
Client infrastructure design and

implementation of a client-server Internet

topology mapping system for smartphones

Federico Asara

1

2

Abstract

Many studies have already acknowledged the importance and useful-

ness of an accurate Internet network topology map. Current e�orts

to build this map cannot achieve high coverage and quality levels,

though. A critical factor is the monitor implementation. A monitor

is a network node that executes analyses. In all current e�orts they

are in low numbers, ill-located and static, i.e. they do not change

location over time.

In this thesis, I propose the mYriadi solution to the Internet mapping

problem, focusing on its client side design and implementation. Using

cutting-edge traceroute technologies and a crowd-sourcing methodol-

ogy, we distribute a smartphone monitor appliance. Smartphones are

available in high numbers, they are nomadic and always connected

to access networks, which lends the best results. A server appliance

coordinates smartphones and analyses collected data.

After a summary of the best traceroute methods available, I'll discuss

an implementation of a client appliance for iPhone. I'll discuss how

to run a high-speed, e�cient and battery-friendly parallel traceroute

analysis in a restricted and unprivileged environment. I will also

present a new technique to contrast the negative e�ects of a NAPT

router, extremely common in almost all IPv4 access networks, on

parallel traceroute analyses.

The correctness and validity of the platform has been veri�ed by

reconstructing a map of the GARR network, the Italian research

network. Finally I'll discuss what could be done to further improve

mYriadi and to extend its potential.

Contents

Contents 3

List of Figures 6

List of Tables 8

1 Introduction 10
1.1 mYriadi: a client-server Internet topology mapping system . 13
1.2 The challenge . 14

2 Traceroute and state of the art 17
2.1 Traceroute analysis . 18

2.1.1 Inferred topology and dealiasing 19
2.1.2 Load balancing and its e�ects on traceroute 20
2.1.3 Zero-forwarding routers 22

2.2 Paris Traceroute . 23
2.3 MDA: Multipath Detection Algorithm 26
2.4 MIDAR: Monotonic ID based Alias Resolution 27
2.5 Competitors . 29

2.5.1 RocketFuel . 29
2.5.2 CAIDA ARK . 30
2.5.3 DIMES . 30

3 System structure 31
3.1 Overall system architecture 32

3.1.1 Server's role and task selection policies 33
Client geolocation-based policies 33
Client network-based policies 34
Client geolocation-network-based policies 34

3

CONTENTS 4

3.1.2 Geolocation and its power consumption in iOS 4+ . . 35
3.1.3 Client visual feedback and IP geolocation 36

3.2 Detailed MapLibrary architecture 36
3.2.1 MapLibrary structure 36

Common classes and utilities 37
Analyses macromodule 38
Communication module 38

3.3 Tracerouter module: a parallel traceroute analysis in re-
stricted environments . 45
3.3.1 Generic probe . 46
3.3.2 Probe-answer couplings 49

Answer Dispatcher and SN reservation 51
3.3.3 Sending, receiving and safeguard mechanism 51
3.3.4 Retransmission mechanism and TTL skipping 52
3.3.5 Topology graph . 53
3.3.6 Traceroute algorithm's phases 54

Initialization . 55
Parallel MDA . 55
Dealiasing . 56

3.3.7 NAPT bypass . 58
3.3.8 Analysis example . 60

3.4 Client-server protocol . 68
3.4.1 Identi�ers . 69
3.4.2 Establishing protocol sessions 70
3.4.3 Operations . 70

Refresh status . 71
Ask for a job . 71
Send results . 72
Geo-locate an IPv4/v6 address 74

3.4.4 Analyses . 75
Traceroute . 75

4 Validation 81
4.1 GARR network . 82
4.2 Examples of analyses with di�erent MDA modes 93
4.3 NAPT bypass validation . 100

5 Conclusion 103

CONTENTS 5

5.1 Future works . 104

Bibliography 105

Bibliography 106

List of Figures

1.1 mYriadi client interface, running an analysis from Pisa. The
user can touch a pin to show more information about each node
discovered. 16

2.1 Example of a traceroute-inferred topology after two analysis to
T1 and T2. 19

2.2 load balancing scenario. 21
2.3 traceroute analysis outcomes in a 22
2.4 traceroute analysis with a zero-forwarding router B. 23
2.5 IP header with �ow ID �elds. 24
2.6 UDP header. 24
2.7 ICMP Echo request header. 25
2.8 MIDAR monotonic test with RTT tolerance 29

3.1 overall client-server architecture with job data�ow, supported
by mYriadi's client-server protocol 32

3.2 MapLibrary modules . 37
3.3 full Ambassador �owchart . 39
3.4 job status transition graph. Red nodes are marked as deletable,

blue nodes are marked as work required and green nodes are
marked as ready for transmission. A newly-created job always
start from �No information�. 40

3.5 analysis example, �rst step . 61
3.6 analysis example, second step 62
3.7 analysis example, second step completed 62
3.8 analysis example, third step . 63
3.9 analysis example, fourth step 64
3.10 analysis example, full interface topology 65

6

List of Figures 7

3.11 analysis example, topology after dealiasing 68

4.1 GARR network backbone weathermap via GINS 83
4.2 PoP level . 87
4.3 GARR network, PI area . 89
4.4 GARR network, BO area . 90
4.5 GARR network, MI area . 91
4.6 GARR network, RM area . 92
4.7 ICMP analysis, varying destination 94
4.8 ICMP analysis, �xed destination 95
4.9 UDP analysis, �xed destination 96
4.10 UDP analysis, varying destination 97
4.11 analysis with �xed destination, �rst di�erent block between ICMP

(a) and UDP (b) . 98
4.12 analysis with �xed destination, second di�erent block between

ICMP (a) and UDP (b) . 99

List of Tables

1.1 world Internet usage and population statistics. Credits to Mini-
watts Marketing Group[1]. All statistics are for December 31 of
the speci�ed year. 11

3.1 analysis example, reachability matrix 66
3.2 MIDAR answers for A . 66
3.3 MIDAR answers for B . 67
3.4 protocol identi�ers . 70
3.5 OID to Operation . 71
3.6 Refresh status client message 71
3.7 Ask for a job client message . 72
3.8 Ask for a job server full message 72
3.9 Send results client full message 73
3.10 outcome byte values . 74
3.11 Geo-location request client full message 74
3.12 Geo-location answer full message 75
3.13 AID to Analysis . 75
3.14 Traceroute job assignment . 76
3.15 1-hop edge serialization with IPv4 79
3.16 Traceroute results structure . 80

4.1 targets used in this campaigns and, where available, their do-
main name . 85

4.2 NAPT bypass large scale test 102

8

List of Algorithms

9

Chapter 1

Introduction

�The Internet is the �rst thing that humanity has built that
humanity doesn't understand, the largest experiment in anarchy
that we have ever had.�

Eric Schmidt

The Internet origins can be traced back to a 1960s US government project
named ARPANET[2]; its commercialization in the 90s resulted in an un-
precedented expansion of the network. In December, 1995 there were 16
millions of users, approximately the 4h of the world population[3]. In
December 31, 2011 there were 2,267,233,742, about 32.7% of the world
population; more details are provided in table 1.1.[1]

10

CHAPTER 1. INTRODUCTION 11

World Population Internet Users Growth
regions (2011 est.) 2000 2011 (%)

Africa 1,037,524,058 4,514,000 139,875,242 2,988.4
Asia 3,879,740,877 114,304,000 1,016,799,076 789.6

Europe 816,426,346 105,096,093 500,723,686 376.4
Middle East 216,258,843 3,284,800 77,020,995 2,244.8

North America 347,394,870 108,096,800 273,067,546 152.6
Latin America 597,283,165 18,068,919 235,819,740 1,205.1

Oceania 35,426,995 7,620,480 23,927,457 214.0

World Total 6,930,055,154 360,985,492 2,267,233,742 528.1

Table 1.1: world Internet usage and population statistics. Credits to Mini-
watts Marketing Group[1]. All statistics are for December 31 of the speci�ed
year.

The speed at which the Internet evolved is one of the many insight o�ered
by the aforementioned table: i.e., Internet grew at a very fast pace in twelve
years. This table shows that Africa, Middle East and Latin America grew
more than 1,000%, noteworthy. The bigger Internet becomes, the stronger
is the need to discover which laws control its expansion and why, which
model de�nes its topology.

An Internet evolution model would help in several �elds; the following is
a non-exhaustive1 list of �elds and applications that will bene�t from this
information:

• protocol development could use such knowledge to improve protocols'
e�ciency and scalability[4];

• data storage and caching techniques;

• informatics virus di�usion and containment[5];

• infrastructure deployment;

• social studies related to Internet coverage and availability[6].

An Internet topology map is strongly needed. Other than providing a better
comprehension of the underlying laws that control Internet expansion and

CHAPTER 1. INTRODUCTION 12

the ability to anticipate its growth, such knowledge would allow better,
safer and more precise �nancial investments.

It is, therefore, a pro�table achievement from both a scienti�c and social-
economic perspective, and it's constantly gathering attention since the last
years. Nevertheless, a reliable Internet topology map is still missing, not
for lack of trying:

• ISPs1, mobile operators and enterprises do not reveal their network
topology;

• previous analysis campaigns had few, ill-located monitors2, with lim-
ited scalability and coverage;

• some enabling methodologies were not fully developed until the last
�ve years.

Internet can be described by maps with di�erent levels of abstraction:

• interface maps describe the Internet as an ensemble of links that con-
nect two interfaces together. This is the most detailed map possible;
the main drawback of this representation is that the methods that
generate such output do not group interfaces as routers. Traceroute
o�ers this kind of detail, and this representation is discussed in the
next section.

• Router maps describe the Internet as an ensemble of links between
routers. It's possible to create a router map starting from a interface
map with dealiasing techniques[7].

• AS maps describe the Internet as an ensemble of links between ASes3.
It's possible to map IP addresses to ASes.

1Internet Service Provider(s).
2A monitor is a terminal that executes some kind of analysis to (partially) discover

the network topology it's attached to.
3An Autonomous System is a collection of connected IP routing pre�xes under the

control of one or more network operators that presents a common, clearly de�ned routing
policy to the Internet.

CHAPTER 1. INTRODUCTION 13

There are two main analysis methodologies categories: active and passive.
Active methods, like traceroute, require monitors to carefully craft pack-
ets and inject them probe the network.[8] Passive methods, like BGP4

sni�ng, require monitors to collect BGP updates and to examine BGP
tables[9]; such monitors must be in a privileged position in the network to
receive such information. In this work, we will focus on active methods,
using the traceroute method described in section �2.1.

1.1 mYriadi: a client-server Internet

topology mapping system

mYriadi is an e�ort to map the Internet using bleeding-edge network anal-
yses in mobile devices, under control of a server. Using a crowd-sourcing
paradigm, in which a smartphone user runs a software, the system collects
data on cellular and �xed networks in an opportunistic manner.

This architecture provides nomadic monitors, all spread over the globe,
thus increasing the network coverage and helping the discovery of links
di�cult to detect otherwise. Clients request jobs to the server with a pre-
set frequency in the background; the server selects targets with respect to
several factors:

• geographic location (i.e. in which country the smartphone is);

• network location (i.e. to which network the smartphone is connected).

Clients run a traceroutesection �2.1 based analysis with a parallel, modi�ed
version of the MDA[10] algorithm, described in section �2.3, improved to
run in unprivileged environments with limited bandwidth. This improved
algorithm, described in section �3.3, is capable of bypassing NAPT, Network
Address and Port Translator5, being able to anticipate the new values a
router will insert in a packet when it leaves the router. A modi�ed version
of the MIDAR algorithm, described in section �2.4, provides an e�cient

4Border Gateway Protocol.
5A Network Address and Port Translator is a device that replaces private IP ad-

dress with one public IP address, using higher level information to di�erentiate outgoing
packets from di�erent private addresses.

CHAPTER 1. INTRODUCTION 14

dealiasing functionality, so clients will send router maps instead of interface
maps, taking o� some computational load from the server.

The server carefully selects targets for each client who requests that with
respect to several factors, like their location both in the globe and in the
network. It also manages all client-submitted data, executing the following
operations:

• router map to AS map conversion;

• con�ict identi�cation, isolation and resolution;

• data aggregation into a uni�ed graph.

The router-AS map conversion greatly simpli�es graphs, and also mitigates
the e�ect of a per-packet load balancer6. The server-side con�ict manage-
ment assures that a misbehaving client won't insert anomalies in the AS
server. The server does not need to run any kind of analysis, and is thus
free of such a network and computational burden. Server-side algorithms,
design and implementation will not be discussed in this work since they are
out of its scope; for further information please refer to[11].

These aspects give mYriadi an edge over all Internet mapping projects:

• mYriadi platform has a low cost: since servers only coordinate clients
and they do not participate in analyses (only clients do), a single
server machine could handle a sheer number of terminals.

• mYriadi platform is opportunistic, nomadic: clients aren't �xed, but
they are attached to the extremities of the network, with considerable
gains in terms of coverage.

1.2 The challenge

This thesis is focused on mYriadi's client-side aspects. Therefore, the target
of this work is to create a smartphone software that acts as a mYriadi client.

A mYriadi client should be:

6The router-AS conversion will hide the e�ect of per-packet load balancers in ASes'
networks.

CHAPTER 1. INTRODUCTION 15

generic it should be able to execute many di�erent analysis typologies;

opportunistic it should contact the server and request an analysis each
time it thinks there is an opportunity;

battery-friendly it should run its analysis as quick as possible, generating
as much data as it can without depleting its power reserve;

data-friendly it should guarantee a high con�dence level on the data it
produces using metered connections as little as possible;

unobtrusive it should be as autonomous as possible in order to not disturb
the user.

The product of this thesis is composed of two pieces of software:

MapLibrary a static iOS 4+ library that exposes all the functionalities
needed to communicate with the server, run background analyses and
manage data on the phone's memory. It implements a traceroute
analysis, but it's designed to be easy to add other analysis method-
ologies.

mYriadi client an iOS 4+ application that uses MapLibrary to run net-
work analyses. It uses Apple's MapKit to provide the user with a
geographic visual feedback, as in �gure 1.1. Attractive visual feedback
is a very important aspect in a crowd-sourced application.

CHAPTER 1. INTRODUCTION 16

Figure 1.1: mYriadi client interface, running an analysis from Pisa. The
user can touch a pin to show more information about each node discovered.

Chapter 2

Traceroute and state of the art

�If I have seen further it is by standing on ye sholders of Giants.�

Isaac Newton

mYriadi is based on traceroute, an active analysis method that discovers
routers between two nodes. Traceroute is a well-known technique which
also has many �aws. In section �2.1 I'll describe the mechanism behind the
standard traceroute and its pitfalls. Once these issues have been identi�ed,
I'll brie�y describe already-developed techniques that solve them: Paris
Traceroute in section 2.2 and MDA in section 2.3. MIDAR, a dealiasing
technique presented in section 2.4, is used to identify which interfaces are on
the same router. In section 2.5 I will also identify some possible competitors
and/or related projects and summarize their work and how mYriadi stands
up to them.

17

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 18

2.1 Traceroute analysis

A traceroute analysis discovers the sequence of router interfaces an IP
packet follows across an IP network in order to reach a given target[12]. The
Internet Control Message Protocol[13] is the foundation of this method.

Let's de�ne as source the host that runs the traceroute analysis toward a
certain target. The output of a traceroute analysis is a list of IP addresses:
the source therefore creates a list and insert its IP address in it.

The source sends an IP packet to the targeted IP address with increasing
TTL, starting from 1. The IP payload contains an ICMP Echo request
message1.

When a router receives an IP packet, it decreases the packet's TTL by 1.
If the original value is either one or zero the router will drop the packet
and, in addition, it might send back an ICMP Time Exceeded message to
notify the source that its packet has been dropped. The source address
�eld of the IP header of this noti�cation is the IP address of the interface
that the router used to generate the ICMP Time Exceeded message2. The
ICMP Time Exceeded also �quote� the IP and level 4 protocol headers of
the incoming packet[14].

The source will receive this noti�cation and will then append the noti�-
cation's source IP address to the list. The source will send then another
packet with the TTL value increased by one. If the source doesn't receive
any noti�cation, it might do one of the following:

• retry to send the same IP packet again;

• send a new IP packet with the TTL value increased by one, registering
that there's a hole in the path;

• stop the analysis.

When the destination target receive an IP packet, it might send back an
ICMP Echo response message to the source. When the source receives this

1Protocols other than ICMP can be used, but they require di�erent analysis arrest
criteria.

2Some routers will use the same IP address regardless of the interface that received
the incriminated IP packet.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 19

message, it will append the target's IP address to the list and stop the
analysis.

2.1.1 Inferred topology and dealiasing

Although links are bidirectional, a directed graph is used to represent
traceroute-inferred topologies: the interface we discover at each hop (there-
fore excluding the �rst IP address, which is the outgoing interface of the
host) are the interface the packets reached, assuming all the router behave
correctly. There is no way to discover which outgoing interface a router
used to reach the following router's incoming interface.

Obviously, a router is composed of a plurality of interfaces, but the tracer-
oute analysis alone cannot discover when two interfaces belong to the same
router. A dealiasing technique is therefore needed.

Router 1

C E

D F

Source 1 A T1

Source 2 B T2

Figure 2.1: Example of a traceroute-inferred topology after two analysis to
T1 and T2.

Figure 2.1 show a topology obtained by joining the output of two analyses
to T1 and T2 from two di�erent sources. C and D might be interfaces
of the same router, but a traceroute-only analysis cannot discover such
information. A dealiasing technique must be adopted.

It's possible to evaluate the RTT3 for each node discovered in the traceroute;
unfortunately, there is no guarantee that:

3Round-Trip Time, the sum of time a packet takes to reach a node in the network
and the time the corresponding ICMP noti�cation takes to get back to the source.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 20

• a load balancing operation has not occurred somewhere in the path
traveled by the packet;

• the ICMP noti�cation will follow the inverse path back to the source;

• the ICMP will be sent from the same interface that received the orig-
inating packet.

From the RTT is possible to evaluate the delay of each discovered link.
Let's de�ne the generic link from node U to V as {U, V }, with delay . A
path can be represented as a sequence of links, starting from Source and
ending with T. If the RTT of a node U, RTTU , is:

RTTU = 2
∑

{A,B}∈path toU

δ{A,B} (2.1)

the delay δ{U,V } is:

δ{U,V } =
RTTV −RTTU

2
=
RTTV

2
−

∑
{A,B}∈path toU

δ{A,B} (2.2)

The information inferred with this method are not accurate with only one
measurement, since variations in the tra�c load of a link - one of many
other factors - may in�uence the measurement of a node's RTT[15]. This
means that a simple delay measurement could lead to negative delay values,
which are clearly not possible. Let's consider equation 2.2 and let's suppose
that:

RTTU > RTTV

which is a possible outcome. This will lead us to:

δ{U,V } < 0

2.1.2 Load balancing and its e�ects on traceroute

A load balancing router (load balancer from now on) splits outgoing packets
between two or more interfaces; the path starting from each interface is
equivalent metric-wise[16]. Network administrators employ load balancing
to enhance reliability and increase resource utilization. OSPF[17] and IS-
IS[18] intradomain routing protocols both support equal cost multipath. A

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 21

multi-homed stub network can also use load balancing to choose which of
its internet service providers will receive which packets.[19]

Consider a textbook scenario where the source A wants to execute a tracer-
oute to the target T, as in �gure 2.2, where each node represents a router's
interface.

A B

C

D

E

F

G

T

Figure 2.2: load balancing scenario.

Suppose that B is a load balancer that splits 50% of the tra�c to T using
the C-E-G path, while the remaining 50% uses the D-F-G path. Assuming
there is no other network tra�c, B alternate between the two paths when
forwarding packets to T.

Assuming a packet loss of zero, a traceroute analysis might discover either
scenario A or scenario B, as in �gure 2.3.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 22

A B

C

D F

E

G

T

(a) traceroute-inferred topology in a load balancing scenario, outcome A.

B

C

D

E

G

F

T

A

(b) traceroute-inferred topology in a load balancing scenario, outcome B.

Figure 2.3: traceroute analysis outcomes in a

In each scenario there is a single false positive (the red arrow) and false
negatives (all the dotted arrows).

2.1.3 Zero-forwarding routers

Some routers do not check the TTL value when forwarding an IP packet.
These routers are referred as zero-forwarding routers, or zero-forwarders,
since they forward packets with a TTL value of 0. Their presence a�ects
the analysis in two ways:

• a zero-forwarder cannot be directly detected;

• the following router in the path will answer twice:

� the �rst time when it receives the packet the zero-forwarders
should have dropped, with a TTL value of 0;

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 23

� the second time when it receives the follow-up packet with TTL
set to 1.

This creates a loop, that is a router that has itself as a next-hop. Figure
2.4 shows a traceroute analysis scenario where B is a zero-forwarder.

A

B

C D

Figure 2.4: traceroute analysis with a zero-forwarding router B.

2.2 Paris Traceroute

Paris Traceroute[20] is an improvement of the classic traceroute analysis
that addresses load balancing problems. In their work, the authors recognize
the e�ects that load balancing has with respect to a traceroute analysis,
e�ects already discussed in the previous section.

Let's consider a load balancing router that must choose one of N interfaces
to forward a packet. A load balancing policy can be:

per-packet the router uniformly distributes packets one-at-a-time among
all interfaces;

per-�ow the router uses the �ve-tuple4 and the IP ToS �eld to select the
outgoing interface;

per-destination the router only uses the destination address to select the
outgoing interface5; it's a subset of the per-�ow load balancing.

4Source and destination IP address and transport port, and transport protocol id
(the value of the IP header's Protocol �eld).

5Per-destination load balancing must not be confused with IP forwarding. The latter
de�nes the packet's next hop, the former de�nes which interface must be used to reach
the next hop.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 24

The classic traceroute analysis doesn't de�ne the values that the various
�elds in the IP and transport headers must have: these values vary during
the scan.

Paris traceroute, by requiring that all �elds that might discriminate the
outgoing interface of a load balancer always have the same value, eludes
the negative e�ects of per-�ow (and thus, by extension, per-destination)
load balancing6.

The subset of the headers' �elds that discriminates the outgoing interface
is called Flow ID. Figure 2.5 shows the IP header's �elds that concur in the
Flow ID.

Version IHL TOS
(�ow ID)

Total length

Identi�cation Flags Fragment o�set

TTL Protocol
(�ow ID) Header checksum

Source address (�ow ID)

Destination address (�ow ID)

Figure 2.5: IP header with �ow ID �elds.

Depending on the protocol used, the implementation might vary. While the
authors consider ICMP, UDP and TCP, I will not cover the latter, since it
cannot be used in a restricted environment.

Let's �rst consider UDP: �gure 2.6 shows the UDP packet header format.

Source port (�ow ID) Destination port (�ow ID)

Length Checksum

Figure 2.6: UDP header.

The Checksum �eld is used to recognize an incoming ICMP message as a
response to a packet. This requires to add at least 2 bytes of payload to

6Per-packet load balancing issues persist.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 25

steer the checksum towards a chosen value. When a UDP packet reaches
its target, a ICMP Port Unreachable might be generated and sent back to
the source; this noti�cation plays the same role of ICMP Echo Response.

The ICMP implementation uses ICMP Echo Request messages to trigger
noti�cations. Figure 2.7 shows the message format.

Type = 8
(�ow ID)

Code
(�ow ID)

Checksum (�ow ID)

Identi�er Sequence Number

Figure 2.7: ICMP Echo request header.

To recognize an incoming ICMP message as a response to a packet, it's
necessary to use either Identi�er or Sequence Number to store an ID that
pairs up the outgoing packet with the incoming noti�cation. Since ICMP
Checksum �eld is part of the �ow ID, the unused �eld must be varied in
order to obtain the desired checksum.

Payload may be used, but it's unnecessary and wasteful, and there is not
guarantee that the corresponding ICMP noti�cation will carry the original
payload.

UDP sockets are always available without special privileges in all systems
that implement BSD sockets. Yet the access to ICMP socket eases the pair-
ing process, especially behind a NAPT, using a parallel traceroute analysis.
A technique to solve this issue is proposed in subsection3.3.7. In order to
use ICMP without using raw sockets, unprivileged ICMP sockets must be
available. At the time of the writing, only XNU/BSD kernels7 and Linux
3.0+ kernels8 have them. This thesis implements both UDP and ICMP
methods over iOS.

7Mac Os X, starting from Snow Leopard, and iOS 4 (and above) from Apple are
known OSes that support ICMP sockets.

8Android 4.0 Ice Cream Sandwich should have a 3.0 kernel. Unprivileged ICMP
socket support has been introduced in 3.0 kernel as a kernel option, and it has been
backported to 2.6 kernel for increased security. Unfortunately no assumption can be
made over which device will have such functionality, due to fragmentation in the Android
platform.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 26

Some routers might not answer to ICMP requests, but will generate ICMP
noti�cations for UDP packets. This gives UDP an edge over ICMP, al-
though it has a slightly higher data usage.

In conclusion, Paris Traceroute avoids the e�ects of load balancers, iden-
tifying a single path. The next step is discovering all paths toward a
destination.

2.3 MDA: Multipath Detection Algorithm

MDA[10] is an evolution of Paris Traceroute algorithm that tries to discover
all the outgoing links of a load balancing router.

Let's assume that we have a packet with �ow ID α that is know to reach
router U with TTL x. We assume that there are n = 0 con�rmed routers
successors to U, and we want to have a con�dence degree of 95%.

A new packet α′, created from α with some criteria, is then sent with TTL
x: until a α∗ 6= α packet that reaches U is found, a new α′ is created. Then
α∗ is sent with its TTL increased by one. If a new successor of U is found,
n is increased. If six packets are sent without discovering a new link, we
are 95% sure that there are n links leaving router U toward our target. In
a worst case scenario, where only the sixth packet reaches a new node, 96
packets are sent9.

There are two packet modi�cation criteria:

�xed destination the IP destination address is kept �xed, while all the other
parameters are randomized. This helps identifying per-�ow load
balancers. Since the destination address doesn't change, the
analysis doesn't spread through the network. In a restricted
environment, IP source address and ICMP code �elds cannot
be modi�ed, but are �xed by the OS to the source's outgoing
interface and 0, respectively.

varying destination the IP destination address is modi�ed: a /29 subnet
is created around the target IP address and new addresses are

9The authors assume that routers support up to a maximum of 16 interfaces when
load balancing.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 27

created by extracting every possible IP in the subnet, eventually
decreasing the pre�x length when a subnet is exhausted. All the
other �elds in the Flow ID are �xed. This method discovers the
outgoing links of per-destination load balancers and, since the
destination address is part of the �ow ID, also of per-�ow load
balancers. An analysis executed with this criteria has a big
spread: this might have a negative impact in some scenarios
when running a parallel analysis, inferring non-existent links
when encountering a per-packet load balancer.

MDA runs this method for each node it discovers, starting from the de-
fault gateway10; the output is an interface graph. The next step would be
generating a router map from it.

2.4 MIDAR: Monotonic ID based Alias

Resolution

MIDAR[21, 22] stands for Monotonic ID-Based Alias Resolution: an IPv4
dealiasing technique, it's an extension of the RadarGun approach[23].

At the basis of MIDAR there is the shared-counter assumption. Each time
a router's interface crafts11 an IP packet, it will insert a value in the IP
ID �eld12. This value is generated from a counter, which is assumed to be
shared between interfaces of the same router. Therefore, two interfaces on
the same router probed closely in time will return similar IP ID values; if
probed repeatedly over time, they will return similar time series of IP ID.

MIDAR uses a monotonic test in order to pair up two interfaces. Since all
the IP ID values generated from a router come from a counter, the time
series built by merging all interfaces' time series must be monotonically
increasing. This is a necessary condition, therefore two interfaces that do
not meet this criteria do not belong to the same router.

The actual MIDAR algorithm is more complex than the following, since
it's standalone. Our goal is to insert its behavior in a traceroute analysis,

10We assume that the device running MDA won't use load balancing itself.
11This assumption does not apply to forwarded packets.
12This �eld, a 16-bit value in the IPv4 header, is normally used for packet fragmen-

tation and reassembly.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 28

without sending packets explicitly for dealiasing operations. Following this
premise, a MIDAR probe could easily be a traceroute probe. An answer to
a MIDAR probe is de�ned as MIDAR answer, and it is composed of the
following information:

• answer's IP ID value;

• probe-answer RTT;

• incoming packet timestamp - i.e. its time of arrival.

A timestamp-ordered sequence of MIDAR answers is a time series. Let's
suppose that we have two series S1 and S2 of their respective interfaces I1
and I2. A preliminary analysis will identify all wrap-arounds and it will
correct them: since each time series must be monotonically increasing, each
value that is not greater than its predecessor must be increased by 216 until
it's greater:

Listing 2.1: MIDAR time series wrap-around correction

f o r answer in s e r i e s :
whi l e answer . id <= answer . p r edec e s s o r . id :

answer . id += 2∗∗16

Now let M be the time series created by merging S1 with S2. If I1 and I2
are aliases of the same router, then it must be monotonically increasing.
RTT is used as a timestamp tolerance, as shown in �gure 2.8.

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 29

Figure 2.8: MIDAR monotonic test with RTT tolerance

2.5 Competitors

There are, of course, other Internet mapping projects. The most known
ones are RocketFuel, CAIDA's ARK and DIMES. I will brie�y describe
their features and objectives and I will compare mYriadi to them.

2.5.1 RocketFuel

The RocketFuel project produces an ISP's internal network topology map-
ping system. This project has been tested on 10 ISPs, with about 800
monitors distributed on web servers. Their last paper is dated 2003.

Its monitors are �xed, and each one is restrained to the ISP network it
belongs to. In contrast, mYriadi monitors are nomadic and without any

http://www.cs.washington.edu/research/networking/rocketfuel

CHAPTER 2. TRACEROUTE AND STATE OF THE ART 30

restriction, as they can be anywhere on Earth as long as they can detect
their location.

2.5.2 CAIDA ARK

CAIDA(Cooperative Association for Internet Data Analysis) is an organi-
zation that fetches, analyses and publishes information about Internet at
a global scale. It hosts the ARK project (Archipelago), in which dedi-
cated servers, that act as monitors, are deployed across the globe and they
analyse, at regular intervals, the entire set of public IP addresses. Targets
are split between monitors. There are three teams with an average of 18
monitors per team. This project is running since 2007.

ARK's monitors are �xed and in low numbers - hardware deployment is
needed. mYriadi has a much greater potential, since it's much easier to
distribute and host a smartphone application than a device. Our approach
requires less investment than ARK's, and has a much bigger user potential.

In addition, mYriadi target selection mechanism is dynamic and aware of
the smartphone context; ARK's monitors are not, since their context never
changes.

2.5.3 DIMES

The DIMES project o�ers a free client software that runs on almost all
computers and OSes, starting from 2004. Target selection depends on client
position and other parameters.

DIMES monitors are �xed, while mYriadi's are nomadic: this provides us
greater coverage than DIMES.

http://www.caida.org
http://www.caida.org/projects/ark
http://www.netdimes.org/

Chapter 3

System structure

�Secretum victoriae in organizatium nunc obvii ist.�

Marcus Aurelius Antoninus Augustus

mYriadi platform is composed of a server, that runs the mYriadi server
appliance, and a multitude of clients, that run the mYriadi client app.

In section 3.1 I will introduce mYriadi's global architecture. In section 3.2 I
will describe the design and implementation of MapLibrary, the library that
provides client mapping facilities. A detailed description of an improved
parallel traceroute analysis is provided in section 3.3, along with an analysis
example to better explain the analysis' logic. In section 3.4 I'll present
and describe mYriadi's client-server protocol, which speci�es how the two
appliances should communicate and which data is available to who.

31

CHAPTER 3. SYSTEM STRUCTURE 32

3.1 Overall system architecture

Figure 3.1: overall client-server architecture with job data�ow, supported
by mYriadi's client-server protocol

Figure 3.1 shows mYriadi data�ow amongst clients and server. In this sub-
chapter we will refer to this image when discussing mYriadi's core elements.

The overall platform is based on the concept of job. A job is a task assigned
by the server to a client. Clients request job to the server when they are
available or when they think there might be an analysis opportunity. The
server may or may not provide a job to a client. If provided, such job would
be tailored to the client's network and geographic context, other than its
capabilities.

A job de�nes the analysis that the client will run, along with its parameters.
Once a client receives a job, it might start the analysis as soon as the job
is assigned or, if something happens1, delay its execution. Both the client
and the server have validation logic that deny or discard jobs: the client
can deny a job execution if the network has been changed, or it can discard
it if its results are evaluated as not valid. The server can discard incoming
job results if they have a low quality. The mYriadi version on which this
thesis is built de�nes a traceroute-based analysis only.

1I.E. a short loss of connectivity, or a system reboot.

CHAPTER 3. SYSTEM STRUCTURE 33

The interactions between client and server are shown in �gure 3.1:

1. job request: the client requests a job to the server;

2. task assignment: the server evaluates whether to assign a job or not
and which one, based on its task policy (see subsection 3.1.1);

3. job assignment: the server sends the job to the client, if any (otherwise
it sends a no job message and there are no more interactions in this
batch);

4. client job cycle: the client �executes� the job, see 3.2.1;

5. job results: the client sends back to the server the outcome of the
analysis;

6. elaboration: the server elaborates the received data.

3.1.1 Server's role and task selection policies

mYriadi server's role is twofold:

• It manages clients in order to maximize the amount of network map-
ping information. It carefully chooses a job for each client according
to a certain policy. This is step 2 in �gure 3.1.

• It manipulates and merge clients-generated data, step 6 in �gure 3.1.

Jobs parameters vary with the speci�ed analysis.

Client geolocation-based policies

A client geolocation-based policy selects targets using the following infor-
mation:

• client geolocation;

• networks with a known geolocation;

• already known routes between ASes.

CHAPTER 3. SYSTEM STRUCTURE 34

In this version, the server implements two di�erent client geolocation-based
policies:

• farthest network around the world;

• farthest network in country.

Client network-based policies

A client network-based policy selects targets using the following informa-
tion:

• the AS number associated to the client's public IP address;

• an already de�ned target list.

This class of policies is useful to implement mapping campaigns with very
precise targets. In this version, only the static list policy is de�ned. This
policy has been designed to detect paths starting from a source AS to a
prede�ned ASes list, passing through a chosen transit AS2.

Client geolocation-network-based policies

This class is a mix of the two aforementioned policies. It selects targets
using the following information:

• client geolocation;

• the AS number associated to the client's public IP address;

• networks with a known geolocation;

• network with a know AS number conversion;

• already known routes between ASes.

In the current mYriadi version, the nearest ASN stub is the only policy
implemented in this class.

2I.e. an IXP, Internet eXchange Point.

CHAPTER 3. SYSTEM STRUCTURE 35

3.1.2 Geolocation and its power consumption in iOS

4+

When a client requests a job, it also communicates its geolocation. iOS
devices have multiple methods to discover their position:

Cell-tower triangulation it requires cellular network connectivity and
it's the less accurate, but it's also the less power-hungry method,
since it doesn't require to power on additional hardware, and it works
indoor too, as long as there's signal.3

Wi�-based if the device is in range of a 802.11 network, the access point's
MAC address might be used to retrieve the network's geolocation
and, by approximation, the device's4. If more networks are in range,
triangulation might help increasing the accuracy. It requires Internet
connectivity and the 802.11 radio must be on, it's more accurate than
cell-tower triangulation but less than GPS. It doesn't require wi�
authentication and it works indoor. This method is also known as
WPS, Wi-� Positioning System5

GPS it requires power to the GPS receiver and it depletes the device's
battery really fast. It's also the most accurate method available, but
it su�ers from poor reception inside buildings, since the GPS signal
is quite faint.

It's not necessary to have an high precision6, so there's usually no need to
use GPS - the other network-based location methods are �ne, and they are
also more power e�cient and faster than GPS.

iOS, starting from version 4, o�ers a Signi�cant Location Change facility,
in addition to a �ne-tunable facility, that automatically selects the most
energy-e�cient method (which is usually the least accurate) to detect and
signal signi�cant changes in location.

3http://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-
map-14790 has a non technical description of this feature.

4As an example, Google Street View cars detect 802.11 networks and register their
location based on the car's. After an access point has been located, a device might use
this service within reach of its network.

5Not to be confused with Wi-� Protected Setup.
6Server-side task selection policies do not need a very accurate location, since we do

not expect any di�erence when moving between streets of the same city.

http://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-map-14790
http://searchengineland.com/cell-phone-triangulation-accuracy-is-all-over-the-map-14790

CHAPTER 3. SYSTEM STRUCTURE 36

3.1.3 Client visual feedback and IP geolocation

The server appliance o�ers an IP geolocation service. The client can query
the server to geolocate an IPv4/v6 address, so it can show on a map the
location of each node.

This service concurs in the implementation of a visual feedback for the
client's user. In the crowdsourcing paradigm it's very important to moti-
vate users to run the application. Showing them the information collection
generated by their devices is a great motivational tool, as other crowd-
sourced monitoring applications have already demonstrated. For this very
reason, it's desirable to run this service, although it's not mandatory.

In order to minimize data usage, these information are cached. The client
queries the server on a on-demand basis: it won't generate any query when
the application is running in the background.

3.2 Detailed MapLibrary architecture

3.2.1 MapLibrary structure

As showed in �gure 3.2, there are three main modules in MapLibrary:

• the Communication module implements the client-server protocol and
the job abstraction;

• the Analyses macromodule provides an abstraction to implement anal-
ysis methodologies in a modular way;

• the Common classes and utilities macromodule o�ers commonly-used
services and facilities, such as data storage and communication.

CHAPTER 3. SYSTEM STRUCTURE 37

Figure 3.2: MapLibrary modules

Common classes and utilities

This macromodule contains the following elements:

GenericSocket this module o�ers an easy-to-use generic BSD socket inter-
face, along with a specialized interface that implements tra�c shaping
functions. There are several advantages over standard BSD socket:
they are automatically managed by Objective-C ARC, and they can
be specialized to implement speci�c analysis methods.

IPAddress this interface stores either an IPv4 or IPv6 address, allowing
for better modularity. It also performs some operations like detecting
if an address is private.

AddressDiscovery this interface fetches the IP address of each device's
network interface.

CHAPTER 3. SYSTEM STRUCTURE 38

DataManager this interface stores and loads data and settings from the
device's persistent memory. This interface can handle all objects that
are serializable.

EventLogging this module provides a logging facility, that saves log mes-
sages to �le and print them on the debugging console.

Analyses macromodule

Each module in this macromodule provides an analysis methodology. An
analysis module should provide:

• a specialized job interface, that inherits from generic job, which adapts
the already mentioned job operations to work with the analysis;

• a serializable data structure that can be handled by DataManager.

Communication module

The communication module has two main elements, the Ambassador and
the GenericJob interfaces.

The Ambassador interface implements mYriadi's client-server protocol.
It handles job request, retrieval, execution and data delivery through the
GenericJob interface; these four operations are referred as work cycle.
Ambassador is indeed analysis-agnostic: each Analysis module must spe-
cialize GenericJob so that they can be executed by the Ambassador module.
This abstraction layer provides modularity and isolation between modules.

Ambassador keeps the application in background when needed. It spon-
taneously activate the job cycle when a particular condition is triggered,
like a change of location or IP address, or the timeout of a periodic timer.
In testing environments or intensive campaigns7 a continuous mode can be
enabled, where the client will rentlessly start a job cycle whenever possible
- it stresses the battery, so it should be enabled only when necessary.

The full Ambassador �owchart is in �gure 3.3. This �gure contains both
the location manager handler and the work cycle, and it's very useful to
understand how the client operates.

7As in our validation task, see chapter 4.

CHAPTER 3. SYSTEM STRUCTURE 39

Figure 3.3: full Ambassador �owchart

Job cycle The client-side representation of a job has a predetermined
lifespan, which encompasses 8 di�erent statuses. Figure 3.4 shows a status
transition graph.

CHAPTER 3. SYSTEM STRUCTURE 40

No information

No targetUnchecked

Obsolete Committed

Validated

Analyzed

Confirmed

Figure 3.4: job status transition graph. Red nodes are marked as deletable,
blue nodes are marked as work required and green nodes are marked as
ready for transmission. A newly-created job always start from �No infor-
mation�.

There are three status categories: deletable, work required and ready
for transmission; they are used in control points inside a work cycle.

There are a few job operations that modify a job status. These operation

CHAPTER 3. SYSTEM STRUCTURE 41

must be executed without interruptions, and any amount of time might
pass between the execution of two di�erent operations.

Job request the ambassador requests to the server a job, using a newly
created client-side job (with no information status) to store the results
of the operation. A job may or may not be assigned, therefore the job
becomes either unchecked or with no target.

Job validation an unchecked job must be validated before starting an
analysis, since the context might have changed since job request. Al-
ready validated jobs can be validated again. A job might become
obsolete; the criteria for such decision are analysis-dependent.

Job analysis execution the analysis is executed. To guarantee that a job
is not obsolete before executing the analysis, a validation operation
is always executed before launching the analysis. The job becomes
either obsolete or analysed, starting from a validated or unchecked
job.

Job con�rmation the analysis results of an analysed job must be val-
idated, implementing a client-side early refusal detection (i.e., the
server might always drop results that match a certain pattern - if the
client can execute this evaluation it's better to drop the job client-
side, to avoid waste of bandwidth, server time and energy). The job
becomes either obsolete or con�rmed.

Job commit the analysis results of a con�rmed job are sent back to the
server. The job always becomes committed.

Job transmission the ordered execution of job con�rmation and commit.

The following list describes each status:

No information the job has been just created, therefore it stores no infor-
mation. A stray job with no information can and should be deleted.

Unchecked after a successful job request, a job becomes unchecked. An
unchecked job de�nes the analysis to execute, and stores relevant con-
text information when the job has been assigned. It requires work,
since its analysis has yet to be executed.

CHAPTER 3. SYSTEM STRUCTURE 42

No target a client-side job becomes with no target after an unsuccessful
job request, since the server has no job for the requesting client - it
can be safely deleted, since it serves no purpose.

Obsolete a job that refers to an old context and that is, therefore, obsolete
and deletable.

Validated a job is valid at a certain time if the context hasn't changed.
An already validated job can become obsolete if validated again. It
requires work, since its analysis has yet to be executed.

Analysed a job that has analysis results, that is, its analysis has been
completed. Nothing is known yet about the validity of its results.
This job is ready for transmission.

Con�rmed a job with valid analysis results, which is therefore ready for
transmission.

Committed a job whose results have been sent to the serve without errors.
The server have either accepted or dropped them. It can be safely
deleted.

Work cycle A work cycle is composed of the following steps:

1. (preliminary transmission checkpoint) execute a job transmission op-
eration (which in turn executes a job con�rmation) for every job that
is ready for transmission (step 5 in 3.1);

2. (preliminary deletion checkpoint) delete every deletable job;

3. (resume work checkpoint) �nd a job that requires work and refer to
it as current job - if a job is found skip to step 5;

4. (fetch work) create a job and execute a job request (step 1 and 3 in
�gure 3.1) - if job has no target, delete it and terminate the work
cycle, otherwise refer to it as current job;

5. (execution) run a job analysis execution on the current job (which in
turn executes an additional validation), step 4 in �gure For 3.1;

CHAPTER 3. SYSTEM STRUCTURE 43

6. (transmission checkpoint) execute a job transmission operation (which
in turn executes a job con�rmation) for every job that is ready for
transmission (step 5 in 3.1);

7. (deletion checkpoint) delete every deletable job.

Unless there is a temporary failure, steps 6 and 7 will only work on the
current job. A work cycle is composed of multiple job transmission and
deletions; only one job analysis per cycle might be executed.

Triggers and background execution There are multiple ways to start
a work cycle:

manual the user explicitly starts an analysis interacting with the UI8;

timeout if enabled, a timer will set o� periodically and start a work cycle
every x seconds9;

location changes if enabled, a signi�cant location change will start a new
work cycle;

network changes if enabled, a network change (WiFi SSID, cellular net-
work operator, IP address) will start a new work cycle.

iOS applications have severe background execution limitations. When an
applications moves from foreground to background, the OS will freeze the
application's context, which will be either reloaded, if the user brings the
application back to foreground, or deleted, if the OS needs more memory.
iOS provides a few handlers that allow the application to react to these
events and store its state and any unsaved data. An application may request
time to �nish background tasks; the OS will keep the application running
in background until it decides that background execution is not allowed
anymore10. The application must signal that it's executing background-
enabled code as in listing 3.1, as well as an emergency expiration handler
that stops the background task as fast as possible. If an expiration handler
doesn't stop its task, iOS will kill the application.

8Some UI designs might not provide such method of interaction by choice.
9If the continuous mode is enabled, x = 0.
10Apple documentation does not specify which conditions must be met to stop back-

ground execution.

CHAPTER 3. SYSTEM STRUCTURE 44

Listing 3.1: background task signaling

1 UIAppl icat ion ∗ app = [UIAppl icat ion sharedAppl i ca t ion] ;
2
3 // de f i n e a background ta s k wi th a terminat ion hand ler
4 UIBackgroundTaskIdent i f i e r bid = 0 ;
5 bid = [app beginBackgroundTaskWithExpirationHandler :^{
6 // e xp i r a t i on hand ler code b l o c k
7 [app endBackgroundTask : bid] ;
8 }] ;
9
10 // background code here
11
12 [app endBackgroundTask : bid] ;

Timeout and network changes methods requires exploitation of iOS location
manager to run in background. Whenever the application starts, Ambas-
sador will start a location manager. If spontaneous analyses are enabled it
will start the standard location manager, otherwise it will start the signif-
icant location changes manager. The standard location manager provides
an opportunity to run in background, since it sends a message whenever
the location changes or the accuracy improves.

The handler that receives this message will be executed in background: iOS
will un-freeze its context, but the application stays in background. The
handler will execute the following operations:

1. ensure that at most one instance of this handler is running at any
time;

2. signal a survival background task, its expiration handler will ensure
that the appropriate location manager is enabled;

3. stop the location manager from notifying changes, in order to preserve
battery;

4. save the current geolocation;

5. if at least one trigger is enabled launch a work cycle in a new thread;

6. if continuous mode is enabled or spontaneous analysis are disabled
re-enable the appropriate location manager and stop;

CHAPTER 3. SYSTEM STRUCTURE 45

7. wait until there are x seconds since the last execution of this handler;

8. enable the appropriate location manager and stop.

3.3 Tracerouter module: a parallel traceroute

analysis in restricted environments

The Tracerouter analysis module provides a traceroute analysis. I devel-
oped an enhanced Parallel MDA (PMDA) which remains fully operative in
unprivileged and restricted environments.

There are many challenges to overcome:

1. This analysis must support multiple protocols, namely ICMP and
UDP. An high modularity is required to achieve this result; this mod-
ularity is provided by the introduction of generic probes, described
in subsection 3.3.1, which specify the content of a probe in a protocol-
independent fashion.

2. It must be designed to switch easily to IPv611; IP versions and pro-
tocols must be easily interchangeable. This, again, is achieved by the
generic probes, and by using the IPAddress interface introduced in
subsection 3.2.1.

3. Parallel execution with multiple threads to speed up its execution.
This requires a special synchronization technique named safeguard
introduced in subsection 3.3.3.

4. It must be able to bypass NAPTs. This requires the ability to predict
how a NAPT router will modify a probe's �eld; this method is known
as NAPT bypass and is described in subsection 3.3.7.

5. It must provide an e�cient dealiasing technique, which doesn't require
the transmission of additional probes. This is achieved by using a
slightly modi�ed version of MIDAR, and by saving all the relevant
dealiasing information contained in every single answer in the so-called
MIDAR database. The dealiasing mechanism is de�ned in .

11IPv6 is not supported in this work, but is recognized as a future work.

CHAPTER 3. SYSTEM STRUCTURE 46

6. It must work in a restricted environment, without the help of raw
sockets. This imposes additional limits on the usage of the selected
protocol. All the considerations made in the following pages account
for this requirement.12

A tracerouter analysis has a well-de�ned iter, articulated in three steps:

Initialization apply the default settings and then those speci�ed by the
server, and then detect the IP of the phone's default gateway.

PMDA concurrently discovers new links, updating the MIDAR database
in the progress; falls back to sequential MDA when needed and for
the shortest amount of time possible.

Dealiasing use MIDAR to group interfaces of the same router together.

The algorithm described in section �2.3 can be adapted to run in a multiple
thread; before going into details I will �rst introduce a few concepts and
mechanisms that are widely used in this analysis.

3.3.1 Generic probe

A generic probe is an abstraction of a probe that is used during the tracer-
oute process, in order to support both ICMP and UDP analysis methods
in a seamless fashion. Such probes store a (generic) �ow ID and some aux-
iliary information. Generic probes are created during an analysis, but they
are specialized into the chosen analysis and network protocols before being
sent.

The �ow ID is composed of six �elds:

Protocol a byte, corresponding to the IPv4 protocol �eld or the IPv6 Next
Header �eld.

ToS (Type of Service) a byte, corresponding to the IPv4 ToS �eld or to
the IPv6 Tra�c Class �eld.

12This is especially true for all considerations about a possible Android implementa-
tion.

CHAPTER 3. SYSTEM STRUCTURE 47

IP addresses source and destination IPv4/6 addresses.

First word the �rst two bytes of the IP payload: ICMP Type & Code
�elds or UDP source port.

Second word the third and fourth bytes of the IP payload: ICMP check-
sum or UDP destination port.

This information is not enough to send a traceroute probe. A generic probe
stores some additional auxiliary �elds:

TTL a byte, corresponding to the IPv4 Time to Live or IPv6 Hop Count
�elds.

Target Address IP address, either v4 or v6, that the probe is supposed to
reach. This value supports our PMDA implementation, but it won't
be copied in any �eld of the IP header. Please note that this is not
the same thing as the destination IP address.

SN (Sequence Number) two bytes that ideally uniquely identify a probe
and its answer. It's ICMP SeqNum �eld or UDP Checksum �eld.

The ICMP implementation requires that the checksum won't change even if
we modify the SeqNum �eld. This can be achieved by modifying the ICMP
identi�cation �eld to a SN-dependent value that will always produce the
same checksum. Since it's not possible to reproduce the value 216 − 1, this
checksum won't be used by the Tracerouter module as part of the �ow
ID13. Please note that a port to an Android device with a 2.6 kernel version
cannot use ICMP socket, so this protocol is not available.

The UDP implementation requires that the checksum can be �xed to an
arbitrary value but 216 − 1, as per above. The source ports cannot be
changed, and the length �eld value cannot be controlled; the only way to
control the checksum is to add a two byte payload.

Both ICMP and UDP use the same checksum algorithm to protect data;
here it is:

13It's impossible to have the word-by-word sum equal to zero, which is the only value
that can generate 216 − 1.

CHAPTER 3. SYSTEM STRUCTURE 48

1. Let S be a 4 bytes unsigned integer, initialized to 0.

2. Initialize the checksum value to 0.

3. Read the protected data 2 bytes at a time (using 0 as padding if
necessary) and sum this word to S.

4. Until S < 216 then let S be the sum of its most signi�cant word and
its less signi�cant word.14

5. NOT (S) is the checksum.

[24] proposes optimized evaluation methods.

ICMP checksum covers the ICMP packet's header and payload. We are
interested in keeping the checksum �xed to second, in setting SeqNum to
SN and not having any payload. Therefore we can use the ICMP Identi�-
cation �eld to manipulate the checksum, as the pseudo-code in 3.2 shows,
assuming that the initial ID value is 0.

Listing 3.2: ICMP Identi�cation �eld evaluation

1 word cur rent = evaluateICMPChecksum (probe) ;
2 word de s i r ed = probe . second ;
3 word invc = ~cur rent ;
4 word invd = ~de s i r ed ;
5
6 word ID = invd −invc −(invd < invc) ;

UDP checksum covers the whole UDP packet plus the pseudo-header, which
is composed of the IP source and destination address, the IP Protocol �eld
value and the payload length. The pseudo-code in listing 3.3 shows how to
evaluate the correct payload value to �x a chosen checksum.

Listing 3.3: UDP payload evaluation

1 word cur rent = evaluateUDPChecksum (probe) ;
2 word de s i r ed = probe . sn ;
3 word invc = ~cur rent ;
4 word invd = ~de s i r ed ;

14This implies that 216− 1+x, x ∈ N+ becomes x, therefore it's impossible to obtain
0.

CHAPTER 3. SYSTEM STRUCTURE 49

5
6 word payload = networkOrder (invd −invc −(invd < invc))

;

In line 6 of both listings we have:

invc− invd− x mod 216

where:

x =

{
1 invd < invc

0 invd ≥ invc

x counters for the one's complement sum e�ect that veri�es if the inverted
current checksum is greater than the desired. Be it so, the payload must
be big enough to cause a wrap around in the checksum evaluation or, in
this case, it will add 1 to the most signi�cant word of the 4 byte counter.
This means that there would be a +1 added to the 2 byte checksum value
before complementing, so it would assume the value invd + 1. x counters
this e�ect.

3.3.2 Probe-answer couplings

An answer is de�ned as a noti�cation triggered by a certain probe. Pairing
correctly an answer to its originating probe in a parallel environment is
both crucial and challenging; this operation is de�ned as coupling. Incorrect
coupling will surely corrupt the inferred topology.

We can identify two coupling methods:

Time coupling there is only one probe that it's waiting for its answer at
a time. This means that the �rst answer received should be assigned
to that probe.

SN coupling an answer, which usually stores a portion of the generating
probe including its SN, is assigned to the probe that has the same SN.

They both have pitfall:

• time coupling cannot be used in a parallel environment by de�nition;

CHAPTER 3. SYSTEM STRUCTURE 50

• time coupling could be poisoned if a stray noti�cation of a previous
probe reaches the phone;

• SN coupling might fail for a number of reasons:

� a stray noti�cation can again poison this coupling method;

� some routers do not include the originating packet header in the
noti�cation payload;

� some router might even alter the noti�cation payload;

� the probe crossed a NA(P)T.

Stray noti�cations are, at a �rst glance, troublesome, because there isn't
nothing that we can do to ignore their e�ect. Still, they are rare events and
we can go further using a shared, increasing SN counter to generate
these values: since SNs are stored in two bytes, there can be 216 of them.
The counter might do a wrap around during an analysis, but it will take
enough time so that the IP protocol will have already dropped roaming
noti�cations (they too, of course, must adhere to the TTL logic).

When routers alter the noti�cation payload, only time coupling can be used.

When using UDP with �xed destination mode, a di�erent coupling can be
used:

Port coupling there is only one probe that it's waiting for its answer
at a time for a certain UDP destination port. This means that the
�rst answer received should be assigned to the only probe with that
destination port. This method cannot be used in conjunction with a
varying destination method.

It limits the degree of parallelism achievable, but in turn o�ers a much
easier way to cope with NAPT. This should be used only when necessary,
since time coupling allows for faster executions. A positive e�ect of this
method is that it nulli�es NAPT e�ects, as seen in subsection 3.3.7.

This coupling method is critical for a parallel implementation of MDA in
Android platform previous to version 4.0, precisely all the devices with a
2.6 kernel. They all lack ICMP support, so they cannot use ICMP socket
to receive noti�cation, but they are forced to rely on SOCKERROR. This

CHAPTER 3. SYSTEM STRUCTURE 51

method does not provide access to the UDP checksum, so it is not possible
to implement SN coupling. These device cannot provide a parallel MDA
analysis with varying destination.

Answer Dispatcher and SN reservation

Sequence Numbers are mainly created using a shared counter and a generic
probe stores only one of them. The Answer Dispatcher entity is used to
control which SNs can be used, and it couples noti�cations to the corre-
sponding probe. When a thread creates a probe, it register the generated
SN to the Answer Dispatcher: this operation is called SN reservation. If a
SN is not available, the thread will generate a new one until it surrenders
(after a predetermined number of retries) or until it succeeds.

A SN reservation associates a SN to a probe. Only one probe can use a
SN at a time, but a thread might reserve more than one SN for the same
probe.

3.3.3 Sending, receiving and safeguard mechanism

To send a probe, a sender thread extract from a shared counter a sequence
number and it will register it to Answer Dispatcher; after this reservation, it
can �nally send the probe. After getting the current system time, it will wait
on a private semaphore, linked to its reservation with Answer Dispatcher.
This wait has a tunable timeout, so a thread doesn't wait forever for a
noti�cation that might never come.

Receiving noti�cations is accomplished by using an ICMP socket; a sin-
gle thread, the receiver thread, is allowed to operate on it. The receiver
thread will use sequence number coupling to dispatch every incoming noti�-
cation, using Answer Dispatcher. After receiving a noti�cation, the receiver
thread will immediately store the system time in the Answer object.

When the receiving thread can't dispatch an answer, it will raise a safeguard
needed �ag and it will drop the answer. At least one sender will timeout.
A sender reacts to this event by queuing for a safeguard send (or safesend).
in the so-called safeguard queue. A sender in this queue is denoted as safe
sender. The safeguard rules are the following:

CHAPTER 3. SYSTEM STRUCTURE 52

• the safeguard needed �ag can be raised only if there are senders wait-
ing for an answer, thus preventing stray answers to trigger the safe-
guard;

• when a thread tries to send a probe, the safeguard will freeze it if the
�ag is up and there is at least one thread in the safeguard queue;

• the safeguard queue will release a safe sender at a time only when no
other thread is sending, safeguard or not;

• the last thread leaving the safeguard queue will lower the safeguard
needed �ag.

This mechanism allows for non-continuous parallel execution, using SN cou-
pling by default, falling back to time coupling only when it's necessary.

When an answer is dispatched, the corresponding sending thread will wake
up. It will therefore compute the round trip time of the probe and it will
store it in the answer, along with the transmission time.

When using UDP with �xed destination and a NAPT device has been
discovered, each port has its thread queue to guarantee mutual exclusion.
More precisely, this is the implementation of port coupling.

3.3.4 Retransmission mechanism and TTL skipping

A sender thread has a �nite number of retries available, that allows it to
resend a probe which didn't receive any answer. A not-working node is not
the only cause to a sender thread not receiving any answer to a speci�c
probe: some routers might operate correctly without emitting any noti�ca-
tion. Such routers will truncate an MDA branch, reducing the amount of
topological information that can be inferred.

TTL skipping changes this behavior: a sender might increase the probe's
TTL and restart the send procedure again. TTL skipping has four param-
eters that de�nes its behavior. TTL skipping is enabled by default, but
the server might disable it, or it might even tune its parameters. These
parameters are:

Max Initial Bonus the maximum TTL increment that can be used when
detecting the gateway;

CHAPTER 3. SYSTEM STRUCTURE 53

Max Vertical Bonus the maximum TTL increment that can be used
when detecting regular nodes;

TTL Token Limit maximum number of tokens at a time;

TTL Token Re�ll amount of tokens added after a node discovery.

When discovering nodes other than the gateway, a token mechanism is used.
Tokens are stored in a dispenser which has a maximum capacity and a re�ll
ratio as mentioned above. When a thread wants to increase its probe's TTL
it fetches a token from the dispenser, with respect to Max Vertical Bonus.
If there are no more tokens, or if the bonus limit has been reached, the
thread will close that MDA branch.

3.3.5 Topology graph

The outcome of a traceroute analysis is a graph. The algorithm, during the
�rst two phases, creates links between interfaces. During these two phases,
the graph nodes are interfaces that produced a noti�cation15; the edges are
not links between the known interfaces, though. With a traceroute analysis
it's not possible to discover what's the interface that does not produce a
noti�cation, therefore edges are links between an interface node and an
interface.

A node stores di�erent information:

• the IP address of the interface it represents;

• the router ID16 of the interface, which defaults to −1;

• the list of outgoing edges;

• the list of incoming edges.

A router ID is an integer number that groups nodes into routers. A value
of −1 indicates that interface is to be considered as a per-se router. If
two nodes have the same value k ≥ 0 then the router k has two interfaces.

15With the notable exception of node 0, which is always the iPhone and always has
IP address 0.0.0.0.

16This has nothing to do with router ID as seen in many routing protocols.

CHAPTER 3. SYSTEM STRUCTURE 54

It's important to note that nodes cannot hold information about round trip
times, since there might be di�erent paths that could reach that node; RTT
is not an information that depends uniquely on the node position, but also
depends on the path two packet takes to complete the round trip.

A link stores the following information:

• the IP address of the two interfaces that it's connecting:

� the target IP address is the IP address of the interface that pro-
duced the noti�cation;

� the precursor IP address is the IP address of the interface that
preceded the target interface during its discovery;

• the link's delay, in milliseconds;

• a TTL skip value.

The TTL skip value is a positive integer that indicates how many fake nodes
are between the two nodes. This value defaults to zero, but there are three
di�erent events that might change it to something di�erent:

1. the TTL skipping mechanism increased the probe's TTL - the skip
value would be the TTL increment used;

2. an incoming noti�cation had in its inner IP header a TTL value to 0,
indicating a zero-forwarding router - the skip value would be 1.

The �rst method is common practice in almost all traceroute implementa-
tion. The second method could not be tested since I never got access to a
router that I was 100% sure it was a zero forwarder, although this method
has been already proposed in [20].

3.3.6 Traceroute algorithm's phases

As already mentioned before, the traceroute procedure is composed of three
main phases: initialization, Parallel MDA and dealiasing.

CHAPTER 3. SYSTEM STRUCTURE 55

Initialization

The main thread17 load settings from memory, and it will then override
them with server-speci�ed settings. It will then discover the phone's IP
address of the interface that will support the analysis.

Next, it will start the send-receive mechanism, initializing the receiver
thread. It will then craft a probe with a random �ow ID, that will pro-
vide a basis for the rest of the procedure. The probe is sent with TTL set
to 1, in order to discover the default gateway; if enabled, TTL skipping
might be used.

It will then create an horizontal explorer (HE) thread for the just-
discovered node. An HE thread coordinates the exploration from a node,
identi�ed by the probe who reached it. The probe stores this information
in his target �eld. It also stores the path such probe crossed.

The initialization phase is concluded. The main thread will wait until there
are no more horizontal explores; then it will enter the dealiasing phase.
Until then, the algorithm moves to the parallel MDA phase.

Parallel MDA

This phases de�nes the behavior of HE threads. There are also vertical
explorer (VE) threads, generated by a HE, which discover new links using
a copy of the HE's probe.

Let's de�ne two numbers: W, the exploration increment, and L, the ex-
ploration limit. These numbers control MDA's con�dence level. An HE
creates a Target Generator and a Target Dispatcher objects, that will con-
trol how each probe is changed by a VE. These objects can be con�gured
to implement MDA's �xed and varying destination policies. Target Gener-
ator modi�es the destination IP address, if needed, while Target Dispatcher
guarantees that at most L vertical explorers will be created, and it will also
assign to each explorer a di�erent IP destination address, again, if needed.

An HE creates W vertical explorers; it will then wait until there are no
more VE created, directly or not, by him.

A vertical explorer will execute the following operations, in order:

17The main thread would be the thread that actually starts the traceroute analysis.

CHAPTER 3. SYSTEM STRUCTURE 56

1. submits its probe to the Target Dispatcher, which will change the
�ow ID according to the selected MDA policy or it will deny the VE's
execution, killing it;

2. it sends the modi�ed probe without changing its TTL, to verify if it
reaches the HE's node: if not, it will stop;

3. it increases TTL by one;

4. it sends the modi�ed probe to discover a new interface, optionally
using the TTL skipping mechanism;

5. if it receives an answer, a subset of this information is stored in MI-
DAR database;

6. if it discovers a link to an new interface, it launches a new batch of
W vertical explorers and it will make the just received Answer to its
horizontal explorer.

The HE receives a set of Answers from its sibling. After eliminating du-
plicates and invalid links (loops, links to invalid addresses), it updates the
graph by adding a link to a newly-created node for each answer. It then
starts a new HE thread for each node, with an updated probe and path.

An HE won't analyse a node if it's already been analysed, therefore a list of
all the already explored nodes is kept. The server can specify an exclusion
list; it's a list of IP address that the server is not interested into. If a
HE detects a link to an IP in the exclusion list, it will completely stop the
analysis. Nevertheless, the client will still send the inferred data to the
server, that will then choose what to do with it.

When all the HE �nish, the main thread wakes up and starts the last phase,
dealiasing.

Dealiasing

This last phase uses data collected during the other two phases. In fact,
each time a sender thread receives an Answer it creates aMIDAR answer
object, a subset of a regular Answer. It contains:

• the IP ID value, found in the IPv4 header;

CHAPTER 3. SYSTEM STRUCTURE 57

• the computed round trip time;

• its timestamp, the arrival time of the answer.

This object is then inserted in the MIDAR database. This database is,
simply put, an associative map that assign a set of MIDAR answers to an
IP address. Therefore, a sender thread will insert the answer in the set
corresponding to the IP address that sent it.

Suppose the inferred topology graph has N nodes, and that each node can
be identi�ed by a number i ∈ N, where 0 ≤ i < N . The main thread creates
a N ×N reachability matrix R from the graph. The generic element Rj

i at
row i and column j is either 1, if node i can reach node j, or 0, if otherwise.
Computing this matrix is very useful to avoid merging interface that cannot
belong to the same router.

In section �2.4 I've described the monotonic test between two time series
extracted from two di�erent sets of MIDAR answers. Let's represent a
router A as a set of IP addresses. A router will have a total time series
obtained by merging all the time series of each interface it has.

The algorithm is composed of the following steps:

1. for each interface, create a router with the interface's IP address as
its sole element.

2. for every possible pair of routers (A, B):

a) if ∃ i ∈ A, j ∈ B : Rj
i = 1ORRi

j = 1 then do not merge this
pair.

b) if the monotonic test over the total time series of A and B passes,
then merge the two routers together:

AB = A ∪B

otherwise do not merge this pair.

This algorithm stops when there is only one router or when all the possible
combinations fail. To avoid running the monotonic test multiple time, a
subtly di�erent approach can be used:

CHAPTER 3. SYSTEM STRUCTURE 58

1 r ou t e r s = [l i s t o f route r s , l ength N]
2
3 for i in 0 to l ength (r ou t e r s) :
4 j = i +1
5 while j < N:
6 i f [i and j notConnected] and monotonicTest (

r ou t e r s [i] , r ou t e r s [j]) :
7 r ou t e r s [i] = rou t e r s [i] + rou t e r s [j]
8 r ou t e r s . d e l e t e (j)
9 else :
10 j = j +1;

Using this algorithm only one test per pair is executed. After all routers
have been identi�ed, each node's router ID is set to the router number it
belongs to.

MIDAR can be implemented only on Android devices that sport a 3.0 kernel
or greater, since all the required information used in the dealiasing process
can only be obtained via ICMP noti�cations, which are not accessible with-
out ICMP sockets.

3.3.7 NAPT bypass

NATs18 introduce variations in the source IP address: they replace private
address (from a private, internal network) with a public address, extracted
from a pool[25]. An outgoing packet therefore has a di�erent IP source
address before and after the NAT. This actually means that everything
that depends on the source address will be altered. This IP address will
be the same for all the duration of the analysis, therefore this behavior
allows for the �ow ID to be constant, just not the same in the two domains.
When an incoming packet is being sent to an address in the NAT pool, its
destination IP address will be changed to the corresponding private address
and the packet will be forwarded to the correct host.

A ICMP-based tracerouter tries to keep the ICMP checksum �eld constant,
and identi�es probes using the SeqNum �eld. None of these �elds are altered

18Network Address Translator, device that translate IP addresses with a one-to-one
relationship from internal and external addresses.

CHAPTER 3. SYSTEM STRUCTURE 59

by NATs, so the probe contained in its corresponding noti�cation will have
the same values in these important �elds.

NAT has a destructive e�ect on UDP traceroute: the router modi�es the
source address, which concurs in UDP checksum. A NAT router must
therefore recompute the UDP checksum and replace the original with the
new, modi�ed one. When a noti�cation comes back, the NAT router cannot
recover the correct checksum value in UDP. UDP-based tracerouter uses
the checksum as a sequence number while operating in UDP, therefore the
standard mechanism won't be able to assign noti�cations to probes.

A �exible way to solve this issue requires the knowledge of the device's
public IP address. There are two ways to achieve this goal:

• use a UPNP message to discover the router's public IP;

• the server sends this information back to the client when assigning a
job.

Using UPNP is faster and somehow more reliable, since this operation can
be repeated each time an analysis starts. This method is implemented in
mYriadi but it's completely disabled, since only a few routers o�ers UPNP
support and have it on by default. mYriadi uses the second method, which
cannot be repeated. A traceroute job is not validated if it's old enough,
since this IP address might have been changed.

Once the public IP address is known, it's trivial to compute the value of
this checksum in the public network. Each UDP probe will be registered
to two di�erent sequence numbers: the regular checksum and the external
checksum.

NAPTs19 are even more destructive: they not only change the IP source
address but also the transport-level source port. [26] �rst introduces the
NAPT term; the process is also known as PAT20 and IP masquerading.
Let's consider a NAPT which only has one public IP address available for
translation; a NAPT will then create a mapping between a private source
port and a public source port; this binding will last some time, according
to whichever policy the device is using. As shown before, we can compute

19Also known as PAT, Port Address Translation.
20Port Address Translation.

CHAPTER 3. SYSTEM STRUCTURE 60

what the checksum would be outside the private network. Each time a
thread sends a probe and fails, if at least an unknown noti�cation is received
safeguard will be triggered. Each safe send operation will be extended to
detect which public source port the router has assigned to the private source
port.

Suppose that a safe sender received an answer. This thread will then check
if the checksum is one of those two it would expect behind a NAT. If they
di�er, then the thread will compute:

∆ = Checksum− Checksumest

We are expecting a single mismatch, localized in the source port �eld.
Therefore, the new port would be:

new = old+ ∆ mod 216

or:
new = old+ ∆ + 1 mod 216

We cannot tell which one it is: the last phase of the checksum introduces
this indetermination due to one-complement sum.

We can compute two more values of checksum, so an UDP probe can be
identi�ed with up to four sequence numbers.

In a varying destination analysis, the source port will always be the same,
therefore we must compute ∆ at most L times, where L is the exploration
limit - we will use at most L di�erent IP destination addresses.

In a �xed destination analysis, the source port will be di�erent between
vertical explorers. Using the delta mechanism would introduce a much
higher number of safesends, since almost all port can be used at least once
and there is no guarantee that the NAPT will maintain a binding for all
the duration of the analysis, especially because the analysis will hog the
NAPT pool. To achieve better results, if a NAPT is detected PMDA uses
port coupling and destination port queues.

3.3.8 Analysis example

In this subsection I will describe the operations that a clients executes
when running a traceroute analysis. Assume that the server gave a client

CHAPTER 3. SYSTEM STRUCTURE 61

a tracerouter job to the address G with UDP and �xed destination; all the
other parameters are set to their default. The tracerouter's main thread
discovers its IP address and the default gateway's one, using a randomly
created probe. It then starts an HE over the newly-found node, shown in
red in �gure 3.5. The newly-created HE carries the initial probe used to
discover the default gateway.

Default gateway

A B C

iPhone

Figure 3.5: analysis example, �rst step

Let's suppose there are three nodes after the default gateway yet to be
discovered. The HE launches a �rst batch of six VE, as in �gure 3.6; the
edge labels list which probe actually discovered which node. Each probe
has a di�erent �ow ID, and is launched by a separate VE. Please note that,
if the default gateway acts as a NAPT, we won't be able to send multiple
probes with the same destination port at a time. If we were using a varying
destination approach, the �rst transmission of each probe would have failed
to evaluate ∆.

CHAPTER 3. SYSTEM STRUCTURE 62

Default gateway

A

1, 2, 3, 5

B

4, 6

C

iPhone

Figure 3.6: analysis example, second step

Nodes A and B were discovered, so MDA will spawn 12 other VEs. They
will eventually reach C, as in �gure 3.7.

Default gateway

A

1

B

4

C

14

iPhone

Figure 3.7: analysis example, second step completed

CHAPTER 3. SYSTEM STRUCTURE 63

A total of 24 VE were launched for default gateway. Even if most probes
reached already-known nodes to reach the 95% con�dence level, their an-
swers are still useful since they contribute to MIDAR DB. The HE will then
�lter the received data and create a new HE for each discovered node, as in
�gure 3.8:

• node A's HE will be created with path iPhone→ gateway → A with
probe 1 (red);

• node B's HE will be created with path iPhone→ gateway → B with
probe 4 (blue);

• node C's HE will be created with path iPhone→ gateway → C with
probe 14 (green).

Figure 3.8: analysis example, third step

The three HE operate all at the same time: they will discover both D
and E. Suppose B �nishes before A and C; two new HE would be created,

CHAPTER 3. SYSTEM STRUCTURE 64

since D and E are unknown nodes. Node D's HE will be created with path
iPhone→ gateway → B → D, in purple; node D's HE will be created with
path iPhone → gateway → B → E, in blue. They both inherit a probe
from B's HE.

In �gure 3.9, there are four active HEs: A, C, D and E.

Figure 3.9: analysis example, fourth step

When A and C horizontal explorers �nish, they won't start any additional
explorer, since they have been already explored, or are being explored right
now. One HE between E's and D's will �nish before the other and will
create the HE to F, which will lead us to the full inferred interface topology
as in �gure 3.10.

CHAPTER 3. SYSTEM STRUCTURE 65

Figure 3.10: analysis example, full interface topology

MIDAR �rst builds the reachability matrix in table 3.1.

CHAPTER 3. SYSTEM STRUCTURE 66

iPhone gateway A B C D E F G

iPhone 0 1 1 1 1 1 1 1 1
gateway 0 0 1 1 1 1 1 1 1

A 0 0 0 0 0 1 1 1 1
B 0 0 0 0 0 1 1 1 1
C 0 0 0 0 0 1 1 1 1
D 0 0 0 0 0 0 1 1 1
E 0 0 0 0 0 0 0 1 1
F 0 0 0 0 0 0 0 0 1
G 0 0 0 0 0 0 0 0 0

Table 3.1: analysis example, reachability matrix

The bold values show that A, B and C are not connected. Suppose that for
each of them there are 8 MIDAR answers21. MIDAR will run the monotonic
test between A and B �rst, using �ctitious data22 from tables 3.2 and 3.3:

Time (relative) [ms] RTT [ms] IP ID

0 2 56
6 3 65
7 1 69
9 3 74
13 4 81
15 1 86
19 2 96
21 1 102

Table 3.2: MIDAR answers for A

21They actually are a lot more: each VE starting from one of them will �rst create a
probe that should reach them.

22The values reported for Time and RTT are not real, but their distribution is.

CHAPTER 3. SYSTEM STRUCTURE 67

Time (relative) [ms] RTT [ms] IP ID

2 3 59
6 1 67
8 2 68
10 1 73
14 2 84
16 3 88
22 2 89
23 3 106

Table 3.3: MIDAR answers for B

MIDAR monotonic test will then be run between A and B, A and C and
then B and C. If a merge occurs between A and B, then it would run the
test between (A, B) and C. If there is a merge between A and C MIDAR
won't run a test with AC and B, since it already knows that A and B are
not compatible.

With the time series provided A and B can and will be merged into the
same router. I'll skip the following step of running the monotonic test
between (A, B) and C, assuming that has been passed. The �nal topology
is reported in �gure 3.11.

CHAPTER 3. SYSTEM STRUCTURE 68

Figure 3.11: analysis example, topology after dealiasing

3.4 Client-server protocol

mYriadi client-server protocol implements the following features:

• clients service requests to the server;

CHAPTER 3. SYSTEM STRUCTURE 69

• server noti�cation that a client is available to run an analysis, and
subsequently assignment of a job to such client;

• clients analyses results delivery to server;

• client identi�cation.

This protocol has a modular structure, therefore enabling e�ortless future
expansions to accommodate new analyses and operations.

Every implementation of this protocol must adhere to the following conven-
tions:

• network order (big endian) must be enforced whenever applicable;

• the protocol is designed to run over TCP;

• a �oating point value Vf is never transmitted as-is, instead it is always
transmitted as a 32 bit integer Vi:

Vi =
⌊
Vf 104

⌋
In the following pages, this is called decimal representation of a
�oating point number.

In this document, byte�elds, a particular kind of diagram, are used to show
the protocol's data structure and ordering. Grey-colored padding boxes are
used to improve the readability of such diagrams: they must be ignored
when implementing the protocol.

3.4.1 Identi�ers

The protocol uses four di�erent identi�ers:

CID Client ID; it identi�es a particular client between many. A CID is a
4 byte unsigned integer.

OID Operation ID; it represents a particular operation that the client
wants to do, or a particular service that the client would like to receive
from the server. An OID is a 1 byte unsigned integer.

CHAPTER 3. SYSTEM STRUCTURE 70

AID Analysis ID; it discriminates between all the possible analyses MapLi-
brary (the client-side library) supports. An AID is a 1 byte unsigned
integer.

JID Job ID; it is an identi�er linked to a particular job assigned to a client.
A job is an instance of an analysis assigned to a particular client. The
server generates a JID for each job assigned to every client. A JID is
a 8 byte unsigned integer. JID namespace is shared between all the
analysis IDs.

Table 3.4 summarizes their size and usage.

Id Size (B) Identi�ed entities

CID 4 Clients
OID 1 Operations (service requests typologies)
AID 1 Analyses
JID 8 Job

Table 3.4: protocol identi�ers

3.4.2 Establishing protocol sessions

A client must run a session establishment procedure with the server:

• The client sends its CID to the server and waits for approval.

• The server acks with a 1 byte unsigned integer that must be either 1,
allowed, or 0, refused.

After session establishment, the client can send can communicate an oper-
ation to the server. An operation may or may not close the session; that
is, if the client wish to communicate another operation it must run the
aforementioned session establishment procedure.

3.4.3 Operations

Each operation represents a speci�c request of the client to the server; an
operation may have one or more parameters. table 3.5 lists the operations
de�ned.

CHAPTER 3. SYSTEM STRUCTURE 71

OID Operation

0 Refresh status
1 Ask for a job
2 Send results
3 Geo-locate an IPv4
4 Geo-locate an IPv6

Table 3.5: OID to Operation

Refresh status

A client performs this operation to refresh its status, sending to the server
its location as parameters.

As in table 3.6, the client must send the OID 0, followed by the decimal
representation of latitude and longitude, in this order.

08162431

OID = 0

Latitude

Longitude

Table 3.6: Refresh status client message

There is no further interaction between client and server.

Ask for a job

With this operation, the client request a job to the server: the client per-
forms this operation when it's ready to run an analysis. This operation
requires two parameters, latitude and longitude. The client must send the
OID 1, followed by the decimal representation of latitude and longitude, in
this order.

CHAPTER 3. SYSTEM STRUCTURE 72

08162431

OID = 1

Latitude

Longitude

Table 3.7: Ask for a job client message

The server answers with an AID and, if applicable, a JID. Depending on
the AID, the server might send additional data. If AID is set to 0, the client
hasn't been assigned any job.

08162431

AID

If AID is not 0:

JID

Parameters
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Table 3.8: Ask for a job server full message

Send results

A client sends the results of a job to the server; the job's JID is the unique
parameter of this operation.

CHAPTER 3. SYSTEM STRUCTURE 73

08162431

OID = 2

JID

If JID is valid:

Serialized data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Table 3.9: Send results client full message

This operation is composed by the following steps:

1. the client sends the OID (2) and the JID;

2. the server validates the JID and will send a byte with the following
semantic:

0 the JID is not valid;

1 the JID is valid;

3. if the JID is not valid, the client will close the connection and it won't
try to send those result anymore;

4. if the JID is valid, the client sends the results to the server, with the
data serialization format speci�ed by the analysis type;

5. the server validates the data received, and then it sends back an out-
come byte, according to table 3.10;

6. if the client won't receive such outcome byte, it may try to retransmit
data again, at its own discretion, but in a new protocol session;

CHAPTER 3. SYSTEM STRUCTURE 74

7. if the client receives the outcome byte, it will behave accordingly to
table 3.10; if a retransmission is needed, it must be performed in a
new protocol session.

Value Description Delete saved data

0 validation failure yes
1 validation success yes
2 retransmission required no

Table 3.10: outcome byte values

Geo-locate an IPv4/v6 address

A client asks the server to geo-locate an IP address. This operation has one
parameter, the IP to locate: depending on the OID, the IP protocol version
used is v4 or v6. Please refer to table 3.5.

08162431

OID = 3

IPv4
08162431

OID = 4

IPv6

Table 3.11: Geo-location request client full message

The server sends back the decimal representation of latitude and longitude,
in this order.

CHAPTER 3. SYSTEM STRUCTURE 75

08162431

Latitude

Longitude

Table 3.12: Geo-location answer full message

Should the server fail to geolocate such address, it will send the maximum
value for a 4 byte integer, instead of the coordinates. To handle this out-
come, the client must �rst read the latitude:if its value is out of range23 the
client infers that the server couldn't locate the requested address.

3.4.4 Analyses

Table 3.13 lists the jobs de�ned in this platform version.

AID Analysis

0 No analysis
1 Traceroute

Table 3.13: AID to Analysis

Traceroute

This analysis, identi�ed by AID 1, consists of a traceroute toward a target
IP address; the traceroute will stop if it �nds an IP in an exclusion list. A
number of parameters might be forced by the server to the client. To be
as �exible as possible, parameters are sent using a TLV24 blueprint. The
server must send the size in byte of the parameters, in a 2 byte unsigned
integer.

23Latitude is constrained to 90 degrees, therefore latitude ≤ 90 104.
24Type Length Value.

CHAPTER 3. SYSTEM STRUCTURE 76

08162431

AID = 1

JID

Parameters size

Parameter
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

...

Parameter
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh



List

Table 3.14: Traceroute job assignment

A parameter is characterized, in order, by:

1. a type code, encoded in an unsigned byte;

2. data length, encoded in an unsigned byte;

3. the data itself.

Some parameters are optional, whilst others are mandatory:

• if the client doesn't �nd an optional parameter, it will default to a
certain value or behavior;

CHAPTER 3. SYSTEM STRUCTURE 77

• if the client doesn't �nd a mandatory parameter, it will refuse the job.

The server can send the parameters in whatever order it prefers. The server
may send more than one instance per parameter type; unless speci�ed, the
client will always ignore any repetition of a parameter type. This might be
useful for future expansions.

The following is a list of all supported parameters:

Target [Type 0, mandatory] speci�es the target IP address; length can be
either 4 or 16, in order to support both IPv4 and IPv6.

Probe type [Type 1] speci�es the probe type: the �rst byte in the payload
selects the protocol used.

ICMP default, identi�ed by 0, doesn't need additional parameters
- length must be 1.

UDP identi�ed by 1, needs the client's IP address; length must be
either 5 (IPv4) or 17 (IPv6).

Exclusion list [Type 2] contains a list of IP address that, if encountered,
will trigger the stop of the analysis; the number of addresses can be
recovered by dividing the length �eld value with the size of an IP
address in byte. If missing, the list is considered empty.

Max TTL [Type 3] speci�ed the maximum TTL value that can be used
by the client, as an unsigned byte; length is always 1.

Exploration mode [Type 4] describes the behavior of the client when
exploring nodes. The following �elds are sent:

Mode [1 unsigned byte] if 0 the client won't modify the destination
address. Default is 1.

Exploration limit [1 unsigned byte] the maximum number of probes
that can be sent to discover the next hop of a node. Default is
96.

Exploration increment [1 unsigned byte] the number of vertical
exploration that will be performed on a node the �rst time it's
discovered, or after a new outgoing interface is discovered. De-
fault is 6.

CHAPTER 3. SYSTEM STRUCTURE 78

The client will send the outcome even if the traceroute stopped for any
reason: the server will then accept or reject the outcome as de�ned.

Graph serialization The topology is represented as a list of edges be-
tween nodes. A node is identi�ed by a 2 byte integer alias: if this alias is
negative, the node is fake, otherwise is real. A fake node is a node indi-
rectly detected by the traceroute analysis: its existence is inferred from the
network behavior.

A generic edge is composed of:

• source and destination real node aliases;

• the source and destination IP addresses;

• the delay of the link;

• the TTL skip count: if h is the TTL value that reaches the source
node, and k is the TTL value that reaches the destination node, then
the TTL skip value t is:

t = k − h− 1

this value represents the hypothetical number of hidden nodes that
are between the source and the destination that the traceroute failed
to detect explicitly.

A 1-hop edge is composed of:

• source and destination node aliases, without restrictions on fakeness ;

• if the source alias is real:

� the source IP address;

• if the destination alias is real:

� the destination IP addresses;

• in addition, if both aliases are real:

CHAPTER 3. SYSTEM STRUCTURE 79

� the delay of the link.

The TTL skip count is absent, since it's always assumed to be 0. Therefore,
a 1-hop edge has no hidden nodes in between. table 3.15 shows the data
format of a 1-hop edge - clients must adhere to the �eld order speci�ed.

08162431

Source alias Destination alias

Destination IP

Source IP

Delay

Opt.

Table 3.15: 1-hop edge serialization with IPv4

Before client-side serialization, the graph has generic edges only. It is free
of fake nodes, but there might be hidden nodes, implied by non-zero TTL
skip count occurrences. The data representation of the graph must be
expressed as a list of serialized 1-hop edges: the client must transform the
graph representation in order to use only 1-hop edges. For each generic
edge from A to B, from IP X to IP Y, with delay D and TTL skip count
T, the client will create T fake nodes, and will create T − 1 1-hop edges
that will connect A with B, passing through each fake node once.

The client will send the result of the analysis as in table 3.16, keeping in
mind that 1-hop edges have variable size:

CHAPTER 3. SYSTEM STRUCTURE 80

08162431

Advertised size (double words)

Number of real nodes Number of fake nodes

Timestamp delta

1-hop edge

...

1-hop edge

 list

Table 3.16: Traceroute results structure

Assuming that the client �nished the analysis at TF , the client creates the
timestamp delta ∆T from the timestamp when it received the job TS:

∆T = TF − TS

The client sends the advertised size Sa in double words instead of the num-
ber of edges. This has the following consequences:

• since edges have di�erent size depending on their content, the server
doesn't have to parse the data in order to decide how many bytes to
read from the TCP stream;

• the number of edges in the results cannot be identi�ed without reading
the payload;

• the client sends the number of real and fake nodes, as two byte un-
signed integers, right after the advertised size, allowing the server to
perform an early validation.

Chapter 4

Validation

�A fool is a man who never tried an experiment in his life.�

Erasmus Darwin

To assure that the whole platform performs correctly, we executed a general
test that interests the whole system. Our goal was to reconstruct a map
of the GARR network. GARR is the Italian research network, which has
an high quality documentation and freely provides its ground truth, a map
that describes correctly the network's topology. This experiment, described
in section 4.1, veri�es both the server and the client appliances: it relies
both on the client's ability to run a traceroute analysis and on the correct
server-side logic that integrates all the topologies into one graph.

A set of four analyses is provided in 4.2; they use di�erent MDA modes and
their results are compared one to another to show the di�erence between
them.

In addition, a custom test validates the NAPT bypass method; this exper-
iment is described in section 4.3.

81

CHAPTER 4. VALIDATION 82

4.1 GARR network

The GARR network (http://www.garr.it/) o�ers access to the GARR In-
tegrated Networking Suite, also known as GINS. GINS provides various in-
formation and statistics. The backbone weathermap describes in realtime
the usage of backbone links between the various PoPs, Points of Presence.
I did not expect measurement anomalies during the analyses and, in fact,
none were found. The UDP protocol was used, altough ICMP would've
been �ne, too, since GARR routers behave correctly and respond to ICMP
probes. Figure 4.1 shows the backbone structure of the network.

The experiment was run in mid May 2012 from Pisa1. The device used
was connected to the IET department network, since it is attached to the
GARR network via the PI1 PoP. I handpicked 53 targets, all located at
the edges of the network. In this way I ran each analysis from an access
network to another access network, as far as possible. The intermediary
nodes and links will de�ne the backbone when the server will merge each
graph together.

1A �rst experiment was run in mid December 2011 at Pisa, from the Serra WiFi
network, with very good results, since it managed to describe the GARR backbone
correctly. The GARR network, however, experienced a lot of updates in the following
six months, so I decided to re-run the experiment to have a more up-to-date map.

http://www.garr.it/
http://ginsdr.dir.garr.it/
http://ginsdr.dir.garr.it/
http://ginsdr.dir.garr.it/Weathermap/mapgen.php?slice=bb_ip

CHAPTER 4. VALIDATION 83

Figure 4.1: GARR network backbone weathermap via GINS

CHAPTER 4. VALIDATION 84

The following list contains the campaign's targets:

PoP Domain name or description Targeted IP address

CT1
rt-ct1-ru-unirc.ct1.garr.net 193.206.137.166

rt-ct1-ru-infngrid.ct1.garr.net 193.206.137.186
rt-ct1-ru-irccs-neurolesi-me.ct1.garr.net 193.206.137.182

TS1
rc-ts1-ru-cnrismar.ts1.garr.net 193.206.132.10
rc-ts1-ru-units.ts1.garr.net 193.206.132.26

TN
rc1-tn-ru-unitn.tn.garr.net 193.206.143.98
rc-tn-ru-infntn.tn.garr.net 193.206.143.94

PI1 rt-pi1-ru-iit-ge.pi1.garr.net 193.206.132.70

PV
rc-pv-ru-cnao-pv-bk.pv.garr.net 193.204.217.86
rc-pv-ru-irccsmaug.pv.garr.net 193.206.142.178
rc-pv-ru-unipv.pv.garr.net 193.206.129.50

MI3
rt-mi3-ru-abami.mi3.garr.net 193.206.129.26
Archivio di Stato - Napoli 212.189.246.14

IRCCS FBF Brescia 212.189.242.178

PD1
rt-pd1-ru-uniud-l1.pd1.garr.net 193.204.218.106
rt-pd1-ru-cnrpd.pd1.garr.net 193.206.132.194
rt-pd1-ru-corila.pd1.garr.net 193.206.140.146

BO1
ru-ababo-rt1-bo1.bo1.garr.net 193.206.128.78

ns2.garr.net 193.206.141.41
rt1-bo1-ru-lhcopn.bo1.garr.net 193.206.128.30

NA1
rt-na1-ru-abana.na1.garr.net 193.206.130.58

rt-na1-ru-eneaportici-l1.na1.garr.net 193.204.218.130
rt-na1-ru-infnsa.na1.garr.net 193.206.143.130

AN
rc-an-ru-cnran.an.garr.net 193.204.217.218
rc-an-ru-itis.an.garr.net 193.206.140.110

UR
rc-an-rc-ur.ur.garr.net 193.206.134.238

rc-an-rc-ur-l2.ur.garr.net 193.206.134.178

CHAPTER 4. VALIDATION 85

PoP Domain name or description Targeted IP address

AN
rc-an-ru-cnran.an.garr.net 193.204.217.218
rc-an-ru-itis.an.garr.net 193.206.140.110

UR
rc-an-rc-ur.ur.garr.net 193.206.134.238

rc-an-rc-ur-l2.ur.garr.net 193.206.134.178

CA
rc-ca1-ru-cybersarmons.ca1.garr.net 193.206.137.38

rc-ca1-ru-uniss.ca1.garr.net 193.206.140.78
FUC rc-fuc-ru-asifucino.fuc.garr.net 193.206.131.134
BA1 rt-ba1-ru-cnrba.ba1.garr.net 193.206.142.90
CZ rc-cz-ru-uniczmg.cz.garr.net 193.206.142.246
MT rc-mt-ru-asimt.mt.garr.net 193.206.137.122

rc-mt-ru-emsamt.mt.garr.net 193.206.137.106
MI1 lhcopn-cnaf.cern.ch 192.16.166.18

PA1
rc-pa1-ru-abapa.pa1.garr.net 193.206.137.242

rc-pa1-ru-cnr-iamc.pa1.garr.net 193.204.218.58
rc-pa1-ru-unipa.pa1.garr.net 193.206.137.210

SS rc-ss-ru-sarss.ss.garr.net 193.206.140.98
VE rc-ve-ru-cnrve.ve.garr.net 193.206.140.154

UR
rc-an-rc-ur.ur.garr.net 193.206.134.238

rc-an-rc-ur-l2.ur.garr.net 193.206.134.178

FG
rt-ba1-ru-izs-foggia.ba1.garr.net 193.206.142.106

rc-fg-ru-unifg.fg.garr.net 193.206.143.214

FRA
re1-fra-ru-enea-frascati.fra.garr.net 193.206.136.54

re2-fra-ru-kloe.fra.garr.net 193.206.136.198
re1-fra-ru-lnf.fra.garr.net 193.206.136.206

Level3 www.bbc.co.uk 212.58.244.69
Cogent www.kernel.org 149.20.4.69
NAMEX www.telecom.it 62.149.130.234
MIX www.clubnautilus.it 212.35.204.132
VSIX VSIX peering link 95.140.128.11

GEANT lhcopn-cnaf.cern.ch 192.16.166.18

Table 4.1: targets used in this campaigns and, where available, their domain
name

The server used a static list to assign targets. Only one device was used
(and allowed to receive jobs) during the experiment. The device used a

CHAPTER 4. VALIDATION 86

retry time of 1.5 seconds and �xed destination MDA mode. I didn't use
varying destination mode since it's based on the assumption that two nodes
are topologically close if their IP addresses are close too; this assumption
does not hold in the GARR network. Since the goal of this experiment is
to reconstruct the GARR backbone, a maximum TTL value of 11 has been
used (with the exception of the analysis toward lhcopn-cnaf.cern.ch, which
has been cut as soon as reached the CERN network. The server did not
specify other parameters, so the default settings were used. A full job cycle
took approximately 15 seconds, including communication2.

2The server is multithreaded: since network communications are terminated as soon
as possible, the client will reconnect to the server as soon as possible; meanwhile, the
server will evaluate the received data.

CHAPTER 4. VALIDATION 87

V
S

IX

C
og

en
t

N
A

M
E

X

M
IX

L
3

G
E

A
N

T

S
W

IT
C

H

C
E

R
N

P
I1

F
I1

R
M

2
T

O
1

B
O

1
N

A
1

F
R

A
R

M
1

F
U

C
C

A
1

M
I2

M
I1

A
N

P
D

1
B

A
1

U
R

V
E

T
N

M
T

F
G

C
T

1
S

S

P
A

1
C

Z

P
V

M
I3

T
S

Figure 4.2: PoP level

CHAPTER 4. VALIDATION 88

The data validation is straightforward: the PoP-level map in �gure 4.2
represents correctly the backbone. The client succeeded in revealing all the
devices, and the server merged correctly each cluster of data3. Figures 4.3,
4.4, 4.5 and 4.6 shows the router-level map divided in four areas:

PI �gure 4.3; Pisa, Firenze and Torino.

BO �gure 4.4; Bologna, Ancora, Urbino, Padova, Venezia, Trento, Bari,
Foggia and Matera, along with VISX.

MI �gure 4.5; Milano, Pavia and Trieste, along with MIX, L3, GEANT,
SWITCH and CERN.

RM �gure 4.6; Roma, Frascati, Fucino, Napoli, Cagliari, Sassari, Catania,
Palermo, Catanzaro, along with NAMEX and Cogent.

3The server has a quarantine mechanism that isolates two instances of a map location,
discovered in two di�erent analyses, that describe di�erent situations although they both
refer to the same network subset. These two instances are in quarantine until one of them
reaches an acceptable con�dence level. During this campaign no con�icts were found.

CHAPTER 4. VALIDATION 89

FI1

PI1

TO1

BORM MI

1

rt-pi1-rt-rm2.rm2.garr.net 3

rt-pi1-rt-fi1.fi1.garr.net

19

rt-pi1-rt-to1.to1.garr.net

41

rt-pi1-ru-iit-ge.pi1.garr.net

rt-fi1-rt1-bo1.bo1.garr.net rt-to1-rt-mi2.mi2.garr.net

6

ru-unipi-rt-pi1.pi1.garr.net

0

10

131.114.58.1

5

131.114.186.33

131.114.192.205

Figure 4.3: GARR network, PI area

CHAPTER 4. VALIDATION 90

V
E

T
N

P
D

1

V
S

IX

B
O

1

U
R

B
A

1

F
G

M
T

A
N

P
I

4
rt

-f
i1

-r
t1

-b
o1

.b
o1

.g
ar

r.
ne

t

R
M

42
rt

-n
a1

-r
t-

ba
1.

ba
1.

ga
rr

.n
et

M
I

2
rt

1-
bo

1-
rx

1-
bo

1.
bo

1.
ga

rr
.n

et

15

rt
1-

bo
1-

rc
-a

n.
an

.g
ar

r.
ne

t

22

rt
1-

bo
1-

rt
-p

d1
.p

d1
.g

ar
r.

ne
t

rt
1-

bo
1-

rt
-b

a1
.b

a1
.g

ar
r.

ne
t

rx
1-

bo
1-

rx
1-

m
i1

.m
i1

.g
ar

r.
ne

t

16
rc

-a
n-

ru
-c

nr
an

.a
n.

ga
rr

.n
et

82

rc
-a

n-
rc

-u
r.

ur
.g

ar
r.

ne
t

rc
-a

n-
rc

-u
r-

l2
.u

r.
ga

rr
.n

et

39
rt

-p
d1

-r
u-

cn
rp

d.
pd

1.
ga

rr
.n

et

50

rt
-p

d1
-r

c-
ve

-l
1.

ve
.g

ar
r.

ne
t

59

rt
-p

d1
-r

c1
-t

n.
tn

.g
ar

r.
ne

t

64

95
.1

40
.1

28
.1

1

51
rc

-v
e-

ru
-c

nr
ve

.v
e.

ga
rr

.n
et

60
rc

-t
n-

ru
-i

nf
nt

n.
tn

.g
ar

r.
ne

t

79

rt
-b

a1
-r

c-
fg

-1
.f

g.
ga

rr
.n

et

44

rc
-b

a1
-r

c-
m

t.m
t.g

ar
r.

ne
t

58
rt

-b
a1

-r
u-

cn
rb

a.
ba

1.
ga

rr
.n

et

87

rt
-b

a1
-r

u-
iz

s-
fo

gg
ia

.b
a1

.g
ar

r.
ne

t
88

rc
-f

g-
ru

-u
ni

fg
.f

g.
ga

rr
.n

et

43
rc

-m
t-

ru
-a

si
m

t.m
t.g

ar
r.

ne
t

Figure 4.4: GARR network, BO area

CHAPTER 4. VALIDATION 91

M
I1

G
E

A
N

T

S
W

IT
C

H
C

E
R

N

M
I2

P
V

T
S

1

M
I3

M
IX

L
3

B
O

7
rx

1-
bo

1-
rx

1-
m

i1
.m

i1
.g

ar
r.

ne
t

P
I

17
rt

-t
o1

-r
t-

m
i2

.m
i2

.g
ar

r.
ne

t

11
rx

1-
m

i1
-r

-m
i1

.m
i1

.g
ar

r.n
et

8

ga
rr

-l
b2

.r
t1

.m
il.

it.
ge

an
t2

.n
et

13

ga
rr

.rt
1.

m
il.

it.
ge

an
t.n

et

30

r-
m

i1
-r

t1
-m

i1
-l

2.
m

i1
.g

ar
r.n

et

r-
m

i1
-r

t1
-m

i1
-l

1.
m

i1
.g

ar
r.n

et

r-
m

i1
-r

t1
-m

i1
-l

3.
m

i1
.g

ar
r.n

et

9

as
0.

rt
1.

ge
n.

ch
.g

ea
nt

2.
ne

t

as
0.

rt
1.

ge
n.

ch
.g

ea
nt

2.
ne

t
14

sw
iC

E
2-

10
G

E
-1

-1
.s

w
itc

h.
ch

12
e5

13
-e

-r
br

xl
-1

-t
e1

.c
er

n.
ch

18

19
3.

20
6.

14
1.

16
6

20

19
3.

20
6.

14
1.

16
2

32

rt
-m

i2
-r

t-
m

i3
.m

i3
.g

ar
r.n

et

37

rt
-m

i2
-r

c-
ts

1.
ts

1.
ga

rr
.n

et

73
rt

-m
i2

-r
-m

i2
.m

i2
.g

ar
r.n

et

75

so
-4

-1
.c

ar
1.

M
ila

n1
.L

ev
el

3.
ne

t

76

so
-3

-1
.c

ar
1.

M
ila

n1
.L

ev
el

3.
ne

t

21
rc

-p
v-

ru
-c

na
o-

pv
-b

k.
pv

.g
ar

r.
ne

t

55

rc
-p

v-
ru

-i
rc

cs
m

au
g.

pv
.g

ar
r.

ne
t

rc
-p

v-
ru

-c
na

o-
pv

-b
k.

pv
.g

ar
r.

ne
t

rc
-p

v-
ru

-i
rc

cs
m

au
g.

pv
.g

ar
r.

ne
t

33
rc

-p
v-

ru
-u

ni
pv

.p
v.

ga
rr

.n
et

31

rt
-m

i3
-r

u-
ab

am
i.m

i3
.g

ar
r.n

et
62

rt
-m

i3
-r

a-
m

i3
-l

1.
m

i3
.g

ar
r.n

et

61

21
2.

18
9.

24
2.

17
8

63
21

2.
18

9.
24

6.
14

38

rc
-t

s1
-r

u-
cn

ri
sm

ar
.ts

1.
ga

rr
.n

et
40

rc
-t

s1
-r

u-
un

its
.ts

1.
ga

rr
.n

et

74
cl

ub
na

ut
ilu

s.
m

ix
-i

t.n
et

77

ae
-1

1-
11

.c
ar

2.
M

ila
n1

.L
ev

el
3.

ne
t

ae
-1

1-
11

.c
ar

2.
M

ila
n1

.L
ev

el
3.

ne
t

78
ae

-4
-4

.e
br

2.
Fr

an
kf

ur
t1

.L
ev

el
3.

ne
t

Figure 4.5: GARR network, MI area

CHAPTER 4. VALIDATION 92

R
M

2

N
A

1

R
M

1

C
T

1

C
Z

P
A

1

F
U

C

C
A

1

S
S

F
R

A

C
og

en
t

N
A

M
E

X

P
I

24
rt

-p
i1

-r
t-

rm
2.

rm
2.

ga
rr

.n
et

B
O

23

rt
-n

a1
-r

t-
rm

2.
rm

2.
ga

rr
.n

et

27

rt
-r

m
2-

rt
-r

m
1-

l1
.r

m
1.

ga
rr

.n
et

36

rt
-r

m
2-

rc
-f

uc
.f

uc
.g

ar
r.

ne
t

48

rt
-r

m
2-

rc
-c

a1
.c

a1
.g

ar
r.

ne
t

65
rt

-r
m

2-
r-

rm
2.

rm
2.

ga
rr

.n
et

71
rt

-r
m

2-
rx

1-
rm

2.
rm

2.
ga

rr
.n

et

rt
-n

a1
-r

t-
ba

1.
ba

1.
ga

rr
.n

et

34
rt

-n
a1

-r
u-

ab
an

a.
na

1.
ga

rr
.n

et

28

rt
-r

m
1-

rt
-c

t1
.c

t1
.g

ar
r.

ne
t

25
rt

-c
t1

-r
c-

pa
1-

4.
pa

1.
ga

rr
.n

et

26

rt
-c

t1
-r

c-
pa

1-
1.

pa
1.

ga
rr

.n
et

29
rt

-c
t1

-r
c-

pa
1-

2.
pa

1.
ga

rr
.n

et

rt
-c

t1
-r

c-
pa

1-
3.

pa
1.

ga
rr

.n
et

45

rt
-c

t1
-r

u-
un

ir
c.

ct
1.

ga
rr

.n
et

46
rt

-c
t1

-r
u-

ir
cc

s-
ne

ur
ol

es
i-

m
e.

ct
1.

ga
rr

.n
et

57

rt
-c

t1
-r

c-
cz

.c
z.

ga
rr

.n
et

47
rc

-p
a1

-r
u-

ab
ap

a.
pa

1.
ga

rr
.n

et

56
rc

-c
z-

ru
-u

ni
cz

m
g.

cz
.g

ar
r.

ne
t

35
rc

-f
uc

-r
u-

as
if

uc
in

o.
fu

c.
ga

rr
.n

et

49

rc
-c

a1
-r

u-
cy

be
rs

ar
m

on
s.

ca
1.

ga
rr

.n
et

52
rc

-c
a1

-r
u-

un
is

s.
ca

1.
ga

rr
.n

et

54

rc
-c

a1
-r

c-
ss

.s
s.

ga
rr

.n
et

53
rc

-s
s-

ru
-s

ar
ss

.s
s.

ga
rr

.n
et

66
?

67

ar
ub

a-
na

p.
na

m
ex

.it

68

?

70
62

.1
49

.1
91

.4
2

69
te

2-
1.

cc
r0

1.
nc

e0
2.

at
la

s.
co

ge
nt

co
.c

om

72
rx

1-
rm

2-
re

2-
fr

a.
fr

a.
ga

rr
.n

et
84

re
2-

fr
a-

ru
-k

lo
e.

fr
a.

ga
rr

.n
et

85
re

2-
fr

a-
re

1-
fr

a.
fr

a.
ga

rr
.n

et
86

re
1-

fr
a-

ru
-l

nf
.f

ra
.g

ar
r.

ne
t

Figure 4.6: GARR network, RM area

CHAPTER 4. VALIDATION 93

A few considerations:

• BA1 (node 42) is usually reached through FI1 and BO1 (nodes 3 and
4, �gure 4.4). A temporary tra�c spike changed OSPF costs (which
are visible in the live weathermap) so that the path with RM2 and
NA1 (nodes 24 and 23, �gure 4.6) was the best route. I exploited this
situation to collect more data, that would've been hidden otherwise.

• Nodes 25, 26 and 29 (in PA1, see �gure 4.6) are actually the same
router, but the dealiasing process failed to group them; repeating
the analysis multiple times always showed di�erent con�gurations, so
that the server will eventually merge them all each time a new analylis
bring new dealiasing information.

• The two consecutive links between 65, 66 and 68 (in order, see �gure
4.6) do not have a known IP address. The TTL skipping mechanism
reached node 68 with a +2 bonus (the maximum allowed in this exper-
iment), indicating that there are two non-responding routers. For this
reason I was unable to insert node 66 in neither Cogent network nor
RM2 PoP groups. Note that, however, if further analysis should not
�nd these unknown nodes, the server will update its graph removing
them, or replacing with a new node.

• Node 18 and 20 (in PV, see �gure 4.5) are actually the same router,
but the dealiasing process failed to group them. As per PA1, repeating
the analysis multiple times yielded di�erent groupings.

Thanks to parallel MDA we were able to correctly map the GARR net-
work and its PoPs interconnections in less than 20 minutes with only one
device. mYriadi client technology is fast and e�cient as this experiment
demonstrated.

4.2 Examples of analyses with di�erent MDA

modes

This chapter has the sole purpose of showing the di�erences between ICMP
�xed destination (4.8), ICMP varying destination (4.7), UDP �xed desti-
nation (4.9) and UDP varying destination (4.10).

CHAPTER 4. VALIDATION 94

These tests were executed from a home network, where dsldevice.lan is
the NAPT router, to the same GARR node: rt-mi2-ru-infnge.mi2.garr.net.
The router is connected via ADSL to Tiscali, an Italian ISP. Be aware that
these analysis are based on an unknown network, and that their only scope
is to provide a basis to compare each mode. Nevertheless, the same network
structure can be recognized in every scenario, although with very di�erent
levels of detail.

Figure 4.7: ICMP analysis, varying destination

CHAPTER 4. VALIDATION 95

Figure 4.8: ICMP analysis, �xed destination

CHAPTER 4. VALIDATION 96

Figure 4.9: UDP analysis, �xed destination

CHAPTER 4. VALIDATION 97

Figure 4.10: UDP analysis, varying destination

CHAPTER 4. VALIDATION 98

Let's start by comparing ICMP to UDP. In Chapter 2 I wrote that an ICMP
traceroute would discover less node than a UDP traceroute. This statement
holds true also for these analyses: it's likely that many ISP's routers do not
respond to ICMP packets. Let's consider �gure 4.8 and �gure 4.9, which
di�ers in the second half of the graphs. The �rst di�erent block is showed
in �gure4.12, where UDP detected more nodes. In addition, ICMP did not
merge routers 1 and 9 together, but UDP did. Since most of the new routers
in the UDP block (sub�gure 4.11b) reach node 7 with the same IP address,
it's likely that they are the same router.

In addition, routers 1, 3 and 4 are actually the same router, as a standalone
MIDAR execution would show. This is a minor error and it can be ignored
since:

• multiple analyses from multiple client will eventually converge to the
correct topology;

• the server keeps an AS map, completely hiding these details.

11

8

77.67.82.229

1

89.149.181.54

9

xe-1-2-1.mil20.ip4.tinet.net

5

as3549.ip4.tinet.net 77.67.75.90

(a) �rst di�erent block in the
ICMP analysis

1

7

as3549.ip4.tinet.net 77.67.75.90

3

77.67.75.90

4

77.67.75.90 77.67.75.90

10

89.149.181.54 xe-1-2-1.mil20.ip4.tinet.net 89.149.181.50 89.149.186.17 89.149.181.46

12

77.67.82.229

(b) �rst di�erent block in the UDP analysis

Figure 4.11: analysis with �xed destination, �rst di�erent block between
ICMP (a) and UDP (b)

The second block is in �gure 4.12. It's almost the same block, but the UDP
analysis failed to merge nodes 8 and 13 in what is router 6 in ICMP's graph.

CHAPTER 4. VALIDATION 99

5

6

consortium-garr.so-6-0-0.ar2.lin1.gblx.net dante-milan-3.so-5-0-0.ar2.lin1.gblx.net

12

rt1-mi1-rt-mi2.mi2.garr.net 193.206.134.190

4

rt-mi2-ru-infnge.mi2.garr.net

(a) second di�erent block in the ICMP analysis

7

8

consortium-garr.so-6-0-0.ar2.lin1.gblx.net

13

dante-milan-3.so-5-0-0.ar2.lin1.gblx.net

14

rt1-mi1-rt-mi2.mi2.garr.net 193.206.134.190

6

rt-mi2-ru-infnge.mi2.garr.net

(b) second di�erent block in the UDP analysis

Figure 4.12: analysis with �xed destination, second di�erent block between
ICMP (a) and UDP (b)

MIDAR, as already seen in section �2.4, is not a perfect, 100% correct
dealiasing technique, especially in this implementation that sacri�ces accu-
racy for data e�ciency. Having a server which collects and merges data
into a single graph greatly improves the dealiasing process.

CHAPTER 4. VALIDATION 100

Now let's compare �xed destination mode to varying destination mode.
The latter discovers much more links than the former one. Consider nodes
2 and 13 in �gure 4.10, which were discussed in a �xed destination context
in �gure 4.12. Using UDP with varying destination discovered a new link
between nodes 2 and 13, so they cannot be the same router. This again
stresses out the importance of having a server capable of merging clients
data.

4.3 NAPT bypass validation

To validate the NAPT bypass mechanism I proposed in subsection 3.3.7
I developed a small Python script. This script, built upon the mYthon
library4, requires the de�nition of almost all parameters that are used in a
probe, as in listing 4.1.

Listing 4.1: NAPT test usage

f e d e r i c o :mYthon f e d e r i c o $ python napt . py
Usage : napt . py pr ivate IP ta r g e t TTL TOS srcPort

destPort SN newPort

It will send two di�erent probes: the �rst one will be used to compute
∆, while the second one will use the computed value to correctly guess its
answer's checksum. Let's add more details to the required parameters:

privateIP the IP of the device's network interface, which must be attached
to a private network.

target the URL of the both probes' target.

TTL the Time to Live value that both probes will have.

ToS the Type of Service that must be set in both probes.

srcPort the UDP source port number used by both probes.

4mYthon is mYriadi for Python; it's a simple Python library that implements generic
probes and graph mangling. It helped in many aspect, notably the development of the
NAPT bypass technique itself and to understand how to manipulate ICMP and UDP
checksums.

CHAPTER 4. VALIDATION 101

destPort the UDP destination port number used by the �rst probe.

SN the sequence number used in the �rst probe, while the second probe
will use SN +1.

newPort the UDP destination port number used by the second probe.

The script executes the following steps:

1. parse all parameters;

2. resolve target parameter into an IP address;

3. �nd the public IP address of the router5;

4. craft the �rst probe and create a payload that �xes its checksum to
sn;

5. send the �rst probe and read its answer's checksum;

6. if the script runs in a device behind a NAPT it won't correctly guess
the device, and will evaluate ∆;

7. craft the second probe with newPort and create a payload that �xes
its checksum to sn +1 ;

8. the script will compute four possible checksums before sending the
probe;

9. send the second probe and read its answer's checksum;

10. the test will be passed if one of the four proposed checksums is the
same as the one read.

5There are three possible way to obtain the router's public IP address without mYr-
iadi server:

• use a website that provides this service, like http://canihazip.com/s/, which is a
two-liner in Python;

• use NAT-PMP, a simple yet elegant protocol to communicate with NAPTs and to
request port mappings;

• use UPNP and its extension.

CHAPTER 4. VALIDATION 102

The test has been repeated many times, each time yielding the same result.
Listing 4.2 show the output of one execution:

Listing 4.2: NAPT test output

1 f e d e r i c o :mYthon f e d e r i c o $ python napt . py 192 . 1 68 . 1 . 7 1
www. ke rne l . org 2 0 2000 2020 54000 33333

2 F i r s t probe : got 0xf967 , expected one o f [' 0 xd2f0 ' , '0
xe926 ']

3 Delta i s e f b f
4
5 Second probe : got 0 xf968 which i s in [' 0 xd2f2 ' , '0

xe928 ' , '0 xf968 ' , '0 xf967 ']
6
7 www. ke rne l . org pass

To further validate this method, I implemented a simple automatic test
tool, which repeated the test 250 times with three di�erent targets; each
instance of the NAPT test has random parameters. The results are in table
4.2.

Website Pass Skip Fail Quality

www.bbc.co.uk 250 0 0 100%
www.kernel.org 250 0 0 100%
www.unipi.it 249 1 0 99,8%

Table 4.2: NAPT bypass large scale test

www.unipi.it reported a skipped test due to packet loss; repeating the test
gave di�erent ratios, however reaching 100% from time to time.The quality
is de�ned in equation 4.1:

quality =
pass+ 0.5 ∗ skip
pass+ skip+ fail

(4.1)

Chapter 5

Conclusion

�Software is like entropy. It is di�cult to grasp, weighs nothing,
and obeys the second law of thermodynamics; i.e. it always
increases.�

Norman Ralph Augustine

In this work, I've described the current di�culties of creating an Internet
topological map as they have been encountered by many projects. I've also
explained the limits of the traditional traceroute and how to overcome them
with Paris Traceroute and its evolution, MDA.

I've then presented mYriadi, a powerful and scalable mapping platform
that executes an improved traceroute version based on MDA. I've described
the overall client-server architecture and its macroscopic behavior, to then
describe in detail the client structure. I've then introduced the Tracerouter
analysis and its characteristics.

To demonstrate the correct behavior of the whole platform I've then pro-
posed a traceroute campaign aimed at reconstructing the GARR network.
A standalone test proved the validity of the NAPT bypass algorithm.

mYriadi shows a great potential, with its ability to handle a sheer quantity of
monitors with minimum cost, its quality and its ability to adapt and extends
through modules. The high di�usion of iOS device creates an enormous
potential user base.

103

CHAPTER 5. CONCLUSION 104

5.1 Future works

In this section I'll brie�y introduce some topics that might deserve further
investigation as a possible expansion of this work:

Complete IPv6 traceroute support the need to switch from IPv4 to
v6 is strong, and since the year 2000 many systems started to support
it. The client appliance partially supports IPv6, but IPv6 protocols
and utilities, like ICMP6[27, 28], are still missing. At the time of the
writing, the server appliance doesn't support IPv6, yet. Having full
IPv6 support would increase corporate interest in this project, since
this topic is gaining more and more attention each day. In addition,
a new dealiasing technique that works with IPv6 is missing.

Secure and compressed communications mYriadi's client-server pro-
tocol should be updated to require secure data transmission; even
though mYriadi does not collect any personal information, it's still
high desirable that every information sent should be encrypted. Adding
a compression method would allow the client to send more data using
less bytes.

Net neutrality network operators apply limitations to speci�c network
applications, i.e. VoIP. Our platform can be improved to estimate
the so-called network neutrality, a measurement of the restrictions
that a network imposes to a certain tra�c category. Our distributed
platform has the potential to bene�t this kind of analysis, since we
have an high quantity of clients available, and the quality of the mea-
surement would be high: instead of using two �xed endpoints, that
could easily be in privileged network area (as it happens with static
traceroute monitors that are far from access networks), we would es-
timate the network neutrality to a certain service with monitors that
would potentially be in the same spot where end users might use such
service.

Other platforms support although this work is based on iPhone and,
generally, iOS powered devices, the techniques shown here can be
used also in other devices. Android, for example, is drawing more
users to its side each day, and it's de�nitely a platform that requires

CHAPTER 5. CONCLUSION 105

our attention. Work is needed to understand what are each platform's
limitation and how to work around them as I did on iOS.

Bibliography

[1] �Internet usage statistics - the internet big picture
(http://www.internetworldstats.com/stats.htm).� (document), 1,
1.1

[2] D. D. C. R. E. K. L. K. D. C. L. J. P. L. G. R. S. W. Barry M. Leiner,
Vinton G. Cerf, �Brief history of the internet,� 1

[3] �Today's road to e-commerce and global trade internet technology re-
ports (http://www.internetworldstats.com/emarketing.htm).� 1

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos, �On power-law relation-
ships of the internet topology,� SIGCOMM Comput. Commun. Rev.,
vol. 29, pp. 251�262, Aug. 1999. 1

[5] Z. Dezs® and A.-L. Barabási, �Halting viruses in scale-free networks,�
Phys. Rev. E, vol. 65, p. 055103, May 2002. 1

[6] D. Alderson, H. Chang, M. Roughan, and S. Uhlig, �The many facets
of internet topology and tra�c,� Networks and Heterogeneous Media,
p. 2006. 1

[7] M. H. Gunes and K. Sarac, �Importance of ip alias resolution in sam-
pling internet topologies,� in Proc. IEEE Global Internet Symp, pp. 19�
24, 2007. 1

[8] B. Hu�aker, D. Plummer, D. Moore, and k. cla�y, �Topology discovery
by active probing,� in Symposium on Applications and the Internet
(SAINT), (Nara, Japan), pp. 90�96, SAINT, Jan 2002. 1

[9] K. Lougheed and Y. Rekhter, �Border Gateway Protocol (BGP).� RFC
1105 (Experimental), June 1989. Obsoleted by RFC 1163. 1

106

BIBLIOGRAPHY 107

[10] B. Augustin, T. Friedman, and R. Teixeira, �Measuring load-balanced
paths in the internet,� in Proceedings of the 7th ACM SIGCOMM con-
ference on Internet measurement, IMC '07, (New York, NY, USA),
pp. 149�160, ACM, 2007. 1.1, 2.3

[11] A. Iaria, �Progettazione ed implementazione dell'infrastruttura server
per un sistema distribuito di scansione e mappatura della rete
internet.,� Master's thesis, Università di Pisa, Dip. Ingegneria
dell'Informazione, 2011. 1.1

[12] G. Malkin, �Traceroute Using an IP Option.� RFC 1393 (Experimen-
tal), Jan. 1993. 2.1

[13] J. Postel, �Internet Control Message Protocol.� RFC 792 (Standard),
Sept. 1981. Updated by RFCs 950, 4884. 2.1

[14] D. Malone and M. Luckie, �Analysis of icmp quotations,� in Passive
and Active Network Measurement (S. Uhlig, K. Papagiannaki, and
O. Bonaventure, eds.), vol. 4427 of Lecture Notes in Computer Sci-
ence, pp. 228�232, Springer Berlin / Heidelberg, 2007. 2.1

[15] A. Broido, Y. Hyun, and k. cla�y, �Spectroscopy of traceroute de-
lays,� in Passive and Active Network Measurement (C. Dovrolis, ed.),
vol. 3431 of Lecture Notes in Computer Science, pp. 278�291, Springer
Berlin / Heidelberg, 2005. 2.1.1

[16] Cisco, �How does load balancing work?,� tech. rep., 2005. 2.1.2

[17] J. Moy, �OSPF Version 2.� RFC 2328 (Standard), Apr. 1998. Updated
by RFCs 5709, 6549. 2.1.2

[18] R. Callon, �Use of OSI IS-IS for routing in TCP/IP and dual environ-
ments.� RFC 1195 (Proposed Standard), Dec. 1990. Updated by RFCs
1349, 5302, 5304. 2.1.2

[19] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig,
�Interdomain tra�c engineering with bgp,� vol. 41, no. 5, pp. 122�128,
2003. 2.1.2

[20] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, �Avoiding traceroute anomalies with

BIBLIOGRAPHY 108

paris traceroute,� in Proceedings of the 6th ACM SIGCOMM con-
ference on Internet measurement, IMC '06, (New York, NY, USA),
pp. 153�158, ACM, 2006. 2.2, 3.3.5

[21] K. Keys, Y. Hyun, M. Luckie, and k. cla�y, �Internet-scale ipv4 alias
resolution with midar: System architecture - technical report,� tech.
rep., Cooperative Association for Internet Data Analysis (CAIDA),
May 2011. 2.4

[22] K. Keys, Y. Hyun, M. Luckie, and k. cla�y, �Internet-scale ipv4
alias resolution with midar,� IEEE/ACM Transactions on Network-
ing, 2012. 2.4

[23] K. Keys, �Internet-scale ip alias resolution techniques,� ACM SIG-
COMM Computer Communication Review (CCR), vol. 40, pp. 50�55,
Jan 2010. 2.4

[24] R. Braden, D. Borman, and C. Partridge, �Computing the Internet
checksum.� RFC 1071, Sept. 1988. Updated by RFC 1141. 3.3.1

[25] K. Egevang and P. Francis, �The IP Network Address Translator
(NAT).� RFC 1631 (Informational), May 1994. Obsoleted by RFC
3022. 3.3.7

[26] P. Srisuresh and M. Holdrege, �IP Network Address Translator (NAT)
Terminology and Considerations.� RFC 2663 (Informational), Aug.
1999. 3.3.7

[27] A. Conta and S. Deering, �Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6).� RFC 1885 (Pro-
posed Standard), Dec. 1995. Obsoleted by RFC 2463. 5.1

[28] A. Conta and S. Deering, �Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Speci�cation.�
RFC 2463 (Draft Standard), Dec. 1998. Obsoleted by RFC 4443. 5.1

	Contents
	List of Figures
	List of Tables
	Introduction
	mYriadi: a client-server Internet topology mapping system
	The challenge

	Traceroute and state of the art
	Traceroute analysis
	Inferred topology and dealiasing
	Load balancing and its effects on traceroute
	Zero-forwarding routers

	Paris Traceroute
	MDA: Multipath Detection Algorithm
	MIDAR: Monotonic ID based Alias Resolution
	Competitors
	RocketFuel
	CAIDA ARK
	DIMES

	System structure
	Overall system architecture
	Server's role and task selection policies
	Client geolocation-based policies
	Client network-based policies
	Client geolocation-network-based policies

	Geolocation and its power consumption in iOS 4+
	Client visual feedback and IP geolocation

	Detailed MapLibrary architecture
	MapLibrary structure
	Common classes and utilities
	Analyses macromodule
	Communication module

	Tracerouter module: a parallel traceroute analysis in restricted environments
	Generic probe
	Probe-answer couplings
	Answer Dispatcher and SN reservation

	Sending, receiving and safeguard mechanism
	Retransmission mechanism and TTL skipping
	Topology graph
	Traceroute algorithm's phases
	Initialization
	Parallel MDA
	Dealiasing

	NAPT bypass
	Analysis example

	Client-server protocol
	Identifiers
	Establishing protocol sessions
	Operations
	Refresh status
	Ask for a job
	Send results
	Geo-locate an IPv4/v6 address

	Analyses
	Traceroute

	Validation
	GARR network
	Examples of analyses with different MDA modes
	NAPT bypass validation

	Conclusion
	Future works

	Bibliography
	Bibliography

