
Università di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

INF 01

Ph.D. Thesis

A Language-based Approach to
Distributed Resources

Viet Dung Dinh

Supervisors

Prof. Chiara Bodei
Prof. Gian Luigi Ferrari

Referees

Prof. António Ravara
Dr. Emilio Tuosto

Chair

Prof. Pierpaolo Degano

May 28, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14704535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Modern computing paradigms for distributed applications advocate a strong control
on shared resources available on demand in order to guarantee their correct usages.
An illustrative example of such paradigms is Cloud Computing. In this dissertation,
we study formal models for distributed applications, paying particular attention to
resource usage analysis. Formal methods for specifying and analysing different as-
pects of resource management could play an important role for the widespread usages
of distributed resources. They provide not only the theoretical framework to un-
derstand the stages underlying the design and implementation issues, but also the
mathematically-based techniques for the specification and verifications of properties
of such systems. In this dissertation, we introduce two models, called λ{}-calculus
and G-Local π-calculus, which are extensions of λ-calculus and π-calculus respec-
tively.

The λ{}-calculus is an extension of concurrent λ-calculus enriched with suitable
mechanisms to express and enforce application-level security policies governing us-
ages of resources available on demand in the clouds. We focus on the server side of
cloud systems, by adopting a pro-active approach, where explicit security policies,
which are expressed as a set of execution traces, regulate server’s behaviour. By
providing an abstract cloud semantics, we ensure that enforcing security policies
embedded in cloud applications is sound.

The G-Local π-calculus is built on top of the standard π-calculus by introducing
new primitives to manage resources. Unlike the previous model, where resources
are highly abstract, resources in this approach are modelled as stateful entities with
local states and global policies. A high degree of loose coupling among applications
and resources is achieved through the publish/subscribe model. Furthermore, we
develop two static, language-based techniques, namely Control Flow Analysis (CFA)
and Type and Effect Systems, to reason about resource usages and therefore able to
predict bad usages of resources. The CFA mainly focuses on reachability properties
related to resource usages. It computes an over-approximation of resource usages
of applications. As a result, if the approximation does not contain bad usages, then
it guarantees that applications correctly use resources. The type and effect system
provides a closer view of resource behaviour. Resource behaviour is extracted in the
form of side effect of the type system. We exploit side effect to verify regular linear
time properties, expressed by Linear Time Logic formulas, of resource usages.

4

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisors, Prof.
Chiara Bodei and Prof. Gian Luigi Ferrari, who guided me through technical issues
of my work and helped me focus on research. I would have unable to complete this
thesis without their support, lessons and patience.

I wish to thank my external reviewers, Prof. António Ravara and Dr. Emilio
Tuosto, for their valuable and detailed comments, and the thesis committee mem-
bers, Prof. Antonio Brogi and Prof. Pierpaolo Degano, for their precious comments
and suggestions.

I am indebted to my friends and colleagues An, Claudio, Dung, Giovanni, Hieu,
Igor, Ha, Lopa, Luca, Lam, Mateo, Minh, Naveen, Peter, Rebecca and Rui, and to
friends from my football team, Kim, Liem, Tim, The and Vu. With them, life in
Pisa was far more enjoyable.

Finally, I would like to thank my parents and my sister for their love and support
throughout my studies.

6

Contents

1 Introduction 13

1.1 Motivations . 13

1.2 Structural Operational Semantics . 15

1.3 The λ-calculus . 16

1.4 Process Algebras . 16

1.5 Static Program Analysis . 17

1.6 Contributions . 18

1.7 Outline of the Work . 19

1.8 Origins of the Chapters . 19

2 Background 21

2.1 Preliminaries . 21

2.1.1 Transition Systems . 21

2.1.2 Automata and Languages . 22

2.1.3 Properties of Computing Systems 25

2.1.4 Temporal Logics . 26

2.1.5 Basic Parallel Processes . 30

2.2 The λ-Calculus . 31

2.2.1 Syntax . 31

2.2.2 The operational semantics . 32

2.2.3 Control Flow Analysis . 34

2.2.4 The λ[]-calculus . 37

2.2.5 Type system . 40

2.3 Calculus of Communicating Systems. 43

2.4 The π-Calculus . 44

2.4.1 Syntax . 45

2.4.2 Operational Semantics . 46

2.4.3 Control Flow Analysis . 47

2.4.4 The Behavioural Type System 49

8 CHAPTER 0. CONTENTS

I A Model of Cloud Systems 59

3 Lambda in Clouds 61
3.1 Introduction . 61
3.2 The Lambda Clouds . 64

3.2.1 Syntax . 65
3.2.2 Operational Semantics . 66

3.3 Abstract Semantics for Clouds . 68
3.4 Related Works . 80

II Static Analysis for Distributed Resources 83

4 The G-Local π-Calculus 85
4.1 The G-Local π-Calculus . 86

4.1.1 Syntax . 86
4.1.2 Operational semantics . 89

4.2 Control Flow Analysis . 94
4.2.1 Correctness . 98
4.2.2 Existence of Estimates . 102
4.2.3 Policy Compliance . 103

4.3 A Case Study - Robot Scenario . 105
4.4 Related Works and Discussions . 108

5 The Type and Effect System for the G-Local π-Calculus 115
5.1 Extension of the G-Local π-Calculus 115
5.2 The syntax and semantics of types 117

5.2.1 Syntax of types . 117
5.2.2 Operational Semantics . 120

5.3 Typing systems . 121
5.3.1 Examples . 125
5.3.2 Properties of the Type System 128

5.4 Type Inference Algorithm . 150
5.5 Related Works and Discussions . 157

6 Conclusions 161
References . 162

Bibliography 163

List of Figures

2.1 Transition systems of a mobile reader with a low-bandwidth (on the
left) and a high-bandwidth (on the right) connection 23

2.2 The Operation Semantics of BPP processes. 30
2.3 The usage automata for the policy of the low-bandwidth connection . 39
2.4 The Operational Semantics of the λ[] 39
2.5 Typing rules . 41
2.6 The operational semantics of CCS processes. 44
2.7 Structural Congruence. 46
2.8 The Operational Semantics of Processes. 47

3.1 Usage automaton of the service Q . 66
3.2 Cloud Semantics . 68

4.1 Structural congruence. 90
4.2 Operational Semantics of G-Local π processes. 91
4.3 The initial configuration of the robot scenario. 105
4.4 The policy automata of the robots’ families: R1 (left), R2 (middle)

and R3 (right). 105

5.1 Structural congruence. 117
5.2 Operational Semantics of G-Local π processes. 118
5.3 Structural Congruence on Types . 120
5.4 Operational Semantics of Types. 120
5.5 Typing rules. 123
5.6 Type inference algorithm. 152

10 CHAPTER 0. LIST OF FIGURES

List of Tables

2.1 BPP decidability . 31
2.2 Specification of 0-CFA . 35
2.3 CFA Equational Laws . 48
2.4 The Operational Semantics of Types 53
2.5 The interpretation of formulae over terms 55
2.6 The “hiding” operator on types . 55
2.7 Typing rules . 56

4.1 CFA Rules. 97

12 CHAPTER 0. LIST OF TABLES

Chapter 1

Introduction

1.1 Motivations

Nowadays, the evolution of network infrastructures and computing technologies
heavily impacts on the design of software applications. It is reflected by the shift
from (traditional) applications running in a well-determined environment to dis-
tributed applications running into a dynamic evolving environment. This trend has
led to introducing or revising different computing paradigms such as Service-oriented
Computing, Cloud Computing and Ubiquitous Computing. Service-oriented Com-
puting [91] is based on the idea of providing a network of services, which are basically
loosely-coupled basic computing entities. The network of services is exploited to cre-
ate a flexible way to assemble services into effective applications. The advantage of
having high performance network infrastructures allows to rapidly deploy and scale
services at runtime, i.e. on-demand deployment. This is one of the key ideas of Cloud
Computing [37]. Basically, cloud-based applications allow for an intensive usage of
distributed resources. The integration of iCloud on Apple products, e.g. iOS and
Mac OSX, to store/access information on cloud storage is an illustrative example
of this trend. The promise of Ubiquitous Computing [109] is to embed “computing
devices” into daily activities and let them work transparently to provide feedback or
adjust themselves in accordance with novel configured settings. Close to Ubiquitous
Computing is the idea of Internet of Things [7], where “things” or identifiable objects
that are connected over the Internet are capable of gathering, processing, analysing
information around them. The fact that applications in these visionary paradigms
are able to access a variety of ubiquitous resources requires a development of a new
framework to design and implement applications, where resource management is a
central concern.

In this dissertation, we focus on the design of suitable mechanisms to control the
distributed management of resources. Resources can be geographically distributed
(possibly over continents) and independent, and could be accessed at any time from
anywhere. The geographic distribution recalls the loosely coupled design methodol-

14 CHAPTER 1. INTRODUCTION

ogy of SOC. However, unlike SOC services, which are often autonomous and interact
with users through pre-defined protocols (that is, users need to follow the proto-
cols provided by SOC services), distributed resources are subjects to usage policies,
provided that users must employ them correctly. The publish-subscribe paradigm
assumes a notable role in this view. Indeed, the publish-subscribe paradigm is not
only a natural choice to represent distributed resources, but it also emphasises the
fact that resources have to be published by external parties and therefore have to be
available to everyone through appropriate requests. This form of “plug and play”
strongly requires suitable mechanisms to guarantee correctness of usages.

Understanding the foundations of the distributed management of resources could
support state-of-the-art advances of programming language constructs, algorithms
and reasoning techniques for resource-aware programming. In this perspective, for-
mal methods for specifying and analysing system behaviours can offer an important
support. On the one hand, they provide the theoretical framework to understand
the stages underlying the design and the implementation issues of software sys-
tems. On the other hand, they support the mathematically-based techniques for
the specification and verifications of properties of such systems. Implementation of
distributed applications with intensive resource usages in turn requires development
of resource-aware programming languages. In other words, the programming model
should have first-class primitives for resource management and able to describe in-
teractions between resources and applications that use them.

In the last few years, many formalisms have been developed to manage resource
usages. The focus of these research activities ([11, 64, 19, 85], to mention only a few)
is mainly on verifying abstract resource behaviour at a high level view, i.e. without
an explicit model of resources. The high level abstraction of resources is often too
general to describe a variety of resources. We believe that developing explicit models
of resources is the first step for understanding resource behaviours. Resources should
be modelled as independent entities with their states and properties that are subject
to security policies. In this dissertation, we advocate the idea of history-based access
control [1] to specify trace-based properties of resources. Indeed, we think that trace-
based approach equipped with suitable reasoning techniques allow us to smoothly
verify resource usages.

Process calculi are a natural choice to model distributed resources. In the π-
calculus, resources are just names. Behavioural types [63, 4] allow to express prop-
erties of names related to distribution and concurrency. However, names them-
selves are too abstract to express interesting properties, for instance, whether an
application uses correctly resources or not. To address this, the works presented
in [64, 19, 66] introduce an abstract model of resources in terms of execution traces.
The works reported in [64, 19] abstract away resource management, while in [66] re-
source management is provided by the semantics of private names. Alternatively, the
work presented in [36] represents resources as sets of constraints: this choice allows
one to represent service level agreement between users and resource providers. Still,
this view does not guarantee the correctness of resource usages. The work reported

1.2. STRUCTURAL OPERATIONAL SEMANTICS 15

in [47] introduced a monoidal structure of resources, whose semantics is related to
the sharing semantics provided by the binary operator in the monoid. However,
co-evolution of processes and resources causes co-dependency, hence a rigid inter-
action between processes and resources. We prefer for an alternative view, based
on the idea of emphasising loosely coupling nature of interaction between resources
and processes. The above discussion urges the need of a novel and innovative ap-
proach to usages of distributed resources, which provides a more precise view of
distributed-resource behaviour. We believe that the model has to support a loosely
coupled design methodology and it provides a basis for verifying correctness of re-
source usages.

The aim of this thesis is to bring together a variety of techniques to address
issues arising in the new environment underpinned by the fast growth of network
infrastructure and computing technologies. First, in our approach, resources are
first class entities in the programming model and are explicitly modelled. Second,
language-based techniques naturally permit to deal with resource-aware program-
ming constructs. Third, language-based techniques allow one to establish a high
level of abstraction not only for reasoning semantically on the behaviour of the
whole system, but also for extracting properties of individual components, e.g. re-
sources. Finally, we develop algorithms to verify correctness of resource usages,
which is a primary concern in our approach.

1.2 Structural Operational Semantics

Understanding the precise semantics of programming languages plays an important
role in the development of high-level programming languages. One of the main
approaches to define formal semantics is operational semantics, introduced in the
sixties [80, 77]. A main break through has been provided by Plotkin [93] with the
introduction of so called structural operational semantics (SOS). SOS provides a
way of describing the meaning of computing systems through a set of inference
rules, which describe the evolution of the systems in a compositional manner. An
inference rule is defined of the form:

promises

conclusion

where if the premises are satisfied, so does the conclusion. In this way, SOS defines
the meaning of a program in terms of the meaning of its parts, thus providing a
structural, i.e., syntax-directed and inductive view of operational semantics.

SOS gives the basis for formal tools to statically analyse behaviours of computing
systems due to its compositional nature. Rule-based syntax-directed approach for
describing program behaviours in compositional manner gives a basis for proving
properties of computing systems, that can be obtained or derived from properties
of its components.

16 CHAPTER 1. INTRODUCTION

1.3 The λ-calculus

The λ-calculus was first introduced by Church during the 1930s as a formal system
for studying computable recursive functions. Later, in the 1960s, Landin exploited
the λ-calculus as the core mechanism of programming languages [74, 75]. Following
Landin’s insight, the λ-calculus has been largely used in programming language
design and implementation, and in the study of type systems. Its importance arises
from the fact that it can be viewed simultaneously as a simple programming language
(in the functional style) able to describe computations and as a mathematical object
on which rigorous statements can be proved.

Despite its simple definition, the λ-calculus not only plays an important role in
the development of programming languages, but it also finds application in many
fields of computer science. One of the major applications is type theory. The
simply typed λ-calculus, introduced in [46], provides a typed interpretation of the
λ-calculus. The types, assigned to λ-elements, correspond to propositions in the
intuitionistic logic via the type system, built on the simply typed λ-calculus. This
correspondence is known under the name of Curry-Howard isomorphism. From the
logic point of view, the proofs of logical formulas can be seen as programs, and
therefore λ-elements. As a programming language, the formula that a program
proves is the type of that program. By exploiting the dual view of the type system,
one can specify properties of programs using logical formulas: the type system
ensures that programs meet the required specification. From this point of view,
type checking usually provide static guarantee: no error of a certain kind can occur
at runtime.

1.4 Process Algebras

Process algebras provide a rather high level view of interactive systems, and a valu-
able tool for specifying and analysing concurrent systems. Fundamental to process
algebras is the parallel operator, allowing the decomposition of systems in terms of
their concurrent components. Seminal process algebras are

• CCS, Milner’s Calculus of Communicating Systems [83],

• CSP, Hoare’s Communicating Sequential Processes [34],

• ACP, Bergstra and Klop’s Algebra of Communicating Processes [21].

A number of extensions, based on these calculi, has been proposed to deal with
various aspects of concurrency. In the π-calculus, in [84], a notion of mobility,
i.e. dynamic change of the topological structure of processes, is presented. In [44],
the locations or scopes of processes are exploited to handle administrative domains.
Recently, applications of process algebras also exist to address issues in biology
(see [95, 43]).

1.5. STATIC PROGRAM ANALYSIS 17

1.5 Static Program Analysis

Static program analysis is the analysis of software performed without actually exe-
cuting programs. The analysis is applied to some version of the source code. Pro-
gram analysis offers techniques for computing at compile-time, safe and efficient
approximations of the set of configurations or behaviours arising dynamically, i.e. at
run-time. By checking these approximations, one can verify several interesting prop-
erties of programs. There are three major approaches to program analysis:

• Control Flow Analysis;

• Abstract Interpretation; and

• Type Systems.

Control Flow Analysis. Control Flow Analysis (CFA) has been introduced in
the sixties [96]. CFA was mainly developed for functional languages [100, 65],
but it found applications in other languages as well, for instance, in concurrent
languages [26]. Basically, CFA provides a framework to compute which values or
information can reach certain program points or can be assigned to a specific vari-
able. The idea behind CFA is the specification of rules for transferring all possible
information, from one program point to another. Thus, CFA usually gives an over-
approximation of actual executions of programs. The correctness of programs is
then guaranteed if no bad execution is found in the over-approximation.

Abstract Interpretation. Often, concrete and precise information about pro-
gram properties is in general not computable within finite constraints in time and
space. By abstracting the concrete semantics of computing systems, abstract pro-
gram properties can be easily obtained to a certain degree of abstraction. This is the
idea behind abstract interpretation, introduced in [48, 49]. Abstract Interpretation
can be viewed as a theory of sound approximation of the semantics of computer
programs. It can be viewed as a partial execution of a computing system, since it
executes on the abstract semantics without performing all the computations. The
relevant feature of abstract interpretation is that a property proved in the abstract
semantics also holds in the concrete semantics.

Type Systems. We have already pointed out that type systems are a formal tool
for reasoning about programs. By associating a type to each computed value, type
systems provides a tractable syntactic method of proving the absence of certain
programming errors.

18 CHAPTER 1. INTRODUCTION

1.6 Contributions

The dissertation aims at introducing a foundational framework for specifying and
proving properties of distributed resources. The framework is based on the following
ingredients:

• Development of an abstract resource-aware programming language
for providing a basis for programming abstractions for resource-awareness, and
for managing resource usages.

• Models of resources: explicit mechanisms to express and enforce policies
governing usages of resources.

• Reasoning techniques to statically check the properties of program be-
haviour and ensure their safe executions at runtime with respect to resource
usages.

Our proposal provides a contribution for the development of languages and soft-
ware engineering methodologies for securing the design and implementation of dis-
tributed resources. We develop two models, based on the λ- and π-calculi, respec-
tively. Both calculi are extended with mechanism to control resource usages. More
precisely, the main contributions of the work are the following:

• The λ{}-calculus: we use the λ{}-calculus to study cloud-based systems. In this
calculus, we view cloud services as functions with side effects (the abstract be-
haviour of cloud services). They are subjected to security policies. Sandboxing
critical code with security policies ensures that all bad behaviours, i.e. those
that violate policies, are excluded at run-time. A cloud server is abstractly
designed as a triple composed by: i) the global cloud state that represents
dependencies among services and resources; ii) the set of active services that
serve client requests; iii) the service environment that maps service names into
scripts to run the service.

• The G-Local π-calculus : we extend the π-calculus by introducing explicit re-
sources and primitives to manage them. Interactions between processes and
resources are explicitly modelled and are governed by usage policies. Resources
are stateful entities endowed with usage policies. Resource configurations are
modelled by structural rules, and therefore they are not under the control of
processes. The explicit model of resources allows us to describe various re-
sources and their properties. Moreover, we also provide reasoning techniques
to analyse resource behaviour. We adapt two techniques, namely CFA and
Type Systems.

– We extend the CFA introduced in [26] to analyse reachability properties
of resources in the G-Local π-calculus. The analysis computes an over-
approximation of resource behaviours, which are described by a set of
possible traces and their possible contexts.

1.7. OUTLINE OF THE WORK 19

– A type and effect system is developed for the G-Local π-calculus still
to verify resource usages. The novelty of our approach is to separate
resource behaviour from process behaviour. To this end, we apply a
symmetric treatment of input/output on resource-related parts in the
type system. Resource behaviour is expressed in terms of basic parallel
processes. This allows us to verify regular linear temporal properties of
resources. Verification of resource usages is decidable in our approach,
although we left implementation issues for future work.

1.7 Outline of the Work

The thesis is structured as follows.

• In Chapter 2, we review the main technical background, required in our de-
velopment. More precisely, in Section 2.1, some of basic notions on transition
systems are presented. The λ- and π-calculi are presented in Sections 2.3
and 2.4, respectively. Their properties, expressed as Linear Time Logics, are
also introduced. Moreover, we review static analyses, namely CFA and Type
Systems, for the λ-calculus and π-calculus.

• In Chapter 3, we introduce the λ{}-calculus, as an extension of the λ-calculus.
Furthermore, an abstract cloud semantics is provided.

• In Chapter 4, we introduce the G-Local π-calculus, as an extension of the
standard π-calculus with mechanisms to manage resources. We also present a
CFA for analysing resource behaviour.

• In Chapter 5, we develop a type and effect system for the G-Local π-calculus,
which allows us to verify resource usages against LTL formulas.

• In Chapter 6, we conclude the thesis.

1.8 Origins of the Chapters

Part of the material presented in this thesis has been appeared in some publications
or has been submitted for publication, in particular:

• The λ{}-calculus and its abstract cloud semantics presented in Chapter 2 is
introduced in [28, 27].

• The G-Local π-calculus and CFA presented Chapter 3 is introduced or has
been submitted in [32, 30, 31].

20 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we present concepts and notations that will be used through the
text. In the first part, we introduce transition systems, over which standard class of
models representing computing systems are built. We describe linear time properties
of computing systems through linear time logics. Then, we briefly show how to
verify linear time properties for finite transition systems. In particular, we discuss
the model checking of basic parallel processes, a weak model of concurrency.

In the second part, we give a brief description of two formal models, λ- and
π-calculus, which serve as a basis to develop the formal models in the next chap-
ters. The λ-calculus is the foundational calculus for the sequential model, while
the π-calculus is the foundational calculus for the concurrent model. They play an
important role in computing: both of them give an elegant way to express various
computing functionalities or programs that we encounter in computing. Many static
analyses have been developed for λ-calculus [86] and π-calculus [26, 4]. Here, we will
focus on Control Flow Analysis and Type Systems which are the two main formal
tools we develop for our formal models in the next chapters.

2.1 Preliminaries

2.1.1 Transition Systems

In theoretical computer science, transition systems are often used as models to
describe the behaviour of various computing systems. They consist of a set of states
and transitions between states. A state describes some information about a system
at a certain moment of its behaviour. For instance, the state of a computer program
is a set of the current values of all program variables together with the program
counter that indicates the next program statement to be executed. A transition
describes how a system evolves from one state to another and possibly contains
information about the transition itself (in such case we call it a labelled transition).
In computer programs, a transition corresponds to the execution of a statement and

22 CHAPTER 2. BACKGROUND

may involve the modification of some variables and of the program counter.

Definition 2.1.1 (Labelled Transition Systems). A labelled transition system (LTS)
is a structure (Q,A,→, I), where Q is a set of states q, A is a set of actions (or labels),
the relation →⊆ Q × A × Q is called the transition relation and I ⊆ Q is a set of
initial states. We often write q1

α→ q2 for (q1,α, q2) ∈→ (q1 is called predecessor,
while q2 - successor). A labelled transition system (Q,A,→, I) is finite if Q and A
are finite sets.

A path η in a given labelled transition system LTS is a finite of infinite sequence of
actions and states such that

η = q0
α1→ q1

α2→ q2 . . . ,

where qi
αi+1→ qi+1 for all i ≥ 0. A run is a maximal path, i.e. a path that is either

infinite or terminated in a state without successors. We denote by paths(q) the set
of paths from q and runs(q) for the set of runs from q, paths(LTS) =

⋃
q∈I paths(q)

and runs(LTS) =
⋃

q∈I runs(q).

Example 2.1.2 (Mobile Reader). Consider reading e-books from an online store on
tablet devices. A user, when reading an e-book, may write some annotations. The
way of using the online store depends on which kind of connections, low-bandwidth
or high-bandwidth, a tablet device has. In the former case, the tablet needs to load
an e-book from the store to local memory before any other actions and if users make
annotations on the e-book, it requires to store them back on the online store. In the
latter case, the user directly reads/writes e-books, however it is required that the
user eventually releases the connection due to the high cost of the connection. We
use rd, wr, ld and st to model operations of reading e-books, writing annotations,
loading e-books from the online store to local memory and storing them back to
the online store, respectively. The action rel denotes the operation of releasing the
connection.

We assume two tablet devices. Their specifications are given by the labelled
transition systems in Fig. 2.1. The figure on the left corresponds to the first device,
while on the right - the second device. The set A of actions is {rd, wr, ld, st, rel}.
The set of initial states is I = {l1, h1}. The first device always loads e-books to
the local memory before any other actions, hence it satisfies the policy of the low-
bandwidth connection. The second device intends to work with the high-bandwidth
connection, since it guarantees read/write operations without loading e-books to its
local memory. However, its infinite run without performing rel violates the policy
of the high-bandwidth connection.

2.1.2 Automata and Languages

We define an automaton as a labelled transition system. Finite state automata are a
class of automata, which is used in many different areas, including computer science,

2.1. PRELIMINARIES 23

l1 l2
ld

rd, wr, st, rel

h1 h2

rd, wr, ld, st

rel

Figure 2.1: Transition systems of a mobile reader with a low-bandwidth (on the left)
and a high-bandwidth (on the right) connection

mathematics and logics. In this text, we use them as a formalism to specify various
properties of behaviour of computing systems (see below).

Definition 2.1.3 (Languages). Given a set A of actions. A finite trace over A is
a finite sequence α1α2 . . .αn, where αi ∈ A, 1 ≤ i ≤ n. A infinite trace over A is a
infinite sequence α1α2α3 . . . , where αi ∈ A, 1 ≤ i. We use η, η′ to range over traces
(both finite and infinite). A∗ denotes a set of all finite traces over A. Aω denotes a
set of all infinite traces over A and A∞ = A∗ ∪ Aω. A language over A is a subset
of A∞.

Given a labelled transition system LTS = (Q,A,→, I), each finite path of LTS

r = q0
α1→ q1

α2→ . . .
αn→ qn,

corresponds to a finite trace η = α1 . . .αn (similarly for infinite executions). A trace
α1 . . .αi, where i ≤ n, is called a prefix of η. α1 . . .αi, where i < n, is called a proper
prefix of η. We write pref(η) for a set of all finite prefixes of η, i.e.

pref(η) = {η̂|η̂ is a finite prefix of η}

We use Traces(q) to denote the set of traces generated by the executions starting
from the state q of LTS and Traces(LTS) =

⋃
q∈I Traces(q).

Example 2.1.4. In the example of the mobile reader, ld.rd.rd.wr in the low-
bandwidth connection or rd.ld.wr.rel in the high-bandwidth connection are possible
traces.

Remark 2.1.5. By abuse of notation, we denote by η, η′ both paths and traces (it
will be clear from the context).

Definition 2.1.6 (Automata on finite traces). A finite state automaton (FSA) A is
a structure (Q,A,→, I, F), where (Q,A,→, I) is a finite labelled transition systems,
where I ⊆ Q is the set of initial states and F ⊆ Q is the set of final states.

A run of a finite trace α1α2 . . .αn ∈ A∗ inA is a finite sequence of states q0q1 . . . qn
such that

r = q0
α1→ q1

α2→ . . .
αn→ qn

24 CHAPTER 2. BACKGROUND

with qi
αi+1→ qi+1 for all 0 ≤ i ≤ n and q0 ∈ I. A run q0q1 . . . qn is called accepting

if qn ∈ F . A finite trace α1α2 . . .αn ∈ A∗ is called accepted if there is an accepting
run for it. We denote by L(A) the set of all accepted traces of A (sometimes called
the language generated by A).

Definition 2.1.7 (Regular Languages). A language over A is called regular if it is
generated by a finite state automaton.

Informally, an FSA can recognise a set of finite traces, but not a set of infinite traces.
In case of infinite traces, we need a different formalism.

Definition 2.1.8 (ω-Languages). Given a set of labels A, an ω-language is a subset
of Aω.

Among ω-languages, the class of ω-regular languages enjoys many fundamental de-
cision problems and has been successfully used in the specification and formal veri-
fication of computing systems [8].

Definition 2.1.9 (ω-Regular Languages). For a regular language L ⊆ A∗, we define
an ω-language Lω as the set of all infinite concatenations of traces in L, i.e.

Lω = {w1w2w3 . . . |wi ∈ L, i ≥ 1}

An ω-language L ∈ A∞ is called ω-regular language if it has a form

• L0
ω, where L0 is a regular language.

• L1L2, the concatenation of a regular language L1 and an ω-regular language
L2, i.e. {w1w2|w1 ∈ L1 ∧ w2 ∈ L2}.

• L1 ∪ L2, the union of regular languages where L1, L2 are ω-languages.

Definition 2.1.10 (Automata on Infinite Traces). A Buchi automaton A is a struc-
ture (Q,A,→, I, F), where (Q,A,→, I) is a finite labelled transition systems, where
I ⊆ Qis the set of initial states and F ⊆ Q is the set of final states.

A run of a infinite trace α1α2α3 · · · ∈ Aω in A is infinite sequence of states
q0q1q2 . . . such that

r = q0
α1→ q1

α2→ q2
α3→ q3 . . .

with qi
αi+1→ qi+1 for all 0 ≤ i and q0 ∈ I. A run q0q1q2 . . . is called accepting if qi ∈ F

for infinitely many indices i ∈ N . A infinite trace α1α2α3 · · · ∈ A∗ is called accepted
if there is an accepting run for it. We denote by L(A) the set of all accepted traces
of A (sometimes called the language generated by A).

A Buchi automaton is called deterministic if for each q ∈ Q and α ∈ A there is at
most one q′ such that q

α→ q′ ∈→. Otherwise, it is called non-deterministic.

Lemma 2.1.11 (ω-languages and Non-deterministic Buchi Automata). The class
of languages accepted by Non-deterministic Buchi Automata agrees with the class of
ω-regular languages.

2.1. PRELIMINARIES 25

2.1.3 Properties of Computing Systems

For verification purpose, one needs to check some conditions in a given state or
across a number of states of the transition system model of the computing system
under consideration. These conditions are usually referred as properties of the sys-
tem. Properties about a single state are called state-based, whereas properties about
several successive states are called linear-time or path-based.

Example 2.1.12. In the mobile reader example, it is desirable to have the property
that requires that whenever the mobile reader takes a high-bandwidth connect, it
eventually releases it.

Here we consider two important classes of linear-time properties: regular safety
properties and regular liveness properties. What make them interesting is that these
properties can be checked in an automated manner [8], using decidable decision
problems in the field of automata. Following formulation in [8], we define linear
time properties as follows.

Definition 2.1.13 (Linear Time Properties). Given a set A of actions, a linear-time
property P over A is a subset of Aω.

Example 2.1.14. In the mobile reader example, a set of traces, which begin by an
ld and are followed by infinite number of rd and wr, i.e. ld.({rd, wr})ω represents a
possible linear time property.

Intuitively, a safety property asserts “that nothing bad will happen” during the
evolution of the transition system. Here we consider regular safety properties, i.e.,
safety properties whose bad prefixes constitute a regular language, and hence this
set can be represented by a finite state automaton.

Definition 2.1.15 (Safety Properties). A linear-time property Psafe over A is a
safety property if for all traces η ∈ Aω \ Psafe there exists a finite prefix η̂ of η such
that

Psafe ∩ {η′ ∈ Aω|η̂ is a finite prefix of η′} = ∅

The prefix η̂ is called a bad prefix for Psafe. A bad prefix for Psafe is minimal if no
proper prefix of η̂ is a bad prefix for Psafe. A safe property Psafe is called regular if
the set of all its bad prefixes is a regular language.

Remark 2.1.16. Notice that a bad prefix η̂ of a linear-time property Psafe could
be a prefix of many traces, which are not in Psafe.

Lemma 2.1.17 (Criterion for Regularity of Safety Properties). A safety property
Psafe over A is called regular if its set of bad minimal prefixes constitutes a regular
language over A.

26 CHAPTER 2. BACKGROUND

Briefly, the algorithm to check a safety property Psafe for a given finite transition
system relies on the reduction to the reachability problem in a product construction
of the transition system with a finite automaton that recognises the bad prefixes of
Psafe. The reachability problem of the resulted automaton is then analysed. If a
final state is reachable, then the property does not hold in the transition system.
(The interested readers are referred to [8] for more details).

A liveness property asserts that “something good eventually happens”, and is
used mainly to ensure progress. For instance, in the example of the mobile reader
with the low-bandwidth connection the property that requires that the action save
is eventually reached after an occurrence of write.

Definition 2.1.18 (Liveness Properties). Given a set A of actions and a linear time
property P over A, we write pref(P) for

⋃
η∈P pref(η). A linear-time property Plive

over A is a liveness property if pref(Plive) = A∗. A liveness property Plive is called
regular if it is recognized by a Buchi automaton.

In general, liveness properties are harder to verify than safety properties for a given
finite transition system. However, one can use the same strategy for checking reg-
ular safety properties to construct a product of the transition system with a Buchi
automaton that recognizes Aω \ Plive, then solve its reachability problem to check
whether a final state is reachable.

2.1.4 Temporal Logics

Temporal logics is a logical formalism suited for specifying linear time properties.
The notion of time in temporal logics can be interpreted in either linear or branching
view. In the linear view, at each moment there is a single successor moment, whereas
in the branching view it has a branching, tree-like structure, where time may split
into alternative courses. We follow the formulation introduced in [35].

Linear Temporal Logic There are many classes of temporal logics based on a
linear-time perspective. We consider only Linear Temporal Logic (LTL), a variant
of temporal logics. LTL is a powerful temporal logic, first introduced by Pnueli in
[94], able to express many interesting properties of computing systems.

Definition 2.1.19 (Linear Temporal Logic). The LTL formulas over the set A of
actions are defined by the following grammar:

ϕ ::= true | ¬ϕ | ϕ1 ∧ ϕ2 | (α)ϕ | ϕ1 U ϕ2,

where α ∈ A.

LTL includes the standard logical operators: conjunction ∧ and negation ¬. Note
that the full power of propositional logic is obtained from them. LTL introduces
two new modal operator: the next operator (α)ϕ and the until operator ϕ1Uϕ2.

2.1. PRELIMINARIES 27

Intuitively, (α)ϕ holds at the current state on a path if ϕ holds at the next state,
which is a result of performing an action α, on the path, whereas ϕ1Uϕ2 holds on
a path if there is a future state on the path for which ϕ2 holds and ϕ1 holds until
that future state.

Convention 2.1.20. As usual, we write ϕ1 ∨ ϕ2 for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 ⇒ ϕ2 for
¬ϕ1 ∨ ϕ2 and ϕ1 ≡ ϕ2 for ϕ1 ⇒ ϕ2 ∧ ϕ2 ⇒ ϕ1.

From the until operator we can derive two modal operators: F (“eventually”, some-
times in the future) and G (“always”, from now on forever). Formally, they are
defined as follows

Fϕ
def
= true Uϕ Gϕ

def
= ¬F¬ϕ

Intuitively, Fϕ ensures that ϕ will eventually be true in the future and Gϕ holds if
it is not the case that ¬ϕ will eventually true in the future, that is ϕ always holds.
Other derived modal operators are the following:

never ϕ: G¬ϕ
infinitely often ϕ: GFϕ
eventually forever ϕ: FGϕ
every “request” will eventually lead to a “response”: G(request ⇒ F response)

The formula G¬ϕ, where ϕ describes a bad behaviour, represents a safety prop-
erty, while the others represent liveness properties. For instance, G(request ⇒
F response) says that it is always true that whenever a request arrives, a response
eventually replies.

Taking the linear view, LTL formulas stand for properties of paths. This means
that a path can either fulfil an LTL formula or not. Technically speaking, the
interpretation of an LTL formula is defined in terms of maximal paths or runs.

Before going into the details, we need some notations. Given a labelled transition
system LTS and a path η = q1

α1→ q2
α2→ q3

α3→ . . . of LTS, η(1) denotes the first
state of η, i.e., q1, and η1 denotes the path q2

α2→ q3
α3→ Similarly, η(i) denotes

the i-th state of η, i.e., qi, and ηi denotes the path qi
αi→ qi+1

αi+1→ With these
notations, the denotation ‖ϕ‖ of a formula ϕ with respect to a labelled transition
system (Q,A,→, I) is ‖ϕ‖ = {η|η |=LTS ϕ}, where the relation |=LTS is inductively
defined by the following rules:

η |= true
η |= ¬ϕ if η |= ϕ does not hold
η |= ϕ1 ∧ ϕ2 if η |= ϕ1 and η |= ϕ2

η |= (α)ϕ if η(1)
α→ η(2) and η2 |= ϕ

η |= ϕ1 U ϕ2 if ∃i : ηi |= ϕ2 and ∀j ≤ i : ηj |= ϕ1

Remark 2.1.21. Sometimes we also interpret an LTL-formula as the set of traces
corresponding to its set of paths.

28 CHAPTER 2. BACKGROUND

Definition 2.1.22. Given a transition system LTS, a state s of LTS satisfies an
LTL formula, denoted by s |= ϕ, if Paths(s) ⊆ ‖ϕ‖ and LTS satisfies an LTL
formula, denoted by LTS |= ϕ, if for all initial states s0 of LTS, s0 |= ϕ.

Automata-based LTL model checking. Now, we briefly describe a model-
checking algorithm based on Buchi automata for LTL. Given a finite transition
system LTS and an LTL formula ϕ that formalises a requirement on LTS, the
problem is to check whether LTS |= ϕ . If it is refuted, an error trace needs to be
provided for debugging purposes. The counterexample consists of an appropriate
finite prefix of an infinite trace in TS where it does not hold.

The model checking algorithm presented in the following is based on the automata-
based approach as originally suggested by Vardi and Wolper in [106]. This ap-
proach is based on the fact that each LTL formula ϕ can be represented by a non-
deterministic Buchi automaton (NBA). The basic idea is to try to disprove LTS |= ϕ
by looking for a path η in LTS such that η |= ¬ϕ. If such a path is found, a prefix
of η is returned as error trace. If no such trace is encountered, it is concluded that
LTS |= ϕ.

The essential steps of the model-checking algorithm rely on the following obser-
vations:

LTS |= ϕ iff Paths(LTS) ⊆ ‖ϕ‖LTS

iff Paths(LTS) \ ‖ϕ‖LTS = ∅
iff Paths(LTS) ∩ ‖¬ϕ‖ = ∅

Hence, for NBA A with Lω(A) = ‖¬ϕ‖LTS , we have LTS |= ϕ if and only if
Paths(LTS) ∩ ‖¬ϕ‖ = ∅. Thus, to check whether ϕ holds for LTS one first con-
structs an NBA for the negation of the input formula ϕ (representing the bad be-
haviours) and then applies the techniques for the intersection problem (above).

Computation Tree Logic. Branching time refers to the fact that at each moment
there may be several different possible futures. Thus, the interpretation of formulas
in branching time logics is defined in terms of an infinite, directed tree of states
rather than an infinite sequence. Each traversal of the tree starting in its root
represents a single path. The tree itself thus represents all possible paths, and is
directly obtained from a transition system by unfolding at the state of interest. The
tree rooted at state q thus represents all possible runs in the transition system that
start in q.

In this text, we consider Computation Tree Logic (CTL), an expressive variant
of branching time logics. The syntax of CTL formulas is given by the following
definition.

Definition 2.1.23 (Computer Tree Logic). CTL formulas over the set A of actions
are defined by the following grammar:

ϕ ::= true | ¬ϕ | ϕ1 ∧ ϕ2 | 〈α〉ϕ | E[ϕ1 U ϕ2]| A[ϕ1 U ϕ2],

where α ∈ A.

2.1. PRELIMINARIES 29

In LTL, a formula holding in a state s requires that a formula ϕ holds in state s
if all possible runs that start in s satisfy ϕ. Intuitively, we can state properties
over all possible runs that start in a state, but not about some of such runs. CTL
overcomes this by introducing the existential/universal quantification in the next and
until operators, therefore CTL is able to specify such properties. More precisely,
the prefixes E and A stand for the existential and universal quantification in their
interpretations respectively.

The existential “eventually” EF and “always” EG operators can be derived from
the until operator.

EFϕ
def
= E[true Uϕ]

EGϕ
def
= ¬A[true U¬ϕ]

Note that we also have their universal versions, i.e. [α]ϕ ≡ ¬〈α〉¬ϕ, AFϕ ≡ ¬EF¬ϕ
and AGϕ ≡ ¬EG¬ϕ. The fragment of CTL containing the logical operators, the
existential next operator and the “eventually” EF (the “always” EG operator, resp.)
is called the logic EF (the logic EG, resp.). The combination of the logics EF and
EG yields the more expressive logic, called Unified System of Branching-Time Logic
[20] (called the logic UB). Let LTS = (Q,A,→, I) be a labelled transition system
with a set I of initial states. The denotation of a formula is a subset of states of
LTS defined by the following rules:

‖true‖LTS = Q
‖¬ϕ‖LTS = Q \ ‖ϕ‖LTS

‖ϕ1 ∧ ϕ2‖LTS = ‖ϕ1‖LTS ∩ ‖ϕ2‖LTS

‖〈α〉ϕ‖LTS = {q ∈ Q|∃q′ ∈ Q, (q,α, q′) ∈→ ∧ q′ ∈ ‖ϕ‖LTS}
‖E[ϕ1 U ϕ2]‖LTS = {q ∈ Q|∃η ∈ Paths(q) such that

∃k ≥ 0.(∀0 ≤ j ≤ k.η(j) ∈ ‖ϕ1‖LTS) ∧ η(k) ∈ ‖ϕ2‖LTS}
‖A[ϕ1 U ϕ2]‖LTS = {q ∈ Q|∀η ∈ Paths(q) such that

∃k ≥ 0.(∀0 ≤ j ≤ k.η(j) ∈ ‖ϕ1‖LTS) ∧ η(k) ∈ ‖ϕ2‖LTS}

Definition 2.1.24. Given a labelled transition system LTS = (Q,A,→, I), we say
that a state q of LTS satisfies a CTL formula ϕ, denoted by q |= ϕ, if q ∈ ‖ϕ‖LTS .
We say that LTS satisfies a CTL formula ϕ, denoted by LTS |= ϕ, if I ⊆ ‖ϕ‖LTS

CTL model checking. The CTL model checking problem amounts to verifying for
a given labelled transition system LTS and a CTL formula ϕ whether LTS |= ϕ.
A basic algorithm of CTL model checking is rather simple: (i) compute recursively
a set ‖ϕ‖ of states satisfying ϕ; (ii) check whether I ⊆ ‖ϕ‖. Alternatively, we can
resort to the automata-based approach which is proposed in [73], which translates
a CTL formula into an alternating tree automata and then reduces the problem to
the non-emptiness problem of alternating tree automata.

30 CHAPTER 2. BACKGROUND

(Act) π.T
π−→ T (Eq)

T
π−→ T ′

X
π−→ T ′

X = T ∈ 4

(Choice1)
T1

π−→ T ′
1

T2 + T1
π−→ T2 + T ′

1

(Choice2)
T1

π−→ T ′
1

T1 + T2
π−→ T ′

1 + T2

(Parallel1)
T1

π−→ T ′
1

T2 ‖ T1
π−→ T2 ‖ T ′

1

(Parallel2)
T1

π−→ T ′
1

T1 ‖ T2
π−→ T ′

1 ‖ T2

Figure 2.2: The Operation Semantics of BPP processes.

2.1.5 Basic Parallel Processes

Basic Parallel Process (BPP) [45] is considered as one of the most simplest models
of concurrency. It contains the prefix action ., the choice operator + and the merge
operator ‖.

Definition 2.1.25. We assume a set of process variables PV , ranged over byX, Y, Z,
a set A of actions, ranged over by α, and τ 5∈ A to denote an internal or unobservable
action. BPP expressions are defined as follows

(BBP expressions) T, T ′ ::= 0|X|π.T |T + T ′|T ‖ T ′

(prefix actions) π, π′ ::= τ |α

The 0 is the empty process, i.e. the process that does nothing. The prefix action π.T
is a process that performs π and then behaves like T . The choice T1+ T2 represents
a process that behaves either as T1 or as T2. The process T1 ‖ T2 is the parallel
composition of T1 and T2 executing independently in parallel.

A BBP process is defined by the finite family 4 of recursive process equations:

{Xi = Ti‖1 ≤ i ≤ n},

where the Xi are distinct and the Ti are BPP expressions at most containing the
variables {X1, . . . , Xn}. The variable X1 is singled out as the leading variable and
X1 = T1 is called the leading equation. The set of BPP processes is denoted by Pbpp

A BPP expression T is called guarded if every variable occurrence in T is within
the scope of action prefix sub-expression π.T ′ of T .

A given finite family 4 of guarded BPP equations determines a labelled tran-
sition system. The operational semantics of BPP processes is defined through the
least transition relation satisfying the rules in Fig. 2.2.

Decidability of model checking BPP processes against linear time logics.
Despite of its simplicity, BPP lies at the border of decidability of many model check-
ing problems [78]. In [54], it is showed that model checking BPP with most branching
time logics is undecidable. This follows from the result that model checking BPP

2.2. THE λ-CALCULUS 31

BPP general fixed formula

reachability NP-complete ∈ NP
EF decidable, PSPACE-complete ∈

∑p
d

EG undecidable undecidable
UB undecidable undecidable
CTL undecidable undecidable
alternation free modal µ calc undecidable undecidable
modal µ calc undecidable undecidable
LTL decidable, EXPSPACE-hard decidable
linear time µ calc decidable, EXPSPACE-hard decidable

Table 2.1: BPP decidability

with EG-fragment of CTL is undecidable. EF is the only decidable fragment of
CTL for BPP. It has been showed that model checking BPP with EF-fragment is
PSPACE complete. Model checking BPP for linear time logics is decidable and EX-
PSPACE hard. The table 2.1 shows the complexity of model checking BPP (taken
from [54]).

2.2 The λ-Calculus

The λ-calculus is a formal language introduced by Church in the 1930s to investigate
functions, function applications and recursion. In spite of its very simple syntax,
the λ-calculus is strong enough to describe all mechanically computable functions.

2.2.1 Syntax

Definition 2.2.1. Given an infinite set of variables V, ranged over by x, y, z. The
set E of λ-expressions, ranged over by e, e′, is defined by the following grammar:

e, e′ ::= expressions
| x variable
| λx. e abstraction
| (e1 e2) application

The values v, v′ of the calculus are variables and lambda abstractions. , i.e.

v, v′ ::= values
| x variable
| λx. e abstraction

Definition 2.2.2. An occurrence of a variable x inside a term of the form λ.x e
is said to be bound. The corresponding λx is called a binder, and we say that the

32 CHAPTER 2. BACKGROUND

subterm e is the scope of the binder. A variable occurrence that is not bound is
free. More generally, the set of free variables of a term e is denoted fv(e), and it is
defined formally as follows

fv(x) = {x}
fv(λx. e) = fv(e) \ {x}
fv((e1 e2)) = fv(e1) ∪ FV (e2)

An expression e is called closed if FV (e) is empty. We denote a set of closed λ-
expressions as E0.

Convention 2.2.3. We often write let x = e1 in e2 for (λx. e2) e1, λ e for λx. e,
where x 5∈ fn(e) and e1; e2 for (λ e2) e1.

For any e, e′ and x, substitution of e for x in e′ is an operator for replacing every
occurrence of x in e′ by e with changing bound variables to avoid clashes. Formally,
it is defined as follows.

Definition 2.2.4. A substitution of e for x in e′, denoted by e′{e/x}, is defined as:

x{e/x} = e
(e1 e2){e/x} = e1{e/x} e2{e/x}
(λx. e′){e/x} = λx. e′

(λy. e′){e/x} = λy. e′ if x 5∈ FV (e′)
(λy. e′){e/x} = λy. e′{e/x} if x ∈ FV (e′) and y 5∈ FV (e)
(λy. e′){e/x} = λz. e′{z/y}{e/x} if x ∈ FV (e′), y 5∈ FV (e) and z 5∈ FV (e) ∪ FV (e′)

Definition 2.2.5. Let a λ-expression e contain an occurrence of λx. e′, and let
y 5∈ e′. We define α-conversion of e to e′, denoted by e≡αe′, as a process that
replaces a sub-expression λx e′′ of e by λy e′′{y/x}, where y does not occur at all in
e.

Lemma 2.2.6. α-conversion is an equivalence relation.

Convention 2.2.7. From now on, unless stated otherwise, we identify λ-expressions
up to α-conversion.

2.2.2 The operational semantics

The semantics of λ-expressions are defined through the concept of β-reduction, which
captures the idea of function application. Formally, β-reduction is defined in terms
of substitution.

Definition 2.2.8 (β-reduction). Any expression of the form (λx. e) e′ is called a β-
redex and the corresponding expression e{e′/x} is called reduct. We define a single

2.2. THE λ-CALCULUS 33

β-reduction to be the smallest relation →β on λ-expressions satisfying:

[β] λx.e e′ →β e{e′/x}

[cong1]
e1→βe′1

e1 e2→βe′1 e2

[cong2]
e2→βe′2

e1 e2→βe1 e′2

Call-by-value semantics. There are several strategies of β-reduction, which are
based on different order of evaluation. In this text, we consider only call-by-value
strategy. Intuitively, call-by-value order is defined as “only outermost redexes are
reduced”, and “a redex is reduced only when its right-hand side has already been
reduced to a value”. For more details, we refer the reader to [92].

Definition 2.2.9. We define a call-by-value β-reduction to be the smallest relation
→βcbv on λ-expressions satisfying:

[cbv β] λx.e e′ →βcbv e{e′/x}

[cbv cong1]
e1→βcbve′1

e1 e2→βcbve′1 e2

[cbv cong2]
e2→βcbve′2

v e2→βcbvv e′2

And, e→βcbve′ if and only if e′ is obtained from e by a single β-reduction. We
write → for →βcbv, unless stated otherwise. Moreover, →∗ denotes the reflexive and
transitive closure of →.

Notice that in the rule [cbv cong2], the first term of application in the conclusion is
always a value.

Definition 2.2.10. Applicative Bisimulation A binary relation R on E0 is a
simulation if whenever e R d and e →∗ λx.e′, then there exists d′ such that d →∗

λx.d′, λx.e′ R λx.d′ and for any value v, e′{v/x} R d′{v/x}.

We write ! for the union of all simulations and call it similarity. A binary relation R
on T0 is a bisimulation if R and its conversion R−1, i.e. R−1 = {(e2, e1)|(e1, e2) ∈ R} ,
are simulations. We write ∼ for the union of all bisimulations and call it bismilarity.

Definition 2.2.11. An equivalent relation R on T0 is a congruence if it is preserved
by the operations and substitutions.

In [61], Howe showed that bisimilarity is a congruence.

Theorem 2.2.12. Bisimilarity ∼ is a congruence relation.

34 CHAPTER 2. BACKGROUND

2.2.3 Control Flow Analysis

Since introduced in the sixties [96], Control Flow Analysis (CFA) has proved its im-
portance in the cycle of development of software. Basically, it provides a framework
to compute which values or information can reach certain program points or can
be assigned to a specific variable. Control Flow Analysis comes into many different
formulations, as stated in [86], such as constraint-based, abstract interpretation-
based and specification-based, and type-based. The simplest form of Control Flow
Analysis is so-called 0-CFA, which does not take the context information into ac-
count when analysing programs. Intuitively, it does not distinguish instances of
function calls, more precisely, different instances of program points and variables of
the function at various call sites.

In this section, we consider specification-based approach to 0-CFA for a simply
typed λ-calculus, based on [86]. To consider this approach, the syntax of the λ-
calculus is extended with recursive variable, which are bound to function bodies.

Definition 2.2.13. Given an infinite set of variables V, ranged over by x, y, z. The
set E of λ-expressions, ranged over by e, e′, is defined by the following grammar:

e, e′ ::= expressions
| x variable
| λzx. e abstraction
| (e1 e2) application

The values v, v′ of the calculus are variables and lambda abstractions. , i.e.

v, v′ ::= values
| x variable
| λzx. e abstraction

The set of free names and notion of substitution are defined as expected. The
operational semantics of extended λ-expressions is similar to the one defined in the
previous section, except that the rule [cbv β] is defined as follows:

[cbv β] λzx.e e′ →βcbv e[λzx.e/z, e′/x],

where e[λzx.e/z, e′/x] is a simultaneous substitution. The idea is that the recursive
variable is replaced by the function body λzx.e when reduction is applied.

Also, given λ-expression e, assume that all program points (i.e all sub-expressions
of e) are labelled and, for simplicity, all labels are just integers. We denote the set
of all labels by Lab, ranged over by l and the set of extended λ-expressions by E∗,
ranged over by t. Formally, we define the following abstract syntax:

l ∈ Lab labels
t ::= el, where e ∈ E terms

2.2. THE λ-CALCULUS 35

The result of 0-CFA analysis is a pair of (C, ρ) where C is a mapping from program
points to a set of values, i.e. C(l) contains the values, i.e. variables or lambda
abstractions, that can reach the program point l and ρ(x) is mapping from variables
to a set of values, i.e. ρ(x) contains the values that the variable x can be bound
to. Formally, C is a mapping from labels to sets of values and ρ is a mapping from
variables to sets of values.

Example 2.2.14. As a running example, we use the following λ-expression:

e = let g = (λfx. (f 1 (λy. y2)3)4)5 in (g6 (λz. z7)8)9

The idea behind Control Flow Analysis is that based on control flow it defines
rules for transferring all possible information from one program point to another.
Usually, this set of rules forms a specification of analysis. The specification is defined
in Tab. 2.2. To specify Control Flow Analysis, we firstly use the specification to
generate a system of constraints and then find a solution of the system. It leads to
the following definition.

Definition 2.2.15. A pair of (C, ρ) is an acceptable 0-CFA analysis of a λ-expression
e if it satisfies the system of constraints generated by specification when analysing
e, where constraints are defined as follows:

• C(l) ⊆ ρ(x), that is, a set of values that reach the program point labelled by
l is included in the set of values that are possibly bound to the variable x.

• C(l) ⊆ C(l′), that is, a set of values that reach the program point labelled by
l is included in the set of values that reach the program point labelled by l′.

• S ⊆ ρ(x), that is, a set S of values is included in the set of values that are
possibly bound to the variable x.

(abs) (C, ρ) |= (λzx. e)l iff {λzx. e} ⊆ C(l) ∧ (C, ρ) |= e
(app) (C, ρ) |= ((e1)l1 (e2)l2)l iff (C, ρ) |= (e1)l1 ∧ (C, ρ) |= (e2)l2

∧ (∀(λx. e0l0) ∈ C(l1)) : (C, ρ) |= e0l0 ∧ C(l2) ⊆ ρ(x) ∧ C(l0) ⊆ C(l)
∧ (∀(λzx. e0l0) ∈ C(l1)) : (C, ρ) |= e0l0 ∧ C(l2) ⊆ ρ(x) ∧ C(l0) ⊆ C(l)

∧ {λzx. e0l0} ⊆ ρ(z)

Table 2.2: Specification of 0-CFA

In the rule (abs), the analysis holds for the sub-expression e and the abstraction
λzx e is included in a set of values reaching the label l. The rule (app) not only
analyse the sub-expressions e1 and e2, but also generates a set of constraints for

36 CHAPTER 2. BACKGROUND

each reachable abstraction-value λzx.t0l0 at l1, that is: i) a set of values reaching the
label l2 can be bound to x; ii) a set of values reaching the label l contains a set of
values reaching the label l0; iii) in the case of recursive abstraction-values, the value
is bound to its recursive variable.

Example 2.2.16. We apply the CFA to our example. The system of constraints is
generated as follows:

(1) (∀(λx. e0l0) ∈ C(5)) : (C, ρ) |= e0l0 ∧ C(8) ⊆ ρ(x) ∧ C(l0) ⊆ C(9)
(2) (∀(λzx. e0l0) ∈ C(5)) : (C, ρ) |= e0l0 ∧ C(8) ⊆ ρ(x)

∧ C(l0) ⊆ C(9) ∧ {λzx. e0l0}
(3) (∀(λx. e0l0) ∈ C(1)) : (C, ρ) |= e0l0 ∧ C(3) ⊆ ρ(x) ∧ C(l0) ⊆ C(4)
(4) (∀(λzx. e0l0) ∈ C(1)) : (C, ρ) |= e0l0 ∧ C(3) ⊆ ρ(x)

∧ C(l0) ⊆ C(4) ∧ {λzx. e0l0}
(5) {f} ⊆ C(5)
(6) ρ(f) ⊆ C(1)
(7) {idy} ⊆ C(3)
(8) ρ(y) ⊆ C(2)
(9) {idx} ⊆ C(8)
(10) ρ(z) ⊆ C(7)

where f = λfx. (f 1 (λy. y2)3)4, idy = λy. y2 and idz = λz. z7. In this system,
the first four constraints are conditional or implicit constraints, which are generated
when analysing the λ-expressions at the labels 9 and 5. More precisely, in (1) and
(2), for each reachable abstraction-value λzx. e0l0 at the label 5: i) all abstraction-
values reaching at the label 8 are included in the set of values bound to x; ii) all
abstraction-values reaching at the label l0 are also reached at the label 9. iii) all
recursive abstraction-values are bound to its recursive variable. Similar arguments
can made for clauses (3) and (4). The remaining constraints from (4)-(18) are called
explicit constraints, which relate values to their labels.

One of solutions of the above systems is the following:

C(1) = {f} C(2) = ∅ ρ(f) = {f}
C(3) = {idy} C(4) = ∅ ρ(g) = {f}
C(5) = {f} C(6) = {f} ρ(x) = {idy, idz}
C(7) = ∅ C(8) = {idz} ρ(y) = ∅
C(9) = ∅ C(10) = ∅ ρ(z) = ∅

Theoretical properties. The proof of existence of acceptable 0-CFA analysis is
given in literature, see [86] for details. Moreover, the solution is not unique. For
example, by taking the above solution and adding more information to C(5), C(6)

2.2. THE λ-CALCULUS 37

as follows:
C ′(5) = {f, idy}
C ′(6) = {f, idz}
C ′(i) = C(i), where i 5= 5, 6

We have another acceptable analysis (C ′, ρ), but less precise. Theoretically, a set
of acceptable analyses for a specific term enjoys the model intersection property,
i.e. whenever we take the intersection of a number of acceptable analyses we still get
an acceptable analysis. As a consequence, we can obtain the least (most precise)
solution from the set of acceptable analyses for the term.

Definition 2.2.17. The set of acceptable analyses can be partially ordered by set-
ting (ρ, C) 7 (ρ′, C ′) if and only if ∀l ∈ Lab, C(l) ⊆ C ′(l) and ∀x ∈ V, ρ(x) ⊆ ρ′(x).
We write (ρ, C) 8 (ρ′, C ′) ((ρ, C) 9 (ρ′, C ′), resp.) for the binary least upper bound
(the binary greatest lower bound, resp.) (defined point-wise). We use 8I (9)to
denote the least upper bound (the greatest lower bound, resp.) for a set I of
acceptable analyses.

The important feature of a Moore family set is that it enjoys the model intersection
property.

Definition 2.2.18. The set of estimates is a Moore family if and only if it contains
9J for all J ⊆ I.

Theorem 2.2.19 (Existence of the least solution). Given a λ-expression e, a set of
acceptable analyses of e, i.e. {(C, ρ)|(C, ρ) |= e}, is a Moore family.

More importantly, the least acceptable analysis is correct with respect to the seman-
tics, i.e. it ensures that the information from the analysis is indeed a safe description
of what will happen during the execution of the program.

Theorem 2.2.20 (Subject Reduction). Given a λ-expression e, (C, ρ) |= e. If
e → e′, then (C, ρ) |= e′.

Remark 2.2.21. We refer readers to [86] for details of he algorithm of computing
the least solution of a system of constraints.

2.2.4 The λ[]-calculus

We present an extension of the simply typed lambda calculus, called lambda box
(λ[]), with possible expressing resources and events. This extension is introduced
in [11] to formalise a model of history-based access control. The idea behind it is
to abstract the entire execution by means of sequences of events, called histories,
and to specify access control for running code based on these histories generated
by the code so far. By considering the entire execution, it improves the idea of
e.g. stack inspection [57], which instead records a fragment of the whole execution,

38 CHAPTER 2. BACKGROUND

hence provides a better understanding of the behaviour of programs. Indeed, the
previous analysis originally comes from the idea of history-based access control. It
is simple to approximate all the possible runtime histories of the programs and then
use some model checking to check whether the resulting approximations satisfy some
policy based on the sequence of events.

The Syntax

Definition 2.2.22. (Local Policies) Let A be a set of actions, a policy ϕ is a
regular safety property over A.

Definition 2.2.23. Let V be an infinite set of variables, ranged over by x, y, z, R
be a set of resources, ranged over by r, r′, and A be a set of monadic actions, ranged
over by α, β. A set Ev of access events is defined as {α(r)|α ∈ A and r ∈ R}. We
assume a set Φ of local policies, ranged over by ϕ,ϕ′. The set E[] of λ[]-expressions,
ranged over by e, e′, is defined by the following grammar:

e, e′ ::= expressions
| x variable
| α(r) access event
| if b then e1 else e2 conditional
| λz x. e abstraction
| (e1 e2) application
| ϕ[e] policy framing,

The values v, v′ of the calculus are variables and lambda abstractions, i.e.

v, v′ ::= values
| x variable
| λz x. e abstraction

We write 0 for a fixed, closed and event-free value. The definition of guards b in
conditionals is irrelevant here, and so it is omitted.

The language λ[] extends the λ-calculus by adding two new language constructs.
The first one is that of access events α(r), which describes the application of the
action α on the target resource r at runtime. A finite sequence of access events is
called a history. The second one is that of policy framing ϕ[e] which indicates that
the evaluation of e must obey the policy ϕ.

Usage Automata. Security policies ϕ ∈ Φ are modelled as regular safety properties
of histories, i.e. properties whose set of bad prefixes are recognized by an automaton,
as discussed above. A policy framing ϕ[e] enforces regular property of histories
during the execution of e. The policy ϕ can be represented by the set of its bad
prefix, which in turn is recognized by usage automata introduced in [10]. Here

2.2. THE λ-CALCULUS 39

q1 q2

q3

ld

rd, wr, st, rel

rd, wr, st, rel

Figure 2.3: The usage automata for the policy of the low-bandwidth connection

we consider a simplified version of usage automata, where usage automata do not
contain resource variables. We refers readers to [10] for more details. Informally,
a usage automaton describes a policy defined by a regular safety property. Usage
automata are considered as an extension of automata, where its final states are
offending, entering into which is considered as a policy violation. We write η |= ϕ if
the history η does not lead to offending states in the corresponding usage automaton.

Example 2.2.24. Back to our reader mobile example, it could be required that for
the low-bandwidth connection the tablets needs to load an e-book to local memory
before any other actions. The usage automata given in Fig. 2.3 describes this policy.
The set Q of states is {q1, q2, q3} and the set A of actions is {rd, wr, ld, st, rel}. The
only final state q3 is marked by a double circle, which indicates the offending state.
At the beginning, from the initial state q1 any action, except for ld, leads to the
offending state q3, which therefore describes the required policy.

The Operational Semantics. The behaviour of λ[]-expressions, described in
Fig. 2.4, is defined through a structural operational semantics. A transition (η, e)

µ→
(η′, e′), indicates that, starting from a state described by the history η, the expres-
sion e evolves to e′, issuing an event µ, possibly extending the history to η′. Initial
configurations have the form (ε, e), where ε denotes the empty history.

[s event] η,α(r) → ηα(r), 0 [s app0] η, (λzx.e) v → η, e[λzx.e/z, v/x]

[s cond0]
B(b) = true

η, if b then e1 else e2 → η, e1
[s cond1]

B(b) = false

η, if b then e1 else e2 → η, e2

[s app1]
η, e1 → η, e′1

η, e1 e2 → η, e′1 e2
[s app2]

η, e2 → η, e′2
η, v e2 → η, v e′2

[s pol0]
η, e → ηα(r), e′ ηα(r) |= ϕ

η,ϕ[e] → ηα(r),ϕ[e′]
[s pol1]

η |= ϕ

η,ϕ[v] → η, v

Figure 2.4: The Operational Semantics of the λ[]

40 CHAPTER 2. BACKGROUND

We now comment on the operational rules. The rule [s event] describes the eval-
uation of an event α(r) that consists in extending the current history with the event
itself, and producing the empty value 0. The rules [s app0], [s app1] and [s app2]
are the standard rules of the call-by-value semantics of λ-calculus. Notice that the
whole function body λzx.e replaces the self variable z after the parameter substitu-
tion, so giving an explicit copy-rule semantics for recursive functions. We assume
that B is a total function to evaluate guards b in conditionals. In rules [s cond0] and
[s cond1], depending on the evaluation of the guard b, a choice among two branches
is made. The policy framing ϕ[e] enforces the policy ϕ on the expression e, meaning
that the history must respect ϕ at each step of the evaluation of e and each event
issued within e must be checked against ϕ as in [s pol0]. When e is just a value, the
security policy is simply removed as in [s pol1].

2.2.5 Type system

Type systems are a formal tool for reasoning about programs. By associating a
type to each computed value, it provides a tractable syntactic method for proving
the absence of certain program behaviours. For instance, by examining the flow of
values, therefore their types, it ensures that no boolean variable is assigned to an
integer value. One of the possible approaches to type-based analysis is type and
effect systems, which is considered below.

A simple type system. To better understand the type and effect system intro-
duced in [11], we present a simplified type system without the effects that will be
added in the second part of the section.

Definition 2.2.25. We use 1 to denote a type for the empty value 0. We use the
following grammar to define types:

T ::= 1 | T → T

Furthermore, we assume that each access event α(r) has functional type of the form
1.

A type environment Γ is a finite mapping from variables to types. We write Γ, x → T
when x 5∈ dom(Γ), to denote the environment that maps the variable x to the type
T , and the variables y 5= x to Γ(y), whenever y ∈ dom(Γ). Furthermore, we write
Γ |= x : T if x ∈ dom(Γ) and Γ(x) = T . Formally, Γ is given as below:

Γ ::= ε| Γ, x → T,

where ε denotes the empty type environment. The general form of a typing rule is
given by:

Γ : e : T

2.2. THE λ-CALCULUS 41

[t empty] Γ : 0 : 1 [t var]
Γ |= x : T

Γ : x : T

[t evt] Γ : α(r) : 1 [t abs]
Γ, x : T1 : e : T2

Γ : λx.e : T1 → T2

[t app]
Γ : e1 : T1 → T2 Γ : e2 : T1

Γ : e1 e2 : T2
[t cond]

Γ : e1 : T Γ : e2 : T

Γ : if b then e1 else e2 : T

[t pol]
Γ : e : T

Γ : ϕ[e] : T

Figure 2.5: Typing rules

that says the program e has type T assuming that any free variable in e has a type
given by Γ. The axioms and typing rules are defined in Fig. 2.5.

The rule [t empty] associates the type 1 to the empty value 0. The rule [t var]
states that a variable has whichever type it is declared to have in the typing envi-
ronment Γ. In the rule [t evt], event accesses over resources are assumed to have
the type 1. The rule [t abs] states that an abstraction λzx.e has a function type
T1 → T2, provided that e can be typed as T2 in an environment where x has type T1.
The rule [t app] associates a type T2 to an application e1 e2 whenever the argument
e1 has a function type T1 → T2, and the argument e2 has type T1. In the rule
[t cond], the conditional expression has the same type as its branches. Finally, in
the rule [t pol], the policy framing ϕ[e] has the same type as e.

Type and effect system. In type and effect systems, by annotating types with
effects which describe which side effects a program may have, we could reason about
and control the overall computational effect of the program.

To see the idea behind effect systems, we present the type and effect system
introduced in [11] to analyse the behaviour of the program abstracted by sequences
of access events resulting from the executions. To predict the histories generated by
programs at runtime, history expressions are introduced. The grammar of history
expressions is defined as follows:

H ::= ε | h | α(r) | H.H ′ | H +H ′| ϕ[H] | µh.H

The history expressions include the empty history ε, events α(r), sequential com-
position H.H ′, non-deterministic choice H + H ′, policy framing ϕ[H] and µh.H
recursion, in which µ binds occurrences of the recursive history variable h in H .
Free variables and closed expressions are defined as expected. Furthermore, to ex-
plicitly represent policy framing events, special symbols [ϕ and]ϕ are used to denote
opening and closing of the scope of the policy ϕ. We write Ev′ for Ev∪{[ϕ,]ϕ|ϕ ∈ Φ}
and η' for the subsequence of η containing only events in Ev.

42 CHAPTER 2. BACKGROUND

Let H range over the histories. H.H′ denotes the set of histories {ηη′|η ∈ H, η′ ∈
H′}, and ϕ[H] is the set {[ϕη]ϕ}. The set fv() of free history variables of a history
expression H is defined as follows:

fv(ε) = ∅ fv(h) = {h}
fv(α(r)) = ∅ fv(H.H ′) = fv(H) ∪ fv(H ′)
fv(H +H ′) = fv(H.H ′) = fv(H) ∪ fv(H ′) fv(ϕ[H]) = fv(H)
fv(µh.H) = fv(H) \ {h}

A history expression is closed if it has no free history variables.
The denotational semantics of history expressions is defined over the complete

lattice (2Ev′ ,⊆), where 2Ev′ denotes the set of all subsets of Ev′. The environment
ρ used below maps variables to sets of (finite) histories. The denotation of history
expressions is defined as follows:

!ε"ρ = {ε} !α(r)"ρ = {α(r)} !h"ρ = ρ(h)
!H.H ′"ρ = !H"ρ.!H ′"ρ !H +H ′"ρ = !H"ρ ∪ !H ′"ρ !ϕ[H]"ρ = ϕ[!H"ρ]
!µh.H"ρ =

⋃
n∈N fn(∅),

where N is the set of natural numbers, f(X) = !H"
ρ{X/h}, and f(0) = ∅ ,otherwise

fn(X) = fn−1(f(X)) . Furthermore, the relation 7 is used to denote sub-effects
(by abuse of notation). Roughly, H 7 H ′ means that a set of histories represented
by H are included in a set of histories represented by H ′.

In the annotated types given below, the functional type T1
H−→ T2, is annotated

with an effect H that describes the latent effect associated with an abstraction,
i.e. one of the histories represented by H could be generated when such an abstrac-
tion is applied to a value. Formally, annotated types are defined by the following
syntax:

T ::= 1 | T H→ T

The general form of type judgement has the following form

Γ : e : T " H

that says that the program e, which has type T assuming that any free variable in
e has a type given by Γ, produces a history represented by H . The obtained type
and effect system is defined as follows:

[te var]
Γ(x) = T

Γ : x : T " ε

[te evt] : α(r) : 1 " α(r) [te abs]
Γ, x : T1 : e : T2 " H

Γ : λx.e : T1
H−→ T2 " ε

[te app]
Γ : e1 : T1

H−→ T2 " H ′ Γ : e2 : T1 " H ′′

Γ : e1 e2 : T2 " H ′.H.H ′′ [te pol]
Γ : e : T " H

Γ : ϕ[e] : T " ϕ[H]

[te cond]
Γ : e1 : T " H1 Γ : e2 : T " H2

Γ : if b then e1 else e2 : T " H1 +H2
[te sub]

Γ : e : T " H H 7 H ′

Γ : e : T " H ′

2.3. CALCULUS OF COMMUNICATING SYSTEMS. 43

The rule [te evt] records the event α(r) in the history component. In the rule
[te abs], the type of an abstraction λzx.e is annotated with a history H , provided
that the expression e has H as an effect when type checking. The rule [te app]
concatenates three histories in the following order:

i) the history H ′ generated when typing e1;

ii) the history H that is a latent effect due to the type T1
H→ T2 of e1;

iii) the history H ′′ generated when typing e2. The rule [te cond] describes the
non-determination between two effects H1 and H2 from two branches of the
conditional.

In the rule [te pol], the effect H of e is put in a policy framing. Finally, the rule
[te sub] describes a weakening of the effect in the sense that the history H can be
enlarged.

Type Safety. Based a computational effect H , one can verify regular properties of
resource usages, exhibited by a program, by using model checking techniques. The
basic idea is to translate H into BPA processes, which are basically BPP processes
without the parallel operator, then apply decidable model checking techniques of
BPA processes, as described in [53]. We refer readers to [16]. We will omit all
technical details and state only the main property of the type and effect system.

Definition 2.2.26 (Validity of History Expressions). A history expression H under
ρ is valid for a policy ϕ if for all η ∈ !H"ρ, η' satisfies ϕ.

Theorem 2.2.27 (Type Safety). If Γ : e : T,H, with e is closed and H under the
empty environment ρ is valid for all policies in e, then e can not go wrong.

2.3 Calculus of Communicating Systems.

Calculus of Communicating Systems (CCS) is process calculus introduced by Milner
in [81]. CCS processes can synchronise on their actions, rename and hide their
actions as well. In this text, we consider a variant of CCS with guarded replication.
The idea of CCS over BPP is able to capture a notion of communication. Intuitively,
an action in CCS can synchronize with its co-action.

Definition 2.3.1. We assume a set A of names, ranged over by a, b, c and a set Ā
of co-names , ranged over by ā and an internal or unobservable action, denoted by
τ . CCS processes are defined as follows:

(CCS processes) P, P ′ ::= 0 | π.P | P + P ′ | P ‖ P ′ | P ! a | P [b/a] | !π.P
(prefix actions) π, π′ ::= τ |a|a

44 CHAPTER 2. BACKGROUND

The 0 is the empty process, i.e. a process that does nothing. The prefix action π.P
is a process that can perform π, then behaves like P . The choice P1 +P2 represents
a process that behaves either as P1 or as P2. The operator ‖ denotes the parallel
composition of processes P1 ‖ P2. The restriction P !a hides the action a in P . The
relabelling P [b/a] represents the process P where all actions are named a renamed as
b. A guarded replication process !π.P represents an unlimited number of instances
of π.P in parallel.

[c act] π.P
π−→ P [c rep] !π.P

π−→!π.P ‖ P

[c choice1]
P1

π−→ P ′
1

P2 + P1
π−→ P2 + P ′

1

[c choice2]
P1

π−→ P ′
1

P1 + P2
π−→ P ′

1 + P2

[c parallel1]
P1

π−→ P ′
1

P2 ‖ P1
π−→ P2 ‖ P ′

1

[c parallel2]
P1

π−→ P ′
1

P1 ‖ P2
π−→ P ′

1 ‖ P2

[c comm1]
P1

a−→ P ′
1 P2

ā−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2

[c comm2]
P1

ā−→ P ′
1 P2

a−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2

[c res]
P

π−→ P ′

P ! a
π−→ P ! a

π 5= a [c rel]
P

π−→ P ′

P [b/a]
π{b/a}
−−−−−→ P ′[b/a]

Figure 2.6: The operational semantics of CCS processes.

The operational semantics of CCS processes is given by the transition relation
defined in Fig. 2.6. The labels π, π′ of the transitions are τ , a and a. We use c{b/a}
to denote b if c = a, otherwise c. The rule [c act] describes actions of processes.
A process π.P performs an action π, then behaves like P . The rules [c par1] and
[c par2] express the parallel computation of processes, while the rules [c choice1] and
[c choice2] represent a choice among alternatives. The rules [c com1] and [c com2]
are used to represent the synchronisation on a certain free name. The rule [c res]
ensures that an action π of P is also an action of P !a, if the action is not restricted
by a, i.e π 5= a. The rule [c rep] instantiates an instance of !π.P by performing an
action π. The result is a parallel composition of P and !π.P . Finally, in the rule
[c rel], transition labels are renamed by a substitution of a with b.

2.4 The π-Calculus

In this section, we briefly recall the π-calculus [97]. The π-calculus can be thought
as an extension of CCS. The mobility of processes and names is modelled in the
π-calculus. More precisely, processes not only synchronise on a name, but also
send/receive a value over a name. A name may have its own scope and extrude it.

2.4. THE π-CALCULUS 45

2.4.1 Syntax

Definition 2.4.1. Given a set N of channel names, ranged over by x, y, z, a, b. A
set P of processes is defined by the following grammar:

P, P ′ ::= processes π, π′ ::= action prefixes
0 empty process τ internal action

| π.P prefix action | a(y) free input
| (νx) P restriction | āb free output
| P + P ′ choice
| P ‖ P ′ parallel composition
| !P replication

The empty process 0 denotes an idle process, i.e the process that does nothing.
In the prefix actions, the process π.P performs the action π and behaves like P .
In the process prefixed by a free input a(y).P , y is a bound variable with a scope
bound by P and P can receive a name along a, which will substitutes y. In the
process prefixed by a free output āy.P , the name y is sent over the channel a. The
action τ describes some internal activity of process and is not observed from outside.
The choice operator denotes non-deterministic choice among processes. The parallel
operator describes parallel composition of processes. In the restriction (νx)P , (νx)
denotes a binder for the name x with the scope P . Intuitively, the name x is different
from all external names. A replication P denotes an infinite number of copies of P
running in parallel.

Convention 2.4.2. From now on, for the sake of simplicity, we often omit the
trailing 0.

In a(x).P and (νx)P , x is called a bound name. The set of free names fn(P) of a
process P is inductively defined as follows:

fn(0) = ∅ fn(τ.P) = fn(P)
fn(a(y).P) = {a} ∪ fn(P) \ {y} fn(νx) P) = fn(P) \ {x}
fn(āb.P) = {a, b} ∪ fn(P) fn(P + P ′) = fn(P) ∪ fn(P ′)
fn(P ‖ P ′) = fn(P) ∪ fn(P ′) fn(!a(y).P) = fn(a(y).P)

Similarly, the set of bound names bn(P) of process P is inductively defined as follows:

bn(0) = ∅ bn(τ.P) = bn(P)
bn(a(y).P) = {y} ∪ bn(P) bn(νx) P) = {x} ∪ bn(P)
bn(āb.P) = bn(P) bn(P + P ′) = bn(P) ∪ bn(P ′)
bn(P ‖ P ′) = bn(P) ∪ bn(P ′) bn(!a(y).P) = {y} ∪ bn(P)

The set of names n(P) of a process P is defined as the union of fn(P) and bn(P).

46 CHAPTER 2. BACKGROUND

P ≡ Q if P is α-equivalent of Q
(P +Q) +R ≡ P + (Q+R) (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R)
P +Q ≡ Q+ P P ‖ Q ≡ Q ‖ P
P + 0 ≡ P P ‖ 0 ≡ P
(νx)0 ≡ 0 (νx)P ‖ Q ≡ (νx)(P ‖ Q) x 5∈ fn(Q),
!P ≡ P ‖!P

Figure 2.7: Structural Congruence.

Definition 2.4.3. If the name b does not occur in the process P , then P{b/a} is
the process obtained by replacing each free occurrence of a in P by b. A change
of bound names in a process P is the replacement of a sub-process (νx)Q of P by
(νy)Q{y/x}, or the replacement of a(x).Q of P by a(y).Q{y/x}, where in each case
y does not occur in Q. Two processes P and Q are called α-equivalent of if P can
be obtained from Q by a finite number of changes of bound names.

We assume a notion of structural congruence on processes and we denote it by ≡.
The structural congruence on processes is defined as the least congruence satisfying
the clauses in Fig. 2.7.

Definition 2.4.4 (substitution). A substitution, ranged over by σ, is a partial map
from names to names. A process Pσ is P where all free names a are replaced by
σ(a), where α-equivalent is applied, when needed, to avoid name captures.

2.4.2 Operational Semantics

The operational semantics of the π-calculus is defined by the transition relation
given in Fig. 2.8. The labels µ, µ′ of transitions are tau action τ , free input a(y),
free output āb, bound output ā(b). The effect of bound output ā(b) is to extrude
the sent name b from the initial scope to the external environment. The sets of free
names fn(µ), bound names bn(µ) in labels are defined as follows:

fn(τ) = ∅ bn(τ) = ∅
fn(a(y)) = {a} bn(a(y)) = {a}
fn(āb) = {a, b} bn(āb) = ∅
fn(ā(y)) = {a} bn(ā(y)) = {y}

As usual, we write n(µ) for fn(µ) ∪ bn(µ).
We consider the late semantics for π-calculus. It essentially differs from the

early semantics in the time in which a bound name is bound to a free name. In late
semantics, a bound name in free input is instantiated when communication occurs.

The rule [p act] describes actions of processes, e.g. the silent action, free input
and free output. Concretely, āb.P sends the name b along the channel a and then
behaves like P , while a(y).P receives a name via the channel a, to which y is bound,

2.4. THE π-CALCULUS 47

[p act] π.P
π−→ P [p cong]

P1 ≡ P ′
1 P ′

1
µ−→ P ′

2 P ′
2 ≡ P2

P1
µ−→ P2

[p par]
P1

µ−→ P ′
1 bn(µ) ∩ fn(P2) = ∅

P1 ‖ P2
µ−→ P ′

1 ‖ P2

[p choice]
P1

µ−→ P ′
1

P1 + P2
µ−→ P ′

1

[p res]
P

µ−→ P ′ x 5∈ n(µ)

(νx)P
µ−→ (νx)P ′

[p open]
P

āx−→ P ′

(νx)P
ā(x)−−→ P ′

x 5= a

[p comm]
P1

āy−→ P ′
1 P2

a(z)−−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2{y/z}

[p close]
P1

ā(y)−−→ P ′
1 P2

a(z)−−→ P ′
2

P1 ‖ P2
τ−→ (νy)(P ′

1 ‖ P ′
2{y/z})

Figure 2.8: The Operational Semantics of Processes.

and then behaves like P . Note that the considered semantics is the late one, e.g. w is
actually bound to a value when a communication occurs. Finally, τ.P performs the
silent action τ and then behaves like P . In the rule [p cong], structurally congruent
processes behave the same.

The rule [p par] expresses the parallel behaviour of processes, while the rule
[p choice] represents a choice among alternatives. The side condition in the rule
[p par] ensures that the bound name in the transition label is fresh to avoid clash.
The rule [p comm] is used to communicate free names, while the rule [p close] is used
to communicate bound names. The rules [p res] and [p open] are rules for restriction.
The first ensures that an action of P is also an action of (νx)P , provided that the
restricted name x is not in the action. In the case of x in the action, the rule
[p open] transforms a free output action āx into a bound output action ā(x), which
basically expresses opening scope of a bound name. The rule [p close] describes
communication of bound names, which also closes the scope of the bound name in
communication x.

2.4.3 Control Flow Analysis

In this section, we present a Control Flow Analysis following [26, 87] for the π-
calculus that statically predicts how names are bound to actual names at run-time.
More precisely, it computes an over-approximation of the set of names bound to a
given name and the set of names possibly sent along a given name. These approx-
imations give us estimates. Further, there exists the least estimate among them in
sense that all other estimates contains the least one.

To simplify the definition of Control Flow Analysis, a discipline in the choice
of fresh names, and therefore to α-equivalent, is imposed. Indeed, the result of
analysing a process P must still hold for all its derivative processes Q, including
all the processes obtained from Q by α-equivalent. In particular, the CFA uses
the names and the variables occurring in P . If they were changed by the dynamic

48 CHAPTER 2. BACKGROUND

(ρ, κ) |= 0 iff true

(ρ, κ) |= τ.P iff (ρ, κ) |= P

(ρ, κ) |= āy.P iff ∀b ∈ ρ(a) : ρ(y) ⊆ κ(b) ∧ (ρ, κ) |= P

(ρ, κ) |= a(y).P iff ∀b ∈ ρ(a) : κ(b) ⊆ ρ(y) ∧ (ρ, κ) |= P

(ρ, κ) |= P1 + P2 iff (ρ, κ) |= P1 ∧ (ρ, κ) |= P2

(ρ, κ) |= P1 ‖ P2 iff (ρ, κ) |= P1 ∧ (ρ, κ) |= P2

(ρ, κ) |= (νx)P iff (ρ, κ) |= P ∧ x ∈ ρ(x)

(ρ, κ) |= !P iff (ρ, κ) |= P

Table 2.3: CFA Equational Laws

evolution, the analysis values would become a sort of dangling references, no more
connected with the actual values. To statically maintain the identity of values
and variables, all the names used by a process are partitioned into finitely many
equivalence classes. ;a<, that is called canonical name of a, is used to denote the
equivalence class of the name a. We simply write a for ;a<, when unambiguous.
Two names can be α-renamed only when they have the same canonical name.

The result of analysing a process P is a tuple (ρ, κ). The first component gives
information about a set of names to which given names can be bound; the second
component contains information about a set of names which can be sent on given
names. Formally, the analysis keeps track of the following information:

• An approximation ρ : N ∪R → ℘(N ∪R) of names bindings. If a ∈ ρ(x) then
the channel variable x can assume the channel value a.

• An approximation κ : N → ℘(N ∪R) of the values that can be sent on each
channel. If b ∈ κ(a), then b can be sent on the channel a.

To validate the correctness of a given estimate (ρ, κ), a set of clauses that operate
upon judgements in the form (ρ, κ) |= P are stated. The analysis correctly captures
the behaviour of P , i.e. the estimate (ρ, κ) is valid for all the derivatives P ′ of P .

The judgement rules of CFA is given in Tab 2.3. All the clauses dealing with a
compound process check that the analysis also holds for its immediate sub-processes.
In particular, the analysis of (νx)P and of !P is equal to the one of P . This is an
obvious source of imprecision (in the sense of over-approximation).

Besides the validation of the continuation process P , the rule for output, requires
that the set of names that can be communicated along each element of ρ(a) includes

2.4. THE π-CALCULUS 49

the names to which y can evaluate. Symmetrically, the rules for input demands that
the set of names that can pass along a is included in the set of names to which y
can evaluate. Intuitively, the estimate components take into account the possible
dynamics of the process under consideration. The clauses’ checks mimic the seman-
tic evolution, by modelling the semantic preconditions and the consequences of the
possible synchronisations. In the rule for input, e.g. CFA checks whether the precon-
dition of a synchronisation is satisfied, i.e. whether there is a corresponding output
possibly sending a value that can be received by the analysed input. The conclusion
imposes the additional requirements on the estimate components, necessary to give
a valid prediction of the analysed synchronisation action, mainly that the variable
y can be bound to that value.

Existence of Estimates and Correctness. An estimate for a given process P
always exists. Moreover, the least estimate exists as well. Informally, the least
estimate is contained in all other estimates. This relation, denoted by 7, is formally
defined in the following.

Definition 2.4.5. The set of estimates can be partially ordered by setting (ρ, κ) 7
(ρ′, κ′) if and only if ∀a ∈ N : ρ(a) ⊆ ρ′(a) and κ(a) ⊆ κ′(a).

Definition 2.4.6. A set I of proposed estimates is a Moore family if and only if it
contains 9J for all J ⊆ I, where 9J denote the greatest lower bound of J . Note
that the least element of I is 9I.

Theorem 2.4.7 (Existence of the least estimate). For all P , the set of estimates

{(ρ, κ)|(ρ, κ) |= P}

is a Moore family.

Correctness of the least estimate with respect to the semantics is proved by the
following theorem.

Theorem 2.4.8 (Subject Reduction). If (ρ, κ) |= P and P
µ→

∗
P ′ then (ρ, κ) |= P ′.

2.4.4 The Behavioural Type System

In this section, we present a type system developed for the π-calculus, where re-
sources are channel names. We follow the local version of the type system introduced
in [4]. The main characterisations of this approach is to maintain the structure of
processes in types. This allows to check various properties of processes be inspect-
ing their corresponding types. Properties are defined in term of the Shallow Logic,
which can be regarded as a fragment of Caires and Cardelli’s Spatial Logic [40]. The
logic allows one to specify the dynamics as well as the “shallow” spatial structure

50 CHAPTER 2. BACKGROUND

of processes and types. If a process is well-typed, then properties with which re-
stricted names are annotated can be guaranteed by the type systems. We will omit
all technical details of properties and its verification since their developments are
not relevant in the next chapters. In the following, we present a local version of type
systems. We refer readers to [4] for full details.

The syntax of the π-calculus. The development of type system requires a mi-
nor extension of the π-calculus. Restrictions are annotated by types (see below).
Moreover, properties of restrictions, defined as a formula of Shallow Logic, are also
introduced (see below).

To keep track of the structure of processes in types, types of restricted names
are explicitly given. For sake of simplicity, we consider the monadic version of the
π-calculus. The syntax is defined as follows.

Definition 2.4.9. Let N ve a set of channel names, ranged over by x, y, z, a, b and
Φ be a set of all Shallow Logic formulae, ranged over by φ. The set P∗ of processes
is defined by the following grammar, where t is a channel type (see below).

P, P ′ ::= processes π, π′ ::= action prefixes
0 empty process τ internal action

| π.P prefix action | a(y) free input
| (νx : t) P restriction | āb free output
| P + P ′ choice
| P ‖ P ′ parallel composition
| !a(y).P guarded replication

Convention 2.4.10. Often, we write ã for a finite set of names and νx̃ for a finite
sequence of restrictions.

Type annotations should guarantee that the correspondence between the spatial
structure of processes and types is preserved the scope extrusion. To this end, it
requires that the set of free names of a process includes the set of free names in types
of annotated restrictions. Formally, the set of free names fn and bound names bn of
a process are defined as before, except for fn((νx : t) P) = (fn(P)∪fn(t))\{x}, where
fn(t) is defined in the next section. The free names of a formula φ, written fn(φ),
are defined as expected. The set of logical operators includes spatial (a, a, |, H) as
well as dynamic (〈a〉, 〈ã〉, 〈−ã〉) connectives, beside the usual boolean connectives,
including a constant true for“true”.

The structural congruence ≡ are defined as usual, except that we drop two rules
for restrictions (νx : t)(νy : t′)P ≡ (νy : t′)(νx : t)P and (νx : t)0 ≡ 0 and the rule
for replication !a(y).P ≡ a(y).P ‖!a(y).P . The operational semantics is similar to
the one previously defined as in Section 2.4.2, except for the rules for communications
and the rule for replication. We use the labels 〈a〉 for communications in the rules

2.4. THE π-CALCULUS 51

[p comm] and [p close] as described below.

[p comm]
P1

āy−→ P ′
1 P2

a(z)−−→ P ′
2

P1 ‖ P2
〈a〉−→ P ′

1 ‖ P ′
2{y/z}

[p close]
P1

ā(x)−−→ P ′
1 P2

a(z)−−→ P ′
2

P1 ‖ P2
〈a〉−→ (νx)(P ′

1 ‖ P ′
2{x/z})

The labels of communications allow us to show the corresponding behaviours of
processes and behavioural types (introduced in the next section). Replication is
not ruled by structural congruence, but by the operational semantics as follows:

[p rep] !a(y).P
a(y)−−→!a(y).P ‖ P

Intuitively, an instance of !a(y).P is instantiated by performing a(y). The resulting
process is the parallel composition of P and !a(y).P .

The syntax of behavioural types.

Definition 2.4.11. Let N be a set of channel names, ranged over by a, b , a set R
of resource names, ranged over by r, r′, and a set VT of type variables, ranged over
by X, Y . The set T of behavioural types, ranged over by T, T ′, are defined by the
following grammar:

(process types) T, T ′ ::= 0 | π.T | (νx : t) T | T + T ′ | T ‖ T ′ |!a(t).T
(prefix actions) π, π′ ::= τ | a(t) | a
(channel types) t, t′ ::= (x : t)T | ()T,

A type T is called closed if it does not contain any type variable.

The set of free names fn(T) and bound names bn(T) of a given closed type T is
defined as expected, i.e. :

fn(0) = ∅ fn(a(t).T) = {a} ∪ fn(t) ∪ fn(T)
fn(ā.T) = {a} ∪ fn(T) fn(τ.T) = fn(T)
fn(T + T ′) = fn(T) ∪ fn(T ′) fn(T ‖ T ′) = fn(T) ∪ fn(T ′)
fn((νx : t)T) = fn(t) ∪ fn(T) \ {x} fn((x : t)T) = fn(t) ∪ fn(T) \ {x}
fn(!a(t).T) = fn(a(t).T)

bn(0) = ∅ bn(a(t).T) = bn(T)
bn(ā.T) = bn(T) bn(τ.T) = bn(T)
bn(T + T ′) = bn(T) ∪ bn(T ′) bn(T ‖ T ′) = bn(T) ∪ bn(T ′)
bn((νx : t)T) = bn(T) ∪ {x} bn(!a(t).T) = bn(a(t).T)

Note that t in a process type a(t).T contribute free names to a set of free names of
that type and the same is for a channel type (x : t)T . We write n(T) for fn(T)∪bn(T).

52 CHAPTER 2. BACKGROUND

Definition 2.4.12. If the name b does not occur in the process T , then T{b/a} is
the process obtained by replacing each free occurrence of a in T by b. A change
of bound names in a process T is the replacement of a sub-process (νx)T ′ of T by
(νy)T ′{y/x}, or the replacement of a(x).T ′ of T by a(y).T ′{y/x}, where in each case
y does not occur in T ′. Two types T and T ′ are called α-equivalent of T ′ if T can
be obtained from T ′ by a finite number of changes of bound names.

Definition 2.4.13 (substitution). A substitution, ranged over by σ, is a partial
map from names to names. A type T , Tσ is T where all free names a ∈ fn(T) are
replaced by σ(a), where changes of restricted names are applied when needed, to
avoid name captures. .

There are two kinds of types: process (or behavioural) types and channel types.
In a channel type (x : t)T , x is a binder with the scope T , e.g. a process type T
pre-describes a usage of x of the type t with dependencies on other channel names.
In a special case, where an input is ignore by a channel, its type is denoted by ()T .
We assume that x ∈ fn(T). Note that the input prefix a(t) in a process type a(t).T
describes the type t of the objects that can be received by T , while a prefix action
ā reflects an output action on the channel name a. For the sake of simplicity, we
write y#T for y 5∈ fn(T). Similar notations are defined for ã#φ.

The operational semantics of types.

Definition 2.4.14. The structural congruence on types is the relation defined below

T ≡ T ′ if T ′ is α-equivalent of T
T + 0 ≡ 0+ T ≡ T T ‖ 0 ≡ 0 ‖ T ≡ T
T1 + T2 ≡ T2 + T1 T1 ‖ T2 ≡ T2 ‖ T1

(T1 + T2) + T3 ≡ T1 + (T2 + T3) (T1 ‖ T2) ‖ T3 ≡ T1 ‖ (T2 ‖ T3)
(νx)T ‖ T ′ ≡ (νx)(T ‖ T ′) if x 5∈ fn(T ′)

The operational semantics of types, defined in Tab. 2.4. Labels µ, µ′ for transitions
are τ for silent actions, a, ā for abstract input/output, and 〈a〉 for communications.
The rule [bt act] describes actions of types. A type π.T performs an action π, then
behaves like P . In the rule [bt cong], congruent types can perform the same action.
The rules [bt par1] and [bt par2] express the parallel behaviour of types, while the
rules [c choice1] and [bt choice2] represent a choice among alternatives.

The rule [bt comm1] and [bt comm2] are used to synchronize a free name. The
rule [bt res] manages restrictions. The rule [bt res] ensures that an action µ of T is
also an action of (νx)T , if the name of the action is not restricted by x, i.e µ 5= x(t)
and µ 5= x. Finally, the rule [bt rep] instantiates an instance of !a(t).T by performing
a(t). The result is the parallel composition of T and !a(t).T .

Basic properties of processes. First, we need some auxiliary definitions. In the
following, we use A,B to range over U = P∗ ∪ T . Elements of U will be generally

2.4. THE π-CALCULUS 53

[bt act] π.T
π−→ T [bt cong]

T1 ≡ T ′
1 P ′

1
µ−→ T ′

2 T ′
2 ≡ T2

T1
µ−→ T2

[bt par1]
T1

µ−→ T ′
1

T1 ‖ T2
µ−→ T ′

1 ‖ T2

[bt par2]
T2

µ−→ T ′
2

T1 ‖ T2
µ−→ T1 ‖ T ′

2

[bt choice1]
T1

µ−→ T ′
1

T1 + T2
µ−→ T ′

1

[bt choice2]
T2

µ−→ T ′
2

T1 + T2
µ−→ T ′

2

[bt comm1]
T1

ā−→ T ′
1 T2

a(t)−−→ T ′
2

T1 ‖ T2
〈a〉−−→ T ′

1 ‖ T ′
2

[bt comm2]
T1

a(t)−−→ T ′
1 T2

ā−→ T ′
2

T1 ‖ T2
〈a〉−−→ T ′

1 ‖ T ′
2

[bt res]
T

µ−→ T ′

(νx)T
µ−→ (νx)T ′

µ 5= x, x(t) [bt rep] !a(t).T
a(t)−−→!a(t).T ‖ T

Table 2.4: The Operational Semantics of Types

referred to as terms. A property set, P-set in brief, is a set of terms closed under
structural congruence and having a finite support: the latter intuitively means that
the set of names that are relevant for the property is finite (somewhat analogous
to the notion of free names for syntactic terms). In the following, we let {a ↔ b}
denote the transposition of a and b, that is, the substitution that assigns a to b and
b to a, and leaves the other names unchanged. For Φ ⊂ U , we let A |= Φ mean that
A ∈ Φ, and Φ{a ↔ b} denote the set {A{a ↔ b}|A |= Φ}.

Definition 2.4.15 (Support, P -set, least support). Let Φ ⊂ U and N ⊂ N .

1. A set N of names is a support of Φ if for each a, b 5∈ N , it holds that Φ{a ↔
b} = Φ.

2. A property set (P -set) is a set of terms Φ ⊂ U that is closed under ≡ and has
a finite support.

3. The least support of Φ is defined as supp(Φ) =
⋂

N is support of ΦN .

In other words, N is a support of Φ if renaming names outside N with fresh names
does not affect Φ. P -sets have a finite support, and since countable intersection
of supports is still a support, they also have a least support. Furthermore, we
introduce a notion of µ-derivative of a P-set (to capture changes of properties
through reductions), describing the set of terms reachable via µ-reductions from
terms in Φ.

Φµ # {B|∃A s.t. A |= Φ and A
µ→ B}

The following property ensures that a µ-derivative of a P -set is a P -set, provided
µ involves a name in the support of Φ.

54 CHAPTER 2. BACKGROUND

Lemma 2.4.16. Let Φ be a P -set. If µ = 〈a〉 with a ∈ supp(Φ) then Φµ is a P -set
and supp(Φµ) ⊆ supp(Φ).

The Ok() predicate introduced below identifies P -sets that enjoy certain desirable
conditions: (1) requires a P -set to be closed under parallel composition with terms
not containing free names; (2) demands a P -set to be invariant under reductions
that do not involve names in its support; finally, (3) requires preservation of (1)
and (2) under derivatives. These requirements will be essential for guaranteeing the
subject reduction property of type systems, introduced in the next section. Note
the co-inductive form of the definition.

Definition 2.4.17 (Ok(.) predicate). Ok(.) predicate is defined as the largest pred-
icate on P -sets such that whenever Ok(Φ) then:

1. for any A,B ∈ P s.t. fn(B) = ∅ if and only if A|B |= Φ; similarly for A,B ∈ T .

2. if µ = τ or µ = 〈b〉 with b 5∈ supp(Φ) then Φµ = Φ.

3. for each µ, Ok(Φµ) holds

Definition 2.4.18. The set F of Shallow Logic formulae is given by the following
syntax:

φ,φ′ ::= true | φ ∨ φ′ | ¬φ | 〈a〉φ | 〈ã〉∗φ | 〈−ã〉∗φ | a | ā | φ|φ′ | H∗φ

The interpretation of the Shallow formulae over the set of processes and types
is given in Tab. 2.5. Note that a process has a barb a (resp. ā), written P ↘a

(resp. P ↘ā whenever P ≡ (νx̃)(P ′ + a(x).Q ‖ R) or P ≡ (νx̃)(P ′ + ā〈b〉.Q ‖ R),
with a 5∈ x̃. Similar notations are defined for types. Connectives are interpreted in
the standard manner. In particular, concerning spatial modalities, the barb atom
a (resp. ā) requires that A has an input (resp. output) barb on a; φ|φ′ requires
that A can be split into two independent threads satisfying φ and φ′; H∗φ requires
that A satisfies φ, up to some top level restrictions. Concerning the dynamic part,
formula 〈a〉φ requires an interaction with subject a may lead A to a state where φ
is satisfied; 〈ã〉∗φ requires any number, including zero, of reductions with subject in
ã may lead A to a state where φ is satisfied; 〈−ã〉∗φ is similar, but it requires that
the subjects of the reductions leading to such a state are not in ã. We write A |= φ
if A ∈ φ. Interpretations of formulae are P -sets, as stated below.

Lemma 2.4.19. Let φ ∈ F . Then ‖φ‖ is a P -set and fn(φ) ⊇ supp(‖φ‖).

The Behavioural Type System. The type works on annotated processes, where
each restriction introduces a property, defined in term of an Ok P -set, that depends
on the restricted names and is expected to be satisfied by the process in the scope
of the restriction. For annotated processes, the clause for restriction is

P ::= · · · |(νx̃ : t̃;Φ)P with x̃ ⊇ supp(Φ) and OK(Φ).

2.4. THE π-CALCULUS 55

‖true‖ = U ‖H∗φ‖ = {A|∃ã, B : A ≡ (νx̃)B, x̃#φ, B ∈ ‖φ‖}
‖φ ∨ φ′‖ = ‖φ‖ ∪ ‖φ′‖ ‖φ|φ′‖ = {A|∃B,B′ : A ≡ B ‖ B′, B ∈ ‖φ‖, B′ ∈ ‖φ′‖}
‖¬φ‖ = U \ ‖φ‖ ‖〈a〉φ‖ = {A|∃B : A

〈a〉→ B,B ∈ ‖φ‖}
‖a‖ = {A|A ↘a} ‖〈ã〉∗φ‖ = {A|∃µ,B : A

µ→ B,µ ∈ {〈b〉|b ∈ ã}, B ∈ ‖φ‖}
‖ā‖ = {A|A ↘ā} ‖〈ã〉∗φ‖ = {A|∃µ,B : A

µ→ B,µ#ã, B ∈ ‖φ‖}

Table 2.5: The interpretation of formulae over terms

The reduction rule for restriction of annotated processes takes into account the
µ-derivative of Φ in the continuation process. Hence, the rule for restriction on
annotated processes is

[p res]
P

µ−→ P ′ x 5∈ n(µ)

(νx : t;Φ)P
µ−→ (νx : t;Φµ)P ′

The judgements of the type system have the form Γ : P : T , where Γ is a context,
P ∈ P, T ∈ T . Intuitively, T is an abstract behaviour of P under the context Γ.
A context Γ is a map from channel names to channel types. We write Γ : a : t if
a ∈ dom(Γ) and Γ(a) = t. A context Γ is well-formed if whenever Γ : a : (x : t)T
then fn(t, T) ⊆ {x} ∪ dom(Γ). From now on, we only consider well-formed context.
In the type system, we make use of a “hiding” operation on types, T↓ã, which masks
the use of names not in ã (as usual, in the definition we assume that all bound names
in T and t are distinct from each other and disjoint from the set of free names and
from ã). T↓ã is formally defined in Tab. 2.6.

0↓ã = 0 s((νx̃ : t̃)T)↓ã = (νx̃ : t̃↓ã,x̃)T↓ã,x̃

(b̄.T)↓ã =

{
τ.T↓x̃ if if b 5∈ ã
ā.T↓ã if otherwise

(b(t).T)↓ã =

{
τ(t↓ã).T↓x̃ if if b 5∈ ã
b(t↓ã).T↓ã if otherwise

T1 ‖ T2↓ã = T1↓ã ‖ T2↓ã T1 + T2↓ã = T1↓ã + T2↓ã
τ.T ↓ã = τ.T↓ã (!b(t).T)↓ã =!b(t)T ↓ã

Table 2.6: The “hiding” operator on types

We are now ready to comment typing rules. The rules of the type system are
given in Tab. 2.7. The key rules are rules for input prefix [ts input], output prefix
[ts output] and [ts eq]. In the rule [ts input], the type of P in a(x).P is split into two
components T1 and T2. The condition x#T1 guarantees that all type information
depending on x is collected in T2. Furthermore, T2 must match exactly Ta, a type
that describes the usage of argument x on channel a.

56 CHAPTER 2. BACKGROUND

[ts empty] Γ : 0 : 0 [ts rep]
Γ : P : T

Γ :!P :!T

[ts output]

Γ : P : T1

Γ : a : (y : t)T2 Γ : b : t

Γ : āb.P : ā.(T1 ‖ T2{b/y})
[ts input]

Γ : a : (y : t)Ta

Γ, y : t : P : T1 ‖ T2 T2 = Ta y#T1

Γ : a(y).P : a.T1

[ts choice]
Γ : P1 : T1 Γ : P2 : T2

Γ : P1 + P2 : T1 + T2
[ts par]

Γ : P1 : T1 Γ : P2 : T2

Γ : P1 ‖ P2 : T1 ‖ T2

[ts res]
Γ, x̃ : t̃ : P : T T↓x̃

Γ : (νx̃ : t̃;Φ)P : (νx̃ : t̃)T
[ts tau]

Γ : P : T

Γ : τ.P : τ.T

[ts eq]
Γ : P : T T ≡ T ′

Γ : P : T ′

Table 2.7: Typing rules

In the rule [ts output], the type āb.P is the parallel composition of the type of P
and a continuation Ta{b/x} with the actual argument b, provided that a has a type
(x : t)Ta. Rules [ts input] and [ts output] are asymmetric in the sense that when
type checking receiver a(x).P , the type information of P depending on the input
parameters x is moved to the sender side. The rule [ts eq] is related to sub-typing.
The idea of using the structural congruence instead of a preorder on types is to
maintain the spatial structure of processes in types.

In the rules [ts par] and [ts choice], the resulting type is obtained as composition
of types of the components. In the rules [ts act], [ts tau], the resulting types extend
the types in the premise to reflect the structure of processes. In the rule of restriction
[ts res], the abstraction T obtained for P is used to check that P ’s usage of names
x̃ fulfils the property Φ (T↓x̃ |= Φ): in practical cases, Φ is a shallow logic formula
and this is actually spatial model checking. Note that T |= Φ might be undecidable,
however significant decidable fragments will be identified in the following.

Basic Properties As said before, types reflect the structure of processes, which
is stated by the following lemmas. A normal derivation of Γ : P : T , denoted by
Γ :N P : T , is a derivation where rule [ts eq] can only be found immediately above
rule [ts input]. The following lemma states that every derivation of Γ : P : T,E has
its normal derivation.

Lemma 2.4.20 (Normal Derivation). If Γ : P : T then Γ :N P : T ′, T ≡ T ′.

Normal derivations are syntax-directed, that is, processes and their types share the

2.4. THE π-CALCULUS 57

same shallow structure. The type inversion lemmas given below show that we can
obtain the shallow structure of a process reflected in its type, and vice versa. This
correspondence also reflects in the semantics of processes and types (see below).
This is formally stated by the two lemmas below.

Lemma 2.4.21 (Type Inversion). Given Γ :N P : T,E, Γ :N b : t and Γ : a : (x : t)Ua.
Then for any Q,Q1, Q2 and π.Q, it holds that:

• 1. If P = a(x).Q.then T = a.(S ‖ U) for some S such that Γ :N Q : S ‖ U ,
x#S and U = Ua.

• 2. If P = āb.Q then T = ā.(S ‖ S ′) for some S such that Γ :N Q : S and
S ′ = Ua{b/x}.

• 3. If P = τ.Q then T = τ.S for some S such that Γ :N Q : S.

• 4. If P = (νx)Q then T = (νx)S for some S such that Γ, x : t′ :N Q : S.

• 5. If P = Q1 ‖ Q2 then T = S1 ‖ S2 for some S1 and S2 such that Γ :N Q1 : S1

and Γ :N Q2 : S2.

• 6. If P = Q1+Q2 then T = S1+S2 for some S1 and S2 such that Γ :N Q1 : S1

and Γ :N Q2 : S2.

• 7. If P =!a(x).Q then T =!a.S for some S such that Γ :N a(x)Q : a.S.

Lemma 2.4.22. Process Inversion Given Γ :N P : T,E, Γ :N b : t and Γ : a : (x : t)Ua.
Then for any Q,Q1, Q2 and π.Q, it holds that:

• 1. If T = a((x : t)Ua).S then P ≡ a(x).Q for some Q such that Γ :N Q : S ‖ Ua,
x#S.

• 2. If T = ā.S then P ≡ āb.Q for some S ′ such that Γ :N Q : S ′ and S =
Ua{b/x} ‖ S ′.

• 3. If T = τ.S then P ≡ τ.Q for some Q such that Γ :N Q : S.

• 4. If T = (νx)S then P ≡ (νx)Q for some Q such that Γ, x : t′ :N Q : S.

• 5. If T = S1 ‖ S2 then P ≡ Q1 ‖ Q2 for some Q1 and Q2 such that
Γ :N Q1 : S1 and Γ :N Q2 : S2.

• 6. If T = S1+S2 then P ≡ Q1+Q2 for some Q1 and Q2 such that Γ :N Q1 : S1

and Γ :N Q2 : S2.

• 7. If T =!a((x : t)Ua).S then P ≡!a(x).Q for some Q such that Γ :N a(x)Q : a.S.

58 CHAPTER 2. BACKGROUND

The subject reduction property holds in the type system. Intuitively, if a process
P is typed under Γ, i.e. there exists T such that Γ : P : T , then all derivatives
from P are also typed under Γ. Furthermore, its “inverse” version, i.e. type subject
reduction, also holds.

Theorem 2.4.23. Subject Reduction If Γ : P : T and P
µ→ P ′, where µ is 〈a〉

or τ , then there exists a T ′ such that T
µ→ T ′ and Γ : P ′ : T ′.

Theorem 2.4.24. Type Subject Reduction If Γ : P : T and T
µ→ T ′, where µ

is 〈a〉 or τ , then there exists a P ′ such that P
µ→ P ′ and Γ : P ′ : T ′.

Type soundness First, we present classes of properties for which well-typed-ness
implies well-annotated-ness. In principle, model checking on processes against these
classes of properties can be reduced to a type checking problem whose solution
requires only a (local) use of model checking on types.

Definition 2.4.25 (locally checkable properties). We let Lc be the largest predicate
on P -sets such that whenever Lc(Φ) then Ok(Φ) and:

1. whenever Γ : P : T and ã ⊇ supp(Φ) and T↓ã |= Φ then P |= Φ.

2. Lc(Φµ) holds for each µ.

Definition 2.4.26 (well-annotated processes). A process P ∈ P is well-annotated
if whenever P ≡ (νx̃)(νỹ : Φ)Q then Q |= Φ

Theorem 2.4.27. Type Soundness Suppose Γ : P : T and P is decorated with
locally checkable P -sets only. Then P is well-annotated.

Theorem 2.4.28. Run-time soundness Suppose Γ : P : T and P is decorated
with locally checkable P -sets only. Then P

µ1→ P1
µ2→ . . . P ′ implies that P ′ is well-

annotated.

Part I

A Model of Cloud Systems

Chapter 3

Lambda in Clouds

3.1 Introduction

In the old times, people used to exploit the bakery’s oven for their home-made
bread. Similarly, people utilised the public mill to obtain flour from their wheat.
In both cases, people did not own the physical infrastructure to process their prod-
ucts, neither they invested on it. We refer to [?] for a general description of Cloud
Computing. Cloud Computing customers do not invest on hardware, software or
services, but they just pay providers to use them, either on a utility or a subscrip-
tion basis. Cloud services over the Internet are therefore used on demand and with
a certain degree of flexibility. Usually, these services rely on (a farm of) servers,
often virtual ones and are fully managed by their providers. As a consequence,
old and new security problems may arise, because if security is related to trust, as
Schneier [99] wrote “[cloud computing] moves the trust boundary one step further
... You have to trust your outsourcer completely. You not only have to trust the
outsourcer’s security, but its reliability, its availability and its business continuity”.
Therefore, Cloud computing borrows from well-established technologies and models,
in particular from the Service Oriented Computing (SOC) ones. Nevertheless, the
possibility to offer resources, on demand, in a multi-tenant environment, and in a
scalable way, makes cloud computing emerge as a new combination that deserves
to be modelled and investigated on its own. Our understanding drives us to pro-
pose a model in which the loosely coupled nature of services is compensated by a
coarser view of resource usages. Furthermore, while SOC applications are mainly
concerned with business logic, cloud applications must conciliate the business logic
with the operation logic [22]. To summarise, our model for clouds supports service
orientation, integrated by the operation logic of resources.

In this chapter, we propose and outline a formal framework (borrowed by [15,
12]) for specifying and reasoning about cloud computing systems. We build on
the functional model offered by a concurrent version of λ-calculus, enriched with
primitives for handling resources, for describing and assembling services, and for

62 CHAPTER 3. LAMBDA IN CLOUDS

managing security properties. In the following, we informally present the main
features of our approach.

Cloud resources as functions with side effects. We view a cloud server as be-
ing composed of several computational components interacting through well-defined
interfaces. Components may assume a variety of forms, e.g. virtual machines,
databases, resource schedulers and so on. We argue that it is effective and useful to
abstractly view cloud components as functions with a side effect, modelling changes
of the resource state. For instance, let us consider a simple database service, of-
fered by a cloud, that gets a string query from the user and accordingly queries the
database. The following functional interface describes the database service outlined
above.

Table fun Q(Query q): Effect e

The invocation of the service Q with the actual query will yield a table value as result.
The side effect e provides the abstract representation of the database changes such
as updates of tables. By applying the typing techniques developed in [15, 16], we
describe the interface of the service Q, through an annotated functional type, of
the form Query

e−→ Table. When supplied with an argument of type Query, the
service evaluates to an object of type Table. The annotation e is the side effect of
service evaluation that abstractly describes the possible run-time traces of service
executions.

The main benefit of the idea of considering cloud components as functions with
side effects is that it provides a high-level notion to model cloud resources, their
composition and interactions, by abstracting from low level implementation details.
This choice has also the methodological spin-off that each cloud computational com-
ponent has to expose a well defined interface containing both supported operations
and an abstract behavioural description.

Security Policies. In spite of its undeniable advantages and cost-savings, cloud
computing makes data processing inherently risky, as data and computation reside
not under the user’s control, as effectively said by Diffie in an interview [51]: “...
The effect of the growing dependence on cloud computing is similar to that of our
dependence on public transportation ... which forces us to trust organizations over
which we have no control, ... and subjects us to rules and schedules that we wouldn’t
apply ... On the other hand, it is so much more economical that we don’t realistically
have any alternative. ... [Concerning safety] from the view of a broad class of
potential users it is very much like trusting the telephone company ... to keep your
communications private”.

Classical security concerns are therefore more crucial, and also assuming that the
underlying networking infrastructure manages the more basic factors, design flaws
can arise and make cloud services unsafe. Often security problems do not depend on

3.1. INTRODUCTION 63

weird attacks, but simply on the application of careless policies or insufficient policy
enforcement. Consequently, it is essential that safety is addressed when designing a
cloud.

Our programming model focuses on application-based security by considering
security policies as first class programming constructs. We provide explicit con-
structs to declare and enforce the security policies governing the behaviour of cloud
components, in the style of [11, 13]. In our framework, a security policy regulates
how cloud components are granted to and used. For instance, let us consider the
database service example introduced above. The Q service may be unsafe although
the code normally runs in most of the cases. An attacker can indeed taint the query
string by injecting a command in front; consequently the service would issue dan-
gerous commands such as deleting a file before executing the safe query. This is
called an SQL injection bug.

Sequences of resource accesses in executions are called histories. A security policy
ϕ is a regular property of histories. Policies are expressed as languages accepted by
an extension of finite state automata, since automata recognize those words that
violate the desired property. We refer to the general case of policies as regular
safety properties [14, 16]. While evaluating a program fragment e protected by a
policy ϕ, written as ϕ[e], the histories must respect ϕ.

From a methodological perspective, the awareness of security issues from the very
beginning of the development process facilitates the design of secure clouds: security
is faced in advance, without sweeping it under the carpet (read it as security patches
added later). The database service example above can be moved into a more secure
land, by wrapping it inside a suitable security policy ϕDB. For instance, the policy
can impose that no update operations on the database (i.e. system commands) can
be issued during service executions, i.e. the only operations allowed are those in
which the database content can only be read. Adding the specified policy to the
query interface results in:

Table fun Q(Query q): Effect e ensuring ϕDB

meaning that each step of service execution must obey the security policy ϕDB.
Operationally, the run-time structures will enforce the security policy ϕDB by mon-
itoring service execution and by catching the occurrences of possible bad actions,
i.e. the actions that violate the policies. Actually, the run-time enforcement mech-
anism depends on a suitable abstraction of the execution of all the pieces of code
(possibly partially) executed so far. This implies that the mechanism enforcing the
security policies can make decisions, based on all previous changes of shared re-
sources affected by different user requests. This approach, known under the name
of history-based security, has been receiving major attention, at both levels of foun-
dations [9, 56, 101] and of language design/implementation [1, 52].

Cloud server. Abstractly a cloud server can be seen as a pool of components
and resources running over a variety of virtual machines. We keep the vision of

64 CHAPTER 3. LAMBDA IN CLOUDS

Software as a service, where each service exposes over the network certain func-
tional behaviour and it is invoked via request/response communication protocols
(e.g. SOAP). In our programming model, a cloud server is a triple consisting of (i)
the history representing the global cloud state (that represents the dependencies
among services and resources, as well as virtual machine configurations), (ii) the set
of active processes, and (iii) a service environment that associates each service name
with the script, or the service code, required to load the virtual machine and the
resources needed to run the service.

For example, let us consider a cloud server, whose service environment provides
facilities to convert files from one format to other formats. The initial configuration
of the cloud server only includes the cloud services. Notice that these services are
idle: they are activated by service invocation. We do not model here how clients
operate. Clients interactions are asynchronously observed, by means of the server
operations required to activate VM as well as the resource needed to operate. For
instance, in our example, the initial configuration includes an empty history ε, an
empty set of active processes 0 and a service environment with two possible services
F2F1, F2F2 available to convert files having a certain source format:

(ε, 0, {F2F1 → p1, F2F2 → p2})

These two services could be characterized by the following types that declare both
information about the virtual machines attached to the services and about the costs
of service invocations.
Format1 fun F2F1(Format file): Effect ActivateVM1; c1
Format2 fun F2F2(Format file): Effect ActivateVM2; c2
Our cloud server may activate a translation service by the following transition:

(ε,0, {F2F1 → p1, F2F2 → p2})
invokeF2F1−−−−−−−→ (invokeF2F1 , p1, {FI2F1 → p1, F2F2 → p2})

This rule spawns the service code in an asynchronous manner. Moreover the server
state records the operation that activates the service. Finally, the services are per-
sistent.

3.2 The Lambda Clouds

We consider a concurrent version of the call-by-value λ-calculus, called λ{} (lambda
clouds), enriched with primitives for accessing resources, for declaring and enforc-
ing security policies, and for installing services and managing their invocation. It
is considered as an extension of λ[] introduced in [11] for concurrent systems. For
simplicity, we assume that resources are objects already available in the cloud envi-
ronment (i.e. resources cannot be dynamically created).

3.2. THE LAMBDA CLOUDS 65

3.2.1 Syntax

Definition 3.2.1 (Syntax). Let V be an infinite set of variables , ranged over by
x, y, z, R be a finite set of resources, ranged over by r, r′, A be a finite set of monadic
actions, ranged over by α, β and Π be a finite repository of public service names,
ranged over by π. A set Ev of access events is defined as {α(r)|α ∈ A and r ∈
R}. We define Ev∗ = Ev ∪ {linkπ, invokeπ|π ∈ Π}. We assume a set Φ of local
policies, ranged over by ϕ,ϕ′, and local policies are defined as a regular safety
properties over Ev∗. We call η, η′ ∈ Ev∗ histories, i.e. finite sequences of events
α1(r1)α2(r2) . . .αn(rn). The syntax of λ{}-expressions, ranged over by e, e′, is defined
by the following grammar:

e, e′ ::= expressions
| x variable
| α(r) access event
| λzx. e abstraction
| e1 e2 application
| e1 ‖ e2 parallel composition
| link e link component (service constructor)
| ϕ[e] policy framing

The values v, v′ of the calculus are variables and lambda abstractions, i.e.

v, v′ ::= values
| x variable
| λz x. e abstraction

Write 0 for a fixed, closed and event-free value. We assume all the standard notions
and definitions of λ-calculus. Free and bound variables are defined in the standard
way. An expression is closed if it contains no free variable. We denote the set of
closed expressions as T0 and the set of all expressions as T .

As in λ[], an access event α(r) ∈ Ev describes the application of the action α on
the target resource r. A policy framing ϕ[e] defines the scope of the policy ϕ to
be enforced during the evaluation of e. Security policies ϕ are modelled as regular
safety properties of event histories, i.e. properties that are recognizable by a usage
automaton. The idea of usage automata is to describe bad usages. A history η
satisfies a security policy ϕ, written η |= ϕ, if η does not lead the corresponding
usage automaton to the offending states. The parallel composition ‖ allows us to
handle concurrency. The constructor link e is a new construct, introduced here in
order to model the dynamic publication of a service whose code is e. Note that
resources are not dynamically created in our approach.

Example 3.2.2. To prevent users from performing bad commands by exploiting
SQL bugs in the database service Q, as introduced above, we require that the service

66 CHAPTER 3. LAMBDA IN CLOUDS

q0 q1 q2

open(db)

close(db)

dbcmd(db)

syscmd(db)

Figure 3.1: Usage automaton of the service Q
.

runs within the scope of the policy φDB. The corresponding automaton is described
in Fig. 3.1. Intuitively, the policy constrains the database service to behave as
follows. Firstly, the database service can open a connection to database by issuing
the event open(db). Then, it can performs any number of database commands,
modelled by the event dbcmd(db). Finally, it closes the connection to database by
the event close(db). In addition to these events, we use the event syscmd(db) to
model actions that perform system commands. To detect possible violations, we use
a single offending final state (marked by a double circle), into which automaton can
be driven by the event syscmd(db).

3.2.2 Operational Semantics

We model a cloud server as a pool of services and computational resources running
over a variety of virtual machines. Formally, a cloud server and its corresponding
configuration are a triple of the form

(η, e, σ) where

• η ∈ Ev∗ is the history representing the global cloud state, that details the depen-
dencies among services and resources, as well as virtual machine configurations,
• e ∈ λ{}-Terms is the expression that describes the set of active processes, and
• σ ∈ Σ is a mapping, also called the service environment, that maps each service
name πi ∈ Π to the expression (script) used to load the virtual machine and the
resources required to run the service e ∈ T .

The behaviour of λ{}-expressions, described in Fig. 3.2, is defined through a
small step operational semantics, called cloud semantics. A transition (η, e, σ)

µ→
(η′, e′, σ′), indicates that, starting from a state described by the history η, the ex-
pression e evolves to e′, issuing an event labelled by µ, possibly extending the history
to η′, and the service environment to σ′. Initial configurations have the form (ε, e, σ),
where ε denotes the empty history. Transition labels µ are τ , access events α(r),
service creations linkπ and service invocations invokeπ.

As in λ[], The rule [event] describes the evaluation of an event α(r) that consists
in extending the current history with the event itself, and producing the empty value
0. Rules [app0], [app1] and [app2] are standard rules of the call-by-value semantics
of λ-calculus. Notice that the whole function body λzx.e replaces the self variable
z after the parameter substitution, so giving an explicit copy-rule semantics for

3.2. THE LAMBDA CLOUDS 67

recursive functions. The policy framing ϕ[e] enforces the policy ϕ on the expression
e, meaning that the history must respect ϕ at each step of the evaluation of e and
each event issued within e must be checked against ϕ. When e is just a value, the
security policy is simply removed as in [pol1].

The rule [link] requires, from the repository, a free service name π to bind to
the code e. The result of the evaluation of this transition is the empty value.
Moreover, the event linkπ is issued and appended to the current history η, thus
modelling the binding of the service. Notice that the side condition on the service
repository Π ensures the uniqueness of the binding: the same service name cannot
bind different service codes. By “π available”, we mean that the service name π
has not been used, i.e. π 5∈ Π ∩ dom(σ). Alternatively, one could define a notion of
well-formed expressions requiring constrains on semantic of expressions in order to
avoid captures of names. Also, note that our binding construct does not require the
introduction of alpha-conversion. The addition of a new service {π → e} into the
service environment σ, written by σ[π → e], where π 5∈ dom(σ), is a further side
effect of the rule. Formally, σ[π → e](π) = e and σ[π → e](π′) = σ(π′) if π′ 5= π.
Back to the service for converting formats, where the conversion service is activated
by the transition:

(ε,0, {F2F1 → p1, F2F2 → p2})
invokeF2F1−−−−−−−→ (invokeF2F1 , p1, {FI2F1 → p1, F2F2 → p2})

Note that the initial empty process 0 indicates that the system waits for the user call-
ing the service. After the call, the system performs an invocation action invoke F2F1

and the conversion starts.

The rule [inv] deals with asynchronous interactions of clients and describes the
evaluation of service requests. To manage a service invocation through the service
name π, the cloud server spawns the code e associated with π. Moreover, the event
invokeπ is appended to the current history η. In our framework, rule [inv] allows
us to indirectly model client invocation, through the occurrences of asynchronous
events on the server side. Our treatment of service invocation, that is an original
feature of our approach, has the consequent benefit to manage a variety of clients,
by abstracting from the specific interaction protocols established with the cloud.
Our semantic framework handles services as persistent entities. Services are not
consumed by an invocation: they remain in the service environment. Alternatively,
one could have introduced a volatile variant, in which the service is removed from
the service environment, after service invocation, by modifying the rule [inv]. Fur-
thermore, it is possible to encode volatile services by wrapping their invocations
within a security policy preventing duplicate of the invocation event of each service.

68 CHAPTER 3. LAMBDA IN CLOUDS

[event] (η,α(r),σ)
α(r)−−→ (η.α(r),0,σ)

[app0] (η, (λzx.e v),σ)
τ−→ (η, e[λzx.e/z, v/x],σ)

[app1]
(η, e1,σ)

µ−→ (η′, e′1,σ
′)

(η, e1 e2,σ)
µ−→ (η′, e′1 e2,σ′)

[app2]
(η, e2,σ)

µ−→ (η′, e′2,σ
′)

(η, v e2,σ)
µ−→ (η′, v e′2,σ

′)

[par0]
(η, e0,σ)

µ−→ (η′, e′0,σ
′)

(η, e0 ‖ e1,σ)
µ−→ (η′, e′0 ‖ e1,σ′)

[par1]
(η, e1,σ)

µ−→ (η′, e′1,σ
′)

(η, e0 ‖ e1,σ)
µ−→ (η′, e0 ‖ e′1,σ

′)

[pol0]
(η, e,σ)

µ−→ (η′, e′,σ′) ∧ η, η′ |= ϕ

(η,ϕ[e],σ)
µ−→ (η′,ϕ[e′],σ′)

[pol1]
η |= ϕ

(η,ϕ[v],σ)
τ−→ (η, v,σ)

[link]
π ∈ Π,π available

(η, link e,σ)
linkπ−−−→ (η.linkπ,0,σ[π → e])

[inv]
π ∈ domain(σ) and σ(π) = e′

(η, e,σ)
invokeπ−−−−−→ (η.invokeπ, e ‖ e′,σ)

Figure 3.2: Cloud Semantics

3.3 Abstract Semantics for Clouds

In this section, we introduce the notion of abstract semantics for our framework, by
resorting to the notion of bisimilarity.

Applicative bisimulation [3] provides the suitable abstract machinery for seman-
tic reasoning, but not sufficient to deal with the peculiar features of our framework.
Basically, the idea behind applicative bisimulation is that in order to reason on the
equivalence of two functions, we need to know whether their behaviours are the same
with all possible closed values. As a consequence, applicative bisimulation relies on
the output generated by functions, hence it does not capture the events issued by
our functions. To clarify this point with an example, let us consider the following
cloud servers.

3.3. ABSTRACT SEMANTICS FOR CLOUDS 69

(η,α;λx.x, σ)

(η,λx.x, σ)

For ease of writing, we often use e; e′ to denote (λzx.e′)e, where x is not a free
name in e′ and α to denote α(r). It is easy to see that the two services in the clouds
yield the same output. However, while the former service, during its execution,
issues an event α and changes its history, the latter does not.

The management of events is crucial in our framework. By definition, service
behaviour is indeed history-dependent, i.e. an expression may be executed differently
when plugged within different cloud states.

Now, let us consider the cloud servers: (η, β;α;ϕ[γ], σ) and (η,α; β;ϕ[γ], σ),
where η contains neither α nor β, and the policy ϕ states that the sequence αβ is
not allowed. After two transitions, the first configuration can make a transition that
issues γ, while the second cannot, as illustrated below:

(η, β;α;ϕ[γ], σ)
β−→ (η.β;α;ϕ[γ], σ)

α−→ (η.β.α;ϕ[γ], σ)
γ−→ (η.β.α.γ;ϕ[0], σ)

(η,α; β;ϕ[γ], σ)
α−→ (η.α; β;ϕ[γ], σ) "

We need to take into account this feature when extending the applicative bisim-
ulation notion. Furthermore, we need to understand when two configurations can
be considered equivalent according to their service environments. Let us consider
two configurations. A naive solution could be that the two configurations contain
the same service environment. Nevertheless, this definition would prevent us from
reasoning about processes of updating and maintaining services, which is a key fea-
ture in cloud computing. It is desirable that if upon a client request one server
activates a service code in its service environment and makes a transition, the other
server should make the same transition, producing the same side effect and reaching
an equivalent process. To obtain this, the two service environments must contain
equivalent service codes. In addition, to make sure that two configurations can make
the same transitions, they must agree on service names.

We are now ready for defining cloud bisimulation. The definition of applicative
bisimulation is originally introduced due to Abramsky [3] Here we adopted the
variation of applicative bisimulation introduced by Sangiorgi [98]. In the following,
we denote by η ↑= {η.η′|η′ ∈ Ev∗} the upward-closure of the history η.

Definition 3.3.1 (Cloud Simulation). A relation on RH over T0 × Σ is a cloud
simulation w.r.t. a set of histories H = ηo ↑ for some ηo if whenever (e, σ)RH(d, ς)
then for every history η ∈ H ,

(1) if e = 0 then (η, d, ς)
τ−→∗

(η, 0, ς),

(2) if e = λzx.e′, then (η, d, ς)
τ−→

∗
(η,λzx.d′, ς) s.t. (λzx.e′, σ)RH(λzx.d′, ς) and for

any value v, (e′[λzx.e/z, v/x], σ)RH(d′[λzx.d′/z, v/x], ς),

70 CHAPTER 3. LAMBDA IN CLOUDS

(3) if (η, e, σ)
τ−→ (η, e′, σ) then (e′, σ)RH(d, ς),

(4) if (η, e, σ)
α(r)−−→ (η.α(r), e′, σ), where α 5∈ {linkπ ∪ invokeπ|π ∈ Π}, then

there exists d′ s.t. (η, d, ς)
τ−→

∗ α(r)−−→ (η.α, d′, ς) and (e′, σ)RH′(d′, ς), where
H ′ = η.α(r) ↑,

(5) if e = link e′ and (η, e, σ)
linkπ−−−→ (η.linkπ, 0, σ[π → e′]), then there exist

d′, d′′ such that (η, d, ς)
τ−→∗ linkπ−−−→ (η.linkπ, d′′, ς[π → d′]), and (0, σ[π → e′])

RH′(d′′, ς[π → d′]), where H ′ = η.linkπ ↑,

(6) if (η, e, σ)
invokeπ−−−−→ (η.invokeπ, e ‖ σ(π), σ) then we have (η, d, ς)

τ−→
∗ invokeπ−−−−→

(η.invokeπ, d ‖ ς(π), ς) and ((e ‖ σ(π)), σ)RH′((d ‖ ς(π)), ς), where H ′ =
(η.invokeπ) ↑,

(7) dom(σ) = dom(ς) and ∀π ∈ dom(σ), (σ(π), σ)RH(ς(π), ς).

where
τ−→

∗
means zero or more τ transitions. We write !H for the union of all cloud

simulations w.r.t. to a set of histories H . If H is the set of all histories, then we call
it cloud similarity and simply write ! for it.

Remark 3.3.2. Note that events of service invocation and creation do not involve
resources, therefore the clauses (5) and (6) are handled without mentioning the
resource in the transition label. In the contrary, resource names in transition labels of
the clause (4) are essential since they are needed to define operations over resources,
i.e. access events.

The first clause (1) ensures that if e can produce an empty value, then d can do
the same, while the second clause (2) is a variant of applicative simulation. In the
third clause (3), e evolves to e′ by performing an internal transition τ , which does
not change the history and after that e′ remains equivalent to d. The forth clause
(4) states that d can generate whatever e can, i.e. if e performs an action α that
possibly changes the history into η.α, then d can perform the same action α after
zero or more internal transitions τ ∗ and generate the same history η.α.

The clauses (5) and (6), for creating and invoking a service, basically guarantee
the equivalence of two service environments at runtime. Finally, the clause (7)
ensures that two service environments contain equivalent services.

Note that our definition of bisimilarity requires to check the conditions for all η
in the upward closure of η0. This amounts to an infinite number of checks. Therefore
our notion can make it difficult to develop effective verification techniques. We plan
to address this issue by adopting symbolic techniques like the ones developed in the
field of software model checking.

It is easy to prove that the relation with respect to a set of histories H is included
in the one obtained with respect to one of its subsets H ′ = η ↑, where η ∈ H .

3.3. ABSTRACT SEMANTICS FOR CLOUDS 71

Lemma 3.3.3. Let e, d ∈ T0 and σ, ς ∈ Σ. If H ′ = η ↑, where η ∈ H, and
(e, σ)RH(d, ς), then (e, σ)RH′(d, ς).

Definition 3.3.4. Let e, d ∈ T0 and σ, ς ∈ Σ. We say that (d, ς) cloud-simulates
(e, σ) w.r.t. a set of histories H = ηo ↑ for some ηo if there exists a cloud simulation
RH s.t. (e, σ)RH(d, ς).

Definition 3.3.5 (Cloud Bisimulation). A binary relation RH on T0 × Σ, where
H = ηo ↑ for some ηo, is cloud bisimulation if both RH and its converse R−1 are
cloud simulations w.r.t. a set of histories H . We write ∼H for the union of all cloud
bisimulations w.r.t. a set of histories H . If H is the set of all histories, then we call
it cloud bisimilarity and simply write ∼ for it.

Now we show that bisimulation is a congruence relation using Howe’s method [61].
The idea is based on the construction of an auxiliary relation called the precongru-
ence candidate R̂ in terms of the preorder R which we need to prove a preconguence.
It is possible to prove indeed that the preorder is a precongruence if and only if it
coincides with the precongruence candidate. The precongruence candidate R̂ is
a precongruence that contains R, and that is preserved by language constructors.
A key property of R̂ is that if R is a bisimulation then R̂ is a bisimulation, as
well. Consequently, if we can show that the precongruence candidate of bisimilarity
(union of all bisimulations) is a bisimulation, then bisimilarity and its precongru-
ence candidate coincide, and due to the congruence of the precongruence candidate,
bisimilarity is a congruence.
In our setting, we need to show that the precongruence candidate of cloud bisimu-
lation is also a bisimulation. To prove that ∼̂ is indeed a bisimulation, we need to
show that ∼̂ is preserved by computation, i.e. it is preserved under substitution and
by tau actions, event actions and abstractions.

In the following, we present the definition and the lemma that we need for
presenting our precongruence candidate. We first extend relations on closed terms
to open terms, by substituting closed terms for variables.

Definition 3.3.6. Let R be a binary relation over T0 × Σ. The binary relation Ro

over T × Σ is the extension of R to open expressions in T × Σ, called open exten-
sion, is defined as follows: (e, σ)Ro(e′, σ′) if (γ(e), σ)R(γ(e′), σ′) for every closing
substitution γ.

Definition 3.3.7 (Precongruence Candidate). Given a preorder R over T0 × Σ,
we define the precongruence candidate R̂ over T × Σ, denoted by (e, σ)R̂(e′, ς), for
e, e′ ∈ T , by induction on the size of e.

• for each variable x, if (x, σ)Ro(e, ς) then (x, σ)R̂(e, ς);

• for each resource r, if (r, σ)Ro(e, ς) then (r, σ)R̂(e, ς);

72 CHAPTER 3. LAMBDA IN CLOUDS

• for each event α, if (α, σ)Ro(e, ς) then (α, σ)R̂(e, ς);

• for the empty value 0, if (0, σ)Ro(e, ς) then (0, σ)R̂(e, ς);

• for e1, e2, e′1, e
′
2 ∈ T , if (e1, σ)R̂(e′1, ς), (e2, σ)R̂(e

′
2, ς) and ((e′1 e′2), σ)R

o(e, ς),
then ((e1 e2), σ)R̂(e, ς).

• for e1, e′1 ∈ T , if (e1, σ)R̂(e′1, ς) and ((λx e′1), σ)R
o(e, ς), then ((λx e1), σ)R̂(e, ς).

Now we prove some properties of the candidate precongruence of a given preorder R
over T0×Σ, needed to provide, in turn, that it is a bisimulation. First, we show that
the candidate precongruence R̂ is reflexive, i.e. (e, σ)R̂(e, σ), for all (e, σ) ∈ T × Σ.
Another important property of R̂ is constructor respecting, that is, R̂ is preserved by
language constructors. The next property says that R̂ includes the open extension
Ro of R with open expressions. The last property shows how to relate elements of
R̂ by using relations Ro.

Lemma 3.3.8. Let R be a preorder over T0 × Σ, then the following hold:

1. R̂ is reflexive.

2. R̂ is constructor respecting, i.e.

– if (e, σ)R̂(e′, ς), then ((λx e), σ)R̂((λx e′), ς).

– if (e1, σ)R̂(e′1, ς) and (e2, σ)R̂(e′2, ς), then ((e1 e2), σ)R̂((e′1 e′2), ς).

– (e, σ)R̂(e′, ς), then (link e, σ)R̂(link e′, ς).

– (e, σ)R̂(e′, ς), then (ϕ[e], σ)R̂(ϕ[e′], ς).

3. Ro ⊆ R̂.

4. If we have (e, σ)R̂(e′, σ′) and (e′, σ′)Ro(e′′, σ′′), then (e, σ)R̂(e′′, σ′′).

Proof. 1. By induction on term size, by definition of R̂ and reflexivity of R.

2. Suppose that (e1, σ)R̂(e′1, ς) and (e2, σ)R̂(e′2, ς). By reflexivity of R, we have
((λx e1), ς)Ro((λx e′2), ς), ((e1 e2), ς)Ro((e′1 e′2)), ς), (link e1, ς)Ro(link e′2, ς).
Then by definition of R̂, the property follows immediately.

3. We show that if (e, σ)Ro(e′, σ′), then (e, σ)R̂(e′, σ′), by induction on term e,
Case: e is a variable, an event, resource or empty process: it holds by defini-
tion of R̂.
Case: e is a term of form (λx e1): by (1), we have (e1, sigma)R̂(e1, σ). By
definition of R̂, (e, σ)Ro(e′, σ′).
Case: e is a term of form (e1 e2): by (1), we have (e1, σ)R̂(e1, σ) and (e2, σ)R̂e2, σ)

3.3. ABSTRACT SEMANTICS FOR CLOUDS 73

. By definition of R̂, (e, σ)Ro(e′, σ′).
Case: e is a term of form (link e1): by (1), we have (e1, σ)R̂(e1, σ). By defini-
tion of R̂, (e, σ)Ro(e′, σ′).
Case: e is a term of form (ϕ[e1]): by (1), we have (e1, σ)R̂(e1, σ). By definition
of R̂, (e, σ)Ro(e′, σ′).

4. We proceed by induction on term e and transitivity of R:
Case: e is a variable x: by definition of R̂, (x, σ)Ro(e′, σ′). By transitivity of
R, we have (x, σ)Ro(e′′, σ′′). The result follows immediately .
Case: e is an event, resource or empty process: similarly.
Case: e is a term (λx e1): there exists (e′1, σ

′) such that (e1, σ)R̂(e′1, σ
′) and

((λx e′1), σ
′)Ro((λx e′1), σ

′). By transitivity of R, ((λx e′1), σ
′)Ro(e′′, σ′′). The

result follows by definition of R̂.
Case: e is a term (e1 e2): there exist (e′1, σ

′), (e′2, sigma′) such that (e1, σ)R̂(e′1, σ
′),

(e2, σ)R̂(e′2, σ
′) and (e′1 e

′
2, σ

′)Ro(e′, σ′). By transitivity ofR, (e′1 e
′
2, σ

′)Ro(e′′, σ′′).
The result follows by definition of R̂.
Case: e is a term link e1: there exists (e′1, σ

′) such that (e1, σ)R̂(e′1, σ
′) and

(link e′1, σ
′)Ro(link e′1, σ

′). By transitivity of R, (link e′1, σ
′)Ro(e′′, σ′′). The

result follows by definition of R̂.
Case: e is a term ϕ[e1]: there exists (e′1, σ

′) such that (e1, σ)R̂(e′1, σ
′) and

(ϕ[e′1], σ
′)Ro(ϕ[e′1], σ

′). By transitivity of R, (ϕ[e′1], σ
′)Ro(e′′, σ′′). The result

follows by definition of R̂.

Lemma 3.3.9. Let e, d ∈ T0 and σ, ς ∈ Σ. If H ′ ⊆ H and (e, σ)RH(d, ς), then
(e, σ)RH′(d, ς).

Proof. Straightforward.

We now state the congruence theorem with the main auxiliary lemmata. First,
we prove that the service environments play a minor role in the open extension of
the cloud bisimulation. Intuitively, service environments contain equivalent service
codes.

Lemma 3.3.10. Let e, e′, d ∈ T and σ, σ′ ∈ Σ .

• If (e, σ)∼o
H(e

′, σ′) then (e, σ)∼o
H(e

′, σ).

• If (e, σ)∼̂H(e′, σ′) then (e, σ)∼̂H(e′, σ).

Proof. Straightforward by induction on term size.

74 CHAPTER 3. LAMBDA IN CLOUDS

Recall that to prove that ∼̂ is a bisimulation, we need to show that ∼̂ is preserved
by computation. As computation in the λ-Cloud calculus typically involves substi-
tutions, it requires that ∼̂ of ∼ is preserved under substitutions. This is formulation
of the below substitution lemma. The remaining lemma shows that ∼̂ is preserved
by computation, that is, by τ actions, event actions, applications, service creations
and service invocations. Recall that notation ∼H is used to denote bisimilarity with
respect to a set H of histories, while ∼ denotes the case with respect to all sets of
histories.

Lemma 3.3.11 (Substitution). Let e1, e′1, e2, e
′
2 ∈ T and σ, σ′ ∈ Σ. If (e1, σ)∼̂H(e′1, σ

′)
and (e2, σ)∼̂H(e′2, σ

′) then we have (e2[e1/x], σ)∼̂H (e′2[e
′
1/x], σ

′).

Proof. By induction on the size of term e2
Case: e2 is a variable x: By the lemma 3.3.8, we have ∼o

H ⊆ ∼̂H . The fact that x is
a variable and (x, σ)∼̂H(e′2, σ

′) imply that (x, σ)∼o
H(e

′
2, σ

′), and therefore

(e′1, σ)∼o
H(e

′
2[e

′
1/x], σ

′)

by definition of ∼o
H .

By previous lemma, we have (e1, σ)∼̂H(e′1, σ). By property (4):

(e1, σ)∼̂H(e′1, σ)
(e′1, σ)∼o

H(e
′
2[e

′
1/x], σ

′),

hence we have (x[e1/x], σ)∼o
H(e

′
2[e

′
1/x], σ

′).
Case: e2 is a variable y 5= x: similarly
Case: e2 is an event or empty process: similarly

Case: e2 is a term (λx e): since ((λx e), σ)∼̂H(e′2, σ
′), for there exists e′ s.t

(e, σ)∼̂H(e′, σ′) and ((λx e′), σ′)∼H
o(e′2, σ

′). By induction hypothesis,

(e[e1/x], σ)∼̂H(e′[e′1/x], σ
′)

((λx e′)[e′1/x], σ
′)∼o

H(e
′
2[e

′
1/x], σ

′)

so (e2[e1/x], σ)∼̂H(e′2[e
′
1/x], σ

′)

Case: e2 is a term (e3 e4): since ((e3 e4), σ)∼̂H(e′2, σ
′), there exist e′3, e

′
4 s.t

(e3, σ)∼̂H(e′3, σ
′), (e4, σ)∼̂H(e′4, σ

′) and ((e′3 e′4), σ
′)∼H

o(e′2, σ
′). By induction hy-

pothesis,
(e3[e1/x], σ)∼̂H(e′3[e

′
1/x], σ

′)
(e4[e1/x], σ)∼̂H(e′4[e

′
1/x], σ

′)
((e′3 e′4)[e

′
1/x], σ

′)∼o
H(e

′
2[e

′
1/x], σ

′)

3.3. ABSTRACT SEMANTICS FOR CLOUDS 75

so (e2[e1/x], σ)∼̂H(e′2[e
′
1/x], σ

′)

Case: e2 is a term (link e): since ((link e), σ)∼̂H(e′2, σ
′), for there exists e′ s.t

(e, σ)∼̂H(e′, σ′) and ((link e′), σ′)∼H
o(e′2, σ

′). By induction hypothesis,

(e[e1/x], σ)∼̂H(e′[e′1/x], σ
′)

((link e′)[e′1/x], σ
′)∼o

H(e
′
2[e

′
1/x], σ

′)

so (e2[e1/x], σ)∼̂H(e′2[e
′
1/x], σ

′)

Case: e2 is a term ϕ[e]: since (ϕ[e], σ)∼̂H(e′2, σ
′), for there exists e′ s.t (e, σ)∼̂H(e′, σ′)

and (ϕ[e′], σ′)∼H
o(e′2, σ

′). By induction hypothesis,

(e[e1/x], σ)∼̂H(e′[e′1/x], σ
′)

(ϕ[e′][e′1/x], σ
′)∼o

H(e
′
2[e

′
1/x], σ

′)

so (e2[e1/x], σ)∼̂H(e′2[e
′
1/x], σ

′)

Lemma 3.3.12 (Tau actions). Let e, d ∈ T0, σ, ς ∈ Σ and (e, σ)∼̂H(d, , ς). For
every history η if (η, e, σ)

τ−→ (η, e′, σ), then (e′, σ)∼̂H(d, ς).

Proof. By induction on derivation of (η, e, σ)
τ−→ (η, e′, σ):

Case of [APP0] rule: e = (λzx.e1)e2 : (η, (λzx.e1)e2)
τ−→ (η, e1[λzx.e1/z, e2/x]), where

e2 is a value. We need to show that (e1[λzx.e1/z, e2/x], σ)∼̂H(d, ς).
Since e∼̂Hd, w.l.o.g. there exist d1, d2,λzx.e′1 ∈ T0 such that

(λzx.e1, σ)∼̂H(d1, ς)
(e2, σ)∼̂H(d2, ς)
(e1, σ)∼̂H(e′1, ς)
(λx.e′1, ς) ∼H (d1, ς)
(d1 d2, ς) ∼H (d, ς)
d2 is a value.

Otherwise, by choosing a closing substitution for d1, d2 and e′1 and the definition of
(e2, σ)∼̂H(d2, ς), we can obtain the desired result.
By Lemma 3.3.11, we have

(e1[λzx.e1/z, e2/x], σ)∼̂H(e′1[λzx.e′1/z, d2/x], ς) (1)

By definition of ∼, we have (η, d1, ς)
τ−→

∗
(η,λzx.d′1, ς) such that (λzx.e′1, σ) ∼H

(λzx.d′1, ς) and (e′1[λzx.e′1/z, d2/x], σ) ∼H (d′1[λzx.d′1/z, d2/x], ς).

76 CHAPTER 3. LAMBDA IN CLOUDS

Since (d1 d2, ς) ∼H (d, ς), we have

(d′1[λzx.d
′
1/z, d2/x], ς) ∼H (d, ς) (2) .

(1) and (2) implies that (e1[λzx.e1/z, e2/x], σ)∼̂H(d, ς).
Other cases: we will consider [APP1] rule. The proofs of the other rules are

similar.
We have e = e1 e2 and (η, e1, σ)

τ−→ (η, e′1, σ). Since (e, σ)∼̂H(d, ς), w.l.o.g. there
exist d1, d2 ∈ T0 such that

(e1, σ)∼̂H(d1, ς)
e2, σ)∼̂H(d2, ς)
(d1d2, ς) ∼H (d, ς).

By induction hypothesis, (e′1, σ)∼̂H(d1, ς). Since ∼̂H is operator respecting, we have
that

(e′1e2, σ)∼̂H(d1d2, ς).

This implies that (e′1e2, σ)∼̂H(d, ς).

Lemma 3.3.13 (Applicative lemma). Let λzx.e, d ∈ T0, σ, ς ∈ Σ and (λzx.e, σ)∼̂H

(d, ς). Then, for every history η ∈ H, there exists d′ such that (η, d, ς)
τ−→

∗
(η,λzx.d′, ς),

(λzx.e, σ)∼̂H(λzx.d′, ς) and for any value v, (e[λzx.d/z, v/x], σ)∼̂H (d′[λzx.d′/z, v/x], ς).

Proof. Let η ∈ H . By definition of ∼̂H , w.l.o.g. there exists λzx.c ∈ T0 such that

(e, σ)∼̂H(c, ς)
(λzx.c, ς) ∼H (d, ς).

By Lemma 3.3.11, we have that

e[λzx.e/z, v/x], σ)∼̂H(c[λzx.c/z, v/x], ς) (1)

By definition of ∼H , there exist d′ such that

(η, d, ς)
τ−→

∗
(η,λzx.d′, ς) for any value v

(c[λzx.c/z, v/x], ς) ∼H (d′[λzx.d′/z, v/x], ς) (2)

By property 4, (1),(2) imply that (e[λzx.d/z, v/x], σ) ∼̂H(d′[λzx.d′/z, v/x], ς).

Lemma 3.3.14 (Event action). Let e, d ∈ T0, σ, ς ∈ Σ and (e, σ)∼̂H(d, ς). For every
history η ∈ H if (η, e, σ)

α−→ (η.α, e′, σ′), where α 5∈ {linkπ ∪ invokeπ|π ∈ Π}, then
there exists d′ such that (η, d, ς)

τ−→∗ α−→ (η.α, d′, ς), (e′, σ)∼̂H′(d′, ς), where H ′ = η.α ↑.

3.3. ABSTRACT SEMANTICS FOR CLOUDS 77

Proof. By induction on derivation of (η, e, σ)
α−→ (η′, e′, σ):

Case of [EVENT] rule: e = α and (η,α, σ)
α−→ (η, 0, σ)

Since (α, σ)∼̂H(d, ς), we have

(α, σ) ∼H (d, ς)

By definition of ∼H if (η,α, σ)
α−→ (η.α, 0, σ), then there exists d′ ∈ T0 such that

(η, d, ς)
α−→ (η.α, d′, ς)

(0, σ) ∼H′ (d′, ς) where H ′ = η.α ↑

This implies that (0, σ)∼̂H′(d′, ς).
Other cases: we will consider [APP1] rule. The proofs of the other rules are

similar.
We have e = e1 e2 and (η, e1, σ)

α−→ (η′, e′1, σ). Since (e, σ)∼̂H(d, ς), w.l.o.g. there
exist d1, d2 ∈ T0 such that

(e1, σ)∼̂H(d1, ς)
(e2, σ)∼̂H(d2, ς)
(d1d2, ς) ∼H (d, ς)

By induction hypothesis, there exists d′1 such that

(η, d1, ς)
α−→ (η′, d′1, ς)

(e′1, σ)∼̂H′(d′1, ς) where H ′ = η′ ↑

Since
∼̂H′ is operator respecting and
(e2, σ)∼̂H(d2, ς) implies (e2, σ)∼̂H′(d2, ς),

we have (e′1e2, σ)∼̂H′(d′1d2, ς).
Since (η, d1d2, ς)

α−→ (η′, d′1d2, ς), so there exists d′ such that

(η, d, ς)
α−→ (η′, d′, ς)

(d′1d2, ς) ∼H′ (d′, ς).

It implies that (e′1e2, σ)∼̂H′(d′, ς).

Lemma 3.3.15 (Resources and Empty-value). Let r, d ∈ T0 and σ, ς ∈ Σ. For every
history η ∈ H:

• If (r, σ)∼̂H(d, ς), then for any η ∈ H, (η, d, ς)
τ−→

∗
(η, r, ς).

• If (0, σ)∼̂H(d, ς), for any η ∈ H, (η, d, ς)
τ−→∗

(η,0, ς).

Proof. Straightforward.

78 CHAPTER 3. LAMBDA IN CLOUDS

The following lemma shows that ∼̂ is preserved by service creations.

Lemma 3.3.16 (Service Creation). Let link e, d ∈ T0, σ, ς ∈ Σ and (link e, σ)∼̂H

(d, ς). For every history η ∈ H, (η, link e, σ)
linkπ−−−→ (η.linkπ,0, σ[π → e]), then there

exist d′, d′′ such that (η, d, ς)
τ−→

∗ linkπ−−−→ (η.linkπ, d′′, ς[π → d′]), (0, σ[π → e])RH′

(d′′, ς[π → d′]), where H ′ = η.linkπ ↑.

Proof. Straightforward.

Lemma 3.3.17 (environment). Let e, d ∈ T0 σ, ς ∈ Σ. If (e, σ)∼̂H(d, ς), then
dom(σ) = dom(ς) and ∀π ∈ dom(σ) : (σ(π), σ)∼̂H(ς(π), ς) .

Proof. By induction of term e.
Case e is a variable: we have (e, σ) ∼H (d, ς). By the definition of ∼H , it follows
that (σ(π), σ) ∼H (ς(π), ς), hence (σ(π), σ)∼̂H(ς(π), ς).
Case: e is an event, resource or empty process: similarly.
Case: e is a term of form (λx e′): by the definition of ∼̂H , there exist d′ s.t. (e′, σ)∼̂H(d′, ς)
and ((λx d′), σ)∼H

o(d, ς). It follows that (σ(π), σ)∼H
o(ς(π), ς).

Case: e is a term of form (e1 e2): by the definition of ∼̂H , there exist d1, d2
s.t. (e1, σ)∼̂H(d1, ς), (e2, σ)∼̂H(d2, ς), and ((d1 d2), σ)∼H

o(d, ς). It follows that
(σ(π), σ)∼H

o(ς(π), ς)
Case: e is a term of form (linke′): by the definition of ∼̂H , there exist d′ s.t. (e′, σ)∼̂H(d′, ς)
and ((link d′), σ)∼H

o(d, ς). It follows that (σ(π), σ)∼H
o(ς(π), ς).

Case: e is a term of form ϕ[e′]: by the definition of ∼̂H , there exist d′ s.t. (e′, σ)∼̂H(d′, ς)
and (ϕ[d′], σ)∼H

o(d, ς). It follows that (σ(π), σ)∼H
o(ς(π), ς).

Lemma 3.3.18 (Invocation). Let e, d ∈ T0 σ, ς ∈ Σ and (e, σ)∼̂H(d, ς). For every

history η ∈ H, (η, e, σ)
invokeπ−−−−→ (η.invokeπ, e ‖ σ(π), σ) then (η, d, ς)

τ−→
∗ invokeπ−−−−→

(η.invokeπ, d ‖ ς(π), ς) and (e ‖ ς(π), σ)RH′ (d ‖ ς(π), ς), with H ′ = (η.invokeπ) ↑.

Proof. Straightforward.

The following theorem is a direct consequence of the above lemmata.

Theorem 3.3.19 (Congruence). Cloud bisimulation ∼ is a congruence.

Proof. immediate from the above lemmata.

Lemma 3.3.20. ∀e, ∀ϕ, ∀σ, ∀σ, (ϕ[e], σ) ! (e, σ).

3.3. ABSTRACT SEMANTICS FOR CLOUDS 79

Proof. Consider a relation S:

S = {((ϕ[e], σ), (e, σ))|∀e ∈ T0 ∧ ∀ϕ} ∪ IT ,

where IT is an identity relation on T0. We need to show that S is a simulation. By
induction on evaluation derivation of e.

This lemma is particularly useful because it ensures that instrumenting a program
with a policy framing does not add new behavior of the program. As a consequence,
any behavior that violates the policy on demand is prevented to occur. Our ultimate
goal is to obtain a semantics-based methodology of safety refinement process in cycle
of software development.

Corollary 3.3.21. ∀e, ∀ϕ, ∀σ, (λzx.ϕ[e], σ) ! (λzx.e, σ).

Example 3.3.22. Back to the storage service Q presented in the Introduction, we
can specify Q as follows:

eform = λx. eprocess x
eprocess = λy. open(db); (query db y); close(db),

where eform is the cloud service interface wrapping inside the database. The ser-
vice gets a query string 〈strquery〉 from a user, then feeds it to eprocess. In turn,
the function eprocess takes the query y as a parameter, connects to the database db,
makes a query to db, by exploiting an auxiliary function query with the database
and the query string as parameters, then closes the database connection. We ab-
stract from the details of the code of the query function here, we just assume that it
may perform some internal activities and then issues the database command dbcmd
and returns a value v. In the following, for ease of writing, we write (η, e) to denote
(η, e, σ). The evolution of the service, starting from the initial state η is as follows:

(η, eform 〈strquery〉)
τ−→ (η, eprocess 〈strquery〉)
τ−→ (η, open(db); ((query db strquery); close(db))
open(db)−−−−−→ (η.open(db), (query db strquery); close(db))
τ−→∗ dbcmd−−−→ τ−→∗

(η.open(db).dbcmd, v; close(db))
τ−→

∗ close(db)−−−−−→ (η.open(db).dbcmd.close(db), 0))

As previously discussed, the service above is unsafe because it may contain a SQL
injection bug: an attacker can try to inject a command in front of query string,
e.g. 〈syscmd; strquery〉, and therefore can execute any dangerous command such as

80 CHAPTER 3. LAMBDA IN CLOUDS

deleting a file, as illustrated by the following trace:

(η, eform 〈syscmd; strquery〉)
τ−→ (η, eprocess 〈syscmd; strquery〉)
τ−→ (η, open(db); (query db (syscmd; strquery)); close(db))
open(db)−−−−−→ (η.open(db), (query db (syscmd; strquery)); close(db))
syscmd−−−−→ (η.open(db).syscmd, (query db (strquery)); close(db))

To prevent system commands from being executed, we can instrument eform by
framing it with a security policy ϕDB, which does not allow execution of any system
command. The corresponding usage automaton is depicted in Fig. 3.1, where syscmd
denotes the generic system command. By applying our technical results, we can state
that λx.ϕDB[eprocess x] ≺ λx.eprocess x. The presence of ϕDB in λx.ϕDB[eprocess x]
excludes all generated sequences that contain system commands.

3.4 Related Works

Our work takes the approach presented in [11, 13] as starting point. In particular, we
adopt their idea of history-based security and of resource usage. In this approach,
security polices are defined in term of safety properties, which specify desirable
behaviour of services. We make a step forward to introduce the parallel operator.
In result, histories record a sequences of actions over resources generated by a set
of services rather than a single services as in [13]. This is motivated by considering
properties concerning global resource usage of the cloud systems rather than of
individual services. The work in [18] uses the parallel operator to introduce a network
of located services. However, each service has its own history and the focus of the
work is on service orchestration.

Here we comment on related approaches exploiting extension of the λ-calculus
to handle resource management. The concurrent λ-calculus, introduced in [22], is
used to represent and compose services and virtual machines that run on them.
This calculus presents indeed some similarities with ours. They also introduce a
type system for avoiding troublesome configuration errors, that could be exploited
for handling resources in the cloud. The work in [59] proposed a calculus, called V,
with primitives to model basic virtualisation operations such as to start and stop
Virtual Machines (VMs), and to read and write data in a hierarchical store. It is
based on π-calculus rather than λ-calculus. The main idea of the calculus is to
provide a formalism which enables programming and static analysing scripts that
control virtual clusters or applications in modern distributed systems such as cloud
systems. This approach has been originated from the idea of operation logic [23],
whose characterisation is to specify properties of management scripts in data center.
In our approach, side effects of functions enabling those scripts are captured, and
they are monitored by usage polices. That is, by observing those side effects, policy
structure ensures that bad behaviour never happens at runtime.

3.4. RELATED WORKS 81

The authors in [50] introduced another security-based language. It exploits as-
sertions that govern the boundaries between software building blocks such as pro-
cedures, classes or modules. A special kind of assertion, called behavioural software
contract, which monitors the flow of values across component boundaries. In our
approach, properties can be understood as assertions across states, whereas the as-
sertions in this paper are a property of a single state. The work uses concurrency only
for checking purposes, whereas ours use concurrency for programming purpose. The
focus of the paper is mainly on implementation to reduce the run-time overhead.
The work presented in [85] proposed an extension of the simply-typed λ-calculus
with constructs for thread creation and monitor primitives with synchronised ex-
pressions. In this work, a strict access control is described in terms of automata,
which is similar to ours. However, by equipping synchronisation mechanism, threads
have mutually exclusive access to resources, where in our approach resources have
the shared semantics. The focus of our work is on global resource usages on multi-
tenant environment such as Cloud systems. Another work based on the λ-calculus
is in [90], where arguments of lambda functions are considered as linear resource
quantitative properties of resource usages are showed there. On the contrary, we
focus on qualitative properties of resource, based on access events that are issued
by cloud services.

Future Work To ensure the correctness of resource usages, static analysis tech-
niques are desirable to be developed for our approach. Our preliminary result shows
that type and effect systems in style of [16] can be used to construct resource be-
haviour of cloud services in form of BPP processes, which offer many decidable
results in model checking technique [78]. The main issue in developing type and
effect systems is how to handle recursion and concurrency introduced when type
checking service invocations. Another possible extension, concerning resource vari-
ables, is to consider access events of the form α(ξ), where ξ is a resource variable,
similar to the work in [16]. It could be useful in cloud systems that cloud services
can take resource names as their arguments. For example, the service (λx α(x)) can
perform the action α over different resources, depending on which resource is bound
to x. We address this issue in the concurrent setting (see Chapter 4 and 5).

82 CHAPTER 3. LAMBDA IN CLOUDS

Part II

Static Analysis for Distributed
Resources

Chapter 4

The G-Local π-Calculus

In this chapter, we introduce an extension of π-calculus, called G-Local, with explicit
primitives for the distributed ownerships of resources. The distinguished features of
our approach are described below.

Resource-awareness. Modern programming paradigms for distributed systems
radically transformed the way computational resources are integrated into applica-
tions. Resources are usually geographically distributed and have their own states,
costs and access mechanisms. Moreover, resources are not created nor destroyed by
applications, but directly acquired on-the-fly when needed from suitable resource
rental services. Clearly, resource acquisition is subject to availability and requires
the agreement between client requirements and service guarantees (Service Level
Agreement – SLA). The dynamic acquisition of resources increases the complexity
of software since the capability of adapting behaviour strictly depends on resource
availability. Ubiquitous computing [2] and Cloud computing [37, 110, 6] provide il-
lustrative examples of a new generation of applications where resource awareness is
a major concern.

Since we build on top of the π-calculus, name-passing is the basic communica-
tion mechanism among processes. Beyond exchanging channel names, processes can
pass resource names as well. Resource acquisition is instead based on a different ab-
straction. In order to acquire the ownership of a certain resource, a process issues a
suitable request. Such request is routed in the network environment to the resource.
The resource is granted only if it is available. In other words the process-resource
interaction paradigm adheres to the publish-subscribe model: resources act as pub-
lishers while processes act as subscribers. Indeed, the publish-subscribe paradigm is
not only a natural choice to represent distributed resources, but also emphasises the
fact that resources have to be published by external parties and therefore have to be
available to everyone through appropriate requests. Notice that processes issue their
requests without being aware of the availability of the resources. When they have
completed their task on the acquired resource, they release it and make it available
for new requests. The two-stage nature of the publish-subscribe paradigm relaxes

86 CHAPTER 4. THE G-LOCAL π-CALCULUS

the inter-dependencies among computational components thus achieving a high de-
gree of loose coupling among processes and resources. In this sense our model also
resembles tuple-based systems [58]. Consequently, our model seems to be particu-
larly suitable to manage distributed systems where the set of published resources is
subject to frequent changes and dynamic reconfigurations.

Usage Policies. The design of suitable mechanisms to control the distributed
acquisition and ownership of computational resources is a primary concern in our
approach. Central to this is the abstract notion of resource. In our model, resources
are stateful entities available in the network environment where processes live. In
other words, all resource modifications are kept in the resource states, and there-
fore guaranteeing the persistence of the resource states. Specifically, a resource is
described through the declaration of its interaction endpoint (the resource name),
its local state and its global properties. Global properties establish and enforce the
usage policies to be satisfied by any interaction that the resource engages with its
client process. Global interaction properties can be expressed by means of regular
linear time properties. The interplay between local and global information occur-
ring in the process-resource interactions motivates the adjective G-Local given to
our extension of the π-calculus. A distinguished feature of our approach is that
the reconfiguration steps updating the structure of the available resources are not
under the control of client processes. This means that the deployed resources can
be dynamically reconfigured to deal with resource upgrade, resource un-availability,
security intrusion and failures.

Reasoning techniques. To verify correct usages of resources, we sort to two static
analysis techniques, namely Control Flow Analysis (CFA) and Typing System. In
this chapter, we present CFA, while Typing System will be introduced in the next
section. The results of these analysis are safe approximations of resource usages.
Hence, they can be used to statically check whether or not the global properties of
resources usages are respected by process interactions. In particular, in this way we
can detect bad usages of resources, due to policy violations.

4.1 The G-Local π-Calculus

4.1.1 Syntax

We consider the monadic version of π-calculus [97] extended with suitable primitives
to declare, access and dispose resources.

Remark 4.1.1. To handle resource management, here, we extend the π-calculus
with specific constructs to acquire and release resources. These constructs are in-
spired by the event-notification paradigm (EN). In the EN approach, we have a

4.1. THE G-LOCAL π-CALCULUS 87

collection of publishers and a collection of subscribers and the linkage between pub-
lishers and subscribers is loosely coupled. We argue that loosely coupling mecha-
nisms are required to manage resources in the distributed setting. The emphasis on
EN paradigm characterises our proposal with respect to other approaches based on
the name-passing features of the π-calculus, e.g. passing private names of resources
via scope extrusion. Notice that resources can be transmitted as well but the scoping
of resources is dynamic and it is based on explicit acquisition.

We reuse part of the notation introduced in Chapter 3 for resources and their
access actions. For the sake of clarity, we shall define them again in the concurrent
setting.

Definition 4.1.2. Assume that N is a set of channel names (ranged over by
a, b, x, y, z), R is a set of resource names (ranged over by r, s, t), A is a set of actions
(ranged over by α, β) for accessing resources, and Φ is a set of policies (ranged over
by ϕ,ϕ′). A special action rel 5∈ A is also assumed for releasing resources. We
use w,w′ to range over channel and resource names. We assume that these sets are
pairwise disjoint. The set Pgl of processes is defined by the following grammar.

P, P ′ ::= processes
0 empty process

| π.P prefix action
| P + P ′ choice
| P ‖ P ′ parallel composition
| (νx) P restriction
| !P replication
| (r,ϕ, η){P} resource joint point
| req(r){P} resource request point

π, π′ ::= action prefixes
a(w) free input

| āw free output
| τ internal action
| α(r) event action
| rel(r) event action

The input prefix a(w).P binds the name w (either a channel or a resource) within
the process P , while the output prefix āw.P sends the name w along channel a and
then continues as P . Note that resource names can be communicated, however they
cannot be used as private names and used as channels. As usual, input prefixes and
restrictions act as binders. The meaning of the remaining operators is standard. The
notions of names n(), free names fn(), bound names bn() and substitution {−/−}
are defined as expected.

88 CHAPTER 4. THE G-LOCAL π-CALCULUS

Our extension introduces resource-aware constructs in the π-calculus. The access
prefix α(r) models the invocation of the action α ∈ A over the resource bound to the
variable r. Access labels specify the kind of access operation. An action α accessing
a resource can be seen as an event observed by resource monitors and the operation
represents a basic resource usage in the calculus. Traces, denoted by η, η′ ∈ A∗, are
finite sequences of actions over A. This allows us to define a usage policy expressing
properties of traces. The special action rel denotes releasing the ownership of the
acquired resources.

In our programming model, resources are viewed as stateful entities, equipped
with policies constraining their usages. More precisely, a resource is a triple (r,ϕ, η),
where r ∈ R is a resource name, ϕ ∈ Φ is the associated usage policy and η ∈ A∗ is a
state (ε denotes the empty state). Policies specify the required properties on resource
usages. Policies are defined by means of a resource-aware logic (see [16, 17, 39]).
For instance, in [16], the policies are expressed in terms of automata over an infinite
alphabet, where automata steps correspond to actions on resources and final states
indicate policy violations.

To cope with resource-awareness, we introduce two primitives managing resource
boundaries: resource joint point (r,ϕ, η){P} and resource request point req(r){P}.
Instead of considering resources as an extension of private names with a set of
traces of access events like in [66], the construct (r,ϕ, η) is introduced to represent
a notion of resources with explicit boundaries. Unlike the dynamic scope of private
names, where processes can concurrently access “private names” (i.e. resources),
resource boundaries in our approach guarantee exclusive access to processes that are
located inside their corresponding resource boundaries. More precisely, a process
(r,ϕ, η){P} is a process that behaves like P , in the resource boundary (r,ϕ, η),
where r can be accessed according to the policy ϕ. The state η is updated at
each action α(r), issued by P , according to the required policy ϕ. Processes of
the form (r,ϕ, η){0} represent available resources. These processes are idle: they
cannot perform any operation. In other words, resources can only react to requests.
A resource request point req(r){P} represents a process asking for the resource r.
Only if the request is fulfilled, i.e. the required resource is available, the process can
enter the required resource boundary and can use the resource r, provided that the
policy is satisfied.

Example 4.1.3. We consider a small example consisting of a green cloud computing
environment, where the energy cost is taken into consideration in order to save
energy. Each access α(r) to a resource r has an integer cost cα and the policy ϕ of
each resource r is a threshold value vφ that cannot be passed. Suppose to have a
couple of resources r1 and r2, with the policies ϕ1 and ϕ2. Users receive resources
on channels xi (for i = 1, 2, 3) and y. Policies are respected whether the sum of
the costs of accesses do not pass the value fixed for each of the policy.

The initial configuration is given below. Resources (r1 and r2) have empty traces
and have vφ1 and vφ2 as threshold values. The access action α comes associated with

4.1. THE G-LOCAL π-CALCULUS 89

the cost cα, and the action β with the cost cβ. Suppose for instance that cα is quite
expensive and that the threshold of r2 is not very high, while that of r1 is. Suppose,
in particular, that 3 · cα < vφ1 and that cα + cβ > vφ2 .

Res ::= (r1,ϕ1, ε){0} ‖ (r1,ϕ1, ε){0} ‖ (r2,ϕ2, ε){0}
Users ::= x1(s1).req(s1){α(s1).rel(s1)} ‖ x2(s2).req(s2){α(s2).rel(s2)} ‖

x3(s3).req(s3){α(s3).rel(s3)} ‖ y(t).req(t){β(t).rel(t)}
P lan ::= x̄1〈r1〉.ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0

System ::= Res ‖ Users ‖ P lan

4.1.2 Operational semantics

The operational semantics of the G-Local π-calculus is defined by the transition
relation given in Fig. 4.2. Labels µ, µ′ for transitions are τ for silent actions, x(w)
for free input, x̄v for free output, x̄(v) for bound output, α(r), α?r and α(r) (rel(r),
rel?r and rel(r), resp.) for closed, open, and faulty access or release actions over
resource r. As in the standard π-calculus, the effect of bound output is to extrude
the sent name from the initial scope to the external environment.

To simplify the definition of our Control Flow Analysis, we impose a discipline
in the choice of fresh names, and therefore to α-equivalent. Indeed, the result of
analysing a process P , must still hold for all its derivative processes Q, including
all the processes obtained from Q by α-equivalent. In particular, the CFA uses
the names and the variables occurring in P . If they were changed by the dynamic
evolution, the analysis values would become a sort of dangling references, no more
connected with the actual values. To statically maintain the identity of values and
variables, we partition all the names used by a process into finitely many equivalence
classes. We denote with ;n< the equivalence class of the name n, that is called
canonical name of n. Not to further overload our notation, we simply write n for
;n<, when unambiguous. We further demand that two names can be alpha-renamed
only when they have the same canonical name.

In addition, we introduce the specific laws for managing the resource-aware con-
structs, reported in Fig. 4.1. If two processes P1 and P2 are equivalent, then also P1

and P2 when plugged inside the same resource boundaries are. Resource request and
resource joint points can be swapped with the restriction boundary since restriction
is not applied to resource names but only to channel names. The last law is crucial
for managing the discharge of resources. This law allows rearrangements of available
resources, e.g. an available resource is allowed to enter or escape within a resource
boundary.

The rules [Act], [Cong], [Par], [Choice], [Res], [Open], [Comm] and [Close] are
the standard π-calculus ones (see Fig. 2.8 in Chapter 2). We now comment on the
semantic rules corresponding to the treatment of resources. The rule [ActR] models a
process that tries to perform an action α (rel, resp.) on the resource r. This attempt

90 CHAPTER 4. THE G-LOCAL π-CALCULUS

P ≡ Q if P and Q are α-equivalent (as explained below)
(P +Q) +R ≡ P + (Q+R) (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R)
P +Q ≡ Q+ P P ‖ Q ≡ Q ‖ P
P + 0 ≡ P P ‖ 0 ≡ P
(νx)0 ≡ 0 (νx)P ‖ Q ≡ (νx)(P ‖ Q) x 5∈ fn(Q),
!P ≡ P ‖!P

(r,ϕ, η){P1} ≡ (r,ϕ, η){P2} if P1 ≡ P2

req(r){P1} ≡ req(r){P2} if P1 ≡ P2

(νx)(r,ϕ, η){P} ≡ (r,ϕ, η){(νx)P}
(νx)req(r){P} ≡ req(r){(νx)P}
(r2,ϕ2, η2){0} ‖ (r1,ϕ1, η1){P} ≡ (r1,ϕ1, η1){(r2,ϕ2, η2){0} ‖ P}

Figure 4.1: Structural congruence.

is seen as an open action, denoted by the label α?r (rel?r, resp.). We introduce the
rule [CommR] to model the communication of resource names between processes.

When a resource r is available, then it can be acquired by a process P that
enters the corresponding resource boundary (r,ϕ, η), as stated by the rule [Acquire].
Symmetrically, according to the rule [Release], the process P can release an acquired
resource r and update the state of its resources by appending rel to η. In the
resulting process, the process P escapes the resource boundary. Furthermore, the
resource becomes available, i.e. it encloses the empty process 0. Intuitively, an access
is successful only if the process is inside the boundary of r, and the action α satisfies
the policy for r (see [Policy1] and [Policy2]). Similarly, releasing succeeds only if the
process is inside the boundary of r (see [Release]).

The rules [Policy1], [Policy2] check whether the execution of the action α on
the resource r obeys the policy ϕ, i.e. whether the updated state η.α, obtained by
appending α to the current state η, is consistent w.r.t. ϕ. If the policy is obeyed,
then the updated state η.α is stored in the resource state according to the rule
[Policy1] and the action becomes closed and if not, then the resource is forcedly
released according to the rule [Policy2] and a faulty action α(r) is fired. In the
continuation P ′ of the process, all the actions over the the resource r remain open
and without effect on the resource.

The rules [Local1] and [Local2] express that actions can bypass resource bound-
aries for r only if they do not involve the resource r.

Remark 4.1.4. The rule [Acquire] is not inductively given in the SOS style. We

4.1. THE G-LOCAL π-CALCULUS 91

[Act] π.P
π−→ P π 5= α(r), rel(r) [Cong]

P1 ≡ P ′
1 P ′

1
µ−→ P ′

2 P ′
2 ≡ P2

P1
µ−→ P2

[Par]
P1

µ−→ P ′
1

P1 ‖ P2
µ−→ P ′

1 ‖ P2

bn(µ) ∩ fn(P2) = ∅ [Choice]
P1

µ−→ P ′
1

P1 + P2
µ−→ P ′

1

[Res]
P

µ−→ P ′

(νx)P
µ−→ (νx)P ′

x 5∈ n(µ) [Open]
P

āx−→ P ′

(νx)P
ā(x)−−→ P ′

x 5= a

[Comm]
P1

āy−→ P ′
1 P2

a(z)−−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2{y/z}

[Close]
P1

a(x)−−→ P ′
1 P2

ā(y)−−→ P ′
2

P1 ‖ P2
τ−→ (νy)(P ′

1 ‖ P ′
2{y/x})

[ActR]
α(r).P

α?r−−→ P

rel(r).P
rel?r−−−→ P

[CommR]
P1

x̄r−→ P ′
1 P2

x(s)−−→ P ′
2

P1 ‖ P2
τ−→ P ′

1 ‖ P ′
2{r/s}

[Acquire] req(r){P} ‖ (r,ϕ, η){0} τ−→ (r,ϕ, η){P}

[Release]
P

rel?r−−−→ P ′

(r,ϕ, η){P} rel(r)−−−→ (r,ϕ, η.rel){0} ‖ P ′

[Policy1]
P

α?r−−→ P ′ η.α |= ϕ

(r,ϕ, η){P} α(r)−−→ (r,ϕ, η.α){P ′}
[Policy2]

P
α?r−−→ P ′ η.α 5|= ϕ

(r,ϕ, η){P} α(r)−−→ (r,ϕ, η){0} ‖ P ′

[Local1]
P

µ−→ P ′

(r,ϕ, η){P} µ−→ (r,ϕ, η){P ′}
r 5∈ n(µ) [Local2]

P
µ−→ P ′

req(r){P} µ−→ req(r){P ′}
r 5∈ n(µ)

Figure 4.2: Operational Semantics of G-Local π processes.

92 CHAPTER 4. THE G-LOCAL π-CALCULUS

could rephrase it in the SOS style by the following rules:

[Resreq] req(r){P} (r,ϕ,η)−−−→ (r,ϕ, η){P}

[Resjoin] (r,ϕ, η){0} (r,ϕ,η)−−−→ 0

[Comm′
R]

P
(r,ϕ,η)−−−→ P ′ Q

(r,ϕ,η)−−−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

In alternative, we could define the rule [Acquire] as an axiom:

req(r){P} ‖ (r,ϕ, η){0} ≡ (r,ϕ, η){P}

We choose to orient the congruence rule in order to emphasise the acquisition of
resources.

Remark 4.1.5. Note that resource entities could be dynamically reconfigured via
resource movements. Besides the structural rules, we here could include the following
transition rules [Appear] and [Disappear]:

[Appear] P
τ−→ P ‖ (r,ϕ, η){0}

[Disappear] (r,ϕ, η){P} τ−→ 0

These rules describe the abstract behaviour of the resource manager performing
asynchronous resource reconfigurations. In other words, in this proposal, resource
configuration is not under the control of processes. Resources are created and de-
stroyed by external entities and processes can only observe their presence/absence.
Dynamic reconfiguration would offer a high degree of loose coupling among processes
and resources and would be a feature not present in other proposals, such as the
one in [66] as well as the ones in [70, 104]. This will be explored in future work.

Example 4.1.6. To explain the operational semantics, we come back to our running
example. The following possible dynamic computation illustrates how the system
works and a possible policy violation. At the beginning, Users instantiates a new
user (a resource request point) when receiving a resource name, e.g. r1:

System
≡ Res ‖ Users′ ‖ x1(s1).req(s1){α(s1).rel(s1)} ‖ x̄1〈r1〉.ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.P lans′
τ→ Res ‖ Users′ ‖ P lan′ ‖ req(r1){α(r1).rel(r1)},

where Users′ ::= x2(s2).req(s2){α(s2).rel(s2)} ‖ x3(s3).req(s3){α(s3).rel(s3)} ‖
y(t).req(t){β(t).rel(t)} and P lan′ ::= ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0.
At this point, the new user can acquire the resource and other resource names are
also available (on the channel x2, x3, y). In the following, for the sake of simplicity,
we only show the sub-processes that involve computation. Assume that the new
user takes r1, then we have the following transitions:

4.1. THE G-LOCAL π-CALCULUS 93

req(r1){α(r1).rel(r1)} ‖ (r1,ϕ1, ε){0}
τ→ (r1,ϕ1, ε){α(r1).rel(r1)}
α(r1)−−−→ (r1,ϕ1,α){rel(r1)}
rel(r1)−−−→ (r1,ϕ1,α.rel){0}

Now, the remaining three further users are similarly instantiated.

Users′|P lans′
τ→ x2(s2).req(s2){α(s2).rel(s2)} ‖ x3(s3).req(s3){α(s3).rel(s3)}

‖ req(r2){β(r2).rel(r2)} ‖ x̄2〈r2〉.x̄3〈r1〉
τ→ x3(s3).req(s3){α(s3).rel(s3)} ‖ req(r2){β(r2).rel(r2)} ‖ req(r2){α(r2).rel(r2)} ‖ x̄〈r1〉
τ→ req(r2){β(r2).rel(r2)} ‖ req(r2){α(r2).rel(r2)} ‖ req(r1){α(r1).rel(r1)}

In the current setting, the new three users make one request on the remaining
resource r1 and two requests on r2. Since we have only one copy of r2, requests
should be done one at a time. Suppose to first satisfy the requests of r1, as in the
following transitions:

(r1,ϕ1,α.rel){α(r1).rel(r1)}
α(r1)−−−→ (r1,ϕ1,α.rel.α){rel(r1)}
rel(r1)−−−→ (r1,ϕ1,α.rel.α.rel){0}

Note that now the first resource is available again. Similarly, the second request
proceeds as follows:

req(r2){β(r2).rel(r2)} ‖ (r2,ϕ2, ε){0}
τ→ (r2,ϕ2, ε){β(r2).rel(r2)}
β(r2)−−−→ (r2,ϕ2, β){rel(r2)}
rel(r2)−−−→ (r2,ϕ2, β.rel){0}

If the third request proceeded, then a forced release could occur. This happens
because the user attempts to perform an α action on r2, on which a β action was
previously performed: since cα + cβ > vϕ2 , this amounts to a violation of the policy
ϕ2.

req(r2){α(r2).rel(r2)} ‖ (r2,ϕ2, β.rel){0}
τ→ (r2,ϕ2, β.rel){α(r2).rel(r2)}
α(r2)−−−→ (r2,ϕ2, β.rel){0} ‖ rel(r2)

94 CHAPTER 4. THE G-LOCAL π-CALCULUS

4.2 Control Flow Analysis

In this section, we present a CFA for our calculus, extending the one for π-calculus [26].
The CFA computes a safe over-approximation of all the possible communications
of resource and channel names on channels. Furthermore, it provides an over-
approximation of all the possible usage traces on the given resources. The analysis
is performed under the perspective of processes. This amounts to saying that the
analysis tries to answer the following question: “Are the resources initially granted
sufficient to guarantee a correct usage?”. We assume that a certain fixed amounts of
resources is given and we do not consider any dynamic reconfiguration. Furthermore,
we assume that all resource names are different.

For the sake of simplicity, we provide the analysis for a subset of our calculus,
in which processes have finite behaviour, i.e. without replication, and all resource
instances have different names. and processes enclosed in the scopes of resources are
sequential processes (ranged over by Q,Q′), as described by the following syntax.
Intuitively, a sequential process represents a single thread of execution in which one
or more resources can be used.

P, P ′ ::= processes Q,Q′ ::= sequential processes
| 0 0
| π.P | π.Q
| (νx) P | (νx) Q
| P + P ′ | Q+Q′

| P ‖ P ′ | (r,ϕ, η){0}||Q
| req(s){Q} | req(s){Q}
| (r,ϕ, η){Q} | (r,ϕ, η){Q}

This implies that one single point for releasing each resource occurs in each
non deterministic branch of a process. We assume that, by construction, in every
sequential branch located in the scope of the resource r, there is always a release
action rel(r) coming after the last access to the resource. It is not difficult to provide
a function that checks whether this condition is satisfied. The assumed constraint
amounts to guaranteeing that resources are released after their use. Note that the
only parallel branching configuration (r,ϕ, η){0} ‖ Q is needed in order to handle
release actions. The extension to general parallel processes is possible. Nevertheless,
it requires some more complex technical machinery in order to check whether all the
parallel branches synchronise among them, before releasing the shared resource.

In order to facilitate our analysis, we further associate labels χ ∈ L with resource
boundaries as follows: (r,ϕ, η){Q}χ and req(r){Q}χ, in order to give a name to the
sub-processes in the resource scopes. Note that this annotation can be performed
in a pre-processing step and does not affect the semantics of the calculus. During
the computation, resources are released and acquired by other processes. Statically,
sequences of labels S ∈ L∗ are used to record the sequences of sub-processes possibly
entering the scope of a resource. Furthermore, to make our analysis more informa-

4.2. CONTROL FLOW ANALYSIS 95

tive, we enrich the execution traces η with special actions that record the fact that
a resource has been possibly:

• acquired by the process labelled χ: in(χ), with a successful request;

• released by the process labelled χ: out(χ) with a successful release;

• taken away from the process labelled χ: err out(χ), with a forced release
because of an access action on r that does not satisfy the policy.

The new set of traces is Â∗, where Â = A∪{in(χ), out(χ), err out(χ) | χ ∈ L}. The
corresponding dynamic traces can be obtained by simply removing all the special
actions.

The result of analysing a process P is a tuple (ρ, κ,Γ) called estimate of P , that
provides an approximation of resource behaviour. More precisely, ρ and κ offer an
over-approximation of all the possible values that the variables in the system may be
bound to, and of the values that may flow on channels. The component Γ provides a
set of traces of actions, including bad ones, on each resource. Using this information,
we can statically check resource usages against the required policies.

To validate the correctness of a given estimate (ρ, κ,Γ), we state a set of clauses
that operate upon judgements of the form (ρ, κ,Γ) |=δ P , where δ is a sequence of
pairs [(r,ϕ, η), S], recording the resource scope nesting. This sequence has initially
empty components, denoted by [ε, ε]. In particular, the analysis keeps track of the
following information:

• An approximation ρ : N ∪R → ℘(N ∪R) of names bindings. If a ∈ ρ(x) then
the channel variable x can assume the channel value a. Similarly, if r ∈ ρ(s)
then the resource variable s can assume the resource value r.

• An approximation κ : N → ℘(N ∪R) of the values that can be sent on each
channel. If b ∈ κ(a), then the channel value b can be output on the channel
a, while r ∈ κ(a), then the resource value r can be output on the channel a.

• An approximation Γ : R → ℘({[(ϕ, η), S]| ϕ ∈ Φ, S ∈ L∗, η ∈ Â∗}) of resource
behaviour. If [(ϕ, η), S] ∈ Γ(r) then η is one of the possible traces over r (with
policy ϕ), that is performed by a sequence of sub-processes, whose labels χ
are juxtaposed in S.

The judgements of the CFA, given in Tab. 4.1, are based on structural in-
duction of processes. We use the following shorthands to simplify the treatment
of the sequences δ. The predicate [(r,ϕ, η),χ] E δ is used to check whether the
pair [(r,ϕ, η),χ] occurs in δ, i.e. whether δ = δ′[r, (ϕ, η),χ]δ′′. Furthermore, we
use δ{[(r,ϕ, η.α), S]/[(r,ϕ, η), S]} to indicate that the pair [(r,ϕ, η), S] is replaced
by [(r,ϕ, η.α), S] in the sequence δ. With δ \ [(r,ϕ, η), S] we indicate the se-
quence where the occurrence [(r,ϕ, η), S] has been removed, i.e. the sequence δ′δ′′,

96 CHAPTER 4. THE G-LOCAL π-CALCULUS

if δ = δ′[(r,φ, η), S]δ′′. The uniqueness of resources in the sequence δ is ensured
by the fact that we assume a certain fixed amount of resources and no duplicate of
resource names.

All the clauses dealing with a compound process check that the analysis also
holds for its immediate sub-processes. In particular, the analysis of (νx)P is equal
to the one of P . We comment on the main rules. Besides the validation of the
continuation process P , the rule for output, requires that the set of names that can
be communicated along each element of ρ(x) includes the names to which y can
evaluate. Symmetrically, the rules for input demands that the set of names that can
pass along x is included in the set of names to which y can evaluate. Intuitively, the
estimate components take into account the possible dynamics of the process under
consideration. The clauses’ checks mimic the semantic evolution, by modelling the
semantic preconditions and the consequences of the possible synchronisations. In
the rule for input, e.g., CFA checks whether the precondition of a synchronisation
is satisfied, i.e. whether there is a corresponding output possibly sending a value
that can be received by the analysed input. The conclusion imposes the additional
requirements on the estimate components, necessary to give a valid prediction of the
analysed synchronisation action, mainly that the variable y can be bound to that
value.

To gain greater precision in the prediction of resource usages, in the second
rule, the continuation process is analysed, for all possible bindings of the resource
variable s. This explains why we have all the other rules for resources, without
resource variables.

The rule for resource joint point updates δ to record that the immediate sub-
process is inside the scope of the new resource and there it is analysed. If the process
is empty, i.e. in the case the resource is available, the trace of actions is recorded in
Γ(r).

In the rule for resource request point, the analysis for Q is performed for every
possible element [(ϕ, η), S] from the component Γ(r). This amounts to saying that
the resource r can be used starting from any possible previous trace η. Furthermore,
η is enriched by the special action in(χ) that records the fact that the resource r
can be possibly acquired by the process labelled χ. In order not to append the same
trace more than once, we have the condition that S does not contain in(χ). This
prevents the process labelled χ to do it.

According to the rule for access action, if the pair [(r,ϕ, η), Sχ] occurs in δ (i.e. if
we are inside the resource scope of r) and the updated history η.α obeys the policy
ϕ, then the analysis result also holds for the immediate subprocess and δ is updated
in δ′, by replacing [(r,ϕ, η), Sχ] in δ with [(r,ϕ, η.α), Sχ], therefore recording the
resource accesses to r possibly made by the sub-process labelled by χ.

In case the action possibly violates the policy associated with r (see the last
conjunct), the process labelled χ may loose the resource r, as recorded by the trace
in Γ, [(ϕ, η.err out(χ)), Sχ], with the special action err out(χ) appended to η. If
instead, the action on r is not viable because the process is not in the scope of r,

4.2. CONTROL FLOW ANALYSIS 97

(ρ,κ,Γ) |=δ 0 iff true

(ρ,κ,Γ) |=δ τ.P iff (ρ,κ,Γ) |=δ P

(ρ,κ,Γ) |=δ x̄w.P iff ∀a ∈ ρ(x) : ρ(w) ⊆ κ(a) ∧ (ρ,κ,Γ) |=δ P

(ρ,κ,Γ) |=δ x(y).P iff ∀a ∈ ρ(x) : κ(a) ∩N ⊆ ρ(y) ∧ (ρ,κ,Γ) |=δ P

(ρ,κ,Γ) |=δ x(s).P iff ∀a ∈ ρ(x) : κ(a) ∩R ⊆ ρ(s)
∧ ∀r ∈ ρ(s) : (ρ,κ,Γ) |=δ P{r/s}

(ρ,κ,Γ) |=δ P1 + P2 iff (ρ,κ,Γ) |=δ P1 ∧ (ρ,κ,Γ) |=δ P2

(ρ,κ,Γ) |=δ P1 ‖ P2 iff (ρ,κ,Γ) |=δ P1 ∧ (ρ,κ,Γ) |=δ P2

(ρ,κ,Γ) |=δ (νx)P iff (ρ,κ,Γ) |=δ P ∧ x ∈ ρ(x)

(ρ,κ,Γ) |=δ (r,ϕ, η){Q}S iff (ρ,κ,Γ) |=δ.[(r,ϕ,η),S] Q

(ρ,κ,Γ) |=δ (r,ϕ, η){0}S iff (ρ,κ,Γ) |=δ.[(r,ϕ,η),S] 0 ∧ [(ϕ, η), S] ∈ Γ(r)

(ρ,κ,Γ) |=δ req(r){Q}χ iff ∀[(ϕ, η), S] ∈ Γ(r) ∧ in(χ) 5∈ S
⇒ (ρ,κ,Γ) |=δ.[(r,ϕ,η.in(χ)),Sχ] Q

(ρ,κ,Γ) |=δ α(r).Q iff [(r,ϕ, η), Sχ] E δ ∧ η.α |= ϕ ⇒ (ρ,κ,Γ) |=δ′ Q

∧ [(r,ϕ, η), Sχ] E δ ∧ η.α 5|= ϕ ⇒
{

(ρ,κ,Γ) |=δ′′ Q ∧
[(ϕ, η.err out(χ)), Sχ] ∈ Γ(r)

∧ [(r,ϕ, η), Sχ] 5E δ ⇒ (ρ,κ,Γ) |=δ Q
with δ′ = δ{[(r,ϕ, η.α), Sχ]/[(r,ϕ, η), Sχ]}
and δ′′ = δ \ [(r,ϕ, η), Sχ]

(ρ,κ,Γ) |=δ rel(r).Q iff [(r,ϕ, η), Sχ] E δ ⇒
{

(ρ,κ,Γ) |=δ′ Q ∧
[(ϕ, η.rel.out(χ)), Sχ] ∈ Γ(r)

∧ [(r,ϕ, η), Sχ] 5E δ ⇒ (ρ,κ,Γ) |=δ Q
with δ′ = δ \ [(r,ϕ, η), Sχ]

(ρ,κ,Γ) |=δ (r,ϕ, η){0}S ‖ Q iff (ρ,κ,Γ) |=δ (r,ϕ, η){0}S ∧ (ρ,κ,Γ) |=δ Q

Table 4.1: CFA Rules.

98 CHAPTER 4. THE G-LOCAL π-CALCULUS

then the analysis holds for the immediate subprocess, i.e. the action is skipped.
According to the rule for release, the trace of actions η′ = η.rel.out(χ) over r at

χ is recorded in Γ(r). Other sub-processes can access the resource starting from the
trace η′. Furthermore, [(r,ϕ, η), S] is removed from δ and this reflects the fact that
the process Q can regularly exit its scope, once released the resource r. If instead,
the release action on r is not viable because the process is not in the scope of r,
then the analysis holds for the immediate subprocess, i.e. the action is skipped.

4.2.1 Correctness

The analysis provides us with an approximation of the overall behaviour of the
analysed process. Moreover, it is proved to be correct: the analysis indeed respects
the operational semantics of G-Local π-calculus, as shown by the subject reduction
theorem. More precisely, if an estimate is valid for a process, then it is also valid for
all derivatives of that process. Before stating and proving it, we need some auxiliary
lemmas.

In the following lemma, we prove that if (ρ, κ,Γ) is an estimate of P , a value v
is possibly bound to x during the evolution of P , i.e. v ∈ ρ(x), then (ρ, κ,Γ) is also
an estimate of P{v/x}.
Lemma 4.2.1 (Substitution). If (ρ, κ,Γ) |=δ P and v ∈ ρ(x), where x ∈ n(P), then
(ρ, κ,Γ) |=δ P{v/x}.
Proof. First, we prove the following fact: ∀y : ρ(y({v/x})) ⊆ ρ(y). If y 5= x then
ρ(y({v/x})) = ρ(y), while if y = x, then ρ(y({v/x})) = ρ(v). Since v = ρ(v) and
v ∈ ρ(x), we have ρ(v) ⊆ ρ(x). The proof of thesis proceeds by structural induction
on P . We consider here only the most interesting cases.

The case of P = z(w).P ′: We may assume that w 5= v, x. (ρ, κ,Γ) |=δ P amounts
to checking that

(ρ, κ,Γ) |=δ P ′ ∧ s
∀a ∈ ρ(z) : κ(a) ∩N ⊆ ρ(w) (1)

By induction hypothesis and the fact stated above, we have that (ρ, κ,Γ) |=δ P ′{v/x}.
Furthermore, since ρ(z({v/x})) ⊆ ρ(z), (1) implies that ∀a ∈ ρ(z({v/x})) : κ(a) ∩
N ⊆ ρ(w). This is equivalent to (ρ, κ,Γ) |=δ P{v/x}.

The case of P = α(r).Q: (ρ, κ,Γ) |=δ P amounts to checking that

([(r,ϕ, η), Sχ] E δ ∧ η.α |= ϕ ⇒ (ρ, κ,Γ) |=δ′ Q)

([(r,ϕ, η), Sχ] E δ ∧ η.α 5|= ϕ ⇒
{

(ρ, κ,Γ) |=δ′′ Q ∧
[(ϕ, η.err out(χ)), Sχ] ∈ Γ(r)

([(r,ϕ, η), Sχ] 5E δ ⇒ (ρ, κ,Γ) |=δ Q,

where δ′ = δ{[(r,ϕ, η.α), Sχ]/[(r,ϕ, η), Sχ] and δ′′ = δ \ [(r,ϕ, η), Sχ]. By the
induction hypothesis, for any δ, (ρ, κ,Γ) |=δ Q implies that (ρ, κ,Γ) |=δ Q{v/x}.
Therefore, we have (ρ, κ,Γ) |=δ P{v/x} as required.

4.2. CONTROL FLOW ANALYSIS 99

The following lemma states that congruent processes have the same valid estimates.

Lemma 4.2.2 (Congruence). If (ρ, κ,Γ) |=δ P and P ≡ Q, then (ρ, κ,Γ) |=δ Q.

Proof. The proof amounts to a straightforward inspection of each of the clauses
defining the structural congruence axioms. Here we consider the most interesting
case.
Case of P is α-conversion of Q: since we exploit canonical names to maintain the
identity of bound names, changes of bound names do not affect on results of CFA
analysis. We have that ρ(a) = ρ(a′) = ρ(;a<) and κ(a) = κ(a′) = κ(;a<), where a
and a′ are names in the equivalent class ;a<.
Case of (r1,ϕ1, η1){(r2,ϕ2, η2){0}S2 ‖ P}S1 ≡ (r2,ϕ2, η2){0}S2 ‖ (r1,ϕ1, η1){P}S1.
Note that S1 and S2 are sequences of labels indicating sub-processes that used
resources r1 and r2 respectively. We have that

(ρ, κ,Γ) |=δ (r1,ϕ1, η1){(r2,ϕ2, η2){0}S2 ‖ P}S1

iff
(ρ, κ,Γ) |=δ.[(r1,ϕ1,η1),S1] (r2,ϕ2, η2){0}S2 ‖ P

iff
(ρ, κ,Γ) |=δ.[(r1,ϕ1,η1),S1] (r2,ϕ2, η2){0}S2 ∧ (ρ, κ,Γ) |=δ.[(r1,ϕ1,η1),S1] P

iff
(ρ, κ,Γ) |=δ.[(r1,ϕ1,η1),S1].[(r2,ϕ2,η2),S2] 0 ∧ (ρ, κ,Γ) |=δ.[(r1,ϕ1,η1),S1] P

iff
(ρ, κ,Γ) |=δ.[(r2,ϕ2,η2),S2] 0 ∧ (ρ, κ,Γ) |=δ.[(r1,ϕ1,η1),S1] P

iff
(ρ, κ,Γ) |=δ (r2,ϕ2, η2){0}S2 ∧ (ρ, κ,Γ) |=δ.[(r1,ϕ1,η1),S1] P

iff
(ρ, κ,Γ) |=δ (r2,ϕ2, η2){0}S2 ∧ (ρ, κ,Γ) |=δ (r1,ϕ1, η1){P}S1

iff
(ρ, κ,Γ) |=δ (r2,ϕ2, η2){0}S2 ‖ (r1,ϕ1, η1){P}S1

Subject Reduction. The analysis correctly captures the behaviour of P with
respect to the semantics, i.e. the estimate (ρ, κ,Γ) is valid for all the derivatives
P ′ of P . First, we prove its correctness for immediate derivatives, i.e. a single-step
evolution of P .

Lemma 4.2.3 (Subject Reduction). If (ρ, κ,Γ) |=δ P and P
µ−→ P ′, then we have:

(1) If µ = τ , then (ρ, κ,Γ) |=δ P ′,

100 CHAPTER 4. THE G-LOCAL π-CALCULUS

(2) If µ = α(r), then (ρ, κ,Γ) |=δ P ′,

(3) If µ = rel(r), then (ρ, κ,Γ) |=δ P ′,

(4) If µ = α?r, then:

– If [r,ϕ, η, Sχ] E δ ∧ η.α(r) |= ϕ, then (ρ, κ,Γ) |=δ′ P ′

– If [(r,ϕ, η), Sχ] E δ ∧ η.α(r) 5|= ϕ, then [(ϕ, η.err out(χ)), Sχ] ∈ Γ(r) and
(ρ, κ,Γ) |=δ′′ P ′

– If [(r,ϕ, η), Sχ] 5E δ, then (ρ, κ,Γ) |=δ P ′,

where δ′ = δ{[(r,ϕ, η.α), Sχ]/[(r,ϕ, η), Sχ]} and δ′′ = δ \ [(r,ϕ, η), Sχ],

(5) If µ = rel?r, then:

– If [(r,ϕ, η), Sχ] E δ, then (ρ, κ,Γ) |=δ′ P ′ ∧ [(ϕ, η.rel.out(χ)), Sχ] ∈ Γ(r)

– If [(r,ϕ, η), Sχ] 5E δ, then (ρ, κ,Γ) |=δ P ′,

where δ′ = δ \ [(r,ϕ, η), Sχ],

(6) If µ = x(y), then (ρ, κ,Γ) |=δ P ′ and ∀a ∈ ρ(x) : κ(a) ∩N ⊆ ρ(y),

(7) If µ = x(s), then ∀a ∈ ρ(x) : κ(a)∩R ⊆ ρ(s) and ∀r ∈ ρ(s) : (ρ, κ,Γ) |=δ P{r/s},

(8) If µ = x̄y, then (ρ, κ,Γ) |=δ P ′ and ∀a ∈ ρ(x) : ρ(y) ⊆ κ(a),

(9) If µ = x̄(y), then (ρ, κ,Γ) |=δ P ′ and ∀a ∈ ρ(x) : ρ(y) ⊆ κ(a).

Proof. The proof is by induction on the depth of the construction of P
π−→ P ′.

The case (1). Clearly the rules [Act], [ActR], [Open] and [Policy1] do not ap-
ply. Thanks to Lemma 4.2.2 and the induction hypothesis (1), it is easy to prove
that the property is preserved by the rules [Choice], [Par], [Res], [Cong], [Local1]
and [Local2]. The remaining cases are [Comm], [CommR], [Close], [Policy2] and
[Acquire].

• [Comm]: We may assume that P ≡ P1 ‖ P2 such that P1
x̄w−→ P ′

1 and

P2
x(y)−−→ P ′

2. By Lemma 4.2.2, we have (ρ, κ,Γ) |=δ P1 and (ρ, κ,Γ) |=δ P2.
The induction hypothesis of cases (6) and (8) ensure that

(ρ, κ,Γ) |=δ P ′
1 ∧ (ρ, κ,Γ) |=δ P ′

2 ∧ w ∈ ρ(y)

By Substitution Lemma, we have (ρ, κ,Γ) |=δ P ′
2{w/x}. This establishes

(ρ, κ,Γ) |=δ P ′
1 ‖ P ′

2{w/x} and this is equivalent to (ρ, κ,Γ) |=δ P ′.

• [CommR]: by a similar argument.

• [Close]: by a similar argument.

4.2. CONTROL FLOW ANALYSIS 101

• [Policy2]: Assuming that (ρ, κ,Γ) |=δ (r,ϕ, η){P}S, P α?r−−→ P ′ and η.α(r) 5|= ϕ.
We need to show that (ρ, κ,Γ) |=δ (r,ϕ, η.err out(χ)){0}S||P ′, where χ is the
last label in S (Recall that err out(χ) is the special action used in CFA and
does not change the operational semantics. Here we can safely assume that
when forcing to release a resource, err out(χ) is appended to the history of
that resource). By assumption, we have:

(ρ, κ,Γ) |=δ (r,ϕ, η){P}S
iff

(ρ, κ,Γ) |=δ.[(r,ϕ,η),S] P

By induction hypothesis (4), [(r,ϕ, η), Sχ] E δ and η.α(r) 5|= ϕ implies that
[(r,ϕ, η.err out(χ)), Sχ] ∈ Γ(r) ∧ (ρ, κ,Γ) |=δ P ′, which is equivalent to

(ρ, κ,Γ) |=δ (r,ϕ, η.err out(χ)){0}S ∧ (ρ, κ,Γ) |=δ P ′

And this establishes the required result.

• [Acquire]: Assuming that (ρ, κ,Γ) |=δ (r,ϕ, η){0}S ‖ req(r){Q}χ.
We need to prove (ρ, κ,Γ) |=δ.[(r,ϕ,η.in(χ)),Sχ] Q, which implies that

(ρ, κ,Γ) |=δ (r,ϕ, η.in(χ)))S{Q}

By assumption, we have

(ρ, κ,Γ) |=δ (r,ϕ, η){0}S and therefore [(ϕ, η), S] ∈ Γ(r)

Furthermore, (ρ, κ,Γ) |=δ req(r){Q}χ implies that

(ρ, κ,Γ) |=δ.[(r,ϕ,η.in(χ)),Sχ] Q

The required result is established.

• [Release]: Assuming that (ρ, κ,Γ) |=δ (r,ϕ, η){P}S, P rel?r−−−→ P ′. We need to
show that (ρ, κ,Γ) |=δ (r,ϕ, η.rel.out(χ)){0}S||P ′, where χ is the last label in
S (Recall that out(χ) is a special action used in CFA and does not change
the operational semantics. Here we can safely assume that when releasing a
resource, out(χ) is appended to the history of that resource) By assumption,
we have:

(ρ, κ,Γ) |=δ (r,ϕ, η){P}S
iff

(ρ, κ,Γ) |=δ.[(r,ϕ,η),S] P

By induction hypothesis (5), [(r,ϕ, η), S] E δ implies that [(r,ϕ, η.out(χ)), S] ∈
Γ(r) ∧ (ρ, κ,Γ) |=δ P ′, which is equivalent to

(ρ, κ,Γ) |=δ (r,ϕ, η.out(χ)){0}S ∧ (ρ, κ,Γ) |=δ P ′

And this establishes the required result.

102 CHAPTER 4. THE G-LOCAL π-CALCULUS

The cases (2), (3), (4), (5), (6), (7), (8) and (9) are straightforward.

Now we can state the subject reduction theorem.

Theorem 4.2.4 (Subject Reduction). (ρ, κ,Γ) |=δ P and P
µ−→

∗
P ′, then (ρ, κ,Γ) |=δ

P ′.

Proof. Immediate from Lemma 4.2.3.

4.2.2 Existence of Estimates

We can further prove that there always exists a least choice of (ρ, κ,Γ) that is
acceptable for CFA rules, and therefore it always exists a least estimate. First, we
need some auxiliary definitions. It is immediate that the set of all estimates forms
a complete lattice with the following order.

Definition 4.2.5. A set of proposed estimates can be partially ordered by setting
(ρ, κ,Γ) 7 (ρ′, κ′,Γ′) if and only if ∀w ∈ N ∪ R : ρ(w) ⊆ ρ′(w), ∀a ∈ N : κ(a) ⊆
κ′(a), ∀r ∈ R : Γ(r) ⊆ Γ′(r). Furthermore, we denote (ρ, κ,Γ) 9 ESTPRIM as the
least estimate of (ρ, κ,Γ) and (ρ′, κ′,Γ′) (a similar notation for a set of estimates).

To prove the existence theorem, we show that the set of all estimates for a given
process constitutes a Moore family.

The following theorem guarantees that there always exists a least solution to the
specification in Tab. 4.1.

Theorem 4.2.6. (Existence of estimates) For all δ, P , the set

{(ρ, κ,Γ)|(ρ, κ,Γ) |=δ P}

is a Moore family.

Proof. We proceed by structural induction on P . Let L = {(ρj, κj ,Γj)|j ∈ J} and

J ⊆ {(ρ, κ,Γ)|(ρ, κ,Γ) |=δ P}

and define (ρ′, κ′,Γ′) = 9L = ∩{(ρj , κj ,Γj)|j ∈ J}. The proof of the theorem
amounts to checking (ρ′, κ′,Γ′) |=δ P . For this we proceed by cases on P making
use of the induction hypothesis. Most cases are straightforward and here we only
consider the more interesting ones.

The case of x(y).P . Since ∀j ∈ J : (ρj , κj,Γj) |=δ x(y).P , we have

∀j ∈ J : (ρj , κj,Γj) |=δ P ∧ ∀a ∈ ρj(x) : κj(a) ∩N ⊆ ρj(y)

4.2. CONTROL FLOW ANALYSIS 103

Using the induction hypothesis and the fact that (ρ′, κ′,Γ′) is obtained in a pointwise
manner, we then obtain

(ρ′, κ′,Γ′) |=δ P ∧ ∀a ∈ ρ′(x) : κ′(a) ∩N ⊆ ρ′(y)

thus establishing the desired (ρ′, κ′,Γ′) |=δ x(y).P .

The case of α(r).P . Since ∀j ∈ J : (ρj , κj,Γj) |=δ α(r).P we have

[(r,ϕ, η), Sχ] E δ ∧ η.α(r) |= ϕ ⇒ (ρj , κj,Γj) |=δ′ P

[(r,ϕ, η), Sχ] E δ ∧ η.α(r) 5|= ϕ ⇒
{

(ρj , κj,Γj) |=δ′′ P ∧
[(ϕ, η.err out(χ)), Sχ] ∈ Γj(r)

[(r,ϕ, η), Sχ] 5E δ ⇒ (ρj , κj,Γj) |=δ P

Using the induction hypothesis and the fact that (ρ′, κ′,Γ′) is obtained in a pointwise
manner, we then obtain

[(r,ϕ, η), Sχ] E δ ∧ η.α(r) |= ϕ ⇒ (ρ′, κ′,Γ′) |=δ′ P

[(r,ϕ, η), Sχ] E δ ∧ η.α(r) 5|= ϕ ⇒
{

(ρ′, κ′,Γ′) |=δ′′ P ∧
[(ϕ, η.err out(χ)), Sχ] ∈ Γ′(r)

[(r,ϕ, η), Sχ] 5E δ ⇒ (ρ′, κ′,Γ′) |=δ P

Hence we obtain the desired (ρ′, κ′,Γ′) |=δ α(r).P .

4.2.3 Policy Compliance

Our analysis offers information on the resource usage, included bad usages. The
component Γ is indeed in charge of recording all the possible usage traces on each
resource r. Actually, for each r, traces are composed of pairs [(ϕ, η), S], where
S is made of labels of the processes that acquired resource r and η records every
action on r, included the special actions in(χ), out(χ) and err out(χ), that indicate
that the process labelled χ may acquire and release (or it may be forced to release)
the resource. This information offers a basis for studying dynamic properties, by
suitably handling the safe over-approximation that the CFA introduces. We want
to focus now on the traces including special error actions, that we call faulty.

Definition 4.2.7. A trace η ∈ Â∗ is faulty if it includes err out(χ) for some χ ∈ L.

Because of over-approximation, on the one hand if the analysis contains faulty traces,
then there is the possibility of policy violations, while if all the traces are not faulty,
then we can prove that policy violations cannot occur at run time, and therefore
that the processes correctly use their resources. We can show it formally, as follows.

Definition 4.2.8. The process P , where r is declared with policy φ, P complies

with ϕ for r, if and only if P
µ−→

∗
P ′ implies that there is no P ′′ such that P ′ α(r)→ P ′′,

where
µ−→

∗
is the reflexive and transitive closure of

µ−→.

104 CHAPTER 4. THE G-LOCAL π-CALCULUS

Definition 4.2.9. A process P , where r is declared with policy ϕ, is said to respect
ϕ for r, if and only if

∃(ρ, κ,Γ).(ρ, κ,Γ)[ε,ε]P and ∀[(ϕ, η), S] ∈ Γ(r), η is not faulty

The below policy compliance theorem states that if a process respects a policy then
it complies with that policy.

Theorem 4.2.10 (Policy Compliance). If P respects the policy ϕ for r then, P
complies with ϕ.

Proof. By the way of contradiction, suppose that P does not comply with ϕ, e.g there

exists P ′, P ′′ such that P
µ→

∗
P ′ α(r)→ P ′′, where α(r) is the first violation action oc-

curred in the sequence of transitions. The proof of the theorem amounts to checking
that P does not respect ϕ for r, which implies a contradiction. By Theorem 4.2.4,
we have that (ρ, κ,Γ) |=[ε,ε] P implies (ρ, κ,Γ) |=[ε,ε] P ′.

For this we proceed by cases on P ′ making use of the induction hypothesis. Most
cases are straightforward and here we only consider one of the most interesting cases.

The case of P ′ ≡ (r,ϕ, η){Q}, Q α?r→ Q′ and η.α 5|= ϕ:
By Lemma 4.2.3, it follows that [(ϕ, η.err out(χ)), Sχ] ∈ Γ(r), which means that

P does not respect ϕ for r.

Example 4.2.11. We briefly interpret the results of CFA on our running example.
First we associate labels with the resource boundaries as follows:

Res ::= (r1,ϕ1, ε){0}ε ‖ (r1,ϕ1, ε){0}ε ‖ (r2,ϕ2, ε){0}ε
Users ::= x1(s1).req(s1){α(s1).rel(s1)}χ

1
α|x2(s2).req(s2){α(s2).rel(s2)}χ

2
α ‖

x3(s3).req(s3){α(s3).rel(s3)}χ
3
α ‖ y(t).req(t){β(t).rel(t)}χβ

P lan ::= x̄1〈r1〉.ȳ〈r2〉.x̄2〈r2〉.x̄3〈r1〉.0
System ::= Res ‖ Users ‖ P lan

The CFA entries include:

• ρ(s1) ⊇ {r1}, ρ(s2) ⊇ {r2}, ρ(s3) ⊇ {r1}, ρ(t) ⊇ {r2}; correspondingly:

• κ(x1) ⊇ {r1}, ρ(x2) ⊇ {r2}, ρ(x3) ⊇ {r1}, ρ(y) ⊇ {r2};

• Γ(r1) ⊇ {(ϕ1, ε), (ϕ1, in(χi
α).α.rel.out(χ

i
α)), (ϕ1, in(χi

α).α.rel.out(χ
i
α).in(χ

j
α)

.α.rel.out(χj
α)), (ϕ1, in(χi

α).α.rel.out(χ
i
α).in(χ

j
α).α.rel.out(χ

j
α).in(χ

k
α)

.α.rel.out(χk
α))} (with i, j, k ∈ [1, 2, 3] and i, j, k distinct);

• Γ(r2) ⊇ {(ϕ2, ε), (ϕ2, in(χβ).β.rel.out(χβ)), (ϕ2, in(χβ).β.rel.out(χβ).in(χα)

.err out(χα)), (ϕ2, in(χα).α.rel.out(χα)), (ϕ2, in(χα).α.rel.out(χα).in(χβ)

.β.err out(χβ))};

4.3. A CASE STUDY - ROBOT SCENARIO 105

p1

p0, item,R1

p2

p3, R2

p4

p5

p6

p7, R3

p8

Figure 4.3: The initial configuration of the robot scenario.

p1

p0

p2

p3

p4

p5

p7

e
w

N S
E

W
E

S

N

E

S
p3

p4

p5

p6

p7

p8

E
W

SN

N N

E

S
p6

p7

p8

N

S

Figure 4.4: The policy automata of the robots’ families: R1 (left), R2 (middle) and
R3 (right).

It is easy to see that there are at least two possible policy violations, which is cap-
tured by our CFA in the component Γ(r2). The first, given by th entry (ϕ2, in(χβ).
β.rel.out(χβ).in(χα).err out(χα)). and corresponds to the dynamic computation,
developed in the previous section. It occurs when one of the user to perform an α
action on r2, whose cost, added to that of the previous action β, passes the fixed
threshold.

4.3 A Case Study - Robot Scenario

We consider a scenario, where a set of robots collaborate to reach a certain goal,
e.g. to move an item from one position to another. Without loss of generality, we
assume that robots operate in a space represented by a two-dimensional grid. We
also assume that certain positions over the grid are faulty, and therefore they cannot
be crossed by robots. To move the item, a robot needs to take it, and this is allowed
provided that the item is co-located within the range of robot’s sensor. Moreover,
since robots have a small amount of energy power, they can perform just a few of
steps with the item. Finally, we consider three families of robots (R1, R2 and R3):
each robot in the family has different computational capabilities.

Fig. 4.3 gives a pictorial description of the initial configuration of the scenario.
Positions are represented by circles and double circles. Double circles indicate faulty

106 CHAPTER 4. THE G-LOCAL π-CALCULUS

positions. The item is located at position p0 and the goal is to move it to the position
p8. There is just one faulty position p5, crossing through which is considered a failure.
Moreover, we consider a scenario where the three families of robots R1, R2 and R3

are initially located at p0, at p3 and at p7, respectively (e.g. all the robots of the
family R1 are located at p0).

Sensors are modelled by clearly identified resources. The sensor jth of the ith

robot family is specified by the resource (snsi,j,ϕj, ηi,j), where snsi,j is the name
of the sensor, ηi,j is the abstract representation of the sequence of moving actions
which led the robot from its initial position to the current one and is initially equals
to ε, and ϕj is the global policy on demand. We assume that each family of robots
has its own policy described by the automata in Fig. 4.4. The policy constraints
robots’ movement in the grid. We model the movement activities of robots with the
following actions: E(sns), W(sns), S(sns), and N(sns) that describe the movements
on east (west, south and north, resp.). Basically, sensors are a sort of private
resources of the robots (each robot will never release its sensor) and the actions over
sensors update their states.

The item is modelled by a resource of the form (IT,ϕI , η), where η describes
the sequence of actions performed on the item, and ϕI simply states that the item
is never located at the position p5. Initially, η is equal to ε. The same set of
actions adopted for robots’ movement (namely E(IT), W(IT), S(IT), and N(IT))
are exploited to transport the item in the grid. Finally, each robot in the family
i ∈ {1, 2, 3} is specified by a process Ri,j of the form: (snsi,j,ϕj, ηi,j){Qi,j}χsij ,
where Qi,j specifies the jth robot’s behaviour of the ith robot family and χsij is a
label associated with the resource boundary. For instance, in the process Q2,3 (see
below), the robot goes to north (without the item), then it tries to grasp the item.
If this operation succeeds, the robot goes to east and releases the item there. Note
that we use two monadic actions to move the item and the sensor together. This
could be done by using polyadic actions, which however we leave for future work.

For the sake of simplicity, we do not model co-location of sensors and items. The
specification of the robot scenario is given below.

R1,1 := (sns1,1,ϕ1, p0){req(IT){E(IT).E(sns1,1).S(IT).S(sns1,1).rel(IT)}χr11}χs11

R1,2 := (sns1,2,ϕ1, p0){req(IT){E(IT).E(sns1,2).E(IT).E(sns1,2).rel(IT)}χr12}χs12

R1,3 := (sns1,3,ϕ1, p0){req(IT){E(IT).E(sns1,3).rel(IT)}χr13}χs13

R2,1 := (sns2,1,ϕ2, p3){req(IT){N(IT).N(sns2,1).E(IT).E(sns2,1).rel(IT)}χr21}χs21

R2,2 := (sns2,2,ϕ2, p3){req(IT){N(IT).N(sns2,2).N(IT).N(sns2,2).rel(IT)}χr22}χs22

R2,3 := (sns2,3,ϕ2, p3){NR(sns2,3).req(IT){E(IT).E(sns2,2).rel(IT)}χr23}χs23

R3,1 := (sns3,1,ϕ3, p7){req(IT){S(IT).S(sns3,1).rel(IT)}χr31}χs31

R3,2 := (sns3,2,ϕ3, p7){req(IT){N(IT).N(sns3,2).rel(IT)}χr32}χs32

System := (IT,ϕI , p0){0}χIT ‖ R1,1 ‖ R1,2 ‖ R1,3 ‖ R2,1 ‖ R2,2 ‖ R2,3 ‖ R3,1 ‖ R3,2

The following trace illustrates the behaviour of the specification of the scenario.
At the beginning, the item lies in the range of the family of robot R1. Then a

4.3. A CASE STUDY - ROBOT SCENARIO 107

reconfiguration step putting together the robot R1,1 and the item is performed.

System := (IT,ϕI , ε){0}||(sns1,1,ϕ1, ε){Q1,1}||R1,2||R1,3||R2,1||R2,2||R2,3||R3,1||R3,2

≡ (sns1,1,ϕ1, ε){(IT,ϕI , ε){0}||Q1,1}||R1,2||R1,3||R2,1||R2,2||R2,3||R3,1||R3,2

As a result, robot R1,1 can grasp (acquire) the item; the pair item-robot moves
on east, then on south. Finally, the robot disposes the item at the position p3.

System
τ−→ (sns1,1,ϕ1, p0){(IT,ϕI , ε){Q1,1}||R1,2||R2,1||R2,2||R3,1||R3,2

E(IT)−−−→ E(sns1,1)−−−−−→ S(IT)−−−→ S(sns1,1)−−−−−→ rel(IT)−−−−→
(IT,ϕI , E.S.rel){0}||(sns1,1,ϕ1, E.S){0}||R1,2||R2,1||R2,2||R3,1||R3,2

It is easy, given an initial location, to map a sequence of actions performed
over the item into a path on the grid, namely each action operated over the item
(i.e. E(IT), W(IT), S(IT), and N(IT)) corresponds to a single moving step in the
space grid. The release action, instead, is interpreted as a sort of self-loop in the
grid, i.e. the execution of the release action does not move the item. For example,
the sequence E.S. in the above setting would model the path p0p4p3. From now on,
by abuse of notation, we will freely use paths in place of sequences of actions over
the item/sensors.

Now, the item is in the range of the family of robots R2. Again by applying
the reconfiguration step, robot R2,1 is allowed to operate with the item. Then, it
takes the item, makes a move on north, then on east, and disposes the item at the
position p7. For the sake of simplicity, in the following we show only sub-processes
of the system that involve computation:

(IT,ϕI , p0p4p3p3){0}||R2,1

τ−→ N(IT)−−−→ N(sns2,1)−−−−−→ E(IT)−−−→ E(sns2,1)−−−−−→ rel(IT)−−−−→
(IT,ϕI , p0p4p3p3p4p7p7){0}||(sns2,1,ϕ2, p3p4p7){0}

Note that a forced release would have occurred at this step if the item proceeded
governed by the robot R2,2. The reason is that R2,2 attempts to move the item into
the position p5 and this results in releasing the item at the position p4 by the rule
Policy2. Now the robot R3,2 has the chance to take the item, and, if the north move
occurs, the goal is achieved and the task is completed.

(IT,ϕI , p0p4p3p3p4p7p7){0}||R3,2

τ−→ N(IT)−−−→ N(sns3,2)−−−−−→ rel(IT)−−−−→
(IT,ϕI , p0p4p3p3p4p7p7p8p8){0}||(sns3,2,ϕ3, p7p8){0}

Now we explain the features of the CFA. The CFA (in particular the Γ compo-
nent) computes the set of possible traces of the trajectories in the grid reaching the

108 CHAPTER 4. THE G-LOCAL π-CALCULUS

goal, among which the ones below:

in(χr11).E.S.rel.out(χr11).in(χr21).N.E.rel.out(χr21).in(χr32).N.rel.out(χr32)
in(χr11).E.E.rel.out(χr11).in(χr32).N.rel.out(χr32)
in(χr13).E.rel.out(χr13).in(χr23).E.rel.out(χr23).in(χr32).N.rel.out(χr32)
in(χr11).E.S.rel.out(χr11).in(χr22).N.err out(χr22.in(χr23).E.rel.out(χr23).in(χr32).N.rel.out(χr32)

This set produces the following sequences of positions:

p0p4p3p3p4p7p7p8p8
p0p4p7p7p8p8
p0p4p4p7p7p8p8
p0p4p3p3p4p4p7p7p8p8

Note that the last trace is faulty since it contains a forced release err out(χ2,2) (see
below). Consequently, the system does not respect the policy ϕIT for the item.
In particular, there are three faulty traces found by the analysis, which have the
following common prefix:

in(χr11).E.S.rel.out(χr11).in(χr22).N.out err(χr22),χr11χr22

The reason is that the robot R2,2 is forced to release the item when attempting to
move it into the bad position p5. Instead, there is no faulty trace of actions over
sensors, which means the system respects the policies ϕi,j for sensors and therefore
complies with them.

4.4 Related Works and Discussions

Understanding the foundations of the distributed management of resources can sup-
port state-of-the-art advances of programming language constructs, algorithms and
reasoning techniques for resource-aware programming. In the last few years, the
problem of providing the mathematical basis for the mechanisms for resource usages
has been received a major attention. As a consequence, a number of models has been
proposed (see e.g. [16, 36, 66, 47, 64], to cite only a few) for resource management.

The G-Local π-calculus design. We started the design of our calculus by adopt-
ing the history-based approach studied in [9, 56, 101, 18]. The history-dependent
framework overcomes the weaknesses of stack based approaches [57] that record only
a fragment of the trace instead of the whole trace (called history). In [16] an ex-
tension of the λ-calculus is proposed to statically verify resource usages. The work
combines local checks of program points, where critical resources can be accessed,
with global policies, which enforces a global invariant to hold at any program point.
Our work is inspired by these works. We end up following an approach that also
borrow many ideas from service oriented computing (SOC) [91]. The main theme

4.4. RELATED WORKS AND DISCUSSIONS 109

of SOC is to design a general theory of services, often based on mobile calculi, for
formalising and programming service-oriented applications [107, 33], for developing
the suitable verification techniques [38, 60, 76]. Although our model is based on
mobile calculi, we instead consider the orthogonal issue concerning the correctness
of resource usages in modern distributed settings.

The novel feature of our proposal relies on the interaction patterns between
resources and computational processes. The interactions between resources and
computational processes are established through publish-subscribe paradigm. No-
tice that these features have been exploited in service oriented computing (SOC).
It is worthwhile to stress which are differences of our design, compared to SOC.
The emphasis on design of service orientation so far has been on description of in-
teractions and development of related concepts, like context-awareness or service
sessions. Indeed, invocation of “services” establishes a session, whose interactions
follow a certain protocol through the standard mechanism of communication, pro-
vided by mobile calculi. In this sense, services could be considered as resources
at a high level view. The notion of resources in our approach are represented by
structures with states and usage polices. The novel feature of our approach relies on
mechanisms related to event-notifications that intent to capture resource accesses.
Usage policies related to individual resources provide indeed a flexible way to define
fine-grain access control on resources. This emphasises the fact that the focus of our
approach is on correct usages of resources rather than discipline of interactions like
in SOC.

Resources in the G-Local π-calculus have scopes, that can be thought as resource
administrative domains, similar to the scope of locations in Mobile Ambients [44].
Closer to ours is the work in [55], where an ambient is considered as a unit for moni-
toring and coordination. More precisely, each ambient is equipped with a guardian,
which monitors the activities of sub-components (i.e. processes and sub-ambients).
Unlike Mobile Ambients, the scope of resources is more restricted since the scopes
cannot be open. Placing restriction on the scope of resources is a design decision,
that makes the control of resource management easier. While the scopes of locations
in Mobile Ambient are managed by explicit actions of processes, configurations of
resources in our approach are not under control of processes. Furthermore, resources
in our approach have no control over other resources. This assumption is justified in
terms of loosely coupling design that are typical of modular distributed applications.

Models of resources. The simplest model of resources is given by the notion of
names. As seen in Chapter 2, in name-passing process calculus, names can be com-
municated and exchanged. In the case of ambient-like calculi, names assume the
role of locations. Thus, it is natural to treat names as resources in many process-
based approaches [108, 70, 104, 105]. In [70], resource usages are simply bounds on
the number of communications in channels. The work presented in [105] focuses on
the ownership and publication of names. In [108, 104], allocation/deallocation of re-
sources are the interesting properties. In more details, in [108] reconfigurations steps

110 CHAPTER 4. THE G-LOCAL π-CALCULUS

are internalised inside processes via the operations for allocating and de-allocating
channels. A similar idea is found in [104], where closer explicit transition rules
for eliminating dead processes through different garbage-collectable relations on pro-
cesses. The drawback of these works is that properties of resources are quite limited.
In [63], more advanced properties of names are introduced and studied, where a logic
is introduced to express the relations between processes and resources. In our ap-
proach resources are structured in a such way that it is possible to reason on the
actual states of resources.

The π-calculus dialect of [66] provides a general framework for checking resource
usages in distributed systems. The treatment of resources in this approach is closer
to ours in terms of properties of resources. Indeed, private names are extended
to resources, i.e. names with a set of traces to define control over resources. Also
resource request and resource release are simulated through communicating private
names and structural rules respectively. There is a shared semantics of resources,
i.e. several processes can have a concurrent access to resources (by communication
of private names). Resources in our approach may be considered as names with
additional structures, however they cannot be private. Unlike private names with
the dynamic boundaries given by the scope extrusion, resource boundaries is based
on explicit acquisitions. Our approach also differs from this work in the semantic
treatment of resources; when a process obtains a resource, it has an exclusive access
to the resource.

The works in [47, 36] present an explicit notion of resources, different from our
notion. The work in [47] proposed a process calculus with an explicit representation
of resources in which the evolution of processes and resources happens in a SCCS
style. More precisely, resources form a monoid, that is, a set of elements with a
binary operator. Thus, a resource can be non-deterministically split into smaller
pieces (by the binary operator defined in the monoid) to be distributed among
processes. In this way, the notion of resources is closely related to the sharing
interpretation of the BI-family logics (see [88] for details). Also, a modal logic,
based on the BI-family logics, is developed to specify resource properties. The
drawback of this approach is the co-evolution of processes and resources. It requires
a pre-defined model of resources (also taking process evolution into account), which
is sometimes difficult to define. In our approach, resources are independent and
stateful entities, thus subject to be requested, and are equipped with their own
global interaction usage policies, defined as a set of traces. Therefore, LTL formulas
or equivalent formalisms are used to specify temporal properties of resources.

The work presented in [36] mainly focuses on specifying SLA by describing re-
sources as suitable constraints. In this proposal, c-semirings [24] act as a model of
resources. The shared store of constraints on resources represents SLA contracts
established through allocation and deallocation of resources. C-semirings allow for
expressing soft constraints, i.e. constraints which give informative values instead of
true or false. Similar to ours, available resources are obtained though suitable re-
quests. It is easy to see that we may exploit constraints to express global resource

4.4. RELATED WORKS AND DISCUSSIONS 111

usages as well.

Control Flow Analysis. We developed a Control Flow Analysis. The CFA
computes an approximation of communication-based and finite resource-based be-
haviour. First, resource-based behaviour is described with their possible traces and
configurations (i.e. the resource contexts). An analysis for processes with infinite be-
haviour is subject of future work. The CFA presented in [29] is closest to ours, where
it takes into account context information. Here, we focus on reachability proper-
ties of resources, while the work in [29] deals with interactions among encapsulated
processes.

Programming Abstractions for Resource Awareness. Abstraction mecha-
nisms, like objects, classes or abstract data types . . . have introduced in program-
ming languages are often motivated by the idea of helping developers to focus on
the software design. Indeed, focusing on business logic of software systems allows
for freeing developers from implementation details. For example, the “try-with-
resources” statement has recently been introduced in JDK7 [89] to help developers
in ensuring proper termination over resources. The separation of concerns between
business logic and operation logic is indeed the main focus of our work. The term
“operation logic”, coined in [23], refers to resource management in distributed set-
tings, where applications are capable of accessing a variety of resources.

Our work is the initial attempt to provide a foundational basis for resource-
aware programming abstractions. Here, we outline how our approach suggests some
resource-aware programming abstractions. For purpose of illustration, we use in-
formal notations. Let us assume to have a storage service. The declaration of the
resource, seen as storage, could be given as follows

Def Resource storage {
State: eta;
Ensuring: P;
Behaviour: Null
}

The previous declaration introduces a stateful resource whose name is storage,
whose state information is stored in variable eta and where P describes the policy
(SLA) any interaction with the storage has to satisfy. In the initial configuration,
the encapsulated behaviour is empty: it will be instantiated with the code provided
by the client, when the binding between the client and the resource is established.
In this simple example, the policy expresses that the correct way of operating over
the storage resource is that in all the sessions action open must occur before action
write. Every attempt to access the resource must obey this policy. The resource pool
is implemented as parallel composition of the resources. Furthermore, assume that
the resource is dynamically allocated to the client requests on demand is handled
by the resource pool.

112 CHAPTER 4. THE G-LOCAL π-CALCULUS

\\ The script describing the main program
\\ of the client process is shown below
c = connect(resource-pool);
ss=c.receive(storage)
//internal activity)
bind(ss) {

ss.open(clientName);
// produce some data
ss.write(clientName,data);
ss.release(clientName);

}
//Other work

The meaning of the script is intuitive. The client process establishes a connection
with the the resource pool, then binds the local variable ss with the actual resource
and operates over it.

Closest to our idea of resource-aware programming are the works presented in [5,
103]. The approach in [5] introduces a typesafe-oriented programming language by
extending the object paradigm with object states. Objects are modelled in terms
of changing states, rather than classes. The development of the resource-aware
programming Plaid, introduced in [103], follows the idea outlined above. Typesafe
programming, originally introduced in [102], expresses that each state of an object
has its own representation and methods (only these methods are available at the
object in this state) and may lead the object into a new state. The dynamics of
states allows developers to control program behaviour. In this sense, objects could
be though as be linked to a security policy to restrict the transitions of objects
from one state to another. In broader view of resources, objects can be considered
as resources, and therefore look similar to our notion of resources. The essential
difference between the typesafe approach and ours is that resources in our approach
are independent entities and we rely on loose coupling design to separate fragments
of code that use resources, from resources themselves, rather than scattering fixed
operations through a set of states of objects. More precisely, access control over
resources in the programming language [103] is more fine-grained than ours. This is
because the access control in [103] includes shared, immutable and exclusive accesses,
while our approach supports only exclusive resource accesses.

Future Work. A number of extensions is possible. Here we outline some of them
for future work.

• Model of Resources. We have defined resource policies as a set of traces.
It is quite useful to consider other formalisms such as c-semirings to exploit
constraint-based approach. Due to the nature of publish-subscribe paradigm,
we loose privacy of resources, i.e. every process knowing resource names po-
tentially access them. Instead of taking private names as resources, we extend

4.4. RELATED WORKS AND DISCUSSIONS 113

resources with privacy, that is, r can be also a private name. For instance,
consider the following example:

P ::= (νr)((r,ϕ, η){0} ‖ (r,ϕ, η){0} ‖ Q),

representing the situation where two identical resources are available under
a private name r for being used by processes knowing r (Q in this case).
The nature of private names with notion of group is not new, however the
new treatment of resource privacy could give a closer view of resource usages.
We believe that this view could potentially separate two important aspects of
resource usages:

i) an internal view, which focuses on the states of resources;

ii) an external view, which focuses on external information by processes that
request resources.

• Elasticity of resources vs Replication. Still in the spirit of the rules
[Appear] and [Disappear] of the Remark 4.1.5, one can advocate the structural
rule for the replication for the same purpose, however it requires that resource
instances must match exactly their syntax. More precisely, the replication can
be seen as the two following transition:

[Rep 1] !(r,ϕ, η){0} τ−→!(r,ϕ, η){0} ‖ (r,ϕ, η){0}
[Rep 2] !(r,ϕ, η){0} ‖ (r,ϕ, η){0} τ−→!(r,ϕ, η){0}

This is only true for a resource, where its instances have the same state. In
general, it could not be used for resource instances with different states.

• Polyadic Requests. It is desirable to have a polyadic requests since ob-
taining a bunch of resources is often seen as a scenario in cloud systems.
Unlike polyadic input/outputs, where synchronisation involves only two par-
ties, polyadic resource requests make transition rules more complicated as they
involve multiple parties.

• Resource Movement. The structural rule for resource management is un-
conditional. The closer view could specify some conditions to restrict the
movement of resources. For instance, in the robot scenario, it would be nice
if only a robot located at the same location of the item can take it. The
structural rule would have the following form:

(r2,ϕ2, η2){0} ‖ (r1,ϕ1, η1){P} ≡ (r1,ϕ1, η1){(r2,ϕ2, η2){0} ‖ P} if comp(η1, η2),

where comp(η1, η2) is a condition function on the states of the two resources.
Basically if it is true, it allows them to cross each others. This feature was
introduced in [32].

114 CHAPTER 4. THE G-LOCAL π-CALCULUS

• CFA implementation. Developing an efficient algorithm for computing CFA
estimates has not been addressed yet. To this purpose, we need suitable ab-
stractions of histories in order to reduce the complexity. Such issues are left
for future work.

Chapter 5

The Type and Effect System for
the G-Local π-Calculus

In this chapter, we develop a second static technique for the G-Local calculus. First,
an extension of G-Local π-calculus is presented for developing behavioural type
system. Starting from the behavioural types for the standard π-calculus [4], types
are equipped with resource-access actions α(R), where R is a finite set of resource
names over which α possibly acts.

Basically, types abstract two kinds of behavioural information: communication-
based and resource-based. The former describes the abstract behaviour of processes
on channels, i.e. the dependencies and interactions among channels as described in
[4, 62], while the latter describes the abstract resource behaviour of processes [66].
Our approach keeps the abstract behaviour on communications of the extended
type system as close as possible to [4]. At the same time, the type system allows to
extract the resource behaviour as side effects. To this end, a symmetric treatment
of input/output on channels is required. Moreover, effects are expressed in terms of
BPP processes, which are then used to model check regular linear time properties
of resource usages of processes.

5.1 Extension of the G-Local π-Calculus

The development of behavioural types that will be introduced in the next section
requires a minor extension of the G-local π-calculus. Following the approach of [4],
processes are annotated with type information. More precisely, the restrictions are
annotated with channel types, which will be defined in the next section, and a
different treatment of replication is used to reflect the behavioural correspondence
between processes and types. Again we reuse some notation introduced in the
previous chapters to describe resource and access actions. we introduce again the
needed notation and also the version of G-Local calculus, adapted for handling types.
The following notations will be used through this chapter.

116 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

Definition 5.1.1. Assume that N is a set of channel names (ranged over by
a, b, x, y, z), R is a set of resource names (ranged over by r, s), A is a set of ac-
tions (ranged over by α, β) for running over resources, and Φ is a set of policies
(ranged over by ϕ,ϕ′). Policies are defined by LTL formulas as illustrated in Chap-
ter 2. A special action rel 5∈ A is also assumed. We use w,w′ to range over channel
and resource names. We assume that these sets are pairwise disjoint.

Definition 5.1.2. The set Pegl of extended processes is defined as in def. 4.1.2.
There are two main exceptions: guarded replication is used and (νz)P is replaced
by (νz : t)P . For completeness, we report the syntax below.

P, P ′ ::= processes
0 empty process

| π.P prefix action
| P + P ′ choice
| P ‖ P ′ parallel composition
| (νx : t) P restriction
| !a(w).P replication
| (r,ϕ, η){P} resource joint point
| req(r){P} resource request point

π, π′ ::= action prefixes
a(w) free input

| āw free output
| τ internal action
| α(s) event action
| rel(s) event action

The notions of names n(), free names fn(), bound names bn() and substitution
{−/−} are defined as expected, except for the set of free names of annotated re-
strictions, where fn((νx : t)P) = fn(t) ∪ fn(P) \ {x}.

As in Section 4.1.1, we assume a notion of structural congruence, denoted by
≡. The structural congruence is the relation, reported in Fig. 5.1, that includes
the standard laws of the π-calculus, such as the monoidal laws for the parallel
composition and the choice operator. To preserve type information, as in [4, 63],
we require only the following rule for restriction: (νx : t)(P |Q) ≡ (νx : t)P |Q, if
x /∈ fn(Q). Notice that we do not have a structural rule for replication, but an
operational one.

The operational semantics of the calculus, reported in Fig. 5.2, extends the
standard semantics of π-calculus with suitable rules to deal with resource constructs.
Transitions are annotated with labels as in Chapter 4. We use the transition label
〈a〉 for communications. In the next section, we will see that communications occur
in the corresponding types of a process.

The operational semantics of the calculus, reported in Fig. 5.2 Apart from repli-
cation, the operational semantics are the same introduced in Chapter 4. The oper-
ational rule [Rep Comm] is added to handle the treatment of the replication. More

5.2. THE SYNTAX AND SEMANTICS OF TYPES 117

P ≡ Q if P and Q are α-equivalent
(P +Q) +R ≡ P + (Q+R) (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R)
P +Q ≡ Q+ P P ‖ Q ≡ Q ‖ P
P + 0 ≡ P P ‖ 0 ≡ P
(νx : t)P ‖ Q ≡ (νx : t)(P ‖ Q) x 5∈ fn(Q),

(r,ϕ, η){P1} ≡ (r,ϕ, η){P2} if P1 ≡ P2

req(r){P1} ≡ req(r){P2} if P1 ≡ P2

(νx)(r,ϕ, η){P} ≡ (r,ϕ, η){(νx)P}
(νx)req(r){P} ≡ req(r){(νx)P}
(r2,ϕ2, η2){0} ‖ (r1,ϕ1, η1){P} ≡ (r1,ϕ1, η1){(r2,ϕ2, η2){0} ‖ P}

Figure 5.1: Structural congruence.

precisely, an instance of a replication is instantiated when the replication performs
an action. A further small difference is that we use the transition label 〈a〉 for
communications.

In the next section, we introduce a type and effect system with the aim of
guaranteeing that well-typed processes never violate the required resource policies.

5.2 The syntax and semantics of types

This section introduces a type and effect system for the G-local π-calculus. The type
system prevents policy violations, and it is inspired by the type systems in [4, 14, 16].
In our proposal, effects are resource-based behavioural abstractions that annotate
types. The syntax of types is described by the following syntax.

5.2.1 Syntax of types

Definition 5.2.1. Assume that VT is a set of type variables, ranged over by X, Y .
We use Θ, ranged over by θ, θ′, to denote a set of finite set of pairs of resource names
and policies 〈r,ϕ〉.

(process types) T, T ′ ::= 0 |X | π.T | (νx : t) T | T + T ′ | T ‖ T ′ | !π.T
(prefix actions) π, π′ ::= τ | a(t) | a | α(R)

(resource types) u, u′ ::= res(θ)
(channel types) t, t′ ::= (x : t)T | (s : u)T | ()T, where x is a free name in T ,

where R is a non-empty finite set of resource names. With abuse of the notation,
we use π to denote the prefix actions. Function rn(θ) is defined to be the set of
resource names in θ, i.e. rn(θ) = {r|〈r,ϕ〉 ∈ θ}. A resource type res(θ) describes
the set of associations 〈r,ϕ〉 between resource names and usage policies. For the

118 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

[Act] π.P
π−→ P π 5= α(r), rel(r) [Cong]

P1 ≡ P ′
1 P ′

1
µ−→ P ′

2 P ′
2 ≡ P2

P1
µ−→ P2

[Par]
P1

µ−→ P ′
1

P1 ‖ P2
µ−→ P ′

1 ‖ P2

bn(µ) ∩ fn(P2) = ∅ [Choice]
P1

µ−→ P ′
1

P1 + P2
µ−→ P ′

1

[Res]
P

µ−→ P ′

(νx : t)P
µ−→ (νx : t)P ′

x 5∈ n(µ) [Open]
P

āx−→ P ′

(νx : t)P
ā(x)−−→ P ′

x 5= a

[Comm]
P1

āy−→ P ′
1 P2

a(z)−−→ P ′
2

P1 ‖ P2
〈a〉−−→ P ′

1 ‖ P ′
2{y/z}

[Close]
P1

a(z)−−→ P ′
1 P2

ā(y)−−→ P ′
2

P1 ‖ P2
〈a〉−−→ (νy)(P ′

1 ‖ P ′
2{y/z})

[ActR]
α(r).P

α?r−−→ P

rel(r).P
rel?r−−−→ P

[CommR]
P1

x̄r−→ P ′
1 P2

x(s)−−→ P ′
2

P1 ‖ P2
〈a〉−−→ P ′

1 ‖ P ′
2{r/s}

[Rep Comm] !a(w).P
a(w)−−−→ P ‖!a(w).P

[Acquire] req(r){P} ‖ (r,ϕ, η){0} τ−→ (r,ϕ, η){P}

[Release]
P

rel?r−−−→ P ′

(r,ϕ, η){P} rel(r)−−−→ (r,ϕ, η.rel){0} ‖ P ′

[Policy1]
P

α?r−−→ P ′ η.α |= ϕ

(r,ϕ, η){P} τ−→ (r,ϕ, η.α){P ′}
[Policy2]

P
α?r−−→ P ′ η.α 5|= ϕ

(r,ϕ, η){P} τ−→ (r,ϕ, η){0} ‖ [P ′]r

[Local1]
P

µ−→ P ′

(r,ϕ, η){P} µ−→ (r,ϕ, η){P ′}
r 5∈ n(µ) [Local2]

P
µ−→ P ′

req(r){P} µ−→ req(r){P ′}
r 5∈ n(µ)

Figure 5.2: Operational Semantics of G-Local π processes.

5.2. THE SYNTAX AND SEMANTICS OF TYPES 119

resource type res(θ) of a resource r, we assume that rn(θ) = {r}. A type T is called
closed if it does not contain any type variable. A type T is called open if it contains
type variables. The set of closed types is denoted by T0.

Remark 5.2.2. In this section, we consider only closed types. Open types are used
in the type inference algorithm, which will be presented in the next section.

As expected, the notion of free and bound names applies to types as well.

fn(0) = ∅ fn(res(θ)) = rn(θ)
fn(!a(t).T) = fn(a(t).T) fn(α(R).T) = R ∪ fn(T)
fn(a(t).T) = {a} ∪ fn(t) ∪ fn(T) fn(ā.T) = {a} ∪ fn(T)
fn(τ.T) = fn(T) fn(T + T ′) = fn(T) ∪ fn(T ′)
fn(T ‖ T ′) = fn(T) ∪ fn(T ′) fn((νx : t)T) = fn(t) ∪ fn(T) \ {x}
fn((x : t)T) = fn(t) ∪ fn(T) \ {x} fn((s : u)T) = fn(u) ∪ fn(T) \ {s}

fn(0) = ∅ fn(res(θ)) = ∅
bn(!a(t).T) = bn(a(t).T) bn(α(R).T) = bn(T)
bn(a(t).T) = bn(T) bn(ā.T) = bn(T)
bn(τ.T) = bn(T) bn(T + T ′) = bn(T) ∪ bn(T ′)
bn(T ‖ T ′) = bn(T) ∪ bn(T ′) bn((νx : t)T) = {x} ∪ bn(T)
bn((x : t)T) = {x} ∪ bn(T) bn((s : u)T) = {s} ∪ bn(T)

Note that t in a process type a(t).T contributes (with its free names) to the set of
free names of that type, and the same holds for a channel type (x : t)T where t
provides a similar contribution.

Notation 5.2.3. For the sake of simplicity, we write y#T for y 5∈ fn(T). This
notation extends to a set R of resources, i.e. R#T .

Behavioural types T look like CCS terms and describe how a process accesses a
resource and communicates over channels. As usual, x in a channel type (x : t)T
acts as a binder for x with the scope T . We assume that x ∈ fn(T) and T does not
contain any action prefix α(R). A channel, capable of receiving a resource names,
has the special channel type (s : u)T , where u is a resource type.

The type µ.T describes a process that performs the action µ and then behaves
as prescribed by T . In particular, a(t).T describes a process in which the channel a
can carry names of channel type t. Similarly, α(R).T describes a process that can
perform an access action α on resources that belong to the finite set R. Intuitively,
R represents the set of resource names, on which the action α may be performed at
run-time.

We use T{b/x} (T{r/s} resp.) to denote substitution of x (s, resp.) with b (r,
resp.). The notion of substitution also apply to 〈r,ϕ〉 and Φ as expected. For the
sake of simplicity, we write y#T for y ∈ fn(T) that extends as R#T for a finite set
R of resource names.

120 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

T ≡ T ′ if T ′ is α-equivalent of T
T ‖ 0 ≡ 0 ‖ T = T T + 0 ≡ 0+ T ≡ T
T1 + T2 ≡ T2 + T1 T1 ‖ T2 ≡ T2 ‖ T1

(T1 + T2) + T3 ≡ T1 + (T2 + T3) (T1 ‖ T2) ‖ T3 ≡ T1 ‖ (T2 ‖ T3)

Figure 5.3: Structural Congruence on Types

[bt act] π.T
π−→ T [bt cong]

T1 ≡ T ′
1 T ′

1
µ−→ T ′

2 T ′
2 ≡ T2

T1
µ−→ T2

[bt par]
T1

µ−→ T ′
1

T1 ‖ T2
µ−→ T ′

1 ‖ T2

[bt choice]
T1

µ−→ T ′
1

T1 + T2
µ−→ T ′

1

[bt res]
T

µ−→ T ′ µ 5= x(t), x̄

(νx)T
µ−→ (νx)T ′

[bt comm]
T1

ā−→ T ′
1 T2

a−→ T ′
2

T1 ‖ T2
〈a〉−−→ T ′

1 ‖ T ′
2

[bt rep] !a.T
a−→!a.T ‖ T

Figure 5.4: Operational Semantics of Types.

5.2.2 Operational Semantics

Since types are equipped with behavioural information, one has to precisely define
their meaning. The semantics of types, reported in Tab. 5.4, is defined through a
labelled transition system, similar to the one defined for processes in Section 2.4.4.
Labels µ, µ′ for transitions are τ for silent actions, a, ā for abstract input/output,
α(R) for resource-access actions and 〈a〉 for communications. Formally, the labelled
transition system is based on the structural congruence on types that includes those
defined in Section 3 of Chapter 2 and is defined in Fig. 5.3.

Now we are ready to comment on semantic rules. The rule [bt act] describes
actions of types. A type µ.T performs an action µ, then behaves like P . In the rule
[bt cong], congruent types can perform the same action. The rule [bt par] expresses
the parallel behaviour of types, while the rule [c choice] represents a choice among
alternatives. The rule [bt comm] is used to synchronise a free name. The rule [bt res]
manages restrictions. The rule [bt res] ensures that an action µ of T is also an action
of (νx)T , if the action is not restricted by x, i.e µ 5= x(t) and µ 5= x, otherwise µ
becomes τ of (νx)T as in the rule [bt res2]. Finally, the rule [bt rep] instantiates an
instance of !a(t).T by performing a(t). The result is the parallel composition of T
and !a(t).T .

5.3. TYPING SYSTEMS 121

5.3 Typing systems

We now introduce the type and effect system. As usual, a context Γ is a map from
a channel name/resource name to channel/resource types. We write Γ : a : t if
a ∈ dom(Γ) and Γ(a) = t. Judgements of the type system have form Γ : P : T,E,
where Γ is a context, P ∈ P, T ∈ T and E is a set of resource constraints. The
intuitive reading of Γ : P : T,E is that T is the abstract behaviour of P and E
describes the side effects occurring when P executes.

Definition 5.3.1. Let Γ be a context. We say that Γ is well-formed if whenever
Γ : a : (x : t)T then fn(t, T) ⊆ {x} ∪ dom(Γ).

Convention 5.3.2. From now on, we only consider well-formed contexts, unless
stated otherwise.

A resource constraint 6 has the form ϕ〈T 〉 or 〈T 〉ϕ, where T ∈ T and ϕ ∈ Φ. We
use ξ to denote the empty resource constraint. Intuitively, T in ϕ〈T 〉 or 〈T 〉ϕ has
to be understood as a fragment of usages on a resource associated with the policy
ϕ. Resource constraints are thus considered as forms of side effects, which record
a fragment of the resource behaviour of processes with respect to a usage policy.
The form ϕ〈T 〉 means that T is the initial fragment of usage, while 〈T 〉ϕ describes
a fragment of usage that is performed by a process. We use the symbol ∨ to union
the resource constraints. By abuse of notation, we use ≡ to denote ϕ〈T 〉 ≡ ϕ〈T ′〉
whenever T ≡ T ′. Furthermore, given sets E and E ′ of resource constraints, we write
E ≡ E ′ to denote congruent resource constraints, namely, if there is a bijective map
f from E to E ′ such that for each 6 ∈ E, 6 ≡ f(6).

Before going into details of the judgement rules, we introduce some auxiliary def-
initions. To handle the infinite behaviour of the guarded replication, we introduces
a new operator !# on side effects. Intuitively, all the resource constraints in E are
infinitely repeated as the result of replication. Formally, it is defined as follows

!#(E ∨ ϕ〈T 〉) =!#E ∨ ϕ〈!T 〉 !#(E ∨ 〈T 〉ϕ) =!#E ∨ 〈!T 〉ϕ !#ξ = ξ

Remark 5.3.3. The operator !# on effects yields to a result in an infinite number
of parallel resource usages. Alternatively, the operator could have been defined
sequentially, i.e. an infinite concatenation of resource usages. However, this could
lead to undecidable type inference algorithm as we will see in the next section.

We introduce the hiding operator on closed types. The type T↓R describes a
process that behaves like T , except that actions that are not related toR are replaced
by invisible actions τ . Intuitively, T↓R represents the abstract resource behaviour on

122 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

R extracted from T . Formally, it is defined as follows:

0↓R = 0 (τ.T)↓R = τ.T↓R

(α(R′).T)↓R =

{
α(R ∩ R′).T↓R if R ∩ R′ 5= ∅
τ.T↓R if R ∩ R′ = ∅ ((νx).T)↓R = T↓R

(a.T)↓R = τ.T↓R (ā.T)↓R = τ.T↓R
(T1 + T2)↓R = T1↓R + T2↓R (T1 ‖ T2)↓R = T1↓R ‖ T2↓R
(!a.T)↓R =!(a.T)↓R

Similarly, the type T↑R describes a process that behaves like T , except that actions
over resources included in R are replaced by invisible actions τ . Intuitively, T↑R rep-
resents the abstract behaviour extracted from T by removing the resource behaviour
on R.

0↑R = 0 (τ.T)↑R = τ.T↑R

(α(R′).T)↑R =

{
α(R \R′).T↑R if R \R′ 5= ∅
τ.T↑R if R \R′ = ∅ ((νx).T)↑R = (νx).T↑R

(a.T)↑R = a.T↑R (ā.T)↑R = ā.T↑R
(T1 + T2)↑R = T1↑R + T2↑R (T1 ‖ T2)↑R = T1↑R ‖ T2↑R
(!a.T)↑R =!(a.T)↑R

These “hiding” operators selectively mask part of the actions and resemble the con-
structors introduced in [4]. However, in our proposal these operators are specialised
to distinguish between access actions and all the other actions.

Convention 5.3.4. We often write T↑r (T↓r) for T↑{r} (T↑{r}, resp.) and T↑ (T↓)
for T↑R (T↑R, resp.).

The rules of the type system are given in Tab. 5.5. The rules [ts par], [ts choice],
[ts res], [ts act], [ts tau] and [ts rep] are similar to those in Section 2.4.4. In the
rules [ts par] and [ts choice], the resulting type is the composition of types of the
components, while in the rules [ts res], [ts act] and [ts tau], the resulting type ex-
tends the types of the premise to reflect the structure of processes. Also note that
in the rules [ts par] and [ts choice] the resource constraints of the components are
embedded in the resulting type, while in [ts res], [ts act] and [ts tau], the resource
constraints remain the same. In the rule [ts rep], all the resource constraints of the
conclusion are obtained as result of the operator !#.

In the rule [ts act], a resource variable is replaced by the set of its possible names,
i.e. rn(Θ). In the rule [ts input res], the type of P in a(s).P is split into T1 and T2

with the condition that s#T1. This condition guarantees that all information about
s is included in T2. Furthermore, the abstraction of communication-based behaviour
encoded in T2 (obtained by excluding resource behaviour T2↑), must exactly match
Ta, that describes the usage of argument s in the process P when s is received on
channel a. Notice that the split T1 ‖ T2 also splits resource behaviour into two parts.

5.3. TYPING SYSTEMS 123

[ts empty] Γ : 0 : 0, ξ

[ts output]
Γ : P : T1, E Γ : a : (y : t)T2 Γ : b : t

Γ : āb.P : ā.(T1 ‖ T2{b/y}), E

[ts output res]
Γ : P : T1, E Γ : a : (s : res(Θ))T2 Γ : r : res(Θr) Θr ⊆ Θ

Γ : ār.P : ā.(T1 ‖ T2{r/s}), E

[ts input]
Γ, y : t : P : T1 ‖ T2, E Γ : a : (y : t)Ta T2↑ = Ta y#T1

Γ : a(y).P : a.(T1 ‖ T2↓), E

[ts input res]
Γ, s : t : P : T1 ‖ T2, E Γ : a : (s : u)T2 T2↑ = Ta s#T1

Γ : a(s).P : a.(T1 ‖ T2↓), E

[ts choice]
Γ : P1 : T1, E1 Γ : P2 : T2, E2

Γ : P1 + P2 : T1 + T2, E1 ∨ E2

[ts par]
Γ : P1 : T1, E1 Γ : P2 : T2, E2

Γ : P1 ‖ P2 : T1 ‖ T2, E1 ∨ E2

[ts rep]
Γ : a(w).P : T,E

Γ :!a(w).P :!T, !#E

[ts res]
Γ : x : t : P : T,E

Γ : (νx)P : (νx)T,E

[ts act]
Γ : P : T,E Γ : s : res(Θ) R = rn(Θ)

Γ : α(s).P : α(R).T,E

[ts tau]
Γ : P : T,E

Γ : τ.P : τ.T,E

[ts resjoin]
Γ : P : T,E Γ : r : res(Θ) 〈r,ϕ〉 ∈ Θ

Γ : (r,ϕ, η){P} : T↑{r}, E ∨ ϕ〈η.T↓{r}〉

[ts resreq]
Γ : P : T,E Γ : s : res(Θ) R = rn(Θ)

Γ : req(s){P} : T↑R, E ∨
∨
〈r,ϕ〉∈Θ〈η.T↓{r}〉ϕ

[ts eq]
Γ : P : T,E T ≡ T ′ E ≡ E′

Γ : P : T ′, E′

Figure 5.5: Typing rules.

124 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

Out treatment of resource requires that resource information must be maintained in
both sides (senders and receivers). That is, the rule requires to keep the abstraction
of resource behaviour of T2, i.e. T2↓ , in parallel with T1. For example, consider a
process

(r,ϕ, ε){α(r).0 ‖ a(y).β(r).y.0} ‖ ā〈b〉.0

Here, y causally depends on β(r), hence the type of a must depend on β(r),
i.e. β(r).y.0. In result, β(r).y.0 is transferred to sender when typing the input sub-
process a(y).β(r).y.0, therefore we end up loosing β(r) when typing (r,ϕ, ε){α(r).0 ‖
a(y).β(r).y.0}, where α(r).0 ‖ a(y).β(r).y.0 has the type α(r).0 ‖ 0. Consequently,
incorrect resource usages are obtained.

In the rule [ts output res], the type ār.P is the parallel composition of the type
of P and the continuation Ta{r/s} with the actual argument r, provided that a has
the type (s : res(Θ))Ta. In addition, the rule [ts output res] requires that Θr in the
resource type of r is included in the set Θ, declared by the channel a.

In the rules [ts resjoin] and [ts resreq], the resource-based abstractions are ex-
tracted from the behavioural type of P . A set of newly generated resource con-
straints are added to the side effect. More precisely, in the rule [ts resjoin], the
resource behaviour of P on r, i.e T↓r, and the policy ϕ declared by r form a resource
constraint on usages of r. Similarly, in the rule [ts resreq], a resource constraint is
generated for each pair 〈r,ϕ〉 declared in s.

Finally, the rule [ts eq] is related to sub-typing. The structural congruence used
in this rule, instead of preorders, is a key point of the type system to maintain
spatial structure of processes in types.

We are now ready to define the satisfaction of a policy for a given type. A type
T satisfies a policy ϕ if the set of its traces is included in that policy. Recall that
policies are expressed as LTL formulas and that we use Traces(T) to denote a set
of traces, which are generated by T . Formally, we have:

Definition 5.3.5. Given a T ∈ T0 and a policy ϕ, we say that T satisfies ϕ, denoted
by T |= ϕ, if Traces(T) ⊆ ϕ.

Resource policies can be either local or global, which leads to two ways of inter-
preting a given set E of resource constraints 〈Ti〉ϕ (or ϕ〈Ti〉) of a given policy ϕ.
In the global case, to check a given set of resource constraints 〈Ti〉ϕ (or ϕ〈Ti〉) one
needs to simultaneously check all of them together. This amounts to checking all
Ti in parallel. In the local case, more simply, we need to individually check each Ti

against the policy.
We are now ready to define the notion of well-typedness.

Definition 5.3.6 (Local Satisfaction). Given a finite set E of resource constraints
〈Ti〉ϕ (or ϕ〈Ti〉) of a given policy ϕ, we say that E is locally satisfied if for each
〈Ti〉ϕ (or ϕ〈Ti〉), Ti |= ϕ

5.3. TYPING SYSTEMS 125

Definition 5.3.7 (Global Satisfaction). Given a finite set E of resource constraints
〈Ti〉ϕ (or ϕ〈Ti〉) of a given policy ϕ, where i ∈ I (I is the indexing set), we say that
E is globally satisfied if

∏
I Ti |= ϕ, where

∏
denotes the parallel operator of Ti.

We say that E is satisfied, if it is either locally or globally satisfied.

Definition 5.3.8. Given a well-formed context Γ, a process P is locally (globally,
resp.) well-typed under Γ if Γ : P : T,E, T ∈ T0, and all the resource constraints in
E are locally (globally, resp.) satisfied. We say that P is well-typed under Γ if it is
either locally or globally well-typed under Γ.

Remark 5.3.9. Notice that the notion of well-typedness is defined under Γ. This
means that information about channel types is given. Our type system assigns types
to processes under a fixed type environment. Consider the following process:

P = a(y).(ȳ〈y〉 ‖ ā〈a〉 ‖ b̄〈b〉)

If we do not fix Γ, according to the rule [ts input], P can either be typed by letting
T1 be the type of ȳ〈y〉 or the type ȳ〈y〉 ‖ ā〈a〉. Hence, without type information,
the type system does not guarantee the uniqueness typing.

Remark 5.3.10. The notion of well-typedness guarantees that a well-typed process
correctly uses resources. However, this does not meant that a well-typed process
can not fail (as a result of performing an open action). Consider the process α(r).0.
It is well-typed under Γ # r : 〈r,ϕ〉 as follows:

Γ : α(r).0 : α(r).0, ξ

However, it can perform an open action α?r.

5.3.1 Examples

Storage Service. We consider a storage service with a finite set A of update
actions, divided into two groups Aα and Aβ , such that each αi ∈ Aα and its counter-
part βi ∈ Aβ make a pair of action/co-action. The policy of the storage requires
that once an action is performed, its co-action is forbidden. The global policy is
formally defined by the following LTL formula:

ϕss :=
∧

i∈I G((αi → G¬βi) ∧ (βi → G¬αi)),

where I is an index set of Aα and Aβ.
Let us consider a system consisting of a storage service and three client applica-

tions. Assume that the storage system is specified as follows:

126 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

App1 = req(ss){α1(ss) + α2(ss)}
App2 = req(ss){β3(ss) + α3(ss)}
App3 = req(ss){β2(ss) + α1(ss)}
Storage = (ss,ϕss, ε){0}
System = Storage ‖ App1 ‖ App2 ‖ App3

We assume that the type environment Γ contains only ss : 〈ss,ϕss〉. The types
of the systems are as follows:

Γ : App1 : τ + τ, E1

Γ : App2 : τ + τ, E2

Γ : App3 : τ + τ, E3

Γ : Storage : 0, E4

Γ : System : τ + τ ‖ τ + τ ‖ τ + τ, E,

where
E1 = 〈α1 + α2〉ϕss

E2 = 〈β3 + α3〉ϕss

E3 = 〈β2 + α1〉ϕss

E4 = ϕss〈0〉
E = E1 ∧ E2 ∧ E3 ∧ E4

It is easy to see that the client applications App1 and App3 have a conflict as
their update actions α2 and β2 are co-actions.

Mobile Reader. Consider again the example used in Chapter 2, i.e. consider
reading e-books from an online store on tablet devices. A user, when reading an
e-book, may write some annotations. The way of using the online store depends on
which kind of connections, low-bandwidth or high-bandwidth, a tablet device has.
In the former case, the tablet needs to load an e-book from the store to its local
memory before any other actions and if a user makes annotations on the e-book, it
requires to store them back on the online store. In the latter case, the user directly
reads/writes e-books, however it is required that the user eventually releases the
connection due to the high cost of the connection itself. We use rd, wr, ld and st to
model operations of reading e-books, writing annotations, loading e-books from the
online store to local memory and storing them back to the online store, respectively.

We use rh and rl to denote high-bandwidth and low-bandwidth connection re-
sources, respectively. Similarly ϕl and ϕh denote policies for low-bandwidth and
high-bandwidth connections, respectively. Formally, ϕl and ϕh are defined by the
following LTL formulas:

i) ϕl = (ld)true∧ (G(wr → Fst)), that requires that load is the first action and
every write will eventually lead to a store operation;

ii) ϕh = F rel, that requires that eventually in the future rel holds.

5.3. TYPING SYSTEMS 127

The specification of the two tablet devices and of the two connections is the following:

connectionl ::= (rl,ϕl, ε){0} ‖!x̄〈rl〉
tablet1 ::=!x(s).req(s){ld(s).(rd(s).rel(s) + wr(s).st(s).rel(s))}
connectionh ::= (rh,ϕh, ε){0} ‖!x̄〈rh〉
tablet2 ::=!x(s).req(s){read(s) + write(s) + rel(s)}
System1 ::= connectionl ‖ connectionh ‖ tablet1
System2 ::= connectionl ‖ connectionh ‖ tablet2

The first device tablet1 always loads e-books to the local memory, and stores annota-
tions after writing them. The second device tablet2 works fine with high-bandwidth
connection, since it guarantees read/write operations without loading e-books on
local memory.

Now we consider the types of System1 and System2 in details. First, we assume
a type environment Γ such that s and x have the following types:

Γ : x : (s : res({rlb, rhb}, {ϕlh,ϕlh}))0
Γ : s : res({rlb, rhb}, {ϕlh,ϕlh})

The result of the typing process is as follows:

Γ : x : (s : res({rlb, rhb}, {ϕlh,ϕlh}))0
Γ : s : res({rlb, rhb}, {ϕlh,ϕlh})
Γ : tablet1 :!x.τ(τ.τ + τ.τ.τ), !E1

Γ : tablet2 :!x.τ.τ.τ, !E2

Γ : connectionhb :!x̄, E3

Γ : connectionhb :!x̄, E4

Γ : System1 :!x ‖!x.(τ(ττ + τττ)) ‖!x̄ ‖!x̄, E1 ∧ E3 ∧ E4

Γ : System2 :!x ‖!x.(τ + τ + τ) ‖!x̄ ‖!x̄, E1 ∧ E3 ∧ E4

where
E1 = 〈T1〉ϕhb ∧ 〈T1〉ϕlb

E3 = ϕhb〈0〉
E4 = ϕlb〈0〉
E = E1 ∧ E3 ∧ E4

T1 = load.(rd.rel + wr.st.rel)
T2 = rd+ wr + rel

A fragment of the typing is the following:

...

: ld(s).(rd(s).rel(s) + wr(s).st(s).rel(s)) : l(R).(rd(R).rel(R) + wr(R).st(R).rel(R)), true
: req(s){ld(s).(rd(s).rel(s) + wr(s).st(s).rel(s))} : τ(τ.τ + τ.τ.τ), C1

: x(s).req(s){ld(s).(rd(s).rel(s) + wr(s).sr(s).rel(s))} : x.τ(τ.τ + τ.τ.τ), C1

...

Γ : System1 :!x.τ(τ.τ + τ.τ.τ) ‖!x.τ.τ.τ ‖!x̄ ‖!x̄, C1 ∧ C3 ∧C4

128 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

To prove the validity of connection usages of the tablet devices, we need to check
whether the types T1 = ld.(rd.rel + wr.st.rel) of tablet1 and T2 = rd+ wr + rel of
tablet2 satisfy ϕl and ϕh or not. The result of type checking shows that T1 represents
a valid usage of both connections, i.e. the first device uses them correctly, unlike
the second device. We find indeed an infinite trace with only read/write operations
that violates ϕh, as it never releases the connection on that trace. This source of
infinity can be effectively handled by our treatment of replication. More precisely,
the replication of a resource usage can be seen as an infinite number of parallel
usages of the resource. Note that this is also a source of imprecision because of
interleaving behaviours.

5.3.2 Properties of the Type System

The main goal of this section is to prove the subject reduction property of the type
system. To prove it and better understand the type system, we first study some basic
properties of the type system. The first property we consider is the normal form
of type derivations, which can be thought as syntax-directed type derivation. Next,
we prove the type inversion theorem, which shows the structural correspondence
between processes and types. Then, we study types of congruent processes (the
subject congruence theorem). Basically, congruent processes have the same type.
Finally, we introduce the notion of simulation on types, denoted by C. Intuitively,
the relation C models the subtyping relation on types, i.e. if T1 C T2, then T1 is able
to simulate what T2 can do.

Definition 5.3.11. A simulation C is the largest binary relation on closed process
types such that whenever T1 C T2

• if T1
l→ T ′

1, where l ∈ {a, ā, 〈a〉} then there exists T ′
2 s.t. T2

l→ T ′
2 and T ′

1 C T ′
2.

• if T1
τ→ T ′

1 then there exists T ′
2 s.t. T2

τ→
∗
T ′
2 and T ′

1 C T ′
2.

• if T1
α(S)→ T ′

1 then there exist T ′
2 and S ′ s.t. T2

α(S′)→ T ′
2 such that S ⊆ S ′ and

T ′
1 C T ′

2.

We write T1 ∼ T2 for T1 C T2 and T2 C T1.

Note that our definition differs from the standard [82] in the third clause, where a
set of possible resource names of α in T2 is at least as in T1.

Normal Derivation.

Definition 5.3.12. A type derivation Γ : P : T,E is called normal, denoted by
Γ :N P : T,E, if the rule [ts eq] is applied immediately above the rules [ts input]
and [ts input res].

5.3. TYPING SYSTEMS 129

In the following lemma, some basic properties of types are proved. More precisely,
In the clause (1) congruent types have the same set of traces, while in the clause (2)
congruent types satisfy the same usage policies. The property (3) says that if a name
is not included in the set of free names of a given process, then it is also not included
in the type of that process. The next two properties are essential for proving the
subject reduction theorem (see below). The property (4) states that excluding a
resource from a given type does not get any new behaviour. The property (5) states
that the operator of splitting a given type into two parts, namely resource-based
and communication-based, preserves all behaviour of that type. The last property
(6) shows that congruence of types is preserved under the “hiding” operators.

Lemma 5.3.13 (Basic Properties).

(1) If given T1, T2 ∈ T0, T1 ≡ T2 then Traces(T1) = Traces(T2).

(2) If given T1, T2 ∈ T0, T1 |= ϕ and T1 ≡ T2 then T2 |= ϕ.

(3) If Γ : P : T,E and a#P then a#T .

(4) T↑r C T for any T ∈ T0.

(5) T C T↑ ‖ T↓ for any T ∈ T0.

(6) Given T, T ′ ∈ T0. If T ≡ T ′, then T↓R ≡ T ′
↓R and T↑R ≡ T ′

↑R .

Proof. (1) It is straightforward by induction on the structure of T1.

(2) It is immediate from (1).

(3) The proof proceeds by standard induction on the derivation of Γ : P : T,E.

(4) We need to prove that R = {(T↑r, T)|T ∈ T0}∪{(T, T)|T ∈ T0} is a simulation
relation. The proof proceeds by induction on the structure of T . Most of the
cases are obvious. We consider the most interesting cases.

– The case of T = α(R).T ′: we have that T↑r
α(R\{r})→ T ′

↑r. We need to show

that there exist T ′′ and R′ such that T
α(R)→ T ′′ and (T ′

↑r, T ′′) ∈ R. Let

T ′′ def
= T ′ and R′ def

= R. Since T
α(R)→ T ′ ,R \ {r} ⊆ R and (T ′

↑r, T ′) ∈ R,
the required result follows.

(5) It is sufficient to show that R = {(T, T↓ ‖ T↑)|T ∈ T0} ∪ {(T, T)|T ∈ T0} is a
simulation relation. The proof is standard.

(6) It is straightforward by induction on the structure of T .

130 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

The normal derivation theorem given below states that, from any type derivation,
it is possible to obtain a “syntax-directed” type derivation of the same conclusion. It
is useful for studying the corresponding structure between a process and its process
type.

Theorem 5.3.14 (Normal Derivation). If Γ : P : T,E, then Γ :N P : S,E ′ for
some S ≡ T and E ≡ E ′.

Proof. The proof is by induction on the derivation of Γ : P : T,E by distinguish-
ing the last typing rule applied. Many cases are obvious. We consider the most
interesting cases.

• the case of the rule [ts input]: Consider the judgement

Γ : a(y)P : a.(T1 ‖ T2↓), E

which is deduced from

Γ, y : t : P : T1 ‖ T2, E Γ : a : (y : t)Ta T2↑ = Ta y#T1.

By induction hypothesis, we have Γ, y : t :N P : S,E ′, where S ≡ T1 ‖ T2

and E ≡ E ′. By applying the rule [ts eq] to Γ, y : t :N P : S,E ′, we have the
required result:

Γ :N a(y)P : a.(T1 ‖ T2↓), E
′.

• the case of the rule [ts input res]: Consider the judgement

Γ : a(s)P : a.(T1 ‖ T2↓), E

which is deduced from

Γ, s : u : P : T1 ‖ T2, E Γ : a : (s : u)Ta T2↑ = Ta s#T1.

By induction hypothesis, we have Γ, s : u :N P : S,E ′, where S ≡ T1 ‖ T2

and E ≡ E ′. By applying the rule [ts eq] to Γ, s : u :N P : S,E ′, we have the
required result:

Γ, s : u :N a(y)P : a.(T1 ‖ T2↓), E
′.

• the case of the rule [ts res join]: Consider the judgement

Γ : (r,ϕ, η){P} : T↑r, E ∨ ϕ〈η.T↓ 〉

which is deduced from

Γ : P : T,E Γ : r : res(Φ) 〈r,ϕ〉 ∈ Φ.

By induction hypothesis, we have Γ :N P : T ′, E ′, where T ′ ≡ T and, hence by
the structural rules it implies that T↑r ≡ T ′

↑r and E∨ϕ〈η.T↓r〉 ≡ E ′∨ϕ〈η.T ′
↓r〉.

We can thus obtain the required result

Γ :N (r,ϕ, η){P} : T ′
↑r, E ∨ ϕ〈η.T ′

↓r〉

5.3. TYPING SYSTEMS 131

Example 5.3.15. Let us consider the following process (for the sake of simplicity,
we omit the trailing 0) :

P = a(y).(ȳ ‖ c̄ ‖ b̄)

under the type environment Γ = a : (y : ()0)(ȳ ‖ b̄), b : ()0, c : ()0. The process P
has a non-normal type derivation as described below:

...

Γ : ȳ : ȳ, ξ

...

Γ : c̄ ‖ b̄ : c̄ ‖ b̄, ξ

Γ : c̄ ‖ b̄ : b̄ ‖ c̄, ξ
[ts eq]

Γ : ȳ ‖ c̄ ‖ b̄ : ȳ ‖ b̄ ‖ c̄, ξ
[ts par]

Γ : P : a.c̄, ξ
[ts input]

By swapping the rules [ts eq] and [ts par] in the above type derivation, we can
obtain the normal type derivation for P :

...

Γ :N ȳ : ȳ, ξ

...

Γ :N c̄ ‖ b̄ : c̄ ‖ b̄, ξ

Γ :N ȳ ‖ c̄ ‖ b̄ : ȳ ‖ c̄ ‖ b̄, ξ
[ts par]

Γ :N ȳ ‖ c̄ ‖ b̄ : ȳ ‖ b̄ ‖ c̄, ξ
[ts eq]

Γ :N P : a.c̄, ξ
[ts input]

Convention 5.3.16. From now on, we consider Γ : P : T,E up to equivalence of
the resource constraint E, unless stated otherwise.

Type Inversion. The type inversion lemma allows us to reveal the structure of
a type of a given well-typed process. We state the weaken and contraction lemma
first, then the type inversion lemma. The weakening property says that a fresh name
in a type derivation can be added to the context of that type derivation, while the
contraction property says that a name in a type derivation that is fresh to a typed
process can be excluded from the context of that type derivation.

Lemma 5.3.17 (Weakening and Contraction).

1 (Weakening) If Γ is well-formed, Γ : P : T,E and x#P, x#Γ, and x#E then
Γ, x : t : P : T,E.

2 (Contraction) If Γ is well-formed, Γ, x : t : P : T,E and x#P,Γ, then Γ : P : T,E.

Proof. It is straightforward by induction on the derivation of Γ : P : T,E by dis-
tinguishing the last typing rule applied. Many cases are obvious. We consider the
most interesting cases.

(1) Weakening:

132 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

• the case of the rule [ts input]: given that Γ : a(y)P : a.(T1 ‖ T2↓), E is ob-
tained from

Γ, y : t′ : P : T1 ‖ T2, E Γ : a : (y : t′)Ta T2↑ = Ta y#T1.

We can safely assume that x 5= y (by α-conversion if necessary). By induction
hypothesis, we have Γ, x : t, y : t′ : P : T1 ‖ T2, E. This implies the required
result

Γ, x : t : a(y)P : a.(T1 ‖ T2↓), E.

• the case of the rule [ts input res]: given that Γ : a(s)P : a.(T1 ‖ T2↓), E which
is obtained from

Γ, s : u : P : T1 ‖ T2, E Γ : a : (s : u)Ta T2↑ = Ta s#T1.

We can safely assume that x 5= s (by α-conversion if necessary). By induction
hypothesis, we have Γ, x : t, s : u : P : T1 ‖ T2, E. This implies the required
result

Γ, x : t : a(y)P : a.(T1 ‖ T2↓), E

(2) Contraction:

• the case of the rule [ts input]: given that Γ, x : t : a(y)P : a.(T1 ‖ T2↓), E
which is obtained from

Γ, x : t, y : t′ : P : T1 ‖ T2, E Γ : a : (y : t′)Ta T2↑ = Ta y#T1.

By induction hypothesis, we have Γ, y : t′ : P : T1 ‖ T2, E. This implies the
required result Γ : a(y)P : a.(T1 ‖ T2↓), E.

• the case of the rule [ts input res]: given that Γ, x : t : a(s)P : a.(T1 ‖ T2↓), E
which is obtained from

Γ, x : t, s : u : P : T1 ‖ T2, E Γ : a : (s : u)Ta T2↑ = Ta s#T1.

By induction hypothesis, we have Γ, s : u : P : T1 ‖ T2, E. This implies the
required result Γ : a(y)P : a.(T1 ‖ T2↓), E.

The inversion lemma given below shows that we can obtain the shadow structure of
a process reflected in its type.

Lemma 5.3.18 (Type Inversion). Given Γ :N P : T,E, Γ : a : (x : t)Ua, Γ :N r : res(Φr),
Γ : c : (x : res(Φ))Uc and Γ :N b : t,. Then for any Q,Q1, Q2 and π.Q, it holds that:

5.3. TYPING SYSTEMS 133

• 1. If P = a(x).Q, then T = a.(S ‖ U↓) for some S such that Γ :N Q : S ‖ U,E,
x#S and U↑ = Ua.

• 2. If P = c(s).Q, then T = a.(S ‖ U↓) for some S such that Γ :N Q : S ‖ U,E,
x#S and U↑ = Uc.

• 3. If P = āb.Q then T = ā.(S ‖ S ′) for some S such that Γ :N Q : S,E and
S ′ = Ua{b/x}.

• 4. If P = ār.Q then T = ā.(S ‖ S ′) for some S such that Γ :N Q : S,E,
Φa ⊆ Φ and S ′ = Ua{r/x}.

• 5. If P = τ.Q then T = τ.S for some S such that Γ :N Q : S,E.

• 6. If P = (νx)Q then T = (νx)S for some S and t′ such that Γ, z : t′ :N Q : S,E.

• 7. If P = Q1 ‖ Q2 then T = S1 ‖ S2 for some S1 and S2 such that
Γ :N Q1 : S1, E1, Γ :N Q2 : S2, E2 and E ≡ E1 ∨ E2.

• 8. If P = Q1+Q2 then T = S1+S2 for some S1 and S2 such that Γ :N Q1 : S1, E1,
Γ :N Q2 : S2, E2 and E ≡ E1 ∨ E2.

• 9. If P =!a(x).Q then T =!a.S for some S such that Γ :N a(x)Q : a.S, E ′ and
E =!E ′.

• 10. If P = (r,ϕ, η){Q} then T = T ′
↑r for some T ′, E ′ such that Γ : Q : T ′, E ′,

Γ : r : res(Φ), 〈r,ϕ〉 ∈ Φ and E = E ′ ∨ ϕ〈η.T ′
↓r〉.

• 11. If P = req(s){Q} then T = T ′
↑R for some T ′, E ′ such that Γ : Q : T ′, E ′,

Γ : s : res(Φ), S = rn(Φ) and E = E ′ ∨
∨
〈r,ϕ〉∈Φ〈T

′
↓r〉ϕ.

Proof. It is straightforward by induction on the derivation of Γ :N P : T,E by dis-
tinguishing the last typing rule applied. All cases are obvious (recall that the rule
[ts eq] cannot be the last applied one in a normal derivation).

Subject Congruence. The subject congruence lemma shows that a congruent
process has the same type. In the following lemma, we prefer a more general formu-
lation of side effects, since changes by structural congruence in processes also reflect
changes in the corresponding side effects. s

Lemma 5.3.19 (subject congruence). If Γ : P : T,E and P ≡ Q then there exists
E ′ such that Γ : Q : T,E ′ and E ≡ E ′.

Proof. The proof proceeds by induction on the derivation of P ≡ Q by distinguishing
the last structural rule applied. Many cases are obvious. We consider the most
interesting cases.

134 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

• the case of P = (νa)P1 ‖ P2 and Q = (νa)(P1 ‖ P2), where a#P2: by
applying Lemma 5.3.14 to Γ : P : T,E, there exists S such that S ≡ T and
Γ :N P : S,E. By applying Lemma 5.3.18 to Γ :N P : S,E, we have

Γ :N (νa)P1 : S1, E1 Γ :N P2 : S2, E2

S = S1 ‖ S2 E ≡ E1 ∨ E2.

Again by Lemma 5.3.18

Γ, a : t :N P1 : S ′
1, E1 S1 = (νa)S ′

1.

Moreover, Γ :N P2 : S2, E2 and a#Γ, P2, hence by Lemma 5.3.17, we have that
Γ, a : t :N P2 : S2, E2. By applying the rule [ts par] to Γ, a : t :N P1 : S ′

1, E1

and Γ, a : t :N P2 : S2, E2, we have

Γ, a : t :N P1 ‖ P2 : S ′
1 ‖ S2, E.

By the rule [ts res], Γ :N (νa)(P1 ‖ P2) : (νa)(S ′
1 ‖ S2), E. Since T ≡ S =

(νa)(S ′
1) ‖ S2. Note that given Γ, a : t :N P2 : S2, E and a#Γ, P2, a is not a

free name of S2 (it is straightforward by induction of the type derivation), and
therefore T ≡ S = (νa)(S ′

1 ‖ S2) By the rule [ts eq], Γ : (νa)(P1 ‖ P2) : T,E.

• the case of P = (νa)(P1 ‖ P2) and Q = (νa)P1 ‖ P2, where a#P2: it is similar.

• the case of P = (r,ϕ, η){P ′} and Q = (r,ϕ, η){Q′}, where P ′ ≡ Q′: by
applying Lemma 5.3.14 to Γ : P : T,E, there exists S such that S ≡ T and
Γ :N P : S,E. By applying Lemma 5.3.18 to Γ :N P : S,E, we have

Γ :N P ′ : T ′, E ′ S = T ′
↑ E = E ′ ∨ ϕ〈η.T ′

↓r〉
Γ : r : res(Φ) 〈r,ϕ〉 ∈ Φ

and by induction hypothesis

Γ :N Q′ : T ′, E ′ S = T ′
↑r E = E ′ ∨ ϕ〈η.T ′

↓r〉.

By applying the rule [ts res joint] to Γ :N Q′ : T ′, E ′, we get

Γ :N Q : S,E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S,E.

5.3. TYPING SYSTEMS 135

• the case of P = req(s){P ′} and Q = req(s){Q′}, where P ′ ≡ Q′: by applying
Lemma 5.3.14 to Γ : P : T,E, there exists S such that Γ :N P : S,E and
S ≡ T . By applying Lemma 5.3.18 to Γ : P : T,E, we have

Γ : s : res(Φ) R = rn(Φ)
Γ :N Q : T ′, E ′ S = T ′

↑R E = E ′ ∨
∨
〈r,ϕ〉∈Φ〈T

′
↓r〉ϕ

by induction hypothesis

Γ :N Q′ : T ′, E ′ S = T ′
↑s Γ : s : res(Φ) E = E ′ ∨

∨
〈r,ϕ〉∈Φ〈T

′
↓r〉ϕ.

By applying the rule [ts res req] to Γ :N Q′ : T ′, E ′, we get

Γ :N Q : S,E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S,E.

• the case of P = (νa)(r,ϕ, η){R} and Q = (r,ϕ, η){(νa)R}: by applying
Lemma 5.3.14 to Γ : P : T,E, there exists S such that Γ :N P : S,E and
S ≡ T . By applying Lemma 5.3.18 to Γ : P : T,E, we have

Γ, a : t :N (r,ϕ, η){R} : T ′, E S = (νa)T ′

and
Γ, a : t :N R : T ′′, E ′ T ′ = T ′′

↑r E = E ′ ∨ ϕ〈η.T ′′
↓r〉

Γ : r : res(Φ) 〈r,ϕ〉 ∈ Φ

By applying the rule [ts res] to Γ, a : t :N R : T ′′, E ′

Γ :N (νa)R : (νa)T ′′, E ′ .

and note that ((νa)T ′′)↓r = T ′′
↓r, hence E = E ′∨ϕ〈η.T ′′

↓r〉 = E ′∨ϕ〈η.((νa)T ′′)↓r〉
and S = (νa)T ′ = (νa)T ′′

↑r = ((νa)T ′′)↑r. By applying the rule [ts res joint]
to Γ :N (νa)R : (νa)T ′′, E ′, we get

Γ :N Q : S,E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S,E.

136 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

• the case of P = (r,ϕ, η){(νa)R} and Q = (νa)(r,ϕ, η){R}. By applying
Lemma 5.3.14 to Γ : P : T,E, there exists S such that Γ :N P : S,E and
S ≡ T . By applying Lemma 5.3.18 to Γ :N P : S,E, we have

Γ :N (νa)R : T ′, E ′ S = T ′
↑r E = E ′ ∨ ϕ〈η.T ′

↓r〉
Γ : r : res(Φ) 〈r,ϕ〉 ∈ Φ
and
Γ, a : t :N R : T ′′, E ′ T ′ = (νa)T ′′

Note that S = T ′
↑r = ((νa)T ′′)↑r = (νa)T ′′

↑r and T ′′
↓r = ((νa)T ′′)↓r = T ′

↓r im-
plies E ≡ E ′∨ϕ〈η.T ′′

↓r〉. By applying the rule [ts res joint] to Γ, a : t :N R : T ′′, E ′,
we get

Γ, a : t :N (r,ϕ, η){R} : T ′′
↑r, E ′

By the rule [ts res] to Γ, a : t :N (r,ϕ, η){R} : T ′′
↑r, E ′, we get

Γ :N Q : S,E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S,E.

• the case of P = (νa)req(s){P ′} and Q = req(s){(νa)P ′}. By applying
Lemma 5.3.14 to Γ : P : T,E, there exists S such that Γ :N P : S,E and
S ≡ T . Now by applying Lemma 5.3.18 to Γ :N P : S,E, we have

Γ, a : t :N req(s){P ′} : T ′, E S = (νa)T ′

and
Γ : s : res(Φ) R = rn(Φ)
Γ, a : t :N P ′ : T ′′, E ′ T ′ = T ′′

↑R E = E ′ ∨
∨
〈r,ϕ〉∈Φ ϕ〈η.T ′′

↓r〉.

By applying the rule [ts res] to Γ, a : t :N P ′ : T ′′, E ′, we get

Γ :N (νa)P ′ : (νa)T ′′, E ′

Note that S = (νa)T ′ = (νa)T ′′
↑R = ((νa)T ′′)↑R. Moreover, T ′′

↓r = ((νa)T ′′)↓r
implies E = E ′ ∨

∨
〈r,ϕ〉∈Φ ϕ〈η.T ′′

↓r〉 = E ′ ∨
∨
〈r,ϕ〉∈Φ ϕ〈η.((νa)T ′′)↓r〉. By

applying the rule [ts res req] to Γ :N (νa)P ′ : (νa)T ′′, E ′, we get

Γ :N Q : S,E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S,E.

5.3. TYPING SYSTEMS 137

• the case of P = req(s){(νa)P ′} andQ = (νa)req(s){P ′}: by applying Lemma 5.3.14
to Γ : P : T,E, there exists S such that Γ :N P : S,E and S ≡ T . By apply-
ing Lemma 5.3.18 to Γ :N P : S,E, we have

Γ : s : res(Φ) R = rn(Φ)
Γ :N (νa)P ′ : T ′, E ′ S = T ′

↑R E = E ′ ∨
∨
〈r,ϕ〉∈Φ ϕ〈η.T ′

↓r〉
and
Γ, a : t :N P ′ : T ′′, E ′ T ′ = (νa)T ′′

Note that T ′′
↓R = ((νa)T ′′)↓R = T ′

↓ implies E ≡ E ′ ∨
∨
〈r,ϕ〉∈Φ ϕ〈η.T ′′

↓r〉. By
applying the rule [ts res req] to Γ, a : t :N P ′ : T ′′, E ′, we get

Γ, a : t :N req(s){P ′} : T ′′
↑s, E ′

Note that S = T ′
↑s = ((νa)T ′′)↑s = (νa)T ′′

↑s. By applying the rule [ts res] to
Γ, a : t :N req(s){P ′} : T ′′

↑s, E ′, we get

Γ :N Q : S,E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S,E.

• the case of P = (r1,ϕ1, η1){0} ‖ (r2,ϕ2, η2){P ′} and Q = (r2,ϕ2, η2){P ′ ‖
(r1,ϕ1, η1){0}}. By applying Lemma 5.3.14 to Γ : P : T,E, there exists S
such that Γ :N P : S,E and S ≡ T . By applying Lemma 5.3.18 to Γ :N P : S,E,
we have

S = T1 ‖ T2, E = E1 ∨ E2

and
Γ :N (r1,ϕ1, η1){0} : T1, E1 T1 = 0 E1 = ϕ1〈η1〉
Γ :N (r2,ϕ2, η2){R} : T2, E2

Γ :N P ′ : T ′
2, E

′
2 T2 = T ′

2↑r2 E2 = E ′
2 ∨ ϕ2〈η2.T ′

2↓r2〉

By applying the rule [ts par] to Γ :N (r1,ϕ1, η1){0} : T1, E1 and Γ :N P ′ : T ′
2, E

′
2,

we get
Γ :N (r1,ϕ1, η1){0} ‖ P ′ : T1 ‖ T ′

2, E
′
2 ∨ E1

Note that since T1 = 0, (T1 ‖ T ′
2)↑r2 = T1 ‖ T ′

2↑r2 = T1 ‖ T2 and T1 ‖ T ′
2↓r2 =

T ′
2↓r2 . By applying rule rule [ts resjoin] to Γ :N (r1,ϕ1, η1){0} ‖ P ′ : T1 ‖ T ′

2, E
′
2 ∨ E1,

we have

Γ :N Q : S,E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S,E.

138 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

• the case of P = (r2,ϕ2, η2){R ‖ (r1,ϕ1, η1){0}} and Q = (r1,ϕ1, η1){0} ‖
(r2,ϕ2, η2){R}. By applying Lemma 5.3.14 to Γ : P : T,E, there exists S such
that Γ :N P : S,E and S ≡ T . By applying Lemma 5.3.18 to Γ :N P : S,E,
we have

Γ :N R ‖ (r1,ϕ1, η1){0} : T ′E ′ S = T ′
↑r2 E = E ′ ∨ ϕ2〈η2.T ′

↓r2〉
and
Γ :N R : T1, E1 Γ :N (r1,ϕ1, η1){0} : T2, E2 T2 = 0
with E2 = ϕ1〈η1〉, T ′ = T1 ‖ T2, E ′ = E1 ∨ E2.

Since S = T ′
↑r2 = (T1 ‖ T2)↑r2 ≡ T1↑r2 and T1↓r2 ≡ (T1 ‖ T2)↓r2 = (T ′)↓r2 , by

the rule [ts resjoint] and [ts eq] to Γ :N R : T1, E1, we get

Γ :N , E(r2,ϕ2, η2){R} : S,E1 ∨ ϕ2〈η2.T ′
↓r2〉

By applying the rule [ts par] to

Γ :N (r2,ϕ2, η2){R} : S,E1

Γ :N (r1,ϕ1, η1){0} : T2, E2,

we get
Γ :N Q : S ‖ T2, E

and the required result Γ : Q : T,E follows by applying the rule [ts eq] to
Γ :N Q : S ‖ T2, E since S ‖ T2 ≡ S ≡ T .

Subject Reduction. The subject reduction theorem establishes the semantic cor-
rectness of the type system. Intuitively, if a process P has a type T , then any
evaluation of P has a type T ′ and there is a evaluation of T , called T ′′ such that
T ′′ simulates T ′, i.e. T ′ C T ′′. To prove it, we need to introduce some auxiliary
technicalities.

Definition 5.3.20.

An evaluation context is defined by the following grammar:
C = • | C + P | P + C | C ‖ P | P ‖ C | (νz)C | (r,ϕ, η){C} | req(s){C}

A typed evaluation context is defined by the following grammar:
D = • | D + T | T +D | D ‖ T | T ‖ D | (νz)D | D↑S,

where S is a set of resource names.

5.3. TYPING SYSTEMS 139

The following lemma generalises the type inversion lemma. The result of the type
inversion lemma is generalised to an arbitrary evaluation context.

Lemma 5.3.21. Given a evaluation context C, if Γ :N P : T,E and Γ :N C[P] : T ′, E ′

then T ′ = D[T], for some typed context D.

Proof. The proof proceeds by induction on the structure of the context C. We show
the most significant cases.

• The case of C = • is obvious.

• The case of C + P ′: assume that Γ :N C[P] + P ′ : T ′, E ′.

By applying Lemma 5.3.18 to Γ :N C[P] + P ′ : T ′, E ′, we get

Γ :N C[P] : T1, E1

Γ :N P ′ : T2, E2

such that T ′ = T1+T2 and E ≡ E1∨E2. By applying the induction hypothesis
to Γ :N C[P] : T1, E, there exists D s.t. D′[T] = T1. Let D = D′ + T2, hence
D[T] = T ′. The required result is established.

• The case of (r,ϕ, η){C}: assume that Γ :N (r,ϕ, η){C[P]} : T ′, E ′. By apply-
ing Lemma 5.3.18 to Γ :N (r,ϕ, η){C[P]} : T ′, E ′, we get

Γ :N C[P] : S,E ′′

such that T ′ = S↑r and E ′ = E ′′∨ϕ〈S↓r〉. By applying the induction hypothesis
to Γ :N C[P] : S,E ′′, there exists D′ such that D′[T] = S. Let D = D′

↑r,
hence D[T] ≡ S↑r = T ′. The required result is established.

• The remaining cases can be proved by resorting to the similar argument.

Substitution of a name for another of the same type in a given type derivation results
in a new type derivation.

Lemma 5.3.22 (substitution). Given Γ, x; t : P : T,E, Γ and Γ, x : t are well-
formed. If Γ : b : t then Γ{b/x} : P{b/x} : T{b/x}, E{b/x}.

Proof. The proof proceeds by induction on the derivation of Γ, x; t : P : T,E by
distinguishing the last typing rule applied. Without loss of generality, we can assume
that all bound names are different from each others and from free names.

140 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

• The cases of the rules [ts empty], [ts choice], [ts par], [ts rep], [ts res], [ts act], [ts tau]
and [ts eq] are straightforward.

• The case of the rule [ts output]: by Γ, x : t : āc.P : ā.(S ‖ T{c/y}), E. Now,
the premise of the rule allows us to derive

Γ, x : t : a : (y : t′)T with y#{x,b}
Γ, x : t : c : t′

Γ, x : t : P : S,E

By applying the induction hypothesis to Γ, x : t : P : S,E, we get

Γ{b/x} : P{b/x} : S{b/x}, E{b/x}

Moreover, by definition of the well-formed context,

Γ{b/x} : c{b/x} : t′{b/x}
Γ{b/x} : a{b/x}(y : t′{b/x})T{b/x}

Therefore,

Γ{b/x} : ā{b/x}c{b/x}.P{b/x} : ā{b/x}.(S{b/x} ‖ T{b/x}{c{b/x}/y}), E{b/x},

that is Γ{b/x} : (āc.P){b/x} : (ā.(S ‖ T{c/y})){b/x}, E{b/x}.

• The case of the rule [ts output res]: by Γ, x : t : ār.P : ā.(S ‖ T{r/s}), E.
Now, the premise of the rule allows us to derive

Γ, x : t : a : (s : res(Φ))T with s#{x,b}
Γ, x : t : r : res(θr) with θr ∈ Φ
Γ, x : t : P : S,E

By applying the induction hypothesis to Γ, x : t : P : S,E, we get

Γ{b/x} : P{b/x} : S{b/x}, E{b/x}.

Moreover, by definition of the well-formed context,

Γ{b/x} : r{b/x} : res(θr{b/x})
Γ{b/x} : a{b/x} : (s : res(Φ{b/x}))T{b/x}.

Therefore,

Γ{b/x} : ā{b/x}r{b/x}.P{b/x} : ā{b/x}.(S{b/x} ‖ T{b/x}{r{b/x}/s}), E{b/x},

that is Γ{b/x} : (ār.P){b/x} : (ā.(S ‖ T{r/s})){b/x}, E{b/x}.

5.3. TYPING SYSTEMS 141

• The case of the rule [ts input]: by Γ, x : t : a(y).P : a.(S ‖ T↓), E. Now, the
premise of the rule allows us to derive

Γ, x : t : a : (y : t′)T ′ with y#{x,b}
Γ, x : t : P : S ‖ T,E with y#S and T ′ = T↑

By applying the induction hypothesis to Γ, x : t : P : S ‖ T,E, we get

Γ{b/x} : P{b/x} : S{b/x} ‖ T{b/x}, E{b/x}.

Moreover, by definition of the well-formed context,

Γ{b/x} : a{b/x} : (y : t′{b/x})T ′{b/x}
y#S{b/x}
T ′{b/x} = T↑ {b/x} = (T{b/x})↑

Therefore,

Γ{b/x} : a{b/x}(y).P{b/x} : a{b/x}.(S{b/x} ‖ (T{b/x})↓), E{b/x},

that is Γ{b/x} : (a(y).P){b/x} : (a.(S ‖ T↓)){b/x}, E{b/x}.

• The case of the rule [ts input res]: by Γ, x : t : a(y).P : a.(S ‖ T↓), E. Now,
the premise of the rule allows us to derive

Γ, x : t : a : (s : u)T ′ with s#{x,b}
Γ, x : t : P : S ‖ T,E with s#S and T ′ = T↑

By applying the induction hypothesis to Γ, x : t : P : S ‖ T,E, we get

Γ{b/x} : P{b/x} : S{b/x} ‖ T{b/x}, E{b/x}.

Moreover, by definition of the well-formed context,

Γ{b/x} : a{b/x} : (s : u{b/x})T ′{b/x}
s#S{b/x}
T ′{b/x} = T↑ {b/x} = (T{b/x})↑

Therefore,

Γ{b/x} : a{b/x}(s).P{b/x} : a{b/x}.(S{b/x} ‖ (T{b/x})↓), E{b/x},

that is Γ{b/x} : (a(s).P){b/x} : (a.(S ‖ T↓)){b/x}, E{b/x}.

142 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

• The case of the rule [ts res join]: by Γ, x : t : (r,ϕ, η){P} : T↑r, E ∨ ϕ〈η.T↓r〉.
Now, the premise of the rule allows us to derive

Γ, x : t : r : res(Φ) with 〈r,ϕ〉 ∈ Φ
Γ, x : t : P : T,E with T ′ = T↑r

By applying the induction hypothesis to Γ, x : t : P : T,E, we get

Γ{b/x} : P{b/x} : T{b/x}, E{b/x}.

Moreover, by definition of the well-formed context,

Γ{b/x} : r{b/x} : res(Φ{b/x})
〈r{b/x},ϕ{b/x}〉 ∈ Φ{b/x}.

Therefore,

Γ{b/x} : (r{b/x},ϕ, η){P{b/x}} : (T{b/x})↑r{b/x}, E{b/x},

that is Γ{b/x} : (r,ϕ, η){P}{b/x} : T↑r{b/x}, E{b/x}.

• The case of the rule [ts res req]: by Γ, x : t : req(r){P} : T↑R, E ∨
∨
〈r,ϕ〉∈Φ 〈ϕ〉T↓R,

where R = rn(Φ). Now, the premise of the rule allows us to derive

Γ, x : t : s : res(Φ)
Γ, x : t : P : T,E with T ′ = T↑R

By applying the induction hypothesis to Γ, x : t : P : T,E, we get

Γ{b/x} : P{b/x} : T{b/x}, E{b/x}.

Moreover, by definition of the well-formed context,

Γ{b/x} : s{b/x} : res(Φ{b/x}), R{b/x} = rn(Φ{b/x}).

Therefore,

Γ{b/x} : req(s{b/x}){P{b/x}} : (T{b/x})↑R{b/x}, E{b/x},

that is Γ{b/x} : req(s){P}{b/x} : T↑R{b/x}, E{b/x}.

Now we are ready to prove the subject reduction theorem. The proof proceeds in
three steps, which correspond to the three kinds of transition labels in the semantics
of types.

5.3. TYPING SYSTEMS 143

Lemma 5.3.23. Given Γ : P : T,E, if P
〈a〉→ P ′ then Γ : P ′ : T ′, E ′ and T

〈a〉→ T ′′

for some E ′, T ′, T ′′ such that T ′ C T ′′. Moreover. if E is satisfied then E ′ is also
satisfied.

Proof. The proof proceeds by induction on the depth of the derivation of P
〈a〉→ P ′,

where the last rule applied is distinguished. Without loss of generality, we can safely
assume that all bound names are different from each other and from free names.

• The base case of the rule [Comm]: we proceed by induction on the structure
of evaluation contexts

– The base case P = a(y).P1 ‖ āb.P2
〈a〉→ P1{b/a} ‖ P2: Suppose Γ : P : T,E.

By Lemma 5.3.14 and 5.3.18, we have

Γ : a : (y : t)Ta Γ : b : t
Γ, y : t :N P1 : T1 ‖ T3, E1 y#T1 Γ :N a(y).P1 : a.(T1 ‖ T3↓), E1

Γ :N P2 : T2, E2 Γ :N āb.P2 : ā.(T2 ‖ T3↑ {b/a}), E2,

where T ≡ a.(T1 ‖ T3↓) ‖ ā.(T2 ‖ T3↑ {b/y}), E ≡ E1∨E2 and T3↑ = Ta.
We have

T ≡ a.(T1 ‖ T3↓) ‖ ā.(T2 ‖ T3↑ {b/y})
〈a〉→ T1 ‖ T3↓ ‖ T2 ‖ T3↑ {b/y} # T ′

and by Lemma 5.3.22 and y#T1

Γ :N P1{b/y} : T1 ‖ T3{b/y}, E1

and therefore

Γ :N P1{b/y} ‖ P2 : T1 ‖ T2 ‖ T3{b/y}, E1 ∨ E2.

We need to show that T1 ‖ T2 ‖ T3{b/y} C T ′. By Lemma 5.3.13,
T3 C T3↓ ‖ T3↑ , therefore

T3{b/y} C T3↓ {b/y} ‖ T3↑ {b/y} ≡ T3↓ ‖ T3↑ {b/y}

hence,
T1 ‖ T2 ‖ T3{b/y} C T ′.

Moreover, E ≡ E1 ∨E2 implies that if E is satisfied, then E1 ∨E2 is also
satisfied.

– The base case P =!a(y).P1 ‖ āb.P2
〈a〉→!a(y).P1 ‖ P1{b/a} ‖ P2: Suppose

Γ : P : T,E. By Lemmas 5.3.14 and 5.3.18, we have

Γ : a : (y : t)Ta Γ : b : t
Γ, y : t :N P1 : T1 ‖ T3, E1 y#T1

Γ :N !a(y).P1 :!a.(T1 ‖ T3↓), !E1

Γ :N a(y).P1 : a.(T1 ‖ T3↓), E1

Γ :N P2 : T2, E2 Γ :N āb.P2 : ā.(T2 ‖ T3↑ {b/a}), E2,

144 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

where T ≡!a.(T1 ‖ T3↓) ‖ ā.(T2 ‖ T3↑ {b/y}), E ≡!E1∨E2 and T3↑ = Ta.
We have

T ≡!a.(T1 ‖ T3↓) ‖ ā.(T2 ‖ T3↑ {b/y})
〈a〉→!a.(T1 ‖ T3↓) ‖ T1 ‖ T3↓ ‖ T2 ‖ T3↑ {b/y} # T ′

and by Lemma 5.3.22 and y#T1

Γ :N P1{b/y} : T1 ‖ T3{b/y}, E1

and therefore

Γ :N !a(y).P1 ‖ P1{b/y} ‖ P2 :!a.(T1 ‖ T3↓) ‖ T1 ‖ T2 ‖ T3{b/y}, !E1 ∨ E2.

We need to show that !a.(T1 ‖ T3↓) ‖ T1 ‖ T2 ‖ T3{b/y} C T ′. By
Lemma 5.3.13, T3 C T3↓ ‖ T3↑ , therefore

T3{b/y} C T3↓ {b/y} ‖ T3↑ {b/y} ≡ T3↓ ‖ T3↑ {b/y}

hence,
!a.(T1 ‖ T3↓) ‖ T1 ‖ T2 ‖ T3{b/y} C T ′.

Moreover, E ≡!E1 ∨E2 implies that if E is satisfied then !E1 ∨E2 is also
satisfied.

– The induction case P = C1[a(y).P1] + P3 ‖ C2[āb.P2]
〈a〉→ C ′

1[P1{b/a}] ‖
C ′

2[P2]: Suppose Γ : P : T,E. By Lemmas 5.3.14 and 5.3.18, we have

Γ :N C1[a(y).P1] : T1, E1

Γ :N C2[āb.P2] : T2, E2

Γ :N P3 : T3, E3,

where T ≡ T1 ‖ T2 ‖ T3 and E = E1 ∨ E2 ∨ E3. By induction hypothesis
applying to C1[a(y).P1] ‖ C2[āb.P2], there exist T ′, T ′′ such that

Γ : C ′
1[P1{b/y}] ‖ C ′

2[P2] : T ′

T1 ‖ T2
〈a〉→ T ′′ and T ′ C T ′′.

This implies the required result Γ : P1{b/y}] ‖ P2 : T ′, T1+T3 ‖ T2
〈a〉→ T ′′

and T ′ C T ′′.

– The induction case P = C1[!a(y).P1] + P3 ‖ C2[āb.P2]
〈a〉→ C ′

1[!a(y).P1 ‖
P1{b/a}] ‖ C ′

2[P2]: it is similar to the above argument.

– The induction case P = C1[a(y).P1] ‖ C2[āb.P2] + P3
〈a〉→ C ′

1[P1{b/a}] ‖
C ′

2[P2]: it is similar to the above argument.

– The induction case P = C1[!a(y).P1] ‖ C2[āb.P2] + P3
〈a〉→ C ′

1[!a(y).P1 ‖
P1{b/a}] ‖ C ′

2[P2]: it is similar to the above argument.

5.3. TYPING SYSTEMS 145

– The induction case P = C1[a(y).P1] ‖ C2[āb.P2] ‖ P3
〈a〉→ C ′

1[P1{b/a}] ‖
C ′

2[P2] ‖ P3: it is similar to the above argument.

– The induction case P = C1[!a(y).P1] ‖ C2[āb.P2] ‖ P3
〈a〉→ C ′

1[!a(y).P1 ‖
P1{b/a}] ‖ C ′

2[P2] ‖ P3: it is similar to the above argument.

– The induction case P = (νz)(C1[a(y).P1]) ‖ C2[āb.P2]
〈a〉→ (νz)C ′

1[P1{b/a}] ‖
C ′

2[P2]: By assumptions at the beginning, bound names are different from
each other and from free names. We have

P ≡ (νz)(C1[a(y).P1] ‖ C2[āb.P2])

Applying induction hypothesis to C1[a(y).P1] ‖ C2[āb.P2], we get the
required result.

– The induction case P = (νz)(C1[!a(y).P1]) ‖ C2[āb.P2]
〈a〉→ (νz)C ′

1[!a(y).P1 ‖
P1{b/a}] ‖ C ′

2[P2]: it is similar to the above argument.

– The induction case P = C1[a(y).P1] ‖ (νz)(C2[āb.P2])
〈a〉→ C ′

1[P1{b/a}] ‖
(νz)(C ′

2[P2]): it is similar to the above argument.

– The induction case P = C1[!a(y).P1] ‖ (νz)(C2[āb.P2])
〈a〉→ C ′

1[!a(y).P1 ‖
P1{b/a}] ‖ (νz)(C ′

2[P2]): it is similar to the above argument.

– The induction case P = (r,ϕ, η){C1[a(y).P1]} ‖ C2[āb.P2]
〈a〉→ (r,ϕ, η){

C ′
1[P1{b/a}]} ‖ C ′

2[P2]: Suppose

Γ : P : T,E

We assume that C1 and C2 do not contains restrictions. Otherwise, by
structural rules restrictions can be moved to the top level and then we can
apply induction hypothesis to the process inside the scope of restrictions
by the above cases. Also assume that C1 and C2 are simple evaluation
contexts (i.e. the hole in these contexts is a single-operand summation,
for the general case it is similar), that is

P
〈a〉→ (r,ϕ, η){C1[P1{b/x}]} ‖ C2[P2]

By Lemmas 5.3.14, 5.3.18 and 5.3.21, we have

Γ : a : (y : t)Ta Γ : b : t
Γ, y : t :N P1 : T1 ‖ T3, E11 y#T1 Γ :N C1[a(y).P1] : D1[a.(T1 ‖ T3↓)], E1

Γ :N P2 : T2, E22 Γ :N C2[āb.P2] : D2[ā.(T2 ‖ T3↑ {b/a})], E2,

where T ≡ D1[a.(T1 ‖ T3↓)] ‖ D2[ā.(T2 ‖ T3↑ {b/y})], E ≡ E1 ∨ E2 and
T3↑ = Ta. Since D1 and D2 preserve the input/output transitions, we

146 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

have (it is easy to see that D1 and D2 contain no restriction and the
operator ↑R does not modify the input/output transitions), we have

D1[a.(T1 ‖ T3↓)] ‖ D2[ā.(T2 ‖ T3↑ {b/y})]
〈a〉→ D1[T1 ‖ T3↓] ‖ D2[T2 ‖ T3↑ {b/y}] # T ′′

Note that y is a bound name and E11 does not contain any bound name,
it follows that E11{b/y} = E11. By Lemma 5.3.22 and y#T1

Γ :N P1{b/y} : T1 ‖ T3{b/y}, E11

Γ :N C1[P1{b/y}] : D1[T1 ‖ T3{b/y}], E ′
1

Γ :N C2[P2] : D2[T2], E ′
2

Γ :N C1[P1{b/y}] ‖ C2[P2] : D1[T1 ‖ T3{b/y}] ‖ D2[T2], E ′
1 ∨ E ′

2.

for some E ′
1, E

′
2. Moreover, it is easy to prove that (T1 ‖ T3)↓ ∼ (T1 ‖ T3{b/y})↓

and (T2)↓ ∼ (T2 ‖ T3↑ {b/y})↓ . This implies that E ∼ E ′
1 ∨ E ′

2. Hence,
if E is satisfied, then E ′

1 ∨ E ′
2 is also satisfied.

Now, we need to show that T ′ # D1[T1 ‖ T3{b/y}] ‖ D2[T2] C T ′′. By
Lemma 5.3.13, T3 C T3↓ ‖ T3↑ , and therefore

T3{b/y} C T3↓ {b/y} ‖ T3↑ {b/y} ≡ T3↓ ‖ T3↑ {b/y}

Note that (T3↑ {b/y})↑R = T3↑ {b/y}. So, we have

D1[T1 ‖ T3{b/y}] C D1[T1 ‖ T3↓ ‖ T3↑ {b/y}] ≡ D1[T1 ‖ T3↓] ‖ T3↑ {b/y}

hence,

D1[T1 ‖ T3{b/y}] ‖ D2[T2] C D1[T1 ‖ T3↓] ‖ T3↑ {b/y} ‖ D2[T2]
≡ D1[T1 ‖ T3↓] ‖ D2[T2 ‖ T3↑ {b/y}] = T ′′

This establishes the required result.

– The induction case P = (r,ϕ, η){C1[!a(y).P1]} ‖ C2[āb.P2]
〈a〉→ (r,ϕ, η){C ′

1[!a(y).P1 ‖
P1{b/a}]} ‖ C ′

2[P2]: it is similar to the above argument.

– The induction case P = C1[a(y).P1] ‖ (r,ϕ, η){C2[āb.P2]}
〈a〉→ C ′

1[P1{b/a}] ‖
(r,ϕ, η){C ′

2[P2]}: it is similar to the above argument.

– The induction case P = C1[!a(y).P1] ‖ (r,ϕ, η){C2[āb.P2]}
〈a〉→ C ′

1[!a(y).P1 ‖
P1{b/a}] ‖ (r,ϕ, η){C ′

2[P2]}: it is similar to the above argument.

– The induction case P = req(r){C1[a(y).P1]} ‖ C2[āb.P2]
〈a〉→ req(r){C ′

1[P1{b/a}]} ‖
C ′

2[P2]: it is similar to the above argument.

– The induction case P = req(r){C1[!a(y).P1]} ‖ C2[āb.P2]
〈a〉→ req(r){C ′

1[!a(y).P1 ‖
P1{b/a}]} ‖ C ′

2[P2]: it is similar to the above argument.

5.3. TYPING SYSTEMS 147

– The induction case P = C1[a(y).P1] ‖ req(r){C2[āb.P2]}
〈a〉→ C ′

1[P1{b/a}] ‖
req(r){C ′

2[P2]}: it is similar to the above argument.

– The induction case P = C1[!a(y).P1] ‖ req(r){C2[āb.P2]}
〈a〉→ C ′

1[!a(y).P1 ‖
P1{b/a}] ‖ req(r){C ′

2[P2]}: it is similar to the above argument.

• Induction cases of [ts par], [ts choice], [ts cong], [ts local1], [ts local2] are straight-
forward.

Example 5.3.24. Let us consider the following process:

P = (r,ϕ, ε){ā ‖ a ‖ α(r) ‖ β(r)}

under the type environment Γ = a : ()0 and the policy ϕ = G¬β. The type
derivation of P is as follows:

...

Γ : ā : ā, ξ

...

Γ : a ‖ α(r) ‖ β(r) : a ‖ α(r) ‖ β(r), ξ
Γ : ā ‖ a ‖ α(r) ‖ β(r) : ā ‖ a ‖ α(r) ‖ β(r), ξ

[ts par]

Γ : P : T,E

where T = ā ‖ a and E = ϕ〈α ‖ β〉. Now, suppose that P
〈a〉→ P1 = (r,ϕ, ε){α(r) ‖

β(r)}. We have:
...

Γ : P1 : T1, E

where T1 = 0. It is easy to see that the semantics of the type T can perform

the communication 〈a〉 as well, that is, T = ā ‖ a
〈a〉→ 0 = T ′. Moreover, we have

T ′ = T1.

Lemma 5.3.25. Given a judgement Γ : P : T,E, if P
µ→ P ′, µ = τ , α(r) or

α(r) then Γ : P ′ : T ′, E ′ and T
τ→∗

T ′′ for some E ′, T ′, T ′′ such that T ′
↑ C T ′′

↑ .
Moreover if E is satisfied then E ′ is also satisfied.

Proof. The proof proceeds by induction on the depth of the derivation of P
µ→ P ′,

where the last rule applied is distinguished. Without loss of generality, we can safely
assume that all bound names are different from each other and from free names.

• The base case of [Act]: suppose P = τ.P ′. It is straightforward.

• The base case of [Acquire]: assume that P = (r,ϕ, η){0} ‖ req(r){P ′} and

Γ : P : T,E
(r,ϕ, η){0} ‖ req(r){P ′} τ→ (r,ϕ, η){P ′}

148 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

By applying Lemma 5.3.14 to Γ : P : T,E, we have Γ :N P : S,E ′ such that
S ≡ T and E ′ ≡ E. By applying Lemma 5.3.18 to Γ :N P : S,E ′, we get

Γ :N (r,ϕ, η){0} : 0,ϕ〈η〉
Γ : r : res(Φ) with 〈r,ϕ〉 ∈ Φ
Γ :N req(r){P ′} : T1↑R, E1 ∨

∨
〈r,ϕ〉∈Φ 〈T1↓r〉ϕ

Γ :N P ′ : T1, E1,

where R = rn(Φ), S = 0 ‖ T1↑R and E ′ ≡ E1 ∨
∨
〈r,ϕ〉∈Φ 〈T1↓r〉ϕ ∨ ϕ〈η〉. By

applying the rule [ts resjoint] to Γ :N P ′ : T1, E1, we get

Γ :N (r,ϕ, η){P ′} : T1↑r, E1 ∨ ϕ〈η.T2↓r〉

Let T ′ = T1↑r and T ′′ = 0 ‖ T ′
↑R. Now, we need to show that (T ′

↑r)↑ C
(T ′

↑R)↑ . It is easily derived from (T ′
↑r)↑ ≡ (T ′′

↑R)↑ . Moreover, if the con-
straints ϕ〈η〉 and 〈T ′

↓r〉Φ are satisfied, then ϕ〈η.T ′
↓r〉 is also satisfied. This

implies the required result.

• the base case of [Release]: suppose P = (r,ϕ, η){P ′}. We proceed by induction
on the structure of P ′. Many cases are obvious. We consider only the most
interesting cases.

– The base case of P = (r,ϕ, η){rel(r).P1}
τ→ P = (r,ϕ, η.rel){0} ‖ P1:

By applying Lemma 5.3.14 to Γ : P : T,E, there exist S,E ′ such that

Γ :N (r,ϕ, η){P} : S,E ′,

where S ≡ T and E ′ ≡ E. By applying Lemma 5.3.18 to Γ :N (r,ϕ, η){P} : S,E ′,
we get

Γ :N P1 : T1, E ′′ for some T1 and E ′′

Γ :N rel(r).P1 : rel(r).T1, E ′′,

where E ′ = E ′′ ∨ ϕ〈η.(rel(r).T1)↓r〉 and S = (rel(r).T1)↑r = τ.T1↑r.
By applying the rule [ts par] to Γ :N (r,ϕ, η.rel){0} : 0,ϕ〈η.rel〉 and
Γ :N P1 : T1, E ′′ , we have

Γ :N (r,ϕ, η.rel){0} ‖ P1 : T1 ‖ 0, E ′′ ∨ ϕ〈η.rel〉

Now, we can see that

T ≡ τ.T1↑r
τ→ T1↑r # T ′′

and let T ′ # T1 ≡ 0 ‖ T1. It follows T ′
↑ = T ′′

↑ , hence T ′
↑ C T ′′

↑ . It is
easy to prove that whenever ϕ〈η.rel.T1↓r〉 is true, so is ϕ〈η.rel〉. Hence,
the required result follows.

5.3. TYPING SYSTEMS 149

• The base case of [Policy1]: it is similar to the above argument.

• The base case of [Policy2]: it is similar to the above argument.

• The induction cases of [Par], [Choice], [Cong], [Res], [Local1], [Local2] are
straightforward.

Example 5.3.26. Back to Example 5.3.24. If P
α(r)→ P2 = (r,ϕ,α){ā ‖ a ‖ β(r)},

then we have
...

Γ : P2 : T2, E2

where T2 = ā ‖ a and E2 = ϕ〈α.β〉. Notice that the type T2of P2 is the same type
T of P and the side effect E2 is “sub-effect” of E. Notice that the erroneous event
β is captured in both cases.

Example 5.3.27. Consider another scenario of 5.3.24, where P
β(r)→ P3 = (r,ϕ,α){0} ‖

ā ‖ a ‖ α(r), then we have
...

Γ : P3 : T3, E3

where T3 = ā ‖ a ‖ α(r) and E3 = ξ. In this case, the side effect E3 is empty
since the process P3 does not use r anymore. Furthermore, T3 contains the dangling
action α(r) (it is indicated by P3), while the original T does not. This reflects the
fact that only communication-based abstractions in process types are preserved by
evaluation, i.e. guaranteeing T↑ ≡ T3↑ .

Lemma 5.3.28. Given Γ : P : T,E, if P
α?r→ P ′ then Γ : P ′ : T ′, E ′ and T

α(r)→ T ′′

for some E ′, T ′, T ′′ such that T ′ C T ′′. Moreover if E is satisfied then so is E ′.

Proof. The proof proceeds by induction on the depth of the derivation of P
α?r→ P ′,

where the last rule applied is distinguished. Most of cases are obvious. Here we only
consider one of the most interesting case.

• the base case of [Act]: suppose P = α(r).P ′ α?r→ P ′ and Γ : P,E.

By applying Lemma 5.3.18 to Γ : P,E, there exist S and E ′ such that

Γ :N P ′ : S,E ′

Γ :N P : α(R).S, E ′ and T ≡ α(R).S, r ∈ R

where R = rn(Φ) and E ≡ E ′. Let T ′ # S and T ′′ # S. We have T ≡
α(R).S

α(R)→ S = T ′′, r ∈ R and T ′ = T ′′, hence T ′ C T ′′. Moreover, E ≡ E ′

implies that whenever E is satisfied then E ′ is also satisfied. The required
result follows.

150 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

• The induction cases of [Par], [Choice], [Cong], [Res], [Local1], [Local2] are
straightforward.

Example 5.3.29. Let us continue to discuss the scenario of Example 5.3.27. Assume

P2 = (r,ϕ,α){0} ‖ ā ‖ a ‖ α(r)
α?r→ (r,ϕ,α){0} ‖ ā ‖ a = P3, then we have

...

Γ : P3 : T3, E3
,

where T3 = ā ‖ a and E3 = ξ. Notice that T2 can perform α as well, i.e. T2
α(r)→ ā ‖

a = T ′
2 Moreover, T ′

2 = T3.

Now, the subject reduction theorem can be established.

Theorem 5.3.30. (subject reduction). Given a judgement Γ : P : T,E and P
l→

P ′. There exist T ′, E ′, T ′′, R such that

• if l = 〈a〉, then Γ : P ′ : T ′, E ′ and T
〈a〉→ T ′′.

• if l ∈ {τ,α(r),α(r)}, then Γ : P ′ : T ′, E ′ and T
τ→

∗
T ′′.

• if l = α?r, then Γ : P ′ : T ′, E ′ and T
α(R)→ T ′′, r ∈ R.

Moreover, T ′
↑ C T ′′

↑ and if E is satisfied then so is E ′.

Proof. It is straightforward from the subject reduction lemmas.

Remark 5.3.31. The subject reduction theorem shows that types simulate their
processes. In addition, the statement on resource constraints implies that the well-
typedness is preserved by evaluation, hence the theorem indeed preserves the cor-
rectness of resource usages of well-typed processes.

5.4 Type Inference Algorithm

In this section, we present a type inference algorithm to check whether, given a
well-formed context Γ, a process P is well-typed under Γ or not, i.e. there exist T,E
such that Γ : P : T,E.

Before describing the algorithm, we introduce some auxiliary definitions. We use
σ to denote a finite map from type variables to closed types. Tσ denotes the type in

5.4. TYPE INFERENCE ALGORITHM 151

result of substituting a type variable X in T with σ(X) (if it is defined). Formally,
it is defined as follows:

(X)σ = σ(X) (!a(t).T)σ = (a(t).T)σ
(α(R).T)σ = α(R).Tσ (a(t).T)σ = a(t).Tσ
(ā.T)σ = ā.Tσ (τ.T)σ = τ.Tσ
(T + T ′)σ = Tσ + T ′σ (T ‖ T ′)σ = Tσ ‖ T ′σ

σ ◦ {T/X} is a map σ′ such that ∀Y ∈ dom(σ′), σ′(Y) = T if Y = X , otherwise
σ′(Y) = σ(Y). Similarly, for the resource constraint E, Eσ is defined as expected.

Following the style of [4], the algorithm rests on the definition of a pair of func-
tions, typeinf and solve, that define a type inference algorithm, in the following
sense:

1. If typeinf(P,Γ) = (T, C,R) and solve(Γ, C) = σ, then Γ : P : Tσ.

2. If Γ : P : T,E, then there are T ′, C, E ′ and σ such that typeinf(P,Γ) =
(T ′, C, R) and solve(C) = σ, T ′σ ≡ T and E ≡ E′σ.

Note that all the bound names in Γ and P are assumed to be distinct from one
another and from free names.

The function typeinf is defined in Fig. 5.6. In general, the outcome of typeinf is
a triple composed by: i) an open process type T describing communication behaviour
of P ; ii) a set of type constraints C, which needs to be solved in order to obtain a
closed type from T ; iii) a set of resource constraints E whose satisfaction guarantees
the correct usage of resources occurring in P . Type constraints have only the form
〈T = X ‖ Y, y#X, T↑ = Ta〉 (ranged over by TC).

To solve a set of type constraints like the above, we make use of the second
function solve, which in turn use an auxiliary function split:

split(〈T = X ‖ Y, y#X, Y↑ = Ta〉) =

(T1, T2) if ∃T1, T2 s.t. T1 ‖ T2 ≡ T,
y#T1 and T2↑ = Ta〉

undefined otherwise.

Finally, the function solve is defined as follows:

solve(∅) = ε

solve(TC ∪ C) if

{
solve(C{T1/X, T2/Y }) ◦ {T1/X, T2/Y } if split(TC) = (T1, T2)
undefined otherwise,

where TC = 〈T = X ‖ Y, y#X, Y↑ = Ta〉.
Elementary reasoning over structural congruence on the languages of types shows

that split is computable, hence solve is computable. More precisely, we define the

152 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

typeinf(0,Γ) = (∅,0,∅)
typeinf(x(w).P,Γ) =

let (T,C,E) = typeinf(P,Γ)
Γ : a : (w : t)Ta

X is fresh
in (a.(X ‖ Y↓), 〈T = X ‖ Y,w#X,Y↑ = Ta〉 ∪ C,E)

typeinf(x̄〈b〉.P,Γ) =
let (T,C,E) = typeinf(P,Γ)

Γ : b : t
Γ : a : (y : t)Ta

in (T ‖ Ta{b/y}, C,E)
typeinf(x̄〈r〉.P,Γ) =

let (T,C,E) = typeinf(P,Γ)
Γ : r : res(Φ)
Γ : a : (s : res(Φs)Ta

ΓΦ ⊆ Φs

in (T ‖ Ta{r/s}, C,E)
typeinf(P1 ‖ P2,Γ) =

let (T1, C1, E1) = typeinf(P1,Γ)
(T2, C2, E2) = typeinf(P2,Γ)

in (T1 ‖ T2), C1 ∪C2, E1 ∨ E2)
typeinf(νx.P,Γ) =

let (T,C,E) = typeinf(P, (Γ, z : t))
in ((νz)T,C,E)

typeinf(!a(y).P,Γ) =
let (T,C,E) = typeinf(a(y).P,Γ)
in (!T,C, !#E)

typeinf(α(s).P,Γ) =
let (T,C,E) = typeinf(P,Γ)

Γ : s : res(Φ) and R = rn(Φ)
in (α(R).T, C,E)

typeinf((r,ϕ, η){P},Γ) =
let (T,C,E) = typeinf(P,Γ)

Γ : r : res(Φ)
ϕ ∈ Φ

in (T↑r, C,E ∨ ϕ〈T↓r〉)
typeinf(req(s){P},Γ) =

let (T,C,E) = typeinf(P,Γ)
Γ : s : res(Φ) and R = rn(Φ)

in (T↑R, C,E ∨
∨
〈r,ϕ〉∈Φ 〈ϕ〉T↓r)

Figure 5.6: Type inference algorithm.

5.4. TYPE INFERENCE ALGORITHM 153

set subs() of sub-processes of a closed type T as follows:

subs(a(t).T) = {a(t).T} ∪ subs(T)
subs(ā.T) = {ā.T} ∪ subs(T)
subs(τ.T) = {τ.T} ∪ subs(T)
subs(T + T ′) = {T + T ′} ∪ subs(T) ∪ subs(T ′)
subs(T ‖ T ′) = {T ‖ T ′} ∪ subs(T) ∪ subs(T ′)
subs((νa : t)T) = {(νa : t)T} ∪ subs(T)
subs(T ‖ T ′) = {T ‖ T ′} ∪ subs(T) ∪ subs(T ′)

Notice that the set of sub-processes of a closed type is finite. Therefore, by brute-
force reasoning, we can find all possible splits of the given closed type.

Note that split can yield to several outcomes. The following example illustrates
the possible outcomes of the function split:

T = a ‖ α(r).b.τ ‖ α(r).c ‖ β(r).c
split(〈T = X ‖ Y, b#X, Y↑R = τ.b.τ ‖ τ.c〉) =
(a ‖ α(r).c,α(r).b.τ ‖ β(r).c) or (a ‖ β(r).c,α(r).b.τ ‖ α(r).c)

However, the resource information is maintained during the split because of the
following lemma.

Lemma 5.4.1. Given C = 〈T = X ‖ Y, y#X, Y↑R = Ta〉. If split(C) = (T1, T2),
then T↓ ≡ (T1 ‖ T2↓)↓ . Moreover, if split(C) = (T ′

1, T
′
2) with T1 5= T ′

1, T2 5= T ′
2,

then (T1 ‖ T2↓)↓ ≡ (T ′
1 ‖ T ′

2↓)↓ .

Proof. Be definition of the hiding operator ↓R, we have

T↓ ≡ (T1 ‖ T2)↓
= T1↓ ‖ T2↓
= T1↓ ‖ (T2↓)↓
= (T1 ‖ T2↓)↓

This establishes the required result.

The resulted process type is unique up to structural congruence and the hiding-
resources operator as stated in the following lemma.

Lemma 5.4.2. Given C = 〈T = X ‖ Y, y#X, Y↑ = Ta〉. If split(C) = (T1, T2),
then the split is unique w.r.t structural congruence and the hiding-resources operator,
i.e. whenever split(C) = (T ′

1, T
′
2), T1↑ ≡ T ′

1↑ .

Proof. Suppose split(C) = (T1, T2) and split(C) = (T ′
1, T

′
2). Then, we have T2↑ =

T ′
2↑ = Ta and T↑ = T1↑ ‖ T2↑ = T ′

1↑ ‖ T ′
2↑ . This implies that T1↑ = T ′

1↑ .

154 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

In summary, resource-based and communication-based behaviours do not depend on
the choice of split during the resolution of the the set of type constraints generated
by the type inference algorithm.

Notice that by induction on the derivation of typeinf(P,Γ) = (E,C,R), one
can prove that either C is empty or there is at least one pair of the form 〈T =
X ‖ Y, y#X, Y↑ = Ta〉, where T is a closed process type. We call such constraints
ground. This property is preserved after the resolution of each ground constraint,
and the application of the resulting substitution.

Lemma 5.4.3. There is at least one closed type process during the resolution of a
set of type constraints with the application of the resulting substitution.

Proof. Induction on the derivation of typeinf(P,Γ) = (E,C,R).

• base case of typeinf(0,Γ) = (∅, 0,∅): it is obvious.

• the case of typeinf(x(y).P,Γ) = a.(X ‖ Y↓), 〈T = X ‖ Y, y#X, Y↑ = Ta〉 ∪
C,R) with (T, C,R) = typeinf(P),Γ : a : (y : t)Ta and fresh X, Y : We have
consider resolution of 〈T = X ‖ Y, y#X, Y↑ = Ta〉 ∪ C.

First, by applying induction hypothesis to (T, C,R) = typeinf(P), we have
two cases: either C contains at least one constraint 〈T ′ = X ‖ Y, y#X, Y↑ =
T ′
a〉, where T ′ is closed, or C is empty. In the former case, we can apply

induction hypothesis to (T, C,R) = typeinf(P). In the latter case, since we
that that if C is satisfied with the resulted substitution σ then Tσ is a closed
type process since the only remaining variables are X, Y and X, Y are not type
variables in T . Hence, the required property is obtained from both cases.

• The proof of the remaining cases is easy.

It remains to prove that the set C of resource constraints of each policy is satisfied.
We proceed in two steps. First, types can be easily translated into BPP processes
except for the replication operator. The translation is given as follows:

tran(0) = 0 tran(µ.T) = µ.tran(T)
tran(T + T ′) = tran(T) + tran(T ′) tran(T ‖ T ′) = tran(T) ‖ tran(T ′)

tran(!α.T) = X, where X
def
= α(trans(T) ‖ X)

Lemma 5.4.4 (Soundness of the translation). Given a type T ∈ T0 and a process
P = tran(T) ∈ Pbpp. We have Traces(T) = Traces(P).

Proof. It straightforward by induction of structure of T .

Second, we apply the technique in [54] to model check BPP processes against LTL
formulas.

5.4. TYPE INFERENCE ALGORITHM 155

Remark 5.4.5. As mentioned before in Remark 5.3.3, in the case of interpreting
!# as an infinite concatenation of resource usages, effects would be translated into
PA processes, which have the undecidable problem of model checking against LTL
formulas (see [79] for details).

Now we are ready to state the type inference theorem.

Theorem 5.4.6. (type inference) Given Γ and P , it is decidable whether P is
well-typed under Γ.

Recall that correctness of the type inference algorithm is based on the two following
facts.

• given a process P , a well-formed context Γ, if typeinf(P,Γ) = (T, C,R) and
solve(Γ, C) = σ, then Γ : P : Tσ, Rσ is a type derivation. In other words, the
outcome of the algorithm forms a correct type derivation.

• if Γ : P : T,E, the outcome of the inference algorithm complies with T and
E, that is, typeinf(P,Γ) = (T ′, C, R) and solve(C) = σ implies that T ′σ ≡ T
and Rσ ≡ E.

Formally, the facts are proved by the following theorems.

Lemma 5.4.7. (correctness) If typeinf(P,Γ) = (T, C,R) and solve(Γ, C) = σ,
then Γ : P : Tσ, Rσ.

Proof. The proof is straightforward by induction on the last rule applied for deducing
typeinf(P,Γ) = (E,C,R).

• base case of typeinf(0,Γ) = (∅, 0,∅): it is obvious.

• the case of typeinf(a(y).P,Γ) = a.(X ‖ Y↓), 〈T = X ‖ Y, y#X, Y↑ = Ta〉 ∪
C,R) with assumptions (T, C,R) = typeinf(P), Γ : a : (y : t)Ta and fresh
X, Y and 〈T = X ‖ Y, y#X, Y↑ = Ta〉 ∪ C is solved, so is C. Since X, Y
are fresh with respect to C, we have solve(C) = σ′ s.t. σ′ and σ are the
same substitution on dom(σ) \ {X, Y } and X, Y are not type variables in
T and E. By applying induction hypothesis to (T, C,R) = typeinf(P), we
get Γ : P : Tσ′, Eσ′. Since 〈T = X ‖ Y, y#X, Y↑ = Ta〉 is satisfied by σ,
Tσ = Tσ′ = σ(X) ‖ σ(Y) s.t. y#σ(X) and σ(Y) = Ta↑ . By applying the rule
[ts input] to Γ : P : Tσ′, Eσ′, we get Γ : a(y)P : a.(σ(X) ‖ σ(Y)↓), Eσ. This
implies the required result Γ : a(y)P : a.(X ‖ Y↓)σ, Eσ.

• other cases: it is straightforward.

156 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

Lemma 5.4.8. (completeness) If Γ : P : T,E, then there are T ′, C, R and σ such
that typeinf(P,Γ) = (T ′, C, R). solve(C) = σ, T ′σ ≡ T and Rσ ≡ E.

Proof. The proof is by induction on the derivation of Γ : P : T,E.

• base case of the empty rule: it is obvious.

• the case of the rule [ts input]: we are given Γ : a(y).P : T,E. By the Lemma 5.3.14,
we get Γ :N a(y).P : S,E s.t. S ≡ T and by Lemma 5.3.18, Γ, y : t :N P : T1 ‖ T2,
Γ : a : (y : t)Ta, y#T1 and T2↑ = Ta s.t. S = a.(T1 ‖ T2↓). By applying induc-
tion hypothesis to Γ, y : t :N P : T1 ‖ T2, there exist T ′, C, R s.t. typeinf(P,Γ) =
(T ′, C, R), solve(C) = σ, T ′σ ≡ T1 ‖ T2 and Rσ ≡ E. Now, we have
typeinf(a(y).P,Γ) = (a.(X ‖ Y↓), 〈T ′ ≡ X ‖ Y, y#X, Y↑ = Ta〉 ∪ C,R)
and let σ′ = σ[T1/X][T2/Y]. This implies that solve(〈T ′ ≡ X ‖ Y, y#X, Y↑ =
Ta〉 ∪ C) = σ′, a.(X ‖ Y↓)σ′ = a.(T1 ‖ T2↓ ≡ T and Rσ′ = Rσ ≡ E. This
concludes the proof.

• other cases: it is straightforward.

For safety properties, as in the policy compliance theorem in Chapter 4, the below
theorem ensures the correctness of resource usages, i.e no faulty traces occur if a
process is well-typed.

Theorem 5.4.9. Given a resource r declared with a safety policy ϕ in P . If P is
well-typed, then P complies with ϕ for r.

Proof. By the way of contradiction, suppose that P does not comply with ϕ, e.g. there

exist P ′, P ′′ such that P
µ→

∗
P ′ α(r)→ P ′′, where α(r) is the first violation action oc-

curred in the sequence of transitions. The proof of the theorem amounts to checking
that E ′, given by Γ : P ′ : T ′, E ′ , is not satisfied, which implies a contradiction due
to the subject reduction lemmas. Suppose that Γ : P,E. By Subject Reduction
theorem, we have that Γ : P,E implies Γ : P ′, E ′.

For this we proceed by cases on P ′ making use of the induction hypothesis. Many
cases are straightforward and here we only consider the most interesting cases.

The case of P ′ ≡ (r,ϕ, η){α(r).Q}, α(r).Q α?r→ Q and η.α 5|= ϕ: it follows that
E ′ contains a resource constraint of the form ϕ〈η.α.T 〉. The safety property of ϕ
implies that η.α.T 5|= ϕ, that is E ′ is not satisfied, which is contradiction with the
well-typedness of P ′.

5.5. RELATED WORKS AND DISCUSSIONS 157

5.5 Related Works and Discussions

Behavioural types. Several approaches have exploited type systems to abstract
over resource behaviour. The approaches closer to our development are presented in
[66, 4, 63]. The work in [63] introduced a generic type system for the π-calculus. By
choosing sub-typing relation and a “consistency condition” of types, one can obtain
a variety of type systems, such as those ensuring deadlock-freedom [69] or type-
based information analysis [68], from the generic type system. Moreover, the type
soundness property of the generic type system ensures the soundness of a certain
class of its instances.

The limits of behavioural type system, as instances of the generic type system
based on the use of simulation as a sub-typing relations, may lead to undecidable
type checking, pointed in [72]. A second point is that a “sub-divide” law, T ≡
T↓x ‖ T↑x (i.e. T is split into two parts: T1 depends on x and T2 does not), is
essentially used in the sub-typing relation in the generic type system. In fact, this law
ignores dependencies among names in types, therefore breaks spatial correspondence
between processes and types. These issues has been addressed by the work reported
in [4] by reducing the flexibility of the generic type system and gaining decidable
results for classes of interesting properties. By defining the sub-typing relation
as structural congruence and the absence of union types, the spatial structure of
processes are maintained in process types. This allows the verification of spatial
properties of processes through types, using a fragment of spatial logics [40], called
Shallow Logics. The main difference between the work in [66] and ours lie at the
design choice of the model of resources.

The design choice of our approach is motivated by considering type abstractions
that maintains the spatial model checking, as the one in [4], and for resource ab-
straction that enables verification of resource usages. In result, we adopt instead
the type system in [4], where the abstraction of resource behaviour is extracted in
the form of side effects. The novelty of our approach comes from the separation of
resource behaviour from process behaviour through the type and effect system. Our
treatment of resources requires a symmetric treatment for input/output on resource
behaviour. In [66, 4, 63], rules of input/output are asymmetric in the sense that
the sender gets information about continuations of receivers. On the contrary, the
resource information should be maintained on both sides (receivers and senders). It
can be thought as symmetric treatment of input and output processes on resource
behaviour. The point is that a spatial split T ≡ T1 ‖ T2, as described in the rule
[ts input res], also splits “resource behaviour”. To handle this situation, we intro-
duce the “resource splitting” operators ↓ and ↑ on resource abstraction of types
(reminiscent of the law “sub-divide”) to properly keep track of resource behaviour
during type checking.

The type system in [66] can be considered as derivation of the one in [63] to deal
with resource usages, where the sub-typing relation is defined as structural preorder.

158 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

More precisely, in this approach, resource usages are obtained by considering the
abstract behaviour of the corresponding private names, i.e. private names extended
with a set of traces to define the control over resource accesses. Types in [66] can be
automatically inferred through a type inference algorithm with verification of safety
properties of resource usages. The main difference between this type system and ours
lies at the design choice of model of resources. Consequently, we need to introduced
primitives to deal with resource management. As a consequence we need a more
complicated extension of the π-calculus than the one in [66]. The shared semantics
of private names results in concurrent resource accesses by different processes. In a
result, a further approximation to reduce dependencies is required in order to verify
safety properties of resource usages. In our design, the explicit model of resource
results in gaining precision of tracking resource usages of “individual” processes,
i.e. resource requesters. The pay-off comes from that fact that we are able to directly
model checking resource behaviour against linear temporal properties, whereas an
extra step of over-approximation of resource usages is required in [66].

It is worthwhile to mention works on session types or conversation types. Our
type system is considered orthogonal to these works since the different issues are
addressed. In [42, 41], the focus is on properties for disciplining interactions between
parties. In other words, “business logic” issues are tackled by these works. On the
contrary, our main concern is on the correctness of resource usages. For example,
resource management in a data center requires proper configurations and settings
of virtual machines and services running on them. A misconfiguration could lead to
a huge impact on the whole infrastructure, which is usually not a primary concern
of applications.

Guaranteed resource properties. Verification of resource usages requires a great
effort as the complexity of modern distributed systems increases. A number of
methods has been proposed to check properties of distributed resources.

In [47], a proof system is presented to ensure the correctness of resource usages,
however it is not clear how to model check it. Type-based analysis has proved
its usefulness in many works [66, 70, 104, 108]. In [108], a unique type capturing
safe reconfigurations (strong update) over channels has been introduced. The term
unique means that only a process owning a channel can allocate or deallocate it.
This also guarantees the safety of modifying a channel having a unique type, that
is, a strong update. The soundness of the type system ensures that evaluation of
a well-typed process never get an error. Similarly, in [70], linear usages of channel
input/outputs are verified by the type system.

The language of resource behaviours in our approach is a fragment of CCS with-
out hiding and renaming operators, and therefore is less expressive than those in
[66]. However, the pay-off comes from the fact that we do not need an extra step
to further approximate them into a form suitable to be model checked as it is the
case of the techniques of [66]. Verification of resources is based on a translation of
side effect into basic parallel processes. Decidability results ensure the effectiveness

5.5. RELATED WORKS AND DISCUSSIONS 159

of BPP model checking [54] against LTL. Liveness properties can be checked by
combining the resource type system in [66] and existing type systems [67, 68, 71].
However, it is not clear how such combination works.

As mentioned in Section 4.4, privacy of resources could potentially give a closer
view of resource usages. Recall that this view could potentially separate two im-
portant aspects of resource usages: i) an internal view, which focuses on states of
resources; ii) an external view, which focuses on dependencies among external pro-
cesses that request resources. Side effects constructed in the our type system reflect
the first view. The second view can be seen in the restriction (νr : t), where t could
be used to specify properties related to external processes. To support this feature,
however, we need to carefully consider the treatment of input/output of private
resource names.

160 CHAPTER 5. THE TYPE AND EFFECT SYSTEM FOR THE G-LOCAL π-CALCULUS

Chapter 6

Conclusions

In this dissertation, we studied computing models and techniques to deal with the
management of distributed resources. Since resource awareness is a central notion,
we modelled resources as stateful and independent entities which are available on
demand.

We introduced a novel declarative model for Cloud Computing in Chapter 3. The
model takes the form of a concurrent λ-calculus enriched with primitive constructs
to manage the assembling of services in the cloud, (asynchronous) service invocation,
security policies and their enforcement mechanisms. Abstract bisimulation seman-
tics provides the formal basis for compositional reasoning on the behaviour of cloud
systems. Our use of the λ-calculus as foundational basis for Cloud Computing is
a refinement of the λ[] calculus [15, 12], that handles the service business logic in
the form of service orchestration, and of the version of λ[]-calculus presented [16]
that focussed on resource usage analysis for functional languages. In our model, we
do not address the issues related to service orchestration, instead, we concentrate
on linkage among cloud services and resources. Indeed, our main contribution here
consists in the management of cloud services via asynchronous invocation and the
development of the bisimulation semantics.

In Chapters 4 and 5, we introduced the G-Local π-calculus, an extension of
the π-calculus, to managing distributed resources. The model combines the name-
passing of the π-calculus with the publish-subscribe paradigm to cope with resource-
awareness. We obtain a name passing process calculus with primitives for acquiring
and releasing stateful resources. Our research program has provided the formal
mechanisms underlying the definition of a resource-aware programming model. The
explicit notion of resource gets benefits in several places. First, we argue that it
provides an easy way to specify and design properties of resources. Second, re-
sources with embedded structures are stateful and independent entities in the style
of publish-subscribe paradigm. Resources are subject to be published, available and
not under the control of the applications that request them. Third, we believe that
the model of resources can be easily tweaked to be used with other formalisms of
usage policies, for instance, constraints on resources using c-semirings [25].

162 CHAPTER 6. CONCLUSIONS

In terms of reasoning mechanisms, we developed two techniques, namely Con-
trol Flow Analysis (CFA) and Type and Effect Systems. CFA mainly focuses on
reachability properties related to resource usages. It would be interesting to exploit
CFA techniques to develop methodologies to instrument the code in order to avoid
bad accesses to resources.

The idea of type and effect system is that types are equipped with resource-access
actions α(R), where R is a finite set of resource names over which α possibly acts.
Basically, types abstract two kinds of behavioural information: communication-
based and resource-based. The former describes the abstract behaviour of processes
on channels, i.e. the dependencies and interactions among channels, while the latter
describes the abstract resource behaviour of processes. The novelty of our approach
comes from the separation of resource behaviour from process behaviour through
the type and effect system. Resource behaviours are constructively extracted as
side effects during type checking. Side effects are basically BPP processes, which
lie at the border of many decidability problems in model checking techniques [78].
Thus, regular linear time properties of resource usages, which can be expressed
by LTL formulas, can be considered as the most powerful properties, that still
enjoy decidable results. Also it would be interesting to apply the typing techniques
(behavioural types) introduced in [16] to capture a notion of resource contract.

Bibliography

[1] Abadi, M., Fournet, C.: Access control based on execution history. In:
Proceedings of the Network and Distributed System Security Symposium
(NDSS’03). The Internet Society (2003)

[2] Abowd, G.D., Mynatt, E.D.: Charting past, present, and future research in
ubiquitous computing. ACM Transactions on Computer-Human Interaction
(TOCHI’00) 7, 29–58 (March 2000)

[3] Abramsky, S., Ong, C.H.L.: Full abstraction in the lazy lambda calculus.
Information and Computation 105(2), 159–267 (1993)

[4] Acciai, L., Boreale, M.: Spatial and behavioral types in the pi-calculus. Infor-
mation and Computation 208, 1118–1153 (October 2010)

[5] Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented program-
ming. In: Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’09). pp. 1015–1022 (2009)

[6] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski,
A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the
clouds: A berkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28,
EECS Department, University of California, Berkeley (Feb 2009)

[7] Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. The In-
ternational Journal of Computer and Telecommunications Networking 54(15),
2787–2805 (Oct 2010)

[8] Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and
Mind Series). The MIT Press (2008)

[9] Banerjee, A., Naumann, D.A.: History-based access control and secure infor-
mation flow. In: Proceedings of Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices (CASSIS’05). LNCS 3362, Springer (2005)

164 CHAPTER 6. BIBLIOGRAPHY

[10] Bartoletti, M.: Usage automata. In: Proceedings of Foundations and Appli-
cations of Security Analysis, Joint Workshop on Automated Reasoning for
Security Protocol Analysis and Issues in the Theory of Security (ARSPA-
WITS’09). pp. 32–47. LNCS 4423, Springer (2009)

[11] Bartoletti, M., Degano, P., Ferrari, G.: History-based access control with local
policies. In: Proceedings of 8th Foundations of Software Science and Computa-
tional Structures Conference (FoSSaCS’05). pp. 316–332. LNCS 3441, Springer
(2005)

[12] Bartoletti, M., Degano, P., Ferrari, G.: Planning and verifying service com-
position. Journal of Computer Security 17 (5) (2009)

[13] Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Secure service orches-
tration. In: Proceedings of Foundations of Security Analysis and Design IV
(FOSAD’07). LNCS 4667, Springer (2007)

[14] Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Types and effects for re-
source usage analysis. In: Proceedings of 10th Foundations of Software Science
and Computational Structures Conference (FoSSaCS’07). pp. 32–47. LNCS
4423, Springer (2007)

[15] Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Semantics-based design
for secure web services. IEEE Transactions on Software Engineering (TSE)
34(1), 33–49 (2008)

[16] Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Local policies for resource
usage analysis. ACM Transactions on Programming Languages and Systems
(TOPLAS’09) 31(6) (2009)

[17] Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: Proceed-
ings of the 25th Annual IEEE Symposium on Logic in Computer Science
(LICS’10). pp. 332–341. IEEE Computer Society (2010)

[18] Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure ser-
vice orchestration. In: Proceedings of 19th Computer Security Foundations
Workshop (CSFW’06) (2006)

[19] Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage
policies. In: Proceedings of Trustworthy Global Computing (TGC’08). pp.
19–35 (2008)

[20] Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time.
Acta Informatica 20, 207–226 (1983)

[21] Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication.
Information and Control 60(1-3), 109–137 (1984)

6.0. BIBLIOGRAPHY 165

[22] Bhargavan, K., Gordon, A., Narasamdya, I.: Service combinators for farm-
ing virtual machines. In: Proceedings of the 10th Coordination Models and
Languages Conference (COORDINATION’08). LNCS, vol. 5052, pp. 33–49
(2008)

[23] Bhargavan, K., Andrew, D.G.: Getting operations logic right: Types, service-
orientation, and static analysis. In: Proceedings of the workshop on ”The Rise
and Rise of the Declarative Datacentre”. pp. 9–11. Microsoft Research (2008)

[24] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction
and optimization. Journal of the ACM 44, 201–236 (1997)

[25] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction
and optimization. Journal of the ACM 44(2), 201–236 (1997)

[26] Bodei, C., Degano, P., Nielson, F., Nielson, H.: Static analysis for the pi-
calculus with applications to security. Information and Computation 168(1),
68–92 (2001)

[27] Bodei, C., Dinh, D., Ferrari, G.: Safer in the clouds. Tech. Rep. TR-10-15,
Dipartimento di Informatica (2010)

[28] Bodei, C., Dinh, V., Ferrari, G.: Safer in the clouds (extended abstract). In:
Proceedings of Interaction and Concurrency Experience (ICE’10). EPTCS,
vol. 38, pp. 45–49 (2010)

[29] Bodei, C.: A control flow analysis for beta-binders with and without static
compartments. Theoretical Computer Science 410(33-34), 3110–3127 (2009)

[30] Bodei, C., Dinh, V.D., Ferrari, G.L.: Predicting global usages of resources
endowed with local policies. In: Proceedings of 10th International Workshop
on the Foundations of Coordination Languages and Software Architectures
(FOCLASA’11). EPTCS, vol. 58, pp. 49–64 (2011)

[31] Bodei, C., Dinh, V.D., Ferrari, G.L.: Predicting global usages of resources
endowed with local policies. Science of Computer Programming (SCP) (sub-
mitted) (2012)

[32] Bodei, C., Dinh, V.D., Ferrari, G.L.: A g-local π-calculus. In: Proceedings
of Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES’11) (2011), http://places11.di.fc.ul.pt/
proceedings.pdf/view

[33] Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M.,
Martins, F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T.,
Zavattaro, G.: Scc: A service centered calculus. In: Web Services and Formal
Methods. pp. 38–57 (2006)

166 CHAPTER 6. BIBLIOGRAPHY

[34] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating
sequential processes. Journal of the ACM 31(3), 560–599 (1984)

[35] Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite struc-
tures (2000)

[36] Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for speci-
fying service level agreements. In: Proceedings of 16th European Symposium
on Programming (ESOP’07). LNCS, vol. 4421, pp. 18–32. Springer (2007)

[37] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud comput-
ing and emerging it platforms: Vision, hype, and reality for delivering com-
puting as the 5th utility. Future Generation Computer Systems 25, 599–616
(2009)

[38] Caires, L.: Spatial-behavioral types, distributed services, and resources. In:
Proceedings of the 2nd international conference on Trustworthy global com-
puting (TGC’06). pp. 98–115. Trustworthy Global Computing 2006, Springer-
Verlag (2007)

[39] Caires, L.: Spatial-behavioral types for concurrency and resource control in
distributed systems. Theoretical Computer Science 402(2-3), 120–141 (2008)

[40] Caires, L., Cardelli, L.: A spatial logic for concurrency (part i). Information
and Computation 186(2), 194–235 (2003)

[41] Caires, L., Vieira, H.T.: Conversation types. Theoretical Computer Science
411(51-52), 4399–4440 (2010)

[42] Carbone, M., Honda, K., Yoshida, N.: A calculus of global interaction based
on session types. Electronic Notes in Theoretical Computer Science 171(3),
127–151 (2007)

[43] Cardelli, L.: Brane calculi. In: Computational Methods in Systems Biology
(CMSB’04). pp. 257–278 (2004)

[44] Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science
240(1), 177–213 (2000)

[45] Christensen, S.: Decidability and decomposition in process algebras. Ph.D.
Thesis, University of Edinburgh (1993)

[46] Church, A.: A formulation of the simple theory of types. The Journal of
Symbolic Logic 5(2), 56–68 (1940)

[47] Collinson, M., Pym, D.: Algebra and logic for access control. Formal Aspects
of Computing 22(3-4), 483–484 (2010)

6.0. BIBLIOGRAPHY 167

[48] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In:
Proceedings of the Fourth ACM Symposium on Principles of Programming
Languages (POPL’77). pp. 238–252 (1977)

[49] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks.
In: ACM Symposium on Principles of Programming Languages (POPL’79).
pp. 269–282 (1979)

[50] Dimoulas, C., Pucella, R., Felleisen, M.: Future contracts. In: Proceedings of
the 11th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming (PPDP’09). pp. 195–206 (2009)

[51] D.Talbot: How secure is cloud computing? Technology Review (Nov 2009),
http://www.technologyreview.com/computing/23951/

[52] Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for
mobile code. In: Proceedings of the 5th ACM conference on Computer and
communications security (CCS’98). pp. 38–48. ACM, New York, NY, USA
(1998)

[53] Esparza, J.: On the decidability of model checking for several µ-calculi and
petri nets. In: Proceedings of the 19th International Colloquium on Trees in
Algebra and Programming (TAP’94). pp. 115–129. Springer-Verlag, London,
UK (1994)

[54] Esparza, J.: Decidability of model checking for infinite-state concurrent sys-
tems. Acta Informatica 34, 85–107 (1997)

[55] Ferrari, G., Moggi, E., Pugliese, R.: Guardians for ambient-based monitoring.
In: F-WAN: Foundations of Wide Area Network Computing, number 66 in
ENTCS. Elsevier Science. pp. 141–202. Elsevier (2002)

[56] Fong, P.W.L.: Access control by tracking shallow execution history. In: IEEE
Symposium on Security and Privacy. pp. 43–55. IEEE Computer Society Press
(2004)

[57] Fournet, C., Gordon, A.D.: Stack inspection: Theory and variants. ACM
Transactions on Programming Languages and Systems (TOPLAS’03) 25, 360–
399 (May 2003)

[58] Gelernter, D.: Generative communication in Linda. ACM Transactions on
Programming Languages and Systems (TOPLAS’85) 7(1), 80–112 (1985)

[59] Gordon, A.D.: V for virtual. Electronic Notes in Theoretical Computer Science
162, 177–181 (2006)

168 CHAPTER 6. BIBLIOGRAPHY

[60] Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus
for Service Oriented Computing. In: 4th International Conference on Service
Oriented Computing (ICSOC’06). Lecture Notes in Computer Science, vol.
4294, pp. 327–338. Springer (2006)

[61] Howe, D.J.: Proving congruence of bisimulation in functional programming
languages. Information and Computation 124(2), 103–112 (1996)

[62] Igarashi, A., Kobayashi, N.: Resource usage analysis. In: ACM Symposium
on Principles of Programming Languages (POPL’02). pp. 331–342 (2002)

[63] Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theo-
retical Computer Science 311(1-3), 121–163 (2004)

[64] Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Transactions
on Programming Languages and Systems (TOPLAS’05) 27, 264–313 (March
2005)

[65] Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In:
Proceedings of the 8th Internatilonal Collogquium on Automata, Languages
and Programming (ICALP’81). pp. 114–128 (1981)

[66] Kobayashi, N., Suenaga, K., Wischik, L.: Resource usage analysis for the
pi-calculus. Logical Methods in Computer Science 2(3), 1–42 (2006)

[67] Kobayashi, N.: A type system for lock-free processes. Information and Com-
putation 177(2), 122–159 (2002)

[68] Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta
Informatica 42(4-5), 291–347 (2005)

[69] Kobayashi, N.: A new type system for deadlock-free processes. In: Concur-
rency Theory (CONCUR’06). pp. 233–247 (2006)

[70] Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus.
ACM Transactions on Programming Languages and Systems (TOPLAS’99)
21, 914–947 (September 1999)

[71] Kobayashi, N., Saito, S., Sumii, E.: An implicitly-typed deadlock-free process
calculus. In: Concurrency Theory (CONCUR’00). pp. 489–503 (2000)

[72] Kobayashi, N., Suto, T.: Undecidability of 2-label bpp equivalences and be-
havioral type systems for the pi -calculus. In: 34th International Colloquium:
Automata, Languages and Programming (ICALP’07). pp. 740–751 (2007)

[73] Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach
to branching-time model checking. Journal of the ACM 47, 312–360 (March
2000)

6.0. BIBLIOGRAPHY 169

[74] Landin, P.J.: The Mechanical Evaluation of Expressions. The Computer Jour-
nal 6(4), 308–320 (Jan 1964)

[75] Landin, P.J.: Correspondence between algol 60 and church’s lambda-notation
(part i). Communications of the ACM (CACM) 8(2), 89–101 (1965)

[76] Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web
services. In: 16th European Symposium on Programming (ESOP’07). pp. 33–
47 (2007)

[77] Lucas, P.: Formal definition of programming languages and systems. In: IFIP
Congress (1). pp. 291–297 (1971)

[78] Mayr, R.: Decidability and complexity of model checking problems for infinite-
state systems. Ph.D. Thesis, TU Mnchen (1997)

[79] Mayr, R.: Model checking pa-processes. In: Concurrency Theory (CON-
CUR’97). pp. 332–346 (1997)

[80] McCarthy, J.: Towards a mathematical science of computation. In: IFIP
Congress. pp. 21–28 (1962)

[81] Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Com-
puter Science, vol. 92. Springer (1980)

[82] Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Sci-
ence 25, 267–310 (1983)

[83] Milner, R.: Communication and concurrency. PHI Series in computer science,
Prentice Hall (1989)

[84] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Informa-
tion and Computation 100(1), 1–40 (1992)

[85] Nguyen, N., Rathke, J.: Typed static analysis for concurrent, policy-based,
resource access control (draft) (2006)

[86] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1999)

[87] Nielson, H.R., Nielson, F., Pilegaard, H.: Flow logic for process calculi (to
appear). ACM Computing Surveys (2011)

[88] O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. The Bulletin
of Symbolic Logic 5(2), 215–244 (1999)

170 CHAPTER 6. BIBLIOGRAPHY

[89] Oracle-Corproration: The try-with-resources statement.
http://docs.oracle.com/javase/7/docs/technotes/guides/language/try-with-
resources.html (2011)

[90] Pagani, M., Rocca, S.R.D.: Solvability in resource lambda-calculus. In: Foun-
dations of Software Science and Computational Structures. pp. 358–373 (2010)

[91] Papazoglou, M.P., Traverso, P., Ricerca, I., Tecnologica, S.: Service-oriented
computing: State of the art and research challenges. IEEE Computer 40, 2007
(2007)

[92] Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theoret-
ical Computer Science 1(2), 125–159 (1975)

[93] Plotkin, G.D.: A structural approach to operational semantics. Journal of
Logic and Algebraic Programming 60-61, 17–139 (2004)

[94] Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foun-
dations of Computer Science. pp. 46–57 (1977)

[95] Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Compu-
tational Methods in Systems Biology (CMSB’04). pp. 20–33 (2004)

[96] Reynolds, J.C.: Automatic computation of data set definitions. In:
IFIP Congress (1). pp. 456–461 (1968), ftp://ftp.cs.cmu.edu/user/jcr/
autodataset.pdf

[97] Sangiorgi, D., Walker, D.: Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, New York, NY, USA (2001)

[98] Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario. Information
and Computation 111(1), 120–153 (1994)

[99] Schneier, B.: Be careful when you come to put your trust in the clouds.
http://www.schneier.com/essay-274.html (2009)

[100] Shivers, O.: Control-flow analysis in scheme. In: Proceedings of the ACM SIG-
PLAN’88 Conference on Programming Language Design and Implementation.
pp. 164–174 (1988)

[101] Skalka, C., Smith, S.F.: History effects and verification. In: Programming
Languages and Systems: Second Asian Symposium (PLS’04). pp. 107–128.
LNCS 3302, Springer (2004)

[102] Strom, R.E., Yemini, S.: Typestate: A programming language concept for
enhancing software reliability. Journal of IEEE Transactions on Software En-
gineering 12(1), 157–171 (Jan 1986)

6.0. BIBLIOGRAPHY 171

[103] Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, É.: First-class state
change in plaid. In: Proceedings of the 26th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’11). pp. 713–732 (2011)

[104] Teller, D.: Recovering resources in the pi-calculus. In: Proceedings of IFIP
TCS 2004. pp. 605–618. Kluwer Academic Publishing (2004)

[105] Turon, A., Wand, M.: A resource analysis of the π-calculus. Electronic Notes
in Theoretical Computer Science 276, 313–334 (September 2011)

[106] Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic pro-
gram verification (preliminary report). In: LICS. pp. 332–344 (1986)

[107] Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of
service-oriented computation. In: 17th European Symposium on Programming
(ESOP’08). pp. 269–283 (2008)

[108] de Vries, E., Francalanza, A., Hennessy, M.: Uniqueness typing for resource
management in message-passing concurrency. In: Proceedings of First Inter-
national Workshop on Linearity. EPTCS, vol. 22, pp. 26–37 (2009)

[109] Weiser, M.: The computer for the 21st century. SIGMOBILE Mobile Com-
puting and Communications Review 3(3), 3–11 (Jul 1999)

[110] Youseff, L., Butrico, M., Silva, D.D.: Toward a unified ontology of cloud
computing. In: Proceedings of Grid Computing Environments Workshop
(GCE’08). pp. 1–10 (2008)

