 0 outside of the support of P ; for details see Definition 2.1 and
[18]. For this choice of operator, the product structure implies a convenient connection between
T1, the Stein operator for P1 with pdf p1, and T2, the Stein operator for P2 with pdf p2 = π0p1,
namely

T2(f) = T1(f) + f
π′
0

π0
= T1(f) + f(logπ0)

′;

see (3.2). The difference
T2(f)− T1(f) = f(log π0)

′

is the cornerstone of our results.

Remark 1.1. This paper restricts attention to the univariate case. The multivariate case is of
considerable interest but our approach requires an extension of the density method to a multivariate
setting, which is to date still under construction and not yet available.

Using the approach in [15] it would be possible to extend our results to more general Radon-
Nikodym derivatives, at the expense of clarity of exposition.

The paper is organized as follows. In Section 2, we provide the necessary notations and defini-
tions from Stein’s method, which allows us to state our main result, Theorem 3.1, in Section 3.1.
Several applications of this result are discussed in Examples 3.3 to 3.9, while Section 4 tackles our
motivating Bayesian problem by providing a measure of the impact of the choice of the prior on
the posterior distribution for finite sample size n. Finally in Section 5 we provide a proof of one
of the crucial bounds we need for our estimation purposes.

2. A review of Stein’s density approach

2.1. Notations and definitions

Here we recall some notions from [15] and [18]. Consider a probability distribution P with continu-
ous univariate Lebesgue density p on the real line and let L1(p)= L1(p(x)dx) denote the collection
of f : R → R such that E|f(X)| =

∫

|f(x)|p(x)dx < ∞, where X ∼ P . Let I = {x ∈ R | p(x) > 0}
be the support of p. In this paper we shall use the following definition of a Stein operator; see for
example [15] for a discussion of alternative choices.

Definition 2.1. [Stein pair] The Stein class F(P ) of P is the collection of f : R → R such that
(i) fp is absolutely continuous, (ii) (fp)′ ∈ L1(dx) and (iii)

∫

R
(fp)′dx = 0. The Stein operator

TP for P is

TP : F(P ) → L1(p) : f 7→ TP f =
(fp)′

p
(2.1)

with the convention that TP f(x) = 0 outside of I.
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Here (fp)′ denotes the derivative of fp which exists Lebesgue-almost surely due to the assump-
tion of absolute continuity. Often the Stein pair (F(P ), TP ) is written as dependent on X ∼ P
rather than on P (that is, as (F(X), TX)); we use the dependence on the distribution to emphasize
that the pair itself is not random.

Note that because we only consider f multiplied by p the behavior of f outside of I is irrelevant.

Remark 2.2. A sufficient condition for F(P ) 6= ∅ is that p′ is integrable with integral 0 so that
e.g. f = 1 ∈ F(P ). Such an assumption is in general too strong (see e.g. [28] for a discussion about
the arcsine distribution) and weaker assumptions on p are permitted in our framework, although in
such cases stronger constraints on the functions in F(P ) are necessary. In particular the constant
functions may not belong to F(P ).

All random quantities appearing in the sequel will be assumed to have non-empty Stein class
(an assumption verified for all classical distributions from the literature).

It is easy to see from Definition 2.1 (iii) that E[TP f(X)] = 0 for all f ∈ F(P ). More generally

one can prove that if Y and X share the same support then Y
D
= X (equality in distribution) if

and only if E [TP f(Y )] = 0 for all f ∈ F(P ). For any family of operators T indexed by univariate
probability measures P and Q and for any class of functions G we say that (TP ,G) is a Stein
characterization if

P = Q ⇐⇒ TQ(f) = TP (f) ∀f ∈ G; (2.2)

see [18, 16] for general versions. In particular a Stein pair (TP ,F(P )) is a Stein characterization.
With our notations, the operator TP also admits an inverse which is easy to write out formally

at least. Let X ∼ P have (open, closed, or half-open) interval support I between a and b, where
−∞ ≤ a < b ≤ +∞ and

F (0)(P ) = {h ∈ L1(p) : E[h(X)] = 0}.
Define T −1

P : F (0)(P ) → F(P ) by

T −1
P h(x) =

1

p(x)

∫ x

a

h(y)p(y)dy = − 1

p(x)

∫ b

x

h(y)p(y)dy. (2.3)

The operator T −1
P is the inverse Stein operator of P in the sense that

TP (T −1
P h) = h.

Note how the particular structure of the r.h.s. of (2.3) ensures that T −1
P h belongs to F(P ) for any

h ∈ F (0)(P ). If in addition (fp)(a) = (fp)(b) = 0 for all f ∈ F(p) then

T −1
P (TP f) = f

so that T −1
P constitutes a bona fide inverse in this case.

2.2. Standardizations of the operator

Although the Stein pair (TP ,F(P )) is uniquely defined in Definition 2.1, there are many implicit
conditions on f ∈ F(P ) which are useful to identify before applying this construction to specific
approximation problems. In particular for favourable behavior of the inverse Stein operator it
may be advantageous to consider only subclasses Fsub(P ) ⊂ F(P ) of functions satisfying certain
target-specific and well chosen constraints. A good choice of subclass will lead to specific forms of
the resulting operator which may turn out to have a smooth inverse Stein operator, as illustrated
in the next example. As long as Fsub(P ) is a measure-determining class, the class is informative
enough to satisfy (2.2).
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Example 2.3. In the case of the Laplace distribution Lap with pdf p(x) ∝ e−|x| the Stein operator
from Definition 2.1 is

TLapf(x) = f ′(x)− sign(x)f(x) (2.4)

with f ∈ F(Lap), the class of functions such that f(x)e−|x| is differentiable almost surely with
integrable derivative, and the derivative of f(x)e−|x| integrates to 0 over the real line. This operator
does not have agreeable properties, mainly because the assumptions on F(Lap) are not explicit (see
e.g. [10] and [22]). It is indeed sufficient to consider functions of the form f(x) = (xf0(x)e

|x|)′/e|x|

for certain functions f0. Applying TLap to such functions yields the second order operator

TLapf(x) = AXf0(x) = xf ′′
0 (x) + 2f ′

0(x) − xf0(x) (2.5)

with f0 ∈ F(ALap) the class of functions which are piecewise twice continuously differentiable
such that xf ′′

0 (x), f
′
0(x) and xf0(x) are all in L1

(

e−|x|dx
)

, as considered e.g. in [10, 11]. In [22]

functions of the form f(x) = (−(g(x)− g(0))e|x|)′/e|x| yielded the second order operator

TLap,PRg(x) = g(x)− g(0)− g′′(x)

for g locally absolutely continuous with g ∈ L1
(

e−|x|dx
)

, g′ also locally absolutely continuous and

g′′ ∈ L1
(

e−|x|dx
)

. The operator TLap,PR is also discussed in [10] but not used in [10] because it
did not fit in with Malliavin calculus as well as (2.5).

Even in the straightforward situation of a normal distribution, often a standardization is applied,
as explained in the next example.

Example 2.4. For the standard normal distribution N (0, 1) it is easy to write out the operator
(2.1) explicitly to get TN (0,1)(f)(x) = f ′(x)−xf(x) acting on a wide class of functions F(N (0, 1))
which includes all absolutely continuous functions with polynomial decay at ±∞. In particular the
constant function 1 is in F(N (0, 1)). A standardization of the form f(x) = Hn(x)f0(x) with Hn

the nth Hermite polynomial (H0(x) = 1, H1(x) = x,H2(x) = x2 − 1) gives as operator Af0(x) =
Hn(x)f

′
0(x) −Hn+1(x)f0(x), see for example [12].

It is also possible to study the behavior of functions fh under quite general conditions on h.
For instance if H is the set of measurable functions h : R → [0, 1] (leading to the total variation
measure) then F (1) is contained in the collection of differentiable functions such that ‖f‖ ≤

√

π/2
and ‖f ′‖ ≤ 2; see for instance [19].

For the general normal distribution N (µ, σ2) the operator (2.1) gives

TN (µ,σ2)(f)(x) = f ′(x)− x− µ

σ2
f(x). (2.6)

The standardization f(x) = σ2g′(x) yields the classical Ornstein-Uhlenbeck Stein operator Ag(x) =
σ2g′′(x)− (x− µ)g′(x), see for example [2].

We call the passage from a parsimonious operator TP (such as (2.4)) acting on the implicit class
F(P ) to a specific operator AP (such as (2.5)) acting on a generic class F(AP ) a standardization
of (TP ,F(P )). Given P there are infinitely many different possible standardizations.

2.3. The Stein transfer principle

Suppose that we aim to assess the discrepancy between the laws of two random quantities X with
distribution P and W with distribution Q, say, in terms of some probability distance of the form

dH(P,Q) = dH(X,W ) = sup
h∈H

|E[h(W )] − E[h(X)]|, (2.7)

for H some measure-determining class; many common distances can be written under the form
(2.7), including the Kolmogorov distance (with H the collection of indicators of half lines), the
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Total Variation distance (with H the collection of indicators of Borel sets) and the 1-Wasserstein
distance (see (1.1)). Here writing dH(X,W ) is a shorthand for (2.7): this distance is not random.

Let P have Stein pair (TP ,F(P )) and consider a standardization (AP ,F(AP )) as described in
Section 2.2. The first key idea in Stein’s method is to relate the test functions h of interest to a
function f = fh ∈ F(AP ) through the so-called Stein equation

h(x)− E[h(X)] = AP f(x), x ∈ I, (2.8)

so that, for fh solving (2.8), we get h(W )− E[h(X)] = AP fh(W ) and, in particular,

sup
h∈H

|E[h(W )] − E[h(X)]| = sup
f∈F(1)

|E [AP f(W )] | (2.9)

where F (1) = F (1)(AP ,H) = {f ∈ F(AP ) | AP f = h− E[h(X)] for some h ∈ H} . The first step in
Stein’s method thus consists in some form of transfer principle whereby one transforms the problem
of bounding the distance dH(P,Q) into that of bounding the expectations of the operators AP

over a specific class of functions.

Example 2.5. For the standard normal distribution, the operators (2.1) and (2.6) give TN (0,1)(f)(x) =
f ′(x)−xf(x). Bounding expressions of the form |E [f ′(W )−Wf(W )]| as occurring in the r.h.s. of
(2.9) is a potent starting point for Gaussian approximation problems. Prominent examples include
W =

∑

i ξi a standardized sum of weakly dependent variables, and W = F (X) a functional of a
Gaussian process; see e.g. [2, 23, 19] for an overview.

In general, the success of Stein’s method for a particular target relies on the positive combination
of three factors :

(i) the functions in F (1) need to have “good” properties (e.g. be bounded with bounded deriva-
tives),

(ii) the operator AP needs to be amenable to computations (e.g. its expression should only
involve polynomial functions),

(iii) there must be some “handle” on the expressions E [AP f(W )] (e.g. allowing for Taylor-type
expansions or the application of couplings).

Conditions (i) to (iii) are satisfied for a great variety of target distributions (including the ex-
ponential, chi-squared, gamma, semi-circle, variance gamma and many others, see for example
https://sites.google.com/site/yvikswan/about-stein-s-method for an up-to-date list).

2.4. The Stein kernel

One of the many keys to a successful application of Stein’s method for a given target distribution
P lies in the properties of P ’s Stein kernel. We now review some properties of this quantity which
will play a central role in our analysis; see [18] or [15] for details.

Definition 2.6. Let P be a probability distribution with mean µ, and let X ∼ P . A Stein kernel
of P is a random variable τP (X) such that

E [τP (X)ϕ′(X)] = E [(X − µ)ϕ(X)] (2.10)

for all differentiable ϕ : R → R for which the expectation E [(X − µ)ϕ(X)] exists.

The function x 7→ τP (x) = E [τP (X) |X = x] is a Stein kernel (function) of P . If P has interval
support with closure [a, b] then, letting Id denote the identity function, it is not hard to see that

τP (x) = T −1
P (µ− Id)(x) =

1

p(x)

∫ x

a

(µ− y)p(y)dy

is the unique Stein kernel of P . Moreover the following properties of the Stein kernel are immediate
consequences of its definition:

for all x ∈ R we have that τP (x) ≥ 0 and E [τP (X)] = Var[X ]. (2.11)



Ley, Reinert and Swan/Distances between nested densities and the impact of the prior 8

The Stein kernels for a wide variety of classical distributions (all members of the Pearson family,
as it turns out) bear agreeable expressions; see [8, Table 1], [20, 21] or the forthcoming [7] for
illustrations.

2.5. Stein factors

Let P have a continuous density p with mean µ and support I such that the closure of I is the
interval [a, b] (possibly with infinite endpoints). Let (TP ,F(P )) be the Stein pair of P and suppose
that P admits a Stein kernel τP (x), as described in Subsection 2.4. We introduce the standardized
Stein pair (AP ,F(AP )) with

AP f(x) = TP (τP f)(x) = τP (x)f
′(x) + (µ− x)f(x), x ∈ I, (2.12)

and

F(AP ) = {f : R → R absolutely continuous such that

lim
x→a

f(x)

∫ x

a

(µ− u)p(u)du = lim
x→b

f(x)

∫ b

x

(µ− u)p(u)du = 0

and

(

f(x)

∫ x

a

(µ− u)p(u)du

)′

∈ L1(dx)

}

Our next lemma shows that whenever applicable, standardization (2.12) satisfies requirement (i)
from the end of Section 2.3.

Lemma 2.7. Let H = Lip(1) be the collection of Lipschitz functions h : R → R with Lipschitz
constant 1 and let F (1) be the collection of f ∈ F(AP ) such that AP f = h − E[h(X)] for some
h ∈ H. Then F (1) is contained in the collection of functions f such that ‖f‖∞ ≤ 1.

Lemma 2.7 is strongly related to [5, Corollary 2.16], adapted to our framework. For the sake
of completeness we present a proof of (a generalization of) this result at the end of the present
paper. The key to our approach lies in the fact that the bound in Lemma 2.7 does not depend on
the standardization of the target P ; it is in particular independent of the mean and variance of
X ∼ P or of any normalizing constant that might appear in the expression of the density of P .

3. Comparing univariate continuous densities

For i = 1, 2, let Pi be a probability distribution with an absolutely continuous density pi(·) having
support Ii with closure Īi = [ai, bi], for some −∞ ≤ ai < bi ≤ +∞. Suppose that I2 ⊂ I1 and
define π0 through

p2 = π0p1. (3.1)

Associate with both distributions the Stein pairs (Ti,Fi) for i = 1, 2, as well as the resulting
construction from the previous section.

The product structure (3.1) implies a key connection between T1 and T2, namely

T2(f) = T1(f) + f
π′
0

π0
= T1(f) + f(log π0)

′ (3.2)

for all f ∈ F1 ∩ F2.

3.1. Bounds on the Wasserstein distance between univariate continuous densities

Our main objective in this section is to provide computable and meaningful bounds on the Wasser-
stein distance dW(P1, P2), defined in (1.1), in terms of π0 and P1, under the product structure
(3.1).
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Theorem 3.1. For i = 1, 2, let Pi be a probability distribution with an absolutely continuous
density pi having support Ii with closure Īi = [ai, bi], for some −∞ ≤ ai < bi ≤ +∞; suppose that
I2 ⊂ I1 and let Xi ∼ Pi have finite means µi for i = 1, 2. Assume that π0 = p2

p1
, defined on I2, is

differentiable on I2, satisfies E|(X1 − µ1)π0(X1)| < ∞ and

(

π0(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy

)′

∈ L1(dx) (3.3)

lim
x→a2,b2

π0(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy = 0 (3.4)

for all h ∈ H, the set of Lipschitz-1 functions on R. Then

|E [π′
0(X1)τ1(X1)]| ≤ dW(P1, P2) ≤ E [|π′

0(X1)| τ1(X1)] (3.5)

where τ1 is the Stein kernel of P1.

Proof. We first prove the lower bound. Let X2 ∼ P2. Start by noting that dW (P1, P2) ≥ |E[X2]−
E[X1]| because Id ∈ Lip(1). With (3.1) we get that

E[X2]− E[X1] = E[X1π0(X1)]− µ1

= E [(X1 − µ1)π0(X1)]

= E [τ1(X1)π
′
0(X1)] (3.6)

where we used the fact that E [π0(X1)] = 1 and the definition (2.10) of τ1(X1) in the last line.
Next we prove the upper bound. By the definition (2.3), fh = T −1

1 (h−E[h(X1)]) ∈ F1. On the
other hand, Conditions (3.3) and (3.4) guarantee that fh ∈ F2 for all h because

p2fh = π0(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy

is necessarily absolutely continuous. We conclude that all functions fh = T −1
1 (h−E[h(X1)]) belong

to the intersection F1 ∩ F2. Hence

E[h(X2)]− E[h(X1)] = E[T1(fh)(X2)]

= E[T1(fh)(X2)]− E[T2(fh)(X2)] (3.7)

= −E[fh(X2)(log π0)
′(X2)].

Equality (3.7) follows from the assumption that fh ∈ F2 so that T2fh cancels when integrated with
respect to p2, whereas the last equality follows from Equation (3.2). Now we define gh = fh/τ1
and recall that τ1 ≥ 0 to get

|E[h(X2)]− E[h(X1)]| = |E [gh(X2)(log π0)
′(X2)τ1(X2)]| ≤ ||gh||∞E [|(log π0)

′(X2)| τ1(X2)] .

It follows from Lemma 2.7 that ||gh||∞ ≤ 1 for all h ∈ Lip(1), yielding

dW(P1, P2) ≤ E [|(log π0)
′(X2)| τ1(X2)] = E [|π′

0(X1)| τ1(X1)] ,

the last equality again following from (3.1).

Assumptions (3.3) and (3.4) are crucial. While (3.4) is in a sense innocuous (because I2 ⊂ I1),
(3.3) is quite stringent yet hard to verify in practice. In Section 5 we provide a proof of the following
explicit and easy to verify sufficient conditions on p for these and hence Theorem 3.1 to hold.

Proposition 3.2. We use the notations of Theorem 3.1. Suppose that π0, p1 and p2 are differ-
entiable over their support and that their derivatives are integrable. Suppose that

lim
x→a2,b2

π0(x)p1(x)τ1(x) = lim
x→a2,b2

p2(x)τ1(x) = 0.
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Let ρ1 = p′1/p1 and suppose also that

π′
0p1τ1 = p′2τ1 − ρ1τ1p2 ∈ L1(dx).

Then Theorem 3.1 applies.

Example 3.3 (Distance between Gaussians). To compare two Gaussian distributions, N (µ1, σ
2
1)

and N (µ2, σ
2
2), order them so that σ2

2 ≤ σ2
1 , and if σ1 = σ2 then assume that µ1 > µ2. If P1 is

N (µ1, σ
2
1) then τ1(x) = σ2

1 is constant (see e.g. [27]). With P2 being N (µ2, σ
2
2), all conditions in

Proposition 3.2 are satisfied. Applying Theorem 3.1 and noting that (log π0(x))
′ = x

(

1
σ2
1
− 1

σ2
2

)

+
(

µ2

σ2
2
− µ1

σ2
1

)

, we obtain that

|µ2 − µ1| ≤ dW(P1, P2) ≤ σ2
1E

∣

∣

∣

∣

X2

(

1

σ2
1

− 1

σ2
2

)

+

(

µ2

σ2
2

− µ1

σ2
1

)
∣

∣

∣

∣

≤
∣

∣

∣

∣

σ2
1

σ2
2

µ2 − µ1

∣

∣

∣

∣

+

(

σ2
1

σ2
2

− 1

)

E |X2| .

In the special case µ2 = µ1 = 0 we compute E |X2| =
√

2/πσ2 to get

dW(P1, P2) ≤
√

2

π

σ2
1 − σ2

2

σ2
,

to be compared with a similar result in [19, Proposition 3.6.1].
If µ2 6= 0 then the general expression for E |X2| is not agreeable, which is why we suggest using

the inequality E|X2| ≤
(

E[X2
2 ]
)1/2

=
√

σ2
2 + µ2

2, leading to

|µ2 − µ1| ≤ dW (P1, P2) ≤
∣

∣

∣

∣

σ2
1

σ2
2

µ2 − µ1

∣

∣

∣

∣

+

(

σ2
1

σ2
2

− 1

)

√

σ2
2 + µ2

2.

With µ1 = µ2 = µ, the upper bound becomes (|µ| +
√

σ2
2 + µ2)

(

σ2
1

σ2
2
− 1
)

. We have not found

a similar result in the literature (outside of the centered case) and computing the Wasserstein
distance directly using (3.10) is prohibitive as the cdf’s are not available in closed form.

Remark 3.4. Our upper bounds are not restricted to the Wasserstein case only. Indeed, mimicking
large parts of the proof of Theorem 3.1, we obtain the general bound

dH(P1, P2) ≤ κHE [|π′
0(X1)| τ1(X1)] (3.8)

with κH = suph∈H ||T −1
1 (h−E1h)/τ1||∞ and H a measure-determining class of functions (the Kol-

mogorov distance corresponds to the class of indicators of half-lines, the Total Variation distance
to the indicators of Borel sets). Usefulness of (3.8) hinges around availability of bounds similar to
Lemma 2.7 on the more general constant κH.

Unravelling the lower bound and using (2.11) in the upper bound of (3.5) we also obtain the
following weaker but perhaps more transparent result.

Corollary 3.5. Under the same assumptions as for Theorem 3.1, with X2 ∼ P2,

|E[X2]− E[X1]| ≤ dW(P1, P2) ≤ ‖π′
0‖∞Var[X1]. (3.9)

We shall use Corollary (3.9) in Section 4. We stress the fact that there is no normalizing constant
appearing in the bounds (3.5) and (3.9). Also, the absence of Stein kernel in (3.9) is in somes cases
an advantage because the Stein kernel is not always easy to compute.

There are many ways of expressing the Wasserstein distance (1.1) between two random variables.
In general, if P1 has cumulative distribution function (cdf) FP1 and if P2 has cdf FP2 then

dW(P1, P2) =

∫

R

|FP1 (x)− FP2(x)|dx =

∫ 1

0

|F−1
P1

(u)− F−1
P2

(u)|du = inf E |ξ1 − ξ2| (3.10)
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where the infimum in this last expression is taken over all possible couplings (ξ1, ξ2) of (P1, P2)
(see e.g. [29, 30]). Often exact computable expressions of Wasserstein distances tend to be difficult
to obtain. The similarity between the upper and lower bounds in (3.5) encourages us to formulate
the next result.

Corollary 3.6. If Xi ∼ Pi, i = 1, 2, are as in Theorem 3.1 and if π0 is monotone increasing or
decreasing, then

dW(P1, P2) = |E[X2]− E[X1]| = E [|π′
0(X1)| τ1(X1)] = E [|(log π0)

′(X2)| τ1(X2)]. (3.11)

Note how the second expression in (3.11) can be immediately obtained from the first by applying
the same argument as in (3.6). Now while the second expression in (3.11) is new, the first is in
fact not. Indeed the condition that π0 be monotone in Corollary 3.6 is equivalent to requiring
X1 ≥LR X2 (stochastically ordered in the sense of likelihood ratio, see e.g. [24, Section 9.4] or
Example 3.8). If X1 ≤LR X2 then FP2 ≤ FP1 (see for example [25, Theorem 1.C.4]), so that
dW(X1, X2) =

∫

R
(FP1(x) − FP2(x))dx = E[X2]− E[X1].

Example 3.7 (Distance between Azzalini-type skew-symmetric distributions). Consider a sym-
metric density p1 on the real line. The so-called Azzalini-type skew-symmetric distributions are
constructed from such a pdf p1 by considering the densities p2(x) = 2p1(x)G(λx) with G the cdf of
a univariate symmetric distribution with pdf g and λ ∈ R a parameter (called skewness parame-
ter); see [13] for an overview of these skewing mechanisms and of their applications. The founding
example is Azzalini [1]’s skew-normal density 2φ(x)Φ(λx) (denoted SN (0, 1, λ)), where φ and Φ
respectively stand for the standard normal density and cumulative distribution function.

Corollary 3.6 provides, under mild conditions on g and G, an exact expression for the Wasser-
stein distance between P1 with pdf p1 and its skew-symmetric counterpart P2 with pdf p2 since in
this case (log π0)

′(x) = λg(λx)/G(λx) which is positive or negative depending on the sign of λ as
both g and G are positive on the support of P2. Thus we have π′

0(x) = 2λg(λx) and

dW(p1, p2) = 2|λ|E [τ1(X1)g(λX1)] .

Perhaps the most interesting instance of the above is the comparison of the standard normal with
the skew-normal (all conditions in Proposition 3.2 are satisfied in this case) :

dW (N (0, 1),SN (0, 1, λ)) =

√

2

π

|λ|√
1 + λ2

(recall that τ1(x) = 1). Letting λ → ∞ we obtain that the distance between the half-normal with
density 2φ(x)Ix≥0 and the normal is

√

2/π, see also [6]. As in the previous example, such results
are not easy to obtain directly from (3.10).

Likelihood ratio orderings have a natural role in comparing parametric densities. Let p(x; θ) be
a parametric family of densities with parameter of interest θ ∈ R (see e.g. [17] for discussion and
references). Set p1(·) = p(·; θ1) and p2(·) = p(·; θ2). The family p(x; θ) is said to have monotone
likelihood ratio if x 7→ p(x; θ2)/p(x; θ1) is non decreasing as soon as θ2 > θ1 (and vice-versa). If
P1 has pdf p1 and if P2 has pdf p2 then under monotone likelihood ratio, P2 ≤ P1. The property
of monotone likelihood ratio is intrinsically linked with the validity of one-sided tests in statistics,
see [14].

Example 3.8 (Distances within the exponential family). A noteworthy class of parametric distri-
butions which satisfy the property of monotone likelihood ratio is the canonical regular exponential
family p(x; θ) = ℓ(x)eθx−A(θ) for some scalar functions ℓ and A, with the range of the distri-
bution being independent of θ, see for example [14, page 639]. If θ1 > θ2 then (log π0)

′(x) =
(

log p2(x)
p1(x)

)′

= θ2 − θ1 < 0 for all x ∈ R and thus from (3.11) we find with X2 ∼ P2 that

dW(P1, P2) = |θ2 − θ1|E [τ1(X2)] under mild and easy-to-check conditions on P1 and P2.
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Example 3.9 (Distances between “tilted” distributions ). Fix a density p1 with mean µ1 and
consider, among all other densities g with same support and fixed but different mean µ2 6= µ1, the
density that minimizes the Kullback-Leibler divergence

KL(g||p1) =
∫

g(x) log

(

g(x)

p1(x)

)

dx.

The Euler-Lagrange equation for the constrained variational problem is log g(x) = log p1(x)+λ1x+
λ2 solved by

p2(x) = p1(x)
eλ1x

M1(λ1)
(3.12)

with M1(t) = E[etX1 ] the moment generating function of X1 ∼ p1 and λ1 a solution to

d

dt
(logM1(t))t=λ1 = µ2

in order to guarantee E[X2] = µ2. We call (3.12) a “tilted” version of p1 (following the classical
notion of exponential tilting, see e.g. [9]). It is easy to compute

KL(p2 || p1) = λ1µ2 − logM1(λ1).

Setting π0(x) = eλ1x/M1(λ1) we have log(π0)
′(x) = λ1 and

dW(p1, p2) = |λ1|E [τ1(X2)] (3.13)

provided that the appropriate conditions are satisfied.
For the sake of illustration, take p1 the Gamma distribution on the positive half line with density

p1(x;λ, k) =
1

Γ(k)e
−x/λxk−1λ−k. Then M1(t) = (1 − λt)−k for t < 1

λ and λ1 = 1
λ − k

µ2
. Moreover

τ1(x) = λx. It is thus easy to check in this case that all conditions in Proposition 3.2 are satisfied.
This allows us to deduce from (3.13) that

dW(p1, p2) = |µ2 − λk|

which nicely complements KL(p2||p1) = µ2

λ −k+log
(

kλ
µ2

)k

as an alternative comparison statistic.

4. On the influence of the prior in Bayesian statistics

We now tackle the problem that motivated Theorem 3.1 : assessing the impact of the choice of the
prior distribution on the resulting posterior distribution in Bayesian statistics. In all examples we
consider the conditions in Proposition 3.2 are easy to verify explicitly.

We first fix the notations. Assume that the observation x comes from a parametric model with
pdf f(x; θ) with θ ∈ Θ - f(x; θ) is often called the likelihood or the sampling density. We turn this
model into a pdf for θ through

p1(θ;x) = κ1(x)f(x; θ)

where κ1(x) =
(∫

f(x; θ)dθ
)−1

, and we assume that κ1 < ∞. Let P1 have pdf p1 and call its Stein
kernel τ1. Choose a possibly improper prior density π0(θ), and let

p2(θ;x) = π0(θ;x)p1(θ;x)

where

π0(θ;x) = κ2(x)π0(θ) such that

∫

p2(θ;x)dθ = 1.

Then

1 =

∫

p2(θ;x)dθ = κ2(x)

∫

π0(θ)p1(θ;x)dθ = κ2(x)E[π0(Θ1)],
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where Θ1 has distribution P1 which gives an expression for the normalizing constant. Let P2 =
P2(·;x) be the probability distribution on Θ with pdf p2(·;x). Then P2 is the posterior distribution
of θ under the prior π0 and the data x; moreover P1 can be seen as the distribution of θ under a
uniform prior and the data x.

Now we extract from (3.5) of Theorem 3.1 the first bounds on the impact of a prior on the
posterior distribution :

|E [τ1(Θ1)π
′
0(Θ1)]|

E[π0(Θ1)]
≤ dW(P2, P1) ≤

E [τ1(Θ1) |π′
0(Θ1)|]

E[π0(Θ1)]
(4.1)

which can also be rewritten as

|E [Θ2]− E [Θ1]| = |E [τ1(Θ2)ρ0(Θ2)]| ≤ dW (P2, P1) ≤ E [τ1(Θ2) |ρ0(Θ2)|] (4.2)

with Θ2 ∼ P2 and

ρ0(θ) =
π′
0(θ)

π0(θ)
,

the score function of π0(θ;x) with respect to θ, which does not depend on the data x. As we shall
see in the forthcoming sections which treat some classical examples in Bayesian statistics, (4.2)
often turns out to be handier for computations than (4.1).

4.1. A normal model

Consider the simple setting where x = (x1, . . . , xn) is a random sample from aN (θ, σ2) population,
where the scale σ is known and the location θ is the parameter of interest, and assume that the
prior π0(θ) > 0 for all θ ∈ Θ is differentiable. The likelihood f(x; θ) of the normal model can be
factorized into

f(x; θ) = (2πσ2)−
n

2 exp

{

−1

2

n
∑

i=1

(xi − θ)2

σ2

}

= (2πσ2)−
n

2 exp

{

− 1

2σ2

(

n
∑

i=1

x2
i − nx̄2

)}

exp

{

−1

2

(θ − x̄)2

σ2/n

}

∝ exp

{

−1

2

(θ − x̄)2

σ2/n

}

when viewed as a function of θ

where x̄ = 1
n

∑n
i=1 xi. Thus, P1 = N (x̄, σ2/n). Since τ1 is constant, equal to σ2/n, the variance of

Θ1 ∼ P1, the bound (4.1) becomes

σ2

n

|E [π′
0(Θ1)]|

E [π0(Θ1)]
≤ dW(P2, P1) ≤

σ2

n

E [|π′
0(Θ1)|]

E [π0(Θ1)]

and (4.2) becomes

|E[Θ2]− x̄| = σ2

n
|E[ρ0(Θ2)]| ≤ dW(P1, P2) ≤

σ2

n
E[|ρ0(Θ2)|]. (4.3)

Both inequalities are equalities in the case that π0 is monotone.

4.2. Normal prior and normal model

Consider the same setting as in the previous section with the additional information that the prior
π0 is the density of a N (µ, δ2), where µ and δ2 > 0 are known. Then the posterior P2 is also
normal, since

p2(θ;x) ∝ exp

{

−1

2

(

(θ − x̄)2

σ2/n
+

(θ − µ)2

δ2

)}

.
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Defining a = n
σ2 + 1

δ2 and b(x) = x̄
σ2/n + µ

δ2 , we see that P2 = N
(

b(x)
a , 1

a

)

.

Since the prior π0 is not monotone, we cannot exactly evaluate the Wasserstein distance between
P1 and P2. However then we can write ρ0(θ) = −(θ − µ)/δ2 to obtain

σ2

nδ2 + σ2
|x̄− µ| ≤ dW(P1, P2) ≤

σ2

nδ2 + σ2
|x̄− µ|+

√
2√
π

σ3

nδ
√
δ2n+ σ2

. (4.4)

To see this, the lower bound follows directly from simplifying the difference of the expectations,
∣

∣

∣

∣

b(x)

a
− x̄

∣

∣

∣

∣

=
σ2

nδ2 + σ2
|x̄− µ| .

For the upper bound, using ρ0(θ) = −(θ − µ)/δ2 in (4.3) gives

dW (P1, P2) ≤ σ2

n
E [|ρ0(Θ2)|]

=
σ2

nδ2
E[|Θ2 − µ|]

≤ σ2

nδ2

(

E

[
∣

∣

∣

∣

Θ2 −
b(x)

a

∣

∣

∣

∣

]

+

∣

∣

∣

∣

b(x)

a
− µ

∣

∣

∣

∣

)

=

√
2√
π

√

1

a

σ2

nδ2
+

σ2

nδ2

∣

∣

∣

∣

b(x)

a
− µ

∣

∣

∣

∣

=

√
2√
π

δσ√
δ2n+ σ2

σ2

nδ2
+

σ2

nδ2
δ2

δ2 + σ2

n

|x̄− µ|

=

√
2√
π

σ3

nδ
√
δ2n+ σ2

+
σ2

nδ2 + σ2
|x̄− µ| ,

which yields the upper bound in (4.4).
Inequality (4.4) provides a quite concrete and intuitive idea of the impact of the prior. First we

see that, for n → ∞, the distance becomes zero, as is well known. The prior variance δ2 has the
same influence, which is also natural given that the prior then tends towards an improper prior,
too. If the data are unfavourable so that |x̄ − µ| is large compared to n, then the Wasserstein
distance between the two posterior distributions will be large. Due to the law of large numbers,
for large n the probability that |x̄ − µ| > δ2n + σ2 is small; but in contrast to such asymptotic
considerations, the bound (4.4) makes the influence of the data on the distance explicit. Further
the upper and lower bounds only differ by an O(n−3/2) term, hence at a 1/n precision, we have an
exact expression for the Wasserstein distance. Finally, the O(1/n) term in both bounds perfectly
reflects the intuition that the better the guess of the prior mean µ (w.r.t. the data), the smaller
the influence of the prior.

4.3. The binomial model

As next example we treat the case of n independent and identically distributed Bernoulli random
variables with parameter of interest θ ∈ [0, 1]; alternatively, we may say we have a single observation
y ∈ {0, 1, . . . , n} from a Binomial distribution with known n and parameter of interest θ. The
corresponding sampling density is

f(y; θ) =

(

n

y

)

θy(1− θ)n−y

and p1(θ; y) = κ1(y)θ
y(1− θ)n−y is a Beta density with

κ1(y) =
1

B(y + 1, n− y + 1)
,
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where B(·, ·) denotes the Beta function, and P1 = P1(·; y) = Beta(y + 1, n − y + 1) is a Beta
distribution.

Recall that, if X ∼ p(x) = 1
B(α,β)x

α−1(1 − x)β−1 then

E[X ] =
α

α+ β
, E[X2] =

α(1 + α)

(α+ β)(α + β + 1)
and Var[X ] =

αβ

(α+ β)2(α+ β + 1)
.

The Stein kernel is τ(x) = x(1−x)
α+β and in particular τ1(θ) = θ(1−θ)

n+2 . Corollary 3.5 gives that, for

any differentiable prior π0 on I = [0, 1],

dW(P1, P2) ≤ sup
0≤θ≤1

|π′
0(θ)|

(y + 1)(n− y + 1)

(n+ 2)2(n+ 3)
.

For y close to n
2 , this bound is of order n−1. In particular, for any 0 ≤ y ≤ n, for a prior with

bounded derivative, the Wasserstein distance converges to zero as n → ∞ no matter which data
are observed, but the data may affect the rate of convergence. Next we consider some choices of
prior densities which may not have bounded derivatives.

4.3.1. Beta prior

For a Beta prior
π0(θ) ∝ θα−1(1− θ)β−1, (4.5)

the assumptions of Theorem 3.1 are satisfied but sup0≤θ≤1 |π′
0(θ)| is infinite unless both α and β

are greater than or equal to 2 (or α = β = 1). Let P1 denote the Beta(y+1, n−y+1) distribution
and P2 the posterior distribution using the prior (4.5). It is well known that P2 is again Beta
distributed : the Beta distributions are conjugate priors for the Binomial distribution (similarly
as the normal prior is conjugate in the normal model, see the previous section); in fact, it is easy
to see that P2 is the Beta(α+ y, β + n− y) distribution.

We shall show that
∣

∣

∣

∣

y + 1

n+ 2

(

α+ β − 2

n+ α+ β

)

− α− 1

n+ α+ β

∣

∣

∣

∣

≤ dW(P1, P2)

≤ 1

n+ 2

{

|α− 1|+ y + α

n+ α+ β
(|β − 1| − |α− 1|)

}

.(4.6)

To this end, let Θ1 ∼ P1 and Θ2 ∼ P2. With (4.2) we have the immediate lower bound on the
Wasserstein distance, namely

dW(P1, P2) ≥ |E[Θ2]− E[Θ1]|

=

∣

∣

∣

∣

y + 1

n+ 2
− y + α

n+ α+ β

∣

∣

∣

∣

=

∣

∣

∣

∣

y + 1

n+ 2

(

1− n+ 2

n+ α+ β

)

− α− 1

n+ α+ β

∣

∣

∣

∣

=

∣

∣

∣

∣

y + 1

n+ 2

(

α+ β − 2

n+ α+ β

)

− α− 1

n+ α+ β

∣

∣

∣

∣

.

For an upper bound, we calculate that

ρ0(θ) =
(α− 1)(1− θ)− (β − 1)θ

θ(1− θ)

and hence

τ1(θ)ρ0(θ) =
1

n+ 2
{(α− 1)(1− θ)− (β − 1)θ}.
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Using (4.2) we obtain the claimed upper bound

dW(P1, P2) ≤ 1

n+ 2
E |(α− 1)(1−Θ2)− (β − 1)Θ2|

≤ 1

n+ 2
{|α− 1|E[1−Θ2] + |β − 1|E[Θ2]}

=
1

n+ 2

{

|α− 1|+ y + α

n+ α+ β
(|β − 1| − |α− 1|

}

.

Some comments on the bound (4.6) are in order. Firstly, both the upper and the lower bound
vanish when α = β = 1. Secondly, unless α = 1, the upper bound is of order O(n−1), no matter
how favourable the data y are.

4.3.2. The Jeffreys prior

An alternative popular prior is

π0(θ) =
1

√

θ(1 − θ)
,

the so-called Jeffreys prior obtained for α = β = 1/2 in (4.5). This is an improper prior which
satisfies the assumptions of Theorem 3.1. The posterior distribution P2 is Beta(y + 1

2 , n− y + 1
2 ).

Moreover

ρ0(θ) =
2θ − 1

2θ(1− θ)

and

τ1(θ)ρ0(θ) =
1

2(n+ 2)
(2θ − 1).

Using (4.2) we obtain that

1

(n+ 1)

∣

∣

∣

∣

y + 1

n+ 2
− 1

2

∣

∣

∣

∣

≤ dW(P1, P2)

and

dW (P1, P2) ≤
1

n+ 2







√

(

y + 1
2

) (

n− y + 1
2

)

(n+ 2)(n+ 1)2
+

∣

∣

∣

∣

y + 1
2

n+ 1
− 1

2

∣

∣

∣

∣







The upper bound follows from the Cauchy-Schwarz inequality via

dW(P1, P2) ≤ 1

2(n+ 2)
E|(2Θ2 − 1)|

≤ 1

n+ 2

{

E|Θ2 − E[Θ2]|+
∣

∣

∣

∣

E[Θ2]−
1

2

∣

∣

∣

∣

}

≤ 1

n+ 2

{

√

Var[Θ2] +

∣

∣

∣

∣

E[Θ2]−
1

2

∣

∣

∣

∣

}

=
1

n+ 2







√

(

y + 1
2

) (

n− y + 1
2

)

(n+ 2)(n+ 1)2
+

∣

∣

∣

∣

y + 1
2

n+ 1
− 1

2

∣

∣

∣

∣







.

In contrast to (4.6), the Jeffreys prior can achieve a bound of order O
(

n− 3
2

)

if the data y is

close to n
2 .
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4.4. A Poisson model

The last case we tackle is the Poisson model with data x = (x1, . . . , xn) from a Poisson distribution
with sampling density

f(x; θ) = e−nθ θ
∑

n

i=1 xi

∏n
i=1 xi!

.

When
∑n

i=1 xi 6= 0, which we shall now assume, then we obtain that P1, the posterior distribution
under a uniform prior, has pdf

p1(θ;x) ∝ exp(−θn)θ
∑

n

i=1 xi+1−1

a gamma density with parameters 1/n and
∑n

i=1 xi+1; its Stein kernel is simply τ1(θ) = θ/n (see
Example 3.9). The general bound (3.9) from Corollary 3.5 becomes

dW(P1, P2) ≤ sup
θ≥0

∣

∣

∣
π′
0

(

θ;
∑

xi

)
∣

∣

∣

x̄+ 1
n

n
, (4.7)

where x̄ = 1
n

∑n
i=1 xi ≥ 1

n .
Taking for θ a negative exponential prior Exp(λ) with λ > 0,

π0(θ) = λe−λθ

over R+ yields that the posterior P2 has density p2(θ;x) ∝ exp(−θ(n + λ))θ
∑

n

i=1 xi+1−1, again a
gamma density where the first parameter is updated to 1/(n + λ). Here, the prior is monotone
decreasing, hence we can exactly calculate the effect of the prior to obtain

dW(P1, P2) = E

[

| log π0(Θ2))
′|Θ2

n

]

= λ
E [Θ2]

n

= λ
x̄+ 1

n

n+ λ

=
λ

n+ λ
x̄+

λ

n(n+ λ)
.

We note that the exact distance differs from the general bound (4.7) here only through a multi-
plicative factor n

λ(n+λ) (since supθ≥0 |π′
0 (θ;

∑

xi)| = λ2). The distance increases with x̄ but will

always be at least as large as λ
n(n+λ) . As we assume that x̄ ≥ 1

n , the data-dependent part of

the Wasserstein distance will always be at least as large as the part which stems solely from the
prior. Finally, from the strong law of large numbers, x̄ will almost surely converge to a constant
as n → ∞, so that the Wasserstein distance will converge to 0 almost surely.

5. Technical results

In this section we first prove the variant of Corollary 2.16 of [5] which we use in our paper. It
includes Lemma 2.7 as a special case.

Lemma 5.1. Let P have a continuous density p with mean µ and support I an interval with
closure Ī = [a, b] with −∞ ≤ a < b ≤ +∞ and let X ∼ P . Write FP for the corresponding
cumulative distribution function. Let h : I → R be Lebesgue-almost surely differentiable such that
the Fubini condition

∫

A

∫

B

|h′(v)|p(u)dvdu =

∫

B

∫

A

|h′(v)|p(u)dudv < ∞

is satisfied for all Borel-measurable subsets A,B ⊂ [a, b]. Then
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1.
∣

∣

∣

∣

∫ x

a

(h(y)− E [h(X)])p(y)dy

∣

∣

∣

∣

≤ ‖h′‖
∫ x

a

(µ− y) p(y)dy;

2. for gh =
T −1
P

(h−E[h(X)])

τP
it holds that

‖gh‖ ≤ ‖h′‖;

3. [Lemma 2.7] in particular, if H is the set of all Lipschitz-continuous functions h : I → R

with Lipschitz constant 1, then
‖gh‖ ≤ 1

for all h ∈ H.

Proof. We prove the three items separately, closely following [5] and in particular his Lemma 5.3.

1. Let h : I → R be as detailed in the assumptions. Then, under the sole assumption that
Fubini is allowed, we can write for all a ≤ y ≤ b

h(y)− E [h(X)] =

∫ b

a

(h(y)− h(u))p(u)du

=

∫ b

a

∫ y

u

h′(v)p(u)dvdu

=

∫ y

a

∫ y

u

h′(v)p(u)dvdu −
∫ b

y

∫ u

y

h′(v)p(u)dvdu

=

∫ y

a

∫ v

a

h′(v)p(u)dudv −
∫ b

y

∫ b

v

h′(v)p(u)dudv

=

∫ y

a

FP (v)h
′(v)dv −

∫ b

y

(1− FP (v))h
′(v)dv.

Integrating the above w.r.t. p and again applying Fubini we get after straightforward sim-
plifications

∫ x

a

(h(y)− E [h(X)])p(y)dy

= −(1− FP (x))

∫ x

a

FP (s)h
′(s)ds− FP (x)

∫ b

x

(1− FP (s))h
′(s)ds

for each x ∈ [a, b] from which we readily derive
∣

∣

∣

∣

∫ x

a

(h(y)− E [h(X)])p(y)dy

∣

∣

∣

∣

≤ ‖h′‖
(

(1 − FP (x))

∫ x

a

FP (s)ds+ FP (x)

∫ b

x

(1− FP (s))ds

)

.

To deal with this last expression we use the identities
∫ x

a

FP (s)ds = xFP (x)−
∫ x

a

sp(s)ds

and
∫ b

x

(1 − FP (s))ds = −x(1− FP (x)) +

∫ b

x

sp(s)ds.

Straightforward computations yield the claim.
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2. For Item 2, by definition

T −1
P (h(x) − E [h(X)]) =

1

p(x)

∫ x

a

(h(y)− E [h(X)])p(y)dy.

Also, by definition,

τP (x)p(x) =

∫ x

a

(µ− y)p(y)dy.

Hence

gh(x) =

∫ x

a (h(y)− E [h(X)]) p(y)dy
∫ x

a (µ− y)p(y)dy

which, by Item 1, satisfies

‖gh‖ ≤ ‖h′‖
∣

∣

∣

∣

∣

∫ x

a (µ− y)p(y)dy
∫ x

a
(µ− y)p(y)dy

∣

∣

∣

∣

∣

= ‖h′‖.

3. Item 3 follows directly from Rademacher’s Theorem for Lipschitz functions which guarantees
that they are almost surely differentiable, with derivative bounded by 1 if their Lipschitz
constant is 1.

We conclude the paper with a proof of Proposition 3.2, restated for convenience.

Proposition 5.2. We use the notations of Theorem 3.1. Suppose that π0, p1 and p2 are differ-
entiable over their support and that their derivatives are integrable. Suppose that

lim
x→a2,b2

π0(x)p1(x)τ1(x) = lim
x→a2,b2

p2(x)τ1(x) = 0.

Let ρ1 = p′1/p1 and suppose also that

π′
0p1τ1 = p′2τ1 − ρ1τ1p2 ∈ L1(dx).

Then Theorem 3.1 applies.

Proof. Conditions (3.3) and (3.4) are equivalent to requiring that fh ∈ F2, in other words (fhp2)
needs to be differentiable, (fhp2)

′ needs to be integrable with integral on I2 (the support of p2)
equal to 0. By definition,

fh(x)p2(x) = π0(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy

is differentiable if π0 is differentiable. Next, differentiating,

(fhp2)
′(x) = π′

0(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy + π0(x)(h(x) − E[h(X1)])p1(x).

For the second summand, the Lipschitz property of h gives the bound

|h(x)− E[h(X1)]| ≤
∫ b1

a1

|h(x) − h(y)|p1(y)dy ≤
∫ b1

a1

|x− y|p1(y)dy,

so that

∫ b1

a1

|π0(x)(h(x) − E[h(X1)])p1(x)|dx ≤
∫ b1

a1

p2(x)

∫ b1

a1

|x− y|p1(y)dydx ≤ E|X1|+ E|X2|,
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and the latter expectations are assumed to exist. Hence in order to guarantee (3.3) it is sufficient
to impose that

π′
0(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy ∈ L1(dx). (5.1)

We can write
∫ x

a1

(h(y)− E[h(X1)])p1(y)dy = p1(x)τ1(x)gh(x)

with

gh(x) =
1

τ1(x)p1(x)

∫ x

a1

(h(y)− E[h(X1)])p1(y)dy

a function which we know from Lemma 5.1 to be bounded uniformly by 1. Hence (5.1) (and
therefore (3.3)) boils down to a condition on π′

0(x)p1(x)τ1(x). Similarly (3.4) can be tracked down
to a condition on π0(x)p1(x)τ1(x), and the claim follows.
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