
Architecture for Incorporating Internet-of-Things Sensors and
Actuators into Robot Task Planning in Dynamic Environments

Helen Harman, Keshav Chintamani and Pieter Simoens
Department of Information Technology - IDLab

Ghent University - imec
Technologiepark 15, B-9052 Ghent, Belgium

{firstname.surname}@ugent.be

Abstract— Robots are being deployed in a wide range of
smart environments that are equipped with sensors and actu-
ators. These devices can provide valuable information beyond
the perception range of a robot’s on-board sensors, or provide
additional actuators that can complement the robot’s actuation
abilities. Traditional robot task planners do not take these
additional sensor and actuators abilities into account. This pa-
per introduces an enhanced robotic planning framework which
improves robots’ ability to operate in dynamically changing
environments. To keep planning time short, the amount of
knowledge in the planner’s world model is minimized.

Index Terms— robotics, IoT, smart environments, task plan-
ning

I. INTRODUCTION

The deployment of mobile robots is being envisioned
by the research community in an increasing number of
environments for long-term autonomy, including assistance
for elderly at home, and service robots in warehouses. These
robots work alongside humans, therefore must adapt to
dynamic changes in the environment.

Instead of hard coding sequences of actions to execute a
given task, a more generic approach is to use symbolic task
planning, an artificial intelligence technique that is gaining
traction in real-world robotics. In symbolic task planning,
a task is formulated as a desired goal state, and planners
autonomously find the appropriate set of actions (i.e. a task
plan) to move from the current state to the desired goal state.
In dynamic real-world environments, task plans are adjusted
continuously, according to new observations by the robot’s
sensors that are mapped to state updates.

An increasing number of spaces are being equipped with
network-enabled sensors and actuators, such as cameras,
presence detectors, lifts, locks and robots. Together with
back-end cloud services for data processing, this Internet-
of-Things (IoT) can be clustered behind what we define in
this paper as a smart environment. This provides additional
sensing and actuation abilities that can aid robots in achiev-
ing their goals.

In this paper, we propose an on-robot planning paradigm
that leverages on a smart environment. The robot will be able
to adapt its plan according to the state of the environment
provided by both its on-board sensors and remote IoT
sensors. As an example scenario, consider a robot instructed
to fetch a coffee in a smart office environment. An IoT coffee

machine may inform the robot that it is empty, or a door
sensor may indicate that a door is closed on the route towards
the coffee machine. The robot can use this knowledge to
pre-empt its current plan and identify an alternative coffee
machine. Without the IoT sensor information, the robot
would only find out about the empty coffee machine or
closed door when in front of it.

As well as providing up-to-date information on the en-
vironment and its dynamics, a smart environment can aid
a robot by performing actuations which the robot itself
is incapable of. The task planner can include these off-
board actuation capabilities in its plan. Continuing with
our example, the robot is incapable of making a coffee so
requests the IoT coffee machine to do this, or the robot may
be unable to open a closed door because it is holding a
cup. Without the aid of these smart environment actuators
the robot would be unable to accept or complete a coffee
fetching task.

Through incorporating sensors and actuators from smart
environments into robot task planning, we expand the scope
of symbolic task planners beyond the action capabilities
and sensor perception range of the robot itself. Our system
improves a robot’s ability to autonomously operate in dy-
namically changing environments and increases the scope of
tasks that can be executed.

In section II we review related work. Section III gives an
overview of our system; this is expanded on in section IV
which provides further details on the implementation.

II. RELATED WORK

In this section we introduce some of the existing ap-
proaches to robot task planning, in particular we focus on
those which attempt to handle dynamic environments, we
also provide examples of how robots have been incorporated
into smart environments. What aspects of these we aim to
improve upon will then be discussed.

A. Task Planning in Dynamic Environments

Symbolic planners use a solver (e.g. STRIPS [1],
TFD/M [2]) to find a set of actions to transform the initial
state to a goal state. The Problem Domain Definition Lan-
guage (PDDL) is a popular domain-independent logic-based
formalism to represent planning problems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/147045183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PDDL represents the world and actions in a problem
and domain file respectively. The problem file contains an
initial (current) state and a goal state, both expressed using
predicates, fluents and objects. Actions, along with their
durations, conditions and effects are listed in a domain file.

In real-world open environments, it is likely that the state
given to the planner is either incomplete or out-of-date. One
approach is to generate plans with conditions: which branch
of the plan is executed depends on sensor observations at
runtime. This approach is followed by the Planning With
Knowledge and Sensing framework [3], e.g. the robot senses
at runtime whether a beverage container is filled or not and
will manipulate the container appropriately.

Alternatively, a replanning procedure can be carried out
if there is a mismatch between the state belief from which
the plan was generated and the actually sensed world state.
Continuous planners iterate between sensing, planning and
acting. Once an action has finished, be it successful or
otherwise, the planner’s current state is updated. If the
preconditions of the next planned action are no longer
met, replanning is invoked. Several architectures have been
proposed to transform the robot sensor observations into
state updates. In [4], sensor information is used to update an
ontology that is queried in each planning loop to populate
a PDDL problem file. In [5], the PDDL is updated from
several state estimator plugins.

In the above works, information from remote sensors is
not used and the planner can only search through actions on
the robot itself.

B. Task Planning in smart environments

Smart environments enable robots to gain knowledge
from external sources, including the cloud and IoT de-
vices (e.g. smart coffee machines, door sensors and other
robots). In the RoboEarth project [6] the cloud populates
a robot’s knowledge-base, which includes information on
action recipes and objects found in the environment. Once
a robot has executed its plan it uploads semantic maps
containing object locations, allowing them to be shared with
other robots.

IoT devices can provide up-to-date information on the
actual environment state and its dynamics, in turn helping
the robot to execute plans more efficiently. [7] introduces the
concept of a robot ecology, consisting of a collection of phys-
ically embedded intelligent systems distributed in a smart
environment. For each action in a task plan, a centralized
configuration planner sets up the appropriate communication
channels between the distributed systems, e.g. to send the
observations of a door-mounted camera to a robot crossing
that door. This configuration planner is compatible with
our approach and can be used in the smart environment to
communicate the most appropriate sensors for a given task to
the robot. Our approach provides additional support for plan
pre-emption by the smart environment and does not work
on a predefined list of all available actions but instead only
sends relevant actions to the task planner.

III. SYSTEM CONCEPT

A key consideration in the system design is the distribution
of the task planner components between the robot and a
remote (cloud) server in the smart environment. Running the
task planner on the cloud has the advantage that it is deployed
close to where IoT sensor data is processed. As our goal is
to improve the long-term autonomy of mobile robots, we
have opted to execute the task planner on the robot allowing
it to continue operating when wireless network connectivity
drops. However, the amount of information transmitted from
the smart environment to update the robot’s world model
must be limited for two reasons. First, wireless communi-
cation is energy hungry and transmitting raw IoT sensor
data streams would quickly drain the robot’s battery. Second,
introducing all IoT sensors and actuators as objects in the
planner’s world model increases the model’s complexity
causing the planning time to increase exponentially [8], [9].
We thus aim to keep the world model compact by only
including relevant actions and filtering out objects which
have no impact on the task plan.

A functional overview of our continuous planning system
is presented in Figure 1.

Fig. 1. The continual planner calls the state estimators (i.e. goal creator
and state creators) and domain enricher to generate the PDDL problem
and domain based on state observations from the robot and from the smart
environment. The resulting task plan contains actions to be executed by the
robot and other actuators in the smart environment.

Our system is an expanded version of the continuous
planning framework of Dornhege et al. [5]. This frame-
work provides two types of interfaces between the domain-
independent TFD/M solver and a real-world system: state
estimators and action executors. In the original framework,
state estimator plug-ins translate robot sensor observations
into PDDL state updates, while action executor plug-ins
translate PDDL-defined actions into executable robot in-
structions. Below, we explain how we have modified and
expanded this framework.

A. Problem Generation

The PDDL problem file contains a goal and the current
state and is populated by calling a set of state estimator plug-
ins. The goal creator is called once when the continuous
planner is started, and state creators are called at the start
of each sense-plan-act iteration. The planning step is only

invoked when the conditions for the next planned action are
not met.

We allow state creators to update the problem using both
robot sensors and IoT sensors. Examples of robot sensed
state include robot position determined by odometry, blocked
locations determined using the robot’s path planner and
occupancy map; and objects identified in the robot camera
view. Using IoT sensed state expands the robot’s knowledge
beyond the scope of its own sensors. One example is an
obstacle detected in a hallway via a CCTV camera, or the
open/closed status reported by a door sensor.

B. Domain enricher

The PDDL domain file contains (a.o.) the set of actions
from which the planner generates a task plan. In traditional
approaches, this list was limited to a fixed set of actions.
In realistic environments, this list can quickly grow in size:
e.g. for each object that a robot may encounter a different
manipulation action could be defined.

Instead of always using an exhaustive predefined list of
actions in the planner, we start with a minimal domain file
only containing the most elementary actions a mobile robot
can execute: navigate the environment and inspect objects.
A domain enricher process analyses the PDDL problem
obtained after calling the state creators and only adds actions
that are relevant to entities defined. For example, if there
are manipulatable objects in the problem file, the domain
enricher will include grasping actions in the domain file.

The domain enricher can leverage on knowledge databases
in the cloud to determine available actions. For example, one
might use ontology reasoning to determine feasible actions
in the given context. In our current implementation, we use
a static repository that is queried by the domain enricher.

As we include actions that should be performed by other
actuators in the smart environment, we add a single remote
device object to the PDDL problem in line with our spirit to
keep solver times tractable. Actions defined in the domain
contain a condition stating if it should be executed locally
or remotely.

C. Action Executors

Our system enables the generation of task plans containing
a mixture of robotic actions and actions that are delegated to
the smart environment, e.g. to open an actuated door. Action
executors are plug-ins that contain the logic to execute an
action defined in the PDDL domain file. Different from the
original action executor plug-ins in [5], we do not allow
PDDL state updates to happen from within action executors.
Instead, we delegate such functionality to the state estimators
described earlier, decoupled from action execution. Any
remote action in the task plan is delegated to a single
action executor plug-in that acts as a proxy for all off-board
actuators in the smart environment. When remote action
execution is required the action request is sent to the cloud
where it is redirected to the appropriate actuator service,
possibly using an IoT middleware solution to abstract from
vendor-specific syntax.

IV. IMPLEMENTATION

So far we have presented a broad overview of the system,
therefore further details will be given in this section. In sec-
tion IV-A, we present the implementation of our architecture.
In section IV-B, we provide insight in the state creators and
action executors we have developed for the basic scenario of
a mobile robot navigating in a smart environment.

A. ROS-based planning framework

We have implemented our planning framework in the
Robot Operating System (ROS) [10], allowing us to ex-
tend existing ROS packages for PDDL based planners such
as tfd modules. ROS applications run inside of nodes,
individual processes which communicate by publishing/sub-
scribing to topics and providing/invoking services. In our
architecture (see Fig. 2) all ROS nodes run on-board the
robot, as the robot should remain operational when no remote
connection is available. The cloud aspect of our system does
not use ROS in order to keep it decoupled from the robotic
middleware.

Fig. 2. Ovals represent ROS nodes and boxes with a blue background
show ROS topics. All communication to/from the cloud is performed using
HTTP requests.

The Continual Planning node loops through the phases
of populating a PDDL problem and domain file using state
estimators and the domain enricher; running the TFD/M
solver, and then calling the appropriate action executor plug-
ins which interface with actuator drivers through the ROS
ActionLib interface.

The Context Monitoring node plays a central role. State
estimators may query this node to get information about
what actions have been executed, the current plan, and to
get relevant IoT sensor data. For example, it is used by
state creators to discover when an action has failed; and to
determine what objects should be present in the problem.

The Context Monitoring node also announces the robot’s
plan to the cloud, where a plan validator performs reasoning
on which sensors in the smart environment could provide
possible relevant sensor input to the cloud. In turn, the
cloud will push relevant sensor observations to a robot’s IoT
Listening node.

B. State creator and actuation executor plug-ins

We have developed state estimators and actuation executor
plug-ins for the basic scenario of a mobile robot fetching
objects in a multi-room environment, listed in Table I and
Table II. While navigating, the robot may encounter obstacles
such as boxes or closed doors. The robot is able to push
boxes out of the way, but it cannot open doors. All doors
are equipped with a sensor, but only a few doors in the
environment are equipped with an electronic opener.

The goal creator adds the waypoints of the environment,
and the target position in the problem; and the robot pose

state creator adds the robot’s current location. Only the
drive-base (shown in Listing 1) and inspect-object actions
are defined upfront in the PDDL domain. When obstacles
on the robot’s path are detected, its state is updated and
replanning is triggered. At this stage, other state estimators
and action executor plug-ins come into play.

(: d u r a t i v e - a c t i o n dr ive - base
: p a r a m e t e r s (? r - robot ? s - l o c a t i o n ?g -

↪→ l o c a t i o n)
: d u r a t i o n (= ? d u r a t i o n 1000)
: c o n d i t i o n (and

(at s t a r t (at - base ? s ? r))
(at s t a r t (n o t (at - base ?g ? r)))
(over a l l (i s - l o c a l ? r))
(over a l l (can -move - to ? s ?g))

)
: e f f e c t (and

(at s t a r t (n o t (at - base ? s ? r)))
(at end (at - base ?g ? r))

)
)
Listing 1. drive-base action from the PDDL domain. can-move-to is a
derived rule which checks the path can be traversed (i.e. locations are in
the same room or in-line, and no objects are between them).

To illustrate this, we present two different situations in
the simulated world shown in Figure 3. In this figure and
all the next ones, the numbers are the room IDs, the
text indicates different locations which are abbreviated (e.g
d1 r1 is doorway1 room1 and b1 is blocked loc1) and
the arrows represent the drive-base actions. A robot can
navigate between locations if they are in the same room or
are either side of a doorway.

Fig. 3. Simulated world using Gazebo. door1 is shown in blue, box1 is
the red box. The blue text shown the different locations a robot can navigate
to. This is an expanded version of the simulated world created by Speck et
al. [11].

In the first situation, the robot detects via its on-
board sensors that a box is blocking its path. In the second
situation, it is the smart environment that pro-actively detects

that a door further along the robot’s path was just closed.
While these situations are elementary, they effectively
demonstrate the interplay between state estimators, domain
enricher and smart environment.

1) Obstacle detected by the robot: This scenario is illus-
trated in Figure 4. The robot is currently in room 2 and is
asked to be in room 3. As the robot has no knowledge on
obstacles, the initial plan contains three drive-base actions.
Because an obstacle is blocking the doorway between both
rooms, the second drive action will fail and the robot’s state
estimation and replanning are triggered.

(A)

1. (drive-base r1 d4 r2 d2 r2)

2. (drive-base r1 d2 r2 d2 r3) ← action fails
causing replanning
3. (drive-base r1 d2 r3 w2 r3)

(B)

1. (drive-base r1 d2 r2 b1)

2. (inspect-object r1 d2 r2 b1)

State change causes replanning
3. (drive-base r1 b1 d2 r3)

4. (drive-base r1 d2 r3 w2 r3)

(C)
1. (push-box r1 b1 d2 r3 box0)

2. (drive-base r1 b1 d2 r3)

3. (drive-base r1 d2 r3 w2 r3)

Fig. 4. Rviz displaying the robot’s costmap, location and goal, alongside
the task plans used when an obstacle (box1) is detected by on-board sensors.
The robot’s initial location is doorway4 room2 and has been assigned the
goal: (at-base waypoint2 room3 robot1).

When the blocked locations state estimator is called, it
uses the report of the failed drive action and the path planner
to add an additional location, which indicates the position
of the unknown object, to the PDDL problem, as shown
in Listing 2. The new plan is shown in Fig. 4-B and now
contains four actions, including an inspect-object action.

(: o b j e c t s blocked_loc1 - l o c a t i o n)
(: i n i t
(i s - b locked blocked_loc1 doorway2_room3)
(i s - unknown - object - l o c blocked_loc1)
(= (x blocked_loc1) 11 . 0)
(= (y blocked_loc1) 1 . 0)
(= (z blocked_loc1) 0)

)

Listing 2. PDDL problem showing a blocked location. is-blocked
indicates that the robot can not drive between the two locations; and is-
unknown-object-loc indicates that that robot detected the obstacle from
the blocked loc1 location.

The robot starts executing the new plan, it drives to the
obstacle and inspects it. The inspect object action executor
performs image recognition on the robot’s RGB camera feed
and publishes that it discovered a box1. The result of the

1Note that this image recognition is possibly performed in the cloud, but
this is not relevant for our current discussion.

TABLE I
DESCRIPTION OF THE DIFFERENT STATE ESTIMATORS

State estimator Description

goal creator Adds the PDDL goal string and static information to the problem. Waypoints, which are listed in a text file and written in the
format <ID> <roomID>, are added and those with matching IDs (e.g. locations either side of doorways) are set as being
in-line. Based on Speck et al.’s work [11].

robot pose Obtains the robot position from odometry. If the position is equivalent to a location that has previously been added to the state,
the robot is assigned to the location using the at-base predicate. If the robot is not at a known location a new location is created.
Based on Speck et al.’s work [11].

blocked locations When a robot’s laser scanner senses an obstacle within the robot’s planned path, the blocked location is added to the problem
to allow the robot to drive to the obstacle and use its RGB camera to inspect it. Blocked locations are removed from the state
when they are no longer required. (Example shown in Listing 2)

sensed obstacles This state creator adds PDDL statements of any objects on the path with identified nature. Identification can come through
object recognition algorithms on the RGB camera, or directly from the cloud (e.g. closed door). Example PDDL output shown
in Listing 3. Objects that have been acted-on are removed from the problem.

TABLE II
DESCRIPTION OF THE DIFFERENT ACTION EXECUTORS.

Action executor Example action Description

drive base drive-base robot1 way-
point1 room0 doorway3 room0

Retrieves the position (e.g. for doorway3 room0) from numeric fluents in the problem
and commands the robot to move to that position. Based on Speck et al.’s work [11].

inspect object inspect-object robot1 blocked loc1
doorway1 room2

Starts the object detection node, if it is not already running, and rotates the robot until
it is facing the object. In the example, robot1 will inspect the object at blocked loc1.

push box push-box robot1 blocked loc1 door-
way1 room2 box1

The robot (robot1) will push the box (box1) to a position where it no longer blocks
the robot from getting to the target location (doorway1 room2).

remote open-door remote doorway0 room0
doorway0 room1 door0

Any planned action whose first parameter is not equivalent to the local robot, is executed
by this action executor.

inspect-object action is picked up by the sensed obstacles

state creator.
The planner will now compare the updated state with the

preconditions of the next planned action, namely the drive-

base action. Because the updated state violates the precon-
ditions (the can-move-to rule), replanning is triggered. The
domain enricher will check the updated problem of Listing 3
and notice that there is an object of type box. It will copy
any actions on this type of object into the PDDL domain, in
our exemplary scenario a box only has the push-box action.

(: o b j e c t s box1 - box)
(: i n i t
(i s - blocked - by box)
(object - i s - in - path box1 blocked_loc1

↪→doorway2_room3)
(= (x box1) 12 . 4)
(= (y box1) 1 . 0)
(= (width box1) 1)
(= (he ight box1) 1)

)
Listing 3. PDDL problem showing box1 is blocking the robot from
navigating between blocked loc1 and doorway0 room1.

The new plan is shown in Fig. 4-C: the robot will push
the box out of the way and reach its goal.

2) Smart environment sensing and actuation: In this sce-
nario, the robot is tasked to move from room 1 to room
2. Initially, the robot only knows the static map (walls and
waypoints) and thus generates a very simple plan containing
two drive-base actions, see Figure 5-A. This plan is sub-
mitted by the Context Monitoring node to a plan validator

in the cloud. The cloud reasons on the path in the plan and
starts interpreting data of relevant sensors along the path.
At one moment, the sensor for the door between room 1
and room 2 detects the door has been closed. As this state
change invalidates the current plan, the plan validator will
send this information to the IoT Listener node, that in turn
publishes this on a topic which the Context Monitoring node
is subscribed to. The Context Monitoring node pre-empts the
drive-base action, although the robot by itself reports no
failures.

(: d u r a t i v e - a c t i o n open - door
: p a r a m e t e r s (? r - robot ? s - l o c a t i o n ?g -

↪→ l o c a t i o n ?d - door)
: d u r a t i o n (= ? d u r a t i o n 1000)
: c o n d i t i o n (and

(at s t a r t (object - i s - in - path ?d ? s ?g))
(over a l l (n o t (i s - l o c a l ? r)))
(over a l l (i s - a c t i onab l e ?d))

)
: e f f e c t (and
(at end (n o t (object - i s - in - path ?d ? s ?g)))

)
)

Listing 4. open-door action from the door object’s PDDL domain.

Given that the smart environment has already identified
the blocking obstacle as a door, there is no need to first
inspect the object. Just as in the previous scenario, the
sensed obstacles state estimator adds a door object to
the PDDL problem (very similar to Listing 3). The cloud
also provides the sensed obstacles state estimator with

knowledge about if the door has an electronic opener. This is
set in the problem using the is-actionable predicate, which
is a precondition of the open-door action. As replanning
is required, the domain enricher will immediately load the
open-door action definition, see Listing 4 and Figure 5-B.

(A)
1. (drive-base r1 w1 r1 d1 r1) ← action
pre-empted causing replanning
2. (drive-base r1 d1 r1 d1 r2)

(B1)

1. (drive-base r1 l1 d3 r1)

2. (drive-base r1 d3 r1 d3 r4)

3. (drive-base r1 d3 r4 d4 r4)

4. (drive-base r1 d4 r4 d4 r2)

5. (drive-base r1 d4 r2 d1 r2)

(B2)
1. (drive-base r1 l1 d1 r1)

2. (open-door remote d1 r1 d1 r2 door1)

3. (drive-base r1 d1 r1 d1 r2)

Fig. 5. Rviz displaying the robot’s costmap, location and goal, alongside
the task plans used when an obstacle (door1) is detected by an IoT sensor.
The robot’s initial location is waypoint1 room1 and has been assigned
the goal: (at-base doorway1 room2 robot1). B1 shows the plan when
no devices are able to open door1; and in B2 a remote IoT actuator can
open door1.

The robot itself does not have the ability to open doors
(i.e. (over all (not (is-local ?r))) precondition), therefore
must use an alternative route or ask a remote IoT actuator
to open the door between room 1 and room 2. This depends
on if this door is actuatable by the smart environment.

If the door cannot be opened, the planner decides to use
an alternative route via room 4 (Fig 5-B1). As there are no
obstacles along this route the robot is able to reach the goal
location without further replanning. If no alternative route
exists, the planner will fail to find a task plan.

If the door can be opened remotely, the resulting plan
contains an open-door action, rather than take the longer
alternative route. This plan is shown in Fig. 5-B2. The open
door request is sent through the remote action executor.
When this action has completed, the sensed obstacles state
creator removes door1 from the planner’s state in order to
keep the PDDL problem file as compact as possible.

V. CONCLUSION AND FUTURE WORK

We have presented a generic system which improves
robots’ ability to plan its operations in dynamically changing
environments. Observations made by sensors in smart envi-
ronments allow robots to pre-empt their plan when these
changes occur. With the aid of IoT actuators a robot is
able to complete tasks it would otherwise be incapable of

performing. Simulated experiments show this works for both
IoT sensed and robot sensed obstacles. Planning time is
kept short by reducing the amount of knowledge required
upfront in the PDDL domain and problem. When obstacles
in a robot’s path are detected, a robot is able to expand this
knowledge.

Further research into more intelligent upfront knowledge
provisioning for problem generation could reduce the number
of times a robot needs to replan. This replanning could be
speed-up by exploiting knowledge from previous planning
iterations. We will also study more advanced plan validation
techniques, e.g. by the use of ontologies to be able to
generically determine which smart environment sensors may
provide useful information for the current plans. We will
also study capability reasoning to determine which devices
can perform an action and introduce the notion of costs. For
example, there could be two robots in the neighbourhood
that have the hardware capabilities to open a door, but they
might be unavailable or far away.

ACKNOWLEDGEMENTS

Helen Harman is an SB fellow at FWO (project number:
1S40217N). Part of this research was funded via imec’s
ACTHINGS High Impact Initiative.

REFERENCES

[1] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[2] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,” in
19th Intl Conf on Automated Planning and Scheduling, 2009.

[3] R. P. Petrick and A. Gaschler, “Extending knowledge-level contingent
planning for robot task planning,” in Workshop on Planning and
Robotics (PlanRob) at the Intl Conf on Automated Planning and
Scheduling, pp. 157–165, 2014.

[4] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera,
N. Palomeras, N. Hurtós, and M. Carreras, “Rosplan: Planning in the
robot operating system.,” in ICAPS, pp. 333–341, 2015.

[5] C. Dornhege and A. Hertle, “Integrated symbolic planning in the
tidyup-robot project.,” in AAAI Spring Symposium: Designing Intel-
ligent Robots, 2013.

[6] L. Riazuelo, M. Tenorth, D. Di Marco, M. Salas, D. Gálvez-López,
L. Mösenlechner, L. Kunze, M. Beetz, J. D. Tardós, L. Montano,
et al., “Roboearth semantic mapping: A cloud enabled knowledge-
based approach,” IEEE Transactions on Automation Science and
Engineering, vol. 12, no. 2, pp. 432–443, 2015.

[7] M. Broxvall, M. Gritti, A. Saffiotti, B.-S. Seo, and Y.-J. Cho, “Peis
ecology: Integrating robots into smart environments,” in Robotics and
Automation, 2006. ICRA 2006., pp. 212–218, IEEE, 2006.

[8] A. Hornung, S. Böttcher, J. Schlagenhauf, C. Dornhege, A. Hertle, and
M. Bennewitz, “Mobile manipulation in cluttered environments with
humanoids: Integrated perception, task planning, and action execu-
tion,” in 14th IEEE-RAS Intl Conf on Humanoid Robots (Humanoids),
pp. 773–778, IEEE, 2014.

[9] J. Buehler and M. Pagnucco, “Planning and execution of robot tasks
based on a platform-independent model of robot capabilities,” in
Proceedings of the 21st European Conf on Artificial Intelligence,
pp. 171–176, IOS Press, 2014.

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
Kobe, 2009.

[11] D. Speck, C. Dornhege, and W. Burgard, “Shakey 2016 - how much
does it take to redo shakey the robot?,” IEEE Robotics and Automation
Letters, vol. 2, no. 2, pp. 1203–1209, 2017.

