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Abstract

When they are cooled or compressed, several systems such as liquids, mix-
tures, polymers, biomaterials, metals, and molten salts may avoid the crystal-
lization, resulting in a metastable supercooled phase. A full understanding of
the extremely complex phenomenology in supercooled liquids is still missing.
First there is the issue of how crystallization can be prevented and how deeply
the liquid can be supercooled. However by far the most interesting feature of
supercooled liquids is the glass transition (GT): following a huge increase in
the viscosity as the temperature decreases, the liquid freezes into a glass, a
microscopically disordered solid-like state. Understanding the extraordinary
viscous slow-down that accompanies glass formation is one of the major open
challenges in condensed matter physics.

During my Ph.D. period (January 2009 - December 2011), I worked on sev-
eral projects, all connected with the aim of understanding from microscopic
basis the relaxation processes in glass-forming liquids. In the light of recent
works, particular attention has been addressed to the connection between fast
vibrational dynamics on picosecond time scales and the slow relaxation. The
first part of my work has been devote to deepen some interesting aspects of
this result and to discuss its implications on other aspects of the supercooled
liquid phenomenology such as the diffusion and the violation of the Stokes-
Einstein relation. Then I focused on the issue of the repulsive interactions
controlling the static and dynamics in viscous liquids, and the related topic of
the density-temperature scaling. In the last part of my research activity, inves-
tigated the elastic models of the GT, which relate the huge slowing down of
glass-forming systems with the increasing solidity.

The study of supercooled liquids is approached here from a numerical
point of view. Due to these huge potentialities, in the last years, computer
experiments played an increasingly important role in glass transition studies.
By performing Molecular Dynamics (MD) simulations, we were able to study
the dynamics on the microscopic level and to collect informations on every
observable of interest with quite a high level of precision, while the same pro-
cess in experiments would require much more effort. MD simulations allow
us to test the validity of theoretical models, as in the case of the elastic models,
in a fully controlled environment. During all the study, we have maintained
a close connection with the “real world”, by comparing, whenever possible,
MD results with experimental ones.

To study the complex glassy phenomenology, the chosen prototype of vis-
cous liquid is the simple beads and springs model for polymeric chains. Poly-
mers play a central role in several studies on the GT because of their natural
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inclination to disorder: in most cases a polymer liquid, rather than crystallize
in a regular lattice, reaches the amorphous glassy state.

As far, as the outlook of the Thesis is concerned, I have to point out that, be-
cause of the limited time of my research activity, some open questions remain,
especially in the discussion of elastic models. Accordingly, further investiga-
tions, generalizations and improvements of these results could be useful.

The research activity of this Thesis has resulted in the following papers:

⋆ F. Puosi and D. Leporini, Scaling between relaxation, transport, and caged

dynamics in polymers: from cage restructuring to diffusion, J. Phys. Chem. B
115 14046-14051 (2011).

⋆ F. Puosi and D. Leporini, Communication: Correlation of the instantaneous

and the intermediate-time elasticity with the structural relaxation in glassform-
ing systems, J. Chem. Phys. 136 041104 (2012).
Also selected for publication on the Virtual journal of Biological Physics
Research, February 1, 2012 ( http://www.vjbio.org ).

⋆ F. Puosi and D. Leporini, Spatial displacement correlations in polymeric sys-
tems, J. Chem. Phys. 136 164901 (2012).

⋆ F. Puosi and D. Leporini, Fast and local predictors of the violation of the

Stokes-Einstein law in polymers and supercooled liquids, submitted.

⋆ F. Puosi and D. Leporini, Universal elastic and plastic effects in the particle

caging of polymers and glass-forming liquids, arXiv:1108.4629v1.
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Chapter 1

Introduction

1.1 Supercooled liquids and glasses

1.1.1 Basic phenomenology

When a liquid is cooled below its melting temperature Tm a first order phase
transition usually takes place and the liquid turn into a crystal. However,
under certain conditions it is possible to avoid crystallization and to keep
the system in a metastable phase, named the supercooled phase. Supercooled
liquids have very rich phenomenology which is still far from being completely
understood (see Figure 1.1). For a comprehensive discussion on this topic see
refs [1–5].

In the supercooled phase typical time scales increase sharply, and they
end up being larger than the experimental time at Tg, the glass transition
temperature. Around the melting temperature Tm, the typical time scale τα on
which density fluctuations relax is of the order of picosecond; at Tg the typical
time scale has become of the order of 100 s, 14 orders of magnitude larger.
This increase is even more impressive because the corresponding decrease
in temperature is about 1

3 Tm (Tg usually occurs around 2
3 Tm). The increasing

of τα is accompanied by an increase of the shear viscosity η 1. This can be
understood if one considers a simple Maxwell model: η and τα are related by
η = G∞τα, being G∞ the instantaneous shear modulus, which changes little in
the supercooled phase. For a glass-forming liquid the viscosity is typically of
order 1012 Pa s just above the glass transition (GT). To understand how large
this value is, recall that at the melting point a liquid’s viscosity seldom exceeds
η ∼ 10−3 − 10−2 Pa s. A system with η ∼ 1012 Pa s appears mechanically solid
(on the experimental time scale, as solidity is a time-scale-dependent notion
[6]), but it is still a liquid as it lacks long-range order. Such a system is called

1The viscosity is generally defined via shear flow. Consider a liquid placed between two par-
allel solid plates of area A. Assuming that the plates are very large such that edge effects may be
ignored, and that the lower plate is fixed, let a force F be applied to the upper plate that causes
the liquid to undergo shear flow with a velocity gradient u/y. The applied force is proportional
to the area and velocity gradient in the fluid F = ηA u

y where the proportionality factor η is given
by the shear viscosity.
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Figure 1.1: Schematic representation of the entropy versus the temperature in a liquid,
from the high-T phase, down to the deeply supercooled phase. Relevant temperatures
are marked: Tm is the melting temperature, at which a first-order phase transition
between liquid and crystal occurs; Tc is the temperature where the mode coupling the-
ory locate a dynamic transition; Tx is Goldstein’s crossover temperature from a high-T
non-activated dynamics to a low-T activated one; Tg is the dynamic glass transition
temperature, where the relaxation time exceeds the experimental time 102 s; the longer
the available experimental time, the lower the temperature where the system falls out
of equilibrium forming a glass (different line); Tk is the Kauzmann’s entropy crisis tem-
perature, where the extrapolated liquid entropy equals the crystal entropy and where,
according to some theories, there is a thermodynamic phase transition; T0 is the tem-
perature where the Vogel-Fulcher-Tamman fit locates a divergence of the relaxation
time. Above each temperature we report the approximate value of the relaxation time
in seconds. (Reprinted from [5])

glass.
The glass transition temperature Tg marks the point at which the relaxation

time of the liquid τR exceeds the available experimental time texp: τR(T <

Tg) > texp. This looks as an odd definition for a "transition": by the fact Tg

depends on the experimental protocol and in particular on the cooling rate
and experimental time. However, in many systems the value Tg does not de-
pend strongly on the experimental time: the increase in the relaxation time is
so sharp (at least exponential) to make it very hard to move significantly the
position of Tg even by a substantial change in the cooling rate. For this reason,
it is sensible to define Tg as the temperature at which the relaxation time is
equal to 102 s. By using the Maxwell relation, this is equivalent to define Tg

via the following classic relation η(Tg) = 1012 Pa s.
The most important effect of going off-equilibrium is the loss of ergodicity

as the system does not have enough time to properly explore the phase space
and remains trapped in one local energy minimum . This results in a reduction
of the number of degrees of freedom accessible to the system and a consequent
drop in the constant pressure specific heat at Tg to a value very close to that of
the crystalline phase [1] (both the crystal and the glass are non-ergodic states,
but, while the crystal is in a thermodynamic equilibrium state, the glass is
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Figure 1.2: The Angell plot showing the viscosity as a function of inverse tempera-
ture normalized at Tg for different substances. An Arrhenius behavior gives a straight
line in this plot. This is typical of strong glass-formers. Super-Arrhenius increase of η

corresponds to fragile glass-formers. If one define the apparent activation energy as
E = d ln(η)/d(1/T), than in strong liquids the activation energy is independent of T,
while it increases when T decreases for fragile liquids. Inset shows the changes in the
heat capacity across the glass transition for several liquids. (Reprinted from [9])

not).
The ability to form glasses is a universal properties: once the highly viscous

liquid state is reached, glass formation is unavoidable upon continued cooling.
In many cases a rapid cooling is necessary to avoid crystallization (cooling
rate ∼ 106 K/s in the case of metallic glasses). A good glass former is a liquid
which is easily supercooled, i.e., characterized by very low rates of crystal
nucleation and growth at all temperatures [7]. Good glass formers are organic
and ionic liquids, silicates, polymers and also some metallic glasses [4].

1.1.2 Fragile and strong liquids

The increase of the viscosity in supercooled liquids is remarkable not only
because of its magnitude but also because of its temperature dependence.
Figure 1.2 shows a Tg-scaled Arrhenius plot of liquid viscosities called Angell
plot [8]. This plot is useful in classifying supercooled liquids. If dynamics are
dominated by barriers to be overcome by thermal fluctuations, one expects an
Arrhenius behavior η ∼ exp(∆E/kBT), resulting in a straight line in the plot.
On the contrary, some systems show a stronger than Arrhenius increase of
the viscosity upon cooling toward the glass transition. Such super-Arrhenius
liquids are called “fragile”, while those close to Arrhenius behavior are termed
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“strong” [8]. Silica (SiO2) is the prototypical strong liquid whereas o-terphenyl
(OTP) and toluene are the canonical fragile glass-formers. The terminology
strong and fragile is not related to the mechanical properties of the glass but
was introduced in relation to the evolution of the short-range order close to Tg.
Strong liquids, like SiO2, typically have a locally tetrahedric structure which
persist both below and above the glass transition, in contrast to fragile liquids.
The structural stability is reflected in the small heat capacity and thermal
expansion coefficient changes across the glass transition in strong liquids with
respect to fragile liquids (see inset of Figure 1.2).

Non-Arrhenius data are often fitted by the so-called Vogel-Fulcher-Tammann
(VFT) expression τ = τ0 exp( A

T−T0
) which suggests a divergence of the relax-

ation time at a finite temperature T0, a prediction that cannot be verified be-
cause the system is supposed to fall out of equilibrium as T0 is approached.
Note that there are other comparably good fits of these curves [10–12].

1.2 Computer simulation of liquids

Numerical simulations are a powerful tool for studying liquids and super-
cooled liquids at a microscopic level (see [13–16] for extensive treatments on
this subject). The most outstanding advantage of simulations is that they pro-
vide an extremely large degree of freedom regarding the systems that can be
studied. In principle, any Hamiltonian that is of interest can be investigated.
By selecting an appropriate Hamiltonian, it is possible to study molecules or
polymers with an exactly specified shape and size [17–19], to investigate the
system in thermodynamic states which are difficult to realize experimentally
- such as under negative pressures [20, 21] or to study the dependence of
the structure and the dynamics of a system in a small pore of a well-defined
size and shape [22]. An important role is played by simulations, also because a
large variety of dynamic and static quantities can be simultaneously measured
in a single model system. A large number of different theoretical approaches
exist to describe the physics of glass formers and all of them have their own
set of predictions that can be readily tested by numerical work. For exam-
ple a large number of papers have been dedicated to testing the predictions
formulated by the mode-coupling theory of the glass transition [23].

In numerical simulations the trajectory of each particle in the system can
be followed at all times. This allow to easily analyze single-particle dynam-
ics, as shown in Figure 1.3, where the mean squared displacement 〈r2(t)〉 =
〈1/N ∑i |ri(t) − ri(0)|2〉 of a glass-forming liquids is shown. The main ob-
servation from Figure 1.3 is that single-particle dynamics considerably slow
down when the temperature is decreased. Additionally, a rich dynamics is ap-
parent, with the presence of several different regime corresponding, in order
to ballistic, cage, Rouse and diffusive regime (all these behavior are discussed
in details in the following chapter).

At the present time, it is possible to follow the dynamics of a simple glass-
forming liquids over more than eight decades of time and over a temperature
window in which average relaxation time scales increase by more than five
decades. Even if at the lowest temperatures considered in numerical simula-
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Figure 1.3: Mean square displacement in a simple model of a glass-forming liquid
composed of fully flexible linear chains interacting with a Lennard-Jones potential.
When temperature decreases, the monomers displacements become increasingly slow
and some distinct regimes become apparent.

tions, the relaxation time scales are orders of magnitude faster than in experi-
ment performed close to Tg, many features associated with the glass transition
physics can be observed such as strong decoupling phenomena and crossovers
toward activated dynamics.

Classical computer simulations of supercooled liquids proceed by numer-
ically solving a discretized version of Hamilton’s equation for the particles’
positions and momenta and a given interaction potential [13, 14]. Equations
of motion are energy conserving, they describe the dynamics of the system
in the micro-canonical ensemble. Constant temperature and constant pressure
schemes exist which allow to perform simulations in any desired statistical
ensemble. Newtonian dynamics is mainly used in numerical work on super-
cooled liquids. Alternative dynamics, that are not deterministic or that do not
conserve the energy, can be considered. It is the case of colloids where parti-
cles undergo Brownian motion due to collisions with molecules in the solvent,
and then a stochastic dynamics is more appropriate.

Simulations can be directly compared to experiments, by computing quan-
tities that are experimentally accessible such as the intermediate scattering
function or the static structure factor or thermodynamic quantities such as
specific heat or configurational entropy. In this perspective, the model must
be carefully chosen in order to be able to qualitatively reproduce the phe-
nomenology of real glass formers, while being considerably simpler to study.
A common and strong hypothesis is that molecular and chemical details are
not relevant to explain the behavior of supercooled liquids. A considerable
amount of work has therefore been dedicated to study Lennard-Jones model,
soft or hard spheres. If the system is too simple, the glass transition cannot
be studied because crystallization occurs when the temperature is lowered.
Some frustration must be introduced: common solution is to use mixtures of
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different atoms [24] or systems with connectivity [18]. It should be noted that
whether or not a model is realistic depends on the properties one is interested
in. For example, there exist many different model os silica, many of which can
be considered structurally equivalent as they give a quite realistic representa-
tion of the structure of amorphous SiO2. If, however, dynamics is considered,
the various model leads to very different prediction.

1.3 Motivations and outline of the thesis

In this paragraph we briefly introduce the research context and the related
open problems that motivated the work of this thesis.

Understanding the extraordinary viscous slow-down that accompanies glass
formation is one of the major open challenges in condensed matter physics.
On approaching the glass transition (GT) the microscopic kinetic unit spends
increasing time rattling in the cage of the first neighbors, whereas its average
escape time, the structural relaxation time τα increases from a few picoseconds
up to thousands of seconds. Due to the extreme time-scale separation between
rattling (∼ 10−12 s) and relaxation (∼ 102 s at GT), it is natural to think that
this two motions are completely independent. Nonetheless, several authors
investigated their correlations (for a review see ref. [4]). In this framework, an
interesting advance is represented by the universal scaling between fast dy-
namics on the picosecond time scale and the structural relaxation which was
reported for several numerical models and was seen to fit with the existing ex-
perimental data from supercooled liquids, polymers and metallic glasses over
about eighteen decades of relaxation times and a very wide range of fragilities
[25, 26]. The main purpose of this thesis is to achieve a deeper understanding
of the connection between fast dynamics and slow relaxation.

New aspect of the scaling between fast dynamics and relaxation are dis-
cussed in Chapter 2. The robustness of the scaling is discussed, namely the
fact that it does not depend on the quantities characterizing the fast dynam-
ics and the relaxation. The scaling is then extended in the diffusive regime
of the polymer chain, as in the case of binary mixtures, after that the chain
length effects are appropriately treated. In this framework, the violation of
the Stokes-Einstein (SE) relation and dynamic heterogeneity (DH) are inves-
tigated. It is shown that the SE breakdown, as well as the onset of DH, is
signaled in a precise way by the monomer picosecond displacement.

In Chapter 3 the search for a purely repulsive reference for the Lennard-
Jones potential is shown in a linear polymer model. This is motivated by the
famous Weeks-Chandler-Andersen (WCA) picture of dense liquids in which
the harsh repulsion between molecule mainly determine the structure of the
liquid. To the best of our knowledge, at present time, this scheme has been
applied only to atomic liquids while a discussion in molecular system is miss-
ing. This study, in particular how dynamics is affected by the range of the
interaction potential, is even more useful in the light of the finding that the
dynamics is well described in terms of single-particle quantity, the picosecond
mean square displacement 〈u2〉 [25], with a local character (see the discussion
of displacement-displacement correlations in Chapter 2).
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In the last few years an increasing interest has been devoted to the so called
“thermodynamic scaling” (or “density scaling”), namely the possibility to ex-
press dynamical quantity, like the relaxation time or the diffusion coefficient,
as a function of an appropriate combination of temperature and density (for a
review see ref. [27]). This topic is discussed in Chapter 4 for a model of fully
flexible linear chains. It is shown that picosecond MSD 〈u2〉 obeys thermo-
dynamic scaling with the same scaling exponent of the relaxation dynamics.
The fact that thermodynamic scaling roots in the picosecond dynamics repre-
sents a connection of this topic with the scaling between fast dynamics and
relaxation, suggesting that both are different aspects of a more fundamental
phenomenon.

Then, the issue of how dynamics is determined by a quantity that can
be measured at very short time is approached from a different perspective. In
Chapter 5 we present a MD simulation study of the elastic models for the glass
transition which relate the increasing solidity of the glass forming systems
with the huge slowing down of the structural relaxation and the viscous flow
(see ref. [4]). A well-defined scaling is evidenced by considering the elastic
response observed at intermediate times after the initial fast stress relaxation.
It is shown that an extended version of the standard elastic models, accounting
for heterogeneity, is able to reproduce the simulation results. The proposed
master curve is compared with the available experimental data on several
different systems, resulting in a good agreement.
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Chapter 2

Scaling between caged

dynamics and diffusion in

polymers

2.1 The research context

2.1.1 Polymers

Polymers [28, 29] are macromolecules characterized by the repetition of one
or more species of atoms or groups of atoms, constitutional repeating units
named monomers, linked each other by covalent bonds. Polymeric materials
are ubiquitous and, in some cases, essential for everyday life. Their presence
extends from familiar synthetic plastics and elastomers to natural biopolymers
such as nucleic acid and proteins. One reason for the abundance of applica-
tions of polymeric materials is the diversity in the chemical structure and
composition ranging from simple linear homopolymers to branched poly-
mers, hyper-branched polymers, stars, H-shaped polymers and copolymers
which have random or block sequences (see Figure 2.1).

Polymer physics is the field of physics, born in 1930s, that deal with struc-
ture, dynamics and mechanical properties of polymers [28, 30, 31]. Being very
large molecules, polymers are very complicated for solving using a determin-
istic method. So, statistical approaches, based on an analogy between a poly-
mer and either a Brownian motion or other type of random walk, are often
used.

In the following, we will be concerned with the simplest and most com-
mon polymer chemical structure, namely linear polymers, in a molten phase.
In a melt monomers pack densely, leading to an amorphous short range order
and to an overall low compressibility of the melt. Both features are charac-
teristic of the liquid state. Qualitatively, the collective structure of the melt
thus agrees with that of non-polymeric liquids [18] (simple and molecular liq-
uids). On the length scale of a chain, however, additional features appear. The
structure of a polymer chain in a dense melt is that of a random walk, with
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Figure 2.1: Left: homopolymers and different classes of copolymers (unit A (◦) and B
(•)). Right: schematic representation of structures of polymers with different molecular
architecture.

a statistical segment length controlled by the detailed chemistry of the chain.
However, chemical detail does not affect many static and dynamic proper-
ties of chains which exhibit universal features, controlled by the connectivity
[31]. If we denote the chain length by N, the size of the random coil structure
scales as Rg ∝

√
N, where Rg is the radius of gyration of the chain. On av-

erage, a polymer experiences
√

N intermolecular contacts with other chains,
a huge number in the large N limit. This might explain why the single chain
dynamics in dense melts is usually described by an effective medium type
approximation. It is the case of the Rouse model [32] (see Appendix B), which
describes the dynamics of sufficiently short chains, where entanglement ef-
fects are not present.

Polymers are good glass formers, with a few notable exceptions [2]. For
some polymers, such as atactic homopolymers or random copolymers, no
possible crystalline state is known at all. Even when an ordered ground state
(crystalline or liquid crystalline) is possible, ordering is kinetically hindered.
In order to crystallize, due to packing constraints, a chain have to change its
conformation from a random-coil one to an ordered one, in a synchronized
fashion with the surrounding chains. At low temperature such kind of mo-
tions are strongly inhibited, and a crystalline phase is difficult to be obtained.

2.1.2 Scaling between caged dynamics and relaxation

Understanding the extraordinary viscous slow-down that accompanies glass
formation is a major scientific challenge [3, 8, 9]. On approaching the glass
transition (GT) trapping effects are more and more prominent. The average
escape time from the cage of the first neighbors, i.e., the structural relaxation
time τα, increases from a few picoseconds up to thousands of seconds. The rat-
tling motion inside the cage occurs on picosecond time scales with amplitude
〈u2〉1/2. This quantity is related to the Debye-Waller factor which, assuming
harmonicity of thermal motion, takes the form exp

(−q2〈u2〉/3
)

where q is the
absolute value of the scattering vector. At first sight, due to extreme time scale
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separation between the rattling motion (∼ 10−12s) and the relaxation (∼ 102s

at GT), one expects the complete independence of the two motions.
A firm basis to connect fast and slow degrees of freedom was developed by

Hall and Wolynes [33], who assuming that atomic motion is restricted to cells,
pictured the GT as a freezing in an aperiodic crystal structure (ACS) modeled
by the density functional theory. As a result, the viscous flow is described in
terms of activated jumps over energy barriers ∆E ∝ kBTa2/〈u2〉, where a is
the displacement to reach the transition state and kB the Boltzmann constant.
The usual rate theory leads to Hall-Wolynes equation (HW):

τ(HW), η(HW) ∝ exp
(

a2

2〈u2〉

)
(2.1)

The ACS model is expected to fail when τα becomes comparable to the typical
rattling times of each atom in the cage, corresponding to picosecond time
scales.

Several test of the HW equation have been carried out (for a review see
[4]). However, either the crystal or the glass contributions after extrapolation
in the liquid regime are usually subtracted from 〈u2〉. In selenium, the curve
log η versus 1/〈u2〉 is concave, whereas if the glass or the crystal contribution
is removed a convex curve or a straight line, the latter agreeing with the HW
equation, is seen, respectively [34]. The fact that many glass-formers have
no underlying crystalline phases, as well as the fact that in many studies
removing the glass contribution, unlike selenium, leads to the HW equation,
raises some ambiguities about the above subtractions.

Other studies noted a relation between the fast vibrational dynamics and
the long-time relaxation both far [35, 36] and close to the glass transition[7,
9, 37–39]. With a distinct approach further studies established correlations
between the vibrational dynamics and the relaxation close to the glass transi-
tion, as quantified by the fragility [40–44], a steepness index of how fast η or
τα increase close to Tg, but with controversies [45].

In a recent paper Larini et al. [25] reported extensive molecular-dynamics
(MD) simulations evidencing the universal scaling between the structural re-
laxation time and 〈u2〉. The findings shows that trapping in space (small 〈u2〉),
resulting in localized fast dynamics, correlates with the slow dynamics (long
τα). The master curve revealed by MD simulations is a generalization of HW
equation, eq 2.1:

τα = τ0 exp

(
a2

2〈u2〉 +
σ2

a2

8〈u2〉2

)
(2.2)

where a2 and σ2
a2 are the average and the variance of the truncated Gaus-

sian distribution of the square displacements to overcome the energy barriers,
respectively. Equation 2.2, when considered in terms of reduced 〈u2〉, was ini-
tially seen to fit with the existing experimental data from supercooled liquids,
polymers and metallic glasses over about eighteen decades of relaxation times
and very wide range o fragilities (see Figure 2.2). Later, the scaling was evi-
denced in experiments on ionic liquids [46], as well as simulations of atomic
liquids [26] and colloidal gels [47], the latter being very diluted systems. More
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g〉 = 〈u2(Tg)〉). The numbers in parenthesis denote the fragility m. The black
curve is a parabolic law. The colored curves bound the accuracy of the scaling [26].
Adapted from [48] where details about the experiments are given.

recently, the influence of free volume and the proper time scales to observe
the genuine fast dynamics have been considered [46, 48].

2.2 The numerical model

A coarse-grained model of a melt of linear, fully flexible, unentangled polymer
chains with M monomers each is used. The system has N = 2000 monomers
in all cases, but M = 3, where N = 2001. Nonbonded monomers interact via a
truncated parametric potential, whose attractive and repulsive steepness can
be modulated. Bonded monomers interact with a potential that is the sum
of the finitely extendible nonlinear elastic (FENE) potential and the Lennard-
Jones (LJ) potential, resulting in a fluctuation of a few percent in the bond
length.

All the polymer data are in reduced units: length in units of σ, temperature
in units of ǫ/kB and time in units of σ(µ/ǫ)1/2, where σ and ǫ are given by
nonbonding potential and µ is the monomer mass. We set µ = kB = 1.

States with different values of the temperature T, the density ρ, the chain
length M, and the steepness p, q of the monomer-monomer interaction poten-
tial are studied. Each state is labelled by the multiplet {M, ρ, T, p, q}.

Full details about the model, the considered states and the simulation tech-
nique are given in Appendix A.
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2.3 Results and discussion

2.3.1 General aspect of the scaling

First the monomer dynamics is presented. To this aim, the mean square dis-
placement (MSD) 〈r2(t)〉 is defined as:

〈r2(t)〉 = 1
N

N

∑
i

〈‖ri(t)− ri(0)‖2〉 (2.3)

where ri(t) is the position of the i-th monomer at time t. In addition to MSD
the self part of the intermediate scattering function (ISF) is considered:

Fs(qmax) =
1
N
〈

N

∑
i

exp{iq[ri(t)− ri(0)]}〉 (2.4)

ISF was evaluated at q = qmax, the maximum of the static structure factor (for
the polymer system 7.13 6 qmax 6 7.55).

Figure 2.3 shows typical MSD and ISF curves of the polymer monomers.
At very short times (ballistic regime) MSD increases according to 〈r2(t)〉 ∼=

(3kBT/m)t2 and ISF starts to decay. The repeated collisions with the other
monomers slow the displacement of the tagged one, as evinced by the knee
of MSD at t ∼

√
12/Ω0 ∼ 0.17, where Ω0 is an effective collision frequency,

i.e., it is the mean small-oscillation frequency of the monomer in the potential
well produced by the surrounding ones kept at their equilibrium positions
[49]. At later times a quasi-plateau region, also found in ISF, occurs when
the temperature is lowered and/or the density increased. This signals the
increased caging of the particle. The latter is released after an average time
τα, defined by the relation Fs(qmax, τα) = e−1 (for future purposes one also

defines the quantity τ
(0.1)
α via the relation Fs(qmax, τ

(0.1)
α ) = 0.1). For t & τα

MSD increases more steeply. The monomers of short chains (M . 3) undergo
diffusive motion, 〈r2(t)〉 = 6Dt with D the chain diffusion coefficient. For
longer chains, owing to the increased connectivity, the onset of the diffusion
is preceded by a sub diffusive region ( 〈r2(t)〉 ∝ tδ with δ < 1, Rouse regime)
[28].

The monomer dynamics depends in a complex way on the state param-
eters. Nonetheless, if two states (labelled by multiplets {M, ρ, T, p, q}) have
equal relaxation time τα, the corresponding MSD and ISF curves coincide
from times fairly longer than τα down to the crossover to the ballistic regime
(picosecond timescale) and even at shorter times if the states have equal tem-
peratures. Examples are shown in Figure 2.3. The finding evidences a clear
correlation between the caged dynamics and the relaxation behavior. Figure
2.3 shows that MSD of states with equal τα does not collapse for times t ≫ τα .
This is due to the onset of the polymer connectivity effects and the subsequent
dependence of the monomer dynamics on the chain length M [28].

In order to characterize the cage fast dynamics of a given state we consider
MSD evaluated at a characteristic time scale t⋆ of the rattling motion inside the
cage defined by the condition that the log-log derivative ∂ log〈r2(t)〉/∂ log t|t=t⋆
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Figure 2.3: Top: monomer MSD in selected states (M, ρ, T, p, q): set A
[(2, 1.086, 0.7, 7, 6), (3, 1.086, 0.7, 7, 6), (10, 1.086, 0.7, 7, 6), (2, 1.033, 0.7, 8, 6)];
set B [(2, 1.033, 0.7, 10, 6), (3, 1.039, 0.7, 11, 6), (3, 1.041, 0.7, 11, 6)]; set C
[(2, 1.033, 0.5, 10, 6), (3, 1.056, 0.7, 12, 6), (5, 1.033, 0.6, 12, 6), (10, 1.056, 0.7, 12, 6)];
set D [(3, 1.086, 0.7, 12, 6), (5, 1.086, 0.7, 12, 6), (10, 1.086, 0.7, 12, 6)] set E
[(2, 1.0, 0.7, 12, 11), (3, 1.1, 1.1, 15, 7)]. The MSDs are multiplied by indicated
factors. Inset: corresponding MSD slope ∆(t); the uncertainty range on the position of
the minimum at t∗ = 1.0(4) (full line) is bounded by the vertical dashed lines. Bottom:
corresponding ISF. Inset: superposition of the ISF curves. The sets of clustered curves
A-E show that, if states have equal τα (marked with dots on each curves), the MSD
and ISF curves coincide from times fairly longer than τα down to the crossover to the
ballistic regime at least.
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is minimum [25, 26]. In the top inset of Figure 2.3 we see that t∗ ≃ 1 in MD
units with no appreciable dependence on τα. One defines the short-time MSD
(ST-MSD) as:

〈u2〉 ≡ 〈r2(t = t⋆)〉 (2.5)

This quantity is related to the Debye-Waller factor which, assuming harmonic-
ity of thermal motion, takes the form exp

(
−q2〈u2〉/3

)
where q is the absolute

value of the scattering vector. For the present polymer model the structural
relaxation time and the ST-MSD collapse on the master curve [25, 26]:

log τα = α + β〈u2〉−1 + γ〈u2〉−2 (2.6)

The best fit of eq 2.6 to all investigated states of the present model yields
α = −0.424(1), β = 2.7(1) · 10−2, γ = 3.41(3) · 10−3.

The scaling between the cage dynamics and the structural relaxation is
strong, being largely independent of the physical quantities characterizing
the fast dynamics and the structural relaxation. In Figure 2.4 the scaling is
built by using the two pairs (τ(0.1), 〈u2〉) (top panel) and (τα, 〈r2(t = 10 · t∗)〉)
(bottom panel). For comparison, the original scaling log τα versus 〈u2〉−1 is
shown in Figure 2.4 (filled symbols). Two remarks about the robustness of the
scaling are in order:

(i) As shown in the bottom inset of Figure 2.3, the polymer model fulfills the
time-temperature superposition principles at long times. This readily
explains why τ(0.1) and τα are fully equivalent.

(ii) Even if the present model shows that ST-MSD evaluated at both t∗ and
10 · t∗ does result in the effective collapse of the data (Figure 2.3 bottom),
in actual experimental cases, the evaluation of ST-MSD at too long times
may be dangerous in that spurious relaxation effects may come into play
[46, 48].

2.3.2 van Hove analysis

The central quantity of the analysis is the self part of the van Hove function
Gs(r, t):

Gs(r, t) =
1
N

〈
N

∑
i=1

δ[r + ri(0)− ri(t)]

〉
(2.7)

where ri(t) is the position of the ith monomer at time t. In isotropic liq-
uids, the van Hove function depends on the modulus r of r. The interpre-
tation of Gs(r, t) is direct. The product Gs(r, t) · 4πr2 is the probability that the
monomer is at a distance between r and r + dr from the initial position after
a time t. If the monomer displacement is a Gaussian random variable, Gs(r, t)
reduces to the Gaussian form [50]:

Gs(r, t) =

(
3

2π〈r2(t)〉

)3/2

exp
(
− 3r2

2〈r2(t)〉

)
(2.8)
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Figure 2.4: Top: the relaxation time τ
(0.1)
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MSD 〈u2〉. Dashed line is eq 2.6 with the vertical shift α′ − α = 0.646(2). Bottom:
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for the eyes.

Equation 2.8 is the correct limit of Gs(r, t) at very short (ballistic regime,
〈r2(t)〉 = 3kBT/µt2) and very long times (diffusion regime, 〈r2(t)〉 = 6Dt,
where D is the monomer diffusion coefficient).

The spatial Fourier transform of the self-part of the van Hove function
yields the self part of the intermediate scattering function (ISF) [50]:

Fs(q, t) =
∫

Gs(r, t) exp(−iq · r)dr (2.9)

The moments of Gs(r, t) are also of interest:

〈rn(t)〉 = 4π
∫ ∞

0
rnGs(r, t)r2dr (2.10)

or alternatively

〈rn(t)〉 = 1
N

N

∑
i

〈‖ri(t)− ri(0)‖n〉 (2.11)
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Figure 2.5: Self part of the van Hove function Gs(r, t) of the states of Figure 2.3 at the
rattling time t = t∗ (top) and the structural relaxation time t = τα (bottom).

For n = 2, one recovers the usual mean square displacement.

Figure 2.5 compares the self-part of the van Hove function Gs(r, t) evalu-
ated at either the short time t∗ characteristic of the cage rattling (top panel)
or τα (lower panel). It is seen that states with equal τα (the sets of states la-
belled as A-E) have coinciding Gs(r, t∗) and Gs(r, τα) within about 3 times the
monomer radius. The same coincidence is found for any time in the window
t∗ ≤ t ≤ τα. Note the shoulders at r ∼ 1 (the monomer diameter) for states
D and E in Figure 2.5 (bottom). They signal the marked contribution by jump
dynamics [51] and show that the latter fulfills the cage scaling too.

According to eq 2.10, the coincidence of Gs(r, t) in the window t∗ ≤ t ≤ τα

for states with equal τα implies the coincidence of the moments 〈rn(t)〉 in the
same interval. Figure 2.6 (top) shows that this is the case for two sets of states
and n = 2, 4, 6. As a consequence, alternative master curves between the struc-
tural relaxation and the higher-order moments of the monomer displacement
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β(6) = 4.3(1) · 10−2, γ(4) = 1.29(3) · 10−3.
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〈un〉 = 〈rn(t∗)〉 may be built up. In Figure 2.6 (bottom) τα versus 〈un〉 with
n = 2, 4, 6 is shown; the case n = 2 corresponds to scaling between τα and
ST-MSD discussed above. The resulting master curves are well described by
the law:

log τα = α(n) + β(n)〈un〉−2/n + γ(n)〈un〉−4/n (2.12)

with α(2) = α, β(2) = β and γ(2) = γ as in eq 2.6, α(4) = −0.427(2), β(4) =
3.7(1) · 10−2, γ(4) = 6.93(4) · 10−3, α(6) = −0.425(1), β(6) = 4.3(1) · 10−2,
γ(4) = 1.29(3) · 10−3.

Note that the coincidence of the moments 〈r2(t)〉 and 〈r4(t)〉 for t∗ ≤
t ≤ τα for states with equal τα is expected in view of the coincidence of the
nongaussian parameter α2(t) =

(
3〈r4(t)〉/5〈r2(t)〉2) in the same time window

[26] .
Finally the Gaussian approximation GG

s (r, t) of the van Hove function is
treated. Figure 2.7 shows the comparison between t Gs(r, t) and GG

s (r, t), de-
fined in eq 2.8, at the rattling time t = t∗ (left) and at the structural relaxation
time t = τα (right) for the sets of clustered curves A, C and E. At short time
non-gaussian effects are small and GG

s (r, t) represents a good approximation
of Gs(r, t). Note that the small discrepancies, that are still present, do not
seem to depend on the physical state, in agreement with the observed con-
stancy of the non-gaussian parameter α2(t) at short time [26]. At long times
non-gaussian effects are important and the discrepancies between Gs(r, t) and
GG

s (r, t) become increasingly apparent as the sluggishness of the system in-
creases.

2.3.3 Scaling in the diffusion regime

The scaling of the diffusive motion with the cage rattling amplitude 〈u2〉
has been proved for atomic liquids [26]. For polymers, the situation is more
complicated in that, while the structural relaxation is weakly dependent on
the chain length [52], the dynamics for times longer than τα does depend

[53]. To show this, first the relaxation time τ
(0.1)
q is defined via the relation

Fs(q, τ
(0.1)
q ) = 0.1; note that the usual definition via the relation Fs(q, τq) = 1/e

is not appropriate due to the strong q-dependence of the plateau region of the
ISF at intermediate times, especially for large q value [18]. Figure 2.8 plots the

wave-vector dependence of τ
(0.1)
q . When q ∼ 2π/r0, being r0 ≈ 1 the distance

of the nearest neighbors, the cage length scale is probed, and the relaxation

time τ
(0.1)
q ∼ τ

(0.1)
α is not dependent on the chain length. If q & 2π/Ree, where

Ree = 1.42b2(M − 1) is the mean square end-to-end distance of the chain [52],
the length scale of a chain is probed. In this regime, the relaxation data are
not collapsed on a master curve, even if they are at q ∼ 2π/r0 ∼ qmax, i.e., the
original form of the scaling of the structural relaxation time. When q < 2π/Ree

the relaxation is controlled by the diffusive motion of the monomers. If one
considers short chain, up to M = 5 for which Ree ≈ 2.5, q . 1 is sufficient to
observe the onset of the diffusive regime. Figure 2.8 shows that in the region

q . 1 a power-law behavior for τ
(0.1)
q is found of the type τ

(0.1)
q ∼ q−2. This can

be interpreted if we consider the Gaussian approximation of the intermediate
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of clustered curves A, C and E in Figure 2.3.

scattering function;

FG
s (q, t) = exp

(
−1

6
q2〈r2(t)〉

)
(2.13)

where 〈r2(t)〉 is the monomer MSD. Figure 2.9 top shows the comparison
between Fs(q, t) and the corresponding Gaussian approximation FG

s (q, t) eq
2.13 for five different q values. For q ≈ 1 the agreement is very good and
the explanation of the decay of Fs(q, t) in terms of the monomer mean square
displacement is allowed (see Figure 2.9 bottom). At long times, the monomer
displacement is diffusive, 〈r2(t)〉 = 6Dt holds, where D is the diffusion coef-

ficient; this results in a relaxation time τ
(0.1)
q ∝ 1/(Dq2). For longer chain, a

power-law τ
(0.1)
q ∼ q−n (n & 3) is observed for q ∼ 1 (see M = 10 in Figure

2.8) corresponding to a sub diffusive regime where 〈r2(t)〉 ∼ tx0 (x0 ≈ 0.65),
i.e. a crossover between Rouse regime 〈r2(t)〉 ∼ t1/2 for unentangled chain
(M . 32) and free diffusion 〈r2(t)〉 ∼ t.

To extend the scaling between relaxation and caged dynamics to the diffu-
sive regime of polymers, one defines the diffusion relaxation time:

τD = lim
q→0

τ
(0.1)
q (2.14)
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. For small q values, the onset of the diffusive regime is observed, τ
(0.1)
q ∼ q−2.

A single state with M = 10 is plotted to show the sub diffusive behavior τ
(0.1)
q ∼ q−n

with n & 3 occurring at small q values for longer chains.

In practice, as stated above, it’s enough to consider q . 2π/Ree. Figure 2.10 top
plots ISF at q̃, the smallest q vector of our simulations, and consider the sets of
states A-E with equal structural relaxation time and chain length M = 2, 3, 5
(see Figure 2.3). It is seen that the decay at long times collapse by using the
reduced time t/M. This is readily explained since τD ∝ 1/(Dq2) and for short
unentangled chains D ∝ M−1 [18] (see Appendix B). Figure 2.10 bottom shows
that the collapse of MSD at long times is also obtained by using the reduced
time t/M. We are now in the position to conclude that if two states have
equal relaxation time τα, and ST-MSD 〈u2〉, the states have also equal reduced
diffusion coefficient DM = M · limt→∞〈r2(t)〉/6t. However, it must be noted
that deviations from the previous scaling law D ∝ M−1 are seen at lower
temperatures than the one considered in the present study [54].

We consider now the scaling of the polymer diffusion regime with the ST-
MSD 〈u2〉. First we define the quantity D = (q̃2τD)

−1 ∝ D. Figure 2.11 plots
the reduced quantity 2/DM, proportional to 1/(DM), versus the ST-MSD
〈u2〉. If the effects of the chain length are properly treated, the scaling holds
even at the very long times of polymer diffusion (see the inset of Figure 2.11
for the raw data). The resulting master curve is:

log
(
2/DM

)
= αD + βD〈u2〉−1 + γD〈u2〉−2 (2.15)

where αD = 1.80(5), βD = 6.7(3) · 10−2 and γD = 1.62(2) · 10−3. In Figure 2.11
it is also shown explicitly the proportionality between the diffusion coefficient
D and the quantity D, in particular it has been found D ≈ 0.45 D.



22 Scaling between caged dynamics and diffusion in polymers

-2 -1 0 1 2 3 4 5
0

0,2

0,4

0,6

0,8

1

F s(q
,t)

q=1.1
q=3.6
q=7.15
q=8.9
q=10.7

-2 -1 0 1 2 3 4 5
log(t)

-4

-3

-2

-1

0

1

2

lo
g 

<r2 (t
)> R

ee

2

~ 3Tt
2

~ 6Dt

Figure 2.9: Top: comparison between Fs(q, t) and the Gaussian approximation FG
s (q, t)

eq 2.13 with five different q values for the state with M = 2, ρ = 1.0, T = 0.7 and
(p, q) = (11, 12). For the smallest q value the agreement is very good. Bottom: corre-
sponding monomer MSD. Diffusive behavior 〈r2(t)〉 = 6Dt is indicated, starting for
〈r2〉 > R2

ee, where R2
ee is the mean square end-to-end distance of the chain. Ballistic

regime 〈r2(t)〉 = (3kBT/m)t2 at short time is also indicated. Circle and triangle mark
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q at q = qmax, the maximum of the static structure factor, and q ≈ 1, the smallest q

value of our simulation, respectively.
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time scaling of MSD. The sets of clustered curves A-E show that, if states have equal
τα, and ST-MSD 〈u2〉, they have also equal diffusion coefficient D. Circles mark the
time 2τD/M.

One comment has to be made concerning the diffusion master curve. In
Figure 2.11 the diffusion scaling is compared to eq 2.6, the master equation of
log(τα) scaling. At high temperature, small relaxation time, the two curve are
identical except a constant vertical shift, i.e., D−1 and τα are proportional. This
is due to the Stokes-Einstein relation which account the coupling between the
translational diffusion and the viscous flow, being τα an effective surrogate
of η. As the temperature is lowered, deviation between the two master curve
become apparent suggesting a breakdown of the Stokes-Einstein relation, an
issue which is discussed in the next section.
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Figure 2.11: Scaling plot of the reduced D = (q̃2τD)
−1 versus the ST-MSD 〈u2〉 (open

symbols) for polymers with different length M. Diffusion coefficient data are also plot-
ted (full symbols) to show the relation D ≈ 0.45 D between the diffusion coefficient
D and D . Full line is eq 2.15 log

(
2/DM

)
= αD + βD〈u2〉−1 + γD〈u2〉−2 with best-fit

parameters αD = 1.80(5), βD = 6.7(3) · 10−2 and γD = 1.62(2) · 10−3 . Dashed line is eq
2.6, i.e., the master curve of the τα versus 〈u2〉 scaling, with a vertical shift +2.45. The
discrepancies between the two master curves, emerging at low temperature, suggest
the onset of a decoupling between diffusion coefficient D and α-relaxation time τα.
Inset: the raw data of the diffusion relaxation time τD versus the ST-MSD 〈u2〉; dashed
line are parabolic guides for the eyes.

2.3.4 Dynamic heterogeneity and Stokes-Einstein violation

Here we discuss the breakdown of the Stokes-Einstein (SE) equation in the
present model of a melt of fully flexible linear chain. The diffusion of macro-
scopic objects in liquids is usually well described by the Stokes-Einstein (SE)
equation. For a sphere with radius a and stick boundary conditions the SE
equation equals

D =
kBT

6πaη
(2.16)

In spite of the hydrodynamic arguments used in its derivation, the SE relation
works even if the size of the diffusing particle is comparable to the size of
the fluid molecules [55]. Close to the glass transition, it is seen that D and η

“decouple", i.e., the actual diffusion is higher than the one predicted by eq 2.16
[51, 56–59]. Phenomenologically, it is found that decoupling is well accounted
for by the so called fractional SE (FSE) law D ∝ η−ξ with the non-universal
exponent ξ in the range [0.5 − 1] [60–63].

In Figure 2.12 the diffusion coefficient D (in which the chain length depen-
dence is removed) versus the structural relaxation time τα from MD simula-
tions is plotted. Deviations from the expected (DM) ∼ τ−1 are apparent as
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Figure 2.12: Diffusion coefficient D versus the structural relaxation time τα from MD
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moved. Deviations from the expected τα ∼ (DM/T)−1 (dashed line) become apparent
as the structural relaxation time increases. Full line is the best-fit curve (DM/T) ∼ τ

−ζ
α

with ζ = 0.84(1). The inset magnifies the “high temperature" region where the Stokes-
Einstein is still valid.

the sluggishness of the system increases. The onset of the fractional Stokes-
Einstein FSE (DM) ∼ τ

−ζ
α is observed for τα & 10 in MD units. The exponent

of the FSE is ζ = 0.84(1). This value agrees with the FSE observed in several
glass forming liquids [64].

A popular explanation of the breakdown of the SE equation relies on the
existence of spatially heterogeneous dynamics, the so called “dynamic het-
erogeneity" (DH) [56, 58]. In the framework of DH, the breakdown of the
SE relation is due to the fact that diffusion is dominated by the fastest clus-
ters, whereas the viscous flow or the structural relaxation is dominated by the
slowest ones.

The usual quantity to describe DH is the non-gaussian parameter (NGP):

α2(t) =
3〈r4(t)〉
5〈r2(t)〉2 − 1 (2.17)

where 〈r2(t)〉 and 〈r4(t)〉 are the mean square and quartic displacements of
the particle, respectively. α2 vanishes if the displacement is gaussian, i.e., it
follows from a series of independent elementary steps with finite mean and
variance. This is expected in liquids with high fluidity, whereas in super-
cooled liquids regions with solid-like jump dynamics coexist with liquid-like
domains and motions are highly correlated, thus yielding non-zero α2. The
NGP is shown in Figure 2.13 for the state points of Figure 2.3. Starting from
the ballistic regime, where the it is zero, the NGP increase signaling the cage
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Figure 2.13: Time dependence of the non-gaussian parameter α2(t) (NGP) for the
state points of Figure 2.3. The plot shows that for states with equal τα not only MSD
and ISF coincide between t∗ and τα (see Figure 2.3) but also NGP does the same within
the statistical uncertainty. Inset: the maximum of the NGP αmax

2 versus the ratio of the
quadratic and the linear terms of eq 2.2 with respect to 〈u2〉−1.

regime. The NGP returns to zero at long times because the diffusion regime at
long times is strictly Gaussian; this happens around the structural relaxation
time when the cage regime ends and the NGP starts to decrease.

We show that the ratio of the quadratic and the linear terms of eq 2.2 with
respect to 〈u2〉−1, R = σ2

a2/4a2〈u2〉 is a good signature of DH. First, remind
that the concavity of the master curve eq 2.6 is due to σa2 ∼ 0.25 6= 0 indi-
cating the distribution of the displacement required to overcome the energy
barriers. Then we observe that ratio R discriminates two different regimes. If
R < 1 (large ST-MSD) the quadratic term is negligible and the distribution
of the square displacements to overcome the energy barriers is so narrow that

it can be replaced by an effective step length a21/2
, i.e., the dynamics is ho-

mogeneous. If R > 1 (small ST-MSD) the displacement distribution shows up
and a heterogeneous mobility distribution is anticipated. A relation between
R and the maximum αmax

2 of NGP exists [26]: when R exceeds the unit value,
αmax

2 increases exponentially (see the inset of Figure 2.13).

Now we are in the position to investigate the correlation between DH and
the violation of the SE relation. In Figure 2.14 the product (DM/T) · τα is
plotted versus both the maximum αmax

2 of NGP (top panel) and the ratio
R = σ2

a2/4a2〈u2〉 (bottom panel). The onset of the violation of the SE rela-
tion occurs at αmax

2,c = 0.40(5) or Rc = 1.9(1). Note that the ratio R allows
to locate the violation with a greater precision with respect to αmax

2 . Further-
more, it is interesting that the breakdown occurs for R & 1, i.e., when the
quadratic terms become larger than the linear one in eq 2.2 and the concavity
of the curve become apparent (see the bottom panel of Figure 2.14). This is a
confirmation of the fact that the concavity of eq 2.6 is strictly related to DH.



2.3 Results and discussion 27

0,1 1 2 3

α
2

max

-2

-1,5

-1

lo
g(

D
M

/T
 . 

τ α)

M
2
3
5

0

1

2

3

4

5

6

lo
g(

τ α/τ
0)

1 2 3 4
σ2

a2/4a 2<u2>
-2

-1,5

-1

lo
g(

D
M

/T
 . 

τ α)

α
2,c

max
 = 0.40(5)

R
c
 = 1.9(1)

Figure 2.14: Violation of the Stokes-Einstein relation: the product DM/T · τα ver-
sus αmax

2 the maximum of the non-gaussian parameter (top panel) and the ratio
R = σ2

a2 /4a2〈u2〉 (bottom panel). The onset of the violation occurs at αmax
2,c and Rc

respectively, indicated as the dashed lines (dotted line marks the uncertainty on these
values). Thick line in the bottom panel is eq 2.2 expressed as a function of R while the
thin line is the corresponding best-approximating line for small R values.



28 Scaling between caged dynamics and diffusion in polymers

2.3.5 Displacement-displacement correlations

In this section we address the issue of how single-particle dynamics correlates
with the one of the neighbors at both short, i.e. vibrational, and long times,
i.e., comparable to structural relaxation time τα.

We consider both the scalar and the vector character of the displacement-
displacement correlations. To this aim, the correlation function of the direction

of the displacement (D-DDC) is defined as:

C~u(r, t) =
1
N

N

∑
i=1

〈
ûi(t0, t) · 1

Ni(r, t0)

N

∑
j=1

ûj(t0, t)δ(r − |rij(t0)|)
〉

(2.18)

where ûk(t0, t) is the versor of the displacement vector of k-th monomer in
a time interval from t0 to t0 + t, uk(t0, t) = rk(t0 + t) − rk(t0). Ni(r, t0) =

∑
N
j=1 δ(r − |rij(t0)|) is the number of monomers at distance r from the i-th one

at time t0. The correlation function does not depend on t0 because the system
is in equilibrium. Furthermore, we address the correlations of the modulus of
the displacement, i.e., the mobility, and define the related correlation function
(M-DDC) as:

Cδu(r, t) =
1

〈δu(t0, t)2〉

[
1
N

N

∑
i=1

〈
δui(t0, t)

1
Ni(r, t0)

N

∑
j=1

δuj(t0, t)δ(r − |rij(t0)|)
〉]

(2.19)
where δuk(t0, t) is the mobility fluctuation of k-th particle, δuk(t0, t) = |uk(t0, t)| −
〈|u(t)|〉 and 〈δu(t0, t)2〉 = 1/N [ ∑

N
j=1 δuj(t0, t)2 ]

The above two correlation functions yield C~u = Cδu = 1 and C~u = Cδu = 0
for perfectly correlated and completely uncorrelated displacements, respec-
tively. Notice also that C~u and Cδu coincide with S~u = 〈~ui · ~uj〉/〈u2〉 and
Sδu = 〈δuiδuj〉/〈(δu)2〉 defined in refs. [65, 66].

In Fig. 2.15 the spatial dependence of C~u(r, Θ) and Cδu(r, Θ) at the rattling
time Θ = t∗ is shown for the sets of states labelled A through E in Fig.2.3. Both
correlation functions manifest damped oscillations in-phase with the pair cor-
relation function g(r), thus evidencing that the correlated motion of a tagged
monomer and its surroundings is influenced by the structure of the latter. This
agrees with previous work on DDCs in Lennard-Jones systems [67, 68], hard-
sphere [65] and colloids [66]. The highest correlations are reached at a distance
corresponding to the bond length b = 0.97 which is a manifestation of the con-
certed dynamics of bonded monomers. Even if M-DDC and D-DDC are nearly
equal at r = b, the magnitude of the latter is larger for r > b. The correlation
peaks, located at the first-, second-,... neighbors shells, vanish approximately
in an exponential way on increasing the distance from the tagged particle (see
insets of Fig. 2.15). Distinctly, a 1/r decay is observed in colloids at short time
which is reminiscent of continuum-like response [66]. Correlations decrease
in regions with lower local density and, for mobility fluctuations, strikingly
vanish for distances corresponding to the minima of g(r).

Figure 2.15 shows that, on increasing τα, i.e., moving from A states to
E states, the spatial correlations of the mobility fluctuations hardly change.
Instead, the direction correlations tend to: i) increase in magnitude, ii) extend
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Figure 2.15: Radial dependence of the correlation of the direction (top) and the mobil-
ity fluctuation (bottom) at the rattling time t∗. For comparison, the radial distribution
function g(r) (dashed line) of the state with {M = 2, æ = 1.086, T = 0.7, q = 7, p = 6}
is plotted. The insets are semi-log plots of the corresponding main panels. Note the
approximate exponential decay of the peak amplitudes.

for larger distances, and iii) be less modulated by the local structure, see inset
of Fig.2.15, top. This finding is quite interesting in the light of the correlation
between the structural relaxation time and 〈u2〉 (Eq.2.5) [25, 26]. It suggests
that the correlation is a manifestation of the increasing vector coherence of
the short time displacements in both magnitude and spatial extension when
solidity increases.

In Figure 2.16 the plot of C~u(r, τα) and Cδu(r, τα), accounting for the spa-
tial correlations of the displacements performed over τα, is shown for the
same states of Fig.2.15. Again, in-phase oscillations with the radial distribu-
tion function are observed, even if with slightly decreased amplitude. This
latter effect is particularly pronounced for modulus correlations. The direc-
tion correlations are shown in Fig. 2.16 (top). With respect to short times, they
do not show significant increase in their spatial extension and still decay in
an approximate exponential way. As a notable difference with short times, the
dependence of the direction correlations on the structural relaxation time is
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Figure 2.16: Radial dependence of the correlation of the direction (top) and
the mobility fluctuation (bottom) at the structural relaxation time τα. For com-
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much weaker. Fig. 2.16 (bottom) shows the modulus (mobility) correlations.
Two major differences with respect to short times are apparent, i.e., both their
spatial extension and the oscillations damping increase meaningfully with the
structural relaxation time (see the inset of Fig. 2.16, bottom). It is also clearly
seen that physical states with equal τα, i.e., belonging to the same set of states
(A, · · · , E), exhibit the same spatial correlations. Closer inspection of Fig.2.15
(top) shows that this feature, even if less apparent, is also present in C~u(r, t⋆).

By comparing Fig. 2.15 and Fig. 2.16, one observes that, while at short
times C~u(r, t⋆) > Cδu(r, t⋆), the opposite is true at long times, i.e., C~u(r, τα) <
Cδu(r, τα), in agreement with what is observed in experiments on colloids
[66]. These results supports the picture that, while the rattling of particles
within the cage of their neighbors are directionally correlated in space, cage
rearrangements involve particles moving in different directions.

In order to make more quantitative the analysis of Figs.2.15,2.16, we re-
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mind that DDCs decay almost exponentially with the distance (see insets of
Fig. 2.15, 2.16):

C̃X(R, Θ) ≈ AX(Θ) exp(−R/ξX(Θ)), X = ~u, δu (2.20)

where R denotes a local maximum of CX(r, Θ) with X = ~u, δu. ξX(Θ) is a dy-
namic correlation length depending on the considered time scale Θ. Fig.2.17
(top) shows the dependence of ξ~u(t

⋆) and ξδu(t
⋆) on the structural relaxation

time τα. It is seen that the direction correlations are spatially more extended
on the time scale of the rattling motion t⋆, i.e., ξ~u(t

⋆) > ξδu(t
⋆). Furthermore,

the direction correlation length increases mildly with τα, whereas the modulus
correlation tend to become more localized. In Fig.2.17 (bottom) the correlation
lengths ξ~u(Θ) and ξδu(Θ) are shown for the timescale Θ = τα. On this time
scale the spatial extension of the correlations of the displacement modulus
increases quite a lot with τα and reaches distances beyond the next-nearest
neighbors for the states with the slowest relaxation. Instead, the direction cor-
relations are virtually independent of the structural relaxation. Notice that for
the A states τα ≃ t⋆ and then ξX(τα) ≃ ξX(t

⋆), X = ~u, δu. On increasing τα,
one sees that the ratio ξ~u(τα)/ξ~u(t

⋆) decreases weakly from ∼ 1 to ∼ 0.8,
whereas the ratio ξδu(τα)/ξδu(t

⋆) increases markedly from ∼ 1 to ∼ 9.
We are now in a position to compare our results with previous work on

DDCs. Simulations of Lennard-Jones binary mixture (BM) [69] observed that,
at time tα corresponding to maximum dynamic heterogeneity, ξBM

δu (tα) in-
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creases as the temperature decreases while ξBM
~u (tα) is almost constant. This

agrees with our findings at the structural relaxation time (tα ≤ τα), see Fig.2.17
(bottom). However, our direction correlation length, ξ~u(τα) ∼ 0.8, is signifi-
cantly smaller than the one observed in the binary mixture, ξBM

~u (tα) = 1.7.
This effect could be due to the lower density of our systems. In a study of the
same polymer system investigated here Bennemann et al. adopted a different
definition of the M-DDC correlation length [67], which may be recast in the
form [66]:

ξ ′δu(Θ) = (〈u2(Θ)〉/〈u(Θ)〉2 − 1)
∫

dr Cδu(r, Θ)

In the present study, if Θ = τα, the pre-factor in parenthesis changes from 0.30
for states belonging to set A up to 0.63 for set E. By numerically evaluating
the integral, we find that ξ ′δu(τα) increases from 0.05 for set A to 0.43 for set
E in good agreement with ref. [67], where for τα increasing from ∼ 1 up to
∼ 103 the range spanned is 0.05 − 0.32.

We discuss the issue of dynamic heterogeneity in the framework of the
displacement-displacement correlation functions. To this aim, we first define
the subsets of fastest and slowest monomers by comparing the self part Gs(r, t)
of the van Hove function with its Gaussian approximation, eq 2.8. Even if
G

g
s (r, t) describes the single-particle motion fairly well at high temperature,

deviations are seen when the dynamics slow down [70]. They manifest as
excess contributions at small and large distances, denoting the presence of
an excess of slow and fast monomers, respectively. To quantify the deviations
from the gaussian limit, one defines the quantity [51, 70].

Ns(r, t) =
Gs(r, t)− G

g
s (r, t)

G
g
s (r, t)

(2.21)

Fig. 2.18 plots Ns(r, t) for the rattling time t = t∗ (upper panel) and the
structural relaxation time t = τα (lower panel). The ratio Ns(r, t) exhibits in-
creasing positive deviations at both short and large r values, evidencing the
excess of nearly immobile and highly mobile monomers with respect to purely
gaussian behavior, respectively. Note that the excess is apparent also at short
times, i.e., t = t∗, where the deviations from the gaussian behavior, as quanti-
fied by the non-gaussian parameter α2(t) = (3〈r4(t)〈/5〈r2(t)〉2)− 1, are small,
i.e., dynamical heterogeneity is weak [71].

We now define the subsets of the highly mobile and nearly immobile mo-
nomers. Being rs(t) and r f (t) the zeros of Ns(r, t) with r f (t) > rs(t) (see
Fig.2.18), a slow monomer is a particle that moved less than the distance rs(t)
within the time t, whereas fast monomers are particles that moved more than
r f (t) [51, 70]. Fig.2.18 (top) shows that the ratio Ns(r, t⋆) for r ≤ rs(t⋆), as well
as rs(t⋆) itself, depends weakly on τα. Instead, r f (t

⋆) decreases with increas-
ing τα signaling a stronger tendency to positive deviations at large r values.
Nonetheless, at t = t∗ the fraction of slow monomers and fast monomers are
respectively about 37% and 6% of the total number of monomers with no sig-
nificant changes with τα. Reminding that the definition of both the fast and the
slow monomer rely on the modulus of the particle displacement within time
t, the weak dependence of the fast and the slow populations at short times
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g
s (r, t) of the states of Fig.2.3 at

the rattling time t = t∗ (top) and at the structural relaxation time t = τα.

(t = t⋆) on the structural relaxation time has interesting counterparts in the
virtual independence on τα in both M-DDC, Cδu(r, t⋆), (Fig.2.15, bottom) and
the related (small) correlation length ξδu(t

⋆) (Fig.2.17, top). We conclude that
at short times both the mobility distribution and its (limited) spatial correla-
tion are little affected by the slowing down of the structure rearrangement.

Fig.2.18 (bottom) plots Ns(r, τα). One notices a much stronger dependence
on τα at both short and large distances. The fraction of slow monomers in-
creases with τα from about 35% for τα ≈ 1 (set A) up to about 60% for
τα ≈ 1000 (set E). Instead, the fraction of fast particles is nearly constant
to about 10%. This increased sensitivity to τα is also seen in both M-DDC,
Cδu(r, τα), (Fig.2.16, bottom) and the related (large) correlation length ξδu(τα)
(Fig.2.17, bottom). We conclude that at long times both the mobility distribu-
tion and its (wide) spatial correlation are affected by the slowing down of the
structure rearrangement.

Having defined the subsets of nearly immobile and highly mobile mo-
nomers, we are in a position to analyze the displacement-displacement cor-
relations between one either fast or immobile monomer and its surround-
ings. Fig. 2.19 plots the spatial extensions of the direction and the modulus
displacement-displacement correlations at short times (Θ = t⋆). It is seen that,
with respect to the average (bulk) case, fast monomers exhibit increased dis-
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Figure 2.19: Spatial dependence of the correlation of the direction (left) and the mod-
ulus (right) of the displacements at the rattling time t∗ for the sets of states A, C and
E (see Fig.2.3). The average correlation is plotted together with the correlations of the
slow and fast fractions.

placement correlations, both in direction and modulus, with the surrounding
particles; in the case of modulus correlations, the increase is very strong for
pairs of bonded monomers, corresponding to the first peak of the radial dis-
tribution function at the bond length r = b ≈ 0.97. On the other hand, slow
particles show a decrease in the correlation of the direction of the displace-
ment over time Θ = t⋆ respect to bulk, whereas no significant difference with
the bulk can be observed for the correlation of the modulus.

If one examines the direction correlations of the short-time displacements
in more detail (Fig.2.19, left), it is seen that, if the central monomer is slow, D-
DDC changes little by slowing down the relaxation. Differently, if the central
monomer is fast, D-DDC increases. This provides more insight in the finding
drawn by considering bulk D-DDC, (Fig.2.15, top) and the correlation length
ξ~u(t

⋆) (Fig.2.17, top) that direction DDC are fairly coupled to the structural
relaxation.

As far as the modulus correlations of the short-time displacements are
concerned (Fig.2.19, right), it is seen that for states with slow relaxation (set
C) fast monomers have larger correlations with bonded (r ≃ 0.97) and first-
neighbors (r ≃ 1) than in A set (fast relaxation ). Instead, little difference is
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Figure 2.20: Spatial dependence of the correlation of the direction (left) and the mod-
ulus (right) of the displacements at τα for the sets of states A, C and E (see Fig.2.3).
The average correlation is plotted together with the correlations of the slow and fast
fractions.

seen at larger distances. Comparing states of C set with states with much
slower dynamics (E set) no appreciable differences are seen. M-DDCs of slow
monomers with the surroundings are indistinguishable from the bulk case
and, as D-DDC of the same kind of monomers, virtually independent on τα .
This analysis reinforces the conclusion drawn by the consideration of bulk M-
DDC, (Fig.2.15, bottom), the correlation length ξδu(t

⋆) (Fig.2.17, top) and the
mobility distribution that M-DDC are largely independent on the structural
relaxation.

Fig.2.20 shows the spatial extension of the correlations of both the direction
and the modulus of the displacements within time Θ = τα. Again, the central
monomer is taken as highly mobile or nearly immobile and its correlation with
monomers at distance r are considered and compared to the bulk (average)
behavior. It is seen that both the modulus and the direction correlations of
the slow particles differ little from the bulk. Differently, the modulus and the
direction correlations of the fast particles show increasing differences from
the average behavior. In particular, the decay is almost monotonic, i.e., there
is a marked loss of spatial modulation due to the density radial distribution
function g(r). A tentative explanation may be given. Remind that, according
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Table 2.1: Direction ξ
(x)
~u

(Θ) and modulus ξ
(x)
δu (Θ) correlation lengths for Θ =

t∗ and Θ = τα. Bulk (x = b), immobile (x = s) and fast particles (x = f ) are
considered. The sets of states A, C and E are described in Fig.2.3.

.

Set

Θ = t∗

direction mobility

ξ
(b)
~u

ξ
(s)
~u

/ξ
(b)
~u

ξ
( f )
~u

/ξ
(b)
~u

ξ
(b)
δu ξ

(s)
δu /ξ

(b)
δu ξ

( f )
δu /ξ

(b)
δu

A 0.70(3) 1.00(8) 1.06(6) 0.44(5) 1.07(9) 0.63(6)
C 0.87(4) 1.03(7) 0.98(6) 0.34(2) 1.1(1) 0.7(1)
E 1.01(4) 1.10(8) 0.96(7) 0.28(4) 0.97(9) 0.62(6)

Set

Θ = τα

direction mobility

ξ
(b)
~u ξ

(s)
~u /ξ

(b)
~u ξ

( f )
~u /ξ

(b)
~u ξ

(b)
δu ξ

(s)
δu /ξ

(b)
δu ξ

( f )
δu /ξ

(b)
δu

A 0.70(3) 1.00(8) 1.06(6) 0.44(5) 1.07(9) 0.63(6)
C 0.85(3) 1.05(8) 0.96(4) 1.01(3) 1.10(6) 0.90(5)
E 0.82(2) 1.05(9) 0.99(6) 2.38(4) 1.02(5) 0.86(5)

to the definitions of both C~u(r, t) and Cδu(r, t), eqs 2.18, 2.19, r is the initial

distance between the two monomers before their displacement takes place
over a time t. Fast particles perform hopping motion with jump size ∆r ∼ 1
at long times [51]. Then, if the total displacement within τα is due to a series
of jumps, one expects a reduced correlation of both its modulus and direction
to the local density at the initial distance r. Notice that the same “smearing"
effect is missing or less apparent in slow particles, so that, depending on the
relative weight between fast and slow monomers and the relative magnitude
of their spatial correlations, it may be present or not in the bulk DDCs.

Table 2.1 compares the correlation lengths ξ
(x)
~u

(Θ) and ξ
(x)
δu (Θ) of the im-

mobile (x = s) and fast (x = f ) monomers to the bulk behavior (x = b),
where Θ is the time spent during the monomer displacement. We are not
aware of similar analysis in other studies on DDCs. First, we note that no

changes with τα are seen in ξ
(x)
~u

(Θ) for fast and slow particles at both Θ = t∗

(see columns 2, 3 top) and Θ = τα (see columns 2, 3 bottom). Furthermore,
one sees that the mobility correlation length of fast monomers is less than the
bulk (average) one both at t∗ (column 6 top) and τα (column 12 top). At long

times this reduction is weaker and signals that ξ
( f )
~u

(τα) markedly increases

as ξ
(b)
~u

(τα) does (column 4 bottom). Differently, mobility correlations of slow
monomers exhibit the same spatial extension of bulk monomers on both time
scales (columns 5 top and 5 bottom).

2.4 Conclusions

The results of extensive MD simulations of a melt of fully flexible unentan-
gled polymer chain have been presented. In the first part of the chapter, the
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correlation between slow relaxation and fast cage dynamics was investigated.
The novel results on the scaling are:

1. It does not depend on the specific quantity used to quantify both the
relaxation time and the amplitude of the rattling motion.

2. It works on the length scale of the jump-like dynamics.

3. It reaches the time scales of the diffusive regime of the polymer chain,
if the chain-length effect is taken into proper account, thus extending to
connected systems analogous results known for atomic liquids.

Starting from the analysis of chain diffusion, the violation of the Stokes-
Einstein (SE) relation was discussed. It is seen that a crossover occurs between
the SE and the fractional Stokes-Einstein (FSE) as the sluggishness of the sys-
tem increases. The link between the SE violation and the long time dynamic
heterogeneity (DH) is discussed. It is seen that the ratio of the quadratic and
the linear terms of eq 2.2 with respect to 〈u2〉−1, R = σ2

a2/4a2〈u2〉, is a good
signature of DH and it allow to locate the onset of the violation with a greater
accuracy with respect to the non-gaussian parameter, the common quantity
to describe the DH. The fact that, while the maximum of the NGP is reached
at times comparable with the structural relaxation, the quantity R involves
only picosecond dynamics, suggests that the long time DH rooted in the fast
dynamics.

In the final part of the chapter, displacement-displacement spatial corre-
lations (DCCs) have been discussed in both their scalar and vector character.
We investigate two different time scales, i.e., a characteristic vibrational time
scale and the structural relaxation time. In both cases the spatial extension
of the correlated motion is seen to be influenced by the structure. At short
times, the direction correlations are larger and more spatially extended than
mobility correlations, i.e., the cage rattling of monomers is directionally corre-
lated in space. On longer time scales mobility correlations are prevailing. The
importance of mobility fluctuations increases as the system enters the viscous
regime. DCCs were also analyzed in the framework of the dynamical hetero-
geneity. We show that both mobility and direction correlation length of slow
monomers is nearly coincident to the bulk one irrespective of the time scale
and relaxation time. One also observes the coincidence of the direction corre-
lation length of the fast monomers with the bulk one whatever the time scale
and relaxation time are considered. Instead, the mobility correlation length of
fast monomers are seen to be less than the bulk one at both timescales.
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Chapter 3

Repulsive reference

potentials for molecular

liquids

3.1 The research context

A remarkable achievement of our current understanding of atomic simple liq-
uids is the van der Waals picture focussing on the different roles of the repul-
sive and the attractive forces [72–76]. The short-range harsh repulsion between
molecules mainly determine the structure of dense liquids while long-range
attractive forces, which vary much more slowly with the distance, provide an
essentially uniform attractive background that affects the thermodynamics,
but neither the structure nor the dynamics. Working on this premises, Weeks,
Chandler and Andersen proposed to split the intermolecular potential into
short-ranged repulsive component and longer-ranged component and to treat
the latter as a perturbation. This scheme provides a very successful description
of static correlations and thermodynamics [75, 77].

The WCA reference was seen to reproduce the liquid dynamics in several
systems but exceptions to this were also reported [78–83]. Recently Berthier
and Tarjus showed that the dynamics in the viscous regime is not properly
reproduced by the WCA reference in a Kob-Andersen binary mixture [84, 85].
The observed differences between WCA and Lennard-Jones models can be
due to the truncation of the interaction potential at a distance corresponding to
typical interatomic distances, irrespective of the attractive or repulsive nature
of the neglected longer-ranged interactions [85, 86].
This drawback has been circumvented by considering another purely repul-
sive potential , an inverse-power-law (IPL) potential. The IPL scheme relies
on the idea that van der Waals-type liquids have a “hidden" scale invariance,
which is manifested in the appearance of strong correlation between the po-
tential energy U and the virial W, i.e. the configurational part of the pressure
[87–94]. In this regard IPL potential exhibits perfect correlation between U and
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W, W = (n/3)U where n is the exponent of the potential. Strongly correlating
liquids are liquids that have R ≤ 0.9, where R is the correlation coefficient
of the equilibrium fluctuations of the potential energy and virial. Strongly
correlation liquids include the van der Waals and metallic liquids, but nei-
ther covalent or hydrogen-bonded liquids nor strongly ionic liquids, where
competing interactions tend to break strong UW correlations [89–91]. In this
framework, Pedersen et al. showed that the pair structure and especially the
dynamics of the binary LJ mixture, a strongly correlating system, in the vis-
cous regime can be very well reproduced by replacing the LJ pair potential by
an IPL , with an exponent taken from the UW correlations [95]. More recently,
it was shown that the same procedure can be applied also to a single compo-
nent Buckingham liquids in spite of his non-IPL repulsion (the Buckingham
potential has an exponential repulsive term, while the attractive part is given
by a power law) [96].

Interestingly, up to now, the IPL picture has been tested only in atomic
systems. Indeed the idea that the attractive forces play a minor role is based
on the fact that in the isotropic environment of a dense liquid the vector sum
of the attractive forces on a given particle essentially cancels in most typical
configurations [74]. Differently, in microscopically non-isotropic liquids attrac-
tive forces do not cancel by symmetry and both attractive and repulsive forces
have important effects over comparable length scales of order the molecu-
lar size [97]. Model linear polymers offer an interesting situation in that it
has been shown that the fast jump dynamics of monomers takes place in
sites with aspherical arrangement of surrounding monomers [98–100]. These
aspherical sites are very soft, i.e., with small, positive elastic local module,
prone to plastic failure and have a large vibration amplitude, as indicated by
the local Debye-Waller (DW) factor [101]. Aspherical sites are also found in
side-chain polymers [102].

3.2 Models

Two different coarse-grained model of linear polymer chain are considered. In
the first model, the rigid bonded chain (RB), bonded monomers are connected
by a rigid bond of fixed length. In the second model, the semi-rigid bonded
chain (SB), bonded monomers interact with a potential which is the sum of the
finitely extendible nonlinear elastic (FENE) potential and the Lennard-Jones
potential, resulting in a fluctuation of a few percent in the bond length. In both
the models nonbonded monomers interact via the Lennard-Jones potential

(LJ); the potential is cut at r
(LJ)
cut = 2.5σ and shifted:

v(LJ)(r) = ǫ

[(
σ∗

r

)12

− 2
(

σ∗

r

)6
]
+ v

(LJ)
cut for r ≤ r

(LJ)
cut (3.1)

= 0 for r > r
(LJ)
cut

where r is the monomer-monomer distance, σ∗ = 21/6σ and v
(LJ)
cut is chosen to

ensure v(LJ)(r) = 0 at r = r
(LJ)
cut = 2.5σ.
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The structure and dynamics of LJ chains, both rigid bonded (RB-LJ) and
semi-rigid bonded (SB-LJ), was compared to that of models interacting with
two different types of repulsive potential. First the inverse-power-law (IPL)
potential is considered:

v(IPL)(r) = A
(σ

r

)n
+ v

(IPL)
cut for r ≤ r

(IPL)
cut (3.2)

= 0 for r > r
(IPL)
cut

where r
(IPL)
cut = r

(LJ)
cut = 2.5σ and the amplitude A and the exponent n are

two adjustable parameters. A modified version of the well-known Weeks-
Chandler-Anderson potential (mWCA) was also considered:

v(mWCA)(r) = Aǫ

[(
σ∗

r

)12

− 2
(

σ∗

r

)6
]
+ v

(mWCA)
cut for r ≤ r

(mWCA)
cut

= 0 for r > r
(mWCA)
cut (3.3)

where the potential is cut and shifted at r
(mWCA)
cut = σ∗ = 21/6, the minimum

of the LJ potential. For the mWCA potential, the amplitude A is the only ad-
justable parameter. Summarizing, the following systems were considered: LJ
rigid bonded (RB-LJ) and semi-rigid bonded (SR-LJ) chains, IPL rigid bonded
(RB-IPL) and semi-rigid bonded (SR-IPL) chains and mWCA rigid bonded
(RB-mWCA) and semi-rigid bonded (SR-mWCA) chains.

We performed MD simulations in the NVE ensemble, after equilibration
in the NVT ensemble. The system has N = 2000 monomers in all cases, but
M = 3, where N = 2001. All the polymer data are in reduced units: length in
units of σ, temperature in units of ǫ/kB and time in units of σ(µ/ǫ)1/2, where
µ is the monomer mass. We set µ = kB = 1.

3.3 Results and discussion

3.3.1 Fixing the potentials

The inverse-power-law potential (IPL) defined in eq 3.2 has two adjustable
parameters: the exponent n and the amplitude A. To fix the value of the expo-
nent, a property of IPL potentials is used [95]. In the case of pair potentials,
the virial W, i.e., the configurational contribution to pressure, is given:

W = −1
3 ∑

i>j

w(|ri − rj|) (3.4)

where rk is the position of k-th particle and w(r) = rv′(r) being v′ the deriva-
tive of the pair potential v(r). For an IPL pair potential v(r) ∝ r−n, we have
w(r) = −nv(r) and a relation between virial W and potential energy U =

∑i>j v(|ri − rj|) holds exactly:

W =
n

3
U (3.5)
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Figure 3.1: Scatter plot of the virial and configurational energy per particle for
Lennard-Jones (LJ) Rigid Bonded (top panel) and Semi-rigid bonded (bottom panel)
chains, with chain length M = 3, for state points with the same density. RB chains
show strong correlation between virial, correlation coefficient R ∼ 0.98 − 0.99, and po-
tential energy and the IPL exponent in eq 3.2 is estimated to n = 3 × 5.17 = 15.51 by
evaluating the slope of the scatter plot. For SB chains the correlation between virial
and potential energy is weak, R ∼ 0.5. Strong correlation, R ∼ 0.97 − 0.98, is recovered
if the bonding contribution is neglected (inset of bottom panel) and the IPL exponent
is estimated to n = 3 × 5.20 = 15.60.

In IPL systems, potential energy and virial are perfectly correlated, with a
“slope" given by n/3.

Figure 3.1 shows a correlation plot of the instantaneous virial and potential
energy fluctuations of Lennard-Jones (LJ) RB and SB chains, with chain length
M = 3, at fixed density ρ = 1.086. The degree of correlation can be measured
via the correlation coefficient R:

R =
〈∆W〉〈∆U〉√

〈(∆W)2〉
√
〈(∆U)2〉

(3.6)

where ∆ denotes deviation from the average value of the given quantity and
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Figure 3.2: Scatter plot of N−1 ∑i>j(σ/rij)
n, with n defined in Figure 3.1, and potential

energy per particle for RB-LJ (left panel) and SB-LJ (right panel) chains, with chain
length M = 3, for state points with the same density. The IPL amplitude in eq 3.2,
estimated from the slope of the scatter plot, is A = 1.8155 for RB chains and A = 1.8035
for SB chains.

〈...〉 denotes thermal averages. In the case of RB chains (top panel of Figure
3.1) the correlation coefficient is very high R ∼ 0.98 − 0.99 (R = 1 for IPL
potentials). The slope γ of the best fit line is 5.17. As in previous works [95,
103] we fix the exponent n of the IPL potential as n = 3 × 5.17 = 15.51.

SB chains, on the contrary, show low correlation (bottom panel of Figure
3.1), R ∼ 0.45− 0.5 depending on the state point. The lack of correlation is the
result of the competition between bonding and Lennard-Jones interactions
[89, 104]. This is not the case of RB chains where a bonding potential is not
present. The absence of strong U − W correlations makes impossible to use
the slope γ of the best fit line to determine the IPL exponent. Note also that
the best fit slope γ does not represent the direction of greatest variance of the
U −W ellipsoids, which defines an additional slope γ2.

Strong U−W correlation, R ∼ 0.97− 0.98, is recovered even for SB chains if
only the nonbonding interactions, the LJ interaction, is included in the calcula-
tion of both virial and potential energy (bottom inset of Figure 3.1). Therefore
the IPL exponent can be fixed as n = 3 × 5.20 = 15.60, being 5.20 the slope γ
of the best fit line.

Once the exponent n in eq 3.2 is determined, a single adjustable parameter,
the pre factor A, is left in the IPL potential. As in [95], A is fixed by plotting
the fluctuations of the LJ potential versus the quantity ∑i>j

(
σ/rij

)n, computed
on configurations belonging to LJ simulations (see Figure 3.2). This results in
A = 1.8155 for RB chains and A = 1.8035 for SB chains.

Finally, the modified Weeks-Chandler-Anderson potential, mWCA poten-
tial, has only one adjustable parameter, the pre factor A, which is fixed by plot-
ting the fluctuations of the LJ potential versus ∑i>j ǫ

[
(σ∗/rij)

12 − 2(σ∗/rij)
6],

cut at rcut = 21/6, computed on configurations belonging to LJ simulations
(see Figure 3.3). This results in A = 1.135 for RB chains and A = 1.144 for SB
chains.



44 Repulsive reference potentials for molecular liquids

-5,6 -5,4 -5,2 -5

1,2

1,4

1,6
N

-1
Σ i>

jε[
(σ

/r
ij)12

-2
(σ

/r
ij)6 ]

T
1.0
0.9
0.8
0.7

-5,6 -5,4 -5,2 -5
potential energy per particle

1,2

1,4

1,6

slope=1/A=1/1.135 slope=1/A=1/1.144

RB
M=3
ρ=1.086

SB

Figure 3.3: Scatter plot of N−1 ∑i>j ǫ
[
(σ∗/rij)

12 − 2(σ∗/rij)
6
]
, with a cut-off distance

rcut = σ∗ = 21/6 , and potential energy per particle for RB-LJ (left panel) and SB-LJ
(right panel) chains, with chain length M = 3, for state points with the same density.
The mWCA amplitude in eq 3.3, estimated from the slope of the scatter plot, is A =
1.135 for RB chains and A = 1.144 for SB chains.

1 1,25 1,5
r

-2

-1

0

1

2

3

4

5

v(L
J) (r

),
  v

(I
PL

) (r
),

  v
(m

W
C

A
) (r

)

LJ
IPL
mWCA
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3.3.2 Static correlations

First the structure of the three model, as described by the pair correlation func-
tion g(r), is considered. Figure 3.5 shows the g(r) of the LJ, IPL and mWCA
with both rigid and semi-rigid bond, for a given state point. The agreement
between the three model is very good confirming that attraction, which is ab-
sent in both IPL and mWCA, does not play a relevant role in determining the
structure of liquids [75]. Moreover in the case of SB chains, attraction does
not affect also the chain connectivity, as can be seen by the coincidence of the
distributions of bond length (see the inset of Figure 3.5).
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Figure 3.5: Pair correlation function g(r) of the LJ, IPL and mWCA chains with rigid
bond RB and semi-rigid bond SB at a given state point. The different curves are verti-
cally shifted, for clarity. Inset: bond distribution of the LJ, IPL and mWCA SB chains
for the same state point of the main panel.

In order to get further insight into the capability of the repulsive models to
reproduce the statics of the LJ model, we consider the inherent structures (IS),
i.e., the configurations obtained from the real ones by minimizing the poten-
tial energy in the configuration space (see Appendix A for full details on how
IS are computed). This is motivated by the fact at non-zero temperature mo-
nomers vibrate around their equilibrium positions and such fast movements
may obscure specific arrangements of monomers. Figure 3.6 shows the inher-
ent pair correlation function g(IS)(r) of the three models of potentials. Note
that deviations become apparent if inherent configurations are considered. In
particular, the first peak of the g(IS) is significantly more pronounced in the
mWCA model with respect to the LJ model; this strange effect could be due
to the truncation of the monomer-monomer interaction potential at a distance
corresponding to typical interatomic distances. On the contrary, a close inspec-
tion of Figure 3.6 reveals that the first peak in the IPL model is slightly less
pronounced with respect to the LJ model suggesting that the latter is effec-
tively more supercooled. Deviations are also present in the second neighbor
shell (insets of Figure 3.6), which is much more detailed in inherent struc-
tures. Having removed the vibrational cage rattling, in LJ chains the second
peak split in three sub-peaks. The side sub-peaks are well-known signature
of local icosahedral order in atomic LJ liquids [105]. The central sub-peak is
characteristic of multicomponent systems [106] and of the present molecular
system and it is assigned to linear trimers of two bonded and one not bonded
monomers. Even in the mWCA model the second peak splitting is present but
it appears less detailed with respect to LJ and IPL models.
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3.3.3 Dynamic correlations

Here the results concerning the dynamics of the three models are presented.
First we consider the self intermediate scattering function (ISF):

Fs(q, t) = N−1〈∑
i

exp {iq [ri(t)− ri(0)]}〉

with q = 7.35 corresponding to the maximum of the static structure factor.
Figure 3.7 shows ISF curves for RB and SB chains with the three considered
potentials. We observe that, unlike the static, the absence of attraction between
monomers strongly influences the dynamics of the system, regardless of the
chain connectivity. In particular, at the highest temperature the agreement be-
tween mWCA and LJ is not perfect but the differences are quite small. As the
temperature decreases, deviations increase abruptly (not shown) and the ef-
fect become dramatic: at the lowest temperature, relaxation in mWCA models
is about two orders of magnitude faster than that in LJ models. These find-
ings agree with recent works on binary mixture [84, 85, 95] where it is seen
that, at low temperatures, the dynamics in WCA models is much faster than
in LJ models Moreover, our results suggest that considering mWCA models,
i.e.,WCA with a scaling of the amplitude, only slightly improves the agree-
ment at low temperatures.

Now we turn to the inverse-power-law IPL models. Figure 3.7 strikingly
shows how the small differences in the relaxation dynamics of the high tem-
perature IPL and LJ models become an important effect at low temperatures.
Note that at the highest temperature (T = 1.0) the dynamics in IPL and
mWCA models is almost equivalent. At the lowest temperatures, the devi-
ations between IPL and LJ relaxation is less than an order of magnitude, with
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in reproducing the relaxation dynamics of the LJ models. Dashed lines marks the defi-
nition of the structural relaxation time via Fs(qmax, τα) = 1/e. Insets: long time collapse
of the ISF curves by rescaling the time.
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Figure 3.8: Temperature dependence of the structural relaxation time τα, defined via
Fs(qmax, τα) = 1/e, for the LJ and IPL chains with rigid and semi-rigid bond for state
points with different temperature along the ρ = 1.086 isochore. We set τ0 = 10−1 for
RB chains and τ0 = 1 for SB chains, for clarity. Solid lines are the best fits with the
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the former being faster. From this, it is apparent that the IPL potential consti-
tutes a better reference for LJ potential with respect to the mWCA. However
for the investigated models, IPL is not a reference potential as good as one
would expect from earlier work on binary mixture [95, 103].

We want to point out here that deviations in the relaxation dynamics be-
tween IPL and LJ models seem not to depend on the nature of chain connec-
tivity, i.e., if rigid or sem-rigid bond are present. Remind one of the results in
section 3.3.1: RB chains are strongly correlating systems (correlation coefficient
between virial and potential energy R > 0.9)whereas SB chains are not. What
we find here is that the condition of being or not being strongly correlating
does not affect significantly the IPL reference potential.

From the time decay of the ISF, we define the structural relaxation time
via Fs(qmax, τα) = 1/e. Figure 3.8 shows the temperature dependence of τα

for LJ and IPL models of RB and SB chains. The figure clearly illustrates the
differences in the T-driven slow-down of the LJ and IPL models. At high tem-
perature, the T-dependence of τα is well described by the Arrhenius equation
log(τα/τ0) = ∆E/T with a constant energy barrier ∆E (see Figure 3.8). We
found that, for both the RB and the SB models, the energy barriers of the IPL
models are slightly smaller than the LJ ones.

To conclude the analysis of the relaxation dynamics, we consider the ro-
tational relaxation dynamics described by the correlation function of the end-
to-end vector defined as:

Cee(t) =
1

NpR2
ee

Np

∑
i=1

〈Ri(t) · Ri(0)〉 (3.7)

where Np is the chain number, Ri(t) is the vector joining the first and the last
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Figure 3.9: Correlation function of the end-to-end vector Cee(t) for the LJ, IPL and
mWCA chains with rigid bond (top panel) and semi-rigid bond (bottom panel) for
state points with different temperature along the ρ = 1.086 isochore.

monomer of the i-th chain and R2
ee is defined:

R2
ee =

1
Np

Np

∑
i=1

||Ri||2 (3.8)

Differently from the ISF, that has a single-particle character, the Cee(t) moni-
tors relaxation of the whole chain so it brings a collective information on the
relaxation.
In Figure 3.9 the Cee curves for LJ and IPL models of RB and SB chains are
shown. We focus on the IPL models since they are seen to perform better than
the mWCA models. Again diverging behavior is observed between LJ and IPL
models, with the latter being faster. For a given temperature, the deviations
in the rotational relaxation of LJ and IPL are comparable to the deviations
observed in structural relaxation (ISF curves).
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chains with rigid (top panel) and semi-rigid bond (bottom panel) for state points with
different temperature along the ρ = 1.086 isochore.

In this framework, the analysis of the IPL and LJ models was extended
to other dynamical quantities, such as the mean square displacement, the in-
termediate scattering function at different wave vectors and the bond-bond
correlations, that we do not show here. The common message of all these com-
parisons is that the dynamics in the LJ models is increasingly slower than in
the IPL model. Finally, in Figure 3.10 the time dependence of the non-gaussian
parameter α2(t) is shown for state points with different temperature. The find-
ing, that the dynamics in the IPL models, irrespective on the type of bond, is
less heterogeneous (smaller α2 at long time) then in the LJ ones, agrees with
the previous results on dynamic correlations.

Up to this point, we have shown that the absence of attraction strongly in-
fluences both the single monomers and the chain dynamics. Notwithstanding
that the IPL reference is seen to better perform than the mWCA, deviation
between LJ and IPL models become apparent as the temperature is lowered.
However, at the lowest temperature that we reach, deviations are not so large
(less than half a decade) to reject the idea that inverse-power-law potential is a
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good reference for Lennard-Jones potential, in the present molecular systems.
To better explore the low-temperature viscous regime, we operate in a

different way. Starting from an equilibrium configuration with temperature
T = 1.0, a stepwise cooling is carried out, using cooling rate Γ = 10−5 (in
MD units), defined as Γ = ∆T/∆t where ∆T is the cooling step and ∆t the
duration in MD time units.

In the following analysis, decamers , i.e., chain composed of ten monomers,
are considered. This because longer chains have a lower tendency to crystal-
lize with respect to short chains and because of this lower temperature can be
reached without problems. The exponent n and the amplitude A of the IPL po-
tential, eq 3.2, are fixed with the procedure that we described in section 3.3.1,
and using equilibrium configurations with temperatures T = 1.0, 0.9, 0.8, 0.7.
This results in n = 15, 87 and A = 1.7595. Note that the moving from M = 3
to M = 10, the variation in the IPL exponent is very small.

Figure 3.11 shows ISF curves for LJ and IPL models of semi-rigid chains for
state points with different temperature along the ρ = 1.086 isochore, created
by step wisely cooling from T = 1.0. First, by comparison with the equilibrium
simulations, we observe that the system fall-out of equilibrium at T ≤ 0.7 as
it does not have enough time to equilibrate at the given temperature. Hence
even in the out-of-equilibrium regime, deviations in the relaxation dynamics
increase as the temperature is lowered. At the lowest temperature reached,
the relaxation in the IPL model is about six times faster than the LJ model.
This value represent a lower limit as we expect that deviations in equilibrium
simulations would be larger (due to the fact that dynamics in LJ model is
slower than in IPL, the latter is faster in responding to changes in temperature
and it results closer to the equilibrium condition).

Now we show that it is possible to extend our results up to the glass tran-
sition. In Figure 3.12 a correlation plot of the structural relaxation time for

LJ and IPL models, τ
(LJ)
α and τ

(IPL)
α respectively, is shown. In the figure we

include both the equilibrium and the out-of-equilibrium simulations, previ-
ously shown in Figures3.7 and 3.11 respectively. The existence of a power-law

relation connecting τ
(LJ)
α and τ

(IPL)
α in the present model is apparent as the

data fall along a straight line in the log− log plot. The best-fit line results:

log
(

τ
(IPL)
α /τ0

)
= a + b log

(
τ
(LJ)
α /τ0

)
(3.9)

where a = −0.029 and b = 0.87.
According to eq 3.9, the ratio τ

(LJ)
α /τ

(IPL)
α grows rather slowly as a power

law (τ
(LJ)
α )0.13. This explain the small deviations observed for the time scales

accessible to MD simulations.
If one assumes that eq 3.9 applies even at lower temperatures, it is possible

to make a prediction of the deviations between LJ and IPL models at the glass
transition (GT). Remind that the GT relaxation time τα g = 102 s in laboratory
units is equivalent to 1013 − 1014 in our MD units. So at the GT of the LJ

model, we have log(τ(LJ)
α /τ

(IPL)
α ) ≈ 1.8, i.e., the IPL model is about two order

of magnitude faster than the LJ model.
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3.3.4 The issue of virial-potential correlations

In section 3.3.1 the subject of the correlations between the potential energy U

and the virial W was introduced. Here we briefly resume the discussion.
In Figure 3.13, we plot the instantaneous fluctuations of the potential en-

ergy and virial for the LJ chains with rigid (top panel) and semi-rigid bond
(bottom panel). As mentioned above, while rigid bonded chains show strong
correlations the semi-rigid chains does not, due to the competition between
monomer-monomer interaction and bonding interaction. It is puzzling, in our
opinion, that if one replace a rigid bond with a more physical semi-rigid one,
resulting in a fluctuation of bond length of a few percent, the system loses
its status of strongly correlating (correlation coefficient R ≤ 0.9). Only if the
bonding interaction is ignored in the computation of both the virial and the
potential energy, strong correlation is recovered in the SB model. Note that
in the equations of motion, that determine the dynamics of the monomers,
all the interactions are included. Furthermore, in the case of RB models we
should have included in the virial the contribution of the constraints [107]

Wcon =
1
3

N

∑
α=1

ri · Gi (3.10)

where Gi is the constraint force, Gi = ∑
G
α=1 λα∇ri

ψα, ψα(rN) are the con-
straints and λα the Lagrangian multipliers. The potential energy has no con-
tribution from the constraints. It is known that if Wcon is included in the virial,
correlation is destroyed even in the RB model [96].

In section 3.3.1 the optimal exponent n for the IPL models was drawn
by the slope γ of the correlation curve between the instantaneous virial per
particle W(t)/N and potential energy per particle U(t)/N. Additional insight
is provided by considering the distribution of the instantaneous exponent

Γ(t) =
W(t)− 〈W〉
U(t)− 〈U〉 (3.11)

where 〈...〉 denote the equilibrium average. Since both ∆W(t) = W(t)− 〈W〉
and ∆U(t) = U(t)− 〈U〉 are normal variates, Γ(t) is a Cauchy variate with
Lorentz distribution [108], namely

pC(Γ) =
b

π (Γ − a)2 + b2
(3.12)

with

a = R
〈[∆W(t)]2〉1/2

〈[∆U(t)]2〉1/2
(3.13)

b =
〈[∆W(t)]2〉1/2

〈[∆U(t)]2〉1/2

√
1 − R2 (3.14)

Note that a = γ1 = (∂W/∂U)ρ [92]. Figure 3.14 plots p(Γ) for the RB model.
It is indistinguishable from pC(Γ) with a = γ. Note that pC = δ(Γ − a) with
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Figure 3.13: Fluctuations of the potential energy U (•) and virial W (�) for the LJ
chains with rigid (top panel) and semi-rigid bond (bottom panel) at density ρ = 1.086
and temperature T = 0.7. A strong correlation between U and W is seen in the RB
system but not in the SB. Strong correlation is found in the SB system if the bonding
interaction is neglected (inset of bottom panel).

R = 1. However, even in the presence of very strong correlations R > 0.9,
p(Γ) ≃ pC(Γ) has long tails (see the inset of Figure 3.14). Remind also that
pC(Γ) has infinite average and variance. This spread of the instantaneous
slope values signals the difficulty by the inverse-power-law to account for
the dynamical states resulting by the Lennard-Jones interaction potential. A
closer inspection of Figure 3.14) reveals that, as the temperature is lowered,
the width of the distribution slightly increases and consequently increases the
presence of events characterized by a very large positive or negative instan-
taneous slope. These tail event, may be responsible for the slow diverging
behavior in the dynamics of the LJ and IPL models that we found in simula-
tions.
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model of linear chain. p(Γ) indistinguishable from the Lorentz distribution pC(Γ) of
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R.

3.4 Conclusions and open questions

Here we consider two standard models of fully flexible linear polymers with
M monomers linked by either partially semi-rigid (SB) or rigid (RB) bonds and
interacting via the Lennard-Jones (LJ) non-directional potential. To investigate
the role of the attractive forces between non-bonded monomers, the LJ inter-
acting potential is replaced by two kind of repulsive potentials, a modified
Weeks-Chandler-Andersen (mWCA) form and an inverse power law (IPL).
Both of them capture the structure of the LJ liquid, as described by the pair
correlation function g(r). Deviations in the static correlations of the three mod-
els become apparent if the inherent structures, i.e., the configurations obtained
by minimizing the potential energy, are considered. Then via equilibrium NVE
simulations, we compare the dynamic correlations, in the form of the interme-
diate scattering function and the end-to-end correlation function. The viscous
slowing down of the three systems is found quantitatively different. Despite
the IPL models are seen to significantly better perform than the mWCA ones,
its temperature dependence of the relaxation shows a diverging behavior with
respect to the LJ models. This effect is observed even in low-temperature, out-
of-equilibrium NVE simulations. Extrapolating up to the glass transition, the
IPL models is expected to be less than two order of magnitude faster than the
LJ one. In the light of these results, the IPL potential can be considered a good
“zero-th order" reference for the LJ potentials in molecular liquids.

While it is known from previous works that the differences in the WCA
models are due to the fact that the potential tail is truncated at a cutoff cor-
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responding to typical interatomic distances, the origin of the deviations in
the IPL model is not clear. To provide insight, virial-potential correlations in
LJ models are considered. Strong correlations are seen in chains with rigid
bonds and even in semi-rigid chains if the bonding interaction is excluded
in the computation of virial and energy. The instantaneous slope Γ(t) of the
correlation is seen to be a Cauchy variate with Lorentz distribution. Even in
the presence of very strong correlations, correlation coefficient R > 0.9, the
distribution has a long tail which signals the difficulty by the IPL to account
for the dynamics resulting by the Lennard-Jones interaction potential.



Chapter 4

Thermodynamic scaling in

polymers

4.1 The research context

A fundamental problem in the physics of supercooled liquids and glasses is
the understanding of the role played by temperature and density in the vis-
cous slowing down as the glass transition is approached [109–111]. The rela-
tive importance of the two parameters cannot be resolved from the usual fixed
room pressure experiments where only temperature is changed since thermal
and density effect act simultaneously. However, addressing the pressure as a
variable, it is possible to work out pure volume effects on transport coeffi-
cients of glass forming liquids. The most successful result of this approach is
the thermodynamic scaling, or density scaling, that is, the fact that the tem-
perature T and density ρ dependences of the relaxation time τ, viscosity η or
diffusion coefficient D can be expressed in terms of the single variable ργ/T,
namely:

η, τ = F (ργ/T) (4.1)

where the scaling exponent γ is a material constant independent of thermody-
namic conditions [112–119]. This concept has quickly become very interesting
because it constitutes a good basis for establishing useful relations between
thermodynamics and relaxation dynamics in the vicinity of the glass transi-
tion. Thermodynamic scaling applies to van der Waals liquids, polymers and
ionic liquids [27, 120–122] but not to hydrogen-bonded liquids since the equi-
librium structure of the liquid is expected to change when temperature and
pressure are changed [123]. The scaling exponent γ, which is a measure of
the contribution of density relative to that of temperature, varies in the range
from 0.13 to 8.5 [27].

Among the possible justifications of the scaling, one hypothesis is that the
scaling exponent γ is strictly related to the intermolecular potential. Indeed,
for a liquid having a pairwise additive intermolecular potential described by
an inverse power law (IPL) U(r) ∝ r−m, all the reduced thermodynamic and
dynamic properties can be expressed in terms of the variable ρm/3/T [124].
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The conformance of real materials to density scaling may result from their in-
termolecular potential being approximate by an IPL at least for consideration
of certain dynamic properties. Systematic MD simulations of Lennard-Jones
models with different exponent of the repulsive term (1/r)n [125] indicated
that the density scaling exponent γ is consistent with γ ∼ m/3, being m the
steepness of an effective IPL, properly evaluated around the distance of clos-
est approach between particles probed in the supercooled regime (m > n due
to contributions of the attractions). More general, Dyre and coworkers pro-
posed that liquids which have strong virial-energy (W −U) correlation, the so
called strongly correlating liquids, exhibit also density scaling [90]. Moreover
the scaling exponent γ is obtainable as the ratio of W − U fluctuations since
for a pure IPL potential W = (m/3)U. Although such a ratio is state point
dependent, a “best fit" value, typically obtained from high temperature state
points, has been shown to represent a good estimate of the scaling exponent
[126–128]. Note that density scaling extends to non-spherical molecules, and
even some hydrogen-bonded liquids (e.g. glycerol and sorbitol) [27], for which
a power-law repulsive potential is clearly inadequate.

The function F , which is not the same for different dynamic properties,
is not known a priori. An interpretation of the scaling is to consider the
τ(T, V) dependence as thermally activated with a V dependent activation
energy τ(T, V) = τA exp(EA(V)/T) where τA is a constant [129]. Imposing
EA(V) ∝ V−γ, density scaling is recovered, though such a picture is in con-
trast with the fact τ is not an exponential function of Tvγ [27]. Casalini et al.
[130, 131] used the entropy model of Avramov [132] to derive an expression
to fit relaxation times in different conditions of pressure and temperature:

log[τ(T, v)] = log(τ0) +

(
B

Tvγ

)D

(4.2)

where v is the specific volume. Eq 4.2, with two adjustable parameters in
addition to γ, is shown to accurately fit experimental data for several glass-
forming liquids and polymers.

4.2 Models

Two different coarse-grained model of linear polymer chain are considered. In
the first model, the rigid bonded chain (RB), bonded monomers are connected
by a rigid bond of fixed length. In the second model, the semi-rigid bonded
chain (SB), bonded monomers interact with a potential which is the sum of the
finitely extendible nonlinear elastic (FENE) potential and the Lennard-Jones
potential, resulting in a fluctuation of a few percent in the bond length. In
both the models nonbonded monomers interact via a truncated parametric
potential, whose attractive and repulsive steepness can be modulated:

vp,q(r) =






ǫ
q−p

[
p
(

σ∗
r

)q
− q

(
σ∗
r

)p ]
+ vcut if r ≤ rc

0 otherwise

(4.3)
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where the value of the constant vcut is chosen to ensure vp,q(rc) = 0 at r =
rc = 2.5 σ.

All the polymer data are in reduced units: length in units of σ, temperature
in units of ǫ/kB and time in units of σ(µ/ǫ)1/2, where σ and ǫ are given by
nonbonding potential and µ is the monomer mass. We set µ = kB = 1.

States with different values of the temperature T, the density ρ, the chain
length M, and the steepness p, q of the monomer-monomer interaction poten-
tial are studied. Each state is labelled by the multiplet {M, ρ, T, p, q}.

Full details about the model, the considered states and the simulation tech-
nique are given in Appendix A.

4.3 Results and discussion

4.3.1 Thermodynamic scaling of short-time dynamics

We start by investigating the temperature dependence of the ST-MSD 〈u2〉.
In Chapter 2 it was shown that if the cage regime is present a minimum at
t = t∗ in the log− log derivative of the MSD is observed which allow to define
the ST-MSD via the relation 〈u2〉 = 〈r2(t∗)〉. We indicate as 〈u2

m〉 the high T-
value of the ST-MSD at the onset of the cage regime; for the present model
〈u2

m〉 = 0.125.
In Figure 4.1 the T-dependence of the ST-MSD along different isochores is

shown for systems with different repulsion. We observe that in the considered
temperature range 〈u2〉(T) shows a well-defined linear variation, namely

〈u2(T)〉 = a0 + m · T (4.4)

For a given chain length and monomer-monomer interaction, the T → 0 linear
extrapolation of 〈u2〉 does not depend on the density, i.e., a0 ≡ a0(M; p, q). On
the contrary the slope of 〈u2(T)〉 is a decreasing function of the density ρ,
m ≡ m(M; ρ; p, q).

Note that in Figure 4.1 〈u2(T)〉 extrapolates to zero at a finite tempera-
ture. In ref. [133], Zhang et al. showed that the temperature at which 〈u2(T)〉
linearly extrapolates to zero coincides within the uncertainty with the Vogel-
Fulcher-Tammann (VFT) temperature T0 characterizing the T-dependence of
the structural relaxation time. We check this fact on the most numerous set
at our disposal (M = 3, ρ = 1.033 and p, q = 6, 12) and we found that the

ST-MSD vanish at T
(ST−MSD)
0 = 0.20(1) which is slightly smaller than the

VFT temperature T0 = 0.28(2), obtained by the best-fit of the corresponding
structural relaxation time τα.

Now the density dependence of the ST-MSD is discussed. From the pre-
vious analysis, we know that the ρ-dependence of the ST-MSD is incorpo-
rated only in the isochoric slope m. Hence in Figure 4.2 we show the quantity
〈u2〉 − a0 versus the density at constant temperature. In a log− log plot, data
from a given isotherm collapse into a straight line which is a signature of a
power-law dependence on density. The density scaling exponent, that we la-
bel as γts for clarity reason, is given by the isotherm slope in the log− log
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Figure 4.1: Temperature dependence of the ST-MSD 〈u2〉 along different isochores,
from MD simulations of semi-rigid bonded chain with length M = 3 and steepness
of the monomer-monomer potential p, q = 6, 7 (top panel) and p, q = 6, 12 (bottom
panel). Dashed straight lines are best-fit line of the data. The extrapolation for T → 0
gives the parameter a0.

plot (to be more precise, the slope gives the opposite of the scaling exponent).
The density dependence of the isochoric slope m can be work out explicitly
m = a1 · ρ−γts. This results in an equation for the dependence of the ST-MSD
on the thermodynamic scaling variable Tρ−γts, namely

〈u2(T, ρ)〉 = a0 + a1 · Tρ−γts (4.5)

where the parameters a0, a1 and γts depend in general on the chain length,
the monomer-monomer potential and the mature of the bonding interaction.

Now we are in the position to investigate the thermodynamic scaling of
the ST-MSD in the present models of linear chains. In Figures 4.3 and 4.4,
the ST-MSD versus the quantity Tρ−γts is shown for different systems. It is
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Figure 4.2: Log-log plot of the difference 〈u2〉 − a0, where a0 is defined in the text,
versus the density along different isotherms for the same systems of Figure 4.1. The
slope of the best-fit lines (dashed line) gives the exponent of the power-law dependence
on density. Insets: the ST-MSD 〈u2〉 versus the density for the same state points of the
main panels.

apparent that 〈u2〉 obeys thermodynamic scaling in the form of eq 4.5. All
the density scaling exponents γts were calculated with a procedure, based on
previous observations, that we summarize here:

1. From isochoric measures of 〈u2(T)〉, the T → 0 linear extrapolation a0
of the ST-MSD is calculated. For a given system, we use at least two dif-
ferent isochores.

2. Then the density scaling exponent γts is given by the slope of the log− log
plot of the quantity 〈u2(ρ)〉 − a0 versus the density along an isotherm.
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from MD simulations of semi-rigid (SB) and rigid bonded (RB) chains with different
chain length M and steepness of the monomer-monomer potential p, q. For clarity
reasons, data are horizontally shifted. A: SB M = 3, p, q = 6, 7 (shift:+0.0); B: SB
M = 10, p, q = 6, 8 (+0.1); C: SB M = 3, p, q = 6, 8 (+0.2); D: SB M = 10, p, q = 6, 10
(+0.3); E: SB M = 3, p, q = 6, 10 (+0.4); F: SB M = 10, p, q = 6, 12 (+0.5); G: RB
M = 10, p, q = 6, 12 (+0.6); H: SB M = 3, p, q = 6, 12 (+0.7); I: RB M = 3, p, q = 6, 12
(+0.8). Dashed lines are 〈u2〉 = a0+a1 · Tρ−γ. The parameters γts, a0 and a1 are listed
in Table 4.1. Dotted line marks 〈u2

g〉 ≈ 0.0166, the ST-MSD at the glass transition.
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Table 4.1: The density scaling exponent γts and the parameter a0 and
a1 of eq 4.5 for the systems of Figures 4.3 and 4.4

bonds M (p, q) γts a0 a1

semi-rigid 3 (6, 7) 3.9(1) −0.039(2) 0.317(5)
semi-rigid 10 (6, 8) 4.7(2) −0.036(2) 0.283(6)
semi-rigid 3 (6, 8) 4.3(1) −0.037(1) 0.279(4)
semi-rigid 10 (6, 10) 5.9(2) −0.032(1) 0.0229(5)
semi-rigid 3 (6, 10) 5.2.(1) −0.040(1) 0.244(6)
semi-rigid 10 (6, 12) 6.7(1) −0.022(1) 0.170(4)

rigid 10 (6, 12) 6.65(5) −0.029(1) 0.162(5)
semi-rigid 3 (6, 12) 5.80(1) −0.029(1) 0.172(4)

rigid 3 (6, 12) 5.85(5) −0.033(2) 0.169(5)
semi-rigid 3 (6, 18) 7.6(2) −0.029(2) 0.110(5)
semi-rigid 3 (6, 24) 8.4(2) −0.023(1) 0.074(5)

Instead, the parameter a1 in eq 4.5 is given by the intercepts with the
vertical axis in the same plot. At least two different isotherms were used
at this point.

In Table 4.1 the density scaling exponent γts and the parameter a0 and a1 are
listed.

The fact that the ST-MSD scales as Tρ−γ, recently observed also in the
molten salt CKN [134], is not surprising as long as short-time dynamics and
structural relaxation are connected [25]. In this light, thermodynamic scaling
of viscosity, relaxation times or diffusion is a consequence of the more funda-
mental scaling of the fast dynamics.

In Figures 4.3 and 4.4 we show that the actual ST-MSD 〈u2〉 obeys ther-
modynamic scaling. Recently Fragiadakis [135] pointed out that thermody-
namic scales concern reduces quantity as the reduced relaxation time τ∗

α =
v−1/3(kBT/m)1/2τα or the reduced viscosity η∗ = v2/3(mkBT)−1/2η, where v
is the molecular volume, m the molecular mass and kB is the Boltzmann con-
stant. In this view we should have considered the reduced, ST-MSD 〈u2〉∗ =
ρ2/3〈u2〉. However, in our case, due to the not so large variation of density, the
difference between 〈u2〉 and 〈u2〉∗ is negligible. Moreover, in ref. [26], it was
shown, in the context of the correlation between fast dynamics and relaxation,
that for the present model the scaling of the distances according to ρ−1/3 is
not only useless but also harmful.

It is interesting to observe that, fixing the chain length and bonding inter-
action (rigid or semi-rigid) and changing only the repulsion of the monomer-
monomer interaction, it seems that all the linear extrapolations of the ST-MSD
according to eq 4.5 cross in a single point (see Figure 4.3), suggesting that the
two parameters a0 and a1 are not completely independent. Note, however, that
this intersection, takes place in a non-physical region, i.e., negative ST-MSD.

We want to point out here that the linear dependence on the scaling vari-
able in the form of eq 4.5 is clearly a high-T or low-viscosity behavior. Strong
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Figure 4.5: ST-MSD defined as 〈u2〉 = 〈u2(1.022)〉 as a function of the product Tρ−γts

from Md simulations of rigid-bonded chains with length M = 3 and e. Note that
density scaling of the dynamics applies from the viscous up to the high-temperature
liquid, where the cage effect is not present. Deviation from the low-T linear scaling of
eq 4.5 (dashed line) become apparent as the temperature increases. Full line is a guide
for the eyes.

deviations may arise as the glass transition is approached. In particular the
harmonic behavior 〈u2〉 ∝ T is expected below the GT [39]. Nevertheless, the
explored T-range is such that the care effect is observed since the definition of
the ST-MSD via the relation 〈u2〉 = 〈u2(t∗)〉 assumes the appearance of a clear
minimum in the log− log derivative of the MSD at t∗. We now show that the
dynamics obeys the thermodynamic scaling even in the very high temperature
region where the cage effect is not present. Remind that for the present model
we have that t∗ = 1.022 does not depend on the state point. In Figure 4.5 we
plot the ST-MSD, defined as 〈u2〉 = 〈u2(t∗ = 1.022)〉 irrespective of whether
t = t∗ marks the onset of the cage regime, as a function of the scaling variable
Tρ−γts. We observe that the scaling exponent γts of the “cage" ST-MSD is able
to give a very good collapse of the data even for extremely large value of the
product Tρ−γts. Deviation from the linear scaling of eq 4.5 become apparent
as the temperature increases. The fact that density scaling of the dynamics
applies from the viscous up to the high-T liquid, where the structure relaxes
on time scale which are faster than picosecond, is in our opinion not trivial.

Note that for the present model we have γts > 4 (see Table 4.1). Usu-
ally, high molecular weight polymers are characterized by small values of the
exponent, γts < 2.6 [27]. These small values are mainly due to the relative
stiffness of the chain units, with respect to the mobility corresponding to the
intermolecular degrees of freedom: the stiff chain structure hinders rearrange-
ments, resulting in smaller sensitivity to volume effects [136]. An exception is
represented by the polysiloxanes, which have a very flexible chain, and are
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Figure 4.6: Density scaling exponent γts versus the chain length M for system with
different monomer-monomer interaction potential, as indicated by the steepness of the
attractive and repulsive parts (p, q) (number in parenthesis) for chains with semi-rigid
bonds (open symbols) and rigid bonds (full symbols).

characterized by larger values of the scaling exponent γts & 5 [137]. In the
present model of linear chain, no potential for the bond angle are introduced
and the back folding of adjacent bonds is only suppressed by the monomer-
monomer repulsion. The large values of the scaling exponent that we found
are then the results of the high flexibility of the chains. Moreover the value
of γts = 6.7(1) in the case of decamers (M = 10) with semi-rigid bond and
interacting via the Lennard-Jones potential (p, q = 6.12) is very close to that
γts = 6 that Budzien et al. used to scale diffusion coefficients in the same
model [138].

In order to continue the discussion on the density scaling exponent γts,
in Figure 4.6 we plot γts versus the chain length M for systems with dif-
ferent bonds and monomer-monomer interaction. It is apparent that for the
present model γts increases as the length of the chain increases. The increase
is steeper for short chain and it become smoother as the chain become longer
(see the case of p, q = 6.12). This behavior is again similar to the one of silox-
ane polymers, in which the scaling exponent, and also other dynamic prop-
erties such as the fragility and the glass transition temperature, seem not to
depend on the chain length [137]. On the contrary in stiffer polymers, like the
polymethylmethacrylate, the exponent decreases abruptly as the length of the
chain increases [136].

Finally we want to discuss how the scaling exponent is related to the
monomer-monomer interaction potential as described, according to recent
works on thermodynamic scaling, via the fluctuations of virial and potential
energy [128, 134]. This relies on the inverse-power-law picture, a topic that was
discussed in Chapter 3. In Figure 4.7 the instantaneous fluctuations of virial
are plotted versus those in the potential energy for systems with different ex-
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ponent of the repulsive part of the monomer-monomer interaction potential.
According to what we have shown in Chapter 3, we neglect the bonding in-
teraction in the calculation of both the virial and the potential energy in order
to achieve strong U − W correlations (correlation coefficient R ≥ 0.9). We de-
fine the quantity γipl as the as the ratio of fluctuations. Since it is known that
such a ratio is state-point dependent, we define a “mean" value by considering
the global fluctuation. i.e. the fluctuations in all the state point, with different
temperature and density, that we consider in the thermodynamic scaling. Note
that, in agreement with the idea on an underlying inverse-power-law picture
analogy, γipl increases as the exponent of repulsion increases.

Now we are in the position to compare the thermodynamic scaling expo-
nent γts with the prediction γipl of the IPL picture. In Figure 4.8 we show
the correlation plot of γts and γipl for systems with different repulsion and
chain length. We observe clear deviations from the expected γts = γipl with
γts > γipl for all the systems except the one with the steeper repulsion, where
γts . γipl. This larger values than the IPL ones reflect the influence of the
bonding interaction. Note, indeed, the deviations are small, almost negligi-
ble, for short chains (see M = 3) but become significant if the length of the
chains increases (see M = 10). For the semi-rigid chains, the bonding po-
tential, resulting from the combination of the Lennard-Jones and the FENE
potential (see Appendix A for details), in the vicinity of the minimum is ex-
tremely sharp, in particular steeper than the monomer-monomer potential.
The intramolecular bonds thus serve to increase the steepness of the effective
repulsive potential on monomers, resulting in a more sensitivity to volume
effects and in a larger γts. If one increase the monomer-monomer repulsion,
the effect of the bonding interaction become increasingly less important; this
explain the different behavior of the q = 24 potential (see Figure 4.8) for which
γts ∼ γipl.

4.3.2 An asymmetry model for the fast dynamics

Now we introduce a minimal model, that is the asymmetric double-well po-
tential [139, 140], which is able, once some assumptions are made, to repro-
duce the linear dependence of the ST-MSD on the thermodynamic variable
observed in our MD simulations.

We start by assuming that, in equilibrium condition, the system explore a
potential energy landscape (PEL) consisting of two level, a ground (labeled g)
and an excited level (labeled e) (see Figure 4.9) The energy difference between
the two level is given by ∆. The ground state can, for example, corresponds to
an efficient packing of molecules while the excited state corresponds to a less
efficient packing, resulting in a higher energy due to the increased average
distance between molecules. In this model structural relaxation is associated
to the transitions e ↔ g. In equilibrium the probability currents are equal,
namely Jg→e = Je→g.

The short-time mean squared displacement is computed as the mean squared
displacement on a time scale much faster than the structural relaxation:

〈u2〉 = 〈r2(t − t0)〉 t − t0 ≪ τα (4.6)
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On short time scale, molecules oscillate around the equilibrium positions, cor-
responding to the bottom of a potential well. Then eq 4.6 can be expressed as
[141]:

〈u2〉 = 1
1 + ze−β∆

1
βkg

+
ze−β∆

1 + ze−β∆

1
βke

(4.7)

where β = 1/kBT, z is the number of state in the excited level and kg and ke,
kg > ke, are the effective elastic constant of the g and e level respectively. The
number of state z is related to the fragility: the larger z, the more fragile the
system [3].
In the high temperature limit β∆ ≪ 1, eq 4.7 reduces to:

〈u2〉 ≃ 1
1 + z − zβ∆

[
1

βkg
+ z (1 − β∆)

1
βke

]
(4.8)

=
1

(1 + z)(1 − (zβ∆)/(1 + z))

[
β−1

(
1
kg

+
z

ke

)
− z∆

ke

]
(4.9)

≃ 1
1 + z

(
1 +

z

z + 1
β∆

) [
β−1

(
1
kg

+
z

ke

)
− z∆

ke

]
(4.10)

=
1

1 + z

[
β−1

(
1
kg

+
z

ke

)
− z∆

z + 1

(
1
ke

− 1
kg

)]
(4.11)

The effective elastic constant kg and ke are a function only of density since
the PEL does not depend on temperature [142]. Then we write ki = χi f (ρ),
and we assume that the function f (ρ) does not depend strongly on the energy
level.
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Figure 4.9: Asymmetric double-well potential as a function of the generalized coor-
dinate. ∆ is the energy difference between the ground (g) and the excited level (e).
Jg→e and Je→g are the probability current for the transition between the two level. The
displacement to reach the transition state is a.

In the harmonic approximation of the potential we have

kea2 + ∆ ≃ kga2 (4.12)

where a2 is the mean square displacement to reach the transition state. The
second term in eq 4.11 is constant since

∆

ki
≃

(
kg − ke

)
a2

ki
i = g, e (4.13)

≃
(
χg − χe

)
a2

χi
(4.14)

Then eq 4.11 can be written in the form:

〈u2〉 = 1
1 + z

(
1

χg
+

z

χe

)
kB

[
T( f (ρ))−1 − T0( f (ρ0))

−1
]

(4.15)

where we have defined the quantity

T0( f (ρ0))
−1 =

z

z + 1
a2(χg − χe)2

χe + zχg
(4.16)

According to eq 4.15, the isochoric 〈u2〉 is a linear function of temperature.
Moreover eq 4.15 predicts that the ST-MSD vanishes at a finite temperature T0.
These findings agree with our results from MD simulations. For a strong sys-
tem, z ∼ 0, the temperature T0 vanishes and we recover the relation 〈u2(T)〉 ∝

T, seen in experiments on strong glass-formers [39].
At this point, the connection with the thermodynamic scaling is made,

by assuming that the elastic constants scale as ρn. A similar dependence is
observed in porous gels, systems that are not completely mechanically con-
nected, where the Young’s modulus E scales as E ∼ ρm with m ∼ 4 [143].
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Glass forming liquids are of course different systems, however it is known
the presence in the liquid structure of void region, especially at low density
[144, 145], a fact that can justify a bold comparison with gels.
Then, if we write f (ρ) = ρn, eq 4.15 become

〈u2〉 = 1
1 + z

(
1

χg
+

z

χe

)
kB

[
Tρ−n − T0ρ−n

0

]
(4.17)

A linear dependence of the ST-MSD on the product Tρ−n is found for the
present model of asymmetric potential at high temperature (see Figure 4.10).
This agrees with eq 4.5 describing the dependence of the ST-MSD on the ther-
modynamic variable in MD simulations. Furthermore, we found that the slope
of eq 4.5 increases as the fragility increases, i.e., the monomer-monomer re-
pulsion decreases (see Figure 4.3 and Table 4.1). Note that the slope of eq 4.17
(1/χg + z/χe)kB/(z + 1) is an increasing function of z and then of fragility.

In the limit of low temperature β∆ ≫ 1, the higher energy level is not
populated and eq 4.7 reduces to:

〈u2〉 ≃ 1
βkg

(4.18)

≃ 1
χg

kBTρ−n (4.19)

where we assumed again that kg ∝ ρn. At low temperature, then, the model
predicts that 〈u2〉 ∝ Tρ−n (see Figure 4.10), as one would expect.

4.3.3 Thermodynamic scaling of relaxation

Here the thermodynamic scaling of the relaxation dynamics is discussed. In
Figure 4.11 the structural relaxation time τα as a function of the variable Tρ−γts

is shown for different values of the scaling exponent. Note that the scaling
exponent γts resulting in the best collapse of the data coincide within the
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uncertainty with the density scaling exponent of the ST-MSD. This agrees with
the findings of previous work where the coincidence of the scaling exponent
for different dynamical quantity was shown [27].

Now we show that for the present model it is possible to work out an ex-
plicit expression for the dependence of the structural relaxation time on the
variable Tρ−γts on the basis of the connection between fast dynamics and re-
laxation. Indeed, the combination of the linear equation for the density scaling
of the ST-MSD, eq 4.5 and the parabolic relation connecting the ST-MSD and
structural relaxation eq 2.6 gives

log τα = α +
β

(a0 + a1 · Tρ−γts)
+

γ

(a0 + a1 · Tρ−γts)2 (4.20)

where α, β and γ are universal while a0 and a1, as well as γts, are system
dependent as they depend on the chain length (M), nature of the bond (b
with b = RB for rigid bond and b = SB for semi-rigid bond) and monomer-
monomer interaction (label with the steepness of attractive and repulsive part
p, q). Eq 4.20 can be recast in a more compact form:

log τα = log τ0 +
r(Tρ−γts) + s

(1 + t(Tρ−γts))2 (4.21)

with

log τ0 = α

r(M; b; p, q) = βa1/a2
0

s(M; b; p, q) = (βa0 + γ)/a2
0

t(M; b; p, q) = a1/a0

In Figure 4.12 we compare eq 4.20 with the structural relaxation data from
MD simulations for the more extended sets at our disposal. No adjustable
parameters were used since the density scaling exponent γts and the parame-
ter a0 and a1 were extracted from the thermodynamic scaling of the ST-MSD.
We observe that eq 4.20 fits very well the simulations data over about four
decades of relaxation time.

To complete the analysis of the thermodynamic scaling we consider the re-
orientation relaxation time, i.e., the relaxation time of the correlation function
of the vector joining the first and the last monomer of a chain. In Figure 4.13
we show that the exponent γts from the scaling of the structural relaxation
time, is able to scale also the chain reorientation time.

4.3.4 Comparison with experiments from literature

Now we want to investigate if the expression of the master curve for the
thermodynamic scaling in MD simulations, 4.20, is able to reproduce the de-
pendence of the relaxation time on the product Tρ−γts in real experiments.
We are aware that this is a bold comparison. Indeed while eq 2.6, connecting
fast dynamics and relaxation, is known to holds true down to the glass tran-
sition (GT), the linear master curve for the thermodynamic scaling of the fast
dynamics, eq 4.5, is supposed to fail as the system approach the GT.
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the ST-MSD. The density scaling exponent γts and the parameters of eq 4.20 for each
system are listed in Table 4.1.
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To extend eq 4.20 to experimental data, the starting point is the assumption
that the ST-MSD shows a linear dependence on Tρ−γts, namely

〈u2〉 = 〈u2
g〉
[
1 + κ

(
Tρ−γts − Tgρ

−γts
g

)]
(4.22)

where 〈u2
g〉 is the ST-MSD at the GT, which is supposed to occur at Tgρ

−γts
g .

The connection between the fast dynamics and relaxation is given by

log τ = α + β̃

(
〈u2

g〉
〈u2〉

)
+ γ̃

(
〈u2

g〉
〈u2〉

)2

(4.23)

with β̃ = β/〈u2
g,p〉 and γ̃ = γ/〈u2

g,p〉2, α, β and γ are defined in eq 2.6 and
〈u2

g,p〉 is the ST-MSD at the GT for the present model of fully flexible chain.
Combining eq 4.22 and 4.23, we obtain

log τ = α +
β̃[

1 + κ
(
Y − Yg

)] + γ̃
[
1 + κ

(
Y − Yg

)]2 (4.24)

where we have defined Y ≡ Tρ−γts. Once the scaling exponent γts and the lo-
cation of the GT Tgρ

−γts
g are known, eq 4.24 has only one adjustable parameter,

the “slope" κ. This has to be compared with eq 4.2, derived from the Avramov
model which has at least two adjustable parameters.

In Figures 4.14 and 4.15 we shows the comparison of eq 4.24 with ex-
perimental data of systems spanning a large range of dynamical behavior as
indicated by the scaling exponent 1.8 . γ . 6.5. As eq 4.24 was derived from
MD simulations of a polymer model, we focus mainly on polymeric systems.
In order to ensure the best-fit of the data, we allow small adjustments of 〈u2

g,p〉
within its uncertainty. The data sources as long as the curve parameters are
listed in Table 4.2.

Note that, despite having only one adjustable parameter, eq 4.24 provide a
good description of the dependence of log τ on Tρ−γ in a wide range of relax-
ation time. It is impressive the case of propylene carbonate (PC) in Figure 4.14,
in which the agreement between experimental data and the proposed master
curve extends for about fourteen decades of relaxation times. In some systems,
systematic deviations are seen, which become apparent if we consider the
residuals of the best fit, i.e., the difference between the actual and the expected
log τ. In Figure 4.16, structured residuals are seen clearly for cresolphthalein-
dimethyl-ether (KDE) and phenolphthalein-dimethyl-ether (PDE), two molec-
ular liquids. The deviations of the fitted curves are less than ±0.6 while the
global standard deviation of the best fits is σG ≃ 0.12. These values are also
affected by the scattering of the experimental data which is apparent in some
systems.

We want to point out here that the master curve eq 4.24 is obtained by as-
suming also that a relation between fast dynamics and slow relaxation exists
in the form of eq 4.23. While this relation was seen to fit with experimen-
tal data on several different system, at present time for most of the systems
in Figures 4.14 and 4.15 such a comparison lacks due to the absence of fast
dynamics data.
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Figure 4.14: log τ versus Tρ−γ for different materials along with the best fit of eq
4.24: 1, 2-polybutadiene (1,2 PB), tetramethyl-tetraphenyl-trisiloxane (DC704), digly-
cidyl ether of bisphenol-A (DGEBA), cresolphthalein-dimethyl-ether (KDE), propy-
lene carbonate (PC), poly((o-cresyl glycidyl ether)-co-formaldehyde) (PCGE), poly-
ciclohexylmethacrylate (PCHMA), phenolphthalein-dimethyl-ether (PDE), 1, 4 poly-
isoprene (PI) and polymethylphenylsilane (PMPS). The fit parameters and the data
sources are given in Table 4.2.
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Figure 4.15: log τ versus Tρ−γ for different materials along with the best fit of eq 4.24:
polymethylmethacrylate with degree of polymerization n = 3, 4 (PMMA-3, PMMA-
4), polymethylmethacrylate (PMMA-p), polymethyltolylsiloxane (PMTS), polybutylox-
ide (POB), polypropilene glycol with n = 4000 (PPG4000), polyphenylglycidyl ether
(PPGE), polyvinyl acetate (PVAc), polyvinylmethylether (PVME) and α-tocopherol ac-
etate (vitamin E). The fit parameters and the data sources are given in Table 4.2.
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Table 4.2: Relevant information about the investigated systems in
Figures 4.14 and 4.15: the density scaling exponent γ, along with the
source of the data, the best fit parameter κ in eq 4.24 and the best
value of 〈u2

g,p〉.

System γ Ref.
κ · 102 〈u2

g,p〉
[K−1(g/cm3)γ] (MD units)

1,2 PB 1.89 [119] 1.23(5) 0.135
DC704 6.15 [146] 1.5(1) 0.124

DGEBA 2.8 [147] 2.8(1) 0.134
KDE 4.5 [119] 1.7(1) 0.132
PC 3.8 [114] 5.2(3) 0.131

PCGE 3.3 [148] 2.4(1) 0.129
PCHMA 2.9 [149] 0.76(8) 0.140

PDE 4.4 [119] 3.0(1) 0.132
PI 3.5 [150] 0.07(1) 0.129

PMPS 5.63 [151] 1.9(1) 0.127
PMMA-3 3.7 [136] 2.3(1) 0.132
PMMA-4 3.2 [136] 1.9(1) 0.134

PMMA-pol 1.8 [136] 1.0(1) 0.134
PMTS 5.0 [152] 3.0(1) 0.134
POB 2.65 [153] 1.7(1) 0.135

PPG4000 2.5 [154] 1.9(1) 0.133
PPGE 3.45 [147] 2.1(1) 0.130
PVAc 2.6 [155] 1.2(1) 0.134
PVME 2.55 [156] 1.4(1) 0.135

vitamin E 3.9 [157] 0.77(5) 0.134
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Figure 4.16: Residual of the best fit with eq 4.24 for the systems in Figures 4.14 and
4.15. Full lines mark the global standard deviation of best fit σG ≃ 0.12.

From the master curve of thermodynamic scaling, the fragility, i.e., the
popular quantity used to classify the deviation from the Arrhenius behavior in
glass formers, can be computed. In particular the expression for the isochoric
fragility mv can be written as

mv =
∂ log τ

∂
(
Yg/Y

)
∣∣∣∣∣
Yg

(4.25)

where again Y = Tρ−γts. Assuming eq 4.24, one obtain

m̃v = κ
(

β̃ + 2γ̃
)

Tgρ
−γ
g (4.26)

The fact that, according to eq 4.26, m̃v is a constant agrees with experimental
results [119]. In Figure 4.17 the comparison between the experimental mv and
the estimated m̃v is shown for the same systems of Figures 4.14 and 4.15. We
observe that for the most of the systems, the estimated isochoric fragility devi-
ates significantly from the experimental one. However, this is not surprising.
Indeed both eq 4.24 and eq 4.26 were obtained assuming the it is possible to
describe the dependence of the ST-MSD on Tρ−γ with a single linear relation
in the entire temperature range. This “mean" description is supposed to fail
in capturing fine details close to GT like the fragility. Note that the devia-
tions are larger for the most fragile systems (PMMA and PCGE) for which
the T-dependence of the 〈u2〉 shows large difference between high and low
temperature.
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Figure 4.17: Plot of the isochoric fragility m̃v , estimated according to eq 4.26, versus
the experimental mv for the systems of Figures 4.14 and 4.15. Dashed line is m̃v = mv.
Deviations from the estimated and the experimental fragility are apparent.

4.4 Conclusions and open questions

Via extensive MD simulations the thermodynamic scaling in a melt of fully
flexible unentangled polymer chains have been investigated. Different chain
lengths and monomer-monomer interaction potentials are considered. In the
first part the scaling of fast dynamics is considered. In the cage regime, the ST-
MSD is seen to obeys thermodynamic scaling. The resulting master curves are
well described by simple linear equation. In this framework, a rigorous pro-
cedure to compute the density scaling exponent is shown, based on isochoric
and isothermal measures of the ST-MSD. We observed that the thermody-
namic scaling applies up to highly liquid state points where the monomers
caging is not present.

The relation between the scaling and the monomer-monomer interaction
potential is discussed. According to the picture of the analogy with the inverse-
power-law potential, we have compared the exponent γts with the slope of the
virial-potential correlation γipl. γts is seen to exceed the value of γipl due to the
hardening of the effective potential between monomers by the steep bonding
interaction.

A minimal model, the double asymmetric well, is introduced. This model,
once some assumptions are made, is able to reproduce in the high temperature
limit the observed linear dependence of the ST-MSD on the thermodynamic
variable. The model agrees with experimental results also in the low temper-
ature limit.

Thermodynamic scaling applies also to relaxation: the exponent for fast
dynamics is able to scale both structural relaxation and chain reorientation
times. Combining the relation between fast dynamics and slow relaxation with
the linear scaling of the ST-MSD (system dependent), an explicit expression
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for the master curve of structural relaxation in MD simulations is obtained.
It is shown that the proposed master curve fits the experimental results in
several systems with only one adjustable parameter, to be compared with en-
tropy based model which has at least two adjustable parameters. The isochoric
fragility, estimated via the master curve of the thermodynamic scaling, is seen
to significantly deviate from the experimental one, suggesting that the lin-
ear picture of the thermodynamic scaling of the ST-MSD is in some case too
simple.



Chapter 5

Elastic models of glass

transition: a MD simulation

study

5.1 The research context: elastic models

The quest for a general theory of the supercooled liquids and the glass transi-
tion is still an open question. Different theoretical frameworks provide differ-
ent interpretation of the complex phenomenology. Thermodynamic theories
relate the behavior of glass-forming systems to the existence of a thermo-
dynamic underlying singularity that can be described in purely static terms.
This idea is the basis of several approaches including the classic free-volume
[158, 159] and configurational-entropy models [160, 161], the random first-
order transition theory (RFOT) [162, 163] and frustration-based theories [164].
On the other hand, in non thermodynamic approaches, structural arrest is
viewed as a dynamic singularity in the relaxation of supercooled liquids, with
no thermodynamic signature. This is the case of the mode-coupling theory
(MCT) of glass-forming liquids [165, 166] and of families of models generi-
cally referred to as “kinetically constrained models" [167, 168].

A different approach is based on the idea the understanding glass forma-
tion only requires identifying the relaxation mechanism that is dominant as
the liquid enters the viscous regime. An example of this perspective is rep-
resented by the so called elastic models [4]. In these models, the height of the
barrier for a “flow event", i.e., a molecular rearrangement, which is supposed
to be a fast event, could be determined by liquid properties that can be probed
on a short time scale. The first paper suggesting this idea is a papers by Tobol-
sky et al. [169]. In this scenario, the liquid viscosity is controlled by the rate
of molecules moving from one position equilibrium to another. The energy
barrier to be overcome can be estimated by the intersection of the harmonic
approximations of the potential in the minima (see Figure 5.1). Estimated bar-
riers, despite being clearly larger than the actual barriers, are proportional to
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Figure 5.1: Schematic representation of two potential energy minima, indicated as R0
and R1, at a distance 2a. The full curve is the potential energy and dashed line are the
estimation via second-order Taylor expansions around the minima. It is apparent that
the estimated barrier is considerably larger than actual barrier. However estimated and
actual barriers are proportional.

the latter. The rate theory [170] states that the average time between jumps τ

is proportional to a microscopic time τ0 divided by the statistical mechanical
probability to find the system around the energy maximum. In the harmonic
approximation the energy is quadratic in the reaction coordinate, resulting
in a Gaussian probability distribution ∝ exp(−x2/2〈x2〉) where x is the dis-
tance from the minimum in the reaction coordinate and 〈x2〉 the mean square
amplitude of vibrations. This leads to

τ = τ0 exp
(

λ1
a2

〈x2〉

)
(5.1)

where λ1 is a factor of order one and a the average intermolecular distance.
If one define the temperature-dependent activation (free) energy ∆E via the
relation τ(T) = τ0 exp(∆E(T)/kBT), then

∆E ∝ kBT
a2

〈x2〉 (5.2)

For most glass-forming liquids 〈x2〉 decreases faster than T upon cooling,
resulting in an activation energy that increases upon cooling.

In ref. [169], the authors also argued that the important potential is that
resisting to shear deformation and so ∆E ∝ G where G is the liquid shear
modulus. As a liquid has a vanishing dc modulus, the instantaneous or infinite
frequency shear modulus G∞ is the relevant quantity, leading to

∆E ∝ a3G∞ (5.3)

The microscopic volume a3 comes from a dimensional analysis.
In ref. [171], eq 5.3 is derived starting from the Maxwell relation τ = η/G∞

and using known expression for the viscosity [172] and for the relaxation time
[173].
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A breakthrough in the field of elastic models is represented by the shov-

ing model, proposed by Dyre and coworkers [174, 175]. The starting point is
that, due to the harsh intermolecular repulsion, a molecular rearrangement
requires very high energy if this occurs at constant region volume. So it is
more favorable for the molecules to spend some energy on shoving aside the
surrounding liquid. The three main assumptions of the shoving model are: (i)
elastic energy is the dominant contribution in the activation energy; (ii) this
elastic energy is mainly located in the surroundings of the flow event; (iii)
the elastic energy is mainly shear elastic energy. Then the activation energy is
given by:

∆E(T) = G∞(T)Vc (5.4)

The characteristic volume Vc is assumed to be temperature independent. If one
suppose that the region of rearranging molecules is approximately spherical
and that the radius must increase by ∆r before a flow event has a fair chance
of taking place, then Vc = 2(∆V)2/3V where V = 4/3 πr3 is the volume
before the shoving and ∆V = 4πr2∆r. In this picture, the T-dependence of the
activation energy is entirely controlled by G∞.

For the relaxation, the shoving model gives:

τ = τ0 exp
(

G∞(T)Vc

kBT

)
(5.5)

Hence, according to eq 5.5, the logarithm of the viscosity depends linearly on
G∞/T (see Appendix C for a complete derivation of eq 5.5).

A connection with eq 5.2 can be made [4]. If one assumes harmonic vi-
brations with a single force constant written as mω2

0, then, from the classical
equipartion theorem, a2/〈x2〉 ∝ ma2ω2

0/kBT. ω0 is an effective frequency that
may depend on temperature. In this “single-force-constant model" the trans-
verse and longitudinal sound velocities are proportional and c∞ ∝ aω2

0. This
implies that a2/〈x2〉 ∝ mc2

∞/kBT and then:

∆E

kBT
∝

a3G∞

kBT
∝

a2

〈x2〉 (5.6)

Then the vibrational mean square amplitude 〈x2〉 is expected to be propor-
tional to the quantity G∞/kBT.

According to eq 5.5, the key quantity of the elastic models is the shear
modulus G∞. It is useful to say a few words about this quantity. In ref. [174]
Dyre and coworkers define explicitly G∞ via the relation limω→∞ G(ω) =
G∞ without any further clarification. In the following papers [4, 175] G∞ is
always referred as the “instantaneous” or “infinite-frequency” shear modulus.
However, by carefully reading the papers [174, 175], it appears that G∞ has to
be understood not as the formal infinite-frequency shear modulus but rather
as a high-frequency shear modulus, namely the modulus probed at frequency
ω which is high enough to ensure that the structure does not relax (ω ≫
τ−1), but is still lower than phonon frequencies. Denoting this high-frequency
modulus with G∞, as well as the real infinite-frequency modulus can generate
confusion.
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Figure 5.2: A flow event, i.e., a molecular rearrangement, in the picture of the shov-
ing model with dark sphere representing the molecules before the rearrangement. The
flow event takes place if, due to thermal fluctuations, the region volume expands suf-
ficiently. According to the statistical mechanics, the probability of this happening is
controlled by the reversible work done on the surrounding fixed structure to bring
about the same expansion. This quantity can be calculated using standard solid-state
elasticity theory: in the simplest case of spherical symmetry, the surrounding molecules
are subjected to a pure shear deformation and the activation energy is proportional to
G∞(T).

Elastic models, and in particular the shoving model, were discussed in
experimental [176–185], theoretical [186, 187] and computational [179] work
in a wide class of materials including colloids, liquids, polymers and metallic
alloys. Different experimental techniques probe the liquid elastic properties at
different frequencies. Piezo-ceramic method is able to provide shear modulus
data in the frequency range 1 mHz − 50 kHz. Ultrasonic measurement gives
data in the MHz range. Higher frequencies, in the GHz range, are obtained
with Brillouin light scattering. However, it is not obvious that frequencies in
these range are high enough to ensure that G∞ is really measured.

5.2 The numerical model

A coarse-grained model of a melt of linear, fully flexible, unentangled polymer
chains with M monomers each is used. The system has N = 2000 monomers
in all cases, but M = 3, where N = 2001. Nonbonded monomers interact via a
truncated parametric potential, whose attractive and repulsive steepness can
be modulated. Bonded monomers interact with a potential that is the sum
of the finitely extendible nonlinear elastic (FENE) potential and the Lennard-
Jones (LJ) potential, resulting in a fluctuation of a few percent in the bond
length.

All the polymer data are in reduced units: length in units of σ, temperature
in units of ǫ/kB and time in units of σ(µ/ǫ)1/2, where σ and ǫ are given by
nonbonding potential and µ is the monomer mass. We set µ = kB = 1.
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Figure 5.3: Logarithm of the viscosity, expressed in Poise, as a function of inverse
temperature (full symbols) and as a function of X ∝ G∞/T for 5-phenyl-4-ether (©)
and α-phenil-o-cresol (▽). Both x-axis variables are normalized to 1 at Tg. Data were
obtained from depolarized Brillouin scattering in the GHz range. (reprinted from [174])

States with different values of the temperature T, the density ρ, the chain
length M, and the steepness p, q of the monomer-monomer interaction poten-
tial are studied. Each state is labelled by the multiplet {M, ρ, T, p, q}.

Full details about the model, the considered states and the simulation tech-
nique are given in Appendix A.

5.3 Results and discussion

5.3.1 Instantaneous elasticity

Here the correlation between real infinite frequency elasticity and structural
relaxation is investigated. In fact, also due to the ambiguous notation dis-
cussed above, one may wonder a bit whether elastic models should predict a
correlation between these properties [188].

In equilibrium fluids the infinite frequency shear modulus G∞ can be ex-
pressed by the zero-time correlation function [189, 190]:

G∞ =
V

kBT
〈σ2

xy〉 (5.7)

σxy is the off-diagonal component of the stress tensor in the atomic represen-
tation1 [191]:

σαβ =
1
V

(
N

∑
i=1

[
mvαivβi +

1
2 ∑

j 6=i

rαijFβij

])
(5.8)

1in principle, the stress tensor may be also written in the molecular representation in terms
of the centre of mass position and momentum of the polymeric chain, together with internal
parameters [191]. These two representations are hydrodynamically equivalent, e.g. to evaluate
transport coefficients. However, there are differences - especially at short times - between the
atomic and the molecular stress correlation functions [191].
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Figure 5.4: Comparison of G∞, as evaluated from the zero-time shear stress corre-

lation function, with the two-body expression G
(ZM)
∞ of ref. [189], for selected state

points of the polymer model. The two results are coinciding within the errors. Se-
lected cases (M, ρ, T, p, q) from left to right: (2, 1.086, 0.7, 7, 6), (3, 1.086, 0.7, 7, 6),
(10, 1.086, 0.7, 7, 6), (2, 1.033, 0.7, 10, 6), (3, 1.039, 0.7, 11, 6), (2, 1.033, 0.5, 10, 6),
(3, 1.056, 0.7, 12, 6), (5, 1.033, 0.6, 12, 6), (3, 1.086, 0.7, 12, 6), (5, 1.086, 0.7, 12, 6),
(10, 1.086, 0.7, 12, 6) and (2, 1.0, 0.7, 12, 11). Corresponding relaxation times change
from 1 to about 103.

where vαk, Fαkl and rαkl are the α components of the velocity of the k-th
monomer with mass m, the force between the kth and the lth monomer and
their separation, respectively. The symbol 〈...〉 represents the canonical aver-
age.

In ref. [189], Zwanzig e Mountain derived an expression for the infinite
frequency shear modulus in terms of the pair distribution function g(r)

G
(ZM)
∞ = ρkBT +

2π

15
ρ2
∫ ∞

0
drg(r)

d

dr

[
r4 dφ

dr

]
(5.9)

where φ(r) is the two body interaction potential.
In Figure 5.4 the equivalence between eq 5.7 and eq 5.9 is explicitly tested
for selected case of the polymer model, with different chain length, density,
temperature and potential, exploring a range of relaxation time from 1 to 103.
The two expression of G∞ are coinciding within the errors.

Now we investigate the correlation of elastic properties with the structural
relaxation time τα, defined via the relation Fs(qmax, τα) = 1/e. Figure 5.5 com-
pares the latter quantity with the ratio G∞/T. It is apparent that G∞ poorly
correlates with the structural relaxation time. Moreover, it is interesting to
consider the temperature dependence of G∞ (see the inset of Figure 5.5). If the
temperature decrease, the shear modulus decrease, roughly in a linear way.
This agrees with previous findings on binary soft sphere in two [192] and
three dimensions [193]. The observed T-dependence of G∞ is in clear contrast
with the expected increase of the shear modulus upon cooling, which is the
basis of the super-Arrhenius slow-down in glass-forming liquids according to
elastic models [4].

Then we consider the short-time mean square displacement (ST-MSD)
〈u2〉, introduced in section 2.1.2 and defined via the relation 〈u2〉 = 〈r2(t∗)〉
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Figure 5.5: The structural relaxation time τα versus the ratio G∞/T from MD simula-
tions. It is apparent that G∞ poorly correlates with the structural relaxation time. Inset:
temperature dependence of G∞ (full symbols) and structural relaxation time τα (open
symbols) for states with chain length M = 3, density ρ = 1.086 and interaction poten-
tial p, q = 6, 12. Note the opposite behavior of G∞ and τα: as temperature decreases, τα

increases but G∞ decreases.

where t∗ is time corresponding to the minimum of the log− log derivative of
〈r2(t)〉. In Figure 5.6 the ST-MSD as a function the quantity G∞/T is shown.
Note that the ST-MSD, which is evaluated at very short time, few picoseconds
in real time, is proper of fast dynamics, as well as the elastic modulus G∞.
Nevertheless, no clear correlation is observed between 〈u2〉 and G∞/T.

At this point, we are in the position to conclude that the infinite frequency
shear modulus that does not seem to play a relevant role in the mechanism
that controls the relaxation in the present polymer model.

5.3.2 Transient elasticity

In the previous section the infinite frequency elastic response was considered.
Here the time dependence of the elastic properties are investigated.

First the transient shear elastic modulus G(t) of a volume V is defined via
the relation:

G(t) =
V

kBT
〈σxy(t0)σxy(t0 + t)〉 (5.10)

where the off-diagonal component of the stress tensor is defines in eq 5.8.
Note that G(0) = G∞. Figure 5.7 compares the incoherent intermediate scat-
tering function (ISF) Fs(qmax, t) = N−1〈∑N

i=1 exp {−iq · [ri(t)− ri(0)]}〉 and
and G(t). For clarity reasons, fast oscillations of G(t), due to rapid vibrations
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Figure 5.6: The ST-MSD 〈u2〉 versus the ratio G∞/T from MD simulations. It is ap-
parent that G∞ poorly correlates with the structural relaxation time.

of the stiff bonds [194, 195], which are apparent within 0.5 time units, are
removed by running averages with time window of about 0.15 time units.

Fig.5.7 shows the characteristic two-step decay of both G(t) (top) and ISF
(bottom). A first drop of both G(t) and ISF over times t ∼ 1, corresponding
to a few picoseconds in real time [25], is apparent. Within a unit lapse of time
the trapped monomers explore the cage of their first neighbors with incipi-
ent escape tendency. This was seen by observing the monomer mean square
displacement 〈r2(t)〉 which exhibits a well-defined minimum of the logarith-
mic derivative quantity ∆(t) ≡ ∂ log〈r2(t)〉/∂ log t at t⋆ = 1.023 [25, 26]. Since
this quantity vanishes in the case of perfect trapping, i.e., 〈r2(t)〉 ∼ const, the
minimum signals the full exploration of the cage and the onset of early es-
cape events (t⋆ is independent of the physical state in the present model). The
cage exploration results in the fast, large drop of G(t) from G∞ to Gp, i.e., the
plateau shear modulus measured by most viscoelastic experiments [186]. It
seems proper to deepen the discussion about this point. In crystals with one
particle per unit cell under athermal conditions the equality Gp = G∞ holds
[196]. Differently, even under athermal conditions, in crystals with multi-atom
unit cell [196] and amorphous systems [197–199] the total force on each par-
ticle unbalances (Ftot 6= 0) after the fast, homogeneous, affine shear strain. At
finite temperature the mechanical equilibrium is restored rapidly by the non-
affine particle displacements within their cages, leading to considerable loss
of elastic energy [197–199]. Note that the differences between Gp and G∞ are
reduced but not suppressed in the glass for T < Tg since local cage rattling is
still present [38].

We now show that the monomer displacements within times t⋆ recover
the mechanical equilibration which is missing in the instantaneous elastic re-
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Figure 5.7: MD results of the relaxation properties of linear chains with M = 3, ρ =
0.984 at the indicated temperatures. Non-bonded monomers interact with the Lennard-
Jones potential. Both Newtonian (full lines) and inherent (dashed lines) dynamics are
considered. Dots mark the structural relaxation time τα. Top Panel: transient elastic
modulus G(t). Note that G(0) = G∞. The inset magnifies the plateau region at inter-
mediate times. The plateau modulus is defined by Gp ≡ G(t⋆), t∗ is defined in the text.
Bottom Panel: intermediate scattering function Fs(qmax, t).
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Table 5.1: Comparison between the inherent and the newtonian elastic
modulus G(t) and ISF at initial time and t⋆ (the q-dependence of ISF
is understood for clarity reasons). Data refer to the states plotted in
Fig.5.7.

T log τα 1 − FIS
s (t⋆) 1−FIS

s (t⋆)
1−Fs(t⋆)

GIS(0)−Gp

GIS(0)
GIS(0)−Gp

G∞−Gp

0.3 4.2 0.02 8.7 · 10−2 4.7 · 10−2 9.6 · 10−3

0.34 2.73 0.03 0.12 5.7 · 10−2 1.0 · 10−2

0.4 1.56 0.09 0.28 0.22 3.2 · 10−2

sponse. To this aim, the configurations explored by the system via the true
Newtonian dynamics are sampled in time and “quenched" to the so-called
inherent structures (IS) by locally minimizing the potential energy in config-
urational space, i.e., enforcing mechanical equilibrium (vanishing total force
on each monomer, Ftot = 0) [3]. The IS time series defines the “inherent"
dynamics of the system which, roughly, subtracts from the true Newtonian
dynamics the vibrational motion around the IS. Henceforth, the quantity X(t)
will be denoted as X IS(t) if evaluated in terms of the IS occupied at time t.
Fig.5.7 (top) shows that G(t) and GIS(t) differ at very short times but they
coincide from about t⋆ onwards where one observes the plateau Gp revealed
by most viscoelastic experiments [186, 190, 193, 200].
For convenience we define

Gp ≡ G(t⋆) = GIS(t⋆) (5.11)

The coincidence of G(t) and GIS(t) for t & t⋆ evidences that the decay of
the plateau is due to a series of successive jumps from one equilibrated IS
structure to a new one, most probably by crossing over the large energy barri-
ers between different metabasins (a metabasin is a group of ISs separated by
small energy barriers [3, 142]). Obviously, G(t) vanishes within the structural
relaxation time τα (Fig. 5.7 top). Note also that G(τα) is approximately state-
independent. It is worth noting that Gp and G∞ have quite different temper-
ature dependence. Fig.5.7 (top) shows that, while Gp decreases by increasing
the temperature, G∞ does increases, as reported elsewhere [193].

Figure 5.7 (bottom) compares the true ISF, Fs(qmax, t), with the one evalu-
ated in terms of IS dynamics, FIS

s (qmax, t). It is seen that the subtraction of the
vibrational dynamics around IS removes the initial drop and the plateau seen
in Fs(qmax, t) at intermediate times [26]. Note that Fs(qmax, t) and FIS

s (qmax, t)
coincide only at times a little bit longer than τα, as it is reported for binary
mixtures [201].

Now we investigate if, during the initial mechanical equilibration, transi-
tions between different ISs take place and how they affect both the density
and the stress relaxation. To clarify the issue Table 5.1 presents some relevant
features of the stress and the structure relaxation of the representative states
plotted in Fig.5.7. First, the number of IS transitions within t⋆ is compared
with the ones needed to complete the structural relaxation. A rough estimate
of their ratio is given by the quantity 1− FIS

s (t⋆), which is about a few percents
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Figure 5.8: The structural relaxation time τα versus the ratio G∞/T from MD sim-
ulations. Unlike what seen with the infinite frequency modulus G∞, high correlation
between τα and Gp/T is observed. Dashed line is eq 5.12, log τα = A + B(Gp/T) +
C(Gp/T)2. Best fit of data gives A = −0.191(8), B = 0.048(3) and C = 0.0020(1).

for the slowest states (Table 5.1, third column). Note that the initial change of
Fs(t) is much larger than the corresponding one of FIS

s (t) (Table 5.1, fourth
column), i.e., the vibrational dynamics affects the initial relaxation more ef-
fectively, especially at low temperature. The IS transitions at early times re-
sult in relative changes of the inherent elastic modulus which are about two
times larger than the corresponding ones of FIS

s (t) (compare the third and fifth
columns of Table 5.1). This is roughly consistent with the approximate relation
G(t) ∼ Fs(qmax, t)2 drawn by the mode-coupling theory [202, 203]. However,
in spite of the quadratic influence of the density relaxation, the stronger pro-
cess affecting the stress relaxation at early times is the vibrational dynamics
around each IS, as it may be seen by the ratio (GIS(0)− Gp)/(G∞ − Gp) in
Table 5.1 and the direct inspection of Fig.5.7 (top).

At this point we investigate the correlation of residual elasticity with both
the ST-MSD and τα. First the structural relaxation is considered. In Figure
5.8 the structural relaxation time τα versus the ratio Gp/T is shown. Unlike
what seen with the infinite frequency modulus G∞, high correlation between
τα and Gp/T is observed. The resulting master curve in reduced units is well
described by the quadratic law:

log (τα) = A + B

(
Gp

T

)
+ C

(
Gp

T

)2

(5.12)

with A = −0.191 ± 0.008, B = 0.048 ± 0.003, C = 0.0020± 0.0001. Notice that
the replacement G∞ → Gp in eq 5.5 still results in a rather poor fit of the MD
results
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Figure 5.9: The ST-MSD 〈u2〉 versus the ratio G∞/T from MD simulations. Dashed
line is 〈u2〉−1 = 〈u2

0〉−1 + a∗Gp/T with 〈u2
0〉 = 0.192(4) and a∗ = 0.77(2). The in-

vestigated states, obtained by changing T, ρ, and the interacting potential between
non-bonded monomers are listed in Appendix A.

Then the ST-MSD is considered: Figure 5.9 compares Gp and 〈u2〉. Very
high correlation between Gp and 〈u2〉 is found. In particular, a linear scaling
law between the ratio Gp/T and the inverse of the ST-MSD is found:

1
〈u2〉 =

1
〈u2

0〉
+ a∗

Gp

T
(5.13)

Best-fit gives 〈u2
0〉 = 0.192(4) and a∗ = 0.77(2).

To provide insight into eq 5.13 we may resort the potential-energy land-
scape viewpoint. In this picture, the so-called inherent structures (IS), i.e., the
configurations corresponding to minima of the potential energy, are grouped
to form distinct metabasins (MB) separated by high energy barriers [204]. We
can 5.13 interpret the two terms of eq 5.13, 〈u2

0〉 and the “elastic" ST-MSD
T/Gpa∗ as the average MB full width (or approximately the MSD to reach
a different MB), and the typical MSD within an MB, respectively. In fact, for
a binary mixture the typical MSD within an MB (≃ 6 · 10−2) and to reach a
different MB (≃ 0.2) [205] are rather comparable, at the same τα ≃ 4 · 103,
to the “elastic" ST-MSD (≃ 4.5 · 10−2) and 〈u2

0〉 ≃ 0.192 of the monomers,
respectively.

The master curve of eq 5.13 is built with polymer states with different
temperature, density, chain length and the interacting potential between non-
bonded monomers. The constancy of the parameters 〈u2

0〉 and a∗, as long as
A, B and C in eq 5.12, is ascribed to the limited changes of the local structure
due to the high packing of the investigated states [98].
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5.3.3 An extended elastic model

Now we introduce a theoretical framework to interpret the results of MD
simulations. The following derivation is conceptually equivalent to the one
presented in ref. [26]. We start from the key equation of the elastic models:

τ
(EM)
α = τ0 exp

(
GV∗

kBT

)
(5.14)

One basic assumption of standard elastic models is that the activation volume
has a characteristic value V∗. To expand this concept, we assume that the
volume is dispersed. To model the related distribution, it is assumed that the
latter does not depend on the state parameters such as the temperature, the
density or the interacting potential. A suitable choice is to take the distribution
of the activation volume as a truncated Gaussian form:

P(V∗) =





A exp

(
− (V∗−V∗)2

2σ2
V∗

)
if V∗ > V∗

min

0 otherwise
(5.15)

where A is the normalization constant and V∗
min is the minimum value of the

activation volume. Averaging eq 5.14 over the distribution given by eq 5.15,
yields the following generalized equation:

τα =
∫ ∞

0
τ(EM)(V∗)P(V∗)dV∗ (5.16)

= B · N
[

G

kBT

]
· exp

(
GV∗

kBT
+

G2σ2
V∗

4k2
BT2

)
(5.17)

where B is a constant and the normalization factor N
[

G
kBT

]
produced by the

truncation reads:

N
[

G

kBT

]
=

1 + Erf

[
(V∗−V∗

min)/σV∗+σV∗/2
(

G
kBT

)

√
2

]

1 + Erf
[
(V∗−V∗

min)/σV∗√
2

] (5.18)

If V∗ ≥ V∗
min, 1 ≤ N

[
G

kBT

]
≤ 2 namely N

[
G

kBT

]
depends very weakly on the

ratio
(

G
kBT

)
and the truncation is negligible. Then τ0 ≡ B · N

[
G

kBT

]
and eq

5.17 become:

τα = τ0 exp

(
GV∗

kBT
+

G2σ2
V∗

4k2
BT2

)
(5.19)

Eq 5.19 predicts a quadratic dependence of the structural relaxation time on
the ratio G

kBT which agrees with the findings of the simulations discussed in
the previous section. Moreover, the good quality of the scaling justifies the as-
sumption of the independence of distributions P(V∗) on the state parameters.
Both the average value V∗ and the spread σV∗ can be obtained by comparing
eq 5.19 with eq 5.12, resulting in V∗ = 4.8(3) · 10−2 and σV∗ = 7.0(1) · 10−2.
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Figure 5.10: The distribution P(V∗) of the activation volume for a flow event is plot-
ted using the values for V∗ and σ2

V∗ obtained from MD simulations. We fixed V∗
min = 0

to avoid meaningless negative values for V∗.

The concavity of the master curve eq 5.12 is a signature of the heterogene-
ity, i.e., the existence of a distribution of the activation volume for the flow
events (in Figure 5.10 we plot the distribution P(V∗) with the values of V∗

and σV∗ from MD simulations).
An expression similar to eq 5.19 was already reported for both supercooled

liquids [10] and polymers [206]. This support the choice of the Gaussian form
for P(V∗).

5.3.4 Comparison with simulations and experiments from li-
terature

Now we want to investigate if the MD results are robust enough to be com-
pared with the experiments. Virtually, all the experiments validating the shov-
ing model actually measure Gp since the elastic response is probed at frequen-
cies much lower than the THz range where the crossover from G∞ to Gp is
located [186].

The fact that eq 2.2, assessed in the weakly supercooled regime attainable
by MD simulations, holds true down to the glass transition evidences that
the relevant information on the coupling between the fast dynamics and the
long-time relaxation is present at high temperatures [25]. This motivated to
extend the validity of eq 5.12 down to the glass transition. The GT structural
relaxation time 102 s in real units is equivalent to 1013 − 1014 in MD units.
Having defined the GT in MD simulation, the ratio Gp,g/Tg can be obtained
by extrapolation:

Gp,g

Tg
= 70.9



5.4 Conclusions and open questions 95

If we define the reduced variable X =
(
GpTg

)
/
(
Gp,gT

)
, we obtain a quadratic

form as candidate for the universal master curve:

log (τα/τ0) = δ + ǫX + φX2 (5.20)

with

δ = −11.70(1)

ǫ = B · Gp,g/Tg = 3.4(2)

φ = C · (Gp,g/Tg)
2 = 10.3(8)

δ is set so as to get the familiar log(τα/τ0) = 2 at GT.
The boundaries of eq 5.20 can be determined considering the uncertainty

on t∗, the time at which both the ST-MSD 〈u2〉 and the plateau modulus Gp are
measured. Varying t∗ within its confidence interval (0.6 − 1.4 [25]), different
values of the ratio Gp,g/Tg are found. In particular for t∗ equal to 0.6 and 1.4,
Gp,g/Tg is respectively 65.6 and 80.5.

Figure 5.11 shows the comparison of eq 5.20 with both simulations and
experimental data of systems spanning a wide range of fragilities and elastic
moduli measured at sufficiently high frequencies to allow comparison with
τα and η over wider ranges (data details and sources are listed in Table 5.2).
Elastic response is observed if the experiments probe a time scale in which the
liquid has no time to relax so that it behaves like a solid, i.e., ω τα ≫ 1. The
order of magnitude of ω can be changed by using different techniques, such
as ultrasonic measurement for the MHz range and Brillouin scattering for
the GHz range. For this reason, elastic moduli measured at frequency ω are
considered only in the region ω > max{0.1/τα, 2π · 1MHz}. The experimental
data are vertically shifted to adjust the conversion factor between MD and real
units in order to ensure best-fit with eq 5.20. No other adjustment was made.
Data shifts τ0 are listed in Table 5.2.
From Figure 5.11, we observe that all the experimental data collapse on the
master curve defined by eq 5.20, within the indicated accuracy. To get further
insight, we compare the validity of eq 5.20 with the that of the standard pre-
diction of the shoving model, eq 5.5, where G∞ is virtually replaced by Gp.
Note that, in addition to the vertical shift, the modified version of eq 5.5 has
one more adjustable parameter, the volume Vc, with respect eq 5.20. In Figure
5.12 we plot the reduced chi-square χ̃2 of the experimental data with both
the quadratic form eq 5.20 and the modified eq 5.5, over the variable range

from log τ
(min)
α /τ0 up to log τ

(max)
α /τ0 = 6. It is seen that, while the two fits

are equivalent in the low temperature range −4 6 log τα ≤ 6, eq 5.20 per-
forms much better in the range −12 ≤ log τα ≤ −4, in spite of the additional
parameter in eq 5.5.

5.4 Conclusions and open questions

By molecular dynamics simulations of a model polymer system, the correla-
tion of the elasticity with the structural relaxation is investigated. First the in-
stantaneous elasticity is discussed. It is seen that both the structural relaxation
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Figure 5.11: Scaling of the structural relaxation time and viscosity in terms of the
reduced variable X =

(
GTg

)
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)
. Black line is log (τα/τ0) , log (η/η0) = δ + ǫX +

φX2 with δ = −11.70(1), ǫ = 3.4(2) and φ = 10.3(8) The numbers in parentheses
denote the fragility of the systems (data source are listed in Table 5.2). Magenta line
define the error boundaries of eq 5.20 considering Gp,g/Tg equal to 65.6 and 80.5 once
t∗ is set equal to 0.6 and 1.4 respectively. The grey belt marks the GT. Elastic moduli
measured at frequency ω are considered only in the region ω > max{0.1/τα, 2π ·
1MHz}.
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Table 5.2: Relevant information about the investigated systems (in order of increasing
fragility) and the MD simulations. log τ0 and log η0 are the vertical shift factors of all
the MD and the experimental data. The shear modulus G is taken from ultrasonic
measurements (US) or from Brillouin scattering (BS).

System

τα, η G

quantity
log(τ0) ref. technique ref.
log(η0)

Polymer τα 11.5 PW MD PW
2D BM τα 11.5 [192] MD [192]

LiCl · 6H2O τα 0.2 [179] MD [179]
SiO2 η 10.5 [207] BS [208]
B2O3 η 11.3 [209] BS [210]
Vit-4† η 9.6 [182] US [182]

Glycerol η 10.4 [211] BS [212]
di(isobutyl)phthalate η 10.3 [213] US [214]

α-phenyl-o-cresol η 9.8 [174] BS [174]
n-propylbenzene η 9.6 [213] US [214]
m-fluoroaniline τα −0.1 [178] BS [178]

isopropyl benzene η 10.3 [213] US [214]
Salol τα 0.8 [178] BS [178]

m-toluidine τα 0.0 [178] BS [178]
2-benzylphenol/o-TP mix. τα −0.2 [178] BS [178]

OTP η 8.9 [215] BS [215]
5-phenyl-4-ether τα 0.8 [178] BS [178]
5-phenyl-4-ether η 10.5 [174] BS [174]

Selenium η 11.5 [34] US [216]
DC704 τα 0.5 [178] BS [178]

sec.-butyl benzene η 10.0 [213] US [214]
Ca(NO3)2 · 4H2O τα 0.2 [178] BS [178]

triphenylphosphite τα −0.3 [178] BS [178]

† Zr46.75Ti8.25Cu7.5Ni10Be27.5
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Figure 5.12: Reduced χ̃2 of the experimental data of Figure 5.11 with both the qua-
dratic form eq 5.20 (allowing only the vertical shift of the experimental data) and the
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(max)
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and the fast dynamics, as described by the short time mean square displace-
ment (ST-MSD), poorly correlate with the instantaneous elasticity, at variance
with the key prediction of the standard elastic models.

Then the time dependence of the elastic response is discussed. Due to the
discreteness of the matter, the nonaffine fast displacements of the particles
within the cages results in the drop of the modulus from infinite frequency
value G∞ to the finite frequency plateau (or relaxed) modulus Gp. MD simu-
lations reveal a remarkable scaling in terms of the intermediate-time elasticity.
In particular, it is shown that the master curve log τα versus Gp/T exhibits a
quadratic form not compatible with the linear prediction of the elastic models.
The concavity of the master curve is ascribed to heterogeneity, i.e., a spread in
the activation volume for the flow events. The scaling region includes physical
states with very long τα and virtually pure elastic response on the picosecond
time scale, whereas it extends up to high-mobility states where fast restructur-
ing becomes apparent. Moreover, the existence of a linear scaling between the
ST-MSD and Gp/T is revealed, as expressed by a “quasi-elastic" relation eq
5.13. At present time, a full understanding of eq 5.13 is missing. In this light,
future work should be addressed to the search of the origin of the scaling,
investigating for example the effect of early escape processes or the role of
chain connectivity.

In the last part of the chapter, the master curve of log τα versus Gp/T is
compared to simulations and experimental results from literature. It is shown
that the master curve fits the experimental results over about eighteen decades
in relaxation time (−12 . log τα . 6) and a wide range of fragilities (20 ≤
m ≤ 115) with one adjustable parameter, to be compared with two adjustable
parameters in the linear master curve of the standard elastic models.



Chapter 6

Outlook

In this chapter we wan to briefly summarize the main results of the studies
presented in the Thesis and discuss their perspectives.

In this Thesis, we investigated through numerical simulations the dynam-
ics and the structure in a model of fully flexible linear chains. In Chapter 2,
some interesting aspects of scaling between caged dynamics and structural
relaxation are discussed; in particular it is shown that the scaling can be ex-
tended up to the monomer diffusion. One of the key highlight of this study is
the connection between fast dynamics and dynamical heterogeneity (DH): it
is seen that the breakdown of the Stokes-Einstein equation, related to the DH,
is signaled in a precise way by the monomer picosecond displacement. The
role of interaction potential is discussed in Chapter 3: we show that purely
repulsive potentials, despite capturing the structure, fail to reproduce the vis-
cous slow-down of the Lennard-Jones model in molecular systems. In Chapter
4 a connection between thermodynamic and fast dynamics is made by show-
ing that monomer picosecond displacement obeys thermodynamic scaling as
well as the relaxation dynamics. On this basis an analytical expression for the
scaling of relaxation time is derived, which results in an acceptable agreement
with experiments. The connection between elastic properties and dynamics is
discussed in Chapter 5. A well defined scaling between elastic response on
the picosecond timescale and structural relaxation is evidenced. The simu-
lation results are validated by comparison with experimental data spanning
about eighteen decades in relaxation time and a wide range of fragility.

The unifying theme of the different studies presented in the Thesis is the
connection between fast dynamics on the picosecond timescale and slow re-
laxation. The study suggests that the equilibrium and the moderately super-
cooled states of the glassformers possess key information on the huge slowing
down of their relaxation close to the glass transition.

Below a list of open question is presented as a starting point for future
studies.

• The fact that the relaxation is determined by a physical quantity, the
short-time mean square displacement 〈u2〉 or the shear modulus Gp,
which can be computed on short time scale is conceptually very close
to the free-volume models [159]. This analogy is confirmed by recent
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findings [26, 48]. It would be interesting to deepen the discussion of the
role of the free-volume in the connection between fast dynamics and
relaxation.

• In the last few years, the possible presence of localized ordered struc-
tures in liquids and polymeric systems, approaching their glass tran-
sition, has attracted an increasing interest [99, 217–219]. Although the
role of the structure has been marginally treated in the present work
(see Chapter 3), this topic represents an on on-going work of Leporini’s
group at the University of Pisa.

• The discussion about the role of the interaction potential in Chapter 3
was carried out for a single value of the density, which is, in the case of
molecular systems, pretty high. However, one may wonder if higher val-
ues of density can result in a better agreement for the viscous slow-down
of the Lennard-Jones model and the purely repulsive ones, especially
in the case of the inverse-power-law potential. Further work should be
done in this direction. It would be interesting also to consider paramet-
ric Lennard-Jones models, in which it is possible to change the steepness
of both the attractive and repulsive part of the potential.

• In Chapter 5 we have discussed the time dependence of the shear modu-
lus G(t). A drop of G(t), from the instantaneous value G∞ to the plateau
value Gp, over times corresponding to a few picoseconds in real time, is
apparent. This is due to non-affine motion of the monomers which al-
low to recover the missing mechanical equilibrium. This motion may
be connected with the boson peak [188] and the tunneling states which
dominate the glass behavior at very low T [220]. This point should be in-
vestigated. In this sense, numerical simulations are a powerful tool since
they provide easy access to G∞.

• The shoving model [174, 221] relies on the dominance of the shear modu-
lus for the temperature dependence of the relaxation time. Bulk modulus
is assumed to play only a minor role. To what extent is this assumption
correct? It would be valuable to investigate bulk effects in the framework
of elastic models.



Appendix A

Numerical and data details

A.1 Numerical details

A.1.1 Models: rigid and semi-rigid polymers

Two different coarse-grained model of linear polymer are considered. In the
first model, the rigid bonded chain (RB), bonded monomers are connected by
a rigid bond of fixed length bRB = 0.97 σ (in MD reduced units). In the second
model, the semi-rigid bonded chain (SB), bonded monomers interact with a
potential which is the sum of the finitely extendible nonlinear elastic (FENE)
potential and the Lennard-Jones (LJ) potential:

vLJ(r) = ǫ

[(
σ∗

r

)12

− 2
(

σ∗

r

)6
]

(A.1)

vFENE(r) = −1
2

kR2
0 ln

[
1 +

(
r

R0

)2
]

(A.2)

where r is the monomer-monomer distance and σ∗ = 21/6 σ. The FENE char-
acteristic parameters are k = 30 ǫσ−2 and R0 = 1.5 σ [18], resulting in the
average bond length bSB = 0.97 σ with fluctuations of a few percent.

Non-bonded monomers, both in RB and SB model, interact via a truncated
parametric potential:

vp,q(r) =






ǫ
q−p

[
p
(

σ∗
r

)q
− q

(
σ∗
r

)p ]
+ vcut if r ≤ rc

0 otherwise

(A.3)

where the value of the constant vcut is chosen to ensure vp,q(rc) = 0 at r =
rc = 2.5 σ. Changing the p and q parameters does not affect the position
r = σ∗ and the depth ǫ of the potential minimum, but only the steepness of
the repulsive and attractive wings. Note that the pair (p, q) = (6, 12) gives the
usual Lennard-Jones potential.

All quantities are in reduced units: length in units of σ, temperature in
units of ǫ/kB (kB is the Boltzmann constant) and time in units of σ(µ/ǫ)1/2,
where µ is the monomer mass. We set µ = kB = 1.
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Figure A.1: The interaction potential vp,q(r) between non-bonded monomers. V6,12 is
the usual Lennard-Jones potential.

A.1.2 Simulation protocol

The simulation protocol to create and simulate state points of the model is the
following:

1. Placement of the chains in a regular face-centered cubic (FCC) lattice
preventing the dangerous effects of the overlap of monomers.

2. If the number density has not the desired value, a NPT-ensemble simu-
lation run is performed.

3. Equilibration is performed via NVT-ensemble simulation. It is assumed
that equilibration end when it is reached some multiples (from twice
to ten times) of the longest relaxation time of the system, i.e., the time
needed by the end-to-end correlation function Cee(t) to decay to less
than one-tenth of its initial value.

4. NVE-ensemble production run. NVE-ensemble is chosen in order to
avoid non-physical effects in the dynamics due to the presence of ther-
mostats and pistons.

A.1.3 Algorithms

NPT and NTV ensembles are studied by the extended system method intro-
duced by Andersen [222] and Nosé [223]. The numerical integration of the
augmented Hamiltonian is performed through the multiple time steps algo-
rithm, reversible Reference System Propagator Algorithm (r-RESPA), devel-
oped by Tuckerman et al [224]. In particular, the NPT and NTV operators
is factorized using the Trotter theorem [225] separating the short range and
long range contributions of the potential, according to the Weeks-Chandler-
Andersen (WCA) decomposition [226].

The simulations have a drift of the total energy of the total energy less than
∼ 5 · 10−8 ǫ/τMD and a standard deviation of the total energy less than 2 · 10−4
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with an integration time step 3 · 10−3 τMD. The latter was kept constant in all
the production runs but for extremal cases where 1.5 · 10−3 τMD was adopted
to reduce the accumulation of errors on energy.

A.1.4 Inherent dynamics

Inherent structure (ISs) of the potential energy landscape (PEL) [227] are de-
fined as the local minima of the configurational potential energy U(rN) where
rN is the 3N-dimensional position vector of a N-body system. To locate the
relevant inherent structures of a system, instantaneous configurations, sam-
pled from a molecular dynamics trajectory, are mapped to ISs by minimizing
the potential energy along the steepest descent path. Energy minimization is
carried out via the conjugate gradient (CG) algorithm [228]. The CG algorithm
is a modified steepest descent technique with the successive descent directions
chosen to be conjugate to preceding directions and an accurate line minimiza-
tion is performed along each search direction. The CG quenches are assumed
to be converged when the change in energy between two successive iterations
is less than 10−8ǫ [229].

A.2 Data details

States with different values of the temperature T, the density ρ = N/V (N is
the total number of monomers and V is the volume of the cubic box) the chain
length M, and the steepness p, q of the monomer-monomer interaction poten-
tial, eq A.3, are studied. Each state is labelled by the multiplet {M, ρ, T, p, q}.
We had N = 2000 in all cases but M = 3 where N = 2001. For each case av-
erages on at least five independent configurations are performed. For M = 10
the least number of independent configurations is ten. Below, the different
state points are listed.

Below the considered state points are listed:
T = 0.7:

• p = 6. All the combinations with M = 2, 3, 5, 10, ρ = 1.033, 1.056, 1.086
and q = 7 , 8, 10, 12. The case M = 2, ρ = 1.086, q = 12 equilibrates very
slowly and was discarded.

• p = 6, M = 3. The pairs (ρ, q): (1.090, 12), (1.033, 11), (1.039, 11), (1.041, 11),
(1.045, 11), (1.051, 11), (1.056, 11), (1.086, 11), (1.033, 9),
(1.056, 9), (1.063, 9), (1.071, 9), (1.079, 9), (1.086, 9).

• p = 5, q = 8. All the combinations with M = 2, 3, 5, 10 and ρ = 1.133,
1.156, 1.186, 1.2. Furthermore, M = 2, ρ = 1.033.

• p = 11, q = 12, M = 2 with densities ρ = 0.980, 0.990, 1.0.

T 6= 0.7, p = 6:

• T = 0.5, ρ = 1.033. All the combinations with: M = 2, 3, 5, 10, q = 7, 8,
10.
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• T = 0.6, ρ = 1.033. All the combinations with: M = 2, 3, 5, 10, q = 8, 10.

• T = 0.6, q = 8, M = 3 with ρ = 0.95.1.056, 1, 086, 1.090

• q = 12, ρ = 1.033, the pairs (M, T): (2, 0.5), (3, 0.5), (2, 0.55), (3, 0.55),
(2, 0.6), (3, 0.6), (5, 0.6), (3, 0.65), (5, 0.65), (10, 0.65).

• q = 12, ρ = 1.086, the pairs (M, T): (2, 0.75), (3, 0.75), (5, 0.75), (10, 0.75),
(2, 0.8), (3, 0.8), (5, 0.8).

• q = 12, ρ = 1.090, M = 3, with T = 0.75, 0.8.

Other particular cases with M = 3:

• ρ = 1.2, T = 0.95, q = 12, p = 6

• ρ = 1.1, the triplets (T, q, p): (0.95, 12, 6), (0.9, 15, 7), (1.1, 15, 7).

• p = 6, q = 18, the pairs (ρ, T): (1.025, 0.8), (1.025, 0.9) (1.025, 1.0), (1.033, 0.9),
(1.033, 1.0), (1.033, 1.1), (1.033, 1.2), (1.033, 1.4), (1.050, 1.0), (1.050, 1.1),
(1.050, 1.2), (1.050, 1.2), (1.050, 1.3), (1.050, 1.4), (1.050, 1.5), (1.075, 1.2),
(1.075, 1.3), (1.075, 1.5), (1.075, 1.6), (1.075, 1.8).

• p = 6, q = 24, the pairs (ρ, T): (0.950, 0.7), (0.950, 0.8), (0.950, 0.9),
(0.950, 1.0), (0.950, 1.2), (1.000, 0.95), (1.000, 1.0), (1.000, 1.1), (1.000, 1.2),
(1.025, 1.4), (1.025, 1.5), (1.025, 1.6), (1.050, 1.4), (1.050, 1.5), (1.050, 1.6).

Finally, the states p = 5, q = 8, M = 2, ρ = 1.033, T = 0.5.

Polymer Clusters Data plotted in Figure 2.3 are grouped in the following
multiplets (M, ρ, T, q, p):

• Set A (blue): (2, 1.086, 0.7, 7, 6), (3, 1.086, 0.7, 7, 6), (10, 1.086, 0.7, 7, 6),
(10, 1.033, 0.7, 8, 6)

• Set B (black): (2, 1.033, 0.7, 10, 6), (3, 1.039, 0.7, 11, 6), (3, 1.041, 0.7, 11, 6)

• Set C (red): (2, 1.033, 0.5, 10, 6), (3, 1.056, 0.7, 12, 6), (5, 1.033, 0.6, 12, 6),
(10, 1.056, 0.7, 12, 6)

• Set D (green): (3, 1.086, 0.7, 12, 6), (5, 1.086, 0.7, 12, 6), (10, 1.086, 0.7, 12, 6)

• Set E:(2, 1.0, 0.7, 12, 11), (3, 1.1, 1.1, 15, 7)

• Set F:(3, 1.1, 0.65, 12, 6)
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The Rouse model

The Rouse model [32] is the simplest bead-spring model for flexible polymer
chains [29, 53, 230]. It is usually applied to describe the long-time or large-scale
polymer dynamics by neglecting the interactions between monomers which
are distant along the chain, i.e. excluded volume, hydrodynamic interactions
and chain entanglements are not considered. This model has been frequently
applied to non-entangled chains in concentrated solutions. The model also
serves in the description of the entangled chains: the tube model analyses
the motion of the Rouse chain confined in a tube-like regime for calculating
various kinds of dynamic properties [53]. Thus, the Rouse model is one of the
most important models in the field of polymer dynamics.

In the Rouse model each chain is composed of MR − 1 segments being
modeled by MR non-interacting beads, connected by entropic springs with
force constant κ = 3kBT/a2

R, where aR is the average size of the segment,
i.e. the root mean square length of the spring, kB is the Boltzmann constant,
and T is the absolute temperature. No other interaction between the beads
is present. The model considers a given chain and regards the surrounding
ones as a uniform frictional medium for the focused chain. The segmental
friction coefficient of the selected chain in this medium is denoted by ζ. The
surrounding chains are depicted to exert on each bead of the selected chain
also a fast-fluctuating random force to ensure proper equilibrium properties
via the fluctuation-dissipation theorem.

The Rouse model has been tested by experiments [231–235] and numerical
simulations [18, 19, 236–239]. Corrections for free-volume effects [240], intra-
and intermolecular mean-force potentials [236] and uncrossability constraints
[241] are also known.

The discrete Rouse model [242, 243] describes a single linear chain as a
series of MR − 1 segments being modeled by MR non-interacting beads, con-
nected by entropic springs in the presence of a highly damping gaussian en-
vironment. The Langevin equation for the inner beads ( 2 ≤ n ≤ MR − 1 ) is
:

ζ ṙn(t) =
3kBT

a2
R

[rn−1(t)− 2rn(t) + rn+1(t)] + fn(t) (B.1)
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and for the end beads ( n = 1, MR ):

ζ ṙ1(t) =
3kBT

a2
R

[r2(t)− r1(t)] + f1(t) (B.2)

ζ ṙMR
(t) =

3kBT

a2
R

[
rMR−1(t)− rMR

(t)
]
+ fMR

(t) (B.3)

where rn is the position vector of the n-th bead of the chain and the dot de-
notes a time derivative. The cartesian components α and β of the stochastic
force fn(t) are modeled as Gaussian white noise with zero average and cor-
relations according to the fluctuation-dissipation theorem: 〈 fnα(t) fmβ(t

′)〉 =
2ζkBTδnmδαβδ(t − t′) The set of eqs B.1 with n = 1, . . . , MR are exactly solv-
able [243]. The solution, i.e. the position of the n−th bead rn, is conveniently
expressed in terms of normal coordinates, the so-called Rouse modes XR

p with
p = 0, . . . , MR − 1, as:

rn(t) = XR
0 (t) + 2

MR−1

∑
p=1

XR
p (t) cos

[
(n − 1/2)pπ

MR

]
. (B.4)

The Rouse modes may be conversely written as:

XR
p (t) =

1
MR

MR

∑
n=1

rn(t) cos
[
(n − 1/2)pπ

MR

]
(B.5)

The static cross-correlations between the Rouse modes vanish. In particular,
for p > 0

〈XR
p · XR

q 〉 = δpq
a2

R

8MR sin2(pπ/2MR)
(B.6)

∼= δpq
MR a2

R

2π2 p2 , p/MR ≪ 1 (B.7)

For p, q = 0 one finds:

〈|XR
0 (t)− XR

0 (0)|2〉 = 6
kBT

MRζ
t (B.8)

which describes the diffusive motion of the center of mass RCM = XR
0 . For

p > 0, having defined the normalized self-correlation function of the p-th
Rouse mode as:

φR
p (t) =

〈XR
p (t) · XR

p (0)〉
〈|XR

p |2〉
(B.9)

The Rouse model predicts the exponential decay φR
p (t) = exp

[−t/τp
]

with
characteristic time:

τp =
ζa2

R

12kBT sin2(pπ/2MR)
(B.10)

∼= ζa2
R

3π2kBT

M2
R

p2 , p/MR ≪ 1 (B.11)



Appendix C

The shoving model

The starting idea of the shoving model is that, due to the strong intermolecular
repulsion, rearrangement occurring at constant region volume requires very
high energy. Because of this, it is more favorable that rearranging molecules
spend some energy on shoving aside the surrounding molecules. Let us as-
sume that the rearranging region is a sphere whose radius increases by ∆r at
the transition. If the surrounding liquid is regarded as an elastic solid on the
short time scale of a flow event, the energy cost for the expansion is A(∆r)2.
The energy barrier is some function f (∆r). Minimizing the total energy leads
to 2A∆r + f ′(∆r) = 0. The ratio between the shoving work and the barrier
is λ = A(∆r)2/ f (∆r) = −(1/2)d ln f /d ln ∆r. Due to strong repulsion, the
logarithmic derivative of f (∆r) is much larger than one, so the shoving work
is dominant and the “inner" contribution to the activation energy may be ig-
nored.

The shoving work can be calculated assuming that during a flow event the
surrounding liquid behaves as an elastic isotropic solid. If V is the volume
of the rearranging region and ∆V << V. The activation energy is the elastic
energy stored in the surroundings after the region volume has expanded to
V + ∆V. The strain tensor uij is defined

uij =
1
2

(
∂iuj + ∂jui

)
(C.1)

where uk is the k-th component of the elastic displacement u. For an isotropic
solid the bulk and shear moduli K and G are defined via the relation between
the stress tensor σij and the strain tensor uij:

σij = Kullδij + 2G

(
uij −

1
3

δijull

)
(C.2)

where the sum over repeated indices is implied. The equation for the static
equilibrium is:

∂iσij = 0 (C.3)

The combination of eqs C.1, C.2 and C.3 leads to
(

K +
1
3

G

)
∇ (∇ · u) + G∇2u = 0 (C.4)
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For a purely radial displacement ∇× u = 0 and thus, via a well known vector
identity, ∇2u = ∇ (∇ · u). Substituting in eq C.4, one finds

∇ (∇ · u) = 0 (C.5)

This leads to ∇ · u = C1, where C1 is a constant, and, by solving, the radial
displacement ur = C2r−2 + C1r/3 is found. As the latter term diverges as
r → ∞, then C1 = 0 and ∇ · u = 0, i.e., there is no compression of the
surroundings during the flow event.

If R is the radius of the region before the expansion and ∆R ≪ R is the
change in radius, then

ur = ∆R
R2

r2 (r > R) (C.6)

In an elastic solid the density of energy is given by (1/2)Ku2
ll +G(uij − (1/3)δijull)

2.
Since ull = 0, the energy density reduces to Guijuij = G(u2

rr + u2
φφ + u2

θθ) (all
mixed terms vanish because the displacement is purely radial). Substituting
eq C.6 in the expression of the strain vector in polar coordinates, one get for
the energy density 6G(∆R)2R4r−6. Thus, the elastic energy is

∫ ∞

R
6G(∆R)2R4r−6 (4πr2)dr = 8πG(∆R)2R (C.7)

One introduce the characteristic volume

Vc =
2
3
(∆V)2

V
(C.8)

where V = 4πR3/3 and ∆V = 4πR2∆R. Then the activation energy is given
by

∆E(T) = G∞(T)Vc (C.9)

where the assumption G ≡ G∞(T). For the relaxation time one have

τ = τ0 exp
(

G∞(T)Vc

kBT

)
(C.10)

When eq C.10 is compared to experiment, it is usually assumed that Vc is
temperature independent.
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