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ABSTRACT 

It has been proposed that biological structures termed fractones may govern 

morphogenic events of cells; that is, fractones may dictate when a cell undergoes 

mitosis by capturing and concentrating certain chemical growth factors created by cells 

in their immediate vicinity. Based on this hypothesis, we present a model of cellular 

growth that incorporates these fractones, freely-diffusing growth factor, their interaction 

with each other, and their effect on cellular mitosis. The question of how complex 

biological cell structures arise from single cells during development can now be posed 

in terms of a mathematical control problem in which the activation and deactivation of 

fractones determines how a cellular mass forms. Stated in this fashion, several new 

questions in the field of control theory emerge as the configuration space is constantly 

evolving (caused by the creation of new cells), and thus cannot be analyzed using 

traditional techniques of control theory. We present this new class of problems, as well 

as an initial analysis of some of these questions. Also, we indicate an extension of the 

proposed control method to layout optimization. 
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SOMMARIO 

Recenti studi hanno evidenziato l’esistenza di strutture biologiche, chiamate frattoni, 

in grado di controllare la morfogenesi delle cellule. I frattoni quindi, assorbendo i fattori 

di crescita prodotti dalle cellule nelle loro immediate vicinanze, danno l’input affinché 

le cellule procedano alla mitosi. In base a queste ipotesi, proponiamo un modello di 

crescita cellulare che include i frattoni, i fattori di crescita liberi di diffondersi nello 

spazio, le interazioni che ne scaturiscono e il conseguente effetto sulla duplicazione 

cellulare. Possiamo dunque formulare in termini matematici e di controllo il problema 

della formazione di una struttura biologica complessa composta dalle cellule per la 

quale l’attivazione e la disattivazione dei frattoni determina lo sviluppo della struttura. 

Definendo il problema in questi termini, sorgono molte domande nel campo della teoria 

del controllo poiché lo spazio di operativo è in continua evoluzione (a causa della 

creazione di nuove cellule) e quindi non può essere condotta un’analisi mediante le 

tradizionali tecniche della teoria del controllo. Attraverso questo studio, presentiamo 

una nuova classe di problemi unitamente ad una prima analisi delle domande che ne 

scaturiscono. Infine, è mostrata una possibile estensione del modello all’ottimizzazione 

di layout. 
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INTRODUCTION 

 

All vertebrate animals, including humans, produce new neurons and glia (the two 

primary specialized cell types of the brain) throughout life. Neurons and glia derive 

from neural stem cells, which reside, proliferate, and differentiate in specialized zones 

termed niches. Neural stem cells proliferate extensively during development and 

progressively generate the brain, a phenomenon named neurulation, or brain 

morphogenesis. Interestingly, neural stem cells exist and continue to generate neurons 

and glial cells after birth and throughout adulthood in very restricted niches, primarily 

the walls of the lateral ventricle. What are the mechanisms that control neural stem cell 

proliferation and differentiation? Neural stem cells and their progeny respond to growth 

factors, endogenous signaling molecules that circulate in the extracellular milieu (in 

between cells). 

The process of neurulation and subsequent events of the brain’s formation involve 

multiple growth factors that induce proliferation, differentiation, and migration of cells. 

The distribution and activation of these growth factors in space and time will determine 

the morphogenic events of the developing mamalian brain. However, the process 

organizing the distribution and availability of growth factors within the neuroepithelium 

is not understood. Structures, termed fractones, directly contact neural stem and 

progenitor cells, capture and concentrate said growth factors, and are associated with 

cell proliferation ( [1], [2], [3] ). Hence, our hypothesis is that fractones are the captors 

that spatially control the activation of growth factors in a precise location to generate a 

morphogenic event.  

Inspired by these biological discoveries, we propose to develop and analyze a 

mathematical model predicting cell proliferation from the spatial distribution of 

fractones. Dynamic mathematical modeling, i.e. models that represent change in rates 

over time, serves several purposes [4]. Using computer simulations, by mimicking the 

assumed forces resulting in a system behavior, the model helps us to understand the 

nonlinear dynamics of the system under study. Such approach is especially well suited 
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for biological systems whose complexity renders a purely analytical approach 

unrealistic. Moreover, it allows us to overcome the excessively demanding purely 

experimental approach to understand a biological system. Our primary goal in this paper 

is to develop a model that contains the crucial features of our hypothesis and, at the 

same time, is sufficiently simple to allow an understanding of the underlying principles 

of the observed system. 

We propose to model this biological process as a control system, the control 

depicting the spatial distribution of the active fractones. This is a novel approach with 

respect to the most commonly reaction-diffusion models seen in the literature on 

morphogenesis, however it is not that surprising. Indeed, control theory is instrumental 

to overcome many challenges faced by scientists to design systems with a very high 

degree of complexity and interaction with the environment ( [5], [6], [7] ). Examples of 

its applicability in physical and biological systems are numerous ( [8], [9] ). 
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Figure 1 - Fractones are extracellular matrix structures associated with proliferating cells in the 

neurogenic zone (neural stem cell niche) of the adult mammalian brain.1 

                                                
1 (A) Visualization of fractones (green, puncta, arrows) by confocal laser scanning microscopy in the 

primary neurogenic zone of the adult mouse brain, i.e. the wall of the lateral ventricle (LV) at the surface 
of the caudate nucleus (Ca). Each green puncta is an individual fractone. The red puncta indicate 
proliferating neural stem cells and progenitor cells immunolabeled for the mitotic marker 
bromodeoxyuridine. Stem cells and their progeny proliferate next to fractones (arrows). (B) Location of 
the confocal image A (arrow) in a schematic representation of the mouse brain (cut in the sagittal plane). 
(C) Visualization of an individual fractone by transmission electron microscopy (dark-grey structure 
indicated by the four red arrows. The processes of neural stem cells and of their progeny, which appear 
light-grey (blue arrows) are inserted into the folds of the fractone. Scale bars. A: 50 μm; C: 1 μm. 
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Historical Usage of Mathematics in Biology  

The history of mathematics used to solve problems arising from biology dates back 

several hundred years to the times of Bernoulli and Euler. Prior to the mid-1900s, 

though, biology served primarily as the inspiration to understanding larger problems 

rather than as a practical field to be studied under the rigors of applied mathematics. 

Many problems in the field, even simplified with strong assumptions and in their least-

complex forms, were unable to be solved using traditional techniques of mathematicians 

due to their complexity. Researchers of the day were either forced to pay understudies 

to perform hundreds, perhaps thousands, of hand calculations, or they would make 

drastic simplifications of their models merely to gain insight into the behavior of the 

system, and, as a consequence, many would make incorrect conclusions when compared 

versus real-world data. However, at times, some models were found to be accurate when 

compared to known data, and thus were accepted as theory (this is most likely due to 

acceptable simplifications, those not significant to the model as a whole). 

Once the mid-20th century arrived, and with it the advent of the computer, 

researchers finally had the luxury of being able to analyze complex systems without 

unnecessary simplifications. And with the creation of the personal computer and 

modern computational software (as well as the internet and supercomputing clusters) in 

the 1980s, scientists and researchers could now fully model the most complex system 

without any necessary simplifications and can find solutions  

(albeit numeric) for a variety of problems. 

Much of what has been attempted to solve or has been solved using mathematics in 

the field of biology is summarized in Table 1. 

 

Historical Usage of Control Theory in Biology 

The appearance and usage of control theory in the field of biology is a relatively new 

idea, dating back only a few decades. The first real evidence of the usage of control 

theory to understand a biological process originates with Norbert Wiener [10], who 

developed many of the ideas of feedback and filtering in the early 1940s in 

collaboration with the Harvard physiologist Arturo Rosenblueth, who was, in turn, 

heavily influenced by the work of his colleague Walter Cannon [11], who coined the 
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term homeostasis in 1932 to refer to feedback mechanisms for set-point regulation in 

living organisms. Rudolf Kalman [12] often used biological analogies in his discussion 

of control systems theory, and so did many other early researchers. Modern biological 

control, enveloped in the more general field of systems biology, emanates from the 

work of Ludwig von Bertalanffy [13] with his general systems theory. One of the first 

numerical simulations in biology was published in 1952 by the British 

neurophysiologists and Nobel prize winners Alan Hodgkin and Andrew Huxley [14], 

who constructed a mathematical model that explained the action potential propagating 

along the axon of a neuronal cell. Also, in 1960, Denis Noble [15], using computer 

models of biological organs and organ systems to interpret function from the molecular 

level to the whole organism, developed the first computer model of the heart 

pacemaker. The formal study of systems biology, as a distinct discipline, was launched 

by systems theorist Mihajlo Mesarovic in 1966 with an international symposium at the 

Case Institute of Technology in Cleveland, Ohio entitled “Systems Theory and 

Biology” [16]. 

 

Subject  Reference 

Spread of diseases  Bernoulli 1760 [17] 

Fluid mechanics of blood flow  Euler 1760 [18] 

Age structure of stable populations  Euler 1775 [19] 

Logistic equation for limited population 

 growth  
Verhulst 1838 [20] 

Branching processes, extinction of family  

names  
Galton 1889 [21] 

Correlation  Pearson 1903 [22] 

Markov chains, statistics of language  Markov 1906 [23] 

Hardy-Weinberg equilibrium in population 

genetics  
Hardy 1908 [24] 

Dynamics of interacting species 
Lotka 1925 [25];  

Volterra 1931 [26] 
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Traveling waves in genetics  Kolmogorov 1937 [27] 

Distribution for estimating bacterial mutation   

rates  
Luria 1943 [28] 

Birth process, birth and death process  Kendall 1949 [29] 

Morphogenesis  Turing 1952 [30] 

Game theory  Von Neumann 1953 [31] 

Circular interval graphs, genetic fine 

 structure  
Benzer 1959 [32] 

Threshold functions of random graphs  Erdös 1960 [33] 

Sampling formula for haplotype frequencies  Ewens 1972 [34] 

Coalescent genealogy of populations  Kingman 1982 [35] 

Diffusion equation for gene frequencies  Kimura 1994 [36] 

Table 1 - Mathematics Arising from Biological Problems 

 

The field of systems biology is large and encompassing, so much so that it, at times, 

is hard to define what is and is not part of the field. However, the kinds of research and 

problems that have laid the groundwork for establishing the field are as follows: 

 complex molecular systems, such as the metabolic control analysis and the 

biochemical systems theory between 1960-1980 ( [37] , [38] ) 

 quantitative modeling of enzyme kinetics, a discipline that flourished, between 

1900 and 1970 [39] 

 mathematical modeling of population growth 

 simulations developed to study neurophysiology 

 control theory and cybernetics [40] 

Some recent problems approached by those studying control theory in the field of 

biology have been to model, among others: 

 internal workings of the cell 

 molecular signaling or energy transfer (among RNA, DNA, proteins, etc.) 
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 cell signal transduction processes 

 neural pathways 

 regulation versus homeostasis 

 RNA/DNA transcription with an emphasis on mutation 

 gene function and interactions. 

The breadth and variety of problems that can be modeled using control theory runs 

the gamut, from the molecular through the microscopic up to the macroscopic. Many 

areas of biology have been affected by many areas of mathematical science, and the 

challenges of biology have also prompted advances of importance to the mathematical 

sciences themselves. The rapidly developing field of systems biology (the merging of 

biology, physics, engineering, and/or mathematics) is tremendously exciting, and full of 

unique research opportunities and challenges, especially for the application of control 

theory. 

 

Motivation 

This research has been held towards three different fields of science: biology, 

mathematics and engineering. 

 

Biological Motivation 

A fundamental problem is to understand how growth factors control the topology of 

cell proliferation and direct the construction of the forming neural tissue. It has been 

demonstrated that extra-cellular matrix (ECM) molecules strongly influence growth 

factor-mediated cell proliferation. ECM proteoglycans can capture and present growth 

factors to the cell surface receptors to ultimately trigger the biological response of 

growth factors. Hence, by building a model that incorporates the most important 

features of the biological system, we attempt to simulate how this occurs to give more 

insight into how structure of biological systems takes shape under the assumption that it 

is driven by the presence of growth factors and activation by ECM molecules, 

particularly fractones. 
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F.Mercier and his collaborators have discovered ECM structures that are associated 

with proliferating cells in the stem cell niche of the adult mammalian brain ( [1], [2], 

[3]). These structures, termed fractones, hold a high potential as captors of mitotic and 

neurogenic growth factors. In Figure 2 (A) we have a laser scanning confocal 

microscopy image showing the section of the whole head of an E9.5 embryo (9.5 days 

post-coitum). Proliferating neuroepithelial cells were visualized by phosphorylated 

histone-3 (PH3, a marker of mitosis) immunofluorescence cytochemistry (red). The 

extracellular matrix material was revealed by immunoreactivity for laminin, a 

ubiquitous glycoprotein found in basement membranes and fractones. However, 

fractones are too small to be visualized at this level of magnification. Note that cells 

proliferate near the lumen of the forming cavity (arrow, neural groove). The plan of 

section is indicated in the inset. (B) High magnification confocal microscopy field 

showing proliferating neuroepithelial cells (PH3 immunoreactivity, red) associated with 

fractone (green punctae) at E8.5. (C) Magnification of the area indicated by an arrow in 

A showing that neuroepithelial cells also proliferate (red) next to fractones (green 

punctae, arrow) at E9.5. 

During our research, we analyzed a space in which there exist three unique 

components:  fractones, cells/holes, and growth factors (GFs) that cells produce. The 

initial configuration is (at least) one cell and one associated fractone. The cells produce 

growth factors on a fixed, regular time interval and in discrete amounts. The time at 

which an individual cell produces growth factor, however, may be different from any 

other cell (depending on when each cell entered the system). Once produced, the GFs 

diffuse radially away from the cell into the extra-cellular diffusion space that occurs 

between cells. The GFs do not chemically interact with each other, and they are actively 

trapped by a fractone when significantly close. Once a fractone has absorbed enough GF 

beyond some threshold, it sends a signal to the associated cell(s) to undergo mitosis. A 

hole is similar to a cell, except that it does not produce GF. In fact, a hole can be 

thought of as a wall, a non-interacting object that the system evolves around. 
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Figure 2 - Characterization of fractones in the mouse neuroepithelium during brain morphogenesis 

 

Mathematical Motivation 

The classical models attempting to describe morphogenesis are based on Reaction-

Diffusion (RD) equations developed in Turing’s “Morphogenesis” [30]. Although 

Turing made a great attempt to mathematically portray morphogenesis, his work is not 

an adequate model to describe the system given new discoveries and developments 

since the 1950s. With his model, Turing was describing how reactive chemicals present 
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in a static, living structure interact in a continuous medium (a skin tissue, for example) 

via diffusion (and, surprisingly, form wave-like patterns). For the system we are 

describing, reaction-diffusion equations cannot be used to study the mechanisms of 

morphogenesis during development as the growth factors are non-interacting. 

Turing’s hypothesis came from the simplistic approach that diffusion and subsequent 

chemical reactions of an activator/inhibitor pair of chemicals are what drive pattern 

formation, leading to the following equations for a one dimensional model: 

    1 12 , 1, ,r r r r rX f X X X X for r N           

where N represents the number of cells in the system, X is the concentration of 

morphogens  and   is a diffusion constant. 

Since growth factors are non-reactive, we should not use the reaction function  rf X . 

To expand this model to higher dimensions, the equation must accommodate more 

neighbors. Thus, the 2D diffusion equation is: 

    ( , ) ( , ) ( 1, ) ( 1, ) ( , 1) ( , 1) ( , )4i j i j i j i j i j i j i jX f X X X X X X           

Based on the hypothesis of ( [1], [2], [3] ), morphogenesis involves the capture and 

activation of growth factors by fractones at specific locations according to a precise 

timing. Also, Turing’s assumption of unchanging state space (i.e. there is no growth, or 

the cells do not replicate) is not applicable to our model since, as cells replicate, the 

system of equations describing the “diffusion-trapping” model grows by one equation 

for every new cell produced. This adds mathematical complexity to the problem in that 

the system of equations governing the model are increasing in number. As mentioned 

before, the fractones influence GF-mediated cell proliferation, which is also a sign that 

Turing’s model will not suffice, as there is no mechanism in the reaction-diffusion 

equations for structures with this type of action. Moreover, the distribution of fractones 

is constantly changing during development, reflecting the dynamics of the morphogenic 

events. Therefore, the organizing role of fractones in morphogenesis must be analyzed 

by an alternative mathematical model. 
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Engineering Motivation      

As part of engineering design, layout optimization plays a critical role in the pursuit 

of optimal design. Layout optimization aims at finding the optimum distribution or 

layout of material within a bounded domain, called the design domain, that minimizes 

an objective or target function, while satisfying a set of constraints (see the recent 

monograph and reviews ( [41], [42] , [43])). 

Existing topology optimization methods rest on mathematical foundations (see, for 

example, [41], [44] ). And mathematically, the search space, where the optimization 

layout is defined, is a topological vector space of infinite dimension - usually a Sobolev 

space [44]. In practice, however, computational methods used to solve layout 

optimization can only store and compute finite amount of data. This limitation forces 

any numerical optimization methods to rely on approximations of the search space and 

of the admissible topology configurations. The popular SIMP method [41], for example, 

models the search space as discrete functions on the discretized design domain. In other 

words, each point represents the "pixel" of the desired blueprint of the optimal design. 

As a consequence, a good resolution of the design may require a large number of pixels, 

and these pixels model both void and solid regions. 

Similarly to our computational methods, natural systems are also restricted to a finite 

encoding: the DNA. However, natural systems have devised a strikingly different 

solution to the finitude problem, where the DNA encodes a developmental program that 

when "compiled and executed" performs a sequence of tasks that develops the final 

structure in stages. The results are patterned, complex, and multi-scaled structures that 

perform multiple task functions and are generically resistant to damage. 

The goal of this research will be to develop a cellular proliferation process that 

mimics the developmental stages of natural organisms. These laws can be evolved to 

respond to desired requirements, and thus be used to search for high-performing 

engineering layouts.  



GIULIO TELLESCHI 

20 
 

1. ONE DIMENSIONAL MODEL 

 

We first study a simple case in order to understand how it is possible to model such a 

biological process, defining control inputs and basic rules that will be developed further 

on. Our initial assumption is that the geometric configuration of the cells is a ring of at 

least 3 cells. For the ring of cells, the topology is unaffected, as only the radius 

increases. The model is a control system that will predict the dynamic distribution of 

fractones (and attached cells) and their contribution to the morphogenesis process. The 

system will be modeled as a control system to incorporate dynamic changes in the 

distribution of fractones among the cells. In general, the state space of our control 

system represents the concentrations of a given number of growth factors at a precise 

location in a given configuration of cells. Mathematically, these systems are described 

by a differential equation of the form: 

 ( ) ( ( ), ( )), ( )x t f x t u t x t M   (1.1) 

where M is a n-dimensional smooth manifold, x describes the state of the system and 

:[0, ] mu T U   is a measurable bounded function called the control. Despite the 

fact that the field of control theory covers such a broad range, the biological process that 

we are analyzing presents a completely new challenge from the control theory point of 

view. We are primarily concerned with the affine control system:  

 0

1

( ) ( ( )) ( ( )) ( ), ( )
m

j

j
x t F x t F x t u t x t M



    (1.2) 

where the vector field F0 is referred to as the drift and the Fjs are referred to as the 

control vector fields (m represents the number of available inputs, in particular if m n  

we say that the system is underactuated). Let us consider the state space of our control 

system to be the concentrations of a given number of growth factors at a precise 

location in a given configuration of cells. The drift vector field will represent the 

diffusion property of the growth factors under the condition that no fractone is active 
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while the control vector fields represent the impact that a fractone will have on the 

diffusion process once it is activated. The spatial distribution of the fractones is 

governed by the control function:  

 
0  if fractone inactive

( ) 1
1  if fractone activeiu t for i m


  


 (1.3) 

Assume that we have k growth factors diffusing among the cells; we call them kX . 

Each growth factor has its own diffusion rate that will be denoted by 0k   and k
iX  

represents the concentration of the growth factor kX  in the ith−cell. Note that 0th−cell is 

synonymous with the Nth−cell, where N represents the total number of cells. Now, we 

describe the system for a single growth factor. The component i of the drift vector field 
,0( ( ))k kF X t  is: 

 ,0
1 1( ( )) ( 2 )k k k k k

k i i iF X t X X X      (1.4) 

This equation comes from Turing, and is modified to reflect that there are no cross-

reaction terms (since the GFs are non-interacting) and the presence of a diffusion 

constant for each respective growth factor. The system ,0( ) ( ( ))k k kX t F X t  represents 

pure diffusion. 

Now, as t  , such a system tends to the steady state solution in which the 

concentration of growth factor is identical in each cell. However, once a fractone 

associated to the ith-cell is activated, the diffusion process is perturbed; there is diffusion 

from the neighboring cells to the ith-cell but diffusion from the ith-cell to its neighboring 

cells is prevented. In other words, the fractone associated to the ith-cell acts as a captor 

of growth factor. In terms of the equations describing the system, when the fractone 

associated to the ith-cell is activated, only the component ui of the control is turned on 

(taking the value 1) and the control vector field , ( ( ))k i kF X t  describes the new diffusion 

process. By construction, , ( ( ))k i kF X t  only affects the diffusion of the (i − 1)th, ith, and 

 (i + 1)th-cells. Now, we introduce the exchanging function that dictates whether 

neighboring cells give growth factor to one another by: 

 ( ) ( ( ) ( ))( ( ) ( ))k k k k
st s t s tH t H X t X t X t X t    (1.5) 
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where we define: 

 
0, 0

( )
1, 0

if z
H z

if z


  
 (1.6) 

 With these notations, we have: 

 

, ,0
1, 1,

,
1 1, 1

,
1 1, 1

( ( )) ( ( ( )))

( ( )) ( )

( ( )) ( )

k i k k k
i k i i i i

k i k k k
i k i i i i

k i k k k
i k i i i i

F X t H H F X t

F X t H X X

F X t H X X







 

  

  

  

  

  

 (1.7) 

and all the other components of the control vector field , ( ( ))k i kF X t   are zero. If we 

consider multiple growth factors diffusing among the cellular structure, we must take 

them into account via superposition of the system and implementation of a hierarchical 

system to describe the affinity of a given fractone with a certain type of growth factor. 

This adds complexity to the system, but it is a straightforward extension. 

From the point of view of control theory, system (1.2) falls into the classical theory 

of control systems since it is affine and fully actuated (a fractone can potentially be 

activated in any cell). All the components of the control are piecewise constant 

functions that take their values from the set {0, 1} and, given an initial distribution of 

fractones, it is trivial to produce a control to reach a prescribed final distribution of 

cells. However, to achieve our goal, we must develop a more realistic model to 

incorporate the activation of the growth factors that will dictate the multiplication of 

cells. 

To refine the model we’ve developed thus far, we assume that once a given 

concentration for the growth factor kX  is reached at a fractone (or, equivalently, a 

captor), it releases the information to the attached cell to duplicate, and the 

concentration of growth factor in the cell drops to a lower amount. When this situation 

manifests, the number of cells in the ring grows from N to N+1. This implies that the 

state space on which our biological control system is defined is dynamic, as its 

dimension transforms with the cells duplication. Based on how we perceive the system 

to function, the control system that models it is as follows: 

 
( )

0

1

( ) ( ( )) ( ( )) ( ), ( )
N t

j

j
x t F x t F x t u t x t M



    (1.8) 
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where M(t) is now a space whose dimension and topology varies with time. In a 

simplified way, this corresponds to saying that the number of cells grows, which is 

reflected in the equation by the introduction of  N(t). Also, the domain of control now 

varies since fractones can potentially become active in the new cells. 
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2. TWO DIMENSIONAL MODEL 

 

We need to define the relevant components for the biological process under 

consideration, and their discretization: the ambient space, the cells, the bones and the 

fractones. 

 

2.1 Discretization of the problem 

The ambient space in which the morphogenic events take place is assumed to be a 

compact subset of 2 and, for simplicity,  we assume the ambient space is fixed. We 

denote by M a discretization of the ambient space (using for instance discretization by 

dilatation or Hausdorff discretization, see [45] and Figure 3). 

 

Figure 3 - Discretisation of a fractone map 
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So, in the sequel, M is identified to a subset of 2 . The precision of the 

discretization is initially set by the user but eventually will be determined by the 

experimental biological maps. To avoid any confusion with the biological cells, in the 

rest of this thesis, we call a cell of our discretization a unit and we identify each unit to 

an ordered pair of integer  ,i j . The origin unit of our discretization is chosen 

arbitrarily and will be identified to  0,0 . We assume that the boundary of the ambient 

space in which the biological process takes place is fixed but our definitions allow for 

boundaries that vary with time as well.  

For simplicity will consider a rectangular ambient space, but we can easily modify its 

shape by modeling bones. Intuitively, in our discretization, a bone will be modeled as a 

region not accessible to our system: we can imagine it as an hole (inside the ambient 

space) or a wall (if it changes the boundary of the ambient space). Referring to the 

proper definition of M, bones are useful to design the shape of the ambient space but 

once we get the desired conformation, bones will not show up in our model. There is no 

restriction in the use of bones because they are defined unit by unit, in order to create 

any shape needed. 

The morphogenic event will start from an initial configuration of cells immerged in 

what we call the ambient space. Growth factors diffuse within the ambient space but 

can’t go through cells. A cell border is modeled as a wall for the growth factors that are 

outside the cell but we’ll see further on that the cell will be able to produce growth 

factors that will diffuse in the ambient space. We assume that the space between the 

cells account for 20% of the total space occupied by the cells. This is reflected in our 

discretization by representing a cell as a square composed of 81 units (i.e. a 9 by 9 

square) 2, while the “in-between cells” space is represented by single unit-rows and unit-

columns. Notice that at this stage of the work it is an arbitrary choice and it will be 

straightforward to adjust it to reflect the observations from the experimental maps. We 

assume the cells to be vertically and horizontally aligned. 

                                                
2 From a purely theoretical point of view, there are many ways that we can represent the cells in the 

ambient space. Indeed, we can make the assumption that they are all circular and have the same 
dimension or that their shape differs in size and form. Notice that, from a practical point of view, the 
shape and size of the cells of the initial configurations will be given by the experimental map and its 
discretization. To write the dynamic model of our biological process we only assume that the size and 
shape of all cells are identical. 
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Finally, in our discretization, a fractone is represented as one unit. Growth factors are 

attracted by fractones and are stored in them. 

 

The three important spaces to take into account into our dynamical system are: the 

space filled with cells, the space in which the growth factors diffuse and finally the 

space filled with the fractones. Those objects are defined in the following definitions. 

We denote by ( )Cell t the configuration of cells in the ambient space at a given time t , 

and we call it the cell space. It is a closed subset of the ambient space and is identified 

in the sequel to a subset of M. 

The diffusion space at time t , denoted by ( )Diff t , represents the space in which growth 

factors are diffusing. It is the complement of the cell space in the ambient space and its 

discretization is identified to \ ( )M Cell t . At each time t , the diffusion space is split 

into two components, the free diffusion space ( )Free t  where the growth factors diffuse 

freely, and the fractone space, ( )Fract t , where the diffusion is perturbed. The data of 

( )Cell t , ( )Free t and ( )Fract t forms what we call the configuration space at time t , and 

we denote it by ( )Conf t . 

Note that ( ) ( )M Cell t Diff t   and ( ) ( ) ( )Diff t Fract t Free t  . 

Let ( )M t  be one of the spaces defined above. We define the dimension of the space M 

at time t as the number of indices ( , )i j  such that ( , ) ( )i j M t  where ( )M t  has been 

identified to its discretization. 

Topologically, we can interpret the above definitions as follows: we can visualize the 

configuration space at a given time t as a compact subset of  2  with holes depicted by 

the cells. On a given discretization of this topological space (varying with time), we will 

model the diffusion of growth factors (which is perturbed at the location of a fractone). 

Finally, we will incorporate into our model the mechanisms that allows duplication of 

cells named mitosis. 

An example of how the discretization process takes place is shown from Figure 4  to 

Figure 7, where we can see the diffusion space (highlighted by the grid showing free 

units) of complex shape, thank to the use of bones, plus cells (in blue) and fractones 

(green units). 
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Figure 4 - Discretization: Free(t) 

 

Figure 5 - Discretization: Fract(t) 

 

Figure 6 - Discretization: Cell(t) 

 

Figure 7 - Discretization: Conf(t) 

       

2.2 Diffusion of growth factor 

For simplicity, we assume the diffusion of a unique type of growth factor and equal 

sensitivity of the fractones with respect to that growth factor. However, our model will 

be developed such that expanding to several types of growth factors and varying 

fractone sensitivity to respective growth factors can be added in a straightforward way. 

The state space is defined at each time t  as the concentration of growth factor in each 

unit of our discretization of the diffusion space ( )Diff t . We denote the state space by 
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( )M t . More precisely, since there is a one-to-one correspondence between units and 

ordered pairs of integer, we have: 

 

DEFINITION - Let ( , ) ( )i j Diff t . At each time t , we introduce the concentration of 

growth factor in unit ( , )i j that we denote by , ( )i jX t . The state space ( )M t  at time t 

is then dim( ( ))
0( ) Diff tM t   . 

 

Assume at first that there is no cells and no fractones. Therefore, the growth factors 

diffuse freely in the ambient space. We denote by   the diffusion parameter associated 

to the considered growth factor, and in order to accurately describe the mechanism we 

introduce         0,1 , 0, 1 , 1,0 , 1,0    .  

Pure dissipation is then described by: 

 0( ) ( ( ))X t F X t  (2.1) 

where the components of ( )X t are given by , ( )i jX t which represents the quantity of 

growth factor in unit ( , )i j  at time t  as described chapter 1, and, assuming diffusion 

occurs between a unit ( , )i j and its four neighbors, we have: 

 , , ,
( , )

( ) ( ( ) ( ))i j i k j l i j
k l

X t X t X t  


   (2.2) 

for ( , ) ( )i j Diff t , see Figure 8. 

Assume now that a cell forms in the ambient space. The cell therefore becomes an 

obstacle to the diffusion process. Mathematically, rather than looking at a cell as an 

obstacle, we identify the cell to a hole in a topological space. The hole, depicting the 

location of the cell, insures that the diffusion of the growth factor takes place in the 

diffusion space only. By doing so, we do not have to perturb the diffusion process, 

instead we continuously modify the topological space in which the diffusion process 

takes place. 
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Figure 8 - Free diffusion 

 

Let us describe the new state space on which the diffusion process takes place. 

Assume the cell is centered at unit ( , )a b . This means that at the time t  at which the cell 

formed, the diffusion space ( ) t tDiff t I J   transforms into a new free diffusion space 

t tI J  from     \ 4, , 4 4, , 4t tI J a a b b       ,we assume it is instantaneous 

with no loss of generality. Notice that, since several cells might be forming at the same 
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time, the topological changes in the configuration space will reflect all the created holes. 

We then have: 

 , , ,
( , )

( , ) ( )

( ) ( ( ) ( ))i j i k j l i j
k l

i k j l Diff t

X t X t X t  


  

   (2.3) 

for ( , ) ( )i j Diff t . 

Finally, we need to model how fractones perturb the diffusion. As mentioned before, 

a fractone is represented as a one unit ( , )i j of our discretization. The hypothesis is that 

the fractones store the quantity of growth factors that they capture, and that this quantity 

becomes unavailable to the diffusion process. To reflect the biological hypothesis that 

fractones are produced and then disappear, we introduce the following definitions. 

 

DEFINITION - To each unit ( , )i j we associate what we call a passive fractone. A 

passive fractone at time t belongs to ( )Free t . An active fractone at time t  is defined 

as a unit that belongs to the set ( )Fract t . An active fractone is one that acts as a 

captor for the diffusion process. 

 

The biological translation of this definition goes as follow. A passive fractone 

corresponds to the situation such that either no fractone is associated to the unit or one 

is currently produced but is not yet part of the biological process. In other words, in our 

representation it can be seen that ( )Free t  is the set of passive fractones at time t . An 

active fractone is one that acts as a captor for the diffusion process. 

Assume now that there is an active fractone ( , )i j . Then there is perturbation to the 

diffusion process as follows. We introduce a control function  ,( ) ( ( )) 0,1 t tI J
i ju t u t  

defined on a time interval  0,T , with T representing the duration of the cascade of 

morphogenic events under study. When a fractone is active at time t , the component 

, ( )i ju t of the control is turned on to 1 while it is set to zero for a passive fractone. The 

active fractone store the current quantity of growth factors available in unit ( , )i j and 

acts as captor for the diffusion process. In other words, diffusion from an unit 
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( , ) ( )i j Fract t to its neighbors is prevented. To represent this perturbed diffusion 

process, we define a control system: 

    0 ( , )
( , )

( , ) ( )
( ) ( ) ( ) ( )i j

i j
i j Diff t

X t F X t F X t u t


    (2.4) 

where ( )X t is the state variable and denotes the concentration of growth factor in the 

diffusion space ( ) t tDiff t I J   at time t , the drift vector field 0F  is given by (2.3) and 

represents the regular diffusion of growth factors taking place in the free diffusion 

space, and finally the control vector fields perturb the regular diffusion to account for 

the possible presence of active fractones. More precisely, we have under the assumption 

that ( , )i j  is an active fractone: 

  ( , )
, ,

( , )
( , ) ( )

( ) ( )i j
i j i j

k l
i k j l Diff t

F X t X t


  

    (2.5) 

  ( , )
, ,

( , )
( ) ( ),

( , ) ( )
i j

i k j l i j

k l
F X t X t for

i k j l Diff t
 


      

 (2.6) 

Those equations reflect the fact that the quantity of growth factor in an active fractone 

become invisible to the diffusion process. Once the stored quantity reaches a given 

threshold, the fractone signals to the cells that mitosis can occur. Moreover, a key 

element in our hypothesis is that the spatial distribution of fractone varies through the 

sequence of morphogenic events. The role of the function ( )u   introduced in (2.4) is 

precisely to control the location and activation of the fractones. 

 

DEFINITION - An admissible control is a measurable function     ( ): 0, 0,1 n tu T   

where T represents the duration of the morphogenic event under study, and ( )n t  is 

the number of pairs included in t tI J . 

 

In Figure 9, we represent a simulation of the perturbed diffusion process when cells 

and fractones exist in the ambient space. The initial distribution of growth factor is a 

single source (not to scale) as seen in the initial image in the upper corner above the 

cell, while the fractone is located near the bottom corner in green. The growth factors 
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diffuse through the free space to eventually be captured by the fractone in the last 

image.    

 

  

  

  

Figure 9 - Perturbed diffusion 
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2.3 Mitosis 

As mentioned in the introduction, growth factors are regularly produced by the 

biological cells and then are diffusing freely in the available extra-cellular space. When 

the growth factor is significantly close to an active fractone, said fractone captures and 

concentrates the growth factor. Once the concentration of growth factor reaches a 

significant value, the fractone gives the order to its associated cell to undergo mitosis. In 

reality, the time for a cell to undergo mitosis is approximately four hours. However, by 

the time mitosis actually occurs, the fractone may have relocated. What is interesting is 

that the previous location of a fractone has been shown to be the location of new cells 

after the next morphogenic event. Due to this correlation, it is clear that the spatial 

distribution of fractones dictates the location of future morphogenic events, hence the 

fractones are the obvious choice to represent the controls in our system. One may argue 

that the reality does not match the model in that there is a time lapse in which the 

fractones may or may not move, and the cell undergoes mitosis. To alleviate this 

problem, the model is so that mitosis occurs instantaneously once an order has been 

issued by a fractone, and that fractone movement is also instantaneous in what we 

associate every available unit in ( )Free t with a fractone, and that “moving" a fractone is 

equivalent to changing the control from 1 to 0 in one location (making this fractone 

inactive) and vice-versa in another location (making this fractone active). To 

equivalently describe this process mathematically, we state that the spatial distribution 

of the fractones and the concentrations of freely-diffusing growth factors dictate the 

location and appearance of holes (i.e. cells) in the configuration space. 

 

Now that mitosis is occurring, a natural question arises: when a cell undergoes 

mitosis, how does the existing mass of cells deforms? The deformation of the mass of 

cells undergoing morphogenic events is extremely complex. Indeed, it involves many 

different criteria to take into account as well as forces to optimize. Our goal in this 

paper is to state and start analyzing some control problems formulated in a new setting 

rather than to produce the most accurate simulation of the biological process which 

would render such a complex system that an analytic study could not be conducted. 

Therefore, our criterion for the deformation of the mass of cell is based on the 
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minimization of a given distance function, based on the assumption that the mass of cell 

is optimizing its shape by prioritizing compactness. It is clear that we can create a 

slender shape, for instance, acting on the control inputs. 

We assume in the sequel that we have a distance function, denoted by d, defined on the 

set of ordered pairs of integers. More precisely, for each 1 2( , )a a a , 1 2( , ) ,b b b      

the distance between a and b is well defined by the positive real number ( , )d a b  

When mitosis occurs at a given time t , the configuration space ( )Conf t  undergoes a 

topological change. Indeed, with new cells forming, they become additional holes in the 

ambient space, and while the dimension of ( )Free t  decreases, the dimension of ( )Cell t  

increases. To accommodate for the formation of new cells, ( )Cell t  has to deform 

accordingly to a prescribed algorithm. Assume unit ( , )i j  represents an active fractone 

and we denote by iC  the associated cells (under our current assumptions a fractone can 

be linked up to four cells:  1 4i   ). Since we assume all cells rigid and of equal 

shape, we can identify a biological cell to a single unit of our discretization. 

Each cell can be identified to its middle unit denoted here by ( , )a b  and we can write 

( , )C a b . The deformation algorithm is defined as to preferentially deform the current 

mass of cells in the direction of the closest empty space in a clockwise orientation as 

starting from angle zero (as referenced by an axis superimposed on the center of the 

“mother" cell). More precisely, assume ( , )C a b  duplicates. The algorithm looks 

incrementally for the closest unit ( , ) ( )i j Free t to ( , )a b  (based on the chosen distance 

d) such that ( , )i j  can be identified to a cell. Since more than one unit identified to a cell 

can be at the same distance from ( , )a b , we need to use a selection algorithm. There are 

many ways to select among those units; it could even arbitrarily be determined by the 

computer. 

First, we need to introduce a notion of distance: let 1 1 1( , )a b  , 2 2 2( , )a b    
, we consider the Euclidean distance: 

   2 2
1 2 1 2 1 2,Ed a a b b       (2.7) 
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As it was explained above, we assume that each cell is identified to its middle unit of its 

discretization. It is therefore understood that

 ( , ) ( , ) ( ); 4 4, 4 4C a b i j Cell t a i a b j b           . Let ( , )i i iC a b , 1, 2i   

be two biological cells. Therefore, since between two cells we have a unit-wide channel, 

then 1 2a a mod 10 and 1 2b b mod 10 and  2 2
1 2( , ) 10 | ,Ed C C n m n m   . It 

follows that the deformation algorithm will search for the closest units in ( )Free t  that 

are at distances of the form 2 210 n m  from the cell undergoing mitosis. Notice that, 

given a cell C, the closest units multiples of 10 from C are at a distance 1 (i.e. 

( , ) (0,1)n m   or (1,0) ), and there are 4 of them. The next closest units of 10 are at a 

distance 2 ,and there are also 4 of them. Table 2 lists some of the possible distances 

(divided by 10 in the table). The pattern is very clear and only one half of one quadrant 

is displayed since it is symmetrical with respect to the other quadrants, and the table is 

symmetrical about its diagonal. 

As we’ll see further on, it is straightforward to relax the assumption that the distance 

between two connected cells is equal to 10 units or, in other words, that between two 

cells we have  a unit-wide channel. In order to prevent confusion, we define 

 modED d   (2.8) 

Where   is the distance between the connected cells (by now we have 10  ) 
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0 1 2 3 4 5 6 7 8 9 10 

1 2   

2 5  8   

3 10  13  18   

4 17  20  25  32   

5 26  29  34  41  50   

6 37  40  45  52  61  72   

7 50  53  58  65  74  85  98   

8 65  68  73  80  89  100  113  128   

9 82  85  90  97  106  117  130  145  162   

10 101  104  109  116  125  136  149  164  181  200  

Table 2 - D: distance distribution as measured from the "mother" cell 

 

We have three options: 

a) 12 possible units if D is an integer that is the hypotenuse of a Pythagorean 

triple3 

b) 8 possible units if D is not along a diagonal or an axis 

c) 4 possible units if D is on a diagonal or an axis, and is not the hypotenuse of a 

Pythagorean triple 

 

                                                
3 A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. It is easy to 

verify from Table 2 that the Pythagorean triple (3,4,5) returns 12 units: 4 on the axis, such as (5,0) and 8 
from (±3, ±4) and (±4, ±3) 
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As a resume of the notions of distance that we’ll be using, we have: 

1) Distance in units: d 

2) Euclidean notion of distance: Ed  

3) Distance between cells: D 

 

  

  

 

Figure 10 - Distance distribution: an example 

 

Now, consider for simplicity a single cell undergoing mitosis. The deformation 

algorithm is defined as to preferentially deform the current mass of cells in the direction 
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of empty space in a clockwise orientation as starting from angle zero (as referenced by 

an axis superimposed on the center of the “mother” cell). More precisely, it looks 

incrementally for the closest unit to ( , )i j that belongs to ( )Free t . Once such a unit is 

detected, the deformation occurs.  

Units at a same distance from ( , )i j  are selected in the following order. The linear 

component distances, respectively, from a cell undergoing mitosis to a location toward 

which the mass can deform are 0li i and 0lj j , for all l , where l  represents the 

number of possible locations at a given distance and 0 0( , )i j  represents the center of the 

cell undergoing mitosis. The algorithm looks first for a unit in ( )Free t such that 

0 0lj j  and chooses preferentially the max  max li . If no such unit is found, the 

algorithm searches for a unit in ( )Free t  such that 0 0lj j  , and chooses preferentially 

the  min li . 

In the case of multiple cells undergoing mitosis, we made the assumption that there is 

a hierarchical rule to define which cell duplicates first: we associate to each cell an age 

and the oldest duplicates first (intuitively it is easy to define a scale of ages as new cells 

are born, and for those cells that belong to ( ) | 0Cell t t   such hierarchy will be defined 

following the order in which the user inputs cells positions). Note that this is an 

arbitrary choice, that can be straightforwardly modified whenever a biological evidence 

dictates a more consistent rule. 

Finally, if a fractone is not associate to any cell it will keep storing growth factors 

until a cell is close enough. At this point mitosis will occur immediately. 

In Figure 11, we display a sequence of morphogenic events to illustrate how our 

deformation algorithm works. Notice that, as explained before and shown in this 

example, it is possible to use a discretization algorithm that associates to cells a circle 

inscribed in a 9 by 9 square without loss of generality. Starting from a unit cell and a 

single fractone that can be associated up to two cells (it is not placed at a cell corner), 

the sequence of images illustrate the deformation algorithm as duplication of the cell 

associated to the fractone occur. If we choose the origin such that the center of the 

initial cell is at (0, 0) . we have that the initial cell space (Figure 11,1) is 
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 ( , ) | 4 4, 4 4i j i j         , and the final cellspace (Figure 11,11) is 

 ( , ) | 26 26, 26 26 \i j i j          

    ( , ) | 6, 5,5,6,16,17 , 6, 5,5,6,16,17i j i j      . 

 Note that the ambient space is limited and gets filled up by last duplication. 

 

When a cell undergoes mitosis and the distance algorithm has chosen a position in 

( )Free t for ( )Cell t  to deform toward (let us refer to this closest selected unit at a 

distance D as ( , )c d ), the growth factor present in the space must move in order to make 

room for the deformed mass of cells. Hence, the algorithm for redistribution of GF 

occurs as follows:  

1) it calculates the sum of the GF present in the space associated to a cell 

centered in unit ( , )C c d  where the mass of cells will deform toward, i.e. 

 
4

,
, 4

( )c k d l
k l

X t 

  (2.9) 

2) deforms ( )Cell t such that ( , ) ( )c d Cell t . 

3) counts the number of units in ( ) ( )Free t Fract t  that are at a distance 8d   

from ( , )c d . 

4) distributes 70% of the sum from (1) evenly in each unit from (3). 

5) counts the number of units in ( ) ( )Free t Fract t at a distance 8 11d  from 

( , )c d . 

6) distributes the remaining 30% of the sum from (1) evenly in each unit from 

(5). 
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Figure 11 - Deformation algorithm 
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From the details thus far, we can glean the criteria that guide the system from one 

topological space to the next: 

a) in the absence of cell production of GF, the initial concentration of growth 

factor(s) dictate how many times mitosis can possibly occur (maximum 

number of cells, maximum number of configurations), 

b) the group of cells arrangement(s) will dictate how GF is distributed 

throughout, thus determining possibility for mitosis, 

c) the number of fractones present will determine the maximum change in 

dimension at any given time t, 

d) the affinity of the individual fractone to a certain GF, 

e) how often the cells, now producing GFs, do this and in what amounts, 

f) the amount of any one GF required to initiate mitosis, 

g) the “reset value” a fractone assumes post-mitosis, and 

h) how many cells each individual fractone is associated with. 

 

Following the mitosis algorithm defined above, we can generate a complex 

simulation with multiple active fractones involving several morphogenic events to reach 

the final desired configuration (Figure 12). 

 

Figure 12 - First and last frame of a simulation with multiple cells and fractones 
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3. THEORETICAL QUESTIONS AND 

RESULTS 

 

We can state our problem form a biological point of view: 

 

PROBLEM   - Given an initial and final configuration of cells in a prescribed ambient 

space, determine an initial concentration of growth factors and a dynamic spatial 

distribution of fractones such that the mass of cells transforms from its initial 

configuration to its final configuration. 

 

Let us now rephrase this using the mathematical definitions introduced previously. 

To summarize, the quantity of growth factor in each unit of our discretization is 

regulated through the following affine control system: 

    0 ( , )
( , )

( , ) ( )
( ) ( ) ( ) ( ), ( ) ( )i j

i j
i j Diff t

X t F X t F X t u t X t M t


     (3.1) 

where the state space dim( ( ))( ) Diff tM t    varies with time, the vector fields 0 ( , ), i jF F  are 

given respectively by equations (2.3) and ((2.5),(2.6)), and such that ( )u   is an 

admissible control. What is unusual in the considered problem with respect to 

traditional control problems is that the initial and final conditions are given in terms of 

(0)Cell  and ( )Cell T  rather than in terms of (0)X  and ( )X T . More precisely, we have: 

 

PROBLEM   - Given A , (0)Cell  and ( )Cell T , determine (0)X  and an admissible 

control ( )u   such that (0)Cell  transforms into ( )Cell T  under the evolution of system 

(3.1)  and the prescribed rules for mitosis. 
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Notice that the admissible control is determined by the fractone set ( )Fract t  at almost 

every time  0,t T . 

 

The key element in our model is the role played by the fractones as controllers. 

Under our hypothesis, they regulate cell's proliferation and differentiation. Growth 

factor intervenes in cell proliferation, but the fractones are the mechanism guiding and 

regulating GF. In our model, the production and diffusion of GF determines the time (or 

equivalently the order) at which the morphogenic events take place but it is the 

fractones that control the process. For instance, production of GF can always be altered 

such that a given active fractone will reach the GF threshold at a precise time. 

Moreover, the results presented in this section are based on having a unique active 

fractone at a time. Therefore, the diffusion and production of GF does not play any role 

in generating the morphogenic events (it only provides temporal information). For this 

reason, in this chapter, we consider the simplified problem where we neglect the GF 

diffusion and focus on how spatial distribution of fractones regulate cell proliferation. 

Once again, this is not a restrictive simplification and our results can be simulated using 

the complete model. 

 

The results presented in this chapter are based on the assumptions made in chapter 2, 

in particular we consider the algorithm for deformation of the mass of cells described 

above. Now that the main problem has been stated, it is clear that the algorithm we have 

chosen for deforming ( )Cell t  (the “clockwise” arrangement starting at angle zero) is 

arbitrary since any two spaces are equivalent if they are rotations of a factor of 90 

degrees of each other. If we had picked a different algorithm (either in direction of cell 

deformation or starting angle from the mother cell), the two different algorithms would 

produce final configurations that were a rotation of 90 n  degrees from each other (for 

 1, 2, 3n ). 

The first two results deal with existence and uniqueness of solutions for our 

mathematical problem. Notice that cells are discretized as circles inscribed in a 9x9 

square, without loss of generality as stated before. 
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3.1 Existence of solutions 

As with any problem, one must check to see, for a given set of initial and final 

configurations, if there actually exist a solution to the problem, even in the simplest 

cases. For our problem, one can quickly produce a counterexample for which there is no 

“exact” solution. Of course, this is assuming that the initial configuration of cells is not 

one that arbitrarily leads to final configuration, such as the degenerate case in which 

(0) ( )Conf Conf T . 

It is easy to envision a simple example for which a solution might not exist, as in 

Figure 13, if the initial configuration is that of one cell and one associated fractone, 

there is no way to produce the exact final configuration as shown. However, given the 

other initial configuration, it is clear that the final configuration in Figure 13 is a 

reachable configuration. This gives rise to a new level of complexity within the 

problem: the set of reachable final configurations (or, perhaps more appropriately, the 

set of non-reachable final configurations) as predetermined by the initial configuration. 

Even with this new point made, it is still obvious from our first counterexample that 

there does not exist for every set of given initial and final configurations a solution, i.e. 

a set of controls such that (0) ( )Conf Conf T . 

 

Figure 13 - Existence of solutions 

 



A NEW APPROACH TO MODELING MORPHOGENESIS USING CONTROL THEORY 
 

45 
 

3.2 Uniqueness of solutions 

Given (0)Conf  and ( )Conf T , suppose there exists a set of controls such that 

(0) ( )Conf Conf T . Naturally, we should determine whether or not a solution to the 

problem is unique. As before, it is easy to choose an initial configuration and a final 

configuration such that the set of controls that guides the system is not unique. In Figure 

14, we present an initial configuration and a final configuration for which the solution is 

clearly not unique. In this simulation, the fractone reaches the threshold to initiate 

mitosis from one level to the next lower level. Here, cells in red indicate the direction in 

which cell deformation occurred, fractones are green and cells in blue represent either 

static cells or “mother” cells. 

 

Figure 14 - Uniqueness of solutions 



GIULIO TELLESCHI 

46 
 

3.3 Notion of distance between configurations of cells 

After stating the problem as above, we can attempt to formalize questions concerning 

the system. Indeed, as seen in Figure 13, there might not exist a solution to this problem 

for a given set of initial and final configurations. In this case, how do we modify the 

question? One solution is to introduce a notion of distance between configurations of 

cells and to ask how to reach a final configuration that is at the shortest distance from 

the desired one. 

Before we can state some results we need to recall some definitions and introduce 

new ones. In order to measure how close two configurations of cells are from each other 

we use the Hausdorff distance. In the sequel, all spaces are identified to their 

corresponding discretization and a given ambient space A has been prescribed in which 

all the considered mass of cells live. 

Given a cell space Cell A , an element of Cell corresponds to a biological cell. In 

our discretization, it is identified to a single unit (namely the center of the cell 

( , )a a aC i j Cell  ) representing the cell. Under the assumption that cells are 

horizontally and vertically aligned, we defined a notion of distance (see (2.7) and (2.8) 

for details) D: 

 ( , ) moda b ED C C d   (3.2) 

where ,a bC C Cell , Ed  is the Euclidean distance between the centers of those two cells 

and  is the distance in units between the centers of two adjacent cells (  is a function 

of the width of channel between cells). 

Let ,A BCell Cell A  be two cell spaces, we define the directed Hausdorff distance, 

Hd , by: 

    , max min ,
b Ba A

H A B a bC CellC Cell
d Cell Cell D C C


  (3.3) 

Thus  ,H A Bd Cell Cell gives the minimum distance from the cell a AC Cell  to any 

cell in BCell , where aC  is the cell in ACell  furthest from any cell in BCell . The 

Hausdorff distance HD is given by 
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       , max , , ,H A B H A B H B AD Cell Cell d Cell Cell d Cell Cell  (3.4) 

 

Example in Figure 15, shows how these definitions work. Placing the origin in the 

bottom left corner of the ambient space, the configuration of cells is: 

 
  
  
16,5 , (16,16), (16, 27), (27,16)

5,5 , (27, 27), (38,16), (49,16)
a

b

C

C




 

and in terms of cell space: 

    
    
     

    

( , ) | 12, , 20 , 1, ,9,12, , 20, 23, ,31

( , ) | 23, ,31 , 12, , 20

( , ) | , 1, ,9 ( , ) | , 23, ,31

( , ) | 34, , 42, 45, ,53 , 12, , 20

A

B

i j i j
Cell

i j i j

i j i j i j i j
Cell

i j i j

  


 

   


 

   

 

 

  

 

An easy calculation shows that ( , ) 2H A Bd Cell Cell  , ( , ) 2H B Ad Cell Cell   and 

( , ) 2H A BD Cell Cell  . 

 

Figure 15 - ACell  (grey) and BCell  (light blue) discretized as circles (a) or squares (b, with axes 

included) 

 

The next definition introduces the notion of walk between two biological cells: 
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DEFINITION - Let ,a bC C  be two cells. A walk from aC  to bC  is a sequence of cells, 

 
0i

n

a i
C


, such that 

0
,

na a b aC C C C   and 
1

( , ) 1
j ja aD C C


  for 0,1, , 1j n  .  

A walk  
0i

n

a i
C


 is minimal if

0 00,1, 0,1,
max min( ( , ), ( , )) max min( ( , ), ( , ))

j j n j j ma a a a b b b bj n j m
D C C D C C D C C D C C

 


 
 for any 

other walk  
0i

m

b i
C


 with 

0
,

ma b b bC C C C  . 

 

Clearly, a walk must “cross” the line equidistant (using the Euclidian metric) to the 

two end-point cells aC  and bC . We will call any cell through which this line passes a 

“middle cell”. Notice that for some scenarios, there might not be any middle cell (Figure 

16,a). This can be the case only if the first or second indices of the cells aC  and bC  

coincide. Assume that aC  and bC are not aligned, then middle cells exists and it is clear 

that a minimal walk must contains a middle cell such that the sum of its distance to aC  

and its distance to bC  is less or equal to this sum for any other middle cell. It is also true 

that this distance represents the value 
00,1,

max min( ( , ), ( , ))
j j na a a aj n

D C C D C C
 

. 

 

PROPOSITION - Let ,a bC C  be two cells in the ambient space. Then, there exists a 

minimal walk from aC  to bC . The minimal walk may not be unique. 

 

The proof is based on our previous remarks. First let us introduce a specific construction 

for a walk between ( , )a a aC i j  and ( , )b b bC i j , we will prove that it is minimal. We 

introduce 
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0
2

0
2

0
2

0
2

b a
b a

i
b a

b a

b a
b a

j
b a

b a

i i if i i
d

i i if i i

j j if j j
d

j j if j j









       
     

       
     

 

as the as the horizontal and vertical integer part distances. If 2id   and 2jd  , the 

minimal walk is straightforward to construct. Otherwise, we construct a minimal walk 

inductively by finding a minimal walk between ( , )a ai j  and ( , )a i a ji d j d   and a 

minimal walk between ( , )b i b ji d j d  and ( , )b bi j , if the horizontal and vertical integer 

part distances between these two indices are greater than 2 we keep subdividing. We 

concatenate these minimal walks to achieve a walk between ( , )a ai j  and ( , )b bi j . This 

final walk is minimal. Indeed, its middle point is the furthest unit in the walk from either 

aC  or bC but by construction it is also the closest cell from aC  and bC  among the set of 

all middle cells (and this is also true for each of the subdivision). □ 

 

Notice that it is not true that the concatenation of two minimal walks is always also a 

minimal walk. 
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Figure 16 - Walks between cells 

(a) Two example walks, one of which is a minimal walk. (b) A minimal walk, with middle cells highlighted. Note that 

any minimal walk must pass through the middle cell in the center, and will not pass through any other middle cell. 

 

DEFINITION - A cell space Cell is called 1-connected if for any two cells, 

,a bC C Cell , there exists a walk  iaC  with 
iaC Cell for all i and 

0
,

na a a bC C C C  . More generally, Cell  is said to be r -connected if there exist a 

sequence  
0i

n

a i
C


 with 

iaC Cell for all i , 
0

,
na a a bC C C C   and such that 

1
( , )

j ja aD C C r


  for 0,1, , 1j n  . We call Cell minimally r -connected if Cell is 

r -connected but not m -connected for any m r . 
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Figure 17 - (a) 1-connected cell space, (b)  minimally 3-connecrted cell space 

 

DEFINITION - Let ACell  and BCell  be two cell spaces. A path (when it exists) 

between ACell  to BCell  is a sequence of morphogenic events such that ACell  
deforms into BCell . More precisely, the existence of a path is equivalent to the 

existence of an initial value X(0) and an admissible control ( )u   defined on  0,T , 

(0)ACell Cell such that there is a solution to problem with ( )BCell Cell T . Given 

the fact that in this section we neglect the role of the growth factor, it boils down to 

the existence of a dynamic spatial distribution of fractones that generates the desired 

growth. 

 

PROPOSITION - Given an initial cell space (0)Cell  and a 1-connected cell space FCell  

such that (0) FCell Cell , then there exists a path from (0)Cell  to ( )Cell T  for some 

T  such that ( ( ), ) 1H FD Cell T Cell  . 

 

Since (0)Cell  is assumed to be a strict subset of ( )Cell T , let 
0

(0)aC Cell  such that 

there exists 
1

( )aC Cell T  with 
0 1

( , ) 1a aD C C   and 
1

(0)aC Cell  (i.e. 
1aC  must be 

directly above, below, to the right, or to the left of 
0aC ). This is possible since ( )Cell T  
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is 1-connected. We activate a fractone associated to the cell 
0aC  to induce mitosis. If 

1aC  is to the right of 
0aC  , then when growth is triggered, the mass of cell deforms and 

1aC  is brought into the new cell space. If 
1aC  is below, to the left, or above 

0aC  , then 

growth must occur at least two, three, or four times, respectively, before the mass of cell 

deforms in the 
1aC  direction. The extra cells created in this growth will be distance 1 

from 
0aC  , and therefore either in FCell or a distance 1 from FCell . Inductively, we 

inactivate the fractone and repeat the process. When no cell 
0aC  satisfying our 

assumptions exists, then the newly obtained cell space at that time, T, must be within 

Hausdorff distance 1 since no extra cell created was more than distance 1 from any 

element of FCell . □ 

 

Figure 18 - Distance from a configuration 

From any initial cell space included in the final cell space represented in blue can be deformed into a cell space 

strictly included in the green space at Hausdorff distance 1 of the desired final cell space.  

 

The next natural question is to determine how to modify the deformation algorithm 

in order to replace the existence of a path from (0)Cell  to ( )Cell T  for some T  such 
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that ( ( ), ) 1H FD Cell T Cell   by the existence of a path such that ( ) FCell T Cell , i.e. we 

can reach exactly the final prescribed cell space. The following proposition states that 

we can improve the accuracy of the growth if we allow rotation of the entire 

configuration space between growth events. This is not surprising since it essentially 

allows us to choose the direction of cell growth 

 

PROPOSITION - Given an initial cell space (0)Cell  and a 1-connected cell space FCell  

such that (0) FCell Cell , then, with rotations of the configuration space allowed 

between morphogenic events, there exists a path from (0)Cell  to ( )Cell T  for some 

T  such that ( ( ), ) 0H FD Cell T Cell  . 

 

Let 
0

(0)aC Cell  such that there exists 
1

( )aC Cell T  with 
0 1

( , ) 1a aD C C   and 

1
(0)aC Cell . Rotate (0)Cell  and FCell  together until 

1aC  (or its rotational image) lies 

to the right of 
0aC  (or its rotational image). We then proceed exactly as in previous 

proposition by activating a fractone associated to cell 
0aC . The cell space is then 

deformed exactly in the Ca1 direction. Since FCell  is connected, this process can be 

repeated, and the cell space rotated back to its original orientation, until 

( ( ), ) 0H FD Cell T Cell  . □ 

 

One should note this path from (0)Cell  to ( )Cell T  is neither unique nor time-

optimal. In fact, it is quite slow as at most 1 fractone is active at any given time. Notice 

also that from the biological point of view, a deformation algorithm that allows 

translation and rotation of the cell space is not realistic for several reasons. It is 

interesting purely from a mathematical point of view. 

The next result concerns a cell growth from an initial cell space to reach as close as 

possible a final cell space that is minimally r -connected, 1r  . Let us first state a 

useful lemma. 
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LEMMA - Let ( , ), 1,2i i iC i j i   be two cells in a cell space such that 1 2( , )D C C r , 

r  odd . Then for the middle point ( , )m m mC i j  of a minimal walk between 1C  and 

2C ,  1 2min ( , ), ( , )
2m m

rD C C D C C  . 

 

Let 2 1
i

i i
d




  and 2 1
j

j j
d




 . Then 2 2
i jr d d  . We first note that the case where 

either id  or jd  equal 0 is trivial. The minimal walk is a straight row or column, and the 

distance to a middle cell is equal to 
2
r (if r is even there is no middle cell). If 1id   and 

1jd  , then it is simple to verify that 2r   and the distance to the middle points is 1. 

Otherwise, in general, there are three cases: (i) id , jd  both even; (ii) one of id , jd  odd; 

(iii) or both id , jd  odd.  

Case (i): If id , jd both even, then the middle point is a distance 

22

2 2 2 2
ji dd r r       

   
 from either 1C  or 2C .  

Case (ii): Without loss of generality, suppose id  is odd and jd  is even. Then the 

furthest distance from the middle point of a minimal walk to either 1C  or 2C will be 

22
2 2 2 21 1 12 1

2 2 2 2
ji

i j i i j

dd d d d d d
           

   
 if 2 22 1i i jd d d   . Since 

2id   and 1jd   (otherwise we would be in one of the previously proven cases), the 

inequality holds.  

Case (iii): If both id , jd  are odd (note in this case 3id   and 3jd  ), then the furthest 

distance from the middle point of a minimal walk to either 1C  or 2C  is 

22 11
2 2

ji dd       
   

. It follows that 
22

2 211 1
2 2 2

ji
i j

dd d d
       

   
 if 

2 22 2 2i j i jd d d d    . Since 3id   and 3jd  , the inequality holds (the same 



A NEW APPROACH TO MODELING MORPHOGENESIS USING CONTROL THEORY 
 

55 
 

argument is true if we invert i and j in the equations depending on the minimal walk that 

has been chosen). □ 

 

PROPOSITION - Given an initial cell space (0)Cell  and a minimally r -connected cell 

space, 1r  , 1 i

n
F i FCell Cell   where each 

iFCell  is 1-connected. Assume 

(0)
kFCell Cell for some k . Then there exists a path from (0)Cell  to ( )Cell T  for 

some T  such that ( ( ), )
2H F

rD Cell T Cell   

 

First, we construct from FCell  a new cell space by bridging the gaps between all its 

components
iFCell . The algorithm goes as follows: find the cell in 

1FCell  and the cell in 

1 ii FCell  that have minimal distance D to each other. Find a minimal walk between 

these two cells, call it  1iaC . Without loss of generality, suppose we connect 
1FCell  and 

2FCell . Then find a cell in 
1 2F FCell Cell  and a cell in 2 ii FCell  that minimize the 

distance D between all cells in those two cell spaces. Again, find a minimal walk 

between these two cells, call it  2 iaC . Proceed 

iteratively until all 
iFCell have walks,  jiaC , between them. Then let GCell be the union 

of FCell  and  1
1 ji

n
j aC
 . Then GCell  is 1-connected, so by previous proposition, there 

exists a path from (0)Cell  to ( )Cell T  for some T  such that ( ( ), ) 1H GD Cell T Cell  . The 

difference between FCell and GCell are the minimal walks, so the Hausdorff distance 

from ( )Cell T  to FCell will be at most the maximum distance from a walk endpoint to a 

point 2  away from the closest middle cell. Since FCell is minimally r -connected, we 

need only to consider the walks between cells at a distance r  from each other. Let 

( , ), 1,2i i iC i j i   be two such cells, and let 2 1
i

i i
d




  and 2 1
j

j j
d




 . Then 

2 2
i jr d d  . Suppose first that id  is 0. We note jd  cannot be equal one since we 
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assume FCell  is not 1-connected. If 3jd   is odd, then the minimal walk between 1C  

and 2C  is a column of cells, and the minimum of the maximum distances to a cell one 

away (left or right) from this walk is given by 
21

1
2

jd  
 

 
. This will be less than or 

equal to 
2

r
 if 2 2 5j jd d  , which is true for 3jd  . Similarly, if 2jd   is even, then 

the distance to a cell one away from the middle cell is: 
2

1
2

jd 
 

 
. Note that 

2

1
2 2

jd r 
  

 
 if 2 4jd  , which is always true for 2jd  . Remark that the above 

argument applies even if the values of id  and jd  are swapped (covering the case where 

the minimal walk is a horizontal row of cells), and covers the worst-case scenario; 

clearly, growing to the right along a horizontal minimal walk will match the minimal 

walk exactly, giving a Hausdorff distance within 2
r , while growing to the left requires 

to pass through a middle cell above or below the middle cell of the minimal walk. 

Suppose now that neither id  nor jd are 0. If both id  and jd are even, then the minimal 

walk must pass through the middle cell 
1 1 1( 2 , 2)M i jC i d j d   , where the   is 

determined by the relative position of 1C  to 2C . Then the maximum distance from an 

end cell of the walk (i.e. 1C , 2C ) to a cell within 2  of 
1MC  is 

22

1 1
2 2

ji dd       
   

 

(or equivalently we can interchange i  and j ). Moreover, 
22

1 1
2 2 2

ji dd r       
   

 

if 2 2( 4 ) ( 4 ) 8i i j jd d d d    , which is always true for , 2i jd d  . The case of 

1i jd d   is trivial. So suppose id  and jd  are both odd and not both 1. Then there are 

two middle cells the minimal walk could pass through. Without loss of generality, let it 

pass through 1 1

11,
2 2

ji ddi j
 

  
 

. Then the neighboring cells of interest are 
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1 1 1

11,
2 2

ji
N

ddC i j
 

   
 

 and 
2 1 1

33 ,
2 2

ji
N

ddC i j
 

   
 

. The distance from 1C  

to 
1NC  is 

22 11
2 2

ji dd       
   

. And this is less than 
2

r
 if 

2 2( 2 ) ( 2 ) 2,i i j jd d d d     which is always true for , 1i jd d  . The distance from 1C  to 

2NC  is 
22 33

2 2
ji dd       

   
. And this is less than 

2
r

 if 2 2( 6 ) ( 6 ) 18i i j jd d d d    , 

which is always true for , 3i jd d  . It fails in the cases when 7id   and 1jd  , however 

in these cases, it turns out that 
2NC  is closer to 2C  than to 1C  and it is easy to show that 

a walk can still be grown that satisfies the desired conclusion (see Figure 19). Finally 

suppose now, without loss of generality, that id  is odd and jd  is even. Assume that one 

of the middle cells of the minimal walk is 
2 1 1( ( 1) 2 , 2)M i jC i d j d     (other cases 

are similar). By symmetry, a second middle cell that the minimal walk must pass 

through is 
3 1 1( ( 1) 2, 2)M i jC i d j d    . 

2MC  is closer to 1C  than to 2C , and 

similarly, 
3MC  is closer to 2C than to 1C . Therefore, in calculating Hausdorff distance, 

we need only look at the distances between cells neighboring 
2MC  and 1C . By 

symmetry, these will be the same as the distances between points neighboring 
3MC  and 

2C . The neighboring cells to 
2MC  are 

3 1 1( ( 3) 2 , ( 2) 2)N i jC i d j d      and 

4 1 1( ( 1) 2 , ( 2) 2)N i jC i d j d     . The distance to 
3NC  is 

22 23
2 2

ji dd       
   

, 

less than or equal to 
2

r
 if 2 2( 6 ) ( 4 ) 13i i j jd d d d    , which holds except in the cases 

where 1id   and 4jd  . However, as in the previous case, it is easy to show that a 

walk can still be grown that satisfies the desired conclusion. The distance to 
4NC  is 
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22 21
2 2

ji dd       
   

, less than or equal to 
2

r
 if 2 2( 2 ) ( 4 ) 5i i j jd d d d    , which 

holds for 1id   and 2jd  . □ 

 

Figure 19 - Possible configuration at same Hausdorff distance 

The four possible configurations when di = 1, dj = 5 or di = 5, dj = 1. Cells are numbered by order of growth. 

The Hausdorff distance in all four cases is 5  

 

PROPOSITION - Given an initial cell space (0)Cell  and a minimally r -connected cell 

space, 1 i

n
F i FCell Cell   where each 

iFCell  is 1-connected. Assume (0)
kFCell Cell

for some k . Then, with rotations allowed between morphogenic events,  there exists 

a path from (0)Cell  to ( )Cell T  for some T  such that ( ( ), )
2H F

rD Cell T Cell   

 

As in the above proof, we construct a new cell space, GCell , that bridges the gaps 

between each 
iFCell . We showed already that there exists a path from (0)Cell  to 
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( )Cell T  such that ( ( ), ) 0H GD Cell T Cell  . FCell  differs from GCell solely by the 

minimal walks. Thus ( , )H G FD Cell Cell
 
is the distance from the cell on a minimal walk 

which is furthest from any point in FCell . This must be one of the middle cells of a 

minimal walk. Since FCell is minimally r -connected, the longest minimal walk(s) must 

connect cells a distance r  apart. Therefore, thanks to the lemma introduced above, 

( , )
2H G F

rD Cell Cell  . □ 

 

 

In this section, we presented some answers to the one of the most basic question, 

which is the existence of a path between two given cell spaces. Clearly, much is still to 

be answered. One strategy to be explored in forthcoming work is based on the 

experimental observations collected in the lab through the fractone maps. Indeed, the 

experimental maps will provide information about the control function used by nature to 

produce morphogenic events. Based on those observations as well as assumptions such 

as minimizing the number of times mitosis can take place during the entire duration of 

the morphogenic event or minimizing the number of switching in the control function 

(which is equivalent to minimize the changes in the spatial distribution of the fractones), 

we can ascribe a cost function to be minimized. Our problem then becomes an optimal 

control problem. The bottom line is that, due to the complexity of the system, there is an 

extremely large number of questions associated to this problem, and, as said previously, 

new methods need to be developed. 

Our model clearly diverges from Turing’s model (or any other Reaction-Diffusion 

model), and it presents new challenges that will advance the field of control theory. To 

envision how our problem does this, we must compare and contrast versus typical 

control theory problems. For example, in physics, the state space is static and the 

equations of motion are derived from minimizing a Lagrangian. In engineering, the 

configuration manifold is fixed and one either attempts to determine the evolution of the 

system while minimizing a prescribed cost or one tries to design controls to take into 

account uncertainties of the system. Due to the morphogenic nature of the biological 

process under study, the configuration space is constantly evolving (caused by the 
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creation of new cells), and thus cannot be analyzed using traditional techniques of 

control theory in which the equations describing a given system are predetermined 

when defining the system. This distinguishes in a very non-trivial way our problem 

from the traditional problems whose systems are usually defined on a static 

configuration space. 

Inspired by the biological question, we propose an entirely new theoretical control 

problem by noting that an intrinsic property of biological systems is having a dynamic 

state space. As a result, new methods have to be proposed to analyze these type of 

systems from the control theory point of view. This will advance the field of control 

theory by considering new problems and by providing insight toward the development 

of innovative ideas and methods to solve these types of problems. 
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4. MODEL IMPROVEMENTS TO FIT 

BIOLOGICAL EXPERIMENTS 

 

Using computer simulations, by mimicking the assumed system behavior, the model 

helps us to understand the nonlinear dynamics of the biological system under study. 

Such approach is especially well suited for biological systems whose complexity 

renders a purely analytical approach unrealistic. Moreover, it allows us to overcome the 

excessively demanding purely experimental approach to understand a biological system. 

At the same time we have to keep always in mind that the study of this particular 

biological system is not completely accomplished. It is then crucial to work in team 

with biologists and update our model restating biological issues into a mathematical 

language. As a result of these considerations we developed a computer model that can 

be improved relatively easily (although it is quite a complex model) to fit new 

biological experiments and remarks.  

Next sections will show some prior changes to the initial model. 

 

4.1 Growth factor diffusion speed 

A first result from computer simulations that does not match with biological 

evidence is that while the diffusion of growth factors is correctly model in a free 

ambient space, it results too slow in between cells. We took in account mainly three 

options to solve this problem: 

a) Insert a penalty function for diffusion in the channels between cells 

b) Modify the diffusion law from a four-ways to eight-ways direction 

c) Increase channel dimension 

Defining a penalty function when diffusion occurs in the channel between cells (a) 

may result in a drastic simplification, as there is no biological evidence that allow us to 
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properly define such function. Moreover it may lead to loose contact with the biological 

problem, giving too much arbitrariness to a model that is already wide and complex. 

Comparing two simulations with a diffusion of 4 and 8 ways one may think that it is 

a good option to solve this issue. Unfortunately, option (b) cannot be a good solution 

from a biological point of view as an eight-ways diffusion process is not reflecting the 

behavior of the natural process. 

In chapter 2 we made the assumption that two adjoining cells are at distance 1 in 

units (that is d=9 from the centers) and this distance is parameterized by 10  . It is 

then straightforward to relax this assumption changing the value of that parameter, 

increasing it of one unit: 11  . Such modification will not affect the morphogenesis 

algorithm nor the notion of distance between cells ( D ) or configurations ( HD ). 

Although a wider channel between cells does not affect the mitosis process, it has a 

great effect on the control of our mathematical model: the fractones. We modeled a 

fractone as a single unit that can be associated up to four cells, but considering a 2-unit 

channel this assumption has to be modified. We get two options: increase fractones 

dimension (one may suggest a 2 by 2 square in order not to affect assumptions made in 

chapter 3) or leave the fractones of the smallest dimension allowed by the mapping and 

rethink their role in morphogenesis. 

Thanks to biological experiments, we decided for the second option. This choice has the 

immediate result to allow the control to give the input for morphogenesis at only one 

cell per time, but at the same time, if we aim to have multiple duplications we just need 

to activate several fractones. Note that for the assumptions made in chapter 2, the 

definition of time is arbitrary as we modeled mitosis to occur instantaneously.  

From this point on, we will consider a 2-unit channel between cells. Thus, we assume 

that the space between cells accounts for 33% of the total space occupied by the cell. 
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Figure 20 - 2-unit channel between adjoining cells 

 

 

Figure 21 - 2-unit channel between adjoining cells, three dimensional simulation 
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4.2 Growth factor redistribution 

We already modeled how growth factors are redistributed when a new cell is born, 

but as mitosis is a key element of our model we need to depict this biological process 

with great attention.  

A morphogenic event is described, in biology, by a “mother” cell splitting into two 

“children”. This action perturbs the ambient space as the mass of cells, and growth 

factors around it, is pushed to change its shape and create the exact free space needed 

for one more cell. Comparing our model with this brutal, but effective, simplification of 

mitosis, we highlighted two main remarks: 

a) As a cell splits into two younger cells, fractones that were around it will be 

pushed, like a pressure wave, but right after mitosis occurred the channel 

between the two cells will be empty. 

b) In our model we place a new cell at the minimum distance ( D ) possible 

instead of rearranging all the existing cells, placing the new cell right next to 

the mother cell. 

Due to the complexity of morphogenesis, scientists cannot define a law that describes 

how the mass of cells is rearranged yet. Thus we decided to define an algorithm that 

correctly depicts the arrangement of cells without taking into account the way their 

absolute position changes, instead of introducing bigger uncertainties through an 

arbitrary choice. Assumption (b) may be relaxed straightforwardly as soon as an 

accurate law is found. 

We take into account issue (a) by modifying the pressure wave described in (2.9) as 

follows: 

1) we get two options as the new cell ( , )C c d : 

I. is on one of the axes superimposed on the “mother” cell (i.e. at 1D  ) 

II. otherwise (i.e. at 2D  )  

2) the algorithm calculates the sum of the GF present in the space associated to a 

cell centered in unit ( , )C c d  plus the channel that has to be free of growth 

factors. See Figure 22 for both I and II cases, respectively. 
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Figure 22 - Channel free from GF after mitosis (in red) 

 

3) deforms ( )Cell t such that ( , ) ( )c d Cell t . 

4) counts the number of units in ( ) ( )Free t Fract t  that are at a distance 8d   

from ( , )c d , excluding the channel defined in (2)  

5) distributes 70% of the sum from (1) evenly in each unit from (4). 

6) counts the number of units in ( ) ( )Free t Fract t at a distance 8 11d  from 

( , )c d , excluding the channel defined in (2) 

7) distributes the remaining 30% of the sum from (1) evenly in each unit from (6). 

 

In this way, one can see that once the new cell enters the system, the deformation of 

( )Cell t  creates a “pressure wave” that distributes the GF around the space where the 

deformation impacts ( ) ( )Free t Fract t . It should be noted that the distances and 

percentages chosen are arbitrary and are easily adjustable. In Figure 23, we represent a 

simulation of a sequence of morphogenic events. We display the cell's duplications as 

well as the diffusion of growth factors. Accordingly, the GF threshold for a fractone is 

currently set at 0.4. Notice that we highlighted the cell undergoing mitosis (the 

“mother” cell) by a green unit in its center. 
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Figure 23 - Growth factor redistridution as a pressure wave 
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4.3 Growth factor production 

Experimental maps show that cells produce growth factor during their entire life. The 

process of growth factor production seems to be bound up with the age of the cells, that 

is each cell produces growth factor at a constant rate. 

The biological process is defined as a production in the core of the cell and a slow 

radial diffusion towards the outside. Now recall that we modeled a cell as a space 

disjoined from ( ) ( )Free t Fract t , or rather we can see the boundaries of the cell as 

walls that prevent diffusion. It comes then natural to embody growth factor production 

as an instantaneously genesis on the growth factor right outside the cell, with no loss of 

generality. 

The algorithm is extremely simple: 

1) As mentioned before, we associate to each cell an age. This depends on the 

time in which the cell is born. 

2) Each cell produces the same amount of growth factor after a fixed interval (

t )  

3) Growth factor is evenly distributed between the neighboring units of the cell 

(at distance 1d  ,in units) belonging to ( ) ( )Free t Fract t , this is usually 40 

units. 

These assumptions can be easily relaxed. Table 3 lists the choices adopted for 

forthcoming simulations (Figure 24). 

 

Time elapsing between subsequent 

production by the same cell 
10t   

Amount of GF produced 
0.1 per unit 

3.6 per cell 

Distance from the cell borders 1d   

Table 3 - Parameters for GF production 
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Figure 24 - growth factor production 

 

Note that assumption (2) may be changed, as duplications may be considered the 

trigger event. In other words, after a certain number of duplications a cell will produce 

growth factor. By doing so, the algorithm will privilege those cells that replicates more 

frequently presuming that the control will pick the same cell between the others. 

 

4.4 Fractone activation 

Fractones are the control input of our system, described by (2.4), as they capture 

growth factors and once the stored quantity reaches a given threshold, the fractone 
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signals to the cells that mitosis can occur. Moreover, a key element in our hypothesis is 

that the spatial distribution of fractones varies through the sequence of morphogenic 

events. The role of the function ( )u   is precisely to control the location and activation of 

the fractones. 

Recall that the amount of growth factor in an active fractone becomes invisible to the 

diffusion process, consequently a question arise: what happens to growth factor in unit 

( , )i j , when the control is changed for that unit ( ( , ) 0 1i ju   or ( , ) 1 0i ju   )? 

Based on experimental results, when in unit ( , )i j  occurs a change in the control the 

algorithm will move the amount of growth factor stored in that unit from ( )Free t  to 

( )Fract t  and vice versa (Figure 25, where growth factor is evenly distributed in the free 

space at t=0 ). Thank to the definition of subspaces, the activation/deactivation of a 

fractone has no consequence on the structure of the equations ruling the system. 
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Figure 25 - Fractone activation/deactivation 

 

While defining fractones (and the consequent space associated to them) we made the 

only assumption that ( ) ( )Fract t Diff t (only theoretically, because we will always 

have ( ) ( )Fract t Diff t and ( )Free t   ) and this means that a fractone may be active 

without being associated to a cell. In such configurations the fractone keeps storing 

growth factor over the set threshold and dictates mitosis as soon as a new cell is formed 

close enough to it. It is clear that several duplications may occur if the fractone stored 

an amount of growth factor that is a multiple of the threshold. (Figure 26)  
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Figure 26 - Fractone not associated to a cell 

 

Notice that a fractone that is not associated to any cell subtracts a unit to ( )Free t  and 

this may result in an obstacle in the mitosis process, see Figure 27. 
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Figure 27 - A fractone resulting in an obstacle 
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We may now provide an exhaustive simulation, recalling the most crucial rules of 

our genetic algorithm such as the mitosis algorithm and fractone activation/deactivation 

in order to control the morphogenic event and reach the desired final configuration. 

In Figure 28 we show how it is possible to fill up the ambient space with cells, 

avoiding obstacles (in black) and using several fractones at each time. Note that we will 

skip the simulation (with […]) when there is no change in the control for a long time. In 

order to understand at a glance which cell is undergoing mitosis, that cell is colored in 

red. 
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[…] 
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[…] 

 

 

[…] 

 

Figure 28 -  An exhaustive simulation 
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5. MATLAB CODE EXPLANATION 

 

The proposed model has been developed under MATLAB®. MATLAB (MATrix 

LABoratory) is a numerical computing environment developed by MathWorks, 

MATLAB allows amongst other things: matrix manipulations, plotting of functions and 

data, implementation of algorithms, creation of user interfaces, and interfacing with 

programs written in other languages, including C, C++, Java, and Fortran. For this 

reasons, plus the power in computer calculation, we decided to use this program. 

 

In order to illustrate the code clearly, we will explain the routines combined in 

categories as they pertain to the same group or they are called after the same trigger 

event. 

 

5.1 Ambient, variables and subspaces definition 

Intuitively, we start our simulation launching  DEFINE_SPACE.M  and the program 

prompts the user to insert: space dimensions (rectangular ambient space: maxX by 

maxY), holes position and dimension (in order to modify the ambient space shape), 

initial configuration of cells and fractones, GF distribution, fractone threshold to give 

input to mitosis. 

The user has to input at least one cell in a valid ambient space: several checks are 

done in order to avoid border crossing, cells overlapping  and creating a fractone inside 

a cell or an hole, for instance. If no fractones are part of the ambient space for t=0, the 

code will allow the activation of fractone further on. Equally, if there is no GF at the 

initial time, cells will produce GF during their life and this will lead to storage by the 

fractones. 

After running  DEFINE_SPACE.M , the system will be defined by a matrix of maxX 

rows and maxY colums storing cells position, GF, holes and GF captured by fractones. 
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5.2 System dynamics 

At this stage we run  DYN.M  , starting the simulation. Mathematically, we stated the 

problem as an ordinary differential equation (ode); thus we used the built-in ode solver 

ode45, that is a typical solution for a model like this with no stiffness or accuracy 

problems. The ode solver is called by  SYS_DYNAMICS.M  , and is interrupted if mitosis 

occurs by  THRESHOLD.M . 

While the simulation is running we may have GF production or fractone activation, 

both with consequent check if any fractone reached the given threshold. If a fractone 

reaches the set threshold, this will give the input for mitosis only if said fractone is 

associated to a cell. The check is made by  FRACT_WITH_CELL.M . 

 

5.3 Mitosis 

When a morphogenic event takes place, the ode solver is interrupted and the system 

runs MITOSIS.M . 

At this stage the code looks for the closest set of available cell position (FREECELL.M) 

and if multiple locations are possible, the algorithm shown in chapter 2.3 is applied 

(FINDCELL.M). Notice that such algorithm is implemented as a separate M-file in order to 

easily allow model improvement as new evidence is provided by biological 

experiments. 

The program will create a cell, modifying all the subspaces that are involved in such 

process, thanks to CREATECELL.M . At this stage we associate to each new cell an age 

(starting intuitively from zero and upgrading its value as time elapse). 

Growth factor redistribution follows the rules explained in section 4.2 and is modeled 

in PUSH_GF.M . The user may set all the parameters for the “pressure wave” that is 

generated after a new cell is born: 

 Radial diffusion 

 Multiple waves and GF percentage in each wave 
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The fractones will be activated/deactivated automatically as the user may define the 

exact timing (defined by the number of duplications occurred but this assumption can be 

straightforwardly relaxed setting time as the trigger event, for instance) and position. 

Whenever during a simulation the user figures out that there is a need to change the 

displacement of the fractones, this will be done just stopping the simulation and running  

RESTART_SIM. The program will prompt for new fractones’ position (several changes 

may be performed by the user: i.e. GF may be added) and the simulation will be 

resumed. 

 

5.4 Data plotting 

We can choose between two options to plot the results, as shown in pervious 

simulations: 

 2 dimensional plot, with cells and fractones represented as circles. In this plot 

GF will not show up (PLOT_CIRCLES.M) 

 3 dimensional plot, with cells and fractones as squares and GF as bars 

(PLOT_TOGETHER.M) 

We already pointed out that the model may mimic complex cells configurations and 

with a large number of active fractones it may result difficult to understand which cell 

undergoes mitosis. For this reason we marked the cells undergoing mitosis (both the 

“mother” and the “child” cell, but in a different way in order to identify them) and it is 

possible in both plots to highlight those cells. Finally, all simulations are saved in jpeg 

image files. 
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6. APPLICATION TO LAYOUT 

OPTIMIZATION 

 

The control model developed during this research determines a cellular proliferation 

process that mimics the developmental stages of natural organisms. These laws can be 

evolved to respond to desired requirements, and thus be used to search for high-

performing engineering layouts. One possibility is to use environment cues for crafting 

the control laws determining the placement of the fractones. For instance, in a problem 

to minimize the mass of material to sustain a load, the stress level in the cells may be 

used as a parameter controlling the creation of a fractone when the stress level on a cell 

surpass a fixed threshold.  

An exploratory result is presented in the following section, where it is shown the 

cellular division following the inclusion of a fractone on a cell when its level stress 

exceeded a preassigned limit. A typical solution in structure analysis is to add material 

nearby those elements where a Von Mises stress higher than a set level is calculated. 

We will follow this path, activating a fractone next to the cell with the highest stress 

level in order to relief its condition. 

Notice that in this case there is a one to one correspondence between cells and finite 

elements representing the mechanical structure (i.e. a cantilever beam). The first goal is 

to reach a compact structure (1-connected, recall section 3.3) that connects the structure 

to the loads fulfilling prescribed boundary conditions (i.e. supports and constraints). 

Notice that the mitosis algorithm has not been changed, but we only activate a 

fractone associated to the cell with the highest stress level. 
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6.1 MATLAB code explanation 

The first issue that we have to face is to find a code that is able to provide the useful 

information for fractone placement. We decided to use the program developed by 

Bendsøe and Sigmund ( [41] ) in the TopOpt research group4. TopOpt’s model (called 

TOP88.M) is developed under MATLAB and this allowed us to a quicker 

implementation into our system. 

We merged the two codes then, so that we can start defining the ambient space and 

the initial configuration of cells in DEFINE_SPACE.M, and then in  TOP88.M  we only have 

to define loads and constraints for the mechanical structure. At this point TopOpt’s code 

creates a stress map of the structure, letting us identify where the fractone has to be 

placed. The system will count a new cell as soon as the fractone reaches the set 

threshold (as explained above) and  TOP88.M  will create a new stress map. Iteratively, 

we will get to the final desired configuration.  

 

In Figure 29 we present a preliminary result where the cell configuration is on the 

left column and the stress map is on the right, choosing to fill half of the ambient space 

with cells. Notice that comparing a 3D figure with a two dimensional one, may lead to 

misinterpretation due to different axis direction but one may check that the results have 

only different orientation. In order to highlight the last cell undergoing mitosis, we 

marked its center with a unit in green. 

The simulation will start with a configuration of four cells that is not connected, 

reaching the final desired configuration. 

                                                
4 TopOpt is an acronym for Topology Optimization. The TopOpt group is a joined research effort 

between the departments of Mechanical Engineering and Mathematics at the Technical University of 
Denmark with the aim of promoting theoretical extensions and practical applications of the topology 
optimization method.  

For further information and to download the source code used for our simulations please visit 
http://www.topopt.dtu.dk/ 
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  Figure 29 - Application to layout optimization 
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The model may be straightforwardly upgraded allowing cell death, that is removing 

additional material from a mechanical structure because it is not necessary for structural 

purposes. This can be done setting a minimal stress value, under the one a cell will be 

removed. Another improvement that would lead to a faster convergence to the desired 

solution is to modify the mitosis algorithm, giving birth to directional mitosis (recall 

that now new cells are placed in an arbitrary clockwise direction) based on stress maps. 

It is clear that this process would bring us far from the biological statement and for this 

reason is not treated in this study. 

The result of the application of a simplified version of the procedure without the 

diffusion of the growth factor is shown in Figure 30 - note that in this form the method 

is similar to bi-directional evolutionary structural optimization methods (see e.g. [46]). 

 

 

Figure 30 -  Preliminary result for layout optimization of a cantilever 

  



A NEW APPROACH TO MODELING MORPHOGENESIS USING CONTROL THEORY 
 

87 
 

7. FUTURE WORK 

 

Inspired by biological discoveries, we proposed to develop and analyze a 

mathematical model predicting cell proliferation from the spatial distribution of 

fractones. Our primary goal is to develop a model that contains the crucial features of 

our hypothesis and, at the same time, is sufficiently simple to allow an understanding of 

the underlying principles of the observed system. 

There are mainly two directions of work that we are planning to undertake at this 

stage. First, from a purely mathematical perspective, an open question is the 

development of new techniques to answer controllability and optimality questions for 

control systems such as the one introduced in this paper. Second, the interplay between 

the biological motivation and the mathematics must be refined to predict neurulation 

and post-neurulation growth by the mathematical model using fractone maps produced 

by biological research. 

The current model is based on what we believe are the most critical features of our 

hypothesis. However, some of our assumptions are very restrictive and we also need to 

add some complexity to produce a more realistic model. Other important features of the 

biological system that have not yet been taken into account will be incorporated into our 

model. However, despite the new features to be added, the statement of the problem will 

generally remain the same. 

After all of this has been accomplished, we will discretize the fractone maps 

provided by biologists and then determine whether the prediction of the mathematical 

model reflects the growth of the neural tissue observed in the maps. The observation of 

spatial distribution of fractones provided by the maps will determine the control 

function to be used in the mathematical model to produce our simulations. 

 

Our future work will take into account the diffusion of different type of growth factor 

and different sensitivity of fractones to growth factors. This extension is straightforward 
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and has not been introduced into our model in order to avoid adding unnecessary 

complexity to our model, preserving all the efforts for crucial topics. 

 

The proposed model will be developed by having cells that are not vertically and 

horizontally aligned and a three dimensional model. These two steps will need new 

rules to be defined (i.e. in the three dimensional case, how would the different layers 

interact? How will this affect the mitosis algorithm?) driven by new observations from 

the experimental maps. 

  



A NEW APPROACH TO MODELING MORPHOGENESIS USING CONTROL THEORY 
 

89 
 

8. CONCLUSIONS 

 

Through this work, we made a first step in a complex field, creating a code that 

mimics the biological system behavior, to help us to understand the nonlinear dynamics 

of the system under study. Our model clearly diverges from Turing’s model (or any 

other Reaction-Diffusion model), and it presents new challenges that will advance the 

field of control theory. To envision how our model does this, we must compare and 

contrast versus typical control theory problems. For example, in physics, the state space 

is static and the equations of motion are derived from minimizing a Lagrangian. In 

engineering, the configuration manifold is fixed and one either attempts to determine 

the evolution of the system while minimizing a prescribed cost or one tries to design 

controls to take into account uncertainties of the system. Due to the morphogenic nature 

of the biological process under study, the configuration space is constantly evolving 

(caused by the creation of new cells), and thus the control model we developed cannot 

be analyzed using traditional techniques of control theory in which the equations 

describing a given system are predetermined when defining the system. This 

distinguishes in a very non-trivial way our problem from the traditional problems whose 

systems are usually defined on a static configuration space. 

The current model is based on what we believe are the most critical features of our 

hypothesis. However, some of our assumptions are very restrictive and will be relaxed 

as new evidence is provided by experimental results; to easily accomplish this goal we 

produced a versatile and flexible code, as shown by the example in Figure 29. 

The research has been pursued keeping always in mind that modeling such a broad 

biological system may lead to unacceptable arbitrariness. In order to avoid it, we tried to 

keep the model as simple as possible.  

Finally, we would remark that the aim of this study is not to create a model that 

mimics exactly the biological process under study, rather than creating a good model 

that may be developed in future thank to new experimental results and propose new 

questions that may bring to an advance in the field of control theory. This a complex 
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field and new rules have to be defined, as this problem cannot be solved and analyzed 

through classic control theory techniques. We will have to propose innovative ideas and  

methods to analyze and to answer controllability and optimality questions. 

 

Several publications arise from this study: see [47], [48], [49] as a preliminary list.  
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