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Thermal fluctuations play an increasingly important role in micromagnetic research
relevant for various biomedical and other technological applications. Until now, it was
deemed necessary to use a time stepping algorithm with a fixed time step in order to
perform micromagnetic simulations at nonzero temperatures. However, Berkov and
Gorn have shown in [D. Berkov and N. Gorn, J. Phys.: Condens. Matter,14, L281,
2002] that the drift term which generally appears when solving stochastic differential
equations can only influence the length of the magnetization. This quantity is however
fixed in the case of the stochastic Landau-Lifshitz-Gilbert equation. In this paper, we
exploit this fact to straightforwardly extend existing high order solvers with an adaptive
time stepping algorithm. We implemented the presented methods in the freely available
GPU-accelerated micromagnetic software package MuMax3 and used it to extensively
validate the presented methods. Next to the advantage of having control over the error
tolerance, we report a twenty fold speedup without a loss of accuracy, when using
the presented methods as compared to the hereto best practice of using Heun’s solver
with a small fixed time step. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5003957

I. INTRODUCTION

Micromagnetic simulations of systems at nonzero temperatures are an increasingly important
tool to numerically investigate magnetic systems relevant for technological applications. Histor-
ically, the foundations for a description of thermal fluctuations in micromagnetic systems were
laid by Brown when he investigated the thermal switching of single-domain particles.2,3 Today,
these particles are used in promising biomedical applications such as disease detection and tumor
treatment.4–7 In order for these applications to be successful, a full understanding of the parti-
cles’ thermal switching is important. For example, many characterization procedures8–14 require
this knowledge to accurately determine the particles’ properties. Also diagnostic particle imag-
ing,15–23 and therapeutic applications24,25 rely on models of the particles’ thermal switching. Cur-
rently, these models are often based on approximations that not always take into account that,
e.g. the magnetization state in large particles can deviate from a uniform magnetization,26 or the
particles might interact with each other via the magnetostatic interaction.27 In such cases, the
analytical models do not accurately reflect the true magnetization dynamics of the particles, and
one has to rely on numerical models, the most accurate of which are based on a micromagnetic
approach.28–34
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Next to their relevance in magnetic nanoparticle research, thermal fluctuations also play an
important role in (exchange-coupled) continuous magnetic systems. One technologically relevant
example is domain wall motion through a magnetic nanostrip, proposed as the operating principle for
the racetrack memory35–37 and for logic devices.38–42 Recently, even smaller magnetization structures,
i.e. skyrmions, have been proposed in both memory43 and logic devices.44 As the information carriers
in these devices become smaller, the influence of thermal fluctuations further grows in importance:
at such small spatial scales, the thermal stability of the bits themselves starts to become a relevant
research question.45 At the same time, their thermal depinning becomes an inherently stochastic
process.46 When numerically investigating domain wall motion at low driving forces, the dynamics
can only be captured by considering the interplay between thermal fluctuations, the disorder energy
landscape of the material and the driving forces. The resulting motion is then called domain wall
creep.47 Until now, full micromagnetic simulations are still prohibitively expensive in all but the
smallest of such systems.48

Thermal fluctuations are also critical to the design of magnetic storage elements. They do not
only determine the data retention limit of any magnetic storage system, but can also influence the
read and write process of a MRAM cell. So estimation of read and write errors requires stochastic
micromagnetic modeling of the spin valve during the application of the spin-torque current. This very
challenging because of large time scales that are involved.49

There exist different theoretical approaches, each with their respective advantages and disadvan-
tages, to study thermally induced magnetization dynamics.32,50 Following Brown,3 it is possible to
derive the Fokker-Planck equation describing the time-dependent probability distribution of the mag-
netization directions of an ensemble of uniformly magnetized magnetic nanoparticles.3,32 However,
only in the simplest cases, e.g. when the particles’ anisotropy axes are aligned with the applied field,
an analytical solution can be found. In more complex cases approximations have to be introduced
and when considering continuous systems consisting of several exchange-coupled finite difference
cells, this approach becomes intractable.

Alternatively, thermal fluctuations can be included as a stochastic term in the Landau-Lifshitz-
Gilbert (LLG) equation, henceforth named stochastic LLG (sLLG) equation by adding a thermal
field term to the effective field. This approach was presented by Lyberatos51 and is based on the
fact that finite difference cells can be considered as dipoles comparable to single-domain parti-
cles. This method has the advantage that it is a straightforward extension of the LLG equation.
On the other hand, in contrast to the Fokker-Planck approach, the resulting sLLG equation has
to be solved many times in order to gather enough data to draw conclusions about averaged
quantities.

Integrating stochastic differential equations (SDE) requires the use of non-Riemann calculus to
be able to deal with the discontinuous thermal field term. A full discussion of this topic lies beyond
the scope of this article, and for an excellent introduction we refer to Ref. 32. In general, SDE’s are not
trivial to numerically integrate, and require specialized methods,52 which are only suited to integrate
SDE’s written in either their Ito or Stratonovich form, as otherwise a drift term might appear in the
solution. When considering variable time stepping algorithms, the complexity further increases,53,54

sometimes even canceling the relative advantage obtained by using such methods. However, Berkov
and Gorn have shown that the drift term in the sLLG equation manifests itself only in the length of the
magnetization vector1 which, in contrast to the Landau-Lifshitz-Bloch equation,55 is held constant.
As shown in Ref. 1, this can be seen more clearly when writing the sLLG equation in spherical
coordinates. In Cartesian coordinates, numerical noise would build up in this direction if it weren’t
accounted for by renormalizing the magnetization after each time step to ensure that the drift term
does not influence the magnetization dynamics. Consequently, the Ito and Stratonovich interpretation
are equivalent for integrating the sLLG equation, enabling the use of higher order solvers to integrate
the sLLG equation.56 Despite this result, in literature one often still finds the recommendation to
use the second order Heun’s solver (here denoted with “RK12”, because it is a second order Runge-
Kutta type solver with embedded first order solution) with a very small fixed time step of the order
of femtoseconds to simulate micromagnetic systems at finite temperatures.57–59 In this paper, we
present the use of higher order solvers with adaptive time stepping for such simulations and show
that this method offers significant advantages.
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II. METHODS

The Landau-Lifshitz-Gilbert (LLG) equation60,61 contains a precession and a damping term, and
describes the magnetization dynamics at the nanometer length scale and the picosecond timescale.

ṁ=−
γ

1 + α2
(m × Beff + αm × (m × Beff )) (1)

In this equation, γ denotes the gyromagnetic ratio, α the dimensionless Gilbert damping
parameter and Beff the effective field.

There is more than one way to add thermal fluctuations to the LLG equation. We choose to add
a stochastic thermal field Btherm as a contribution to the effective field term in both the precession
and damping term, although it has been shown that the field contribution could also be omitted in the
damping term if the size of the thermal field is rescaled adequately.58 A second common option32 is
to add thermal fluctuation directly as an extra thermal torque term to the LLG equation.

The properties of the thermal field Btherm were determined by Brown when he investigated
the thermal switching of single-domain particles.3 Later, it was realized that this theory was also
applicable to micromagnetic simulations as each finite difference cell can be considered as such a
particle.51 The thermal field is given by

〈Btherm〉= 0 (2)

〈Btherm,i(t)Btherm,j(t
′)〉= qδ(t − t ′)δij (3)

q=
2kBTα
MsγV

(4)

Here, the operator 〈·〉 denotes a time average, 〈··〉 a correlation, δ the Dirac delta function and the
indices i and j run over the x, y and z axes in a Cartesian coordinate system. The thermal field has zero
average [Eq. (2)], is uncorrelated in time and space [Eq. (3)] and its size q is given by Eq. (4). In this
equation, kB denotes the Boltzmann constant, T the temperature, Ms the saturation magnetization,
and V the volume on which the thermal fluctuations act, i.e. the volume of a single finite difference
cell.

Equations (2) to (4) are determined such that the effect of the thermal fluctuations is independent
of the spatial discretization used: when splitting up a volume into subvolumes and averaging the
thermal fluctuations within those, one will recover the same resulting dynamics as in the undivided
volume. The same is also true for the time step ∆t: when averaged out over a larger time, thermal
fluctuations decrease in strength and again, this proportionality is determined such that the average
dynamics do not depend on the time discretization.

A. Implementation in MuMax3

MuMax3 is a GPU-accelerated micromagnetic software package, written in Go,62 which numer-
ically solves the LLG equation using a finite-difference discretization.59 It uses the cuFFT and
cuRAND libraries63 to calculate the magnetostatic field and generate random numbers on the
graphical processing unit, respectively. The thermal field is included in the effective field as

Btherm = η

√
2αkBT

MsγV∆t
(5)

where ∆t denotes the time step and η is a random vector drawn from a standard normal distribution
whose value is redetermined after every time step.57,59

MuMax3 provides several explicit Runge-Kutta methods64 to time step the LLG equation, the
details of which can be found in Ref. 59. Here, we will only mention the ones relevant for this work.
Previously, simulations at nonzero temperatures in MuMax3 were performed with the widely used
Heun’s method (RK12), using a very small time step of the order of 5 fs. In Section III, we will
validate our results by comparing them to the solution obtained with this solver when there are no
analytical solutions available.
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For dynamical simulations at zero temperature, the default solver is the Dormand-Prince method
(RK45). This solver offers 5th order error convergence and contains an embedded 4th order method
to estimate the error. Generally speaking (i.e. when not investigating very fast dynamics, or in the
absence of thermal fluctuations), it is not advantageous to implement even higher-order solvers. The
reason for this is threefold: 1) For the moderately small torques encountered in typical micromagnetic
simulations, the performance of the solver is limited by its stability regime. This means that using
even slightly larger time steps will result in much larger errors no matter how small the exerted torques
are. 2) Higher order methods typically need more intermediate torque evaluations per time step, thus
reducing the advantage obtained by taking a larger time step. 3) Due to the memory required to store
the results of the intermediate torque evaluations, higher-order solvers disproportionately increase
the memory consumption compared to the obtained gain in performance.

B. Sixth order Runge-Kutta-Fehlberg solver

Due to the large size of the stochastic thermal field, simulations at nonzero temperatures require
much smaller time steps, so that the solver performance is not longer limited by its stability regime,
and large enough time steps can be taken to justify the additional intermediate torque evaluations.
Therefore, we also implemented the 6th order Runge-Kutta-Fehlberg (RKF56) method with 5th order
embedded solution shown in Table I in MuMax3. This newly implemented solver complements the
solvers described in the previous section that were already available before (albeit without adaptive
time stepping at nonzero temperature).59

Unlike the RKF56 solver, some of the solvers used in MuMax3 like the RK45 method, benefit
from the first-same-as-last (FSAL) property. In these solvers, the last torque evaluation of the current
time step corresponds to the first evaluation of the next time step, thus effectively reducing the
number of evaluations per step by 1. However, as the stochastic thermal field is not constant in
between time steps, the torque continuity requirement is not longer fulfilled, and the first and last
torque evaluations have to be performed separately. Because the RKF56 solver never has the FSAL
property, its performance can only compete with these other methods at nonzero temperatures, where
the other methods do not benefit from the FSAL property either.

The implementation of the Sixth order Runge-Kutta-Fehlberg solver is subject to the same tests
used for the other solvers implemented in MuMax3, and a full report is beyond the scope of this

TABLE I. Butcher tableau64 of the Runge-Kutta-Fehlberg (RKF56) solver with sixth order solution and embedded 5th order
solution. The difference between both, used as error estimate, is given in the last row.
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FIG. 1. The solutions to standard problem 4, obtained by MuMax3 (gray points) and OOMMF (red lines). This problem
focuses on micromagnetic dynamics and looks at the time evolution of the magnetization during the relaxation of a magnetic
rectangle from an initial s-state. The problem is run for two different applied fields (top and bottom graph) and the space
dependent magnetizations when 〈mx〉 crosses zero are shown below, in the left and right plot, respectively.

article. Nonetheless, Fig. 1 shows that our solution to standard problem 4, proposed by the µMag
modeling group,65 agrees with the solution obtained with OOMMF66 (not using the RK56 solver).

One of the most sensitive checks one can perform to test the implementation of a solver is to
investigate the scaling of its error convergence. Figure 2 shows the error ε after a single precession
without damping of a single spin in a field of 0.1 T as function of the time step∆t. The solver shows the
expected sixth order convergence up to the limit of the single precision implementation59 (ε ≈ 10�7).

C. Time stepping with adaptive time steps

When performing simulations at nonzero temperatures, it is important to note that the size of
the thermal field is determined by 1/

√
∆t. This implies that, when a large thermal field is generated

leading to a bad step (defined as a step where the torque was too large for the used time step), the
step will be undone, and the adaptive time step algorithm will decrease the time step, thus further
increasing the size of the field. Luckily, this 1/

√
∆t dependency makes the time step smaller at a slower

rate than that the error is reduced (∆tN with N the order of the solver67). However, it is important to
use higher order solvers like the RK45 or RKF56 method in order to maintain a large time step.

FIG. 2. The error ε as function the time step ∆t of the RKF56 solver (gray squares) displays the sixth order convergence (red
line).
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To give the correct solution, the statistical properties of the random numbers η in Eq. (5) should
correspond to the ones determined in Eqs. (2) to (4). However, if one would redraw these random
numbers after a bad step, the small thermal fields (small η) would be applied during longer time steps
and large thermal fields (large η) during shorter time steps, thus virtually changing the distribution
of the random numbers, and eventually giving rise to incorrect solutions. In our implementation we
avoid this by keeping the previously drawn random numbers and rescaling the thermal field with a
factor

√
∆tnew/∆tbadstep in case a bad step is encountered to ensure that the correct statistical properties

of the thermal field are maintained.

D. Limitations

There are some limitations to which physics that can be described by the stochastic Landau-
Lifshitz-Gilbert equation. First, the theory relies on the assumption that the magnetization dynamics
is much slower than the (real) correlation times in the thermal fluctuations (which are on the order
of 10�13 s) in order to describe the thermal fluctuations as uncorrelated.3 Consequently, any physical
phenomena that take place on shorter timescales are not described correctly. Next, the fact that the
magnetization vector is described with a constant length artificially truncates high-frequency spin
waves, resulting e.g. in an overestimation of the Curie temperature.68,69 These considerations are
mostly relevant for simulations at temperatures close to the Curie temperature, but already give rise
to sizable effects like a cell-size dependency of the magnetization dynamics at lower temperatures
(see e.g. Sec. III C for an example). Such effects can either be accounted for by a renormalization
of the material parameters69 or avoided by resorting to other approaches, like solving the Landau-
Lifshitz-Bloch equation55,68 or using the Landau-Lifshitz-Baryakhtar model70 which also take the
longitudinal magnetization dynamics into account.

III. VALIDATION

The adaptive time stepping at nonzero temperatures will be tested in several test cases, focusing
on different aspects, i.e. static vs. dynamic properties of uncoupled spins or continuous magnets.
Each time, the simulation results obtained with adaptive time stepping will be compared either to
analytical solutions or to the solutions obtained with the RK12 method with fixed time step.

A. Spectra of a single spin

It will be verified whether the thermal field and the resulting magnetization dynamics of a single
spin in the absence of an external field shows the theoretically expected behavior. The thermal field
should display a white spectrum SH construction, as its size is given by Gaussian random numbers.
Figure 3 proves that this is indeed the case.

FIG. 3. The thermal field spectra of a single spin (rescaled with an arbitrary factor for clarity reasons) obtained with the RK45
solver with fixed time steps, and with the RK45 and RKF56 solver with adaptive time steps. All spectra display white noise.
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The random thermal fields acting on a single isotropic finite-difference cell gives rise to a random
walk on the unit sphere.11,32 The shape of the spectral density SM( f ) of such a random walk is described
by the square root of a Lorentzian,71

SM( f )∼

√√
*
,

f0/2

f 2
0 + (πf )2

+
-
, (6)

i.e. white noise with a 1/f cutoff at a cutoff frequency f 0 given by33,58

f0 =
α

(1 + α2)

γkBT
MsV

(7)

Figure 4 shows the obtained magnetization spectra (gray dots) indeed coincide with the red lines
determined by Eqs. (6) and (7). Because all spectra coincide, they were rescaled with an arbitrary
factor for clarity.

B. Equilibrium magnetization

This validation problem checks whether the magnetization of an ensemble of uncoupled spins
in thermal equilibrium in an externally applied field is described by the Langevin function L(ξ),

L(ξ)= coth(ξ) −
1
ξ

(8)

where the argument ξ stands for

ξ =
µ0MsVHext

kBT
. (9)

Figure 5 proves that this is indeed the case for 4 different ξ (realized by 2 different cell sizes and
2 different temperatures) simulated with the RK45 and RKF56 solver with adaptive time steps over
a large range of applied fields.

C. Thermal switching

After the equilibrium magnetization addressed in the previous problem, we will now concern
ourselves with a dynamical problem consisting of the thermal switching rate of a single (macro-)
spin particle with uniaxial anisotropy. In the limit of a high energy barrier (compared to the thermal
energy), the switching rate ν is given by72

ν = γ
α

1 + α2

√
8K3V

2πM2
s kB

e−KV/kBT . (10)

FIG. 4. The magnetization spectra of a single spin (rescaled with an arbitrary factor for clarity reasons) obtained with the
RK45 solver with fixed time steps, and with the RK45 and RKF56 solver with adaptive time steps. All spectra display the
theoretically expected shape depicted by the red lines.
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FIG. 5. The average magnetization 〈m〉 of an ensemble of 218 uncoupled spins in thermal equilibrium at different temperatures
and different cell sizes (reflected in the different values of ξ) for the RK45 (gray circles) and RKF56 (gray crosses) with adaptive
time steps. The results agree perfectly with the Langevin function [Eq. (8)], shown by a red line.

FIG. 6. Arrhenius plot of the thermal switching rate of a 10 nm large cubic cell, with Ms=1 MA/m, α=0.1,K=10 or 20 kJ/m3.
Simulations were performed using the RK12 solver with fixed time steps (∆t=5 fs) or the RK45 or RKF56 solver with adaptive
time steps on an ensemble of 218 non-interacting cells for 1 µs or until the ensemble magnetization crossed 0. All results agree
with the red solid lines depicting the analytically expected switching rates (Eq. 10).

For an ensemble of uncoupled spins, initialized with all spins pointing in the same direction, this
switching gives rise to an exponentially decaying magnetization, with a decay constant 1/2ν. In this
test problem, we simulate this decay to determine the numerical switching rate, and compare these
values to their theoretical prediction.

Figure 6 shows Arrhenius plots for the temperature-dependent switching rate ν of uncoupled finite
difference cells with volume V =(10 nm)3 and uniaxial anisotropy constant K=1× 104 or 2× 104 J/m3.
Again, a quantitative agreement is seen between the MuMax3 simulations and the theoretically
predicted behavior.

TABLE II. Average time (1/ν) and corresponding standard deviation, σ(1/ν), in between two consecutive switching events
of a single magnetic nanoparticle with total volume of 1000 nm3, spatially discretized in Nx × Ny × Nz cells, each with a
volume given by V cell.

Nx Ny Nz V cell (nm3) 1/ν (ns) σ (ns)

1 1 1 1000.0 54.9 3.1
2 1 1 500.00 53.2 3.2
2 2 1 250.00 51.7 1.7
2 2 2 125.00 53.0 3.6
4 2 1 125.00 52.2 2.5
4 4 4 15.625 49.2 2.1



125010-9 Leliaert et al. AIP Advances 7, 125010 (2017)

FIG. 7. The red line corresponds to the spectrum obtained with the Heun solver with ∆t=5 fs. The three gray lines, which
overlap almost perfectly with the red one, correspond to the RK45 solver with fixed time step ∆t=300 fs, and with the solution
obtained with the RK45 and RKF56 solver with adaptive time stepping with ε = 10�5. All spectra were averaged out over 25
realizations with a different random seed for the thermal field. The inset shows the equilibrium vortex magnetization structure
in the system under consideration (The minimum in the error is a result between a direct match between the used time step
and the gyration period used for the evaluation of the precision.59).

Let us now focus on the switching of a single 10 × 10 × 10 nm3 particle with K = 10kJ/m3

at 300 K, and investigate its switching behavior for different spatial discretizations, including three-
dimensional ones. Table II shows the average time (1/ν) in between two consecutive switching events
for a simulated particle subdivided in up to 64 exchange coupled cells (with Aex = 13 pJ/m). For each
different discretization, a single simulation records the time necessary for 200 switching events,
and these simulations were repeated 10 times with different random seeds in order to determine the
standard deviations, σ(1/ν), on these values. There is a slight trend visible for the switching rate to
go up as the discretization cell size goes down, giving rise to a difference of about 10% when the cell
volume is varied a factor of 64. However, this difference should for instance be compared to the eight
orders of magnitude change in the switching rate when the temperature changes 1 order of magnitude
from 30 K to 300 K, shown in Fig. 6. Apart from this small effect, which is an inherent limitation
of the sLLG-equation and not from the time stepping algorithm (see Sec. II D), the average time in
between two switching events does not depend on the used spatial discretization, as is expected from
the theory (and Eq. (4) in particular).

D. Thermally excited magnetization spectrum

In this problem we look at the thermally excited magnetization spectrum of a 10 nm thick disk
with a diameter of 512 nm, Ms=1 MA/m, exchange constant Aex=10 pJ/m, and α = 1, discretized in
cells measuring 4 by 4 by 10 nm3. The equilibrium magnetization structure in such a disk is a vortex
structure, as depicted in the inset of Fig. 7. We apply a thermal field corresponding to 300 K, thereby
thermally exciting the sample, resulting in the spectra shown in Fig. 7. The spectrum depicted in red
was obtained with the RK12 solver with fixed time step (∆t=5 fs), and serves as a reference solution.
The gray lines, which agree almost perfectly with the benchmark solution, correspond to the three
spectra obtained with the RK45 solver with the time step fixed to ∆t=300 fs and with the RK45 and
RKF56s solvers with adaptive time step and ε = 10�5. Note that the spectra overlap even at high
frequencies, indicating that the adaptive time stepping does not lead to spectral leakages.

FIG. 8. The transverse domain wall in the center of the nanowire. By compensating the edge charges, we simulate an infinitely
long wire.
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TABLE III. The diffusion constant D and standard error s, determined from simulations performed using several solvers,
with adaptive time stepping with error tolerance ε and repeated for a total number of N realizations at 300 K. The theoretically
predicted D approximately equals 310 nm2/ns.

ε N D s(D)
Solver () () (nm2/ns) (nm2/ns)

RK23 5 × 10�3 500 315 19
RK45 5 × 10�3 500 309 19
RK45 1 × 10�3 1000 316 14
RKF56 5 × 10�3 200 340 37
RKF56 1 × 10�3 200 335 32
RKF56 1 × 10�4 200 315 31

E. Thermal diffusion of a domain wall

In a last validation problem we investigate the thermal driven diffusion of transverse domain walls
in a non-disordered permalloy nanowire.73 We simulate a nanowire with cross-sectional dimensions
of 100 × 10 nm2 discretized in cells of 3.125 × 3.125 × 10nm3. We use the material parameters of
permalloy: Ms = 860 kA/m, Aex = 13 pJ/m, α=0.01 and simulate the domain wall in the center of a
moving window, as shown in Fig. 8.

The thermally driven motion can be described by a random walk characterized by a diffusion
constant D which scales linearly with temperature. Similarly as in Ref. 73 we simulate a transverse
domain wall for 100 ns and repeat this simulation with a large number of different random seeds. In
Table III, we compare the results obtained from the full micromagnetic simulations with the diffusion
constant D of approximately 310 nm2/ns predicted by the model introduced, and numerically validated
in Ref. 73 using the RK12 solver with fixed time step. The results show that the standard errors s
are larger than the difference between the obtained diffusion constants and the expected value. This
also indicates that, for this problem, an error tolerance ε = 10�3 suffices for all practical purposes, as
the variance between different simulations gives rise to an uncertainty that is larger than the errors
due to the use of this relatively large ε . As this is problem dependent, the default value in MuMax3

remains 10�5, but we suggest that, depending on the system under consideration, larger values might
be suitable in simulations at nonzero temperatures.

IV. PERFORMANCE

To assess the performance of the presented methods we will consider the problems detailed
in III D and III E, i.e the thermal spectrum of a disk and thermally driven domain wall diffusion,
respectively, as benchmarks. The benchmark results are shown in Fig. 9 a) and b). For each of these
problems, the simulation time was first determined when solving the problem with the RK12 solver
with a fixed time step of 5 fs. As this is a second order solver with embedded first order solver, the
difference between both solutions serves as an error estimate, allowing us to estimate with which
error tolerance ε in the adaptive time stepping the results should be compared. This data point is
indicated by a black cross in the figure. Next, the problems were solved using adaptive time stepping,
once with the RK45, and once with the RKF56 solver, with ε ranging from 10�3 to 10�7, shown in
gray and red, respectively. The simulation runtime [Figs. 9 a) and b)] show the time it took to simulate
10 ns of magnetization dynamics, while Figs. 9 c) and d) indicate the average time step ∆t used by
the solver, for each ε . When comparing the results from the adaptive time stepping methods with the
result of the RK12 solver at the same estimated ε , one sees that the adaptive time stepping methods
use a considerably larger time step without a loss of accuracy. For these two benchmark problems,
this results in a twenty fold speedup of the simulation.

We also investigated the performance of the system described in Section III C, i.e. thermal
switching of uncoupled spins. There, an even higher speedup was achieved, but this was attributed
to the fact that such systems do not require the calculation of the demagnetizing field so that other
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FIG. 9. Benchmark results for the systems described in Sections III D [panel a) and c)] and III E [b) and d)], respectively. The
top row shows the runtime required to simulate 10 ns of magnetization dynamics, while the bottom row shows the average
time step used. The black crosses indicate the performance of the fixed time step RK12 method with ε estimated from the
difference between the second order and embedded first order solution. All results were obtained an NVIDIA Titan Xp GPU
in a system running on a 7th generation i5 CPU.

factors, like the generation of the random numbers for the thermal field, become the limiting factor.
Because the random numbers have to be generated only once per time step independently of the
used solver, a very large performance gain can be achieved by using higher order solvers which
allow time steps that are over a 1000 times larger than the ones necessary for the RK12 method
with the same accuracy. However, as this highly depends on the used hardware, the performance
gained by using the adaptive time stepping methods can lie anywhere between a factor 20 to 10 000,
depending on accuracy. These observations indicate that the presented methods are particularly suited
for magnetic nanoparticle research, where micromagnetic simulations are becoming increasingly
important.34

The relative performance of the RK45 and RKF56 solver is comparable and show the expected
trends that the RK45 solver is faster at higher ε and simulated temperatures while the RKF56 solver is
faster at low ε and temperatures. Generally, only when simulating systems at very high temperatures,
or with very small ε , it does pay off to use the RKF56 solver.

V. CONCLUSIONS

In this paper, we have exploited the fact that the drift term in the stochastic Landau-Lifshitz-
Gilbert equation is only able to manifests itself in the direction of the magnetization length, which
is fixed. Therefore, we were able to straightforwardly extend existing high order solvers with
adaptive time stepping at nonzero temperatures. In an effort to further increase the performance,
we have implemented the sixth order Runge-Kutta-Fehlberg solver, and we extensively validated
both the correctness of this newly implemented solver and the adaptive time stepping method
used at nonzero temperature. All presented methods are included in the open-source micromag-
netic software package MuMax3 and are thus freely available online under the GPLv3 license on
http://mumax.github.io.

The main advantages of the presented adaptive time stepping methods at nonzero temperatures
are that they offer an inherent error control, which is unavailable with fixed time stepping methods,
and without a loss of accuracy one can obtain a twenty fold speedup compared to the commonly
best practice of using the RK12 solver with small fixed time step. This enables simulations which
previously took too long to be considered feasible and will be useful for micromagnetic research of
continuous (exchange coupled) systems like spin valves, or domain wall motion in nanowires, and
for uncoupled spins, e.g. in magnetic nanoparticle research.

http://mumax.github.io
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