FACULTY OF ENGINEERING

DEPARTMENT OF MATERIALS, TEXTILES AND CHEMICAL ENGINEERING

Alexandra Bouriakova¹, Jeriffa De Clercq², Joris W. Thybaut¹*

¹ Laboratorium for Chemical Technology, Technologiepark 914, B-9052 Gent ² Industrial Catalysis and Adsorption Technology, Valentin Vaerwyckweg 1, B-9000 Gent * Joris.Thybaut@UGent.be

December 11-15, 2017

4TH INTERNATIONAL CONGRESS ON CATALYSIS FOR **BIOREFINERIES** Lyon, France

FROM FUNDAMENTAL INSIGHTS TO ECONOMIC VIABILITY: **RECOVERING NATURAL PRODUCTS FROM DEODORIZER DISTILLATES**

A RICH SOURCE OF HEALTH BENEFICIAL COMPONENTS

 \mathcal{T}

The complex mixture includes major constituents such as FFA, glycerides, esters and high value "minor" components i.e. tocopherols, sterols, squalene, with applications in food, cosmetics and pharmaceuticals.

brought to you by

11111015	10.27 WU/0	UJ.30 WL/0
glycerides	24.16 wt%	13.60 wt%
FFA	56.02 wt%	20.44 wt%
FAME	1.55 wt%	2.06 wt%

10 77 14/40/

The enrichment of minor components by extraction of FAEE in supercritical CO_2 (sc- CO_2) after (trans)esterification of the glycerides/free fatty acids in the distillate.

minorc

EXPERIMENTAL INVESTIGATION

sc-esterification

plug flow reactor 44 experiments with 💓 ODD $\tau = 7.5 - 60 \text{ min}$ $\Gamma = 523 - 573 \text{ K}$ P = 7.5 – 15 MPa $EtOH/ODD = 0.3 - 1.5 \text{ g g}^{-1}$

ESTERIFICATION MODELING $FFA + EtOH \xrightarrow{k_1} FAEE + H_2O$ $TG + EtOH \xrightarrow{k_2} DG + FAEE$

 $DG + EtOH \xrightarrow{k_3} MG + FAEE$

 $MG + EtOH \xrightarrow{k_4} GLY + FAEE$

	A (10 ⁻⁸ m ³ mol ⁻¹ s ⁻¹)	E _a (kJ mol ⁻¹)
k ₁	7.91± 1.51	35.6 ± 25.9
k ₂	37.3 ± 4.50	24.7 ± 16.4
k ₃	23.0 ± 5.99	61.6 ± 38.6
k ₄	41.3 ± 21.1	160 ± 103

 $6700 w/t^{9}$

statistically significant model \checkmark F_{test} = 5.38 10⁴ > F_{tab} = 3.84 statistically significant & physically relevant parameters no correlations between parameters

T = 313 - 343 KP = 10 – 15 MPa CO_{2} /feed = 1 – 4 g g⁻¹

- $\checkmark E_{a,TG \rightarrow DG} < E_{a,DG \rightarrow MG} < E_{a,MG \rightarrow GLY}$
 - \rightarrow consecutive transesterification is not favored
- model reproduces experimental trends

COMMERCIAL SCALE PROCESS DESIGN

- higher FAEE formation with 📀 ODD vs. higher minor content in 🥌 ODD
 - depending on which \checkmark application is favored

azeotrope EtOH has a lower waste products ("others")

CONCLUSIONS

- The proposed bimolecular model is capable in predicting the experimental trends with statistically significant and physically relevant parameters.
- The same unit can be used for the esterification and extraction of different ODD or ethanol feedstock.
- Soybean ODD is economically more interesting due to the higher minor content.

FUTURE WORK

- Perform experiments with alternative alcohols (e.g. butanol) and investigate the influence on the model
- Optimization of sc-CO₂ extraction based on the experimental data acquired from a bench scale setup.

This presentation reports work undertaken in the context of the project "SUCCeSS, SUperCritiCal Solutions for Side-stream Valorization" of CATALISTI.