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Abstract 

Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus that is widespread in cattle. Ex vivo models with bovine genital 
tract mucosa explants were set up to study molecular/cellular BoHV-4-host interactions. Bovine posterior vagina, cer-
vix and uterus body were collected from cows at two stages of the reproductive cycle for making mucosa explants. 
The BoHV-4 replication kinetics and characteristics within the three different mucosae of animals in the follicular and 
luteal phase were assessed by virus titration. The number of plaques, plaque latitude and number of infected cells 
were determined by immunofluorescence. BoHV-4 replicated in a productive way in all genital mucosal tissues. It 
infected single individual cells in both epithelium and lamina propria of the genital mucosae at 24 hours post-inocu-
lation (hpi). Later, small BoHV-4 epithelial plaques were formed that did not spread through the basement membrane. 
50% of the number of BoHV-4 infected cells were identified as cytokeratin+ and CD172a+ cells in the three parts of 
the genital tract at 24 hpi. Upon a direct injection of genital explants with BoHV-4, fibrocytes became infected, indi-
cating that the unidentified 50% of the infected cells are most probably fibrocytes. In this study, in vivo-related in vitro 
genital tract models were successfully established and the early stage of the pathogenesis of a genital infection was 
clarified: BoHV-4 starts with a productive infection of epithelial cells in the reproductive tract, forming small foci fol-
lowed by a non-productive infection of surveilling monocytic cells which help BoHV-4 to invade into deeper tissues.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus 
belonging to the genus rhadinovirus. It has been related 
with several diseases in cattle. BoHV-4 was first isolated 
from bovine with respiratory problems and keratocon-
junctivitis in 1963 in Hungary [1]. Since then, the virus 
has been isolated from cattle with respiratory disease, 
conjunctivitis, metritis, ulcerative mammillitis, der-
matitis and abortion in Europe, North America, Africa 
and Asia [2–6]. However, it has also been isolated from 
healthy cattle [7]. Up till now, little is known on how 
BoHV-4 may cause disease in bovine.

Uterine infections can cause significant economic 
losses in cattle industry. Although most causative agents 
have been identified as bacteria, BoHV-4 has been con-
sidered as a possible (co-)factor in post-partum metritis 
[8]. BoHV-4 is widespread in bovine and remains latent 
and asymptomatic in the vast majority of infected indi-
viduals. BoHV-4 persists mainly in peripheral blood leu-
kocytes, the nervous system and lymphoid organs [9, 10]. 
Until now, a lot of work has been done to acquire more 
information on the viral molecular biology of BoHV-
4. There are some reports on viral entry [11–13] and 
immune evasion [14] of BoHV-4. In addition, the con-
struction of a BoHV-4 bacterial artificial chromosome 
(BAC) has provided an efficient tool for the study of the 
viral molecular biology of BoHV-4 [15–19]. Jacca et  al. 
forwarded a hypothesis about the pathogenesis of BoHV-
4: bovine macrophages are latently infected with BoHV-4 
and upon reactivation, bystander endometrial stromal 
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cells become infected [21]. This replication in the endo-
metrium may cause inflammation. Once there, BoHV-4 
might initiate replication within macrophages and spread 
to endometrial stromal cells, which are highly susceptible 
for BoHV-4 [20, 21]. However, data concerning the early 
pathogenesis of BoHV-4 at the genital tract are scarce. 
One of the biggest obstacles in getting better insights is 
the lack of in vivo-related in vitro models. Therefore, we 
developed in vitro models to examine the early BoHV-4 
replication in the genital tract.

Materials and methods
Virus strain
The BoHV-4 strain V.test was used in this study, which 
belongs to the European clade of BoHV-4 strains. It was 
originally isolated from an infertile bull’s testicle [17]. The 
strain V.test had previously received an unknown number 
of passages. The virus was passaged two times in Madin-
Darby Bovine Kidney (MDBK) cells in our laboratory.

Animals
Healthy genital tissues (posterior vagina, cervix and 
uterus body) from cows of 2–4 years old were collected 
in a local slaughterhouse. In addition, blood was col-
lected to determine BoHV-4 specific neutralizing anti-
bodies with a complement-dependent seroneutralization 
(SN)-test and blood progesterone (P4). The stage of the 
reproductive cycle was determined by a morphological 
analysis of the ovaries and the blood progesterone (P4) 
level.

Preparation of air–liquid interface tissue culture
From three cows in the luteal phase and three cows in 
the follicular phase, posterior vagina, cervix and uterus 
body were collected at the local abattoir immediately 
after slaughter. The cultivation protocol of bovine geni-
tal mucosa was performed as described before [22–24]. 
In brief, genital tissues of cows were immediately placed 
in phosphate buffered saline (PBS), supplemented with 
1000  U/mL penicillin (Continental Pharma, Puurs, Bel-
gium), 1  mg/mL streptomycin (Certa, Braine l’Alleud, 
Belgium), 1 μg/mL gentamycin (Invitrogen, Paisley, UK) 
and 5  μg/mL fungizone (Bristol-Myers Squibb, New 
York, USA) on ice for transportation to the laboratory. 
The mucosae from vagina, cervix and uterus body were 
stripped from the underlying layers. Afterwards, tis-
sues were cut into small equal square pieces (on average 
25  mm2). Finally, genital mucosa was placed on steri-
lized gauzes in 6-well plates for culture. The explants 
were cultured in serum-free medium [50% DMEM (Inv-
itrogen)/50% Ham’s F-12 Gluta-MAX (Invitrogen)], 
supplemented with 100 U/mL penicillin (Continental 
Pharma), 0.1 mg/mL streptomycin (Certa) and 1 μg/mL 

gentamycin (Invitrogen) for up to 96  h (37  °C and 5% 
CO2).

Evaluation of tissue viability
All tissues were monitored by measuring the occurrence 
of apoptosis to determine the viability during in  vitro 
culture. The In  Situ Cell Death Detection Kit (Roche 
Diagnostics, Switzerland) based on terminal deoxynucle-
otidyl transferase dUTP nick end-labeling (TUNEL) was 
used to evaluate the DNA fragmentation. The test was 
performed according to the manufacturer’s guidelines. 
TUNEL-positive cells were counted from five randomly 
chosen fields of 100 cells in the epithelium as well as in 
the lamina propria at 0, 24, 48, 72 and 96 h of culture. All 
stainings were analyzed with a TCS SPE confocal system 
(Leica Microsystems GmbH, Wetzlar, Germany).

Virus inoculation
After 24  h cultivation of explants, the inoculation was 
performed. Genital explants were taken from their gauze 
and placed in a 24-well plate. After 2 washings with PBS, 
explants were either submerged in 0.5  mL of BoHV-4 
containing medium (107 TCID50/mL) and incubated for 
1 h (37 °C, 5% CO2) or mock inoculated. Before explants 
were placed back on the gauze, they were washed three 
times with PBS. The inoculated tissues were collected 
at 0, 24, 48 and 72  hpi. In addition, explant cultivation 
medium was also collected for virus titration. All gath-
ered explants were embedded in cryoprotection medium 
[Methocel®, Fluka (Sigma)] and then frozen at −70 °C.

Replication kinetics of BoHV‑4 in the mucosa of different 
parts of the genital tract
Virus titration
Explant cultivation medium was collected at 0, 24, 48 h 
and 72  hpi from BoHV-4 inoculated and mock inocu-
lated explants for virus titration. Briefly, MDBK cells were 
inoculated for 1  h (37  °C, 5% CO2) with serial tenfold 
dilutions (100 to 10−7 in quadruplicate) of BoHV-4 and 
mock inoculated explant medium. Afterwards, MDBK 
cells were observed daily for cytopathic effect (CPE) for 
7–9 days.

Evaluation of primary viral replication in the genital mucosae
At 0, 24, 48 h and 72 hpi, mucosa explants were collected. 
To evaluate the lateral spread of BoHV-4 in the epithe-
lial cell layer and its penetration in the connective tissue 
underneath the basement membrane, a double staining 
was performed. Cryosections (20  μm) of the different 
explants were made, paraformaldehyde fixed for 15 min 
at 4 °C and then permeabilized with PBS containing 0.1% 
Triton X-100 (PBST) for 10  min. After three washings, 
a primary mouse monoclonal IgG2a antibody (Mab35) 
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against the glycoprotein complex gp6/gp10/gp17 of 
BoHV-4 (1:1000 in PBS) was used [25–27]. Next, a sec-
ondary goat anti-mouse IgG2a Alexa fluor® 488 (Invitro-
gen) (4  μg/mL) was used. Analyses of IF stainings were 
performed by TCS SPE confocal system (Leica Microsys-
tems GmbH, Wetzlar, Germany). Thereafter, the plaque 
latitude was evaluated using the line-tool function of the 
software program ImageJ.

Quantification and characterization of BoHV‑4 infected cells
In order to identify the single BoHV-4 infected cells early 
after inoculation, double immunofluorescence stainings 
were performed using different cell surface markers. At 
least 20 cryosections (20 μm) were made for each marker 
of both BoHV-4 and mock inoculated genital mucosae. 
Cryosections were fixed in methanol (−20 °C, 100%) for 
20 min and washed in PBS. Afterwards, they were incu-
bated with a primary mouse monoclonal IgG2a antibody 
(Mab35) against BoHV-4 for 1  h at 37  °C, followed by 
an incubation with a secondary goat anti-mouse IgG2a 
Alexa fluor® 594 (Invitrogen) (4  μg/mL). Afterwards, 
a primary monoclonal mouse IgG1 antibody DH59B 
(VMRD Inc., Pullman) or monoclonal mouse IgG1 anti-
human cytokeratin (Dako, Glostrup, Denmark) (1.72 μg/
mL) with a secondary goat anti-mouse IgG1 FITC® 
(Abcam, Cambridge, UK) (1  μg/mL) were used to stain 
monocytes/macrophages/dendritic or epithelial cells, 
respectively. A polyclonal sheep anti-bovine IgM labeled 
with FITC® (AbD Serotec) (6  μg/mL) was used to stain 
B lymphocytes. A primary monoclonal rat IgG1 anti-
human CD3 (AbD Serotec, Biorad-laboratories, Kidling-
ton, UK) (10  μg/mL) and secondary goat anti-rat Alexa 
fluor® 488 (Invitrogen) (2  μg/mL) were used to stain T 
lymphocytes. Moreover, a primary monoclonal mouse 
IgG1 anti-vimentin (AbD Serotec) (1:100 in PBS) with a 
secondary goat anti-mouse IgG1 FITC® (Abcam, Cam-
bridge, UK) (1 μg/mL) were used to detect cells of mes-
enchymal origin. All incubation steps were performed at 

37  °C for 1  h followed by three washings. Finally, Hoe-
chst 33342 (Invitrogen) (10 μg/mL) was used in the last 
step to stain cell nuclei at 37 °C for 10 min. After washing 
with PBS, the cryosections were mounted with glycerin-
DABCO and then analyzed by TCS SPE confocal system 
(Leica Microsystems GmbH, Wetzlar, Germany).

BoHV‑4 replication in the genital submucosa upon direct 
injection
In order to investigate if fibrocytes can be infected by 
BoHV-4 in the genital submucosa, a direct injection 
was performed. Explants were injected with 0.2  mL 
containing 2 ×  107 TCID50 BoHV-4 mixed with 0.2  μL 
carboxylate-modified microspheres [FluoSpheres®, 
0.2 μm, red fluorescent [580/605] (Invitrogen no. F8810)] 
or PBS alone [28]. A 1  mL syringe and a thin needle 
(0.9 ×  25  mm) were used. The explant was further cul-
tured at 37 °C and then collected at 72 hpi. Cryosections 
(20  μm) were made. The above virus staining protocol 
was used. Analysis was performed by TCS SPE confocal 
system.

Statistical analysis
Data were statistically processed by Graphpad Prism 
5.0 (GraphPad Software, Inc., San Diego, CA, USA) for 
analysis of variance (one-way ANOVA). The data are rep-
resented as means with standard deviation (SD) of three 
independent experiments. Results with P values of ≤ 0.05 
were considered significant.

Results
Tissue viability
The percentages of TUNEL positive cells in the differ-
ent tissues at different time points of culture are shown 
in Table  1. During 96  h of in  vitro culture, no signifi-
cant changes were found in the occurrence of apoptosis 
in the epithelium and lamina propria (Additional file 1). 
The percentage of apoptotic cells in the epithelium of all 

Table 1  Occurrence of apoptosis in epithelium and lamina propria as a parameter for the effect of in vitro culture on the 
viability of bovine genital mucosae explants

Values are given as mean ± SD.

Tissue Layer % of TUNEL-positive cells at …h of cultivation

0 24 48 72 96

Vagina Epithelium 0.8 ± 0.8 1.0 ± 0.7 1.4 ± 1.3 1.8 ± 1.3 2.0 ± 1.6

L. propria 1.2 ± 0.8 2.6 ± 1.8 4.0 ± 1.6 5.4 ± 2.1 7.8 ± 2.4

Cervix Epithelium 0.6 ± 0.5 2.2 ± 1.3 2.0 ± 1.2 2.4 ± 1.1 2.8 ± 1.4

L. propria 2.6 ± 1.1 6.2 ± 2.4 6.6 ± 2.9 7.6 ± 2.9 8.6 ± 2.3

Uterus Epithelium 0.4 ± 0.4 0.8 ± 0.4 1.2 ± 1.2 2.3 ± 1.1 1.8 ± 1.4

L. propria 0.8 ± 0.3 1.6 ± 0.6 2.6 ± 1.8 4.6 ± 2.8 4.8 ± 2.2



Page 4 of 11Yang et al. Vet Res  (2017) 48:83 

tissues ranged from 0.4 ± 0.4 (0 h) to 2.8 ± 1.4 (96 h), and 
in the lamina propria from 0.8 ±  0.3 (0  h) to 8.6 ±  2.3 
(96 h).

Determination of extracellular virus titers (virus 
production)
The supernatants of inoculated mucosa explants were 
collected and titrated at different time points in order 
to get insights in virus production and shedding. The 
virus titer curves are given in Figure  1. The virus titers 
increased over time from 0 h to 72 hpi in all genital tract 
tissues. A similar replication was observed for the cervix 
and uterus explants from animals in luteal and follicular 
phase. Concerning the vagina mucosa, although there are 
some differences between the luteal and follicular phase, 
no significant difference was observed.

BoHV‑4 replication pattern
BoHV-4 positive cells were visible at all collected time 
points post inoculation. At 24  hpi, single positive cells 
or clusters of a few cells were observed in the epithe-
lium and lamina propria. BoHV-4 positive plaques were 
detected in the epithelium at 48 and 72 hpi in all the gen-
ital tract mucosa explants and at both reproductive cycle 
phases (Figure 2).

For the luteal phase, the average number of plaques in 
explants from vagina, cervix and uterus was 4.7, 5.3 and 
3.7/100 cryosections at 48 h and 8, 10 and 6.7/100 cryo-
sections at 72 hpi, respectively. The BoHV-4-induced epi-
thelial plaques significantly increased in plaque latitude 
over time in all genital tracts. The viral plaque latitude 
in the vaginal mucosa increased significantly over time 
from 48 (112.4 ± 26.6 μm) to 72 hpi (178.3 ± 57.2 μm), 
in the cervix mucosa from 48 (94.0  ±  16.5  μm) to 
72  h (159.4  ±  42.1  μm) and in the uterus from 48 
(99.2 ± 22.6 μm) to 72 h (145.7 ± 45.8 μm). The number 
of single positive cells increased significantly over time 
from 0 to 72 hpi in the different parts of genital mucosa. 
At 72 h, the number of single positive cells in vagina and 
cervix was 124 and 137/10  mm2 mucosa, respectively, 
which was significantly higher than that in the uterus 
body (75/10 mm2 mucosa).

For the follicular phase, the number of plaques in 
vagina, cervix and uterus body was 3.3, 4.7 and 3/100 
cryosections at 48  h and 7.7, 7 and 5.3/100 cryosec-
tions at 72 hpi, respectively. The viral plaque latitude in 
the vaginal mucosa increased significantly over time 
from 48 (90.7 ±  16.2  μm) to 72  hpi (137.5 ±  44.0  μm), 
in the cervix mucosa from 48 (84.3 ±  20.5 μm) to 72 h 
(128.4  ±  38.0  μm) and in the uterus mucosa from 48 
(82.3 ±  17.5  μm) to 72  h (130.3 ±  40.9  μm). The num-
ber of single positive cells in the vagina was 152/10 mm2 
mucosa, which was significantly higher than that in the 
uterus (51/10 mm2 mucosa) at 24 hpi. No significant dif-
ference was detected between 48 and 72 hpi.

BoHV-4-induced plaques did not cross the basement 
membrane (BM) of all tissues and both phases at any 
time point post inoculation (Figure 3).

The number of plaques, plaque latitude and infected 
cells in the genital tract were compared between animals 
in the follicular phase and animals in the luteal phase. The 
number of plaques in the luteal phase was slightly but not 
significantly higher than that in the follicular phase. The 
plaque latitude in the luteal phase was also higher but not 
significantly higher than that in the follicular phase.

BoHV‑4 cell tropism at 24 h after inoculation
To better understand the cell tropism of BoHV-4 after 
inoculation, immunofluorescent double stainings were 
performed on tissues of the genital tract from the three 
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Figure 1  Virus production and shedding of BoHV-4-inoculated 
genital explants from animals in the luteal (A) and follicular (B) 
phase and BoHV-4 inactivation curves (C) at 37 °C in explant 
medium. The horizontal dotted line represents the detection limit for 
the titration assay.
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different animals in the luteal phase at 24  h (Figure  4). 
The majority of infected cells in the epithelium were 
epithelial cells. The percentage of infected cells that 
were identified as cytokeratin+ epithelial cells in vagina, 
cervix and uterus body was 88.9 ±  8.6, 85.7 ±  9.8 and 
79.5 ±  13.3%, respectively. A minority of infected cells 
were characterized as CD172a+ monocytic cells in 
the epithelium. In the lamina propria of vagina, cervix 
and uterus 83.2 ±  16.4, 71.3 ±  12.1 and 79.0 ±  10.5% 
of the infected cells were vimentin+ and 55.0  ±  16.2, 
38.7 ± 22.8 and 46.2 ± 21.9% infected cells were found to 
be CD172a+. Neither BoHV-4 infected B nor T lympho-
cytes were observed at 24 hpi (Table 2).

BoHV‑4 replication in the genital submucosa upon direct 
injection
After injection of a mixture of carboxylate-modified 
microspheres and BoHV-4, an immunofluorescent stain-
ing was performed on different genital mucosae from 
animals in the luteal phase to detect viral replication in 
the connective tissue at 72  hpi (Figure  5). At the injec-
tion site (red beads), plaques of BoHV-4 infected cells 
(green) were found in the submucosa of vagina, cervix 
and uterus, which indicates that the virus can easily repli-
cate in the fibrocytes underneath the epithelium.

Discussion
Until now, a lot of work has already been done on the 
pathogenesis of gammaherpesviruses. However, data 
concerning the primary replication and dissemination at 
the host mucosal entry ports are scarce. Getting insights 
into how the virus behaves at its primary replication site 
is important because it can provide methods for pre-
vention and treatment of the viral infection in a rational 
way. Previously, a murine in vivo model was established 
which allowed to study the sexual transmission of Murid 
Herpesvirus 4 (MuHV-4). With this model, Francois 
et  al. were able to demonstrate that MuHV-4 is geni-
tally excreted after latency establishment in intranasally 
infected female mice. Additionally, efficient virus trans-
mission was observed from females to males following 
sexual contact and was mediated by the envelope glyco-
protein gp150 of MuHV-4 [29, 30]. In this study, tissues 
from vagina, cervix and uterus body of cows in the luteal 
and follicular phase were used to establish bovine genital 
mucosa explants in order to examine the early events of 
the pathogenesis of a BoHV-4 infection.

Single BoHV-4 infected cells or small clusters were 
already present at 24 hpi and the majority of the infected 
cells were of epithelial origin. Only from 48 hpi, BoHV-4 
positive plaques were visible in the epithelium. BoHV-4 
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Figure 2  Evolution of plaque number, plaque latitude and number of single BoHV-4 infected cells in both epithelium and lamina 
propria of genital tract mucosa explants from animals in the luteal (A) and follicular (B) phase. All data represent means + SD of triplicate 
independent experiments and P values for statistical significance. Asterisks indicate statistically significant differences (≤ 0.05).
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positive plaques did not cross the basement membrane, 
which is in contrast with the bovine alphaherpesvirus, 
bovine herpesvirus 1 (BoHV-1). Previous work in our 
laboratory has shown that BoHV-1 is capable of drilling 
its way through the basement membrane in an aggressive 

way. Likewise, other alphaherpesviruses, such as herpes 
simplex virus-1, pseudorabies virus and feline herpesvi-
rus-1 exhibit also a plaquewise spread through the BM of 
genital mucosa explants [31–34]. When compared with 
BoHV-1, BoHV-4 replicated slower in genital explants.

Figure 3  Evolution of BoHV-4 infection in bovine genital mucosa explants at 0, 24, 48 h and 72 hpi. Representative micrographs of 
BoHV-4 replication at 0, 24, 48 h and 72 hpi in the genital mucosa from animals in the luteal (A) and follicular (B) phase. Red represents the base-
ment membrane and green represents BoHV-4.
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Figure 4  Cell tropism of BoHV-4 at 24 hpi in different parts of the genital mucosa [vagina (A), cervix (B) and uterus (C)] from animals 
in the luteal phase. The top row shows BoHV-4 positive cells (Alexa fluor® 594) within the epithelium (dotted line = basement membrane). The 
middle row shows respectively cytokeratin, CD172a and Vimentin expression (FITC). The bottom row represents merges of the rows above.
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Concerning the BoHV-4 replication in the genital tract 
of animals in the follicular phase with that of animals in 
the luteal phase, the number of plaques and plaque lati-
tude in the luteal phase were slightly larger than that in 
the follicular phase. This might imply that during the 
luteal phase the genital tract is more susceptible for 
BoHV-4 than that during the follicular phase. This could 
be due to a less effective immunity. Indeed, recent stud-
ies indicate that progesterone reduces the number of 
immune cells in the genital tract and inhibit cytokine 

production by blood mononuclear cells [35–37]. Thus, 
the higher the progesterone concentration, the stronger 
the inhibition of the innate immune response. Proges-
terone is significantly higher during the luteal phase 
than during other phases of the reproductive cycle, 
which might explain the more extensive infection of 
BoHV-4 in genital tract explants as a result of the lower 
innate immune response. Multiple studies have shown 
that female sex hormones have a profound effect on the 
susceptibility to genital herpes infection [29, 38–40]. 

Table 2  Identification of BoHV-4 infected cells at 24 h post inoculation in genital tissues

Tissue Zone Marker-positive BoHV-4-infected individual cells in 20 cryosections/total number of infected cell 
(%)

Cytokeratin+ CD172a+ IgM+ CD3+ Vimentin+

Vagina Epithelium 88.9 ± 8.6 5.1 ± 3.8 0.0 ± 0.0 0.0 ± 0.0 8.3 ± 2.1

L. propria 0.0 ± 0.0 55.0 ± 16.2 0.0 ± 0.0 0.0 ± 0.0 83.2 ± 16.4

Cervix Epithelium 85.7 ± 9.8 10.3 ± 5.4 0.0 ± 0.0 0.0 ± 0.0 12.8 ± 6.1

L. propria 0.0 ± 0.0 38.7 ± 22.8 0.0 ± 0.0 0.0 ± 0.0 71.3 ± 12.1

Uterus Epithelium 79.5 ± 13.3 15.4 ± 12.6 0.0 ± 0.0 0.0 ± 0.0 10.6 ± 4.3

L. propria 0.0 ± 0.0 46.2 ± 21.9 0.0 ± 0.0 0.0 ± 0.0 79.0 ± 10.5

Figure 5  BoHV-4 replication in bovine genital mucosa explants at 72 h after direct injection in the lamina propria. Red represents the 
FluoSpheres and green indicates the BoHV-4 infected cells.
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Francois et al. examined the MuHV-4 shedding from the 
vagina and revealed that this excretion was dependent 
on the presence of estrogens [29]. In contrast, the pres-
ence of progesterone has been shown to increase the 
susceptibility of the genital tract to herpes simplex virus 
type 2 (HSV-2) infection [41]; the presence of estrogen 
decreased the risk of HSV infection in the female geni-
tal tract [42–44]. The present study revealed a slight dif-
ference in viral infection of explants obtained during the 
luteal and follicular phase of the menstrual cycle, how-
ever, the observed difference was not significant. Because 
the genital explants were not treated with hormones dur-
ing the in  vitro cultivation, the effects may have been 
reduced.

The number of single infected cells in the uterus was 
significant lower than that in the vagina and cervix. This 
result indicates that BoHV-4 infection in the uterus 
might be less efficient than in the vagina and cervix. 
According to the staining results, the number of mono-
cytic cells in vagina and cervix is significantly higher than 
that in the uterus (data not shown). The smaller popula-
tion of monocytic cells in the uterus might explain the 
lower infection.

Although BoHV-4 induced epithelial plaques do not 
cross the basement membrane, several single positive 
cells were found in the lamina propria, underneath the 
basement membrane. To identify which cells are infected, 
a double staining for cell type and virus was performed. 
The results showed that the majority of BoHV-4 posi-
tive cells were vimentin+, of which half of them were 
CD172a+. The other half did not consist of T- and B-lym-
phocytes. To further investigate whether fibroblasts 
could be infected, the explants were directly injected 
with BoHV-4. The results showed that viral plaques were 
present at the injection sites of lamina propria at 72 hpi, 
which demonstrated that the fibrocytes are fully suscepti-
ble for BoHV-4 replication.

Interestingly, Gaspar et al. recently found and proposed 
that MuHV-4 firstly infects epithelial cells, then myeloid 
cells and only afterwards B cells by using a homologous 
mouse model [45, 46]. B cell infection for MuHV-4 is 
described to be a late event in the pathogenesis. Indeed, 
Frederico et al. identified a binding block to B cell infec-
tion that was overcome by co-culture with virus propa-
gated in myeloid cells [46]. Nevertheless, in vivo studies 
have shown that in persistently/latently infected cattle 
and rabbits especially splenic cells which are located in 
the marginal zone and belong to the non-T and non-B 
cell compartment, harbor BoHV-4. This indicates that 
cells of the monocyte/macrophage lineage are the most 
plausible site of persistent/latent BoHV-4 infection [12, 

14, 47–49]. In support of this, Donofrio et al. have shown 
that cells of the monocyte/macrophage lineage support a 
BoHV-4 persistent infection [50].

In conclusion, the present study demonstrates that 
BoHV-4 easily infects the genital tract and may be trans-
mitted in genital secretions. Primary replication starts 
in epithelial cells. Virus spreads laterally which results in 
the formation of small viral plaques. Virus is not able to 
directly cross the basement membrane; instead it hijacks 
CD172a+ monocytic cells. When BoHV-4 is produced in 
connective tissue, fibrocytes may become infected and 
may eventually lead to pathological processes. To our 
knowledge, this is the first report describing the invasion 
mechanism in genital explants. At present, both BoHV-4 
and MuHV-4 are accessible experimental models for 
the hard to study gammaherpesviruses such as human 
Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associ-
ated herpesvirus (KSHV).
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