
Chiara Orsini 

A Structural Analysis of  
the Internet AS-level topology 

Anno 2013 

UNIVERSITÀ DI PISA 
Scuola di Dottorato in Ingegneria “Leonardo da Vinci” 

Corso di Dottorato di Ricerca in  
INGEGNERIA DELL’INFORMAZIONE 

 
Tesi di Dottorato di Ricerca 

 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14704528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




 

Autore: 

Chiara Orsini ____________________ 

Relatori: 

Prof. Luciano Lenzini       ____________________ 

Prof.ssa Gigliola Vaglini    ____________________ 

Ing. Enrico Gregori          ____________________ 

 

A Structural Analysis of  
the Internet AS-level topology 

Anno 2013 
SSD ING-INF/05 

UNIVERSITÀ DI PISA 
 

Scuola di Dottorato in Ingegneria “Leonardo da Vinci” 

 

Corso di Dottorato di Ricerca in  
INGEGNERIA DELL’INFORMAZIONE 

 
Tesi di Dottorato di Ricerca 





To Gabriella, Lorenzo, and Piero,
for their unconditional support.

i





Sommario

Lo studio delle proprietà strutturali della topologia di Internet a livello Autonomous Sy-
stem (AS) è un importante tema di ricerca che ha attratto un significativo interesse
negli ultimi anni. Una conoscenza dettagliata della struttura della topologia consente,
infatti, la definizione di modelli sempre più accurati della Rete. Inoltre, poichè conside-
rare la struttura sottostante facilita lo sviluppo di algoritmi efficienti, tali modelli sono,
a loro volta, utilizzati per lo sviluppo e il test (syntethic graphs) di nuove applicazio-
ni e protocolli. Due tematiche tipiche di quest’area di ricerca sono, rispettivamente,
l’analisi e l’interpretazione dell’organizzazione complessiva del grafo. Spesso, l’ap-
proccio utilizzato è quello delle communities, ovvero la decomposizione del grafo in
sottocomponenti. Tuttavia, mentre il tema della community detection risulta ampia-
mente trattato in letteratura, l’interpretazione delle community risulta un argomento
poco affrontato.

Il contributo di questa tesi si compone di due parti: uno studio dell’evoluzione della
rete Internet negli anni, dal 2004 al 2012, mediante tecniche di community detection
e dK-analysis; un’analisi delle classi di AS e delle varie tipologie di connessione che
creano le communities individuate. Sebbene, col passare del tempo la topologia di In-
ternet sia cresciuta visibilmente (ad esempio, il numero di nodi è duplicato nell’arco di
soli 9 anni), alcune proprietà strutturali sono, invece, rimaste invariate. Un importante
risultato derivante dall’analisi strutturale è il fatto che, dopo opportune normalizza-
zioni, le statistiche ottenibili mediante la decomposizione della rete in k-dense com-
munities rimangono stabili. Per quanto riguarda l’interpretazione delle communities,
osserviamo che la continua crescita del traffico e del numero di connessioni instaura-
te presso gli Internet eXchange Point risulta essere la principale causa della presenza
di strutture sempre più dense nel grafo Internet. Infatti, tutti gli AS che formano queste
zone estremamente connesse sono membri di almeno un IXP. Un altro aspetto inte-
ressante che emerge è il fatto che gli AS che causano la creazione di strutture ben
connesse sono principalmente di una di queste categorie: Network Service Provider,
Content Provider o Content Delivery Network.
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Abstract

The study of the structural characteristics of the Internet topology at the Autonomous
System (AS) level of abstraction is an important and interesting subject that has at-
tracted significant interest over the last few years. Above all, a deep knowledge of the
Internet underlying structure helps researchers in designing a more accurate model
of the network; as a result, engineers can design applications and protocols that can
take into account the underlying structure and test their projects on synthetic graphs,
thereby developing more efficient algorithms. A significant challenge for researchers
analyzing the Internet is how to interpret the global organization of the graph as the
coexistence of its structural blocks associated with more highly interconnected parts,
namely communities. While a huge number of papers have already been published
on the issue of community detection, very little attention has so far been devoted to
the discovery and interpretation of Internet communities.

The contribution of this work is twofold. First, we study the evolution of the Internet
AS-level topology over the last 9 years by means of two innovative approaches: the
k-dense method and the dK-analysis. Second, we focus on substructures that play a
key role in the Internet connectivity, and we investigate the classes of the ASes and the
nature of the connections that create such communities. We find that as the Internet
grows over time, some of its structural properties remain unchanged. Although the
size of the network, as well as the kMAX -dense index (an index of the maximum level
of density reached in a network), has doubled over the last 9 years, we show that
after proper normalizations the k-dense decomposition has remained stable. Besides,
we provided a clear evidence that the formation of denser and denser sub-graphs
over time has been triggered by the proliferation of Internet eXchange Points (IXP)
and public peering connections. We found that ASes within most densely-connected
substructures are usually Network Service Providers, Content Providers, or Content
Delivery Networks; in addition, all of them participate to at least one IXP.
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1

Introduction and Related Work

The Internet is a constantly changing network that evolves according to independent
decisions made by each Autonomous System (AS). Since each AS is a separately
managed network, the overall Internet appears as an extremely heterogeneous sys-
tem. First, the business objectives of the network operators can be very different,
thereby determining different network sizes and policies. Second, even if two ASes
have the same function, there is no best-practice that could be defined as a dogma:
for instance, one AS could decide to connect to an Internet Exchange Point and thus
have the incentive to create multiple BGP connections to the other members of the fa-
cility; whereas the other AS could decide to set up just a single connection to its transit
provider. In addition, due to its distributed nature, there is no centralized entity having
an exact and global understanding of how the Internet network is evolving. For these
reasons, characterizing the Internet topology organization represents a valuable tool
to have a clearer view of the interplay between ASes; also, correlating the economic
forces behind such interactions with the underlying structures can help predict the
future shape of the network.

Analyzing and modeling real-world phenomena is a research challenge common
to many fields. Social Networks, Communication Systems, Economy, Computer Sci-
ence, Transportation, Medicine, Biology, and many other disciplines benefit from un-
derstanding the structure of their networks [16]. The motivation behind the specific
analysis of the Internet topology at the AS level of abstraction is mostly driven by the
following purposes:

• the design of more efficient routing protocols [29, 91, 94, 96, 99],
• the development of customized algorithms for searching and for flow optimization

[2, 52], and
• the evaluation of the consequences of node failures or virus spreading (what-if

scenarios in general) [99].

In order to achieve such objectives, it is necessary to test new protocols and appli-
cations against the current Internet topology and its future predictions (e.g. synthetic
graph generators) [61, 45, 81, 62, 88, 80, 24, 87, 75, 18, 44]. In other words, it is
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necessary to have a valid model of the Internet topology, which in turn requires a
detailed understanding of the structural characteristics of the network and how these
properties change over time [22, 9, 23, 15, 79].

In this thesis we address the specific problem of analyzing the structure of the
Internet topology at the AS level of abstraction and its evolution. Such research chal-
lenge has a complex nature and it answers to the following questions:

• how do we describe such an heterogeneous network?
• how do we define the important substructures?
• how do structures change over time?
• how can we correlate real world phenomena driving the Internet evolution and

structural properties?

The main components of this thesis address each research question as follows.

The first contribution of this thesis is to provide a description of the Internet AS-
level topology inspired from different data sources. In the current literature Internet
topology is commonly described as an undirected and unweighted graph [80]; such
approach is actually the simplest and more natural way to represent the inferred In-
ternet AS-level topologies [47, 93, 33] as it captures both entities and relationships
between those entities [4]. For instance, the discovery of power-laws in the degree
distribution [24] and the consequent preferential-attachment models [9] use that de-
scriptive solution. On one hand, maintaining a simple data structure, such as an edge-
list, simplifies the process of analyzing the structure of the graph. On the other hand,
considering such an approach provides a biased view of the real network. In fact,
[44] showed in 2009 that different economic relationships between ASes (provider-
customer and peering connections) contributed in a different way to the final shape
of the degree distribution, thereby drawing the attention on the influence of Internet
eXchange Points (IXP) on Internet topology dynamics. A more recent example is [18]
which separates the study of peering and customer-provider connections and con-
sider four distinct classes of ASes to discuss the Internet evolution. Although this
trend of enriching the Internet topology has been recently spreading in the special-
ized literature, the description of IXPs has mostly remained a stand-alone topic. [8]
and [3] provide a very detailed description of the IXP panorama, yet giving surprising
statistics related to the proliferation of public peering connections, however no work
correlates Internet structural properties and IXPs so far. In our work we combine three
different information, i.e.: topology, inferred AS relationships and IXP data. In detail,
we first consider the network as an undirected and unweighted graph in order to be
able to apply all kind of structural analyses that derive from graph theory. Then, we
focus on specific substructures and we investigate their inferred relationships and the
properties that can be derived from their participation at an IXP.

2



A second contribution of this thesis is to thoroughly discuss what are the most suit-
able community detection methods on the Internet AS-level topology. The study of the
graph as a single entity can hide the underlying structure of the graph. For instance,
observing the average values or distributions of some common graph metric (e.g. de-
gree, clustering coefficient) can provide some interesting description of the network,
however it does not describes its structural organization or its functional blocks. For
these reasons, we decide to focus on a description of a network by means of commu-
nities. In most of the approaches published in the specialized literature, communities
have been characterized and discovered by exploiting some global property of the
graph [26], and the optimization of the modularity is so far the most used approach
[68, 12]. However due to Internet organization, such definition may lead to wrong re-
sults. [68] defines the community as a partition which is densely connected, but it has
relatively few connections directed outside. However, if we consider a group of well
connected Service Providers, since their business objective is to sell transit, we will
find that most of them will have many provider customer connections directed to their
customers. We believe that the presence of many outgoing connections should not
be a valid reason to deny the presence of a community of Service Providers, thereby
providing evidence that modularity is not a universal approach to find communities. In
this thesis, we first describe the characteristics of an ideal community within the Inter-
net context: precisely, we sustain that the presence of well-clustered group of ASes
resembles a community regardless the number of connections directed outside the
community. Then, we show and discuss the differences between three selected com-
munity detection algorithms, i.e. the k-core decomposition [84], the k-dense method
[83], and the Clique Percolation Method [78]. In order to perform such comparison,
we propose a new method to visualize the nesting process that characterizes such
community detection methods, i.e. the k-tree; also we investigate the statistical sig-
nificance of the communities by using the dK-analysis. k-core decomposition is the
only method that has been already applied to the Internet AS-level topology: [6], for
instance, points out the hierarchies of the graph emerging from k-cores; [15] provides
a descriptive model of the Internet made up of three components, i.e. a nucleus, a
peer-connected component and a group of dendrites. Although, k-core decomposi-
tion has been proved to provide valuable insights into the structure of the Internet, the
results of our comparison show that k-dense decomposition better individuate those
densely connected components of the network. To the best of our knowledge, neither
the k-dense method nor the dK-analysis have ever been applied to the Internet topol-
ogy and to k-dense communities before our works [38, 76].

The k-dense method and dK-analysis characterize the way this thesis answer to
the third research question too. Although many works have covered the description
of the Internet evolution, our work is the first that combines classical graph theory
properties with more complex and insightful characteristics obtained with the k-dense
method. For example, [58] analyzes the growth and the densification of the network

3
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showing that the distance parameters surprisingly decrease as time goes by, while
[18] observes the evolution of the graph in terms of growth and rewiring. Both works
provide a valuable contribution to the description of the Internet evolution, but they
do not provide a description of how the structure is changing. The same criticism can
be applied to [86] and [75] that describe a new preferential attachment-based model
of the Internet evolution and a discussion of the impact of data incompleteness on
Internet observed topology over time respectively. A major advance in this thesis with
respect to the current literature is the idea of decomposing the graph and then ana-
lyzing how the different substructures are interconnected. Such study reveals that the
k-dense organization of the Internet graph is stable over time, yet the fact that densest
community has a key role for the Internet overall connectivity is time-invariant. Also
we focus on these cohesive communities, namely kMAX -denses, and we apply the
dK-analysis to understand if the size of the building blocks of these specific substruc-
tures change over time.

Finally, we interpret the patterns emerging from our analysis of the structure with
the support of additional information, such as the inferred AS relationships or the par-
ticipation at IXPs. The development of IXPs and the proliferation of public peering
connections is an interesting phenomenon that has been driving the evolution of the
Internet AS-level topology, yet it is a primary cause behind the formation of denser
and denser sub-graphs. The various drivers behind the evolution of the Internet are
usually considered as separated topics in the current literature, e.g.: [55] is an in-
teresting dissertation on Internet inter-domain traffic, [54] discusses the economics
behind the settlement of peering connections, the aforementioned [3] provides a de-
tailed description of a large European IXP, [18] shows the different evolution of peer-
ing and provider customer connections. An appreciable advance with respect to the
current state of the art is a thorough interpretation of how each k-dense component
contributes to the overall structure of the graph through the analysis of the general
business drivers. For instance, we find that the loosely connected components that
are the main contributors to the Internet growth correspond to enterprise customer
ASes adopting a single- or a multi-homed connection to their providers. On the other
hand, we find that the most well-connected sub-graph of the Internet is due to the
increasing traffic requirements of Content Providers and Content Delivery Networks,
yet a growing number of Network Service Providers adopting open peering policies
at IXPs. Surprisingly, the most densely connected community does not include the
so-called Tier-1s, i.e. those ASes that are on the top of the routing hierarchy.

Thesis organization

The rest of this thesis is organized as follows. In Chapter 2, we present the topologies
that we use to analyze the Internet structure evolution and the additional datasets that
are required to provide an interpretation of the structural organization. In Chapter 3,
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we discuss the tools that we adopt to capture the structural properties of the Internet
topology. We start with the definition of dK-analysis which is a systematic approach
for describing the network and unveiling its building block. Then, we describe and
thoroughly compare three community detection algorithms (k-core decomposition, k-
dense method, and clique percolation method) that well suit the idea of Internet com-
munity that we propose. In Chapter 4, we study the evolution of the Internet AS-level
topology from 2004 to 2012, outlining both the growing and the shrinking trends and
the time-invariant organization resulting from the k-dense analysis. Then, we provide
an innovative analysis on the internal structure of the most densely-connected sub-
graphs using the dK-series. In addition, we study in detail the outcome of the k-dense
decomposition on the most recent Internet topology. In Chapter 5, we analyze the cor-
relation between the observed structural organization of the Internet and the business
drivers behind the evolution of the network components. We conclude with outlining
the contribution of this thesis in Chapter 6.
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2

Internet AS-level datasets

2.1 Background

Internet at the AS level of abstraction can be described as an heterogeneous system
made up of different kinds of players, i.e ASes, connecting one to each other according
to business and technical (and other) drivers, and exploiting different technologies.
Autonomous System definition in [43] states:

An AS is a connected group of one or more IP prefixes run by one or
more network operators which has a SINGLE and CLEARLY DEFINED

routing policy.

This definition does not give any details related to the business run by the network
operator, it does not provide neither a limit on the size of the network, nor the traffic
exchanged. As a result, ASes populating the current topology play different roles. BGP
(Border Gateway Protocol) is the inter-domain protocol adopted by ASes and it is flex-
ible enough to accommodate all the different policies required by such different play-
ers. BGP connections can be roughly classified into two main categories: provider-
customer and peering. In a provider-customer relationship one AS (transit provider)
gives access to all destinations in its routing table to the customer AS. Providers of-
ten charge their customers using the 95th percentile measurement schema [71], i.e.
the cost of the service depends on the amount of traffic exchanged. On the other
hand, a peering relationsip is usually free of charge. When such kind of connection
is established, both ASes (peers) have access to the other AS’ customer cone, i.e. to
all the customers of the other AS. Thus, traffic is a key factor in order to understand
the dynamics behind the Internet AS-level topology and predict the settlement of new
connections. Traffic information are confidential and are largely not available (unless
a direct access to routers is usable [55]). Other information, such as the topology, can
be retrieved using active or passive measurements (Section2.2), also it is possible to
infer the category of the BGP connection (Section 2.4) or collect data associated to
a single AS (Section 2.3). This Chapter describes the data available for research and
the frameworks used to manipulate those information.
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2.2 Internet Topologies

The analysis the structure of the Internet at the AS level of abstraction requires the
presence of one or more (if the evolution of the network is studied) topologies rep-
resenting the status of the network in terms of connections. The collection of the In-
ternet AS-level topology is an on-going research topic, indeed, there is no public tool
or registry specifically designed to provide the complete list of all the BGP connec-
tions between ASes. In addition, since BGP connections are the results of strategic
business decisions, companies are not encouraged to make such information easily
available.

Internet topologies are mainly inferred using traceroute-based measurements or
collecting BGP dumps. In the first case, an automated process sends active probes
(traceroutes) to a set of IP address from multiple vantage points and manipulates the
ICMP packets, received as a response, obtaining a list of adjacent IP addresses and
then a list of adjacent AS addresses (after de-aliasing). In the latter case, multiple
processes collect the BGP messages received by their respective peers, then AS-
PATHs are transformed in a list of adjacent ASes.

Both BGP- and traceroute-based data provides an incomplete view of the current
Internet AS-level topology. According to [35] BGP-based data has two main draw-
backs: many connections are not discovered since the topology inferred using feeder
information is biased (e.g. peering connections between leaves are not visible from a
large ISP feeder), AS paths gathered are the results of multiple decision processes
thus, since only the best path is announced, the information provided might be incom-
plete. Also a non-fixed number of monitors could cause differences in the resulting
topology observed. On the other hand, there are still unresolved issues with the map-
ping of IP addresses to AS numbers when we are dealing with traceroute-based data:
no mapping is available; there are IP addresses that appear to originate from more
than one AS; there are AS-sets in the AS-PATH that is used to map IP addresses;
however, the most important problem is that there are not-responding AS (especially
leaf nodes that represent the vast majority of Internet ASes). For a much more de-
tailed discussion of these and other issues, see for instance [49], [98], [73], [74], [35],
[30].

The Cooperative Association for the Internet Data Analysis (CAIDA) [46, 47]
(traceroute) and the Internet Research Lab (IRL) [73, 93] (BGP) are two leaders in
the Internet mapping research. We collect 9 Internet topologies, one snapshot for
each year from January 2004 to January 2012, for each project using the following
procedure:

• CAIDA - Jan. 2004 - Jan. 2007 - for each year we merge into a single file all the
links seen by the Skitter tool from January, 1st to January, 31st [46];

• CAIDA - Jan. 2008 - Jan. 2012 - for each year we merge into a single file all the
links seen by the Ark tool from January, 1st to January, 31st [47];
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• IRL - Jan. 2004 - Jan. 2012 - for each year we download the data related to the
last day of January and we keep all the links listed in the file having the last seen
attribute more recent than the first day of the month (i.e. January, 1st).

In Figure 2.1 we compare the growth of the number of ASes of the two projects,
CAIDA and IRL, and the number of ASes provided by the CIDR report [10]. Although
data collected by the ARK tool (2008-2012) are clearly richer than the data collected
by the Skitter tool (2004-2007), only IRL has a number of discovered ASes compliant
with the CIDR report.
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Figure 2.1: Number of unique AS numbers identified by CIDR report, IRL, and CAIDA
from 2004 to 2012.

Hereinafter, we refer to the IRL topologies as Internet topologies. We decide to
avoid using CAIDA topologies as: a) data are collected using two different tools which
have different performances (Figure 2.1), b) the number of ASes discovered is much
lower than the number declared by the CIDR report.

2.3 Internet Exchange Points

According to the European Internet Exchange Association1, an Internet eXchange
Point (IXP) can be defined as:

A physical network infrastructure operated by a single entity with
the purpose to facilitate the exchange of Internet traffic between

Autonomous Systems. The number of Autonomous Systems connected
should at least be three and there must be a clear and open policy

for others to join.

1 EURO-IX, https://www.euro-ix.net/
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IXPs are layer 1 or layer 2 network structures2 and are not visible within the Internet
AS-level topology. However, their presence has been noticeably affecting the dynam-
ics of the Internet evolution over the last decade [44],[8],[3]; in addition, we prove that
they are a main driver behind the formation of dense structures - Chapter 5, [32],
[38], [40], [39],[76]. When an AS decides to be a member of an IXP, it connects to
the exchange point facility and attaches an own router to the LAN of the IXP, i.e. the
physical location where members peer. Then, the IXP member adopts one of these
peering policies:

• open - a member with an open peering policy is disposed to peer with any other
AS.

• selective - a member with a selective peering policy is disposed to peer with those
ASes that satisfy certain conditions (e.g. traffic levels, peer is not a customer).

• restrictive - it reflects a general willingness not to peer[71].

In order to correlate the presence of IXPs and public peering connections (peering
connections using the IXP) to the formation of specific structures in the Internet AS-
level topology (Chapter 5), we collect information from PeeringDB [82]. PeeringDB is
a freely available database containing information related to public peering [92] and
filled by AS participating at IXPs that want to share/show their peering data.

We have a single snapshot of PeeringDB related to January 2012. It contains in-
formation related to 2,367 (or 2,345) networks connecting at 317 IXPs. Data retrieved
are summarized in Table 2.1.

2.4 Inferred AS relationships

Generally speaking, each BGP connection represents a provider-customer or peer-
ing relationships between two ASes - Section 2.1. Most importantly, identifying the
category of a BGP connection enables us to better understand how Internet traffic is
routed. Indeed, Internet traffic usually follows the no-valley-and-prefer-customer policy
described in [28], i.e.:

• an AS does not provide transit between any of its providers or peers;
• an AS prefers the free of charge customer route over the peer or provider route.

AS relationships are not publicly available, however they can be inferred analyzing the
AS-PATH within BGP packets and considering the rules of the no-valley-and-prefer-
customer routing policy. Several examples of inference algorithms are present in liter-
ature, [27, 89, 19, 42, 17, 13, 33]. However, we use two projects that provide publicly
available datasets:

2 APNIC, http://www.apnic.net/services/services-apnic-provides/helpdesk/
faqs/ixp-address-assignment---faqs
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Table 2.1: Summary of properties extracted from PeeringDB.

(a) Business type.

Business type AS count

Cable/DSL/ISP 777
Content 582
Educational/Research 93
Enterprise 75
NSP 767
Non-Profit 73

(b) Geographic type.

Geographic scope AS count

Asia Pacific 205
Europe 754
Global 365
North America 218
Regional 825

(c) Traffic volume.

Traffic volume AS count

Not disclosed 597
0-1000 Mbps 773
1 - 100 Gbps 761
100 - 1000 Gbps 117
1 Tbps+ 19

(d) Traffic ratio.

Traffic ratio AS count

Balanced 943
Heavy Inbound 77
Heavy Outbound 190
Mostly Inbound 559
Mostly Outbound 598

(e) Peering policy.

Peering policy AS count

Open 1832
Restrictive 42
Selective 493

• Isolario - data downloaded3 provides an economic tag for each link using the tag-
ging algorithm described in [33, 34]. This tagging algorithm relies on the informa-
tion provided by RouteViews/RIS/PCH feeders, then since these feeders provide
a view of the network as seen from large ISPs, then many peering connections
are unlikely to be seen.

• AS-rank - we collected information related to the size of the customer cone of
each AS in the Internet AS-level topology. Customer cone size can be expressed
in terms of number of ASes, number of IPv4 prefixes or, IPv4 addresses, that can
be reached from a given AS following only customer links [13, 14].

3 Economic Topologies - February 2012, http://www.isolario.it/
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3

Tools for Structure Analysis

In this Chapter we present the two approaches that we use to analyze the structure
of the Internet AS-level topology graph, i.e.: dk-analysis and community detection
methods. We start with providing the definition of dK-series, which are the basis of the
dK-analysis, and we continue with describing a method that enable us to understand
if a given network can be simply described by the correlation of nodes at distance
d − 1 - Section 3.1. Then we provide the definition and a thorough comparison of
three different community detection methods: k-core decomposition, k-dense method,
and clique percolation method - Section 3.2. In addition, we show the relationships
between these three approaches and we point out the main differences between them
analyzing in detail their outcome on simple example, showing their nested structure by
means of an innovative visualization method - k-tree, and investigating their statistical
significance using the dK-analysis.

3.1 dK-analysis

A systematic approach for topology analysis is represented by dK-analysis [63]. The
main idea behind such technique is that the structure of a graph can be described
by identifying the statistics related to the degree correlations of nodes at distance
d − 1, namely dK-series. For instance, a 0K-series defines the constraints required
to obtain a graph with the same 0K-distribution, i.e. the same average degree of
nodes; a 1K-series defines the constraints required to obtain a graph with the same
1K-distribution, i.e. the same distribution of the degree of nodes; a 2K-series de-
fines the constraints required to obtain a graph with the same 2K-distribution, i.e. the
same joint degree distribution of pair of nodes. dK-series of probability distributions
(or dK-properties) are able to capture progressively (as d is increased) more struc-
tural properties of the graph, in addition, when d is equal to the number of nodes
of the analyzed graph, the structure of that graph is fully defined (i.e. all the graphs
with the same dK-series probability distributions are isomorphic). Such properties are
inclusive as each d∗K-property subsumes all dK-properties when d < d∗.



CHAPTER 3. TOOLS FOR STRUCTURE ANALYSIS

Since dK-analysis provides a description of the structure of the graph at different
levels of granularity, it is interesting to investigate if there is a minimum d value such
that, all the synthetic random graphs having the same dK-properties provide a good
approximation of the local and global scale properties of the analyzed graph (e.g.
the Internet AS-level topology graph) [48]. The size of the building blocks of a given
graph, i.e. d, can be computed by combining the methodologies described in [63] and
[48]. The procedure takes as input a graph topology that will be referred to as target
graph (as the main goal is to approximately reproduce properties of this graph). Then,
it generates from scratch a set of graphs having the same dK-properties of the tar-
get graph, namely dK-random graphs. dK-properties are a collection of distributions
describing the correlations of degrees of d connected nodes, thus:

• a 0K-random graph has the same number of nodes and links of the target graph;
• a 1K-random graph has the same degree distribution (or degree correlation of

nodes at distance 0);
• a 2K-random graph maintains the same correlation of degrees of nodes at dis-

tance 1;
• a 3K-random graph preserves the correlation of degrees of nodes at distance 2

and so on.

Specifically, we start with generating random graphs with a d = 0 and we increment
d if the current dK-random graphs do not provide a good approximation of the local
and global scale properties of the target graph. Each dK-random graph is extracted
uniformly at random from the set of all the graphs having the same dK-properties.
For d = 0 and d = 1 we built dK-random graphs using the Erdös-Rényi model [22]
and the generalized Havel-Hakimi algorithm [50] respectively. The process behind
the creation of dK-random graphs for higher d values is based on the dK-targeting
d(K − 1)-preserving rewiring [63].

When d ≥ 3, such framework requires a noticeable computational load, indeed the
degrees each motif of size d have to be annotated and taken into account in order to
match the required statistics, i.e. dK-properties. we use this approach to investigate
the statistical significance of different community detection methods - Section 3.3 -
and to fully understand the structure of some specific communities of the network
emerging from our structural analysis - Chapter 4.

3.2 Community detection

The identification of communities within complex networks is an interesting methodol-
ogy which provides an insight into the structural characteristics of the overall network.
Community structures can reveal the functional organization in networks [57]; in addi-
tion, the interactions of many components and the topological properties fundamen-
tally affect the dynamics of the network [77]. Frequently, the nodes in a community
share a specific real-world property, e.g. for social networks, this could be a common
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interest while for web pages, it could be a common topic or language. Thus, by ana-
lyzing communities, it is possible to infer semantic attributes [67].
By identifying communities, it is possible to carry out a focused analysis for commu-
nities on an individual basis. Different communities often exhibit significantly different
properties, which may get blurred in a global analysis. On the other hand, a more
focused analysis of single communities may lead deeper or more meaningful insights,
for instance into the roles of individuals [67]. Conversely, each community can be “col-
lapsed” into a single “meta-node”, thus enabling a graph to be designed at a higher
level of abstraction or equivalently at a coarser level, and this in turn give up a focus
on higher-level structure [67].

Due to the great importance of identifying community structure in graphs, a huge
variety of community detection algorithms have been developed in computer science,
physics, economics, and sociology [26, 67, 95, 12, 25, 31, 66, 20, 77, 57, 68, 56, 59,
97, 84, 83, 78].

A commonly used approach is to evaluate the quality of a community decomposi-
tion by its modularity [68], Q. This metric is defined to be the fraction of the edges that
fall within the given groups minus the expected such fraction if edges were distributed
at random. The modularity of a partition is defined as follows:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where Aij is an element of the adjacency matrix of the graph, ki is the degree of node
i,m is the total number of connections of the graph, ci is the community to which node
i is assigned and δ is the Kronecker delta. According to this definition, a good partition
of the network is that in which there are dense internal connections between the nodes
within the community, but only sparse connections between different communities.

At the AS-level of abstraction we are interested in finding communities made up of
ASes which form very dense sub-graphs, but we do not require they have few connec-
tions directed outside the community. Consider, for instance, a group of regional transit
providers which are really interested in connecting to each other in order for the traffic
to remain localized and to prevent traffic from unnecessarily traversing other transit
networks. This set of ASes is likely to form a community although, it is highly probable
that the vast majority of their connections will be directed to customer ASes, i.e. out-
side the community. If the number of connections directed outside the community is
very high the product kikj yields in a negative modularity, thus a community detection
method based on modularity would not provide this kind of communities. Communi-
ties extracted from the Internet AS-level topology graph should be characterized by a
pretty high link density, regardless the value of their average out degree fraction. The
link density of a subgraph is defined as the fraction of existing connections to possible
connections [56]:

ρ =
2 · e

n · (n− 1)
(3.1)
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where e is the number of internal connections and n is the number of nodes within
the community. If the community is made up of a single connected component the
link density has values in the range [ 2n : 1] (the lower bound is the link density of a
tree topology, the upper bound is the link density of a clique topology). The ODF, Out
Degree Fraction of a node i ([77]), is defined as the ratio between the external degree
and the total degree:

ODF i =
external degreei
totaldegreei

(3.2)

ODF takes values in the range [0 : 1]: ODF is 0 if there are no connections on the
boundary, ODF is 1 if there are no internal connections. In other words, we are inter-
ested in a definition of community as a form of local organization of the graph, i.e. a
community could be defined from some property of the groups of vertices themselves,
regardless of the rest of the graph. For all the previous reasons, we investigate the
structure of the Internet at the AS level of abstraction considering the following con-
cept of community:

an unusually densely connected set of ASes

Selecting dense zones of the Internet AS-level topology graph helps researchers to
understand classes of ASes interested in interconnecting with each other, also it helps
to shed light on the organization of the graph or the underlying properties of the graph
nodes. We focus our attention on three community detection techniques: k-core de-
composition [84], k-dense method [83], and Clique Percolation Method (CPM) [78].
These three approaches share the following properties:

• their definition is deterministic;
• each community identifies a set of cohesive nodes;
• they detect a set of “nested" communities with an increasing internal density.

Also, they can be formally correlated one to each other. Briefly, k-core decomposition
detects communities by recursively removing nodes with a degree lower than k - Sec-
tion 3.2.1: k-dense method is based on a recursive removal of those links connecting
nodes with less than k − 2 common neighbors - Section 3.2.2; lastly, CPM definition
is based on specific sets of maximal cliques - Section 3.2.3.

3.2.1 k-core Decomposition

k-core decomposition has been widely applied to a variety of networks [6, 51, 5, 102,
11, 15, 7] since its introduction in 1983 [84]. Such technique can be used to locate the
most efficient spreaders in static [51] or in dynamic [64] networks. It can also reveal
structural properties: in 2007 [15] showed that Internet topologies obtained with the
DIMES project1 [1] could be modeled as a three-components structure; in 2008 [6]

1 A traceroute-based tool used to infer Internet AS-level topologies.
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proved that cores extracted from traceroute-based Internet topologies where statisti-
cal self-similar; in the same year [100] showed the stability of k-core properties over
time considering BGP-based Internet topologies; in 2011 we showed the correlation
of highly dense k-cores and IXPs in Internet[32].

A k-core is the largest sub-graph made up of nodes having a degree greater or
equal to k within the sub-graph. Thus, it can be computed by removing all the nodes
with degree lower than k recursively. A more rigorous definition follows. Each graph
G is defined as a set of nodes and a set of links. VG = {1, ..., N} is the set of nodes,
EG = {e1, ..., eM} is the set of links, where em = {i, j} ⊂ VG and i 6= j. We indicate
with N and M the number of nodes and links respectively. Also, we indicate the de-
gree of a node i in graph G with ki(G). Then, a k-core of graph G is a sub-graph Hk

defined as follows:

Hk =

{
VHk

= {i : ki(Hk) ≥ k}
EHk

= {em : em = i, j ⊂ VHk
}

(3.3)

By definition, the k-core decomposition extracts a set of nested sub-graphs, indeed
each k + 1-core is included into a k-core. Also, we refer to the maximum k index pro-
viding a non-empty k-core as kMAX .

Each connected component of a k-core is referred to as k-core community. A node
i is said to have a k-core-index k∗ if it belongs to the k∗-core but is not part of the
(k∗ + 1)-core, i.e.:

i ∈ Hk∗ ∧ i /∈ Hk∗+1 (3.4)

We define a k-core-shell as the set of nodes having a k-core-index equal to k.

k-core-shell = {i : i ∈ Hk∗ ∧ i /∈ Hk∗+1} (3.5)

3.2.2 k-dense Method

The k-dense community concept is based on the following intuition. If two nodes are
connected together by an edge, it does not necessarily imply that they belong to
the same community unless there is clear evidence or witness supporting a strong
positive relation between them: the fact that they are just connected by a single link
may not be strong enough. The existence of more common adjacent nodes in the
same community suggests a stronger positive relation [83]. In other words, if two
ASes share several neighbors they are likely to be part of a same community. The
method has been defined in 2009 by [83] and it has been originally applied to a Blog
Trackback Network, to a Word Association Network, and to the Wikipedia Reference
Network. To the best of our knowledge, we have been the firsts to apply the k-dense
method to the Internet AS-level topology graph [38, 41, 76].
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k-dense communities can be formally defined using the concept of edge multi-
plicity [85, 103]. The multiplicity mG(i, j) of edge (i, j) in graph G is the number of
triangles in G containing the edge, or equivalently, the number of common neighbors
of connected nodes i and j. By definition, the k-denseHk of graphG is the sub-graph
induced by all the links with multiplicity larger or equal to k − 2 in the sub-graph:

mHk
(i, j) ≥ k − 2. (3.6)

This sub-graph can be obtained from G by iterative pruning of all the links with multi-
plicity smaller than k− 2. Since all the nodes in the sub-graph Hk share at least k− 2

neighbors with each of their neighbors, it turns out that all of them have a degree
larger or equal to k − 1. Then, each k-dense is part of a k − 1-core. Similarly to the
k-core, the k-dense method provides a set of nested sub-graphs, indeed each k + 1-
dense is included into a k-dense. Also, we refer to the maximum k index providing a
non-empty k-dense as kMAX .

Each connected component of a k-dense is referred to as k-dense community. A
node i is said to have a k-dense-index k∗ if it belongs to the k∗-dense but is not part
of the (k∗ + 1)-dense, i.e.:

i ∈ Hk∗ ∧ i /∈ Hk∗+1 (3.7)

We define a k-dense-shell as the set of nodes having a k-dense-index equal to k.

k-dense-shell = {i : i ∈ Hk∗ ∧ i /∈ Hk∗+1} (3.8)

3.2.3 Clique Percolation Method

A k -clique community [78] is defined as the union of all k -cliques (complete sub-
graphs of size k ) that can be reached from one or the other through a series of ad-
jacent k -cliques (where adjacency means sharing k − 1 nodes). On the basis of the
k -clique community definition we can prove that, for each k -clique community of order
k, communityi(k), there exists one and only one k -clique community of order k − 1

(or (k − 1)-clique community), communityj(k − 1), such that:

communityi(k) ⊆ communityj(k − 1) (3.9)

i.e. communityi(k) is a sub-graph of communityj(k−1) (a proof of this can be found
in [37]). Hence, all those k-clique communities that are unique (i.e. there is a single
community for that k ) include all the relative k+1-clique communities. In addition, by
applying (3.9) recursively, we can assert that given a k-clique community of order k∗,
there is a k-clique community that completely contains it for each k < k∗. A node i is
said to have a k-clique-index k∗ if it belongs to at least one k∗-clique but is not part
of any (k∗ + 1)-cliques. Also, we refer to the maximum k index providing a non-empty
k-clique as kMAX .
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Since each node within a k-clique is part of at least one maximal clique of size k,
then it turns out to have at least k−1 neighbors, each one sharing with it at least k−2

neighbors. This implies that each k-clique is part of a k-dense. In summary:

k − clique ⊆ k − dense ⊆ (k − 1)− core (3.10)

The computational load required by CPM is much more demanding than the k-
core decomposition or the k-dense method. The extraction of such communities from
the Internet AS-level topology has been made doable for the first time in 2011, when
we developed a new implementation which store the required data structures in an
efficient way and it exploits parallel architectures - FLIP-CPM [36].

3.3 Discussion

k-core decomposition, k-dense method and CPM are similar approaches to detect
nested cohesive sub-graphs of increasing density. However, the k-dense definition
seems to better fit the idea of community. Generally speaking, nodes belonging to the
same community should share properties: while k-core requires, for each node, the
presence of at least k connections to the other k-core nodes, k-dense imposes the
presence of common neighbors and hence, suggests a stronger relationship between
nodes of the same community. CPM detects tightly connected set of nodes, how-
ever if we keep in mind the incompleteness issues related to the collected topologies
(Chapter 2), its definition might be too restrictive. In order to point out the differences
between these three community detection techniques, we perform the following anal-
yses:

1. we report the outcome of the three community detection algorithms applied to an
example topology made up of 14 nodes and 24 links - Figure 3.1.

2. we provide a k-tree representation of the communities extracted from the Internet
AS-level topology graph related to January 2012 - Figure 3.2.

3. we discuss the statistical significance of the properties obtained using these com-
munity definitions.

3.3.1 Example topology

The example topology in Figure 3.1 highlights some important differences between
the three community detection methods. k-cores detected in Figure 3.1 have a lower
link density than k-denses or k-cliques, and the kMAX -core, which is supposed to
be the most tightly connected community, contains nodes that are loosely related.
For example, the distance between node F and node D (both of them belong to the
kMAX -core) is 3 hops and the whole graph is made of 8 nodes. CPM detects the
same dense zones emerging from the k-dense analysis and, in addition, it selects the
maximal clique of size 4 - Figure 3.1. On one hand, the 4-clique community detected
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by CPM has a higher link density than the kMAX -dense community, On the other
hand, the exclusion of node D from the kMAX -clique community highlights how tight
are the requirements of CPM. Node D, for example, appears to be strongly related to
the “A-B-C-E" community, in addition, if D had a link to E, it would have generated a
5-clique community.

3.3.2 k-trees

In addition to Figure 3.1, we compare the three community detection methods using
an innovative representation named k-tree. A k-tree is a graphical representation that
we developed in [40] in order to have a better understanding of the nesting process
that similarly characterizes k-core decomposition, k-dense method, and CPM. The
construction of a k-tree consists of three phases. First, we define main communi-
ties all those communities that include the kMAX community2. Then, we refer to the
remaining communities as parallel communities. Starting from this definition we can
represent communities by means of a tree. Each k-community is a node and we can
plot an edge connecting a k-community with its relative (k − 1)-community (i.e. the
(k − 1)-community which fully contains it). For each k, there is a main community
and, very often, more than one parallel community. In Figure 3.2 we report the k-
trees related to the k-core, the k-dense and the k-clique communities extracted from
the Internet AS-level topology graph in January 2012. CPM provides a huge number
of communities if compared to the other two methods. Specifically, it provides more
than a single community for each k, however, even if two communities with the same
k-clique-index appear separate in the k-tree, they are likely to be highly overlapping
[40]. The k-tree structure related to k-cores does not have any parallel community,
while the k-tree structure related to k-denses has some parallel communities only for
low values of the k-dense index. Such k-tree differences could be interpreted as fol-
lows: a) when the k value is low, k-dense and k-clique are able to extract separate
communities, while k-core tends to unify all of them into a broader and more loosely
connected single community; b) when the k index is high there is only a single co-
hesive sub-graph of nodes (even if there are many k-clique communities, they are
overlapping [40]). Again, the k-dense communities seem to provide the best solution.

3.3.3 Statistical significance

Finally, since understanding the community structure of a graph is a step toward the
development of new topology generators, it is fundamental to investigate the statisti-
cal significance of the community properties detected. For instance, if random graphs
having the same degree distribution of the Internet fully reproduce all its k-core prop-
erties, then such properties are a statistical consequence of the observed degree

2 If there are multiples kMAX communities, we pick one at random. This does not affect the
results of the visualization.
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Figure 3.1: Example topology.
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Figure 3.2: k-trees resulting from the analysis of Internet 2012 snapshot.
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Table 3.1: kMAX values in dK-random graphs.

kMAX -core kMAX -dense kMAX -clique
mean stDev mean stDev mean stDev

0K-random 5 0 3 0 3 0
1K-random 102.8 3.05941 68 4.04969 66.9 4.27668
2K-random 64.7 0.458258 44.3 0.458258 37.4 0.489898

Internet 73 48 41

degree distribution, then all 1K-random graphs would provide the same k-core de-
composition. First of all, a degree correlation of nodes at distance 1 is embedded in
the definitions of all the three methods. Due to the pruning process that characterizes
the k-core decomposition, each node within a k-core has a degree k∗ ≥ k and it is
connected to at least k other nodes having degrees k∗ ≥ k too. Similarly, each link
within a k-dense or a k-clique connects nodes having degrees k∗ ≥ k− 1. Neverthe-
less, these correlations are not enough to prove any community property dependence
of dK-series.

To address this issue we consider a recent Internet topology (May 2012) and we
construct dK-random graphs [63] for d = 0, 1, 2 as described in Section 3.1. These
graphs are random graphs with the same average degree, degree distribution, or joint
degree distribution as in the Internet snapshot. For each d we generate 10 realiza-
tions, then we extract the k-core, the k-dense communities and the maximal cliques3

from each of them. For each randomization we compute the kMAX -core, the kMAX -
dense, and the kMAX -clique indexes and we compare them against the Internet’s
value - Table 3.1. When d ≤ 2, dK-random graphs do not match the kMAX index
detected on the Internet graph.

To further prove the independence of these community detection approaches from
dK-series with d ≤ 2, we compute the number of nodes with a given k-core index, the
number of links with a given k -dense-index, and the distribution of maximal cliques
of a given size k and juxtapose them against the Internet’s - Figure 3.3. Since the
dK-random graphs have different kMAX indexes, to be able to properly compare the
different dK-graphs we next perform the following normalization, mapping k-indexes
and corresponding numbers of nodes and links to fractions with values between 0 and
1:

• x-axis normalization: map each index k to what we call the k-dense-index fraction:

x =
k − kMIN

kMAX − kMIN
, (3.11)

where kMIN and kMAX are the minimum and maximum values of the k-index in
the graph;

3 Since the definition of k-clique community relies on maximal cliques, we use this information
as a proxy.
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• y-axis normalization: divide the corresponding number of nodes or links by the
total number of nodes or links in the graph.

In Figure 3.3 we show, for each d the average value of the property computed
on the 10 realizations and the confidence interval with probability 0.8. We observe
that neither degree distribution nor joint degree distribution fully reproduce the k-core,
k-dense, and k-clique properties of the Internet, meaning that these properties have
their own statistical significance.

3.3.4 Conclusions

A thoroughly analysis of the properties related to k-core decomposition, k-dense
method and CPM - Section 3.3 - has shown the different characteristics of these
three approaches, yet it has proved that they provide a peculiar representation of
the Internet topology that neither degree distribution nor joint degree distribution are
able to reproduce. k-dense method emerges as the best method (compared to k-core
decomposition and CPM) to analyze the Internet topology.

Indeed, although CPM is the only algorithm that accounts both for the locality
of the community definition and the possibility of having overlapping communities, it
has two main drawbacks. First, since maximal cliques are very fragile structures, we
cannot use CPM communities (k-cliques) to analyze some evolutionary trend. We
experimentally proved that few edge-swaps can significantly change the number of
maximal cliques of a given size - Figure 3.2c. Second, due to the high computational
complexity, the detection of k-clique of the Internet AS-level topology graph requires
the use of highly parallel machines in order to converge in small amounts of time.

On the other hand, k-core decomposition has the lowest computational complexity
(compared to k-dense and CPM), i.e. O(N + M). However it provides more coarse-
grained and loosely-connected communities - Figure 3.2a. Finally, k-dense can be
thought of as an interpolation between the k -core decomposition and CPM - Figure
3.2b. The definition of k-dense suggests a stronger relationship between nodes within
the community than the definition of k-core, at the same time, it is more robust than
k-cliques. In addition, the amount of computational load is much lower than the one
required to compute k-cliques, indeed the computational complexity of the k-dense
algorithm is closely related to that of clustering coefficients calculation [65].

For these reasons, we use the k-dense method both to analyze the evolution-
ary trends of the Internet topology over the last 9 years and to unveil the details the
structural properties of the most recent topology - Chapter 4.
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4

Evolutionary Trends of the Internet Structure

We study the evolution of the Internet AS-level structure describing this network as
an undirected graph. All the data we collected in Chapter 2 are described as set of
undirected graphs sorted in chronological order. In this Chapter we exclusively use the
terms nodes and links as we focus on the structural aspects only. An interpretation of
the emerging phenomena resulting from this analysis is provided in Chapter 5.

4.1 Related Work

The study of the evolution of the Internet structure provides insight into the creation
(and the validation) of new synthetic graph generators, also it helps in evaluating the
performance of new protocols as the topology changes [75, 18]. Many works have
covered the description of the Internet evolution, a brief summary of the current state
of the art follows.

First of all, the Internet evolution can be studied from different perspectives; [101],
for example, discusses the different growth of IPv4 and IPv6 topologies (from 1997 to
2009). The main result shown is that IPv4 had a phase transition in 2001, while IPv6
had a phase transition in 2006. Also, both these transitions should be taken into ac-
count when developing new models. Although our goal is to study the Internet AS-level
topology, such information can be crucial when dealing with Internet AS-level topolo-
gies obtained by traceroute measurements. A work that deals directly with Internet
AS-level topologies is [21] which evaluate how eight measures (related to node cen-
trality, path length, community structure and scale free structures) of the graph change
over time. In detail, it analyzes the Internet topology from January 2002 to January
2010 exploiting Cramér-von Mises Criterion to identify changes between distributions.
Authors find that the distributions of most of the measures remain unchanged, except
for average path length and clustering coefficient. It is interesting how they discuss
this shift as a consequence of peering policies change. A different point of view on
Internet evolution is given by [75] which studies the change of the graph from Jan-
uary 2004 to December 2006. In this paper authors focus on topology liveness and
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completeness problems comparing different data sources. Two evolution trends are
highlighted in this paper: a) customer networks are the major cause of the network
size growth, b) transit providers tend to form denser and denser structures. In order to
provide a more accurate analysis of how different connection strategies influence the
Internet evolution, [18] analyzes the topology changes from January 1998 to January
2010 exploiting tagged links. In other words, a business tag is applied to each con-
nection, thus customer-provider and peering relationships are studied separately. Also
in this work authors assert that enterprise networks and content/access providers at
the periphery are the main contributors to the growth of the Internet. They also study
the rewiring activity and they find that content/access providers seem to be the most
active.

Very few works analyze the evolution exploiting the idea of communities. A singu-
lar example is [100], a work that studies Internet evolution from December 2001 to
December 2006 by applying the k -core decomposition to each topology, and moni-
toring the properties of the nucleus over time. However, it does not provide details on
how the different substructure are connected, also it does not deepen the analysis of
the main drivers behind the communities evolution.

In this Chapter we present an innovative framework for the Internet structure evo-
lution analysis. We start with observing how aggregated statistics changes over time
in Section 4.2. Then, we present the result obtained by applying the k-dense method
to each of the Internet topologies gathered in Chapter 2 and we point out the pres-
ence of time-invariant properties in Section 4.3. Furthermore, we focus on the densest
sub-graphs of the network, namely kMAX -denses, and we perform a dK-analysis of
them in order to show their building blocks in Section 4.4. We conclude our structural
analysis with presenting a detailed k-dense description of the most recent Internet
topology.

4.2 Basic Trends

Analyzing the Internet graph structure evolution through classic graph theory indexes
gives a high-level description of how the graph changes, but it does not provide any in-
sights into the sub-structures that cause such transformation. In order to demonstrate
such thesis, we discuss the results we obtain by investigating the Internet topologies
from 2004 to 2012. First, we comment the growth of the number of nodes, the num-
ber of links, and the average degree. Then, we point out the time-invariance of the
average clustering coefficient and the average shortest path. Finally, we plot the in-
crease of the kMAX indexes over time and we show how different is the information
embedded in these innovative metrics.

First of all, we observe in Figure 4.1a how the number of nodes and and the num-
ber of links grow over time at different rates. In order to emphasize such difference,
instead of plotting the absolute values of Table 4.1, we consider the following normal-
ized values:
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Figure 4.1: Growth of the graph over time.
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Figure 4.2: Average clustering coefficient, c̄, average shortest path length, ¯̀, and di-
ameter, d, over time.

• nodes growth, N(t)/N(t0), where N(t) is the number of nodes at time t and
N(t0) is the number of nodes in 2004, i.e. 16, 943.

• links growth, M(t)/M(t0), where M(t) is the number of links at time t and M(t0)

is the number of links in 2004, i.e. 44, 129.

Figure 4.1a shows that the number of links grows faster than the number of nodes
(while the number of nodes more than doubled, the number of links almost tripled).
As a results, the average degree, k̄ = 2M/N , has been increasing too. This increase
appears to be a logarithmic function of the number of nodes, i.e.:

k̄ ≈ a · ln(N)− b (4.1)

with a = 1.402 and b = −8.2723, similarly to [79, 53]. Figure 4.1b shows the growth
of the average degree, k̄, over time and proves the quality of the approximation in
Expression 4.1. Although such information may be useful to tune a synthetic graph
generator, it does not give any information related to internal structural changes.

Another commonly used property in graph theory is the average clustering coeffi-
cient [80], i.e.:

c̄ =
1

N

N∑
i=1

ntrii
ki · (ki − 1)

(4.2)
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where ntrii is the number of triangles involving node i, and ki is the degree of node
i. Values in Figure 4.2a show that c̄ does not change over time, but it remains stable
at 0.3 over the whole observed period. The same considerations apply to the analysis
of the average shortest path length, ¯̀ over time - Figure 4.2b. Although the graph
significantly grows over time, the average shortest path remains stable at 4 for the
entire observation period. Such information reveals that the graph evolution embeds
some mechanism that preserves the small-world property, however it does not provide
insight into the sub-structures that make this happen. Figure 4.2b also shows that the
diameter, d, has an oscillating trend. Again, since the diameter represents a worst-
case by definition, it might not represent a real change of the graph organization.
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Figure 4.3: Growth of kMAX indexes.

Finally, we show in Figure 4.3 the growth of the kMAX indexes related to k-cores,
k-dense and k-clique communities. All the three kMAX indexes have an increasing
trend over time, then while the graph was growing more densely connected parts of
the graph were forming too. Although a variation of the kMAX index does not neces-
sarily imply a deep change of the structure of the graph, neither is kMAX a property
generated by a single node. For instance, a kMAX -dense equal to k∗ reveals the pres-
ence of a group of at least k∗ − 1 nodes, each one with at least k∗ − 1 links directed
to nodes of the same group.

In summary, monitoring the change of classic graph theory indexes like the aver-
age degree, the average clustering coefficient, or the average shortest path, is useful
to both understand some general trends and to tune synthetic graph generators; how-
ever, the study of the graph through more innovative techniques, such as community
detection methods, enhances our understanding of the evolution at the mesoscopic
scale. For these reasons, in Section 4.3 we further investigate the k-dense properties
of the Internet over the last 9 years.
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CHAPTER 4. EVOLUTIONARY TRENDS OF THE INTERNET STRUCTURE

4.3 k-dense analysis

In order to gain insight into the structural changes affecting the Internet AS-level topol-
ogy, we analyze the results of the k-dense decomposition of each snapshot. The ra-
tionale behind this choice has been described in Section 3.3.4. In addition, k-dense
decomposition characteristics have been presented in Section 3.2 and thoroughly
compared to the other community detection methods in Section 3.3, yet its statistical
significance have been proved in Section 3.3.3.

We start with computing the size of each k-dense, in terms of nodes and link,
for each year. Since the graph size and the kMAX -dense index (hereinafter kMAX )
change over time, we applied a normalization similar to the one presented in Section
3.3.3. In detail:

• x-axis normalization - we substituted each k by the quantity:

k∗ =
k − kMIN

kMAX − kMIN
(4.3)

Values obtained with this procedure are referred to as k -dense index fractions.
• y-axis normalization - we divided each value by the total number of nodes (or

links) in the graph, thus each y value is a fraction within the range [0 : 1]. Values
obtained with this procedure are referred to as nodes or links fractions.

Once these normalizations have been applied we cannot use the resulting graph-
ics to deduce an average number of nodes (or links) or refer to a specific k -dense
index, because both axes provide relative values. Nevertheless, since all the graphs
analyzed do not contain isolated nodes, 2 is always the minimum k-dense index, then
for each snapshot x = 0 corresponds to k = 2. Also, 2 is the minimum density level
that a node can achieve: nodes with a 2-dense index are connected to the network,
but there is no evidence that they form communities. On the other hand x = 1 means
k = kMAX . Nodes belonging to this set form the most well-connected sub-graph of
the network, however, since each graph has a different kMAX , we cannot say how
dense these communities are until we look at a single snapshot.

In Figure 4.4a, we aggregate data related to the 9 snapshots in a single chart,
i.e.: we report the average fraction of nodes (and links) and the confidence interval
with probability 0.8. We observe that the sizes of confidence intervals are moderate,
then average values are highly representative, in the sense that they can approximate
pretty well each snapshot (from 2004 to 2012) with the average trend. As a result, we
can safely assert that the functions representing the fraction of nodes and links within
k-denses are time-invariant.

Due to the nesting process that characterizes the k-dense definition, both func-
tions have a decreasing trend. The rapid decrease of the nodes and links fraction
is a peculiarity of the Internet topology. The vast majority of nodes and links belong
to k-denses with low k-indexes: 90% of nodes has k-dense fraction lower than 0.1;
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4.3. K-DENSE ANALYSIS

kMAX -dense, on the other hand, is usually made up of the 0.2% of the graph nodes
and the 2% of the graph links.

In order to gain insight into the overall organization of the graph from a k -dense
perspective, we analyze how nodes with different k-dense indexes are connected.
First, we report the fraction of nodes within each k-dense shell - Figure 4.4b. Then, we
count for each k the number of links involving at least one node in the corresponding
k-dense shell, and we report the ratio between the counted links and the total number
of links of the graph - Figure 4.4c. Both Figures represent aggregated data, i.e. we do
not show a function for each year, but we draw the average values and the confidence
intervals with probability 0.8. The small size of confidence intervals in Figure 4.4b and
in Figure 4.4c confirms the quality of the approximation, thereby demonstrating that
such trends are time-invariant.

Figure 4.4c shows that there are two classes of k-dense shells involved in a huge
number of links: those with a low k-dense index (k-dense shell fraction is close to 0)
and those with a high k-dense index (k-dense shell fraction is close to 1). If we look
into the single snapshots and we find that:

• k-dense indexes 2 and 3 are responsible for the leftmost peak;
• kMAX is the only k -dense shell which provides the rightmost peak.

In Table 4.2 we report the global properties of the nodes with k-dense index equal to 2,
3, and kMAX averaged over the 9 snapshots. Precisely, we report the average fraction
of nodes in the shell divided by the total number of nodes in the snapshot, the average
fraction of links involving the nodes in the shell divided by the total number of links in
the snapshot, the average Internet degree, the average Internet neighbor degree, the
average Internet clustering coefficient and the average Internet betweenness.

A noticeable number of links involving k equal to 2 and 3 is not surprising given that
the vast majority of nodes belongs to low k-dense shells - Figure 4.4b. Furthermore,
2 and 3 k-dense shells are the most populated in each snapshot. These nodes have
a low average degree and a low average betweenness- Table 4.2.

In order to visualize how these nodes are connected to the rest of the graph we
generate Figures 4.5a and 4.5b. We apply the normalization and we report the av-
erage values and the confidence intervals with probability 0.8. Also in this case the
properties shown are time-invariant, i.e. each snapshot has the same trend. Figures
related to links involving 2 and 3 dense shells are pretty similar: a noticeable percent-
age of their links is directed to low k-dense shells, the rest is directed to medium-
high k-dense shells (we discuss Internet business patterns behind these structures in
Chapter 5).

kMAX -dense shells, on the other hand, are made up of a small number of nodes
characterized by a pretty high average degree and a high average betweenness -
Table 4.2. The latter index is a consequence of the high number of links involving
the kMAX -dense shell shown in Figure 4.4c. Since betweenness is defined as the
number of shortest paths from all nodes to all others that pass through a considered
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CHAPTER 4. EVOLUTIONARY TRENDS OF THE INTERNET STRUCTURE

Table 4.2: Summary of global properties of 2- 3- and kMAX - dense shells nodes.

nodes % links % < k > < knn > < c > < b >

2 0.543 0.270 1.635 413.244 0 2047.94
3 0.320 0.304 3.12 846.418 0.751 8979.8

kMAX 0.002 0.257 370.915 160.743 0.205 2754640

node, the higher is the number of links involving a node, the higher is the chance to
have some shortest paths traversing it. Nodes in the kMAX -dense shell have a central
position (in terms of betweenness centrality) in the graph, and are a key element for
the overall connectivity, yet these properties hold for all the considered snapshots.

In Figure 4.5c we report the average fraction of links involving nodes in the kMAX -
dense shell (or kMAX -dense1). The confidence intervals confirm that also this prop-
erty is time-invariant. Figure 4.5c is characterized by the presence of multiple peaks:
kMAX -dense nodes direct a considerable percentage of their connections to nodes
within 2- and 3- dense shells, but also to nodes which are part of more densely-
connected parts of the graph (we discuss the rationale behind this property in Chapter
5).

The importance of the kMAX -dense in the graph connectivity has been a constant
outcome of the k-dense analyses over the 9 considered snapshots. Thus, we further
investigate in Section 4.4 the internal structure of these cohesive nuclei.

1 When k∗ = kMAX the set of nodes within the kMAX -dense and the set of nodes within the
kMAX -dense shell is the same.
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Figure 4.4: Organization of k-denses and k-dense shells. Average values and confi-
dence intervals with probability 0.8 are provided for each function.
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Figure 4.5: Average fraction of links involving nodes in a k-dense shell and originating
in the 2-, 3- or kMAX - dense shells. Average values and confidence intervals with
probability 0.8 are provided for each function.
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4.4. STRUCTURE OF THE KMAX -DENSES

4.4 Structure of the kMAX-denses

In this Section we discuss the structure of the kMAX -denses using a novel approach
based on dk -series [63] - Chapter 3. Specifically, we investigate the problem of build-
ing blocks in order to gain insight into the complexity of the kMAX -dense structures.
Indeed, uncovering the structural properties of kMAX -denses is useful for those who
are interested in developing new models of the Internet topology. For instance, ac-
cording to our findings in Section 4.3 an accurate model should include a very dense
community which is largely connected to the rest of the graph.

We start the analysis of kMAX -denses with listing in Table 4.3 the main properties
of the kMAX -denses. Each sub-graph is made up of a small number of nodes and a
pretty high number of links. In order to understand how dense are these graphs, we
computed the link density. Link density values reported indicate that, on average, each
selected graph is made up of 85%2 of links of a correspondent full-mesh topology. Due
to the high link density, one may think that a 0K-random graph would reproduce the
main properties of the kMAX -dense graph. In other words, a natural question that
arises: does any graph with the same average degree, i.e. the same number of nodes
and links (and then the same link density), approximate the kMAX -dense?

Table 4.3: Summary of kMAX -dense properties: kMAX it the kMAX -dense index, N
is the number of nodes; M is the number of links, LD is the link density, < ODF >
is the average out degree fraction.

kMAX N M LD ¯ODF

2004 23 36 567 0.90 0.81
2005 31 53 1198 0.87 0.75
2006 30 59 1419 0.83 0.76
2007 33 52 1197 0.90 0.81
2008 38 60 1586 0.89 0.73
2009 39 97 3422 0.73 0.72
2010 40 74 2289 0.85 0.78
2011 41 82 2742 0.83 0.77
2012 43 80 2670 0.84 0.80

We tackle this problem using the standard dK-statistical analysis described in
Chapter 3 [63, 48]. We consider each kMAX -dense graph, one at a time and we refer
to this selected topology as target graph. Then, we generate random graphs with a
d = 0 and we increment d if the current dK-random graphs do not provide a good
approximation of the local and global scale properties of the target graph. Specifically,
starting from d = 0 we perform the following procedure:

1. generate 20 independent dK-random graphs (also referred to as realizations);

2 The average link density is equal to 0.850055
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2. compare the properties3 of the target graph with the properties of the dK-random
graphs;

3. stop the procedure if the current dK-properties are sufficient to describe the target
graph, otherwise increment d and restart from 1).

Each dK-random graph is extracted uniformly at random from the set of all the graphs
having the same dk -properties. Also, as explained in Chapter 3.1, for d = 0 and
d = 1 we build dK-random graphs using the Erdős-Rényi model [22] and the general-
ized Havel-Hakimi algorithm[50] respectively; the process behind the creation of dK-
random graphs for higher d values is based on the dK-targeting d(K − 1)-preserving
rewiring [63].

The standard dK-statistical analysis on all the kMAX -denses detected points
out all the kMAX -denses are 1K-random graphs, thereby highlighting another time-
invariant feature of the graph related to k-dense features. In Figures 4.6, 4.7 and 4.8
we report the results of such analysis for the kMAX -denses related to the 2004, 2008,
and 2012 snapshots respectively.

Degree distribution

The degree distribution is a property fully defined by 1K-series. By definition, 0K-
random graphs have the same average degree of the target graph, however Figures
4.6a, 4.7a, and 4.8a show that they are not sufficient to approximate the degree dis-
tribution. Indeed, degree distributions of 0K-random graphs are characterized by a
different trends and large confidence intervals. 1K-random graphs have the same
degree distribution of the target graph by definition.

Average neighbor degree over degree

The average neighbor degree over degree function is a property fully defined by the
2K-series. Similarly to the degree distribution case, the average neighbor degree
functions representing 0K-random graphs visibly differ from the target distribution; in
addition, they are characterized by large confidence intervals. In contrast, 1K-random
graphs well approximates average neighbor degree over degree function, and the
small sizes of the confidence intervals prove the quality of such approximation. Re-
sults are shown in Figures 4.6b, 4.7b, and 4.8b.

Average clustering coefficient over degree

The average clustering coefficient over degree function is a property fully defined by
the 3K-series. Figures 4.6c, 4.7c, and 4.8c provide the same result obtained for the
average neighbor degree over degree function, i.e.: while 0K-random graphs average
values are distant from the target, 1K-random graphs almost match the target function
and are characterized by small confidence intervals.
3 We consider properties that do not depend on the current d, e.g. average neighbor degree

or average clustering when d < 2, or diameter.
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Figure 4.6: 2004 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: 4.6a degree distribution, 4.6b average neighbor degree over degree, 4.6c aver-
age clustering coefficient over degree, 4.6d average betweenness over degree, 4.6e
average shortest path distribution, 4.6f z-score of motifs of size 3 and 4. Figures re-
port, for each property, the average value and the confidence interval with probability
0.8.
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Figure 4.7: 2008 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: 4.7a degree distribution, 4.7b average neighbor degree over degree, 4.7c aver-
age clustering coefficient over degree, 4.7d average betweenness over degree, 4.7e
average shortest path distribution, 4.7f z-score of motifs of size 3 and 4. Figures re-
port, for each property, the average value and the confidence interval with probability
0.8.
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Figure 4.8: 2012 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: 4.8a degree distribution, 4.8b average neighbor degree over degree, 4.8c aver-
age clustering coefficient over degree, 4.8d average betweenness over degree, 4.8e
average shortest path distribution, 4.8f z-score of motifs of size 3 and 4. Figures re-
port, for each property, the average value and the confidence interval with probability
0.8.
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Average betweenness over degree

Average betweenness over degree is not fully defined by a specific d in theory. Fig-
ures 4.6d, 4.7d, and 4.8d show the results related to this property and support the
conclusions made for the previous metrics. Although the differences between the tar-
get function and the 1K-random approximation are more evident than in the above
properties, the target and the 1K-random functions are strongly correlated, have close
values; also, 1K-random functions do not present visible confidence intervals. On the
other hand, functions related to 0K-random graphs do not approximate the target
average betweenness over degree functions.

z-score of motifs of size 3 and 4

- The number of motifs of size 3 and 4 in a graph is an information embedded within
3K-series and 4K-series respectively. We do not compare the number of motifs of
a given type directly but we use the z-score, a statistical tool that expresses how
much an experimental result is statistically far from a known distribution. z-score is
a dimensionless index that count the distance between a raw score and the mean of
the distribution in units of standard deviation, i.e.:

z =
x− µ
σ

(4.4)

The z-score shown in Figures 4.6f, 4.7f, and 4.8f is the difference between the number
of occurrences of a motif in the target graph (x) and the average number of its occur-
rences in the considered dK-random graph (µ), divided by the standard deviation of
its occurrences in the considered dK-random graph (σ). Precisely, mean and stan-
dard deviation are computed over the different realizations of a specific dK-random
graph. z-score gives a measure of how statistically significant is each motif in the tar-
get graph when compared to a dK-random graph. Results confirm that there is no
statistically significative motif in the target graph when compared to 1K-random real-
izations, that is the distribution of motifs in the target graph is statistically similar to the
distribution of motifs within 1K-random graphs. On the other hand, z-scores related
0K-random graphs prove that they have a different distribution of motifs.

Properties shown in Figures 4.6, 4.7, and 4.8 demonstrate the 1K-randomness
of the kMAX -denses related to 2004, 2008, and 2012 snapshots. In order to provide
a complete description of the structural properties of all the kMAX -denses we apply
the above framework to 2004, 2005, 2006, 2007, 2009, 2010, and 2011 snapshots.
Results in Appendix A are compatible with findings related to 2004, 2008, and 2012
snapshots.

In summary, the standard dK-statistical analysis of the kMAX -denses proves that:

• although these graphs have a high link density (Table 4.3), a graph having the
same number of nodes and links is not sufficient to reproduce most of their struc-
tural properties.
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4.5. CURRENT INTERNET STRUCTURE

• graphs created constraining the degree correlation of nodes at distance 0, i.e.
imposing the number of nodes with a given degree, well approximate the target
graphs.

• 1K-randomness of kMAX -denses is another time-invariant feature of the Internet
graph.

4.5 Current Internet Structure

In this Section we investigate the structural properties of the current Internet AS-level
topology graph. We provide the absolute values related to the k-dense properties that
have been shown in an aggregated way in Section 4.3, thereby characterizing the
Internet 2012 snapshots.

Internet 2012 AS-level topology graph, hereinafter Internet graph, is made up of
40,936 nodes and 133,301 links. The application of the k -dense algorithm to the In-
ternet AS-level topology graph provides a kMAX equal to 43. The vast majority of
k-denses are made up of a single connected component, thus terms k-dense and
k-dense community often refer to the same sub-graph. Precisely, k-denses are made
up of more than a single connected component when k is equal to 3, 4, 5, and 14
only - Figure 3.2b. When we analyze these k-denses we observe a common feature:
there is a single large connected component which represents the vast majority of all
the k-dense nodes, while the remaining community (or the remaining communities) is
made up of a negligible number of nodes. For instance, the main4 3-dense community
is made up of 16,955 nodes and 95,186, while the remaining 20 parallel communities
have an average size of 3.5 nodes and 4.1 links. In this Chapter we focus on the
analysis of the k-denses and k-dense shells and we postpone the discussion of these
specific sub-structures in Chapter 5.

We start the analysis of the Internet k-dense structure by reporting the size in
terms of fraction of nodes and links in each k-dense - Figure 4.9a. By definition each
k-dense is a sub-graph of a (k − 1)-dense, hence these 42 k-denses are nested
(k ∈ [2 : 43]). As a result, the number of nodes and links in a k-dense decreases
as k increases. The vast majority of nodes belong to low k-denses, only 10% have a
k-dense index larger than 5. Also, the fraction of links within each k-dense decreases
more slowly than the percentage of nodes, for the higher the k-dense index the better-
connected the relative sub-graph.

In Figure 4.9b we plot the average out degree fraction (ODF) and the link density
of each k-dense. The ODF strictly depends on the number of external connections,
while the link density relies on the number of internal connections and enables us
to evaluate how well clustered the nodes within a k-dense are. The increasing trend
of the link density function indicates that the higher the k-dense index is, the more
clustered the corresponding k-dense is. All the k-denses with a k ≥ 40 have a link

4 See k-tree definition in Chapter 3
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Figure 4.9: k-dense size, link density and average out degree fraction.

density larger than 0.5. This kind of nodes also presents high average ODF values
which means that, although they are really well connected to the other k-dense nodes,
they mostly direct their connections outside such sub-graph. On the other hand, low
k-denses are characterized by a small link density and a small ODF, for only a small
percentage of nodes are outside these k-denses.

From Figures 4.9 we cannot infer how k-denses interact. To better understand
such feature, we plot the volume of connections originated by each k-dense-shell
and the number of nodes in the corresponding shell - Figure 4.10. Using k-dense-
shells instead of k-denses helps separating the contribute of each group of nodes to
the graph connectivity. Figure 4.10 highlights the presence of two groups of nodes
involved in a very high number of links: the first group is made up of nodes with a k-
dense-index equal to 2 and 3, the second group of is nodes in the kMAX -dense shell.
In detail, nodes in the 2- and 3- dense shells are involved in 34,697 and in 33,845
links respectively, thereby being involved in more than 50% of the entire Internet links.
Such high percentage is not surprising if we consider that the sum of nodes in these
two k-dense shells represent the 86% of the total number of nodes in the graph. On
the other hand, there are only 80 nodes in the 43-dense shell (or 43-dense), yet they
are involved in 39,677 links, i.e. almost 30% of the total links of the Internet graph.
These nodes have a central position within the graph, and they play a primary role in
Internet connectivity. Since the kMAX -dense and the kMAX -dense shell correspond
by definition, we can further discuss the kMAX -dense shell properties observing the
link density and the average out degree fraction values in Figure 4.9b. Due to the
small size of the kMAX -dense, even if the internal structure is close to a complete
graph (link density is larger than 0.8), each node direct the majority of its links outside
the kMAX -dense.

In order to visualize how nodes in the 2-, 3-, and kMAX - dense shells are con-
nected to the rest of the graph we generate Figures 4.11a, 4.11b, and 4.11c. Figures
related to links involving 2- and 3- dense shells are pretty similar: a noticeable percent-
age of their links is directed to low k-dense shells; the rest is directed to medium-high
k-dense shells. The function of links involving kMAX -dense shell nodes is charac-
terized by the presence of multiple peaks: kMAX -dense nodes direct a considerable
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Figure 4.10: Number of nodes in each k-dense shell and number of links involving
each k-dense shell.

percentage of their connections to nodes in 2- and 3- dense shells, but also to nodes
which are part of more densely-connected parts of the network.

In summary, the analysis of the current Internet graph topology indicates that:

• only a small subset of nodes belong to very well-connected denses;
• low k-dense shells are highly populated, also they are involved in more tha 50% of

the overall links. In addition, such links are mostly directed to low k-dense shells
or the the kMAX -dense

• higher k-denses are characterized by a high level of clusterization, nevertheless
they tend to direct most of their link to nodes outside the dense;

• kMAX -dense nodes have a primary role in graph connectivity since they are
involved in a huge number of Internet links (almost 30% of the entire number
of links). Links involving kMAX -dense nodes are directed both to nodes with a
medium-high k-dense index and to nodes with a low k-dense index.

Results shown above describe an Internet structure which is compliant with the
Jellyfish model proposed in [90]. Both descriptions highlight the presence of a dense
sub-graph of nodes strongly connected to the rest of the graph by means of a huge
number of links. [90] provides several interesting structural observation and present a
model of the network which has been proved to accurately describe many snapshots
of the Internet AS-level topology. k-dense analysis does not provide a visualization of
the network as appealing as the Jellyfish model (k-denses represent the network as a
series of concentric circular shells), nevertheless it provides a formal and systematic
description of the maximum level of density which characterize each node.
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Figure 4.11: Number of links involving nodes in a k-dense shell and originating in the
2-, 3- or kMAX - dense shells.
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5

Internet Evolution drivers

In Chapter 4 we presented the results of our analysis on 9 snapshots (2004 - 2012)
of the Internet AS-level topology. Each snapshot has been treated as an undirected
graph made up nodes and links, however no context information have been added
so far. In this Chapter we interpret previous results keeping in mind that nodes rep-
resent ASes and that links represent connections at the AS-level, or in other words,
they are business agreements between two entities that enables their networks to ex-
change traffic. As reported in Chapter 2, connections at the AS-level can be of two
kinds: provider-customer or peering. From a technical point of view the difference be-
tween these two kinds of connection resides in the routing information exchanged:
transit providers announce all the destinations to their customers, and thus forward
all the traffic that their customers send uplink; peers mutually announce a limited set
of destinations, i.e. their own network prefixes and their customer networks. Typically
the transit provider charges its customers using the 95th percentile measurement
method1, i.e. the cost of the service depends on the amount of traffic exchanged; on
the other hand, a peering connection is usually free of charge (if maintenance costs
are not considered). In addition, we provide two further definitions that are typical of
the Internet AS-level ecosystem: public peering connections and Tier-1 ASes .

First, a peering agreement is referred to as public peering if the two ASes use an
IXP to settle such connection. As described in Chapter 2, IXPs are facilities where
each AS member can easily settle peering connections; in detail, each member can
create either single peering connections directed to other selected members (selec-
tive/restrictive peering policy) or peering connections to an undetermined number of
members (open peering policy).

Second, a provider which does not need to pay a transit provider in order to reach
any destination, is known to be a Tier-1. As a result, all the Tier-1 ASes connect mu-
tually with peering connections forming a clique topology. These ASes are character-
ized by a high number of provider-customer connections (directed to their customer),

1 http://drpeering.net/white-papers/Internet-Service-Providers-And-Peering.
html

http://drpeering.net/white-papers/Internet-Service-Providers-And- Peering.html
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whereas the number of peering connections is less remarkable. Also, if the are mem-
ber of an IXP, they usually adopt a restrictive peering policy.

Although we cannot infer exactly neither Tier-1 ASes nor connections on IXPs, we
use the information provided by PeeringDB [82], Isolario [33] and AS-rank [13] to show
the correlation of these two practices to the Internet structure. In detail, if two ASes
are connected and, at the same time, they are members of the same IXP, we assume
that such connection is likely to be settled using the IXP facility. Such hypothesis is
even stronger if the two ASes declare an open peering policy.

In the following Sections we comment the structural characteristics of the Internet
AS-level topology obtained using the k-dense method and we correlate such informa-
tion to IXP related data and AS relationships - Chapter 2. We start with discussing
the growth of the kMAX -dense index over time and we support its relation with the
proliferation of public peering connections. Then, we describe the most recurrent pat-
terns that characterize 2- and 3- denses. We continue our discussion with focusing on
the presence of Tier-1 ASes in the medium k-dense shells. Subsequently, we thor-
oughly investigate the nature of ASes forming the kMAX -dense and we discuss its
1K-randomness. Finally we take into account the incompleteness problem raised in
Chapter 2 and we provide some insight into the differences that an analysis of a more
complete topology would introduce.

5.1 kMAX-dense index growth

kMAX -dense-index growth is mostly due to the development of IXPs and, the prolif-
eration of settlement of public peering connections. A first piece of evidence is the
structural change of the Internet topology that we witnessed in the last decade due to
a different proliferation of peering and provider-customer relationships. Initially peering
relationships born to drop the cost of customer provider relationships, however, as the
price of transit noticeably decreased, such solution became less attractive (unless a
large amount of traffic had to be exchanged). As described in [54] peering continues
to grow and is still contributing to a much larger middle tier compared to the back-
bone. Large Content Providers (CP) and Content Delivery Networks (CDN), which
nowadays represent a noticeable percentage of the overall Internet traffic [54, 55]),
are a primary driver in this process, in fact:

1. a shorter path between these networks and subscribers provides better perfor-
mances;

2. although the traffic exchanged is highly asymmetric, for most ISPs the connection
to the content providers is vital.

For instance, [55] asserts that the majority of AS-level traffic flows directly between
large CPs, CDNs, data centers and consumer networks, also it shows that 150 ASes
originate more than 50% of all Internet inter-domain traffic.
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Figure 5.1: Fraction of ASes on IXP in each k-dense shell.

In order to show the relation between k-dense shells and IXPs, we plot the fraction
of ASes tagged as IXP members in each k-dense shell, i.e. the number of ASes in a
given shell that are members of at least one IXP divided by the total number of ASes
in the k-dense shell - Figure 5.1. Low k-dense shells are mainly made up of not-on-
IXP ASes, whereas IXP members have a strong presence in high k-dense shells.
This indicates that the presence of well-connected zones within our Internet AS-level
topology is mainly triggered by IXP member ASes.

Current literature also supports the correlation between the kMAX -dense index
growth and the evolution of IXPs facilities. For instance, we show in [38] and in [76]
that the percentage of IXP members within each k-dense shell rapidly increases as
the k-dense index increases, yet all the ASes in the kMAX -dense are members of
at least one IXP. Such results refer to the Internet AS-level topologies related to April
2010 and May 2012 respectively. Also [3] supports our claim describing the ground
truth of a large European IXP (data refers to a measurement campaign made in 2011):
authors shows that the amount of peering links established exploiting this facility is
pretty huge, more in detail, 350 members are connected using 50,000 public peering
links.

We find that 78 out of 80 ASes in the 2012 Internet kMAX -dense have a peering
record in the PeeringDB database, and declare to be members of at least one IXP. We
investigate the profile of these 2 missing networks and we find that both of them are
actually members of a german IXP, DE-CIX2. Moreover, 60 ASes of the the kMAX -
dense are member of the same IXP, DE-CIX.

Finally, we count the number of peering connections within the kMAX -dense using
the Isolario dataset. We find that 1,651 out of 2,670 connections are tagged as peering
connections. The presence of peering connections is not as large as expected (about
60%). We discussed these results with [33] authors and they confirmed that this result
was actually expected. Their tagging algorithm relies on the information provided by

2 DE-CIX (Deutscher Commercial Internet Exchange) is one of the largest Internet Exchange
Points worldwide. It is located in Frankfurt (DE) and it currently counts more than 450
providers connected. Please consider http://www.de-cix.net/ for more details.
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Figure 5.2: Fraction of provider-customer and peering connections involving k-dense
shells.

RouteViews/RIS/PCH feeders, then since these feeders provide a view of the network
as seen from large ISPs, then peering connections are unlikely to be seen. Some
connections are tagged as unknown because the set of connections extracted from
IRL, i.e. the Internet topology related to January 2012, differs from the topology used
by [33, 34] to infer AS relationships.

5.2 k-dense-structure: 2- 3- dense shells

Nodes with k-dense-index equal to 2 or 3 are the vast majority of Internet ASes.
They are periphery ASes that contributed the most to the network growth: they are
characterized by a small degree, however they are involved in a huge number of
connections [75, 18]. All the nodes with a degree equal to 1 (and all the nodes with
clustering coefficient equal to 0) are part of the 2-dense shell. Figure 5.1 shows that
these k-dense shells have a low percentage of IXP members.In addition, we compute
the fraction of provider-customer and peering connections involving nodes in each
k-dense shell - Figure 5.2, and we demonstrate that an high fraction of provider-
customer connections involving the 2- and 3- denses. Finally, [38] indicates that most
of these ASes have a national scope.

This structural description and this AS characterization are compliant with those
new ASes that enter in the network and whose business is not Internet-driven: they set
up connections in order to obtain connectivity, and all they need is a transit provider.
Sometimes they set up multiple agreements, i.e. they purchase transit from more than
a single provider (multihoming). If the two providers of a multihomed AS are connected
then a triangle is formed and thus all three nodes are part of the 3-dense. These stub
ASes do not transit traffic for other ASes and are likely to be customers in provider-
customer relationships. These types of ASes are national ASes unless a continental
or a worldwide presence is required by their own business. In Figure 5.3 we show the
most common patterns behind the formation of 2- and 3- denses.
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Figure 5.3: Common patterns behind 2- 3- denses formation.

5.3 k-dense-structure:Tier-1s

Currently there is no broadly accepted list of Tier-1 ASes. however we can list a num-
ber of properties that characterize them. First of all, the primary goal of Tier-1 ASes
is to sell transit to their customers. As a result, Tier-1 ASes are expected to have a
high number of providers-customers connections directed to enterprise customers.
Another consequence of their business profile is the adoption of a restrictive peering
policy at the IXPs. In fact, the adoption of an open peering policy would not increase
their revenues, rather it would result in peering with potential customers and thus in
loosing some potential revenue. On the contrary, Tier-1 ASes are likely to peer large
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Figure 5.4: Presence of Tier-1s within k-dense shells.

Content Providers and Content Delivery Networks as they are important sources of
traffic and that makes them ideal peers. Finally, Tier-1 ASes are supposed to have
a very large customer cone. In fact, the ensemble of all the Tier-1 ASes’ customer
cones is made up of all the Internet ASes by definition.

In order to understand the relationship between Tier-1 ASes and k-denses, we
considered two possible sets of Tier-1:

• the list of Tier-1 ASes adopted by Isolario [33];
• the list of 20 ASes with the largest customer cones according to [13] (AS customer

cone, prefix customer cone, and address customer cone).

We plot in Figure 5.4 the number of Tier-1 ASes in each k-dense shell. Tier-1 ASes
populate medium-high k-dense shells, however only few of them are part of the
kMAX -dense. Due to their definition, all Tier-1 ASes are required to be mutually con-
nected, thereby forming a clique topology. Such imposed structure guarantees a non-
trivial k-dense index to each Tier-1 AS, i.e. if NT is the number of Tier-1 ASes, then
a k-dense index equal to NT is guaranteed. On the other hand, their large number of
provider-customer connections create hierarchical structures that do not contribute to
the creation of dense structures.

5.4 k-dense-structure: kMAX-denses

The kMAX -dense ASes form the densest-connected community by definition. The
easiest way to establish such dense connectivity in practice is by connecting to a
large IXP and declaring an open peering policy. In this Section we further investigate
how IXPs contribute to the creation of these dense zones of the Internet, and which
kind of ASes build these substructures.

We start with analyzing the connections involving kMAX -dense ASes. Connec-
tions involving kMAX -dense are directed to other kMAX -dense nodes, to low k-dense
shells, but also to other medium/high kMAX -dense shells - Figure 4.11c. In Figure 5.5
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Figure 5.5: Fraction of provider-customer and peering connections in each k-dense.

we show the fraction of provider-customer and peering connections in each k-dense,
and we observe that connections within the kMAX -dense are mostly tagged as peer-
ing connections. The same observation applies to the fraction of peering connections
involving ASes in the kMAX -dense shell - Figure 5.2. Connections directed to low k-
dense indexes are likely to be customer-provider relationships; connections directed
to Tier-1 ASes could be customer-provider relationships as well. On the other hand,
peering connections are likely to be caused by IXPs.

In order to support this last claim, we use the PeeringDB [82] dataset to extract
and discuss the information related to kMAX -dense ASes and IXPs. First, all the
ASes within the kMAX -dense are connected to at least one IXP - Section 5.1. Then,
we plot in Figure 5.6 the number of IXPs that are joined by each kMAX -dense AS,
we find that each kMAX -dense AS is connected on average to 8.35 IXPs. Also, we
plot in Figure 5.7 the number of kMAX -dense ASes in each IXP (we show the top-20
IXPs that have the highest number of kMAX -dense members) and we observe the
tendency of kMAX -dense ASes are likely to connect to large IXPs. In fact, AMS-IX,
DE-CIX, MSK-IX and LINX are the largest IXPs in terms of members.

Since participation at IXPs ensues from the AS business strategy, we can extend
the analysis of these ASes by investigating their business profile. It is interesting to
observe that ASes participating in more than a single IXPs are typically Network Ser-
vice Providers (NSP). Also, according to [38] Content Delivery Networks and Content
Providers are likely to connect to multiple IXPs. In Table 5.1a we show the business
profile of those ASes that form the kMAX -dense, and we observe that these three
categories are well represented. In order to understand the rationale behind the for-
mation of a densely-connected sub-graph by these categories, we provide a brief
description of their business.

A NSP or, more in general, a network operator can be of two types: Internet Ser-
vice Provider (ISP) or Internet Backbone Provider (IBP). ISPs offer retail network ac-
cess for individuals and institutions, while IBPs provide high-speed, long haul commu-
nication links for ISPs. Internet Backbone Providers are organizations that supply the
ISPs with access to the lines that connect ISPs to each other, thereby allowing ISPs to
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Figure 5.6: Number of joined IXP for each kMAX -dense AS (sorted).

offer their customers Internet access at high speeds. These backbone providers usu-
ally provide connection facilities in many cities for their clients, and they themselves
connect with other backbone providers at IXPs.

On the other the main goal of CDNs is to deliver content for their clients by reduc-
ing latency and packet loss. In order to avoid bottlenecks near central servers (which
host data) they usually place their edge servers (a sort of mirror of the central server)
close to their client networks. Then participation in many IXPs allows CDNs to be
closer to many of their customers using a single connection (connection to IXP eases
the set up of connections to other IXP participants). “In addition, a Content Provider
has to pay transit fees to reach some destinations within the region, therefore tends
to seek peering with others with whom there is a large amount of traffic to exchange.
This leads to a generally open-peering inclination as articulated by an open peering
policy."3

Given that CPs and CDNs benefit from peering with any willing-to-peer ASes [69],
it is quite plausible that CPs and CDNs are main players behind the formation of
this densely interconnected substructure [38]. Surprisingly, the adoption of an open
peering policy is an emerging phenomenon among Network Service Providers (NSPs)
[60], i.e. tier-2 ASes provided with an own backbone network that purchase transit
from an upstream provider and resell it to other ASes. Although these ASes usually
adopt a selective peering policy, as they do not want to peer with potential customers,
such peering connections help tier-2 ASes to provide a better end-user experience to
their customers [70].

The percentage of ASes with selective peering policies (almost all NSPs) is also
significant, but all these ASes are good candidates for selective peering as well, ex-
plaining their high k-density. Indeed, one commonly considered aspect in the peer
selection process is the symmetry of the exchanged traffic [72]. We do not have ac-
cess to traffic statistics, but we can use the number of IP addresses in the customer

3 William B. Norton,
http://drpeering.net/white-papers/Ecosystems/Content-Providers.html
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Figure 5.7: Number of kMAX -dense AS in each IXP (top-20 IXPs).

cone [13] as a proxy. The customer cone of an AS is the set of ASes that can be
reached from the AS following only provider-to-customer links. In other words, it is
the set of destinations that can be reached for free upon peering with the AS. [76]
shows that the size of the customer cone of ASes within the kMAX is much higher
than the Internet average, and it does not show a high variance. In other words, ASes
within the kMAX dense have similar customer cone sizes and thus setting up peering
connections is a plausible strategy as it does not involve potential customers.

Finally, we use data in Table 5.1 to summarize the properties of kMAX -dense
ASes described so far. kMAX -dense is mostly composed of network operators (NSP
or Cable/DSL providers) and Content and Educational networks - Table 5.1a. The
presence of such kind of ASes within the kMAX -dense is likely to be caused by their
membership at one or multiple IXPs. In detail, the so-called tier-2 ASes benefit from
settling peering connection at IXPs because they can offer a shortest path between
content providers and their customers, thereby providing a better service. Educational
and research networks, on the other hand, are more interested in avoiding the tran-
sit costs. The traffic information shown Tables 5.1b and 5.1c reveals that the vast
majority of ASes have either a balanced or a mostly outbound peering ratio, and it
indicates that most of the ASes have a similar traffic volumes. The presence of mostly
outbound traffic ASes underlies presence of content services4. In addition, the fact
that many ASes have the same traffic volume supports the creation of many peering
connections even if a selective policy is adopted. Table 5.1e shows that almost all of
the kMAX -dense ASes declare either an open or a selective peering policy, and that
is compatible with the absence of Tier-1s. We conclude this summary with pointing
out the high percentage of European ASes, whose presence is correlated with the no-
ticeable number of ASes which are members of AMS-IX, DE-CIX and LINX - Figure
5.7.

4 ASes in Internet can have multiple businesses, thus even if there are only 5 content
providers, many NSPs could offer content services too.
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5.5 1K-randomness of kMAX-denses

A network that preserves the same number of nodes and links of the target graph
does not approximate accurately the structure of the kMAX -dense graphs that we
considered in Chapter 4. On the other hand, the degree distribution is sufficient to
describe the structure of these dense sub-graphs. Degree correlation of nodes can
be interpreted studying the process behind the set up of peering connections. When
d = 1 is sufficient it means that an AS is likely to connect using an open peering
policy : it simply sets up a certain number of connections (which is described by its
own degree) but it does not choose its neighbors (a degree correlation between nodes
at greater distance is not evident). On the other hand, a d = 2 could be the result of a
peering selection process which is typical of a selective peering policy : in this case the
observed AS chooses its neighbors and thus chooses their degrees too. Supposing
that all the kMAX -dense connections take place at a single IXP5(DE-CIX would be
the main candidate) and supposing that the peering policies declared in PeeringDB
represent the peering policy that each AS adopts on each IXP, then our explanation
of 1K-randomness using IXP policies seems to be fully supported by data shown in
Table 5.1e.

5.6 Topology incompleteness

According to [74] results the vast majority of missing links are peering connections
which involve ASes that do not host any monitor (or ASes whose downstream cus-
tomers do not host any monitor). Thus we are likely to miss peering connections
involving small ASes that do not host monitor or which do not have customers. On the
other hand, we believe peering connections involving large providers are fully cap-
tured by the dataset we considered since it is likely to find a monitor in one of them
or at least within their downstream customers. In our analysis we find that the most
well-connected zone of the Internet involves ASes participating at IXPs with a pretty
high Internet degree, while ASes belonging to the lower k-denses are likely to have a
lower degree and, usually, do not participate at IXPs. Based on these statements, we
believe the addition of currently hidden peering links to the Internet topology would
provide the following changes:

• the kMAX would be probably increased as the peering connections are less hier-
archical than the customer-provider connections and hence they are likely to form
dense zones;

• there could be many ASes with a low k-dense index shifted to k-dense shells with
a higher k-dense index, moreover this behavior could also provide the formation
of communities separated from the giant component (i.e. the single and large k-
dense community) that could be interpreted as local communities.

5 We do not have access to the peering matrix of IXPs, thus we cannot confirm this hypothesis.
However, results presented in [3] guarantee the feasibility of our guess.
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Table 5.1: PeeringDB properties related to kMAX -denseASes.

(a) Business type.

Business type AS count

Cable/DSL/ISP 12
Content 5
Educational/Research 5
NSP 56
Non-Profit 1
Unknown 1

(b) Traffic volume.

Traffic volume AS count

Unknown 1
Not disclosed 7
0-1000 Mbps 2
1 - 100 Gbps 43
100 - 1000 Gbps 25
1 Tbps+ 2

(c) Traffic ratio.

Traffic ratio AS count

Heavy Inbound 1
Mostly Inbound 9
Balanced 44
Mostly Outbound 23
Heavy Outbound 2
Unknown 1

(d) Geographic type.

Geographic scope AS count

Europe 38
Global 19
Regional 22
Unknown 1

(e) Peering policy.

Peering policy AS count

Open 40
Restrictive 1
Selective 38
Unknown 1
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6

Conclusions

A deep understanding of the underlying structure of the Internet AS-level topology, as
well as its evolution, helps the development of new models, which in turn, are vital
for testing new protocols and applications. Also, a better knowledge of the Internet
structure can provide insights into the design of new routing protocols, it can ease the
evaluation of the consequences of node failures, and it can facilitate the development
of more efficient algorithms for searching and flow optimization.

In this work we carried out a detailed analysis of the structure of the Internet
topology at the AS-level of abstraction and its evolution over the last 9 years. In order
to understand how this evolution process works, we divided the problem into four
sub-problems:

• first, due to the high heterogeneity of the network components, it is important to
identify a method to represent the network such that it enables both to efficiently
perform a structural analysis and to understand the phenomena that drive its evo-
lution;

• second, once the Internet representation is formalized, the sub-structures of in-
terest have to be defined, or in other words it is required to have a structural
description that provides insights into the underlying organization of the network;

• third, the description of the topology evolution requires the computation of the
properties of interest on different snapshots (of the network) collected in different
dates, then these information have to be aggregated and compared in order to
reveal the underlying trends;

• finally, since the structural changes affecting the topology are driven by the inde-
pendent decisions of each AS, it is interesting to understand the strategies that
ASes use to optimize their objective functions and how these are correlated with
the topology structure.

A summary of the main contributions of this thesis follows.



CHAPTER 6. CONCLUSIONS

Network description

Internet AS-level topology has been often described as an ecosystem due to the va-
riety of its building blocks, i.e. ASes, as well as the complex dynamics that drive its
evolution. Although the information available to research is limited and incomplete be-
cause of its confidentiality, it is possible to collect data describing the Internet topology
over time, the business relationship between ASes, the size of ASes customer cones
and the presence of an AS at an IXP. In this thesis we tackled the problem of network
description using the following approach: first we focused on the sole topology and we
computed the structural properties without adding any context information; then, we
added the details related to inferred AS-relationships and regarding IXPs. This strat-
egy enabled to easily compute the structural properties of the network, also it pro-
vided a way to further study the sub-structures emerging from the structural analysis,
thereby helping us in understanding the drivers behind Internet structure evolution.

Meaningful substructures

In this thesis we analyzed the Internet AS-level structure using the k-dense method.
Since there is no broadly accepted definition of community, we first described the main
criteria that should guide the detection of a community within the Internet environ-
ment, i.e.: basically we were looking for sub-graphs with a high internal density with-
out any concern about external links. Furthermore, we selected three deterministic
community detection algorithms that satisfied such criteria, i.e. k-core decomposition,
k-dense method, and clique percolation method, and we thoroughly compared them.
In detail, we studied the result of the community detection algorithms on a sample
topology and we observed the different community organizations using an innovative
visualization tool, i.e. k-tree. In addition we determined their statistical significance us-
ing the dK-analysis. To the best of our knowledge, this is the first time the dK-series
are computed to analyze the complexity of a community detection method. We found
that neither 2K-series nor dK-series with d < 2 are able to reproduce the output
of these community detection algorithms meaning that they are statistical interesting.
k-dense method resulted the best tool to use since the obtained structures were not
as fragile as k-clique communities (i.e. communities obtained using the clique perco-
lation method), whereas their communities suggested a stronger positive relationship
between ASes if compared to the k-core decomposition.

Network evolution

Our analysis of the Internet AS-level topology by means of the k-dense method was
inspired by the fact that, although the common properties, like number of nodes or
the average degree, provide a general vision of how the network evolves, they do not
give insight into the structure change. We extracted the k-dense communities from
each snapshot of the network from 2004 to 2012 and we found that kMAX -dense
index, i.e. a proxy measure of the maximum level of density achieved within a graph,
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is constantly growing, thereby revealing the presence of denser sub-graphs as the
graph evolved. After proper normalizations we found that the distribution of ASes in
each k-dense shell and the distribution of connections involving each k-dense shell
are time-invariant. We also found that all the snapshots share the following property:
2-, 3-, and kMAX - dense shells are the classes of ASes involved in the maximum
number of connections. 2-, 3- dense shells represent a noticeable portion of the en-
tire set of ASes in Internet and that is a sufficient to justify their involvement in such
a high number of connections. Surprisingly, kMAX -dense ASes represent (on aver-
age) just 0.2% of the total number of Internet ASes and are involved in more than
25% of the Internet connections. Such information revealed that kMAX -dense ASes
have a main role in the Internet connectivity. Due to its importance we investigated
the internal structure of the kMAX -dense using the dK-analysis to infer the statistical
properties of such sub-graph. Although these networks are highly dense (on aver-
age they have a link density equal to 0.84, meaning that they resemble a complete
topology) we proved that these graphs are 1K-random, yet this property is shared
between all the snapshots. In other words, a synthetically generated graph with the
same number of nodes and links does not accurately approximate the structure of the
kMAX -dense. On the other hand, a graph with the same distribution approximates
correctly the kMAX -dense. This kind of information might be very useful to test if a
synthetic graph generator is able to generate a kMAX -dense with the same charac-
teristics. Finally, we analyzed the organization of the current Internet structure, i.e. the
snapshot related to 2012, providing further details such as comparing the number of
links within the communities and the number of connections directed outside the com-
munities, providing the number of nodes and connections in each k-dense, showing
the the number of connections involving each k-dense shell and finally providing a
thorough description of the how ASes in the 2-, 3-, and kMAX - dense shells direct
their connections.

Internet drivers

By combining the results of the structural analysis and the information related to the
inferred relationships between ASes and the set of ASes participating at IXPs, we
were able to unveil some of the driving forces behind Internet structure changes. We
found that the growth of the kMAX - dense index, or simply the creation of denser and
denser sub-graphs, is mostly due to the proliferation of public peering connections,
i.e. peering connections exploiting IXPs facilities. On the other hand, we observed
that ASes within the low k-dense shells, or periphery ASes, are the main responsible
for the network growth. In details, small enterprise customers whose business is not
Internet-driven with one or more transit providers are the reason behind the presence
of so many 2- and 3- dense shells ASes. Another property that we investigated was
the presence of Tier-1 ASes within the k-dense shells. This kind of ASes have a pri-
mary role in Internet routing as they are defined as the set of ASes that can reach all
the Internet prefixes through their customers and peers. By definition such group has

61



CHAPTER 6. CONCLUSIONS

to form a complete topology, thus a minimum k-dense index is automatically guar-
anteed; however, they hardly are part of the kMAX -dense. An interpretation of this
phenomenon is that even if they are IXP members, they use to have a restrictive
peering policy because all ASes are potential customers of a Tier-1, thus Tier-1 ASes
are not likely to form extremely meshed topologies. Finally we investigated the set of
ASes within the kMAX -dense and we provided an explanation of its 1K-randomness.
kMAX -dense are mostly Network Service Providers, Content Providers, or Content
Delivery Networks, also all of them participate at least to an IXP. CPs and CDPs usu-
ally adopt an open peering policy , indeed the more connections they open, the better
service they can provide. Also, they do not sell transit, thus they do not have connec-
tions potential customers to avoid, whereas a peering connection can let them save
the cost of transit. On the other hand, NSPs usually adopt a selective peering policy.
A peering connection to a high source of traffic can be vital for an NSP in order to pro-
vide a better service to its customers, however it cannot peer indistinctly, as its main
business objective is to sell transit. As a result, an NSP usually avoids peering with po-
tential customers, thereby preferring a selective peering policy over an open peering
policy. Finally, we found that this combination of open and selective peering policies
characterizing the kMAX -dense provides an explanation of its 1K-randomness.
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A

dK-statistical analysis of kMAX-denses

In this Appendix we show the results of the dK-analysis related to 2005, 2006, 2007,
2009, 2010, and 2011 snapshots. Figures A.1, A.2, A.3, A.4,A.5, and A.6 provide
the same outcome found for 2004, 2008, and 2012 snapshots, i.e. the kMAX -dense
sub-graph is a 1K-random network.
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Figure A.1: 2005 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: A.1a degree distribution, A.1b average neighbor degree over degree, c average
clustering coefficient over degree, A.1d average betweenness over degree, e average
shortest path distribution, f z-score of motifs of size 3 and 4. Figures report, for each
property, the average value and the confidence interval with probability 0.8.
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Figure A.2: 2006 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: A.2a degree distribution, A.2b average neighbor degree over degree, c average
clustering coefficient over degree, A.2d average betweenness over degree, e average
shortest path distribution, f z-score of motifs of size 3 and 4. Figures report, for each
property, the average value and the confidence interval with probability 0.8.
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Figure A.3: 2007 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: A.3a degree distribution, A.3b average neighbor degree over degree, c average
clustering coefficient over degree, A.3d average betweenness over degree, e average
shortest path distribution, f z-score of motifs of size 3 and 4. Figures report, for each
property, the average value and the confidence interval with probability 0.8.
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Figure A.4: 2009 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: A.4a degree distribution, A.4b average neighbor degree over degree, c average
clustering coefficient over degree, A.4d average betweenness over degree, e average
shortest path distribution, f z-score of motifs of size 3 and 4. Figures report, for each
property, the average value and the confidence interval with probability 0.8.
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Figure A.5: 2010 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: A.5a degree distribution, A.5b average neighbor degree over degree, c average
clustering coefficient over degree, A.5d average betweenness over degree, e average
shortest path distribution, f z-score of motifs of size 3 and 4. Figures report, for each
property, the average value and the confidence interval with probability 0.8.
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Figure A.6: 2011 kMAX -dense properties vs. 0k-random and 1k-random graphs prop-
erties: A.6a degree distribution, A.6b average neighbor degree over degree, c average
clustering coefficient over degree, A.6d average betweenness over degree, e average
shortest path distribution, f z-score of motifs of size 3 and 4. Figures report, for each
property, the average value and the confidence interval with probability 0.8.
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