

CoAP-Based Enablers for Designing
Efficient and Reliable Distributed IoT Applications

CoAP-gebaseerde bouwblokken voor de realisatie
van efficiënte en betrouwbare gedistribueerde IoT-toepassingen

Girum Ketema Teklemariam

Promotoren: prof. dr. ir. J. Hoebeke, prof. dr. ir. I. Moerman
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-085-7
NUR 986
Wettelijk depot: D/2018/10.500/3

Promotors: Prof. Jeroen Hoebeke

 Prof. Ingrid Moerman

Jury Members: Prof. Luc Taerwe (Chairman)

 Prof. Jeroen Hoebeke (promoter)

 Prof. Ingrid Moerman (promoter)

 Prof. Kris Steenhaut (Vrije Universiteit Brussel)

 Prof. Johann Marquez-Barja (Universiteit Antwerpen)

 Prof. Sofie Van Hoecke (EA06)

 Prof. Bruno Volckaert (EA05)

 Prof. David Plets (EA05)

Ghent University

Faculty of Engineering and Architecture

Department of Information Technology

iGent Tower, Technologiepark 15

B-9052 Gent, België

Tel: +32 9 331 49 00

Fax: +32 9 331 48 99

Web: http://www.intec.ugent.be

Dissertation to obtain the Degree of

Doctor of Computer Science Engineering

Academic year 2017 - 2018

http://www.intec.ugent.be/

Acknowledgements

First and for most የረዳኝን እግዚአብሔርን አመሰግናለሁ፡፡ Next, I would like to thank Piet

Demeester and Ingrid Moerman for accepting my request to join the then IBCN

reseach group so that this long journey of my PhD life starts. The help of Ingrid

didn’t stop there. She has been one of my promoters and was constantly inspiring

me to continue with my PhD work, despite her busy schedule. I am highly indepted

to my promoter Jeroen Hoebeke who has always been with me throughout my PhD

study. Irrispective to my sporadic availability, due to my other engagements, he

has been supporting me in every regard so that I don’t get distracted and lose focus.

I appreciate the way he gives me feedbacks and his ways of discussions that were

important for me to push forward even in very difficult times. Jeroen: I have

learned a lot from you. I would really like to say thank you very much from the

bottom of my heart. My special thanks also go to the jury members Kris Steenhaut,

Johann Marquez-Barja, Sofie Van Hoecke, Bruno Volckaert and David Plets for

their invaluable comments and feedbacks that were used as input to improve this

dissertation.

I would also like to extend my gratitude to three special people who have played

an important role in my professional life. I met Rudy Gevaert in 2006 in a match-

making mission organized by VLIR-UOS at the beginning of the collaborative

project that sponsored my PhD study. The objective of the mission was to meet

Flemish ICT professionals who will be working on the project. But our meeting

resulted in much more than that. In addition to spending a successful 10 years of

professional collaboration, we ended up being very good friends. He was the one

who introduced me to IBCN and he was the one who wrote the Dutch summary of

this dissertation. He and his wife, Natra, were always around to help me get used

to Ghent and the Belgian culture (along with their two cute dogs – Zino and Pax).

They have also provided accommodation for this last stay in Ghent. Rudy and

Natra: I can’t thank you enough. Luc Duchateau and Kora Tushune have also been

of a great help during my PhD study. The support they extended from facilitating

funds for my study to their continuous encouragement was very valuable to me.

This PhD wouldn’t be possible without their kind help.

It is hard to pass without expressing my gratitude to my very good friend and great

person Mr Kassahun Eba and the ICOS of Ghent University (Annick, Elien, Helke,

Madina and Mira) for their kind assistance and flexibility in arranging my travels.

Colleagues play a significant role on ones accomplishment. I am delighted to be

working with the kind and ready-to-help people at IBCN (IDLab). Floris Van Den

Abeele and Isam Ishaq have been a constant help throughout my PhD study. They

have contributed a lot on most of my work. I really thank you, Floris and Isam, for

every contribution you made both professionally and personally. I am also grateful

to Peter Ruckebusch and Bart Jooris for their contribution while I was working on

two papers. I started my PhD when IBCN was at Zuiderpoort. I was staying at a

student dormitory which is exactly 11 minutes walk away from my office. But I

used to take two buses and reach after 40 minutes since I didn’t know the routes

very well. It was Wei who showed me the route and saved me lots of hustle. I

would like to thank her for being so thoughtful and for all the help she has been

giving me ever since. I would also like to thank Jen Rossey for his kind remarks,

wonderful sense of humour and for his help in translating one part of the summary

of the PhD to Dutch. I am thankful to Jetmir, Enri, Abdulkadir and Matteo for all

the pet talks we had at the kitchen over coffee. Enri and Jetmir, I hope our ideas

will take off and we will have something interesting in a short while. I am also

thankful to Vasileios and Dries for all those days we travelled together to Sterre

campus student café to escape having sandwichs at lunch (which is unusual in my

culture). I can’t forget my fellow countryman, Michael. It is always good to use

your mother tounge and discuss about home every now and then. ስለሁሉም ነገር እጅግ

በጣም አመሰግናለሁ፡፡ (Thank you very much for everything). I would also like to

thank Xianjun, Adnan and Aslam for keeping company on our short trips to the

sandwich bar and for all the ideas we exchanged along the way. I am especially

thankful to Adnan for his help in my quest to figure out what should follow PhD.

I don’t also forget the late hour walks I used to have with Tarik and Merima after

working late in office.

For someone who travels abroad, finding someone who you know back home

helps a lot in getting used to life in the new culture. In this regard, I would like to

thank Dawit and Ribka and their lovely kids (Daan and Eldana) for opening their

home to me so that I don’t feel a stranger. Natra (Rudy’s Wife) and Biruk have

also been a very good source of vital information. I am also grateful to Rudy’s

parents, Robert and Barbara. Dank u wel! We are not friends any more. We are

family. ያደረጋችሁልኝን ፈጽሞ አልረሳም፡፡ እግዚአብሔር ይስጥልኝ:: (I will never forget what

you did for me). I would also like to extend my sincere appreciation to this lovely

mailto:Vasilis.Maglogiannis@ugent.be

 iii

family in Leuven who are originally from my hometown, Jimma, for what they

did for me. Ermias and Fitsum (and their lovely kids Abigail, Yadon and

Yonathan), I am so greatful for your excellent hospitality and introducing me to

other friends in Leuven. Paulos and Nebiyat (and their kids), Rosa, Woizero Mulu,

Jalle, Seble, Gelila, … Thank you very much for all those wonderful days I spent

and all the birthdays I celebrated with you.

I am also grateful to Micheline and her husband, René Morel, for letting me stay

at their place whenever I come to Ghent. Due to their caring nature, I was feeling

at home whenever I used to stay at their place. Thank you Zeleke for introducing

me to these wonderful people. I would also like to thank my friends, Tsegaye,

Sileshi, Eba, Fikremariam, and Lizet for all the cooking, the friendly chats and

debates we had during our stay at Micheline’s.

Last but not least, I would also like to extend my heart felt gratitude to my parents,

Ato Ketema Teklemariam and Woizero Me’aza La’eke. Your life principles and

prayers are the major driving forces that leads me to success. I can’t repay what

you have done for me. I am forever indebted. I can’t finish listing all my family

and friends back home who bare with me till today in order for me to be successful

not only professionally but also in life. Ababu, Abrish, Ayash, Aye, Abush,

Belaynesh, Bereket (and his family), Daniel (and his family), Dereje, Demis,

Efrata, Emaye, Emush, Etete, Frew, Genet, Lily K., Lily D. (and her family),

Habtu, Hadas, Hanna, Haimanot, Mahilet, Mame, Meron, Mimi, Muluken K,

Muluken Y., Nina (and her family), Simret, Tadelech, Tiegist (and her family),

Yodit, Yonathan, (and many more). I am very lucky to be a member of this

wonderful family. Thank you all. My great appreciation also goes to my colleagues

at Jimma University, Amanuel, Berhanu, Basiliyos, Hunde, Shimels, Wondu and

Zegeye who had been working on my behalf during my absence. I would also like

to thank Hiwot for helping me with rearranging data when I was working on

conditional observation.

I saved the best for last. This PhD study would not be possible without the help

and support of my beautiful wife and partner in life, Yemsrach Alemayehu. She

was my strength during all the darkest hours. She has been taking care of our

wonderful children, Natan and Mathias, during my absence. I would like to say

“You have an exceptional place in my heart. I am sure the future is bright with

you. Thank you very much my dear.” Of course, the help of Shitaye and Amerke

in taking care of the children is also exceptional.

My happiness would have been complete if my elder brother, Addisu Ketema (Nov

27, 1971 – Nov 27, 2016), would have been with me today. He has sacrificed his

youth so that his younger siblings become successful. Even in the last moments,

he was too careful not to disturb my study and prevented my family from

informing me of his illness. You are always my inspiration. I am thankful for

everything you did for me my beloved brother. እግዚአብሔር ነፍስህን በገነት ያኑራት፡፡

Ghent, December 2017

Girum Ketema Teklemariam

Table of Contents

Acknowledgements .. i

List of Acronyms ... xv

Samenvatting – Summary in Dutch – .. xxi

English Summary .. xxvii

1 Introduction .. 1

1.1 The Internet of Things (IoT) ... 1

1.2 IoT Systems .. 3
1.2.1 Components of Generic IoT Systems ... 4
1.2.2 Connectivity and communication ... 5
1.2.3 Data Processing .. 7

1.3 Application development paradigms ... 8
1.3.1 Cloud-Centric Architecture... 8
1.3.2 Gateway Centric Architecture .. 8
1.3.3 Distributed Architecture ... 8

1.4 Challenges in Building IoT Applications ... 9
1.4.1 Collection of Redundant Data... 9
1.4.2 All Intelligence on Non-Constrained Device or in the Cloud 10
1.4.3 Static Configurations .. 11
1.4.4 Unexpected Crashes of Constrained Devices 11

1.5 Research Contributions... 12

1.6 Fit within the Broader IoT Landscape... 17

1.7 Outline .. 20

1.8 List of publications .. 22
1.8.1 A1 publications (listed in the Science Citation Index).......................... 22

vi

1.8.2 Publications in other International Journals .. 23
1.8.3 Publications in International Conferences (listed in the Science Citation

Index) ... 23
1.8.4 Publications in international conferences ... 23
1.8.5 Patent Applications ... 24

References .. 25

2 Facilitating the creation of IoT applications through conditional

observations in CoAP ... 27

2.1 Introduction ... 28

2.2 The Constrained Application Protocol and Observe 30

2.3 Related work .. 35

2.4 Conditional Observe .. 36
2.4.1 The Condition Option Format... 38
2.4.2 Condition Types ... 38

2.5 Implementation .. 43

2.6 Evaluation .. 46
2.6.1 Scenario 1: Basic Evaluation .. 46
2.6.2 Scenario 2: Non-constrained Client - Gateway – Multiple servers 48
2.6.3 Mathematical Evaluation .. 49

2.7 Use Cases .. 55
2.7.1 Heating and Cooling Systems ... 56
2.7.2 Smart Environment Monitoring .. 57
2.7.3 Sleepy Nodes .. 59

2.8 Conclusion .. 60

References .. 61

3 Bindings and RESTlets: A Novel Set of CoAP-Based Application

Enablers to Build IoT Applications ... 63

3.1 Introduction ... 64

3.2 Constrained Application Protocol (CoAP) .. 67

3.3 Related Work ... 71
3.3.1 Sensor-Actuator Interaction .. 71
3.3.2 In-Network Processing ... 71

3.4 Flexible Direct Binding.. 73

3.5 RESTlets ... 77

3.6 Implementation and Evaluation ... 81
3.6.1 Implementation ... 81
3.6.2 Experiment Setup.. 83

 vii

3.6.3 Functional Evaluation ... 84
3.6.4 Performance Evaluation .. 86

3.7 Conclusions and the Way Forward .. 100

References .. 102

4 Dynamic Deployment of RESTlets on Constrained Devices 105

4.1 Introduction ... 106

4.2 Related Work ... 108

4.3 RESTlets and Bindings.. 109
4.3.1 RESTlets ... 109
4.3.2 Bindings .. 110
4.3.3 Example 1 – Sample IoT Application ... 112
4.3.4 Example 2 – RESTlets and Conditional Observe 113

4.4 Architecture and Dynamic Deployment of RESTlets 115

4.5 Implementation and Evaluation ... 120
4.5.1 Implementation of Dynamic RESTlets on Constrained Devices 120
4.5.2 Implementation of Conditional Observe using Dynamic RESTlets ... 125
4.5.3 Functional Evaluation ... 126
4.5.4 Performance Evaluation .. 127

4.6 Conclusion and Future work .. 138

References .. 140

5 Transparent Recovery of Dynamic States on Constrained Nodes

through Deep Packet Inspection .. 143

5.1 Introduction ... 144

5.2 Related Work ... 146

5.3 Dynamic States and State Recovery ... 147
5.3.1 Dynamic States ... 147
5.3.2 Recovery of Dynamic States... 151

5.4 Dynamic State Recovery ... 152
5.4.1 Transparent Dynamic State Recovery for Unencrypted Communication

 153
5.4.2 Transparent Dynamic State Recovery for Encrypted Communication 159
5.4.3 Other Dynamic State Recovery Mechanisms 160

5.5 Implementation .. 162

5.6 Evaluation .. 164
5.6.1 Functional Evaluation ... 164
5.6.2 Performance Evaluation .. 169

5.7 Conclusion and Way Forward .. 172

viii

Reference ... 174

6 Conclusion ... 177

6.1 Summary and Conclusion ... 178

6.2 Future work.. 181

List of Figures

Figure 1-1: IoT Application Domain .. 2
Figure 1-2: Generic IoT System ... 4
Figure 1-3: IETF Protocol Stack ... 5
Figure 1-4 CoAP Client-Server Interactions ... 7
Figure 1-5: Collection of Redundant Data .. 9
Figure 1-6: Sensor (Light Switch) and Actuator (Light Bulb) Interaction

through an Intermediary .. 10
Figure 1-7: Effect of Rebooting Nodes on IoT Applications 12
Figure 1-8: Contribution: Conditional Observe .. 13
Figure 1-9: Contribution: Bindings (LS=Light Switch and LB = Light

Bulb) ... 14
Figure 1-10: Contribution: RESTlets .. 15
Figure 1-11: Contribution: Dynamic Loading .. 16
Figure 1-12: Contribution: Crash Recovery .. 17
Figure 2-1: CoAP Message Format consisting of a 4-bytes base binary

header followed by optional extensions 31
Figure 2-2: CoAP option format ... 32
Figure 2-3: CoAP Client/Server communication .. 32
Figure 2-4: Normal Observation ... 33
Figure 2-5: Conditional Observation .. 37
Figure 2-6: Format of the option value of the Condition Option 38
Figure 2-7: Temperature (oC) Data over 120 Seconds 39
Figure 2-8: Notifications Generated While Using Different Condition

Types ... 39
Figure 2-9: Architecture of Erbium .. 43
Figure 2-10: Conditional Observation Module ... 44
Figure 2-11: Number of Packets transmitted Vs. Hop count 47
Figure 2-12: Power Consumption Vs. Hop Count (Non Confirmable

Transmission) .. 47

x

Figure 2-13: Power Consumption of nodes (Confirmable Transmission) .. 48
Figure 2-14: Experimental setup consisting of non-constrained client, and 2

constrained servers .. 48
Figure 2-15: Power Consumption Vs. Probability of Packet Transmission 52
Figure 2-16: Distribution of the power consumption over all different

energy consumers .. 53
Figure 2-17: Reduction in energy consumption of using conditional

observations with p=0.75 versus normal observe for a varying

number of resources on the server ... 54
Figure 2-18: Experiment setup with 2 Click++ clients, a Contiki border

router, a Contiki Server and 2 Intermediate nodes. 57
Figure 2-19: Air Quality Controlling Setup .. 58
Figure 2-20: Communication with sleepy nodes using conditional

observation .. 59
Figure 3-1: (a) CoAP GET Operation; (b) CoAP PUT Operation. 68
Figure 3-2: CoAP Header ... 69
Figure 3-3: CoAP Observe Operation ... 70
Figure 3-4: Sensor-Actuator Interaction. (a) Indirect; (b) Direct Binding. . 74
Figure 3-5: Flow Chart Showing Binding Relationship Establishment. 75
Figure 3-6: Flow Chart Showing Notification of Events. 76
Figure 3-7: RESTlet Block Diagram. ... 77
Figure 3-8: Sample Code Executed on Non-constrained Devices 79
Figure 3-9: RESTlet block diagram for the smart home scenario. 80
Figure 3-10: CoAP Messages used to create the required Binding

Relationship .. 80
Figure 3-11: Flowchart Showing Interaction with RESTlet Instances using

CoAP Messages .. 83
Figure 3-12: Creation of Binding Using CoAP++ GUI from Non-

constrained Device .. 84
Figure 3-13: Direct Interaction of Sensor and Actuator Nodes in Cooja 85
Figure 3-14: Creation of RESTlet Instances in Copper 86
Figure 3-15: Topologies: (a) Sensor and actuator in different branch of the

tree; (b) Actuator between Sensor and Gateway—directly

connected; (c) Actuator between Sensor and Gateway after 1

hop; (d) Sensor between Actuator and Gateway after 1 hop. .. 89
Figure 3-16: Communication Delay (ms) vs. Topology 90
Figure 3-17: Sensor-Actuator Interactions. (a) Binding (b) Gateway/Cloud-

Based Solution. ... 91
Figure 3-18: Network Topology ... 92
Figure 3-19: Packet Processing and Forwarding time at RESTlet Node for

Various Number of Data Generating Nodes 95

 xi

Figure 3-20: Impact of Number of Data Generating Nodes on End-to-End

Latency. (a) Confirmable Communication; (b) NON-

Confirmable Communication. ... 96
Figure 3-21: Network Topology including a Node Generating Side

Traffic. ... 97
Figure 3-22: Impact of Side Traffic on Latency. (a) CONfirmable; (b)

NON-Confirmable transaction .. 98
Figure 3-23: Impact of Packet Arrival Time Gap on Latency 99
Figure 3-24: Network Topology for Noisy Networks 100
Figure 3-25: Impact of TX/RX Reception Ratio on Latency. (a)

CONfirmable Communication; (b) NON-Confirmable

Communication. .. 100
Figure 4-1 RESTlet ... 110
Figure 4-2: Binding Relationship Establishment 111
Figure 4-3: RESTlet-based IoT Application ... 112
Figure 4-4: Statements to Create RESTlet-based IoT Application 113
Figure 4-5: Conditional Observe Option Format 114
Figure 4-6: Conditional Observation Processing Logic Flow-chart 114
Figure 4-7: Generic IoT System ... 116
Figure 4-8: Generic RESTlet Architecture ... 116
Figure 4-9: Implementation Options of Generic RESTlet Architecture. a)

Static. b) Template Based. c) Dynamic. d) Hybrid 119
Figure 4-10: Implementation of Dynamic RESTlets on Constrained

Devices .. 121
Figure 4-11: Instructions from MSP430 Makefile 124
Figure 4-12: Block Diagram of Implementation of Conditional Observe

Using Dynamic RESTlets ... 125
Figure 4-13: Compiling Dynamic RESTlet (CND) 126
Figure 4-14: Cooja Simulation Showing Transfer of the last Blocks 127
Figure 4-15: Contribution of RESTlet Architectural Components to the

Overall Memory Footprint .. 129
Figure 4-16: Dynamic RESTlet Deployment Time 131
Figure 4-17: Energy Usage for Dynamic Deployment. a) No RDC Protocol.

b) ContikiMAC RDC .. 134
Figure 4-18: Time required to regain power consumed during dynamic

deployment .. 137
Figure 4-19: Time required to regain power consumed during dynamic

deployment (Max-age = 60s) .. 138
Figure 5-1: CoAP Interaction - PUT Request ... 148
Figure 5-2: CoAP Interaction - Observation Request 149
Figure 5-3: CoAP Interaction - Binding Request 150
Figure 5-4: CoAP Interaction – Runtime Deployment 150

xii

Figure 5-5: Dynamic State Restoration Cycle .. 151
Figure 5-6: Placement of State Directory at the LLN Gateway 154
Figure 5-7: Dynamic State Information Collection 156
Figure 5-8: Observe Request Information Collection 157
Figure 5-9: Dynamic State Recovery with State Directory on the Node .. 161
Figure 5-10: Implementation of Transparent Dynamic State Recovery ... 162
Figure 5-11: Registration of a node at the gateway 164
Figure 5-12: Dynamic State Collection (using PUT method) 164
Figure 5-13: Intercepted PUT Request from Client 165
Figure 5-14: CoAP Observe Request Sent from Copper Client................ 166
Figure 5-15: Interception of a New Observe Request at the SD 167
Figure 5-16: List of Entries in the SD Before Node [aaaa::c30c:0:0:2] 167
Figure 5-17: SD Containing 3 Records ... 168
Figure 5-18: Output of the node after receiving the 3 packets from the

SD ... 168
Figure 5-19: CoAP Message on Copper Showing Resumption of the

Observe Operation .. 169
Figure 5-20: Delay Introduced by SD-Node Association Process 169
Figure 5-21: Impact of Hop Count on Recovery Delay 171
Figure 5-22: Impact of Number of Dynamic States that needs to be

recovered on recovery time ... 172

List of Tables

Table 2-1: Memory requirements of Normal and conditional observe 45
Table 2-2: Parameter Values ... 51
Table 3-1: Memory Foot Print (Byte). .. 87
Table 4-1: RESTlet Structure ... 122
Table 4-2: Information Required to Transfer the Dynamic Module 126
Table 4-3: Firmware Size (Byte) .. 128
Table 4-4: Sizes of RESTlet Architectural Components 129
Table 4-5: Number of Packets Required to Transfer RESTlets 130
Table 4-6: Power Specification of Zolertia Z1 Mote 133
Table 4-7: Energy consumed for Dynamic Deployment 136

List of Acronyms

3GPP 3rd Generation Partnership Project

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e

A

API Application Programming Interface

B

BLE Bluetooth Low Energy

C

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

CPU Central Processing Unit

xvi

D

DODAG Destination Oriented Directed Acyclic Graph

DTLS Datagram Transport Layer Security

E

EC-GSM-IoT Extended coverage GSM Internet of Things

ETSI European Telecommunication Standards Institute

H

HTTP Hyper Text Transfer Protocol

I

IEEE Institute of Electrical and Electronic Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPSO Internet Protocol for Smart Objects

IPv6 Internet Protocol Version 6

ITU International Telecommunications Union

L

LLN Low-power and Lossy Network

LoRa Long Range Radio

LoRaWAN LoRa Wide Area Network

 xvii

LPM Low Power Mode

LPWAN Low Power Wide Area Network

LTE Long-Term Evolution

LTE-M Long-Term Evolution Category M1

M

M2M Machine to Machine

MAC Medium Access Control

MEMS Micro-Electro-Mechanical-Systems

MQTT Message Queuing Telemetry Transport

MTU Maximum Transmission Unit

N

NB-IoT NarrowBand Internet of Things

O

OCF Open Connectivity Forum

OGC Open Geospacial Consortium

OMA LWM2M Open Mobile Alliance Light Weight Machine-to-Machine

OSGi Open Service Gateway Initiative

OSI Open Systems Interconnection

R

RAM Random Access Memory

RDC Radio Duty Cycling

xviii

REST Representational State Transfer

ROLL Routing over Low-power and Lossy Network

ROM Read Only Memory

RPL Routing Protocol for Low-Power and Lossy Networks

RX Receive

S

SD State Directory

SMS Short Message Service

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

SSL Secure Sockets Layer

T

TCP Transmission Control Protocol

TLS Transport Layer Security

TSCH Time Slotted Channel Hopping

TX Transmit

U

UBN Ultra-Narrow Band

UDP User Datagram Protocol

uIP Micro Internet Prtocol

URI Universal Resource Identifier

 xix

W

WSN Wireless Sensor Network

X

XML eXtensible Markup Language

Samenvatting

– Summary in Dutch –

In het laatste decennium van de twintigste eeuw is het Internet exponentieel

gegroeid door de interconnectie van miljarden toestellen. Op dit moment kent het

Internet terug een periode van extreme groei. Dit fenomeen is grotendeels te

wijten aan de evolutie in draadloze netwerken en elektromechanische

technologieën. De technologische vooruitgang in beide domeinen opende nieuwe

mogelijkheden om mobiele telefoons en slimme objecten essentiële componenten

te laten worden van ons huidige Internet. De toekomst zal een periode worden van

verdere uitbreiding. Volgens Cisco zullen er 50 miljard geconnecteerde toestellen

zijn tegen 2020. De meeste van deze toestellen zullen slimme objecten zoals

sensoren en actuatoren zijn. Sensoren lezen natuurlijke gegevens uit, zoals de

temperatuur en vochtigheid van de omgeving, en verzenden de gegevens naar een

meer geschikt toestel voor verdere verwerking. Actuatoren daarentegen wijzigen

hun omgeving gebaseerd op de ontvangen input van andere toestellen. Sensoren

en actuatoren kunnen geplaatst worden op eender wat, gaande van grote structuren

tot zelfs op lichaamsdelen. Deze evolutie heeft bijgedragen tot het tot stand komen

van een nieuw domein, het Internet der Dingen (Engels: Internet of Things, IoT).

Een voorname eigenschap van het IoT is de interconnectie van zeer heterogene

toestellen uit verschillende domeinen door middel van diverse technologieën.

De slimme objecten die deel uitmaken van het Internet hebben inherente

beperkingen. Ze hebben beperkingen inzake geheugen en rekenkracht. Hun

communicatiemogelijkheden zijn ook sterk beperkt. Bovendien werken ze op

batterijen waardoor energiebesparende methodes gebruikt moeten worden om de

batterijduur te verlengen. Door deze beperkingen worden de netwerken die

gevormd worden door de interconnectie van deze toestellen ook wel laag-energie

en verliesgevende netwerken genoemd (Engels: low power and lossy networks,

LLNs). Deze eigenschappen maken het onmogelijk om de bestaande Internet

communicatieprotocollen te gebruiken. Dat bracht verschillende spelers ertoe om

nieuwe oplossingen te vinden om deze toestellen met het Internet te verbinden.

Sommige bedrijven gebruiken een tussenliggend toestel, ook wel gateway

genoemd, om het LLN te interconnecteren met het Internet. Propriëtaire

xxii

communicatieprotocollen worden dan gebruikt om de slimme objecten te

interconnecteren met deze gateway, waarbij deze laatste de vertaling maak naar

standaard Internetprotocollen. Dergelijke aanpak resulteerde in verticale silo's die

niet interoperabel zijn en niet leiden tot de realisatie van één groot network waarin

iedereen met elkaar kan praten.

Sommige standaardisatiegroepen, zoals het IETF en het IEEE, namen daarom de

leiding in het definiëren van open standaarden die gebruikt kunnen worden als

leidraad bij het ontwikkelen van de IoT infrastructuur. Bijvoorbeeld, IEEE

802.15.4 voorziet de fysieke en MAC-laag specificaties die draadloze

communicatie met een laag energieverbruik toelaten over een beperkte afstand.

Het werk van het IETF spitst zich toe op het gebruiken van IP-gebaseerde eind tot

eind communicatie om toestellen toegankelijk te maken vanaf het Internet. Dat

leidde tot de definitie van de 6LoWPAN adaptatielaag die toeliet IPv6 pakketten

te routeren binnenin LLNs terwijl voldaan was aan de beperkingen opgelegd door

de lagere protocollagen. Routering wordt aangepakt door de introductie van een

nieuw routeringsprotocol voor lage-energie en verliesgevende netwerken (Engels:

Routing Protocol for Low-Power and Lossy Networks (RPL)). De applicatielaag

is geen uitzondering. Een nieuw applicatieprotocol voor constrained devices, het

Constrained Application Protocol (CoAP), werd geïntroduceerd door het IETF als

een lichtgewicht versie van HTTP. De combinatie van deze protocollen laat op

een naadloze manier eind tot eind communicatie toe tussen toestellen op het

Internet (zoals een smartphone) en objecten met heel beperkte mogelijkheden

(bijvoorbeeld een pacemaker), zonder dat er nog een specifieke gateway nodig is.

Dit doctoraat concentreert zich op het gebruiken van gestandaardiseerde

oplossingen om bijkomende mogelijkheden en meer flexibiliteit te voorzien voor

het IoT. Meer specifiek, het volledige doctoraat concentreert zich rond CoAP en

zijn extensies. We stellen verschillende uitbreidingen voor aan het CoAP protocol

en testen de efficiëntie van deze nieuwe oplossingen. De eerste bijdrage van dit

doctoraat is de uitbreiding van het CoAP observe-mechanisme om de efficiëntie

te verbeteren. Het bestaande CoAP observe-mechanisme laat toestellen of

applicaties, ook wel clients genoemd, toe om hun interesse in statusveranderingen

van CoAP resources die aangeboden worden door een ander toestel, ook wel server

genoemd, kenbaar te maken. Ze sturen dan een GET-verzoek dat een observe-

optie bevat naar de server. Eenmaal geregistreerd, verwittigt de server de client

van elke verandering in de toestand van de resource zoals bijvoorbeeld de waarde

gemeten door een temperatuursensor. Vaak is dit inefficiënt omdat niet alle

statusveranderingen relevant zijn voor de applicatie. Dit leidt tot een verspilling

van kostbare bandbreedte en energie. In dit doctoraat stellen we een oplossing

voor op basis van conditionele observaties. Dit laat clients toe om

 xxiii

notificatiecriteria toe te voegen bij het registratieverzoek. Op die manier zal de

server geen notificaties meer sturen tenzij ze voldoende aan de notificatiecriteria.

De tweede bijdrage van dit doctoraat bekijkt nieuwe mechanismen die het bouwen

van CoAP-gebaseerde applicaties makkelijker maken. De twee voorgestelde

mechanismen zijn Bindings en RESTlets. Bindings zijn CoAP observe-relaties

die tot stand gebracht worden door een derde partij. In de huidige

protocolspecificatie creëert een GET-verzoek met de observatie-optie een

observe-relatie tussen de zender en de ontvanger van het verzoek. Omwille van

dit feit worden interacties tussen een sensor en een actuator typisch tot stand

gebracht via een tussenliggend toestel dat altijd online moet zijn. Het

tussenliggende toestel brengt een observe-relatie tot stand met de sensor, verwerkt

de resulterende notificaties en stuurt indien nodig een signaal naar de actuator.

Deze aanpak heeft verschillende nadelen zoals bijkomende vertragingen in LLNs,

teveel verkeer en pakketverlies aan de grens van het LLN en het falen van het

systeem wanneer het tussenliggende toestel wegvalt. Bindings laten de creatie toe

van directe interacties tussen sensoren en actuatoren door toe te staan dat een derde

partij de observe-relatie tot stand kan brengen. Om dat te doen introduceren we

vier nieuwe CoAP opties die de server toelaten het onderscheid te maken tussen

normale observe-verzoeken en binding-verzoeken. Bij het ontvangen van het

verzoek registreert de server de actuator als een observator in plaats van de

initiator. Wanneer de relatie ingesteld is, is de initiator niet meer betrokken bij

verdere communicatie. In tegenstelling tot het maken van een relatie tijdens het

compileren, wat zeer inflexibel is, laat deze aanpak toe dat IoT applicaties vrije

associaties aangaan op ieder moment zonder beperkingen.

Het tweede mechanisme dat wordt voorgesteld zijn RESTlets. RESTlets zijn IoT

applicatiebouwstenen die input ontvangen, verwerken en output produceren. Ze

hebben ook controleparameters die gebruikt kunnen worden om de

configuratieparameters bij te regelen. De input kunnen sensormetingen zijn of de

output van een andere RESTlet. De output kan dan weer gebruikt worden als input

voor actuatoren, IoT componenten in de gateway of in de cloud, of zelfs voor

andere RESTlets. De verwerkingslogica kan zeer simpel zijn, zoals het

gemiddelde berekenen van de input, of zeer complex zoals het versturen van een

sms-bericht naar een specifieke bestemmeling. RESTlets kunnen éénmaal

gemaakt worden en verschillende keren geïnstantieerd worden om verschillende

verwerkingstaken uit te voeren. Een belangrijke eigenschap van RESTlets is hun

plaatsing. Afhankelijk van hun complexiteit kan een RESTlet ondergebracht

worden op een toestel met of zonder beperkingen. De IoT applicatie logica kan

hiermee opgedeeld worden in kleinere onderdelen en gedistribueerd worden als

RESTlets over verschillende IoT componenten. Bijvoorbeeld, indien we een

signaal wensen te sturen naar een thermostaat gebaseerd op het gemiddelde van

xxiv

vijf temperatuursensoren, kunnen we de RESTlet op één van de sensoren

onderbrengen of op de thermostaat zelf waarbij deze voorzien is van vijf inputs

(één voor elke sensor) en een output. Elke input brengt een observe-relatie tot

stand met elke temperatuursensor zodat elke temperatuursverandering

gerapporteerd wordt aan de node die de RESTlet herbergt. De actuator zal een

observe-relatie hebben met de output van de RESTlet. Bij het ontvangen van een

pakket zal de RESTlet de verwerking doen en de actuator een signaal geven als de

output verandert. De RESTlet controleparameters kunnen gebruikt worden om

sommige configuratieparameters, zoals de notificatiedrempel, te wijzingen. Om

de flexibiliteit te handhaven van IoT applicaties worden Bindings gebruikt om

dynamisch observe-relaties tussen componenten aan te maken.

Eén van de nadelen van de originele RESTlet benadering is dat ze statisch

aangemaakt worden. Dat wil zeggen dat ze waardevol geheugen verspillen

wanneer ze niet gebruikt worden. Om dit te verbeteren, hebben we het werk

uitgebreid om RESTlets dynamisch te laden tijdens looptijd. We vormen elke

RESTlet om tot een dynamisch laadbare module zodat deze kan worden geüpload

wanneer nodig. Om functioneel te zijn dient de firmware van iedere node

dynamisch laden en linken te ondersteunen. Dat is de derde bijdrage van dit

doctoraat.

Tenslotte stellen we een oplossing voor die het herstellen van dynamisch

gecreëerde toestandsinformatie op een transparante manier toelaat door pakketten

te inspecteren. Zoals reeds aangehaald, de van nature uit beperkte toestellen zijn

onbetrouwbaar. Hierdoor kan het gebeuren dat een toestel herstart zonder

aanwijsbare reden. Wanneer ze herstarten en terug online komen, leidt dit tot het

verlies van alle statusinformatie die gecreëerd werd door interacties met andere

toestellen en opgeslagen werd in het volatiel geheugen. Toestandswijzigingen van

CoAP resources, observatie-relaties, binding-relaties aangemaakt door externe

toestellen en dynamisch geladen code zijn voorbeelden van dynamische statussen.

IoT applicaties die gebruik maken van de herstarte nodes zullen foutieve resultaten

verkrijgen of zullen niet werken. Als onderdeel van het doctoraat introduceren we

een methode om deze dynamische toestandsgegevens te herstellen zonder de

interventie of kennis van de partijen die deelnemen aan de communicatie. In de

voorgestelde oplossing maken we een toestandsindex aan op de LLN-gateway die

opgevuld wordt door ieder pakket te onderscheppen dat door het netwerk gaat en

na te gaan of dit resulteert in de creatie van nieuwe toestandsinformatie. Ieder

pakket dat het potentieel heeft om een dynamische toestand aan te maken op een

beperkte node, resulteert in de creatie of aanpassingen van de toestandsindex. Als

een beperkte node rapporteert aan de gateway dat hij aan het opstarten is, zal de

gateway de toestandsindex raadplegen en een sequentie van acties starten om de

dynamische toestand te hercreëren op de node.

 xxv

Het doel van dit doctoraat was het gebruik van gestandaardiseerde protocollen

voor IoT applicaties te onderzoeken en verschillende verbeteringen aan deze

protocollen voor te stellen. Meer specifiek, we bestudeerden CoAP (en zijn

observe-extensie), een protocol dat meer en meer gebruikt wordt voor de interactie

met toestellen met beperkte mogelijkheden.

English Summary

In the 1990s, the Internet saw an unexpected exponential growth by

interconnecting billions of devices in just a decade. Currently, it is going through

yet another era of extreme growth. This phenomenon is mainly due to the

evolution of wireless networking and electromechanical technologies. These two

technological advancements opened up new possibilities for mobile phones and

smart objects to become a vital component of today’s Internet. Even the future is

believed tp be a period of extreme expansion. According to Cisco, the number of

connected devices will reach 50 billion by 2020. Most of these devices will be

smart objects such as sensors and actuators. Sensors read physical data such as

temperature and humidity from their environment and transfer the data to a more

capable device for further processing. Actuators, on the other hand, alter their

environment based on inputs received from other devices. These sensors and

actuators can be fit on anything, from huge structures to the smallest body parts.

This evolution has given rise to a whole new area called the Internet of Things

(IoT). A key characteristic of IoT is the interconnection of very heterogeneous

devices from different domains using diverse technologies.

The smart objects that are being incorporated in the Internet have inherent

constraints. They have limited memory and processing power. Their

communication capabilities are also seriously limited. Moreover, they are battery

operated and need power saving mechanisms to extend their battery life. Due to

these constraints, the networks formed by the interconnection of such devices are

called low power and lossy networks (LLNs). These characteristics make it

impossible for existing Internet communication protocols to be directly used by

the smart objects. As a result, several approaches have been taken by different

stakeholders to realize the connection of these devices to the Internet. Some

vendors have used intermediaries to interconnect the LLN with the Internet by

using proprietary communication protocols to interconnect the smart objects to the

intermediary and letting the intermediary perform the translation to standard-based

Internet protocols. This has resulted in vertical silos which are not interoperable

and move away from creating a single interconnection of devices.

xxviii

Some standardization bodies, such as IETF and IEEE took the lead in defining

open standards that can be used to guide the development of the IoT infrastructure.

For instance, IEEE 802.15.4 provides the physical and MAC layer specifications

to enable low-power wireless connectivity over limited distances. The work of

IETF focuses on using IP-based end-to-end communication in order to enable

devices to be accessible directly from the Internet. This has led to the definition of

the 6LoWPAN adaptation layer that enables IPv6 packets to be routed within

LLNs while meeting the stringent size requirements imposed by the lower protocol

layers. Routing is also addressed by introducing Routing Protocol for Low-Power

and Lossy Networks (RPL) as a routing protocol. The application layer is not an

exception either. The Constrained Application Protocol (CoAP) was introduced

by IETF as a light-weight version of HTTP. The combination of these protocols

enables end-to-end communication between a device on the Internet (e.g. a

smartphone) with a highly constrained smart object (e.g. pacemaker) in a seamless

way, without any intermediaries.

This PhD work focuses on using standardized solutions to provide additional

features and give more flexibility to the IoT. More specifically, all of the PhD

work is centered on CoAP and its extension. We propose several extensions to the

CoAP protocol and test the efficiency of the new solutions. The first contribution

of this PhD consists of an extension of the CoAP observe mechanism in order to

improve efficiency. The existing CoAP Observe mechanism allows clients to

register their interest in state changes of CoAP resources hosted by a server by

sending a GET request that includes the observe option. Once registered, the server

(usually sensors), notifies the client of every change. However, this is often quite

inefficient as not all state changes are relevant for an application, leading to a waste

of precious bandwidth and energy. The conditional observation solution we

propose as part of this PhD work lets clients send notification criteria along with

the registration request. By doing so, the server will not send notifications unless

they meet the notification criteria.

The second contribution of this PhD introduces enablers for CoAP-based IoT

application development. The two enablers proposed are Bindings and RESTlets.

Bindings are CoAP Observe relationships established by a third-party. In the

current protocol specification, a GET request with the observe option creates an

observation relationship between the sender and the receiver of the request. Due

to this, interactions between a sensor and actuator are typically established via an

intermediary that must be online at all times. The intermediary establishes an

observe relationship with the sensor, processes the resulting notifications and

sends a trigger to the actuator if required. This approach has several drawbacks

such as high latency in LLNs, congestion at the border of the LLN and failure of

the system in case the intermediary fails. Bindings enable the creation of direct

 xxix

interactions between sensors and actuators by letting a third party establish an

observation relationship between them. In order to do so, we introduce four CoAP

Options that let the server distinguish between normal observe requests and

binding requests. Upon reception of the request, the server registers the actuator

as an observer rather than the initiator. Once this relationship is established, the

initiator is not involved in further communication. As opposed to creating the

relationship at compile time, which is very inflexible, this approach enables IoT

applications to freely create associations at any time without limitations.

The second enabler that is introduced are RESTlets. RESTlets are IoT application

building blocks that receive inputs, process them and produce outputs. They also

have control parameters that can be used to tweak configuration parameters. The

inputs can be sensor readings or outputs of another RESTlet, while the outputs can

be fed into actuators, IoT components at the gateway or in the cloud, or even to

other RESTlets as input. The processing logic can be as simple as averaging of

inputs or as complex as sending an SMS to a particular destination. RESTlets can

be created once and instantiated multiple times in order to perform multiple

processing tasks. The most important characteristic of RESTlets is their

placement. Depending on their complexity a RESTlet can be hosted on a

constrained node or at non-constrained devices. In addition, IoT application logic

can be broken down into smaller units and distributed as RESTlets across the

different IoT components. For instance, if we need to trigger a thermostat based

on the average values of 5 temperature sensors, we host the RESTlet on one of the

sensors or on the thermostat having 5 inputs (one from each sensor) and an output.

Each input, then establishes an observation relationship with each temperature

sensor so that each temperature change is reported to the node hosting the

RESTlet. The actuator will also have an observation relationship with the output

of the RESTlet. Upon receiving a packet, the RESTlet does the processing and

triggers the actuator if the output changes. The RESTlet’s control parameter can

be used to modify some configuration parameters such as a notification threshold.

To maintain the flexibility of the IoT applications, bindings are used to

dynamically create the observation relationships between the components.

One of the drawbacks of the original RESTlets approach is the fact that they are

created statically, meaning that they are wasting precious memory when not used.

To improve this, we extend the work to dynamically load RESTlets at run-time.

We make each RESTlet as a dynamically loadable module so that it can be

uploaded whenever required. For this to be functional, the firmware of each node

must have dynamic loading and linking capability. This is the third contribution

of this PhD.

xxx

Finally, we propose a solution for the transparent recovery of dynamically created

state information through deep packet inspection. As repeatedly said, the

constrained devices are unreliable and may go through reboot cycles for

unspecified reasons. When they reboot and come back online, they have lost all

state that has been created through interaction with other nodes and that has been

stored in volatile memory. Examples of such dynamic state are actuation

modifications, observation relationships, binding relationships created by external

devices, and dynamically loaded code. IoT applications that make use of the

rebooting nodes will get incorrect results or may not work at all. As part of this

PhD, we introduce a mechanism for recovering the dynamic state data without the

intervention or knowledge of the communicating parties. In the proposed solution,

we create a state directory at the LLN gateway which is populated by intercepting

each packet that traverses the network. Every packet that has the potential of

creating dynamic state on a constrained node creates or modifies entries in the

state directory. If a constrained node reports to the gateway that it is booting up,

the gateway consults its state directory and initiates a sequence of activities to

regenerate the dynamic states on the node.

To conclude, this PhD emphasizes the use of standardized communication

protocols for IoT applications and suggests several improvements to the protocols.

Particularly, we leverage on CoAP and its observe extension, which is witnessing

extremely fast adoption for M2M communications ranging from application data

communication to device management.

1 Introduction

“We need to get smarter about hardware and software innovation in

order to get the most value from the emerging Internet of Things.”

– Henry Samueli (1954 -)

This chapter introduces the background of this dissertation and gives an overview

of the work done. This includes an overview of the challenges addressed by the

work and the contributions that have been made. Finally, it also includes a list of

publications authored.

1.1 The Internet of Things (IoT)

For decades, the Internet was considered to be the interconnection of computers

and other electronic devices such as scanners and printers. Several technological

advances such as improved electromechanical technologies, expansion and

evolution of wireless communication technologies and cloud services paved the

way for a very different Internet in terms of interconnected devices. Today,

smartphones, sensors and actuators have become an integral part of the Internet.

Sensors read physical data such as temperature and humidity from their

environment and transfer this data to the virtual world, consisting of services on

2 Chapter 1

the Internet. Actuators, on the other hand, alter their environment based on inputs

they receive via the Internet. These sensors and actuators can be fit on anything,

from huge structures to the smallest body parts. Originally, these devices were

second class citizens, only connected via proprietary gateways. Today, they are no

longer merely an add-on. The term Internet of Things (IoT) is used to refer to this

phenomenon where everything is connected to everything to share resources [1.1].

ITU-T defines IoT as an infrastructure that interconnects virtual and physical

things using existing and future technologies [1.2]. ITU-T stresses that

interoperability is important in IoT. So, the IoT vision is the interconnection of

people, things and data across domains using a plethora of technologies to bridge

the gap between the physical, digital and virtual worlds. The application domains

are diversified and cross-domain communications are very common.

Figure 1-1: IoT Application Domain

IoT applications are becoming essential components of almost every sector

(Figure 1-1). Smart Grid is one application area of IoT. The traditional electric

Introduction and Publications 3

grid interconnects power generation plants to substations and individual

households. The smart grid incorporates sensors and actuators to enhance its

efficiency, performance and reliability. It also enables new services that are not

possible in the traditional grid [1.3], [1.4]. Industrial IoT [1.5], a.k.a. Industry 4.0,

is also gaining extreme popularity in recent years. Nowadays, industries are

moving into wireless infrastructure that makes extensive use of sensors and

actuators. One of the driving forces is the advent of wireless technologies that are

specifically designed for industries by taking the stringent performance and

reliability requirements of industrial environments [1.6]–[1.8]. Cities are also

building smart object networks that span across the entire city to take advantage

of IoT services. The objective of these networks is to build IoT applications and

services that will improve the quality of lives of their dwellers [1.9]. The IoT

services that can be provided are numerous, but ecosystem monitoring and natural

hazards monitoring and early detection [1.10] are of paramount importance.

Building and home automation are other important application areas of IoT.

Modern buildings are being fitted with smart object networks and associated IoT

applications that monitor and control various aspects of the building including

energy efficiency and security [1.11]. Individual households are also incorporating

gadgets and household utensils that can be accessed from the Internet making their

home smart, secure and convenient to live in [1.12]. Healthcare [1.13] and

transportation management [1.1],[1.10] are also application areas of IoT.

1.2 IoT Systems

A generic IoT system is composed of several components interconnected through

different technologies. The intelligence of IoT applications can also reside

anywhere across these components. In this section, we discuss the different

components of generic IoT systems, communication and connectivity, as well as

the placement of the processing logic (Figure 1-2).

4 Chapter 1

Figure 1-2: Generic IoT System

1.2.1 Components of Generic IoT Systems

In most IoT systems, we can identify three different components that work

together.

1. Constrained Devices – constrained devices, also called Smart Objects, are

usually used to interact with the physical world. These devices are sensors

and/or actuators fitted with processing and communication hardware. The

communication method usually used is wireless. Sensors read some physical

value, perform processing, if needed, and communicate the values to

interested parties, while actuators alter the physical world based on some

events that can be generated internally or communicated from other devices.

The smart objects used in IoT applications have severe constraints as

compared to other electronic devices such as computers [1.14]. Low

processing power, small memory capacity, limited communication power and

limited battery power are some of the limitations of these devices. In many

situations, these devices are expected to be interconnected with each other,

forming Low Power and Lossy Network (LLN), to provide the required

information for IoT applications. LLNs are inherently unreliable due to the

limitations of the smart objects. Links can break, leading to timeouts or failure

of the network in case a new route cannot be established in time. In order to

save battery power, nodes (smart object) have to spend most of their time

sleeping [1.14]. In addition, some nodes may die due to power drainage,

which is also another issue of the LLNs. Due to these facts, developing IoT

applications and communication protocols that involve these constrained

devices needs special consideration.

2. LLN Gateways – LLN gateways are non-constrained devices that sit at the

edge of the constrained network to link the LLN with the outside world. The

LLN Gateways may have numerous purposes. Some manufacturers use

proprietary communication protocols for data communication within the

LLN. In such cases, any external device that tries to communicate with the

nodes in the LLN from the Internet has to communicate with the gateway

using standard Internet communication protocols. Next, the gateway will

Introduction and Publications 5

enquire the information from the nodes and respond on their behalf. Another

purpose is proxying. The gateway may act as a reverse proxy for web-based

communication. If the node is not available at the time of the request or does

not have the values ready, the gateway may respond on its behalf [1.15].

Gateways may also play a role in security. Since standard security protocols

and key management methods are too cumbersome for constrained devices,

the gateway can be used as a trusted broker for all security related

transactions[1.16]. Some IoT applications also use the gateway as a data

collection and analysis point while others use it as intermediary, for instance,

between sensors and actuators. This means a sensor notifies an event to the

gateway and the gateway sends a trigger to the associated actuator.

3. The Cloud – the Cloud has brought several new possibilities to the Internet.

Considering the IoT vision, which is connecting things irrespective of their

location, capacity or technology they use, the Cloud is an important option to

host at least a portion of IoT applications and store generated data. Some IoT

applications send all data all the way to the Cloud for processing and

analyzing. In the other extreme, only the final result will be sent to the cloud

for storage and further analysis. In this case, the constrained nodes, the LLN

gateway and/or other intermediary devices perform the bulk of the processing.

In any case, the Cloud is becoming an integral component of current IoT

applications.

1.2.2 Connectivity and communication

When we closely look at the connectivity of the different components, the LLN

network shows peculiar characteristics. Figure 1-3 shows a protocol stack

designed to address the specific requirements of constrained devices and networks.

Figure 1-3: IETF Protocol Stack

The most common communication protocol at the lower layer of the protocol stack

is IEEE 802.15.4 [1.18]. The protocol defines how to encapsulate, process and

6 Chapter 1

transmit packets to neighboring devices. For multi-hop networks, various routing

protocols have been defined [1.19], [1.20], [1.21]. One of the standardized route-

over protocols commonly used in LLNs is the Routing Protocol for Low-power

and Lossy Network (RPL) [1.19]. RPL operates by establishing a Destination

Oriented Directed Acyclic Graph (DODAG) rooted at a particular node. The graph

is built by using a fixed metric (e.g. shortest path) to compute the best route. Once

the DODAG has been established packets can be routed from nodes to the root or

downwards from the root to the nodes. Node to node communication is also

supported by RPL. The border router, which is usually connected to the LLN

gateway, is typically made the root of the DODAG, so that this node acts as the

main router to and from the LLN.

The advent of various standards brings the IoT vision to reality by allowing direct

access of sensors and actuators from the Internet. The 6LoWPAN Adaptation

Layer [1.22] provides a mechanism for compressing IPv6 packets so that they can

be forwarded through the LLN. This is achieved by omitting or compressing

header fields to significantly reduce the IPv6 header size in order to fit the packet

size restriction imposed by IEEE 802.15.4. The adaptation layer, which sits

between the network layer and the data link layer of the OSI model, enables a

packet originating from the Internet to directly reach a particular node in the LLN

and vice versa.

Another interesting standardization effort can be found at the application layer.

Web-services, especially those following the REpresentational State Transfer

(REST) paradigm [1.10], are well suited for applications involving smart objects.

The REST paradigm allows easy and standardized communication through

transfer of states between clients and servers. HTTP is a well known example of a

RESTful protocol. However, HTTP is too heavy to be used in IoT applications.

Due to this, the IETF has introduced Constrained Application Protocol (CoAP)

[1.15] as a light-weight counterpart of HTTP. Like HTTP, CoAP exposes web

resource using Uniform Resource Identifiers (URIs). Resource representations are

accessed using GET, PUT, POST and DELETE methods. But unlike HTTP, it uses

UDP at the transport layer, rather than TCP. For reliable communication, CoAP

introduces confirmable messages that require the receiver of a request to send an

acknowledgement. An important concept that leverages on CoAP and that is

important for IoT applications is the discovery of resources. CoAP specifies

resource discovery to be an integral part of the protocol implementation. The

/.well-known/core resource is an entry point to discover all resources hosted on a

particular node. This makes it easier for applications to automatically look for

specific resources and interact with them without human intervention.I

Introduction and Publications 7

Figure 1-4 CoAP Client-Server Interactions

Figure 1-4 shows a typical interaction between a CoAP client (e.g., smartphone)

and server (e.g., temperature sensor). The clients use the node’s IPv6 address to

send a GET request to the /.well-known/core resource in order to get a list of

resources hosted on the server. The server responds with the list of resources. This

list reveals, amongst others, that the CoAP server exposes temperature sensor

readings by means of a resource with the URI path /s/t. Next, the client sends a

GET request to this resource to request the current temperature, being 23.5oC.

In addition, several extensions have been proposed to CoAP, one of them being

the observation of resources [1.23]. The observe extension lets clients inform

servers that they want to be notified about every resource state change. Once

registered, the server sends a notification every time the state of that specific

resource changes. This mechanism is a very important extension for monitoring

applications.

1.2.3 Data Processing

In addition to the transfer of data between the different IoT application

components using the aforementioned protocols, data processing is also important.

One approach is to place the processing logic inside the LLN, possibly distributed

over multiple nodes, and perform all processing activity there. This way, the data

generated by the constrained nodes is processed and consumed within the LLN.

The other extreme are cloud-centric applications where the entire processing logic

of the application is performed in the cloud. Each and every data generated in the

LLN crosses the network and goes all the way to the cloud [1.17]. Yet another

approach is placing the bulk of the processing activity at the gateway. In such

applications, every data generated by the constrained devices is sent to the gateway

8 Chapter 1

so that it is processed and analyzed. Depending on the result, data may have to go

into the LLN to trigger actuators. For instance, in an IoT application that regulates

home temperature, every temperature sensor sends its readings to the gateway for

processing. After performing all the required processing, the gateway may send

back an actuator message to increase or decrease the temperature. It is also

possible to use a hybrid approach where the processing logic of the IoT application

can be distributed all over the different components.

1.3 Application development paradigms

IoT is so complex as it encompasses devices with heterogeneous capabilities

connected through multiple technologies across numerous domains. Due to the

trade-off between processing and data transmission, which can have significant

impact on constrained devices, placement of the bulk of the application processing

logic plays an important role in IoT application development. As a result,

researchers have proposed different architectures based on this fact. The

architectures can be categorized as follows.

1.3.1 Cloud-Centric Architecture

Some IoT applications move all the processing logic in the Cloud [1.17],[1.24]. In

such architectures, the constrained devices are tasked with communicating sensed

data and receiving triggers. For instance, in Light Weight Machine to Machine

(LWM2M), the server which sits in the cloud uses the CoAP protocol to perform

full device management functions of multiple devices. In such cases, the IoT

applications can be built by using APIs on top of the cloud. Referring to Figure

1-2 above, application development paradigms that send the data all the way to the

cloud and results coming back to the LLN fall in this category.

1.3.2 Gateway Centric Architecture

It is common to use the gateway as the IoT application processing center. Such

architectures let constrained devices send every data to the gateway for processing.

Since the gateway sits at the edge of the LLN network, application developers tend

to use proprietary protocols for communication between the constrained devices

and the gateway. Open standards, such as CoAP can also be used in such

application paradigms [1.25][1.26].

1.3.3 Distributed Architecture

A mix of the abovementioned two architectures is also possible. In such

architectures, even the constrained devices can host the IoT application logic. An

IoT application that requires the constrained devices to perform data aggregation

(e.g. averaging) before forwarding to the gateway or which performs more

Introduction and Publications 9

complex processing and forwards the result to the cloud for storage and further

processing are good examples of such an architecture.

1.4 Challenges in Building IoT Applications

Due to the constraints of IoT devices and the networks they are part of, there are

several trade-offs that need to be taken into account when developing applications

as well as challenges to overcome. In this section, we describe such trade-offs as

well as the challenges that are being addressed in this PhD work.

1.4.1 Collection of Redundant Data

In resource monitoring applications, it is very common to collect all sensed data

in the Cloud and then decide whether to use it or discard it.

Figure 1-5: Collection of Redundant Data

As an example, we consider a CoAP-based air quality monitoring application

(Figure 1-5). In such an application, the data collected by the sensors can be sent

to the monitoring station hosted in the Cloud. To do so, the monitoring station

establishes an observation relationship with the sensors in order to be notified of

every state change. Accordingly, the sensors send every state change to the

monitoring station. However, since not every state change is important for the

application, the monitoring station discards the insignificant data values. This is

very inefficient when we look at it from the constrained device and network

perspective. Data reception and transmission are the most energy consuming

10 Chapter 1

operations of the constrained nodes. Sending data all the way to the cloud and

discarding it, is a waste of energy and wastes the already scarce bandwidth. In

addition, the extra power consumption leads to a reduced lifetime of the nodes.

Moreover, in dynamic environments where insignificant changes are common,

there will be lots of communication, putting pressure on the nodes near the sink.

A standardized way to collect only the data that is significant from the application

perspective is important. The best option would be to filter the data at the server.

This server side filtering allows the sink to only receive packets that are significant

for the application. This can be achieved by informing the server about the

notification criteria while registering for observation.

1.4.2 All Intelligence on Non-Constrained Device or in the

Cloud

In most applications, the role of sensors is limited to sensing data and transmitting

this data to a more powerful device or to the cloud, while actuators are tasked with

receiving information from external devices and altering their environment. This

means that all intelligence resides in the cloud or on a more powerful device such

as the gateway. This approach can introduce significant delays in the

communication and has a huge overhead in terms of power consumption.

Figure 1-6: Sensor (Light Switch) and Actuator (Light Bulb) Interaction through

an Intermediary

For instance, in a home automation system, we may have a light switch and a light

bulb that work together by communicating through wireless signals (Figure 1-6).

When the switch (Sensor) is pressed, it sends a wireless signal to the light bulb

(Actuator) to turn on or off the light. In most cases, the switch press signal is sent

to a more powerful device outside the LLN which processes the signal and sends

a trigger to the right actuator, introducing significant delays due to the nature of

the LLNs. Therefore, if there are application restrictions (e.g. timeouts) set by

Introduction and Publications 11

applications, there can be communication breakdowns or malfunctioning of the

IoT application, especially during peak hours, due to excesive delays.

Solutions that allow direct interaction between constrained nodes can mitigate

such issues. This may necessitate to move some of the intelligence into the LLN.

However, tasking a constrained node with processing of complex data might be

unrealistic. Yet a better solution is to provide a mechanism that enables distributed

data processing, relieving the burden for a single node of doing all the processing

task. This way, all nodes and the LLN gateway may share the processing activity,

thereby reducing both latency and overhead involved in indirect communication.

If needed, some processing can still be done in the Cloud. The direct interaction

between constrained nodes coupled with distributed processing possibility can be

a great enabler for IoT application development.

1.4.3 Static Configurations

CoAP resources are often defined inside the firmware of constrained devices at

compile time. However, needs may vary over time. For instance, different CoAP

resources that expose data in a different way or with different logic behind them

can be required after the nodes are put in production. In addition, updates are

required to implement better performance. A solution that allows dynamic

deployment of resources and processing logic is imperative. Such solutions add a

great deal of flexibility to IoT applications.

1.4.4 Unexpected Crashes of Constrained Devices

Interactions between constrained nodes and external devices usually result in new

states that may change over time. Examples of such changes include actuation

thresholds set by a device using CoAP PUT request, observation relationship

established between a sensor and a monitoring station, or dynamically loaded

modules. Unfortunately, constrained devices are characterized by unexpected

failures and sometimes they may be put offline for maintenance (e.g. battery

change) which leads to loss of the dynamically created states upon startup.

12 Chapter 1

Figure 1-7: Effect of Rebooting Nodes on IoT Applications

Figure 1-7 shows an IoT application which allows smartphones to adjust

temperature values of an airconditioning system. The initial configuration (which

was 20) can be updated by a user from outside the LLN. If not stored in persistent

memory, the value is set back to the initial value upon a reboot. This loss affects

all devices that rely on the established dynamic states and relationships. Most

importantly, it affects the IoT application that makes use of data and states

generated at the rebooted node. A mechanism that keeps track of such dynamic

states and that restores them after the reboot has been completed is crucial. Ideally,

such a mechanism is fully transparent to both parties (the client and the server). It

should also be done by a device that is powerful enough to do the required

processing.

1.5 Research Contributions

As mentioned before, the bulk of the PhD work focusses on the usage and

extension of the CoAP protocol to improve efficiency and reliability of CoAP-

based IoT applications.

Introduction and Publications 13

Figure 1-8: Contribution: Conditional Observe

The first contribution of the PhD work is Conditional Observation (Figure 1-8).

Conditional Observation extends the CoAP Observe protocol to allow notification

criteria to be sent along with a registration request as a payload. Upon receipt, the

server stores the notification criteria together with all other attributes that are

stored for normal observation. Whenever the state of the resource changes, the

sensor checks if the new value meets the notification criteria before sending it to

the client. This mechanism avoids unnecessary packets that are transmitted to

clients. To evaluate the performance of the conditional observe solution against

normal observe, we implemented the solution using Contiki. The default CoAP

implementation of Contiki, Erbium, was modified to support conditional

observation. The hardware platform used is Zolertia Z1 while the Cooja simulator

is used to run the actual tests. Theoretical analysis is made to back the results of

the experiments. We found out that conditional observe solution results in

reduction of traffic load and energy consumption with limited implementation

overhead.

14 Chapter 1

Figure 1-9: Contribution: Bindings (LS=Light Switch and LB = Light Bulb)

The second contribution of the PhD Work is a new enabler to establish direct

flexible interactions between two devices, called Bindings (Figure 1-9). Bindings

are observation relationships between two parties established by a third party (e.g.

an observe relationship established between a sensor and an actuator created by

using a smartphone). Once the relationship is established the two parties can

communicate with each other without the intervention of the relationship creator.

We implemented the solution using similar tools (Erbium on Contiki) and used the

Cooja simulator to collect data for analysis. The results showed that despite the

small increase in memory footprint, the proposed solution meaningfully reduces

the flow of packets to the gateway and hence lowers communication delay.

Moreover, the new approach makes IoT applications that require direct interaction

between sensors and actuators easier and more flexible.

Introduction and Publications 15

Figure 1-10: Contribution: RESTlets

The research on the binding concept has led to a second novel enabler, called

RESTlets (Figure 1-10). RESTlets are IoT application building blocks that receive

input from sensors or other RESTlets, process them and produce outputs. We can

attach readings of multiple sensors to a RESTlet that does averaging and produces

the average value as an output. The output, in turn, can be used to trigger an

actuator, effectively creating an IoT application that alters the environment by

using the average of sensor values. The interconnection between RESTlet

inputs/outputs with sensors, actuators and other RESTlets is realized through

Bindings. The implementation of the solution on both constrained and non-

constrained devices proved that the RESTlet concept can be applied at any

location. We ran several experiments to evaluate the performance of our solution

by comparing it to traditional gateway-based or cloud solutions by using a

different number of data generating nodes, data generating gap and TX/RX ratio.

In all cases, our solution is capable of outperforming traditional solutions in terms

of latency. Interestingly, the RESTlet solution provides a very good opportunity

to use visual programming techniques to reduce the IoT application development

to a set of drag-and-drop or point-and-click activities.

16 Chapter 1

Figure 1-11: Contribution: Dynamic Loading

Initially, we only considered static RESTlets that had to be programmed in

advance on the constrained devices. To get rid of this limitation, we investigated

the Dynamic Deployment of RESTlets (Figure 1-11). Instead of using statically

configured RESTlets, we save lots of memory space by deploying them on

demand. The proposed solution involves a way of creating and deploying dynamic

RESTlets at run-time. This will increase flexibility of IoT application

development, as which node has to host which RESTlet might not be known at

compile time. In addition, the RESTlet hosted on a specific node may also have to

change over time. Both aspects can be addressed by our method that allows

changes on the fly.

Introduction and Publications 17

Figure 1-12: Contribution: Crash Recovery

The last contribution of the PhD work is a smart transparent mechanism for crash

recovery (Figure 1-12). The solution proposes a dynamic state directory to be

placed at the LLN gateway that intercepts each and every packet passing by and

that looks for CoAP requests that may generate or alter dynamic state. If a node

reports a reboot, the gateway consults the state directory and initiates a sequence

of activities that will regenerate the stored dynamic states. This solution ensures

continuous functioning of the IoT application despite the rebooting of specific

nodes. More interestingly, the solution works without the knowledge and

participation of the client and server nodes.

1.6 Fit within the Broader IoT Landscape

Due to the competing requirements of different IoT application domains, various

technologies and solutions exist today resulting in a complex landscape. Some

companies use their own proprietary solution while others join hands to establish

alliances that create standardized solutions. Our work has been centered around

the Constrained Application Protocol and has focused on constrained devices that

are part of a multi-hop network based on the IEEE 802.15.4 radio technology. In

this section, we give a brief overview of the current IoT landscape by referring to

the layered architecture given on Figure 1-3 and discuss how our work fits within

this broader context.

At the physical and MAC layers, there are numerous communication technologies

that target low power devices. For the sake of discussion, we can categorize them

as single-hop and multi-hop technologies. An always-on non-constrained gateway

18 Chapter 1

or access point manages and synchronizes communications in single-hop

technologies whereas devices may act both as end nodes and routers in multi-hop

technologies.

Recently, novel single-hop technologies have appeared, which are aimed at

achieving long coverage area at the cost of throughput. These networks are

referenced as Low Power Wide Area Networks (LPWANs). One example of such

a long-range low-power technology is SigFox. The technology connects low-

energy devices such as electricity meters using Ultra-Narrow Band (UBN)

technology. The SigFox radio link uses unlicensed ISM radio bands at sub Giga

Hertz frequency bands (868MHz in EU and 915MHz in the US) with an average

coverage area of 30-50Km in rural areas and 3 – 10Km in urban areas with many

obstacles. Because of the duty cycling restrictions of the frequency bands used by

SigFox, the number of uplink (device to gateway) messages per day is restricted

to 140 with 12 bytes payload per message transmitted at 100bits per second. Smart

parking, smart meters, and environment monitoring are target markets of SigFox.

Due to its limitation on the transmitted packets, this solution is suitable for

solutions that have low data flow requirements. The main contender of SigFox is

LoRa, which, together with LoRaWAN, provides a long-range communication

solution and corresponding architecture. LoRa uses the same frequency bands as

SigFox but supports use of variable bandwidths ranging from 7.8 kHz to 500 kHz

allowing different data rates and communication ranges. LoRaWAN solutions can

be operator managed or private while SigFox is entirely a service offered by the

operator. Typically, proprietary payloads are being exchanged over these

technologies, without using IP. However, at the time of writing, the IETF is

making efforts to also adopt the same open standards that have been studied in this

PhD book by designing novel compression schemes. With this, our contribution

to avoid the collection of redundant data becomes particularly relevant to further

reduce energy consumption.

Today, long-range IoT connectivity can also be achieved using cellular technology

in the licensed spectrum. For this, new cellular specifications have been released,

as LTE has been designed to provide high throughput, ending up to be too power

hungry for IoT solutions. Considering this, 3GPP has come up with three different

LTE based LPWAN standards, namely LTE-M, NB-IoT and EC-GSM-IoT. The

services that use these technologies are provided by mobile operators. These

technologies have higher peak data rates than LoRa and SigFox, making easier to

adopt the open protocol stack considered in this PhD book.

Apart from that, there are also medium and shorter-range technologies that are

suited for IoT applications. Current Wi-Fi standards can also be adapted to be used

for IoT solutions as the existing standards are not applicable since they use

Introduction and Publications 19

crowded frequency bands (2.4GHz and 5GHz) with limited range and do not have

power saving mechanisms. IEEE 802.11ah (aka Wi-Fi HaLow) is a new Wi-Fi

standard that operates in the unlicensed sub-gigahertz frequency bands like SigFox

and LoRa but uses wider bandwidths, usually 1 MHz and 2 MHz, in order to

achieve larger data rate. Due to this fact, the coverage area of IEEE 802.11ah is

much less than that of SigFox and LoRa, but open standards such as IPv6 and

CoAP can be easilty adopted.

The other widely known single-hop technology is Bluetooth Low Energy (BLE).

BLE is built upon the Bluetooth and is usually used with short range sensors such

as heart rate belt and weight scale. Bluetooth Smart devices implement the BLE

standard and Bluetooth Smart Ready devices implement both the traditional

Bluetooth standard and BLE. BLE devices operate in the 2.4GHz frequency band

and coverage is limited to 20 – 50 meters. Recently, a BLE meshing specification

has been released, enabling multi-hop communication. BLE specifies almost the

entire stack and does not make use of IP(v6) or the CoAP protocol.

When looking at multi-hop communication solutions, it can be observed that the

most commonly used radio technology for multi-hop sensor networks is IEEE

802.15.4. IEEE 802.15.4 uses 2.4GHz (worldwide), 868 MHz (EU) and 915 MHz

(US) frequency bands with 250kbps, 20kbps and 40kbps data rates, respectively.

Since the coverage area is very limited (5 – 50 m) and uses power saving radio

and MAC mechanisms, the battery life of nodes may range from months to years.

In order to further optimize it, IEEE 802.15.4e has been released. This amendment

uses the same physical layer but adds a new MAC layer to introduce Time Slotted

Channel Hoping (TSCH) mode. In TSCH mode, the entire frequency range is

divided into smaller frequency bands and each sender/receiver node will be

assigned a particular time slot and frequency band for communication. In all other

time slots, the sender and/or receiver are allowed to sleep to save energy. The

assignment of a frequency band and time slot is actually done by an application-

aware scheduling mechanism.

Several IoT solutions have been designed on top of IEEE 802.15.4. For instance,

ZigBee is a well-known standard for home automation based on IEEE 802.15.4.

ZigBee defines a complete protocol stack on top of IEEE 802.15.4 with different

profiles addressing different application domains. Several ZigBee based home

automation products are available in the market. WirelessHart is another wireless

sensor networking technology based on IEEE 802.15.4. It is suitable for process

automation in industrial applications. It uses a time synchronized, self-organizing

and self-healing mesh architecture. These IoT solutions provide their own

standardized stack, not using the open network communication protocol stack

(6LoWPAN, RPL, CoAP) that has been defined by the IETF in order to make

20 Chapter 1

constrained nodes directly accessible from IPv6 networks. Thread partially adopts

this open stack up to the transport layer, by building on top of 6LoWPAN and

UDP. It is backed by Nest Labs (Google) and used in products such as the NEST

learning thermostats and related NEST products.

Also at the application layer, a wide variety of approaches exist, one of them being

CoAP. Client/Server architectures and Publish/Subscribe architectures are

commonly used with IoT applications. Most of the Client/Server applications

follow the Resource State Transfer (REST) approach where servers expose data

as resources that can be accessed by clients using standardized methods. HTTP

and CoAP are protocols that enable RESTful interactions. In the Publish/Subscribe

approach, devices publish their data on a particular topic on a broker and

subscribers consume them. The publisher and subscriber should not be

synchronized or be online at the same time. A notable protocol that is based on

publish/subscribe paradigm is the ISO certified Message Queue Telemetry

Transport (MQTT) protocol, although CoAP can be used as well to implement this

paradigm. In that respect, the IETF is working on a draft to standardize a

publish/subscribe broker for CoAP.

To conclude, a plethora of IoT applications, products and solutions that are based

on different, often not-interoperable, technologies are currently available.

However, there is a tendency to move toward open Internet and Web technologies,

where protocols such as IPv6, 6LoWPAN and CoAP take up a dominant role. For

instance, the Open Connectivity Foundation (OCF) and Open Mobile Alliance

working group for Light-Weight Machine-to-Machine Communication (OMA

LWM2M) and IPSO Alliance have selected CoAP as the application protocol on

top of which management APIs and data models are being defined. Also,

OneM2M has released specifications that include a mapping to CoAP. This

illustrates the efforts on creating standards and interoperability in order to reduce

the complexity of the existing IoT landscape.

1.7 Outline

Smart objects that are being used in IoT applications have inherent constraints.

They have limited memory and processing power. Their communication

capabilities are also seriously limited. Moreover, they are battery operated and

need power saving mechanisms to extend their battery life. These characteristics

make it impossible for existing Internet communication protocols to be directly

used by the smart objects. This PhD dissertation is composed of different

publications that were realized within the scope of this PhD study. All publications

focus on using standardized solutions to provide additional features and give more

Introduction and Publications 21

flexibility to the IoT. More specifically, all of the PhD work is centered on CoAP

and its extension.

The existing CoAP Observe mechanism allows clients to register their interest in

state changes of CoAP resources hosted by a server by sending a GET request that

includes the observe option. Once registered, the server (usually sensors), notifies

the client of every change. However, this is often quite inefficient as not all state

changes are relevant for an application, leading to a waste of precious bandwidth

and energy. The conditional observation solution we discuss in Chapter 2 enables

clients to send notification criteria along with the registration request. By doing

so, the server will not send notifications unless they meet the notification criteria.

Chapter 3 introduces two enablers to IoT application development, namely,

Bindings and RESTlets. Bindings are CoAP Observe relationships established by

a third-party. Bindings enable the creation of direct interactions between sensors

and actuators by letting a third party establish an observation relationship between

them. RESTlets are IoT application building blocks that receive inputs, process

them and produce outputs. They also have control parameters that can be used to

tweak configuration parameters. The inputs can be sensor readings or outputs of

another RESTlet, while the outputs can be fed into actuators, IoT components at

the gateway or in the cloud, or even to other RESTlets as input. The processing

logic can be as simple as averaging of inputs or as complex as sending an SMS to

a particular destination. RESTlets can be created once and instantiated multiple

times in order to perform multiple processing tasks. A RESTlet can be hosted on

a constrained node or at non-constrained devices. In addition, we show that IoT

application logic can be broken down into smaller units and distributed as

RESTlets across the different IoT components. To build IoT applications, each

RESTlet input establishes a binding relationship with a resource on sensors or

other RESTlet outputs so that each resource state change is reported to the node

hosting the RESTlet. Similarly, a RESTlet’s output will have an observation

relationship with another component. The combination of these two enablers

significantly simplifies distributed IoT application development.

One of the drawbacks of the original RESTlets approach is the fact that they are

created statically, meaning that they are wasting precious memory when not used.

To improve on this, we extend the work to dynamically load RESTlets at run-time.

We turn each RESTlet into a dynamically loadable module so that it can be

uploaded whenever required. This dynamic loading of RESTlets on constrained

devices is detailed in Chapter 4. This mechanism avoids pre-loading of RESTlets

on nodes and gives the flexibility of adding them on-demand at run-time.

22 Chapter 1

Due to unexpected failures of nodes, dynamically created information may be lost,

including state related to the aforementioned mechanisms. Therefore, Chapter 5

discusses a transparent crash recovery mechanism through deep packet inspection.

This mechanism allows nodes to maintain their previous states after rebooting.

Finally, Chapter 6 gives concluding remarks and the way forward.

The following Table summarizes the link between the chapters and the IoT

application challenges it addresses.

SNo IoT Application Challenge Chapter

1. Collection of Redundant Data Chapter 2

2. All Intelligence on Non-Constrained Device or in the Cloud Chapter 3

3. Static Configurations Chapter 4

4. Frequent Crash of Constrained Devices Chapter 5

1.8 List of publications

The research results obtained as part of this PhD have been published in scientific

journals and presented in various international conferences. The following list

provides an overview of all publications.

1.8.1 A1 publications (listed in the Science Citation Index1)

1. Girum Ketema Teklemariam, Jeroen Hoebeke, Ingrid Moerman, Piet

Demeester. Facilitating the creation of IoT applications through conditional

observations in CoAP. Published in EURASIP Journal on Wireless

Communication and Networking, 2013:177. DOI: 10.1186/1687-1499-2013-

177

2. Floris Van den Abeele, Jeroen Hoebeke, Girum Ketema Teklemariam,

Ingrid Moerman, Piet Demeester. Sensor Function Virtualization to Support

Distributed Intelligence in the Internet of Things. Published Wireless Personal

Communications 81 (4), pp. 1415-1436

3. Girum Ketema Teklemariam, Floris Van Den Abeele, Ingrid Moerman,

Piet Demeester and Jeroen Hoebeke. Bindings and RESTlets: A Novel Set of

1 The publications listed are recognized as ‘P1 publications’, according to the following

definition used by Ghent University: P1 publications are proceedings listed in the

Conference Proceedings Citation Index - Science or Conference Proceedings Citation Index

- Social Science and Humanities of the ISI Web of Science, restricted to contributions listed

as article, review, letter, note or proceedings paper, except for publications that are

classified as A1

Introduction and Publications 23

CoAP-Based Application Enablers to Build IoT Applications. Sensors 2016,

16(8), 1217; doi:10.3390/s16081217

4. Girum Ketema Teklemariam, Floris Van den Abeele, Peter Ruckebusch,

Ingrid Moerman, Piet Demeester, Jeroen Hoebeke. Dynamic Deployment of

RESTlets on Constrained Devices. Submitted to International Journal of

Distributed Sensor Networks May 2017.

5. Girum Ketema Teklemariam, Floris Van den Abeele, Ingrid Moerman, Piet

Demeester, Jeroen Hoebeke. Transparent Recovery of Dynamic States on

Constrained Nodes through Deep Packet Inspection. Submitted to Journal of

Sensors, December 2017

1.8.2 Publications in other International Journals

1. Isam Ishaq, David Carels, Girum Ketema Teklemariam, Jeroen Hoebeke,

Floris Van den Abeele, Eli DePoorter, Ingrid Moerman, and Piet Demeester.

IETF standardization in the field of the Internet of Things (IoT): a survey.

Published in the Journal of Sensor and Actuator Networks, Volume 2, issue

2, pp. 235–287, 2013.

1.8.3 Publications in International Conferences (listed in the

Science Citation Index2)

1. Girum Ketema Teklemariam, Jeroen Hoebeke, Ingrid Moerman, Piet

Demeester, Li Shi Tao, Antonio J. Jara. Efficiently Observing Internet of

Things Resources. Published in the proceedings of 2012 IEEE

International Conference on Green Computing and Communications

(GreenCom 2012), 20–23 Nov. 2012 Pages 446 – 449. Besançon, France

2. Girum Ketema Teklemariam, Jeroen Hoebeke, Floris Van den Abeele,

Ingrid Moerman, Piet Demeester. Simple RESTful Sensor Application

Development Model Using CoAP. Published in the Proceedings of the

Conference on Local Computer Networks, LCN 2014, November 2014,

6927702, pp. 552-556. Edmonton, Canada.

1.8.4 Publications in international conferences

1. Girum Ketema Teklemariam, Jeroen Hoebeke, Ingrid Moerman, Piet

Demeester, Flexible, direct interactions between CoAP-enabled IoT

devices. Published in the Proceedings of 8th International Conference on

2 The publications listed are recognized as ‘P1 publications’, according to the following

definition used by Ghent University: P1 publications are proceedings listed in the

Conference Proceedings Citation Index - Science or Conference Proceedings Citation Index

- Social Science and Humanities of the ISI Web of Science, restricted to contributions listed

as article, review, letter, note or proceedings paper, except for publications that are

classified as A1.

24 Chapter 1

Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS

2014. 6975483, pp. 322-327. Birmingham, United Kingdom

2. Floris Van den Abeele, Jeroen Hoebeke, Isam Ishaq, Girum Ketema

Teklemariam, Jen Rossey, Ingrid Moerman and Piet Demeester.

Building embed- ded applications via REST services for the Internet of

Things. Published in the proceedings of the 11th ACM Conference on

Embedded Network Sensor Systems (SenSys - 2013), p. 1–2, 11–15 Nov.

2013, Rome, Italy.

3. Jeroen Hoebeke, David Carels, Isam Ishaq, Girum Ketema

Teklemariam, Jen Rossey, Eli Depoorter, Ingrid Moerman, Piet

Demeester, Leveraging upon standards to build the Internet of Things,

Published in Proceedings of the 19th IEEE Symposium on

Communications and Vehicular Technology in the Benelux (IEEE SCVT

2012), Eindhoven, November 16, 2012,

DOI:10.1109/SCVT.2012.6399412

1.8.5 Patent Applications

1. Floris Van den Abeele, Jeroen Hoebeke, Girum Ketema Teklemariam.

Reducing a Number of Server-Client Sessions. US2016006818.

Koninklijke KPN N.V., iMinds VZW, Universiteit Gent. Priority date:

28 December 2012. Publication date: 7 January 2016.

2. Jeroen Hoebeke, Girum Ketema Teklemariam, Floris Van den Abeele.

Binding Smart Objects. US2017017533. Koninklijke KPN N.V., iMinds

VZW, Universiteit Gent. Priority date: 23 December 2013. Publication

date: 19 January 2017

Introduction and Publications 25

References

[1.1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Futur.

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[1.2] ITU-T, “Recommendation ITU-T Y.2060: Overview of the Internet of

things.” International Telecommunication Union, Geneva, 2013.

[1.3] P. P. Parikh, M. G. Kanabar, and T. S. Sidhu, “Opportunities and challenges

of wireless communication technologies for smart grid applications,” IEEE

PES Gen. Meet., no. Cc, pp. 1–7, 2010.

[1.4] M. Yun and B. Yuxin, “Research on the architecture and key technology of

Internet of Things (IoT) applied on smart grid,” 2010 Int. Conf. Adv.

Energy Eng. ICAEE 2010, pp. 69–72, 2010.

[1.5] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”

IEEE Trans. Ind. Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.

[1.6] J. Song et al., “WirelessHART: Applying wireless technology in real-time

industrial process control,” Proc. IEEE Real-Time Embed. Technol. Appl.

Symp. RTAS, pp. 377–386, 2008.

[1.7] R. Show, “The ISA100 Standards,” ISA Stand., 2008.

[1.8] S. Petersen and S. Carlsen, “WirelessHART versus ISA100.11a: The

format war hits the factory floor,” IEEE Ind. Electron. Mag., vol. 5, no. 4,

pp. 23–34, 2011.

[1.9] a Zanella, N. Bui, a Castellani, L. Vangelista, and M. Zorzi, “Internet of

Things for Smart Cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32,

2014.

[1.10] J. P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP. 2010.

[1.11] C. Wei and Y. Li, “Design of energy consumption monitoring and energy-

saving management system of intelligent building based on the Internet of

things,” 2011 Int. Conf. Electron. Commun. Control. ICECC 2011, pp.

3650–3652, 2011.

[1.12] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C. H. Lung, “Smart

Home: Integrating Internet of Things with Web Services and Cloud

Computing,” 2013 IEEE 5th Int. Conf. Cloud Comput. Technol. Sci., vol.

2, no. November 2015, pp. 317–320, 2013.

[1.13] S. M. R. Islam, D. Kwak, H. Kabir, M. Hossain, and K.-S. Kwak, “The

Internet of Things for Health Care : A Comprehensive Survey,” Access,

IEEE, vol. 3, pp. 678–708, 2015.

26 Chapter 1

[1.14] C. Bormann, M. Ersue, and A. Keranen, “RFC 7228: Terminology for

Constrained-Node Networks.” IETF, pp. 1–17, 2014.

[1.15] Z. Shelby, K. Hartke, and C. Bormann, “RFC 7252: The Constrained

Application Protocol (CoAP).” IETF, pp. 1–112, 2014.

[1.16] F. Van Den Abeele, T. Vandewinckele, J. Hoebeke, I. Moerman, and P.

Demeester, “Secure communication in IP-based wireless sensor networks

via a trusted gateway Secure communication in IP-based wireless sensor

networks via a trusted gateway,” no. October, 2015.

[1.17] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A RESTful

runtime container for scriptable internet of things applications,” Proc. 2012

Int. Conf. Internet Things, IOT 2012, pp. 135–142, 2012.

[1.18] IEEE Standards Assiciation, IEEE 802.15.4-2015 Standard, vol. 2015.

2015.

[1.19] T. Winter, P. Thubert, A. R. Corporation, and R. Kelsey, “RFC6550: RPL:

IPv6 Routing Protocol for Low-Power and Lossy Networks.” IETF, pp. 1–

157, 2012.

[1.20] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:

attacks and countermeasures,” Proc. First IEEE Int. Work. Sens. Netw.

Protoc. Appl. 2003., pp. 113–127, 2003.

[1.21] M. S. G. Premi and K. S. Shaji, “MMS Routing for Wireless Sensor

Networks,” 2010 Second Int. Conf. Commun. Softw. Networks, pp. 482–

486, 2010.

[1.22] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “RFC 4944:

Transmission of IPv6 Packets over IEEE 802.15.4 Networks.” IETF, pp.

1–30, 2007.

[1.23] K. Hartke, “RFC 7641: Observing Resources in the Constrained

Application Protocol (CoAP).” IETF, pp. 1–30, 2015.

[1.24] Alliance Open Mobile, “Lightweight Machine to Machine Requirements,”

pp. 1–112, 2012.

[1.25] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway:

BridgingWireless Sensor Networks into Internet of Things,” 2010

IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput., pp. 347–352, 2010.

[1.26] M. Aazam and E. Huh, “Fog Computing and Smart Gateway Based

Communication for Cloud of Things,” no. April, pp. 21–24, 2014.

2
Facilitating the creation of IoT

applications through conditional

observations in CoAP

Many IoT applications involve the monitoring of the physical world by means of

sensors. When using the CoAP protocol, such monitoring can be achieved by

making use of the Observe mechanism. This mechanism enables a client (e.g., a

monitoring station) to express its interest in the state changes of a resource hosted

by a server (e.g. sensor). As a result, the client will be notified about changes in

the state of that resource. This way, the station avoids constant polling for

resource states, significantly reducing the amount of packet transmissions between

the client and the server. However, since the server sends every small change in

resource states, which might be insignificant, there is still room for optimization.

In this chapter, we introduce the conditional observation mechanism, which lets

clients specify notification criteria along with the observation request, and assess

its efficiency.

Girum Ketema Teklemariam, Jeroen Hoebeke, Ingrid Moerman, Piet

Demeester. Facilitating the creation of IoT applications through conditional

observations in CoAP. Published in EURASIP Journal on Wireless

Communication and Networking, 2013:177. DOI: 10.1186/1687-1499-2013-177

28 Chapter 2

Abstract: With the advent of IPv6, the world was getting ready to incorporate

billions of smart objects into the current Internet to realize the idea of the Internet

of Things (IoT). However, one of the major challenges was that existing standard

protocols and applications had not been designed with the resource constraints of

these smart objects in mind. Currently, a number of initiatives are witnessed to

resolve this situation both at the networking level and the service level. One such

an initiative at the service level is the introduction of the Constrained Application

Protocol (CoAP). This protocol is designed to meet the constraints of smart

embedded objects and has the ability to easily translate to the prominent REST

implementation, HTTP (and vice versa). The protocol has several optional

extensions, one of them being, resource observation. With resource observation,

a client may ask a server to be notified of every state change of the resource. CoAP,

together with its observe functionality, provides the basis for the integration of

constrained devices with the Internet at the service level and the realization of

embedded web services. However, in order to really facilitate IoT application

design, additional CoAP related functionalities are expected to appear. For

instance, many applications can benefit from a lightweight solution for

subscribing for very specific events. In this paper, we introduce a compact and

lightweight CoAP extension, named Conditional Observation that facilitates

realizing this behavior easily across all resources by including notification

criteria to be specified along with observation request. We demonstrate the

feasibility of implementing this on a constrained device and evaluate the resulting

performance in detail. Complemented by a theoretical evaluation, we prove that

this mechanism offers several benefits when used in constrained networks with

varying properties and discuss its relevance in the realization of IoT applications

through a number of use cases.

2.1 Introduction

Remarkable advances in Microelectromechanical systems (MEMS) have led to the

creation of tiny but crucial embedded devices such as sensors and actuators. The

wireless communication capability of these devices turns them into smart objects

that can interact with the virtual world. Coupled with the explosive expansion of

wireless and mobile technologies there are very good reasons to consider these

objects as corner stones of the Future Internet rather than mere add-ons to the

current communication networks. The resulting Internet is now commonly

referred to as the Internet of Things (IoT). However, the severe limitations of these

smart objects in terms of memory, processing capacity, power and bandwidth pose

great challenges in realizing this. A typical smart object may have a few kilo bytes

of memory (RAM and ROM), slow micro controllers, and limited bandwidth

(around 250kbps). On top of this, most of the smart objects are battery operated

and have limited lifetime. The protocols and applications that are widely used in

Conditional Observation 29

the current Internet are too heavy for such constrained devices to be applied

directly. Several initiatives exist to alleviate these prevailing problems by

proposing new light weight protocols suitable for constrained devices and

networks. The Internet Engineering Task Force (IETF) is the pioneer in producing

standards and protocols that fit the strict requirements of such constrained

environments by establishing working groups that address different aspects of the

requirements of the constrained objects and networks.

The IPv6 for Low Power and Lossy Wireless Personal Area Network (6LoWPAN)

working group of IETF has produced standards that enable IPv6 to be used in the

most constrained devices [2.1]. [2.2] introduces the 6LoWPAN Adaptation Layer

which resides between the Network and Link layer and provides three basic

services: IPv6 header compression, fragmentation and mesh under routing

support. These basic services ensure that constrained devices can talk to

unmodified IPv6 hosts in the Internet, and the other way around, while the

6LoWPAN Adaption Layer overcomes the differences in protocol design between

these two worlds, necessitated by the constraints of the Low Power and Lossy

Networks (LLNs). Further, current routing protocols and algorithms are not

suitable for constrained environments for several reasons: high resource (memory,

processing, and bandwidth) requirement, absence of uniform metric in LLNs and

unreliability of intermediate routing nodes. The Routing in Low Power and Lossy

Networks (ROLL) working group is tasked with proposing routing solutions

suitable for constrained networks and devices. The Routing Protocol for Low-

power and Lossy Networks (RPL) is a proposed standard by this working group

[2.3].

Both IETF groups have realized the interconnectivity between tiny objects and the

current Internet in a standardized way. However, this connectivity is merely an

enabler required to unlock all potential of the IoT in the form of novel applications

and services. Web service technology made the success of the current Internet.

Now it is expected that an embedded counterpart of web service technology is

needed in order to exploit all great opportunities offered by the Internet of Things,

since existing application layer protocols, such as HTTP, SOAP, and XML are

even heavier than the protocols defined in layers below. Therefore, the

Constrained RESTful Environments (CoRE) working group was established to

specifically work on the standardization of a framework for resource-oriented

applications, allowing the realization of RESTful embedded web services in a

similar way as traditional web services [2.4]. Their work resulted in the

Constrained Application Protocol (CoAP), a specialized RESTful web transfer

protocol for use with constrained networks and nodes. It uses the same RESTful

principles as HTTP, but it is much lighter so that it can be run on constrained

devices [2.4]. In addition, the group designed observe functionality in order to

30 Chapter 2

allow a device to publish a value or event to another device that has subscribed to

be notified of changes in the resource representation [2.14].

CoAP, together with its observe functionality, provides the basis for the

integration of constrained devices with the Internet at the service level and the

realization of embedded web services. However, in order to really facilitate IoT

application design, additional CoAP related functionalities are expected to appear.

For instance, many applications can benefit from a lightweight solution for

subscribing for very specific events. Ideally, this is built into the CoAP protocol

as an extension, avoiding the need to implement such functionality on a per

resource basis. This facilitates the realization of many sensor–actuator interactions

which typically have the following pattern: if “condition fulfilled” then “take

action”. The contribution of this paper is that we present an extension of the CoAP

observe functionality that exactly facilitates realizing this behavior by including

notification criteria to be specified along with observation request. This way the

server will not just send notifications whenever the state of a resource changes. It

will first check if the change is significant enough for the client by comparing the

new value with the notification criteria sent by the client. Only then, a notification

will be sent. The design is compact, lightweight and can be easily shared across

all resources. Further, we are the first to implement such an extension to CoAP on

constrained devices and to evaluate in detail the potential reduction in power

consumption and number of packets transmitted that can be achieved, which is of

great importance to constrained networks.

Section 2 of the paper first introduces the CoAP protocol, followed by the existing

CoAP Observe option, its limitations and possible approach to tackle these

limitations. Related work will be discussed in the section 3. In Section 4 an

alternative method, called conditional observation, is presented and the approach

is explained in great details. The next section discusses our implementation on

constrained devices, followed by section 6 presenting a detailed experimental and

mathematical evaluation. In section 7 we further illustrate some potential IoT

applications that can benefit from our proposal. Finally, the paper draws

conclusions and suggests future work.

2.2 The Constrained Application Protocol and

Observe

REpresentational State Transfer (REST) uses mechanisms that are less memory

and processing power intensive [2.5]. As a result, many systems are now becoming

RESTful [2.4]. In this approach data or resources that must be exchanged between

client and server are encoded as representations of the resource. In addition, all

states required to complete a request must be provided along with the request. The

Conditional Observation 31

desired communication result is achieved by transferring the representations and

the states between the client and the server using HTTP operations such as GET,

PUT, POST and DELETE [2.5]. However, today’s web service technology is a

poor match for the vast majority of constrained networks, machine-to-machine

(M2M) applications and embedded devices because of their overhead and

complexity. For applications that involve smart objects, such as industry

automation, transport logistics, and building automation, an embedded alternative

would be ideal since it is in line with current web services, facilitating the

integration of objects into the Internet.

Figure 2-1: CoAP Message Format consisting of a 4-bytes base binary header

followed by optional extensions

The Constrained Application Protocol (CoAP) is a protocol proposed by this IETF

CoRE working group allowing these RESTful web services to be implemented on

constrained objects. CoAP provides exactly the subset of HTTP methods (GET,

PUT, POST and DELETE) that is necessary to offer RESTful web services in a

WSN-compatible manner [2.4]. This implies that a simple mapping between

HTTP and CoAP can be realized (and vice versa) in a similar way that 6LoWPAN

can be translated into IPv6 and the other way around. The main advantage is that

CoAP has a much lower header overhead and parsing complexity than HTTP. It

uses a 4-byte base binary header that may be followed by compact binary options

and a payload. In addition, CoAP provides optional transport reliability, normally

a core functionality of TCP, which is due to the resource constraints by nature not

available in Wireless Sensor Networks (WSNs). This is particularly useful, since

CoAP is designed to be used in combination with UDP, which does not offer any

reliability but is adequate for WSNs due to its low impact on resources. CoAP can

run on top of 6LoWPAN networks, but also on top of proprietary networks that

are connected to IPv6 Internet. Figure 2-1 shows the CoAP message format as

specified in version 13 of the draft [2.4]. The 4-bytes base header consists of the

following fields: Version, Type, Token length, Code and Message ID. The 2-bit

Type field indicates whether the message is a confirmable, non-confirmable,

acknowledgement or reset message. The Code field indicates if the message

carries a request (specifying the method: GET, PUT, POST or DELETE), response

(specifying the response code) or is empty. The base header may be followed by

one or more optional fields. First of all, there is the optional Token field having a

length between 0 and 8 bytes. Next, a variable number of options can follow and

finally, if there is a payload, a Payload Marker and the Payload complete the

message.

32 Chapter 2

Figure 2-2: CoAP option format

The format of a single CoAP option is shown in Figure 2-2. To be able to offer

communication needs that cannot be satisfied by the base binary header alone,

CoAP defines a number of options which can be included in a message. Each

option instance in a message specifies the Option Number of the defined CoAP

option. Instead of specifying the Option Number directly, the instances must

appear in order of their Option Numbers and a delta encoding is used between

them. The Option Length indicates the length of the Option Value in bytes and the

Option Value is the actual representation of the option (e.g. an unsigned integer, a

code representation, etc.). If the delta value or length is larger than 12, 1 or 2

additional bytes are used to represent the delta or the length.

Figure 2-3: CoAP Client/Server communication

Since CoAP is recommended for M2M interaction, automatic resource discovery

is made part of the protocol using the CoRE Link Format. A well-known URI,

“/.well-known/core”, is defined as an entry point for all links to resources hosted

by a server [2.6]. Once the list of resources is identified, clients may send requests

Conditional Observation 33

to find out specific values for the resources. As Figure 2-3 depicts, the client first

requests the list of resources using GET and the server replies with the list of

resources it has. At a later time, the client requests for the current temperature

value using another GET, to which the server replies with a response containing

the temperature value of 23.5oC. All exchanges use the message format shown in

Figure 2-1 and Figure 2-2.

Figure 2-4: Normal Observation

In addition to the main CoAP draft, a number of extensions have been proposed.

One of those extensions is the observation of resources through the use of the

observe option. The observe option may be used by clients interested to have up-

to-date information about the state of a resource as stated in [2.14]. This draft

specifies a simple protocol extension to CoAP that gives clients the ability to

observe changes of a resource. It uses the well-known observer design pattern,

34 Chapter 2

where clients that are interested in the state of a resource register3 their interest

with the server that hosts the resource by sending a CoAP request containing the

Observe option. Once registered, clients will receive notifications - CoAP

responses containing the Observe option - upon every state change of the resource.

In addition, if the state of a resource does not change over time, the server will

send a new notification latest after Max-Age of the resource expires. Since the

CoAP option Max-Age indicates the freshness of the resource, it is clear that

through this observe extension clients will always have a fresh and up-to-date

representation of the resource. Figure 2-4 shows how the observe option is used to

get up-to-date resource states.

As such, when observe is used, the CoAP client will get a notification response

whenever the state of the observed resource changes or its max-age expires. For

frequently changing resources or resource with a low Max-Age value, this results

in frequent notifications, which is not ideal in constrained networks. Also, it is

unclear how non-cacheable (Max-Age equal to 0) resources should be handled. In

many cases, an observer will typically be interested in state changes that satisfy a

specific condition, instead of receiving all state changes or notifications that only

update the freshness.

However, the current observe draft stresses on providing the clients with up-to-

date information about the state of a resource. Applications that are interested in

values that exceed some thresholds will simply drop the transmitted packets upon

reception if they do not meet their criteria (client side filtering). This unnecessary

data transmission can be costly to the already constrained objects. The increased

number of packet transmissions in highly dynamic environment will also increase

the network congestion and for larger networks the impact can be significant. In

addition, the power consumption (processing, transmission and listening) can be

higher for the overall network.

Therefore, in several cases, one could benefit from a solution for subscribing to

very specific events only, i.e. conditional observations. Since we are dealing with

constrained devices, such a solution should satisfy several requirements. The

functionality should have a sufficiently small footprint, allowing the

implementation on very constrained devices. It should be usable by all resources

on a constrained device without additional programming complexity. Further, it

should offer sufficient expressiveness in order to be able to express conditions that

3 At the time of this work, the Observe draft stated that sending an observe request to the

same resource for the second time cancels an observation. But currently, according to the

observe RFC (RFC7641), this is changed. Cancelation is done by sending an observe

request to the resource with observe value 1.

Conditional Observation 35

are encountered frequently across resources and across IoT use cases. Finally, if

needed, extensions should be possible in order to cope with future requirements.

Based on these requirements, we have chosen to realize this conditional observe

functionality by embedding it in the CoAP protocol as a new CoAP option. Before

presenting our solution, we will first discuss related work that aims to achieve

similar functionality and position it against our approach.

2.3 Related work

There are a number of research activities under way on resource observation in

WSNs. Different groups are using different approaches to come up with

outstanding solutions and technologies. Publish/Subscribe systems are widely

used in the Internet already for a while. The basic concept of such systems is

similar to normal observation where subscribers register at publishers (notifiers)

and get responses depending on the original request made by the subscribers [2.7].

Different authors have proposed similar solutions to be used in wireless sensor

networks. MQTT-S is a protocol proposed to handle pub/sub issues in WSNs. The

protocol is based on the MQTT protocol, an established protocol for lightweight

publish/subscribe reliable messaging transport, optimized to connect physical

world devices/messages and events with enterprise servers and other consumers.

The protocol introduces MQTT-S gateways and forwarders to communicate

pub/sub information between clients and the MQTT broker, which ultimately

responds with the required information [2.8]. With this approach, a 3rd party is

required to realize the desired functionality, whereas we want to allow direct end-

to-end interactions with the constrained devices. There are also middleware based

pub/sub solutions such as Mires [2.9] and PSWare [2.10]. Most of these solutions

introduce a new protocol specifically addressing this issue while our approach,

however, is an extension of an existing protocol that is being developed in an open

standardization organization. This way our approach significantly reduces the

additional memory and processing requirement for realizing this new

functionality, since it builds upon functionality already present in any CoAP

implementation.

The European Telecommunications Standards Institute (ETSI) has also proposed

a standard to address observation relationships in Machine-to-Machine (M2M)

communications. The ETSI Machine-To-Machine (M2M) Communications

functional architecture [2.11] states how RESTful web services can be used in

M2M communications. Subscription management is one of the areas the document

addresses. In the document, a client may subscribe for a specific resource or an

attribute of a resource by specifying filtering criteria, if required. The ETSI

standard follows its own functional architecture that is totally different from the

36 Chapter 2

IETF approach. Our solution is based on the work of the IETF CoRE working

group.

Another related work is [2.12] where conditional observation requests are

represented by URI queries. An important problem with this approach is its

complexity. The queries that are generated may have limited readability and could

be difficult to represent. Furthermore, URI queries are very resource specific

complicating automatic processing of conditional observations or code reuse over

several resources. Using a CoAP option for conditional observations makes this

functionality independent of any specific resource implementation, whereas URI

queries can be used for resource specific functionalities. Further, the link with the

Observe option is lost by spreading this functionality over both URI queries and

options and the multitude of URI queries that can occur makes it more complex

for intermediaries to process this information. Another alternative could be the

realization of a new CoAP resource on the constrained device for every event

clients are interested in. For example, one could create a resource that has the value

1 when the temperature is smaller than 27 Centigrade and 0 when the temperature

is larger. By observing this resource, a client could be informed about the change

of this resource and thus the occurrence of this event. It is clear that such an

approach is cumbersome and not generic at all. At the same time it puts a serious

burden on these constrained devices. Supporting new events implies adding

resources, burdening the server and possibly implying flashing the device.

Finally, the Open Geospacial Consortium (OGC) Inc. has been developing

different standards in the area of geospatial data. One of the standards developed

by the OGC is the Sensor Observation Service (SOS) that deals with the

specifications of data observation from different sensors in different, possibly

geographically scattered, sensor networks [2.13]. The standard specifies that a

GetObservation request may have several mandatory and optional parameters.

One of the optional parameters is featureOfInterest, which is similar to our

observation type. However, this approach is more focused for geographical

observations and is a subset of a bigger framework, which significantly differs

from the IETF recommendation.

2.4 Conditional Observe

To avoid transmission of unwanted notifications to clients, the authors of this

paper have proposed a new CoAP option “Condition” as an extension to the

Observe Option in order to support conditional observations according to the

Conditional Observation 37

conditional observe draft [2.15]4. This option can be used by a CoAP client to

specify the conditions the client is interested in. Now, only when the condition is

met, the CoAP server will send a notification response with the latest state change.

When the condition is not met, the CoAP server will not send the notification

response. Figure 2-5 shows the operation of conditional observation.

Figure 2-5: Conditional Observation

The Condition option has to be used in combination with the Observe option and

can be used both in request and response messages. In a GET request message, the

Condition option represents the condition the client wants to apply to the

4 The Conditional Observe draft, created a series discussion among the IETF community

mainly about how to implement the functionality. Currently, a new internet draft, Dynamic

Resource Linking for Constrained RESTful Environments, which includes most of the

content of the conditional observe draft is now under consideration for approval.

38 Chapter 2

observation relationship. It is used to describe the resource states the client is

interested in. In the response to the initial GET request message, the Condition

option, together with the Observe option, indicates that the client has been added

to the list of observers and that notifications will be sent only when the resource

state meets the condition specified in the Condition option. In all further

notifications, the Condition option identifies the condition to which the

notification applies. In the following subsections, we will further describe the

semantics and usage of the Condition option, illustrating the capabilities of this

extension.

2.4.1 The Condition Option Format

Figure 2-6: Format of the option value of the Condition Option

The condition option is an elective and proxy unsafe option ([2.4], [2.15]). The

option value (see Figure 2-6) may have length between 1 and 5 bytes. The most

significant 5 bits of the first byte indicate the condition type allowing up to 32

different condition types; the following bit is reliability flag indicating if the

response should be acknowledged or not and the last two bits indicate the type of

the value in the following bytes. Currently, integer, float and duration are

identified as condition value types. The subsequent bytes, which are optional, store

the conditional values to be exchanged.

2.4.2 Condition Types

[2.15] identifies 9 condition types, some of which are Time-based while others are

value-based. Minimum Response Time, Maximum Response Time, and Periodic

option types are time-based conditions whereas AllValues<, AllValues>, Value=,

Value<> and Step use the sensor reading values as notification criteria. The Time

Series condition type is neither related to time nor to sensor readings.

Conditional Observation 39

Figure 2-7: Temperature (oC) Data over 120 Seconds

Figure 2-8: Notifications Generated While Using Different Condition Types

To further illustrate how different condition types generate notifications we show

an example where a client and a server node establish a temperature observation

relationship. Sensor readings drawn every 5 seconds will be notified to the client

depending on various conditions. Figure 2-7 shows the temperature (in oC) and the

time the data is drawn from the sensors. In the figure, the triangles indicate the

sensor reading values. For instance, the graph shows that when the first GET

request was sent (at Time 0), the temperature was 22 and after 5 seconds the value

is still the same. The next figure (Figure 2-8) represents which notifications are

generated for different condition types using small diamonds. For the purpose of

this illustration, the CoAP Max-Age option value is set to the default value of 60

seconds. This means that, for normal observe, the client must be notified if the last

notification was 60 or more seconds ago irrespective of the resource state change,

as described in [2.14]. For the sake of comparison, we will first present the

notification trend when using normal observe.

40 Chapter 2

2.4.2.a Normal Observe

According to the CoAP draft document [2.4], a server sends notifications to

observers in three cases. First, a notification is sent to clients when the observation

relationship is established for the first time to indicate that the client is added to

the observers list. Second, whenever the resource state changes the server sends

notifications. Finally, a notification is also sent when the data previously sent to

the client is not fresh as indicated by the CoAP Max-Age option which by default

is set to 60. In such cases, the server sends the notification, if the previous

notification is older than the Max-Age value (even if the resource state stays the

same).

Accordingly, given the values in Figure 2-7, the server sends notifications at the

establishment of the observation relationship (at time 0); every time when the

value changes (at times 10s, 15s, 20s, 25s, 30s, and 120s), and when the Max-Age

expires (at time 90s) as shown in the top row of Figure 2-8.

2.4.2.b Condition Type 1: Time Series

With Time Series condition type, every change of resource state triggers

notification. The notification criteria are similar to normal observation. The only

difference is that time series option ignores the CoAP Max-Age option while

normal observe sends a notification when the Max-Age timer expires.

The T-Series row of Figure 2-8 shows the packet transmission for conditional

observation type Time Series. According to the sensor readings of Figure 2-7, the

client is notified at time 0 (during establishment of the relationship) and at times

10, 15, 20, 25, 30, 120 (when the resource state changes).

2.4.2.c Condition Type 2: Minimum Response Time (MinRT)

When the condition type Minimum Response Time (MinRT) is used in

observation relationships, the server sends notification by leaving a fixed

minimum amount of time between successive notifications. This condition type is

highly valuable for systems where the value changes up and down very frequently

and the observer is not interested in every change. Consequently, the server does

not always send notifications every time the resource state changes.

The MinRT(10) row of Figure 2-8 shows a relationship where the client requests

the server to be notified about state changes, but leaving at least 10 seconds

between notifications. In this case, the client sends notifications at time 0 (during

establishment of relationship), at time 10s, 20s, 30s and 120s. If we closely look

at the values at times 15s and 25s, the values are changed after previous

notifications but since the difference between the current time and the last

notification time is less than 10 seconds, there will be no notification sent to the

clients at those times. Also note that, the Max-Age option has no impact here.

Conditional Observation 41

2.4.2.d Condition Type 3: Maximum Response Time (MaxRT)

For this condition, the value specified in the condition value field gives the

maximum time in seconds the server is allowed to leave between subsequent

notifications. What this means is that the server has to send notifications in 3 cases.

First, just like all other condition types and normal observation, at the beginning

of the observation relationship; second, whenever there is a resource state change;

and third when there is no state change but the maximum response time is reached.

The MaxRT row of Figure 2-8 shows the notification pattern for a client requesting

notification by setting Maximum Response Time to 60 seconds. Accordingly, the

server notifies the client at time 0 (initial notification), at time 10s, 15s, 20s, 25s,

30s, and 120s (notification due to value changes), and at time 90 (notification due

to maximum response time). This condition type, in a way, is similar to normal

observe with Max-age set to 60.

2.4.2.e Condition Type 4: Step

Depending on the environment where the server node is deployed, the state of a

resource might change so frequently that excessive packets are generated.

However, the changes may not be significant enough for the client to trigger any

action. In such cases, the client may inform the server to send notifications only

when the change is more than a specific value by using the Step condition type.

In the Step(1) row of Figure 2-8, the client informs the server to send notifications

only when the change in value is greater than or equal to 1. As a result,

notifications are only sent at time 0, 15s, 25s and 30s. Since the other changes are

not significant enough, the server does not send notifications.

2.4.2.f Condition Type 5: AllValues<

In many cases, clients are not interested in state changes which result in values

above a specific threshold. For example, to turn on a heater, the temperature should

be below a specific threshold. In such cases, the sensor node responsible to

regulate the behavior of the heater is not interested in values which are above the

threshold. Hence, they may indicate this preference by using the AllValues< (All

values less).

In the AllValues< row of Figure 2-8, we can see that the client is interested to get

notified only when the resource state changes result in value below 23. Thus,

notifications are sent at time 0, 10s, 30s and 120s.

2.4.2.g Condition Type 6: AllValues>

This condition type is similar to condition 5 above. The only difference is that the

notification is sent only when the new value exceeds a threshold set by the client.

As Figure 2-8 illustrates, the client is interested to receive notifications only when

42 Chapter 2

the resource state is changed and the resulting value is above 23. Consequently,

the server sends notifications at time 0, 20s and 25s only.

2.4.2.h Condition Type 7: Value=

This condition indicates that a client is only interested in receiving notifications

whenever the state of the resource changes and the new value is equal to the value

specified in the condition value field. In our example of Figure 2-8, the client is

interested in values equal to 23. This means, the server has to send notifications

only when the value changes and the new value is 23. Therefore, the notifications

are sent at time 0, and 15 only.

2.4.2.i Condition Type 8: Value<>

Some applications might require the values they are monitoring to be constant. In

health care system, machines at Intensive Care Units (ICUs) the machines that

monitor a patient’s vital signs could be a good example. In such cases, there are

vital signs including, body temperature, heart beat, and blood pressure, that must

be constant showing that the patient is in a good condition. However, if the values

differ from the specified value, it might indicate the patient needs attention. The

Value<> (value different from) condition type indicates that the client should be

notified when the value changes and is below or above the specified threshold.

Once the notification has been sent, no new notifications are sent for subsequent

state changes where the value remains higher or lower. As such, a single

notification is sent whenever a threshold is passed in either direction.

The Value<> (23) row of Figure 2-8 shows that the client needs to be notified only

when resource state changes result in values other than 23. As a result,

notifications are sent at time 0, 20s, and 30s. Notification at time 0 is the initial

transmission, notification at time 20 is sent because that was the first change that

deviates from 23 (and it was below, 23), notification at time 30 was sent because

it was the first time the value goes below 23. The value changes at 10 seconds was

not sent because it is still below the threshold and value at 25 was not notified

because it is still above the threshold (which was notified at time 20)

2.4.2.j Condition Type 9: Periodic

Many environment monitoring applications may require receiving notifications

periodically despite the resource state change. Such applications may use the

Periodic condition type along with the period of notification. The Periodic (30)

row of Figure 2-8 shows notification trends where a client requires to be notified

every 30 seconds. In this example, notifications are sent at time 0, 30, 60, 90, and

120.

Conditional Observation 43

One can see clearly that, depending on the condition of interest, a different number

of notifications will be transmitted over the constrained network. The exact

number will depend on the condition type and, if present, the value in the condition

option.

2.5 Implementation

Our implementation of conditional observation is based on Erbium (Er) – a low-

power REST Engine for Contiki developed by Matthias Kovatsch together with

Swedish Institute of Computer Science (SICS). The Erbium REST Engine includes

a CoAP implementation that supports CoAP drafts 03, 12 and 13. It also supports

block-wise transfers and resource observation [2.16]. To support normal

observation, Erbium employs two different mechanisms at the server side. The

first mechanism uses timers that are used to periodically check states of resources

and notify observers whenever there is a state change. The other mechanism is

event based. Whenever an event (e.g. change in temperature) occurs, an event

handler will be called, which, in turn, calls a function that notifies registered

observers. In the remainder of this paper, we have used timer based, periodic

checks for resource changes.

Figure 2-9: Architecture of Erbium

We extended this CoAP implementation to support the new Condition Option and

provided some resources that allow conditional observations. Figure 2-9 is a high

level architectural diagram of Erbium running on a server node handling normal

or conditional observation. The architecture consists of several components,

namely, the resources, the REST Engine, the CoAP (and/or HTTP framework),

and optional modules such as (Conditional) Observe Module. The REST Engine

44 Chapter 2

is responsible for initializing the CoAP Framework, to store a list of activated

resources and to communicate with the optional modules. A conditional observe

request received by the CoAP framework will be handled by a service callback

function which is declared in the REST engine. The REST engine uses the

corresponding handler function to access the states of the resources. As the request

is an observation request, the client needs to be registered as an observer in the

Conditional Observation Module for future notifications by calling a Post Handler

Function. The generation of the first response and subsequent notifications are

handled by the CoAP framework. For subsequent notifications, the registration of

a single observer will trigger the activation of a function that periodically checks

for resource state changes and informs all registered observers. The period is

defined for each observable resource separately upon initialization of the resource.

Figure 2-10: Conditional Observation Module

Figure 2-10 is a zoomed-in architectural diagram of the Conditional observation

module. When a client sends a conditional observation request, the CoAP

framework will receive it. The framework, after confirming that it is a GET

request, will call a callback function in the REST engine. Upon receipt of the

request, the REST engine does two things. First it prepares the first response by

using the predefined handler function and calls a post handler function to add the

observer to the observer list. For each observer, the IP address, port number, URI,

and refresh timer are stored for normal observe, while for conditional observation

also condition information, last notified value and last notification time are stored.

Conditional Observation 45

The REST engine then periodically checks for resource states and calls the Notify

Observer function (which is part of the conditional observe module) to check if

the new value satisfies the filtering criteria set by the client. If it does, the CoAP

framework sends the notification to the respective observer(s). Similarly, if a client

wishes to stop an observation relationship it sends a normal GET request to the

specific resource which will be received by the CoAP framework and will be sent

to the Conditional observe module to be removed from the list.

One of the constraints of smart objects is memory. One may wonder about the

changes we needed to make to the existing implementation and the code overhead

introduced to achieve this additional functionality. As mentioned above, the

original Erbium Implementation supports Normal Observe [draft-08]. Our

implementation requires additional RAM to store additional observers’

information such as observation condition (condition type, value type, reliability

flag and condition value), last notification time and last notified value. In addition,

it requires more ROM to store instructions that are used to check if the new

resource state satisfies the specified condition. Table 2-1 shows the TEXT, Data

and BSS section requirements of both Normal Observe (the original

implementation) and conditional observe. Note that the conditional observe

implementation also encompasses normal observe functionality.

Table 2-1: Memory requirements of Normal and conditional observe

 Text

(Byte)

Data

(Byte)

BSS

(Byte)

Total

(Byte)

Normal Observe 50398 386 6050 56834

Conditional Observe 51096 386 6072 57554

Delta 698 0 22 720

It can be seen from the table that the Text segment (ROM) requirement for

Conditional Observe is slightly larger than Normal Observe. Similarly, the size of

the BSS segment, which stores uninitialized variables, is larger in case of

conditional observe just by a few bytes. As our findings in the following sections

illustrate, 720 bytes overhead is affordable for the advantage that can be gained

through the use of conditional observation, either from a performance viewpoint

or from an application developer viewpoint.

46 Chapter 2

2.6 Evaluation

2.6.1 Scenario 1: Basic Evaluation

We used different scenarios to illustrate the relevance of conditional observe as an

extension to the normal observe functionality of CoAP. In the first set of

experiments, we used Zolertia Z1 motes to be used as client and server nodes in

Cooja. To capture the impact of network size on performance, we used between 0

– 6 intermediate Z1 nodes, which merely exist to act as routers between the client

and server nodes. We selected the AllValues> (value based) and Periodic (Time

based) condition types to compare the performance against Normal Observe. For

every hop, and every condition value we run the test 10 times to average the

results. For sensor values, we generated 288 pseudo-random numbers between 17

and 26 (representing temperature values). The average of the values is 20. For

AllValues> condition type, we tested three condition values: the minimum (17),

the average (20) and the maximum (26). Every 5 seconds, the server is made to

retrieve a value from an array of 288 numbers sequentially as a new sensor reading.

As CoAP supports both confirmable and non-confirmable requests, we repeated

the same experiment twice to see the impact of reliable communication on network

performance.

Figure 2-11, shows the number of packets transmitted for different condition types

while Figure 2-12 shows the power consumption where the requests are sent as

non-confirmable. Figure 2-13 shows the power consumption in the case of

confirmable communication, which is slightly higher than the case of non-

confirmable notifications due to the additional acknowledgements and potential

retransmissions in case of packet loss.

We may learn two basic lessons from Figure 2-11, Figure 2-12 and Figure 2-13.

First, this simple scenario shows that the solution we proposed works and is

implementable in constrained devices such as Z1 motes. This is demonstrated for

both value-based and time-based conditions, which require a different

implementation approach. Second, for such a simple scenario, using normal

observe as mechanism to collect all resource state change in combination with

client side filtering generates a larger amount of packets as compared to all other

conditional observation methods. This leads to higher power consumption and,

hence, low battery life. From these findings we can conclude that, even though the

exact impact is heavily dependent on specific use cases, conditional observation

can be considered a useful extension to normal observation.

Conditional Observation 47

Figure 2-11: Number of Packets transmitted Vs. Hop count

Figure 2-12: Power Consumption Vs. Hop Count (Non Confirmable

Transmission)

48 Chapter 2

Figure 2-13: Power Consumption of nodes (Confirmable Transmission)

2.6.2 Scenario 2: Non-constrained Client - Gateway –

Multiple servers

In most applications, the clients run on non-constrained devices such as normal

computers, smart phones or similar other devices. To illustrate the use of

conditional observation in scenarios where multiple constrained servers are

communicated from a non-constrained device and network, we combined Cooja

servers running Erbium with our COAP++ client, part of our modular C++ CoAP

framework developed in Click Router [2.17]. We used 2 servers and a border

router running Contiki in Cooja. We established a tunnel between the border router

and the computer so that the COAP++ client can communicate with the Cooja

servers.

Figure 2-14: Experimental setup consisting of non-constrained client, and 2

constrained servers

Figure 2-14 shows the connection between the sensor nodes and click. As in the

case of the above test, Z1 motes were used in Cooja and AllValues> condition

Conditional Observation 49

type was used to compare the result with normal observe. The data to be generated

by the servers is the same pseudo-random numbers used in the previous tests. The

test was run 10 times with condition value 20, which is the average of the data set.

The test showed that the average power consumption of the two servers is 4787mJ

and 4936mW for normal observation and 4672mJ and 4856mJ for conditional

observation. These results confirm the results we achieved in the previous

scenario.

The tests above show that the new implementation can be run on constrained

devices such as Zolertia Z1 motes which have 8KB RAM and 92KB ROM. The

slight increase in memory requirement, especially to filter packets on the server,

is an affordable trade-off to gain substantial energy saving and avoid congestion

of the constrained networks.

2.6.3 Mathematical Evaluation

The previous tests show that conditional observation can achieve a significant gain

in terms of the reduction of the number of transmitted packet and subsequently of

the reduction in power consumption of constrained devices. Of course, the exact

gain depends largely, amongst others, on the frequency of resource states and the

specific conditions interested in. In this subsection, we will show this potential

gain of conditional observation through a mathematical evaluation.

The total power consumed in a given period by a device, E, is the sum of the

consumption of the radio and the microcontroller chips. For simplicity, we will

assume that the power consumption of other peripheral devices, such as sensors,

is insignificant. Therefore,

𝐸 = 𝐸𝑅𝑎𝑑𝑖𝑜 + 𝐸𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔

The Radio could be either in active transmitting (Tx), active receiving (Rx), idle

transmitting or idle listening state and the microcontroller will be either in Active

Mode (CPU-Active) or Low Power Mode (CPU-LPM). Assuming that the radio

consumes equal amount of power during idle listening and idle transmitting state,

we have:

𝐸 = 𝐸𝑇𝑥 + 𝐸𝑅𝑥 + 𝐸𝐼𝐷𝐿𝐸 + 𝐸𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 + 𝐸𝐶𝑃𝑈−𝐿𝑃𝑀

Energy, power consumption in a given period of time, can be computed as,

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑃𝑜𝑤𝑒𝑟 × 𝑇𝑖𝑚𝑒

Therefore, the total power consumption in a particular period of time will be

𝐸 = 𝑃𝑇𝑥 × 𝑇𝑇𝑥 + 𝑃𝑅𝑥 × 𝑇𝑅𝑥 + 𝑃𝐼𝐷𝐿𝐸 × 𝑇𝐼𝐷𝐿𝐸 + 𝑃𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒

× 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 + 𝑃𝐶𝑃𝑈−𝐿𝑃𝑀 × 𝑇𝐶𝑃𝑈−𝐿𝑃𝑀

and

𝑇𝑇𝑥 + 𝑇𝑅𝑥 + 𝑇𝐼𝑑𝑙𝑒 = 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 + 𝑇𝐶𝑃𝑈−𝐿𝑃𝑀

50 Chapter 2

The power consumption values are all known from the datasheets of the chips of

the constrained devices, the time values for the radio can be derived from the MAC

protocol and the number of packet transmissions and receptions and the time

values for the CPU can be derived from experimental results. To compare the

power consumption difference between normal and conditional observe and to

keep the mathematical model sufficiently simple, we make the following

assumptions:

 We use value-based condition types

 The resource state changes every S seconds

 The device uses a duty-cycled Low Power Listening protocol. The length

of the duty cycle is L and the duty cycling value is d (only d% of the time

the radio is active, listening for incoming packets in order to save energy).

When the device needs to transmit a packet, it has to turn on the radio for

the entire period L.

 The probability that the condition is not fulfilled is p

 The value of Max-Age is equal to 60 seconds.

 The transmission of a notification requires only a single packet

 The notifications are non-confirmable messages, so the server generating

the notifications is not receiving any packets.

For Normal observe, every S seconds the device will do some processing and

transmit a notification. In case S becomes larger than Max-Age, a notification is

also sent every time Max-Age expires. This brings the total number of notifications

sent, N, equal to CEIL (S/Max-Age).

Hence, for normal observe, 𝑇𝐶𝑃𝑈−𝐿𝑃𝑀 is

𝑇𝐶𝑃𝑈−𝐿𝑃𝑀 = 𝑆 − 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒

For Conditional Observation the transmission of a packet in the interval S depends

on the condition value and is probabilistic. We know that conditional observations

require some additional processing for checking the condition. However, in case

no notification must be sent, no processing is needed to prepare the packet

transmission. To incorporate both effects, we introduce ∆𝑃𝑟𝑜𝑐 giving an estimate

for the difference in processing. Thus, the time, 𝑇𝐶𝑃𝑈−𝐿𝑃𝑀
′ is

𝑇𝐶𝑃𝑈−𝐿𝑃𝑀
′ = 𝑇𝐶𝑃𝑈−𝐿𝑃𝑀 − ∆𝑃𝑟𝑜𝑐 = 𝑆 − 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒

′

 = 𝑆 − (𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 + ∆𝑃𝑟𝑜𝑐)

Similarly, the time the radio chip spent in the different states, can be computed

from the period S, the duty cycle length L the duty cycling value d and the number

Conditional Observation 51

of packets to be transmitted. For Normal Observation, the time for TX, RX and

Idle states is given by:

𝑇𝑅𝑥 = (𝑆 − 𝑁 × 𝐿) × 𝑑

𝑇𝐼𝐷𝐿𝐸 = (𝑆 − 𝑁 × 𝐿) × (1 − 𝑑)

𝑇𝑇𝑥 = 𝑁 × 𝐿 = 𝑆 − (𝑇𝐼𝐷𝐿𝐸 + 𝑇𝑅𝑋)

Here, we have assumed that if a device has to transmit packets, it will use the

whole period L for the transmission. The formula for conditional observation will

have to take the probability of transmission into consideration. For probability

value p (condition not fulfilled), the time spent will be:

𝑇𝑇𝑥 = 0

𝑇𝐼𝐷𝐿𝐸 = 𝑆 × (1 − 𝑑)

𝑇𝑅𝑥 = 𝑆 × 𝑑

And for probability values 1 – p (condition fulfilled), the overhead will be the same

as normal observation, with N equal to 1. Therefore, the total energy consumption,

based on our equations above, during S seconds for Normal Observe, O(S) and

Conditional Observe, CO(S) will be:

𝐸 = 𝑃𝑇𝑥 × 𝑇𝑇𝑥 + 𝑃𝑅𝑥 × 𝑇𝑅𝑥 + 𝑃𝐼𝐷𝐿𝐸 × 𝑇𝐼𝐷𝐿𝐸 + 𝑃𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 × 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒

+ 𝑃𝐶𝑃𝑈−𝐿𝑃𝑀 × 𝑇𝐶𝑃𝑈−𝐿𝑃𝑀

𝑂(𝑆) = 𝑃𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 × 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 + 𝑃𝐶𝑃𝑈−𝐿𝑃𝑀 × (𝑆 − 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒) + 𝑃𝑇𝑥 × 𝑁

× 𝐿 + 𝑃𝑅𝑥 × (𝑆 − 𝑁 × 𝐿) × 𝑑 + 𝑃𝐼𝐷𝐿𝐸 × (𝑆 − 𝑁 × 𝐿) × (1

− 𝑑)

𝐶𝑂(𝑆) = 𝑃𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 × (𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 + ∆𝑃𝑟𝑜𝑐) + 𝑃𝐶𝑃𝑈−𝐿𝑃𝑀

× (𝑆 − 𝑇𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 − ∆𝑃𝑟𝑜𝑐)

 + 𝑝 × [𝑃𝑇𝑥 × 0 + 𝑃𝑅𝑥 × 𝑆 × 𝑑 + 𝑃𝐼𝐷𝐿𝐸 × 𝑆 × (1 − 𝑑)]

+ (1 − 𝑝) × [𝑃𝑇𝑥 × 𝐿 + 𝑃𝑅𝑥 × (𝑆 − 𝐿) × 𝑑 + 𝑃𝐼𝐷𝐿𝐸 × (𝑆 − 𝐿) × (1 − 𝑑)]

In order to be able to evaluate the above values for different parameter values of

S and p, we used the parameters shown in Table 2-2.

Table 2-2: Parameter Values

Parameter Value Explanation

𝐼𝐶𝑃𝑈−𝐿𝑃𝑀 0.0005mA Taken from the data sheets of the Z1

mote. 𝐼𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 8mA

𝐼𝑅𝑥 18.8mA

52 Chapter 2

Parameter Value Explanation

𝐼𝑇𝑥 17.4mA

𝐼𝐼𝐷𝐿𝐸 0.426mA

V 3V

𝑃𝐶𝑃𝑈−𝐿𝑃𝑀 0.0015mW Power = current * voltage

𝑃𝐶𝑃𝑈−𝐴𝑐𝑡𝑖𝑣𝑒 24mW

𝑃𝑅𝑥 56.4mW

𝑃𝑇𝑥 52.2mW

𝑃𝐼𝐷𝐿𝐸 1.278mW

L 125ms Based on ContikiMAC LPL

D 0.01

∆𝑃𝑟𝑜𝑐 1ms Approximation based on extensive

experiments.

CPU active 1.48% Average percentage of time the CPU is

active, based on extensive

experiments.

Figure 2-15: Power Consumption Vs. Probability of Packet Transmission

From the values O(S) and CO(S), one can easily calculate the energy consumed

during 1 second and compare the difference in energy consumption between

Conditional Observation 53

normal observe (assuming the collection of all values using normal observe and

client side filtering) and conditional observe. Figure 2-15 shows the reduction in

energy consumption that can be achieved this way, for different values of S and p.

We see that for increasing values of the probability p, i.e. the probability that the

condition is not fulfilled, the reduction in energy consumption also increases. For

a fixed time S between resource changes and thus a fixed amount of potential

notifications, an increasing probability p implies that less notifications have to be

sent compared to normal observe, leading to a reduction of the energy spent on

transmitting these notifications and thus of the overall energy consumption. This

is in line with our experimental evaluation. Further, we notice that, for a fixed

value of p, smaller values of S, the time between resource changes, leads to major

reductions in energy consumption. On the other hand, for larger values of S, the

potential energy reduction gradually decreases as can be seen from the zoomed in

area of the chart. For values larger than 30 seconds the average reduction varies

between approximately 2% and 6%. The fact that the curves periodically rise and

fall is due to the impact of the MAX-AGE value, which causes the number of

notifications to be sent by normal observe to be a step function expressed by

CEIL(S/MAX-AGE).

Figure 2-16: Distribution of the power consumption over all different energy

consumers

The impact of S on the energy reduction can be further explained by looking at the

contribution of all different energy consumers to the overall energy consumption

as shown in Figure 2-16. For frequently changing resource values and thus more

54 Chapter 2

frequent notifications for a given value of p, the power consumed for transmitting

notifications makes up a large part of the total energy budget. For increasing values

of S, and thus less notifications, this part becomes smaller and smaller compared

to other energy consumers such as the idle energy consumption of the radio. Since

conditional observe almost solely impacts the TX part of the energy budget, its

impact is reduced for larger values of S. Of course, it should be noted that the

frequency with which values (e.g. sensor readings) can change also depends on

the granularity of the measurements and/or the application on the device. For

instance, the device can be programmed to retrieve the latest sensor reading only

every 5 minutes, but it could also read out the temperature every 10 seconds.

Further, if the granularity of the readings is higher, e.g. a granularity of 0.1

Centigrade instead of 1 Centigrade, readings will more often result in notifications.

Figure 2-17: Reduction in energy consumption of using conditional observations

with p=0.75 versus normal observe for a varying number of resources on the

server

The above mathematical evaluation reveals that a mechanism such as conditional

observe is extremely useful for resources that change very frequently. One could

(falsely) conclude that it is not that useful for larger values of S. However, this is

not true. First of all, the concept of conditional observations remains very useful

for application developers, which are now offered easy to use primitives to collect

sensor data based on conditions, and can serve as an enabler for IoT applications.

Next to this, the above mathematical evaluation has been made in the assumption

Conditional Observation 55

of a single server with a single resource that sends its notifications directly to the

sink or gateway of the sensor network. In case a single constrained device hosts

multiple resources (temperature, light, humidity…) that are conditionally

observed, one will experience the combined effect of having fewer packet

transmissions for every resource individually. This means that even for larger

values of S a significant energy reduction can be achieved. This effect is illustrated

in Figure 2-17. When the number of resources per device is increased, all resources

being observed conditionally and having their state changed every S seconds, the

reduction in energy consumption remains significant even for higher values of S.

It also worth noticing that the gain for S equal to 60 is smaller than the gain for

larger values of S. This is because of the impact of MAX-AGE on the number of

notifications sent using normal observe.

Further, in case one of the resources has a smaller MAX-AGE value than the

default value of 60 seconds, the reduction also becomes bigger: between 2% and

6% for S values between 30 and 300 seconds and MAX-AGE equal to 60 seconds,

between 4 and 10% for S values between 30 and 300 seconds and MAX-AGE

equal to 30 seconds and between 20 and 30% for S values between 30 and 300

seconds and MAX-AGE equal to 10 seconds. Last but not least, there is also the

effect of larger-scale, multi-hop networks with multiple servers. In this case, every

single notification will result in multiple packet transmission through the network,

increasing the TX energy consumption in all intermediate nodes and thus

contributing to the overall reduction of the network lifetime.

A last aspect that has not been discussed so far is the impact of multiple conditional

observation relationships on a single resource (i.e. by different clients). For normal

observe and in the presence of an intermediary, the intermediary can aggregate

multiple observe relationship into a single one. This means that the intermediary

establishes an observe relationship itself on behalf of multiple clients and delivers

the resulting notifications to all clients. This way, notifications have to travel

through the network only once. When using conditional observations in the

presence of an intermediary, the possibility to aggregate different conditional

observations into a single conditional observation relationship strongly depends

on the condition type and associated values. In this case it is possible that no

optimal aggregation can be found, reducing somewhat the overall performance.

2.7 Use Cases

From the previous discussion, it has become clear that the actual advantage in

terms of performance gain (energy reduction) of conditional observations is

heavily dependent on specific use cases. Apart from that, there is the additional

56 Chapter 2

advantage that it offers easy to use primitives to collect sensor data of interest,

which have a small footprint and which are reusable by all CoAP resources hosted

on a device. To concretize the advantage of having conditional observation as an

extension to CoAP, we will now discuss in more detail three real-life IoT use

cases.

2.7.1 Heating and Cooling Systems

Smart buildings, heavy machineries and greenhouses use temperature sensors to

regulate their environment. Input from sensors will be used by heating and cooling

systems, i.e., the actuators, to take the necessary actions to maintain the

temperature at a specified level. If the temperature exceeds beyond a certain level,

cooling systems at particular locations need to be activated to lower the

temperature. Similarly, if it is below a certain threshold, a heating system has to

increase the temperature.

When using wireless embedded systems to monitor and control the environment,

conditional observation may play a significant role in such systems. Consider a

building equipped with such a system. If the temperature in the building has to be

maintained between 19oC and 22oC, the sensors have to inform either the heater

or the cooler if the temperature is out of this range. To realize this, the heating or

cooling system that is linked to a sensor may send two conditional observation

requests. The first condition type should be AllValues<19 and the second should

be AllValues>22. When the server receives these requests, on separate port

numbers, it stores them as two different requests and sends notifications to the

client when one of the two conditions is fulfilled.

Conditional Observation 57

Figure 2-18: Experiment setup with 2 Click++ clients, a Contiki border router, a

Contiki Server and 2 Intermediate nodes.

To test this scenario using our implementation, we performed a test involving two

instances of CoAP++ clients, a Cooja Border Router, Cooja CoAP server, and 2

intermediate nodes as shown in Figure 2-18. We used real life temperature data

collected at Intel Laboratories. To simplify the test, we used a one-day data

collected every 5 minutes starting from midnight. The 288 data points were sent

by the CoAP server every 5 seconds when the simulation starts. We repeated the

experiment 10 times to average the result. The final result shows that, Normal

Observe consumed 4936mJ while Conditional Observe consumed 4716mJ

showing an improvement in power consumption by using conditional observation.

The above example can be easily extended to other smart building applications

involving a variety of sensors that need to be observed.

2.7.2 Smart Environment Monitoring

There is a growing concern of pollution everywhere in the world. Pollution, be it

air pollution, water pollution or land pollution, is the introduction of harmful

substances to clean sources (air, water, etc.). Air Quality Index (AQI) is widely

used to measure the level of pollution of air by different pollutants such as ground

level ozone, particulates, sulfur dioxide, carbon dioxide, carbon monoxide and

nitrogen monoxide. The AQI values fluctuate substantially depending on various

situations. Most countries divide the AQI values in different categories and take

different actions depending on the level of AQI.

58 Chapter 2

Figure 2-19: Air Quality Controlling Setup

Smart environment monitoring applications make use of Wireless Sensor

Networks (WSNs) to proficiently monitor the pollution level and come up with

the AQI level of the environment. Such applications can also benefit from

conditional observations in order to realize the desired behavior. Consider a simple

environment monitoring system aimed at collecting the concentration of pollutants

(e.g. CO2) in a particular area and communicating it to a central station. This

solution may be implemented in various ways. One such implementation is

depicted in Figure 2-19. Sensor nodes (servers) are connected with each other and

to the gateway node through wireless links. The gateway connects the central

station with the servers. Every sensor node collects the data and sends it to the

gateway node, which, in turn, communicates it to the central station. If no

(conditional) observation is employed, the gateway would have to poll values from

the sensors every fixed interval or whenever the need arises.

Using conditional observation, much more flexibility is introduced and system

efficiency can be improved. The client (e.g, the gateway or an application in the

cloud) may establish conditional observation with the servers (sensor nodes)

stating its interest to be notified periodically. Here, the periodic condition type can

be used for the subscription. Once this observation relationship is established, the

servers will generate notifications periodically. It is also possible to further refine

notifications based on prevailing circumstances. For example, in normal

situations, where the concentration of pollutants is very low, there is no need to

send notifications to the gateway very frequently. So, the notification interval can

be set, for instance, to 1 hour. However, as soon as the pollution level increases,

which can be detected by establishing another conditional observation, the client

may opt for more frequent updates (say every 5 minutes) by sending an updated

Conditional Observation 59

conditional observation request which eventually removes the old observation

relationship and establishes a new one with a higher frequency.

2.7.3 Sleepy Nodes

Sleepy nodes are devices which occasionally go to a low power mode by cutting

power to unnecessary components to save energy. Some devices cut power only

to the radio system while the other components run as usual. At any time, the

device could be at a sleeping state or awake. But, in most cases the sleeping time

is much larger.

Figure 2-20: Communication with sleepy nodes using conditional observation

Consequently, communication with sleepy nodes is very problematic, especially

if the sleepy node has resources that a client needs from time to time. The major

reason for this is that, when a node is in the sleep state, it is disconnected from the

network and is unreachable. One solution to resolve this issue efficiently is to use

proxy nodes and conditional observations. In the proxy model, all clients get

connected to the sleepy node through a proxy. The proxy, then, relays client

requests to the server. As soon as the server receives a request, it directly sends

back a response to the client via the proxy. However, due to the sleepy nature of

the server, the communication is not as simple as this, but the conditional observe

mechanism offers an elegant solution to this problem as explained in the Figure

2-20. In the figure, the red circles are the clients, the gray circle is the server in

60 Chapter 2

sleep mode (SleepState = 0), the green circle is the server in awake mode

(SleepState = 1) and the middle rectangle is the proxy.

a) A client request arrives at the proxy. The server is sleeping (SleepState =

0). The proxy buffers the request and sends a response to the client telling

it to be patient for the actual response. Next the proxy starts to

continuously check the server to see if it is awake.

b) As soon as the proxy detects the server is awake (meanwhile retrieving

the value requested by the client and delivering the response to the client),

it sends a conditional observe request indicating its need to be notified

when the server wakes up (SleepState = 1). This can be achieved by using

the VALUE= condition type. The server adds the proxy to the observers

list.

c) After some time, the server may go to sleep for a long time (SleepState =

0). While the server is sleeping, clients may send GET requests to the

proxy. Since the proxy now knows the server is sleeping, it buffers all

requests and sends back patience responses.

d) When the server wakes up, it sends a notification to the proxy indicating

its sleep state has changed, back to Awake.

e) When the proxy gets the notification, it sends all buffered requests to the

server.

f) Finally, the server sends the responses directly to the clients. As an

optimization the proxy may aggregating similar requests into a single

request.

Communication with the sleepy node will be even more efficient if the clients

themselves register as observers requesting the server to notify them when a

particular criterion is met. In this case, once the server is awake and knows clients’

requirement through the proxy, all subsequent notifications will be made directly

to the clients whenever the criterion is met. This is done without the involvement

of the proxy.

2.8 Conclusion

In this paper, we presented the concept of conditional observations as an extension

to the CoAP protocol in general and the Observe option in particular. The design

of this concept was driven by the need to have a lightweight, efficient and compact

solution for subscribing for very specific events, which is an important

functionality when building IoT applications that directly interact with constrained

devices. Normal observe in combination with client-side filtering can realize

similar functionality, but suffers form the transmission of excessive packets that

are not of interest to clients. We demonstrated the feasibility of implementing this

Conditional Observation 61

functionality on constrained devices. Using this implementation, we presented

comparative results of using normal observation and client-side filtering versus

conditional observation. We also presented theoretical evaluations of normal and

conditional observation. From both the experimental and theoretical results, it is

evident that the conditional observations are very useful extensions to the basic

observe behavior, both from an application point of view and from a network

efficiency point of view. It enables clients to receive notifications that contain only

state changes they are interested in. This has a twofold advantage: an application

has the expressiveness to selectively collect data and the data of no interest does

not have to travel over the network. The latter advantage will become even more

important in larger constrained networks where notifications have to travel over

multiple hops. As such, conditional observations can greatly contribute to the

reduction of battery consumption and increase of network lifetime. In addition,

many scenarios can be thought of that can benefit from this functionality. As such,

conditional observation is an interesting and easy-to-use enabler for many IoT

applications. As future work we identified studying the impact of multiple

conditional observation relationships on a single resource and the design of an

efficient solution to aggregate multiple of these relationships into a single one in

order to further reduce traffic.

Acknowledgement

The research leading to these results has received funding from the European

Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement

n°258885 (SPITFIRE project). We would also like to acknowledge our co-authors

of the IETF CoRE conditional observe draft.

References

[2.1] Z. Shelby, Embedded Web Services, IEEE Wireless Communications, Dec

2010, pp.52-57.

[2.2] G. Montenegro, N. Kushalnagar, D. Culler, IETF RFC4944 - Transmission

of IPv6 Packets Over IEEE 802.15.4 Networks, September 2007.

[2.3] J. Hui, et. al., IETF RFC6550 - RPL:Routing Protocol for Low Power and

Lossy Networks.

[2.4] Z. Shelby, K. Hartke, and C. Bormann, Constrained Application Protocol

(CoAP) draft (draft-ietf-core-coap-13), December 6, 2012 (work in

progress)

[2.5] J. P. Vasseur and A. Dunkels, Connecting Smart Objects with IP: The Next

Internet (Morgan Kaufmann 2010).

62 Chapter 2

[2.6] Z. Shelby, RFC6690 - Constrained Restful Environment (CoRE) Link

Format.

[2.7] A. B. Roach, RFC3265 - Session Initiation Protocol (SIP): Specific Event

Notification.

[2.8] A. Stanford-Clark, and H. L.Truong. MQTT for Sensor Networks (MQTT-

S) Protocol Specification Version 1.1, IBM Corporation, 2008.

[2.9] E. Souto, et al., Mires: a publish/subscribe middleware for sensor

networks.(Springer-Verlag London Limited, 2005).

[2.10] S. Lai, J. Cao and Y. Zheng, PSWare: A publish / subscribe middleware

supporting composite event in wireless sensor network.

[2.11] European Telecommunications Standards Institute (ETSI). Machine-to-

Machine communications (M2M). ETSI TS 102 690 V1.1.1 (2011-10).

[2.12] Z. Shelby, and M. Vial, CoRE Interfaces - draft-shelby-core-interfaces-3

(work in progress).

[2.13] Open Geospatial Consortium Inc. Sensor Observation Service, 2007.

[2.14] Z. Shelby, K. Hartke and C. Bormann. Observing Resources in CoAP -

draft-ietf-core-observe-07, 2012 (work in progress).

[2.15] S. T. Li, J. Hoebeke, and A. J. Jara,Conditional Observe in CoAP - draft-li-

core-conditional-observe-03, 2012 (work in progress).

[2.16] M. Kovatsch, S. D. Valencia, A Low-Power CoAP for Contiki: in

Proceedings of the 8th IEEE International Conference on Mobile Ad-hoc

and Sensor Systems (MASS 2011), (pp. 855-860), 2011.

[2.17] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman, P. Demeester,

“Facilitating sensor deployment, discovery and resource access using

embedded web services”, International Workshop on Extending

Seamlessly to the Internet of Things (esIoT), July, 2012

3
Bindings and RESTlets: A Novel

Set of CoAP-Based Application

Enablers to Build IoT Applications

In many IoT applications, sensors and actuators are expected to work together to

achieve a common goal. In order to achieve flexibility in associating a sensor to

an actuator, most interactions between the sensors and actuators, however, have

to go through an intermediary which establishes an observation relationship with

the sensor and triggers actuators based on the data obtained from the sensor.

Using an intermediary has several drawbacks including latency, congestion at

nodes towards the sink and failure of the whole system if the intermediary fails.

Bindings are introduced in this chapter as a means of excluding the intermediary

and letting the sensor and actuator interact directly in a flexible way. Extending

this concept further, this chapter discusses RESTlets. RESTlets are defined as IoT

application building blocks that can be interconnected with other IoT application

components (and other RESTlets) through bindings to enable distributed IoT

development.

Girum Ketema Teklemariam, Floris Van Den Abeele, Ingrid Moerman, Piet

Demeester and Jeroen Hoebeke. Bindings and RESTlets: A Novel Set of CoAP-

Based Application Enablers to Build IoT Applications. Sensors 2016, 16(8), 1217;

doi:10.3390/s16081217

64 Chapter 3

Abstract: Sensors and actuators are becoming important components of Internet

of Things (IoT) applications. Today, several approaches exist to facilitate

communication of sensors and actuators in IoT applications. Most

communications go through often proprietary gateways requiring availability of

the gateway for each and every interaction between sensors and actuators.

Sometimes, the gateway does some processing of the sensor data before triggering

actuators. Other approaches put this processing logic further in the cloud. These

approaches introduce significant latencies and increased number of packets. In

this paper, we introduce a CoAP-based mechanism for direct binding of sensors

and actuators. This flexible binding solution is utilized further to build IoT

applications through RESTlets. RESTlets are defined to accept inputs and produce

outputs after performing some processing tasks. Sensors and actuators could be

associated with RESTlets (which can be hosted on any device) through the flexible

binding mechanism we introduced. This approach facilitates decentralized IoT

application development by placing all or part of the processing logic in Low

power and Lossy Networks (LLNs). We run several tests to compare the

performance of our solution with existing solutions and found out that our solution

reduces communication delay and number of packets in the LLN.

3.1 Introduction

In the information age that we are living in, we have witnessed remarkable

advances in electromechanical technologies, miniaturization and wireless

communication. It is not uncommon to see tiny and very powerful

electromechanical devices that can be integrated in our environment by embedding

them in everyday objects around us and are capable of doing things that were

unimaginable a few decades ago. Sensor and actuator nodes are best examples of

such tiny devices that have become parts of our daily life for quite some time.

Sensor nodes are devices that capture events in the physical world and transfer

them into the virtual world as raw data so that they can be processed and acted

upon. Actuators, on the other hand, alter the real world based on data obtained

from the physical world or cyber world, periodically or spontaneously. It is very

common to see sensors and actuators working together. Motion activated doors,

air conditioners, environmental monitoring systems, and voice activated security

systems are some examples which involve both sensors and actuators. The

communication arena has also seen remarkable changes in the past couple of

decades. Billions of devices are being interconnected with each other around the

globe. These advancements of both communication and electromechanical

technologies have led to new possibilities for those tiny devices. Sensors can be

connected to other actors such as services that process the raw data and

subsequently interact with actuators without regard for physical proximity. In the

Bindings and RESTlets 65

beginning, these solutions were characterized by proprietary solutions

implemented by different vendors. Such solutions either involve proprietary

intermediary devices between the sensors and actuators for data processing or

require static configuration to be done to allow direct interactions. The former

approach forces users to stick to one vendor due to lack of interoperability. In

addition, when using multiple vendors, it results in several vertical silos for

different applications. The latter approach also has its own limitation such as

limited reuse, complexity in programming, and limited integration with

applications. Since the last decade, diverse initiatives have been launched by

various organizations in order to make these devices an integral part of the

Internet. The Internet Engineering Task Force (IETF) has been the pioneer by

establishing a number of focused working groups that address various aspects of

the integration. Due to the constraints of the tiny devices such as limited

processing, storage, transmission and reception capacity and limited power

availability, existing Internet networking protocols were not directly suitable.

Therefore, various solutions have been proposed at the different layers of the Open

Systems Interconnection (OSI) model. For instance, IPv6 packets are too big to be

processed, transmitted, and received in an energy efficient way by the constrained

devices. To this end, the 6LoWPAN adaptation layer has been developed for

compression/decompression and transmission of IPv6 packets so that they can be

transported over constrained networks [3.1]. Another issue that needs to be

addressed is routing. The routing protocols used in today’s Internet are all designed

to find optimal paths to destinations by considering the routers to be powerful

enough to store and process large routing tables. This makes them not suitable for

constrained multi-hop networks. Moreover, the metrics that should be considered

in constrained networks are considerably different from those in non-constrained

networks. As a result, a new routing protocol named Routing Protocol for LLN

(RPL) has been proposed [3.2]. Finally, also the application layer needs some

adaptations to enable efficient integration. As described in [3.3], web services are

ideal for machine to machine communication. Unfortunately, the existing

protocols, such as HTTP, used for web services are too heavy and verbose for

constrained nodes. For this reason, a lightweight RESTful application protocol,

Constrained Application Protocol (CoAP), has been proposed [3.4]. CoAP

provides similar functionality for constrained networks as the one HTTP provides

for conventional networks. CoAP uses PUT, POST, GET, and DELETE methods

to communicate, update or remove resources hosted by the sensor/actuator nodes.

To maximize the benefit of web services using CoAP, a number of extensions are

proposed. The most relevant extension to our work is resource observation [3.5].

One of the application areas of Sensor/Actuator Networks is monitoring of

different environmental phenomena. In such systems, sensors gather information

and send it to a monitoring station so that the appropriate action can be taken. The

communication between the sensor and the monitoring station can be done through

66 Chapter 3

frequent polling, but results in several unnecessary request/response pairs if the

values do not change frequently. By adding an observe mechanism, sensors can

inform interested parties about any state changes of resources they want to

observe. Communication can be optimized further by sending notification criteria

while registering for observation. This way only changes that have significant

importance to the observer are communicated. Details of this method, called

Conditional Observation, can be found in [3.6]. All in all, CoAP and its extensions

enable the interaction with constrained devices in a RESTful way over IP

networks. This interaction can be utilized further to build IoT applications that

make use of sensor data or steer actuators. This can be achieved by interacting

with constrained devices within browsers [3.7] or services running in the cloud.

This paper focuses on novel enablers on top of CoAP to facilitate the creation and

configuration of IoT applications with low creation and configuration overhead.

The first step in building such IoT applications is to enable direct interactions

between constrained devices without the need or continuous presence of an

intermediary. This option is not yet available in CoAP and represents one of the

contributions of this paper, namely binding sensors and actuators so that they can

directly interact with each other, eliminating the need for external devices to

continuously coordinate communication between them. We show how the CoAP

protocol and the observe option (along with the conditional observe extension) can

be used to create such direct interactions, also called bindings, between sensors

and actuators in a flexible way. The interactions themselves arefully RESTful

CoAP-based interactions, allowing anything to be bound to anything. This offers

a lot more flexibility than other binding solutions presented so far. On top of that,

we propose configurable, connectable and reusable building blocks with CoAP

interfaces, called RESTlets that perform some processing of data at different

levels. The processing can be done inside the constrained network, at the edge of

the constrained network or in the Cloud. It acts as an enabler to build IoT

applications that consist of modular processing steps, potentially distributed along

the path between the sensors and the Cloud. The RESTlets can accept inputs and

produce outputs after performing basic processing and can be configured through

control parameters. To link sensors and actuators to RESTlets or to create chains

of RESTlets, we build upon the binding concept. This contribution shows that

creation of (part of) an IoT application can be reduced to linking together devices

and processing blocks, demonstrating feasibility of the approach. In addition, we

investigate the performance in terms of overhead and how this can by optimized

by looking at different options such as location of RESTlets, in-network

processing, etc. This paper is organized in seven sections. The underlying

protocol, CoAP is discussed in more detail in the next section and related work

will be discussed after that. The binding concept will be discussed in Section 4

followed by a discussion of the RESTlet concept. Section 6 shows the

Bindings and RESTlets 67

implementation and evaluation of the two concepts. The paper ends by discussing

main findings and giving concluding remarks.

3.2 Constrained Application Protocol (CoAP)

Recently, IETF approved the Constrained Application Protocol (CoAP) [3.4] as

an open standard suitable for machine-to-machine communication or IoT

interactions. As it implements a subset of the Representational State Transfer

(REST) paradigm, it is referred to as the lightweight counterpart of HTTP. CoAP

employs the same four methods, namely GET, PUT, POST and DELETE, as

HTTP when sending requests from a client to a server. However, unlike HTTP,

CoAP uses UDP as transport layer protocol in order to avoid the message overhead

and extensive resource requirements of TCP. Reliability is provided through

confirmable messages, allowing a client to specify whether a message should be

acknowledged or not. CoAP client/server communication takes place in the same

way as any REST-based communication. Clients send a request to a specific

resource identified by a URI to retrieve the current resource representation or to

modify it. The server then replies with the current representation or a status

message. For instance, as shown in Figure 3-1a, if a client would like to receive

the current light intensity in a room, it just sends a GET request to the specific

resource representing the light intensity. Upon receipt, the sensor responds with

the current value. Figure 3-1a shows this client/server interaction where the

resource is represented by /s/l and the current value, which is 80 Lux, is sent back

to the client. The responses could be piggybacked or separate. Piggybacked

responses contain the data along with the acknowledgement to a confirmable

request. However, if the data is not available during the request, for various

reasons, the acknowledgement is sent alone and the response follows when the

node is ready to send the data. The other methods may not require data to be sent

back, but responses that indicate the outcome of message will be returned. Figure

3-1b shows, a client that sends PUT to a resource, represented by /a/l, on a device

such as a Dimmer to change the light intensity to 60 Lux. After adjusting the value,

the dimmer responds with a status code, stating that the value is changed.

68 Chapter 3

Figure 3-1: (a) CoAP GET Operation; (b) CoAP PUT Operation.

Responses can also be cached at intermediaries to improve efficiency. This feature

is especially important for constrained devices as proxying will allow other

devices to respond in place of the constrained node which might be sleeping or to

limit traffic in the constrained network. CoAP requests and responses use a fixed

four bytes header followed by zero or more compact binary options and an optional

payload (Figure 3-2). The VER field (2 bits) in the header indicates CoAP version

number and is always set to 1. The T field (2 bits) indicates message type. Message

type 0 indicates CON (confirmable) request; and is used if reliability is required.

Requests sent as CON must be acknowledged by setting the message type to ACK

(value = 2). On the other hand, non-confirmable (NON) messages (Value 1), are

used if reliability is not a requirement. Token length (TKL) field is part of the four

bytes CoAP header and indicate the length of the token which immediately follows

the fixed CoAP header. The Token is used to match requests with responses. Code

(8 bits) field is used to indicate request method in requests and response code in

responses. Message ID (16 bits) is used to detect duplicates and also match

requests with responses. CoAP packets may contain one or more options to specify

different aspects of the message such as URI and message format. Options are

inserted in packets in ascending order and specified as option delta, length and

value. If the message contains payload to be transmitted, an eight bit Payload

Marker field is inserted followed by the payload. Refer to the CoAP RFC [3.4] for

detailed explanation of the fields and CoAP operations.

Bindings and RESTlets 69

Figure 3-2: CoAP Header

As mentioned above, CoAP is designed following the REST architecture and is

optimized for M2M communication in constrained environments. One of the

application areas where M2M communication is widely used is resource

monitoring. In such applications, clients need to have an up-to-date representation

of data from servers. Polling (sending periodic requests to servers) is not optimal

in constrained environments since the values may not change as often as the

polling request frequency resulting in unnecessary packet transmissions.

Introducing a mechanism that triggers transmissions only if changes occur

improves the communication significantly. Resource Observation [3.5] is an

interesting extension of the CoAP protocol that introduces such a mechanism.

With the observe extension, clients can inform servers about their interest in

getting an up-to-date representation of a resource by adding the observe option

along their GET request. As a result, the server registers the client as an observer

and sends the current representation. After that, the server only sends values, called

notifications, when there is change in the resource representation. This method of

communication is proposed based on the well-known observer design model.

Figure 3-3 shows this communication model by taking the light sensor example

discussed above. Instead of repeatedly requesting for the current representation,

the client sends a GET with an observe option. This is called registration at the

server. The server responds by including the current representation and registering

the client as an observer. Subsequent changes in the resource representation will

trigger notifications to be sent back to the client.

70 Chapter 3

Figure 3-3: CoAP Observe Operation

In this communication model, the original request and subsequent notifications are

matched using the Token. In frequently changing environments, the

representations may arrive out of order at the client. The observe option value is

incremented each time to identify the latest value. For a resource to be observed

by clients, it must be defined as observable, also indicated by the obs attribute in

the resource definition. A significant performance gain is obtained by using

resource observation instead of polling. Nevertheless, not every event change

might be significant enough for the client to store it or to trigger any action.

Therefore, all those insignificant messages will be dropped after being transmitted

over the constrained network. Those unnecessary transmissions can be suppressed

by combining resource observation with server side filtering. Conditional

Observation [3.6] provides a mechanism for clients to specify notification criteria

during registration. As a result, servers will filter notifications and send only those

that meet the notification criteria. Detailed implementation and evaluation of

Conditional observation is given in [3.6]. The core-interfaces draft [3.8] also

allows server side filtering by allowing clients to specify notification criteria in

URI-Queries.

Bindings and RESTlets 71

3.3 Related Work

3.3.1 Sensor-Actuator Interaction

The traditional approach for applications that require sensor-actuator interaction

was to statically associate related devices at the time of deployment. This approach

lacks flexibility. One of the earliest works that attempts flexible binding is the

ZigBee End Device binding [3.9]. As stated in the specification, devices with

similar End Device Profile and matching cluster ID can be bound. This dynamic

binding method places many strict requirements on the devices that will be bound

and, as a result, lacks the flexibility of binding any device with any other device

that our solution provides. Another notable work that attempts to improve the

limitation of ZigBee End Device Binding is given on [3.10]. This work avoids the

requirement of matching cluster ID by matching sensor events with actuator

actions. However, this solution is also based on ZigBee and devices that are not

compatible with ZigBee cannot be included in the binding process and hence still

lacks the flexibility we desire. To achieve maximum flexibility of binding any two

devices, working on open standards is preferable. In line with this, the CoRE

Interfaces draft [3.8] specifies how CoAP methods can be used to achieve flexible

binding. The mechanism proposed in the draft allows end devices to establish a

binding relationship between two resources through discovery mechanisms or

through human intervention and then synchronizes the content of the involved

resources. This solution has its advantages as it provides a generic solution that

can be used in interface descriptions. However, the solution focuses on

synchronizing the contents of two resources on different end devices. It is not

possible to execute a specific action on the other device. Additional programming

logic is still required to send the appropriate trigger to the same or different

actuator.

3.3.2 In-Network Processing

Different developers have suggested different IoT application development

models. Some prefer WS-* such as SOAP using HTTP while others argue that

RESTful approaches are better suited for IoT [3.11]. A survey conducted among

developers [3.12] concluded that RESTful web services were the preferred choice

of most developers. However, even RESTful IoT applications have different

development approaches. Traditional applications have been running at the edge

of the constrained network or on the gateway. In recent years, many applications

are moving into the cloud [3.13]. Actinium [3.13] is one such solution. Actinium

divides the whole IoT application into Thin Servers that provide hardware

functionality through RESTful interfaces and scripted apps, which run in the cloud

and implement the IoT application logic. This allows developers to focus on

programming their application to run on the cloud without dealing with the

72 Chapter 3

constrained environment. This approach is significantly different from our

approach which attempts to do as much processing as possible inside the LLN e.g.,

in order to reduce latency, to limit the amount of data going to the Cloud or to

remain operational in the absence of connectivity. There are other initiatives,

similar to ours, which attempt to keep some or all of the processing logic inside

the LLN. Ref. [3.14] presents a programming abstraction known as T-Res which

models processing tasks as resources that sit on a constrained device and can be

manipulated by CoAP methods. Each T-Res resource stores URIs of the input and

output devices as sub-resources. The last output and the compiled processing

function (originally written in Python) are also stored as sub-resources. The

processing function internally connects the input sources and output destinations

by reading data from the input source(s) and sending out new outputs to devices

identified by the URLs, if any. The last output is stored to allow concatenation of

tasks. T-RES also provides getter and setter functions as programing APIs to be

used in processing functions. Even though this system has some similarities to our

solution, there are quite many significant differences, the first one being the overall

approach. This solution represents processing tasks as resources while we model

RESTlets to be independent IoT application building blocks that may run

anywhere in the network (inside LLN, on Gateway or in the Cloud). We also store

input that may arrive from any device and send stored output to any other device

after processing, but take a different approach regarding the way processing is

done. In case of T-Res, the processing function is responsible for getting the inputs

from the sensors and sending the output, if any. Our solution separates input

retrieval and task processing by using flexible binding for the interaction with

sensors. Another difference, which is also a significant limitation of this solution,

arises from the very architecture of the solution. Every task resource stores URLs

of input sources and destination outputs. This means if the application requires

doing the same processing task (e.g., Average) on different sets of sensors and/or

sends output to different actuators, multiple task resources needs to be defined and

the same function will have to be stored in each resource.

Our system enables reuse of processing functionalities as long as the processing

logic remains the same. In [3.15], virtual sensors and actuators are defined as

resources to provide a mechanism to move part of the IoT application processing

logic into the LLN. The virtual resources are defined hierarchically as template,

instance and configuration resources. Whenever a new virtual resource is created

on a device, the template must be posted on the virtual resource directory and the

corresponding sub-resources. The input is pulled and calculation and generation

of notification is done only when GET is issued by a component of the code in the

cloud. Our solution interconnects the devices to talk to each other automatically

without the need for external commands. Further, this solution still has its

components in the cloud while ours tries to avoid putting the application code in

Bindings and RESTlets 73

cloud as much as possible. LooCi [3.16] is another model for IoT applications. It

uses an event-based binding model and standardized event types that allow easy

component interactions and re-use of components. This approach uses Remote

Protocol Call (RPC) for communication.

3.4 Flexible Direct Binding

In many IoT applications, sensors and actuators are deployed to work together.

Examples of such applications include temperature sensors and thermostats, a light

switch (sensor) and light bulb (actuator) in smart lighting solutions, and motion

sensors and automatic door controls. Some old installations use static

configurations where sensors are associated with fixed actuator(s) before or during

deployment. This solution allows direct interaction between devices but has

serious flexibility issues. If we need to change the association made during

deployment, we need to reconfigure the devices all over again. Another solution

often used in many applications is introducing an, often proprietary, intermediary

between the sensor and actuator. In such solutions, the sensor sends the data to the

intermediary device and the device sends the trigger to the actuator. This indirect

communication involves too many unnecessary transmissions of packets between

the three devices. In addition to this, every communication needs to move to the

edge of the LLN (or even further into the cloud), resulting in delayed response due

to higher latency. Moreover, if the intermediary device is down for any reason, the

whole communication between the devices will not take place. In this section, we

introduce the concept of flexible direct bindings, which solves the aforementioned

problems by allowing direct interaction of smart objects without losing flexibility.

To avoid vendor lock-in and allow devices from different vendors to communicate

with each other, the implementation of this concept is realized as an extension of

the CoAP protocol and Observe option. To illustrate this, we consider a simple

smart lighting system that uses a light switch (the sensor) as a sensor, triggering a

light bulb (the actuator) whenever pressed. This association may be made or

modified at any time without the need for complete reconfiguration. We will use

RESTful web services for the application and, represent the sensor resource by

/gpio/btn and the actuator by /lt/on following the IPSO naming convention [3.17].

In traditional intermediary-based solutions, all activities are coordinated by an

intermediary device. As shown in Figure 3-4a, the communication begins by

establishing an observation relationship between the intermediary, labelled

Initiator, and the sensor. After that, whenever there is an event that results in a

state change of the button resource (i.e., whenever there is a button press), the

sensor sends a notification to the intermediary. Upon receiving the notification, the

intermediary triggers the actuator. This can be even applied to dimmers where the

light intensity of the bulb is related to the value sent from the switch as payload

74 Chapter 3

during notification. As can be seen in the figure, the intermediary must be always

available for the system to work.

Figure 3-4: Sensor-Actuator Interaction. (a) Indirect; (b) Direct Binding.

On the other hand, using the flexible direct binding approach that we propose, the

initiator is only required to establish the relationship between the sensor and the

actuator. After successful establishment of the binding relationship, the initiator is

no longer required to take part in any of the subsequent communication between

the sensor and the actuator (Figure 3-4b). This means, the initiator could be any IP

capable device, such as a smart phone, that will just establish a relationship and

then leaves and re-enters the network anytime. This relationship exists as long as

the sensor and actuator are functional or until we exclusively change the binding.

The existing CoAP protocol does not support establishing binding relationship

between two devices through a third device. When a device sends an observe

request to another device, the relationship that will be established is between the

sender and the receiver. A mechanism that allows the receiver to differentiate

between a binding request and a traditional observation request needs to be

introduced for our solution to work. In addition to this, some details of the actuator

have to be communicated along with the binding request. In line with this, we

modified the CoAP protocol by introducing four additional options, namely

BIND_URI_HOST, BIND_URI_PORT, BIND_URI_PATH and

BIND_PAYLOAD. BIND_URI_HOST and BIND_URI_PORT (optional in case

default port is used) are defined to indicate the IP address and port number of the

device that needs to be notified when events arrive. BIND_URI_PATH is the

resource representation on the device through which it is triggered. When the

request is stored on the sensor, the presence of these options is used to differentiate

between a binding relationship and a traditional observation relationship. The

optional BIND_PAYLOAD option may be used in a request if we wish a specific

value to be sent during notification. In its absence, the new resource representation

will be sent to the actuator. The method used for the notification will be PUT.

Figure 3-5 shows the flow chart that describes how a binding relationship is

established while Figure 3-6 shows the notification process. As shown in Figure

3-5, when a new request from the initiator that contains the observe option arrives

at the sensor, it checks for the presence of one of the newly defined options to

Bindings and RESTlets 75

identify whether the request is a binding request or not. If so, the information

contained in the newly defined options will be used as details to define the

observer. If not, the source IP address, source port number and source URI_PATH

will be taken as IP address, port number and URI path of the observer. For binding

requests, we may optionally store the address of the initiator too. Once this is done,

the initiator will not be involved in any event notification communications.

Figure 3-5: Flow Chart Showing Binding Relationship Establishment.

76 Chapter 3

Figure 3-6: Flow Chart Showing Notification of Events.

Referring to Figure 3-6, event notification of both binding and observation

relationship is conducted in a similar way. The notification process starts when the

state of an observed resource changes, which causes a packet to be sent to all

observers. The notification process is almost the same for both binding and

observation relationships except two steps. The first difference is the method. In

case of a normal observation, a response packet is created while in case of a

binding a PUT message is prepared. The payload to be used for binding

relationships can be modified by the BIND_PAYLOAD option, which is the

second difference. Apart from these two differences the notification process is the

same. Management of the binding relationships can be facilitated by introducing

binding directories. Binding directories are similar to resource directories but list

existing binding relationships. Through the binding directory, we may find out

which binding relationships exist and perform reconfiguration by sending other

binding requests, if necessary.

Bindings and RESTlets 77

3.5 RESTlets

More and more IoT applications are moving into the Cloud. Many others reside at

the gateway running proprietary protocols. Both options require movement of all

data generated by sensors to the edge of the LLN or to the Cloud. As discussed in

the previous section, this approach puts heavy burden on the border devices and

some of the data that traverses the LLN might not be useful for the IoT

applications. Performing some (pre) processing activities inside the constrained

network can help to reduce the number of packets transmitted to the cloud or the

edge. In this section we will introduce a novel solution that breaks down IoT

applications into smaller and manageable units in order to simplify IoT application

development and resolve the problems mentioned above. The solution is based on

what we call RESTlets. RESTlets can be defined as IoT application building

blocks that use RESTful web services to process data inside the constrained

network. RESTlets have one or more data and control inputs, processing logic and

outputs (Figure 3-7). Internal wiring connects the data inputs, control inputs and

the processing logic to generate new outputs. In the context of sensor/actuator

interactions the data inputs could be sensor readings or outputs of other RESTlets.

The processing that will be done inside the RESTlet may vary depending on the

requirement of the application. The processing could be as complex as sending an

SMS or as simple as a logical AND. If the processing results in new data, the

output could be used to trigger an actuator or sent to another RESTlet as an input.

The control inputs are configuration parameters that can be used to control how

the RESTlet operates and how or what outputs must be produced. For example,

the control parameters may define the threshold value for generating new outputs,

or even the computation interval. By modifying the control parameters during

runtime, we can control how a specific RESTlet behaves. After a RESTlet is

defined on a specific device, it can be instantiated multiple times.

Figure 3-7: RESTlet Block Diagram.

Implementation of RESTlets using RESTful web services can be achieved by

representing each RESTlet instance as a resource and each component (data input,

control input and output) as sub-resources. Instantiation of RESTlets is achieved

by sending POST requests to the device that is selected to host the RESTlet. Since

multiple RESTlets can be defined on a single device, the POST request must

78 Chapter 3

contain the name of the RESTlet along with the number of data inputs, control

inputs and outputs. Whenever a POST request is received, the RESTlet resource

and its sub-resources will be created dynamically and will be referenced using

hierarchical naming convention as:

/r/<RESTletNo>/<in|out|con>/<SubResourceNumber>

For instance, /r/0/in/0 refers to the first data input of the first RESTlet while

/r/1/out/0 and /r/0/con/1 respectively refer to the first output of the second RESTlet

and the second control input of the first RESTlet. Please note that RESTlets are

numbered as per the sequence of the POST request. This means the first RESTlet

is the one created by the first POST request and so on. Alternatively, we can name

them by passing the RESTlet name with the request for creation. The combination

of the RESTlet concept and the flexible direct binding concept can be used to build

simple web-based IoT applications. To show how this works, we consider a simple

smart home application that turns on or off the air conditioner based on the average

temperature in an occupied room. The temperature values are obtained from three

temperature sensors and occupancy of the room can be identified by a motion

sensor. In traditional Web-based IoT applications, the data from the sensors is sent

to the LLN gateway to be processed there and the result will be sent back into the

LLN for the actuator (in this case attached to the air conditioner) to act upon it.

The data transmission from the sensors takes place in various ways. One possible

way is by periodically polling for new values (shown in Figure 3-8). This would

result in a lot of unnecessary data transfers in case the frequency at which

temperature values change is much lower than the frequency of the polling

interval. Another option would be to establish an observation relationship between

the gateway and each sensor so that only new changes are communicated to the

gateway. In both cases, data from all sensors is transferred to the gateway and

triggers for the actuator, if any, have to be sent back into the LLN.

Bindings and RESTlets 79

Figure 3-8: Sample Code Executed on Non-constrained Devices

Using RESTlets we can move some or all of the processing logic inside the LLN

to reduce the number of packets transmitted. A block diagram showing the

breakdown of the application into RESTlets is given in the diagram (Figure 3-9).

The three temperature sensors send their data to the RESTlet which implements

the AVERAGE function. The output of this RESTlet is sent to another RESTlet

which implements the logical AND operator that combines this with the readings

of the motion sensor to finally send the trigger to the actuator. One of the benefits

of the RESTlet approach is that, any of the existing sensor or actuator nodes can

be used to host the RESTlets. Alternatively, we can distribute the RESTlets among

different nodes. Yet another alternative may be placing a more capable node inside

the LLN that does all the processing. For simplicity, lets select node S1 to host the

AVERAGE RESTlet and the motion sensor, M, to host the AND RESTlet. The

figure below (Figure 3-10) shows the nine steps that can be used to program this

application.

80 Chapter 3

Figure 3-9: RESTlet block diagram for the smart home scenario.

Figure 3-10: CoAP Messages used to create the required Binding Relationship

As shown in the above listing, the first two messages create the AVERAGE and

the AND RESTlets on nodes S1 and M, respectively. The numbers indicate the

number of data inputs, control inputs and output in that order. In this case, the

AVERAGE RESTlet contains 3 data inputs while the AND RESTlet only has two.

Both RESTlets have one control and one output each. The third statement sets the

control parameter of the AVERAGE RESTlet to be 25 so that only average values

greater than 25oC are sent as output. Statements 4 through 6 establish binding

relationships between each temperature sensor and the three data inputs of the

AVERAGE RESTlet. After receiving these messages, the sensors send all

temperature changes to the RESTlets data inputs. The seventh statement associates

the motion sensor to the first input of the AND RESTlet by establishing a binding

relationship between them. The output of the AVERAGE RESTlet and the second

data input of the AND RESTlet are conveniently associated through observation

relationship by the eighth statement. The last statement finally associates the

output of the AND RESTlet to the actuator so that changes at the output will trigger

the actuator. For the binding process to work properly, all outputs of RESTlets are

Bindings and RESTlets 81

made observable. Interestingly, this simple concept reduces the whole IoT

application development to a series of CoAP message transmissions that may be

sent from anywhere in the network or over the Internet. Management of the IoT

applications is also made easy. Sending simple GET messages to the RESTlet

nodes and using binding directories to list out all available bindings gives us

enough information to inspect and, if needed, reprogram the entire application or

to modify some aspect of it.

3.6 Implementation and Evaluation

3.6.1 Implementation

The selection of a good implementation platform is crucial to demonstrate the

feasibility of new concepts and to show performance gains obtained through the

proposed solutions. We used Contiki2.7 [3.18] as a base system for all

experiments, which was the latest stable version available at the time of starting

our experiments. Contiki is an open-source embedded operating system suitable

for constrained systems. Its innovative IP implementation, uIP, makes it a good

solution for experiments that involve IP-based communications in the constrained

world. In addition to this, all required features for our tests such as 6LoWPAN,

RPL, and CoAP have all been implemented. The CoAP implementation of Contiki

is known as Erbium [3.19]. Next to this, we also need to run some tests on non-

constrained devices for comparison purposes. This requires a CoAP

implementation that runs on non-constrained devices (e.g., gateways, Cloud

servers, etc.). For this, we have used our own C++ based implementation of CoAP

and its extensions, named CoAP++. Since both Erbium and CoAP++ do not

support the proposed binding and RESTlet concepts, some modifications have

been made, including the addition of new CoAP options and the introduction of a

mechanism to define and instantiate RESTlets.

3.6.1.a Flexible Direct Binding

As explained earlier, to support the binding concept, four new options were

introduced. These new options have been added to Erbium and CoAP++ with the

following option numbers 42, 46, 50, and 54 for BIND_URI_HOST,

BIND_URI_PORT, BIND_URI_PATH and BIND_PAYLOAD respectively. In

addition to this, the required functionality for serializing and parsing those options

has been added. Apart from this, two other modifications have been made in order

for the binding solution to work properly. The first major modification included an

extension of the registration mechanism in order to differentiate between normal

observers and binding observers as shown Figure 3-5. The second major change

was the way notifications were sent to observers, as for binding relationships, the

82 Chapter 3

PUT method is being used, optionally in combination with a payload as indicated

by the BIND_PAYLOAD option.

3.6.1.b RESTlets

The RESTlet concept, as discussed above, makes use of bindings to build (parts

of) IoT applications by performing processing tasks and exchanging raw values

and (semi)processed data between devices. In order to enable nodes to support

RESTlets, some modifications have been made to both Erbium and CoAP++. The

main modifications are discussed below. The application logic of RESTlet, which

acts on the data inputs (and the control inputs) to produce outputs, has been

implemented for every node that potentially hosts the RESTlet. Every RESTlet

defines its own processing function and hence one processing function per

RESTlet is defined. Generic functions that manipulate the data and control inputs

have also been defined. A POST request to a specific resource initiates the

instantiation of the RESTlet instances and the dynamic creation of associated

resources. The /r resource is defined for this purpose. Moreover, since Erbium does

not support the dynamic creation of resources, this functionality has been added.

In order to differentiate one RESTlet instance from the other, detailed information

about every instantiated RESTlet needs to be stored. Therefore, a data structure

for storing the RESTlet name, the number of data inputs, the number of control

inputs, the number of outputs, and the memory address of the processing function

has been defined. This data structure may also store the latest values of the data

inputs, control inputs and outputs if required. Finally, a callback function that is

called for further manipulation of the resources and sub-resources has been

defined. The flow chart of this callback function is shown in Figure 3-11. Each

time a request for the /r resource arrives, it is forwarded to the callback function

in order to see which sub-resource is referenced and an appropriate action is taken.

Based on the URI-PATH of the request, the function will be able to identify for

which sub-resource the request has been sent. A PUT request to the data input (in)

initiates execution of the processing logic, which, in turn, notifies observers in case

the output changes. Sending a PUT request to the control input (con) results in

changing the identified control input. GET requests to any of the sub-resources

may be used to retrieve the current value. All outputs have been made observable

in order to allow binding relationship between the RESTlet and devices (or other

RESTlets).

Bindings and RESTlets 83

Figure 3-11: Flowchart Showing Interaction with RESTlet Instances using CoAP

Messages

Putting it all together, once all logic for a particular RESTlet has been defined and

implemented, applications may instantiate RESTlets on a specific node by sending

a POST request to the /r resource and specifying the name of the RESTlet, the

number of data inputs, control inputs and outputs in the payload as follows:

RN = <RESTlet Name>; IN = <# Data inp>; CON = <# Control inp.>; OUT

= <# Output>

For example, a POST request sent to a node with

RN=AND;IN=2;CON=2;OUT=1; as payload, creates the AND RESTlet with two

data input, two control input and out output resources. The five resources will be

referenced as /r/0/in/0, /r/0/in/1, /r/0/con/0, /r/0/con/1, and /r/0/out/0 in all further

communications. Subsequent POST requests create RESTlet resources that are

identified by changing the number next to the /r.

3.6.2 Experiment Setup

For all experiments involving constrained nodes, we simulated Zolertia (Z1) nodes

in Cooja. The basic scenario we tried to simulate is the interaction between a

temperature sensor (as sensor), identified by the /s/temp resource, and a thermostat

(as actuator), identified by /a/t. The temperature values are periodically read from

a random sequence of 100 values stored in an array. If two consecutive readings

84 Chapter 3

result in different values, a notification to the observers will be sent. Whenever a

non-constrained node is involved, we use the CoAP++ code running on the laptop.

3.6.3 Functional Evaluation

In this subsection the details of the proposed solutions and their implementation

are discussed.

3.6.3.a Bindings

As explained earlier, binding a sensor and an actuator can be done by any device

from anywhere in the Internet. Figure 3-12 shows the CoAP++ GUI screenshot

when a GET request is used to establish a binding between the /gpio/btn resource

on a sensor with IP address [aaaa::c30c:0:0:2] and an actuator with address

[aaaa::c30c:0:0:3]. The specific resource of interest on the actuator is /a/t.

Figure 3-12: Creation of Binding Using CoAP++ GUI from Non-constrained

Device

Once the binding relationship has been established, all further interactions take

place directly between the sensor and the actuator. One such an interaction can be

seen in Figure 3-13, which is Screenshot of the Simulation in Cooja. The Cooja

Visualizer at the left of the picture shows the direct communication (the

notification and the ACK) in blue arrows. The shaded part of the simulation script

editor window confirms the route the packets followed after data is generated at

the sensor (Node 2) until received by the actuator.

Bindings and RESTlets 85

Figure 3-13: Direct Interaction of Sensor and Actuator Nodes in Cooja

3.6.3.b RESTlets

RESTlets are application building blocks that may be defined once on devices and

that can be instantiated a number of times to build (part of) IoT applications by

interconnecting them with devices and each other using flexible bindings. This

process can also be accomplished using any device connected to the Internet. To

illustrate this, we consider the example of a simple LESS-THAN RESTlet in order

to send notifications to the actuator shown above in case the temperature drops

below 25 degrees. Figure 3-14 shows the Copper screenshot of this operation.

Sending a POST request to the /r resource of the node selected to host the RESTlet,

in this case [aaaa::1], creates the resource and its sub-resources. The payload

shows the name of the RESTlet, LT indicating less than, which has one data input

and one control input. The control input is initialized to 25. The default number of

outputs is 1. Upon reception of the POST request the RESTlet is being instantiated

and further referenced as /r/0. In addition, 3 sub-resources identified as /r/0/con/0,

/r/0/in/0 and /r/0/out/0 are created representing the control input, data input and

output, respectively.

86 Chapter 3

Figure 3-14: Creation of RESTlet Instances in Copper

To achieve the desired result, the input /r/0/in/0 is bound to the sensor node and

the output /r/0/out/0 is bound to the actuator. This way, sensor readings are being

transmitted to the RESTlet and the output of the RESTlet triggers the actuator. For

this, the binding functionality shown in the previous sub-section is applied twice.

Subsequent updates of the control parameter can be easily performed by sending

a PUT request to the /r/0/con/0 resource. This solution can be used to build

complex IoT applications by distributing the RESTlets at different devices inside

the LLN, at the LLN Gateway or even in the cloud. Irrespective of the complexity

of the application or the location of the RESTlet nodes, we send a series of CoAP

requests to the devices to program the application. To simplify the development

even further, we can employ visual programming tools to simply drag-and-drop

components to instantiate RESTlets and perform the binding.

3.6.4 Performance Evaluation

The proposed modifications may affect some aspects of the network or the device

itself. Memory footprint, number and size of packets transmitted, and

communication delay are some of the parameters that might be affected positively

or negatively. The outcomes of several tests showing these impacts are discussed

below.

3.6.4.a Performance Evaluation of Bindings

A. Memory Footprint

As described above the original Erbium code has been modified in order to support

the binding concept. This modification induces a slight increase in memory space,

mainly in the code (text) segment. Table 3-1 shows the increased memory footprint

of the binding solution compared to gateway or cloud-based solutions. As every

observer’s information needs to be stored in memory, the memory required in the

Bindings and RESTlets 87

BSS section increases proportionally to the number of observers. However, the

difference between the two approaches is only 38 bytes per observer for the two

cases.

Table 3-1: Memory Foot Print (Byte).

Num.

Observers

Binding Sensor Non-Binding Sensor

Text Data BSS Total Text Data BSS Total

0 47,829 306 5324 53,459 46,453 306 5166 51,925

1 47,829 306 5580 53,715 46,453 306 5384 52,143

2 47,829 306 5836 53,971 46,453 306 5602 52,361

3 47,829 306 6092 54,227 46,453 306 5820 52,581

4 47,829 306 6348 54,483 46,453 306 6058 52,797

Despite the slight increase in memory footprint, the code can still fit in constrained

devices. Given the advantage of the binding solution, the increase in memory

footprint is acceptable and the binding solution is viable to be applied in

constrained devices. However, this does not come without a limitation. An

increased number of bindings leads to an increase in memory space requirement.

The BSS section of both solutions in the table shows that when the number of

observers increases, the size of the BSS increases as well because at boot time the

program always reserves the maximum amount of memory needed to store all

potential observers. As memory is a very scarce resource of constrained devices,

this will limit the number of observers allowed to register simultaneously and thus

the number of bindings that can be supported. Here the gateway/cloud solution has

an advantage since it may achieve scalability by aggregating multiple observe

requests at the gateway avoiding one to one relationships between multiple

actuators and a sensor.

B. Packet Size

LLNs have a low Maximum Transmission Unit (MTU). Large packets whose size

exceeds the MTU go through a fragmentation/defragmentation cycle from the

source all the way to their final destination. This behaviour negatively affects the

performance of the network. Therefore, the resulting packet size is a very

important parameter when discussing the performance of new solutions.

Moreover, fragmentation also comes at the expense of an increased delay. The

packet size at the application layer for CoAP based communication can be

calculated as:

PacketSize = Sizeof(CoAP-Header) + Sizeof(Token) + Sizeof(options) +

Sizeof(payload)

 where:

Sizeof(CoAP-Header) = 4bytes, Sizeof(Token) = 0 to 8 bytes

88 Chapter 3

Size of (Options) differs from packet to packet depending on the number and type

of CoAP options being included in the packet. For example, Observation requests

include the Observe Option, which has a maximum length of four bytes. The Uri-

Path option and payload greatly vary depending on the resource identifier and the

data to be communicated. For the URI path, we assume the simplified IPSO

Application Framework [3.17] resource names. For instance, for a button

associated with a light switch (sensor) the URI path becomes /gpio/btn, which will

be transmitted as two Uri-Path options with a total length of nine bytes (one byte

for every option plus the length of both segments “gpio” and “btn” in the URI).

Most of these values are common for all types of communication so they do not

impact the comparison between the two methods. The real difference between the

two solutions can be seen at the relationship initiation packet. In case of the non-

binding solution the options that are minimally needed are Observe (one byte) and

Uri-Path (nine bytes for /gpio/btn). Including the CoAP header (four bytes) and

the token (one byte in this example), the total packet size will be 15 bytes.

However, for direct bindings, the initial packet includes four additional binding

options containing the information on how to trigger the actuator. Therefore, the

number of additional bytes required, BByte is given by:

BByte = Sizeof (BIND_URI_HOST) + Sizeof (BIND_URI_PORT) + Sizeof

(BIND_URI_PATH) + Size of (BIND_PAYLOAD)

where:

Sizeof(BIND_URI_HOST) = O + 16 /*IPv6address*/

Sizeof(BIND_URI_PORT) = O + 2 /*Optional. Default CoAP Server port is

used*/

Sizeof(BIND_URI_PATH) = Sumof(S um of (O + size of (path_segment i))

with i going from 1 to # of path segments:

Sizeof(BIND_PAYLOAD) = O + X

In the above formula, O is the number of bytes needed for encoding the option

delta and option length (between one and five bytes, but one in most cases). The

value X depends on what we want to transmit in the payload. In our example, we

send a single byte information and hence X is equal to 1. Further, we assume the

actuator uses the default CoAP server port. Using this formula, the additional

number of bytes required for our example is given by BByte = 19 + 6 + 2 = 27 Bytes.

Considering the 15 common bytes, the total packet size for the binding solution

will be 42 bytes. Even if the packet size of the binding solution is bigger than the

one of the gateway-based solution, it does not affect the network performance at

all. First, this request is sent only once in order to establish the relationship. Once

the binding has been established, there is no further communication of this size.

Had it been the packet size of the notification, it would, indeed, impact the network

negatively. In addition, the packet size is yet in the limit of the LLNs MTU, being

Bindings and RESTlets 89

127 bytes at the MAC layer. Hence, no fragmentation will be applied that

negatively affects the network performance.

C. Communication Delay (Latency)

Delay is an important parameter to compare the performance of different solutions.

The route packets take to reach destination plays an important role in determining

the communication delay. The route, in turn, depends on the network topology.

Therefore, we need to consider different topologies to compare latencies between

the two approaches. In this experiment, we considered four topologies as shown

in Figure 3-15.

Figure 3-15: Topologies: (a) Sensor and actuator in different branch of the tree;

(b) Actuator between Sensor and Gateway—directly connected; (c) Actuator

between Sensor and Gateway after 1 hop; (d) Sensor between Actuator and

Gateway after 1 hop.

For all topologies, the latency is computed as the time difference between the

occurrence of the event at the sensor and the reception of the PUT packet by the

actuator. From the results depicted in Figure 3-16, we can see that in all cases the

gateway/cloud based solution has a significantly higher latency compared to the

binding solution. This is expected as all sensor events are sent all the way to the

gateway and triggers come down to the actuator in the non-binding solution. This

increased number of hops introduces significant delay in the overall

notification/trigger cycle. The delay will be even more pronounced for larger

networks.

90 Chapter 3

Figure 3-16: Communication Delay (ms) vs. Topology

For our solution, the number of hops, and hence the delay, depends on the routing

protocol. As we mentioned earlier, we used RPL as routing protocol. In RPL, the

furthest the packets travel is until the common parent of the sensor and actuator.

The closer the sensor and actuator, the less delay is introduced. The Cooja

screenshots (Figure 3-17) confirms this statement. The blue arrows in the left of

Figure 3-17a show that the interaction is direct between node 2 and 3 while that of

Figure 3-17b shows that the interaction goes through the border router. The shaded

part in the right shows the route the packets take from the sensor to its ultimate

destination (the actuator).

Bindings and RESTlets 91

Figure 3-17: Sensor-Actuator Interactions. (a) Binding (b) Gateway/Cloud-Based

Solution.

D. Number of Packets

An increased number of packets in constrained networks lead to an increased

power consumption at each router node and more delay. Therefore, looking at the

number of packets generated by the two solutions that strive to achieve the same

goal is a good performance measure to compare both solutions. As every

notification goes through the gateway, the gateway-based solution creates one

additional packet for every notification. If the packets are sent as confirmable

requests, this number will be doubled. As the number of sensors and actuators

increases, the number of packets generated will also increase significantly. In

dynamic systems where notifications are generated frequently, the number of

packets being generated gets higher and higher.

92 Chapter 3

3.6.4.b Performance Evaluation of RESTlet

Several tests were conducted to evaluate the performance of RESTlets. In all tests,

we considered latency to be the most important performance factor that needs to

be compared. We used different topologies, number of nodes, and data processing

entities.

A. Impact of RESTlets

Data processing performed in the LLN by RESTlets introduces delay but reduces

the number of packets in the network. We used a fixed topology (Figure 3-18) to

mathematically evaluate the impact of RESTlets at the RESTlet node (labeled RN

in the figure). In this scenario, data may be sent from the sensor nodes, labeled S,

and pass through the RESTlet node before going out to the LLN gateway or the

cloud. We compared the RESTlet case, where processing is done by the RESTlet

node and No-RESTlet case, where the processing is done elsewhere (at the

gateway or in the cloud). In the No-RESTlet case, node RN is used as a router

only. Whenever a packet arrives, it just processes it in order to determine the next

hop address after which it is forwarded to the next hop.

Figure 3-18: Network Topology

Therefore, in the No-RESTlet case, the total packet processing and forwarding

time at the node RN is given by:

Tp = Tx + TF1 + (TD1 + Tx + TF2) + … + (TDn + Tx)

where:

Bindings and RESTlets 93

 Tp is total packet processing and forwading time.

 Tx is packet processing time (from the experiment we found out that this

value is 6 ms)

 TDi is time delta between the arrival of two consecutive data packets from

two different senders (if only 1 data sender, this value is 0). This value is

variable.

 TFi is Packet forwarding time (calculated as the arrival time of the packet

at the next hop minus the time the packet was ready to be sent out). This

value is also variable.

So for n data generating nodes:

𝑇𝑝 = {

𝑇𝑥 + 𝑇𝐹0, 𝑛 = 1

𝑇𝑥 × 𝑛 + ∑ 𝑇𝐷𝑖 + ∑ 𝑇𝐹𝑖

𝑛

𝑖=1

𝑛

𝑖=2

, 𝑛 > 1

On the other hand, in the RESTlet case, the node is expected to do other processing

too. First of all, it has to unpack the CoAP packet to get the data and store it

provisionally. Secondly, it waits for subsequent packets if more than one data

sender node exists. Thirdly, it has to perform processing and generate output.

Finally, a new packet is generated and forwarded to the next hop. Therefore, the

total packet processing and forwarding time at the RESTlet node, Tp, is given by:

Tp = Tx + (TD1 + Tx) + … + (TDn + Tx) + TNPG + TF
where:

 Tp is total packet processing and forwarding time.

 Tx is packet processing time. (From the experiment, we found out that

this value is 22 ms and the RESTlet function we considered was

AVERAGE. Other processing functions may yield different results).

 TDi is time delta between arrivals of two consecutive data packets from

two different senders (if only 1 data sender, this value is 0). This value

is variable.

 TF is packet forwarding time (calculated as the arrival time of the packet

at the next hop minus the time the packet was ready to be sent out). This

value is also variable.

 TNPG is time required to generate new packet (from the experiment we

found out that this value is 14 ms).

So, for n data generating nodes,

𝑇𝑝 = {

𝑇𝑥 + 𝑇𝑁𝑃𝐺 + 𝑇𝐹, 𝑛 = 1

𝑇𝑥 × 𝑛 + ∑ 𝑇𝐷𝑖 + 𝑇𝑁𝑃𝐺 + 𝑇𝐹

𝑛

𝑖=2

, 𝑛 > 1

94 Chapter 3

In order to compare both results, we can say that TDi is the same for both cases

and can use an average constant number for simplicity. However, the value of TFi

is different among different packet transmissions. From the experiments, we

observed that the data forwarding interval ranges between 20 ms and 140 ms.

Moreover, all experiments showed that the processing time at node RN, Tx, is 6ms

and 22ms for the No-RESTlet case and the RESTlet case, respectively. The new

packet generation time, TNPG, for the RESTlet case was also found to be 14ms. In

order to see the difference in terms of processing time, we used the following

simplified formula by using the aforementioned values as an average:

For No-RESTlet case (for n number of data generating nodes):

Tp=6ms × n+TD+(TFi × n)

For RESTlet case (for n number of data generating nodes):

Tp=22ms × n+TD+14ms+ TFi

This enables us to calculate the resulted packet processing time for a varying

number of data generating nodes (1, 2, 3, 4 and 5). Figure 3-19 depicts the result

in graphs for both approaches using different TFi values.

Bindings and RESTlets 95

Figure 3-19: Packet Processing and Forwarding time at RESTlet Node for

Various Number of Data Generating Nodes

Figure 3-19 shows that when the number of data generating nodes becomes more

than one, the delay introduced by processing incoming packets by RESTlets

becomes less important. For congested networks, which are characterized by

larger TFi values, the advantage will become more pronounced. This is due to the

fact that the RESTlets only generate a single packet after processing (or no packet

at all depending on the type of processing) whereas the No-RESTlet case blindly

forwards all the packets it receives which will be subject to large forwarding times.

B. End to End Latency with Multiple Data Nodes (Impact of Number

of Nodes)

96 Chapter 3

In the previous subsection we mathematically showed that the reduced number of

packets that results from the aggregation process by RESTlets compensates for the

processing delay introduced by the RESTlets and result in better latency. To prove

this concept, we measured the actual end-to-end delay from data generating nodes

all the way to the border router. We used the topology shown in Figure 3-18

(above). The data nodes generate data every five seconds that will go to the border

router. In the RESTlet case, all data is sent to the RESTlet node (RN) which

processes the data and generates a new packet destined to the border router. The

new packet is generated either upon arrival of data from all data nodes or within

five seconds interval, depending on which condition is met first. The end-to-end

latency is calculated as the difference between the data generation time of the first

node and the arrival of the new packet at the border router. On the other hand, for

the No-RESTlet case, all data is sent directly to the border router by traversing the

RESTlet node as a router. In this case, the end-to-end latency is computed by

taking the difference between the data generation time of the first data node and

the arrival time of the last data packet at the border router. We run the tests by

sending the packets as CONfirmable and NON-confirmable requests. Figure 3-20

shows the results.

Figure 3-20: Impact of Number of Data Generating Nodes on End-to-End

Latency. (a) Confirmable Communication; (b) NON-Confirmable Communication.

For both CON and NON transactions, the RESTlet case results in a reduced

latency compared to the No-RESTlet case. The difference is significantly higher

for the confirmable case when the number of data nodes is higher. In the no-

RESTlet case, all data packets are forwarded to the border router which is expected

to produce ACKs for all. This results in an increased load on the border router and

hence increased latency. Even if the processing is done by an external more

powerful device such as the gateway, still all requests, acknowledgements and

responses have to go through the border router and contribute to the increased

overall latency of the NON-RESTlet case. In the experiments we conducted, we

made two interesting observations. When the transaction is CON, there were a

number of duplicate packets and out of order arrivals especially when the data

Bindings and RESTlets 97

nodes are more than three. This is much more visible for the NO-RESTlet case

where, out of 75packets sent, there were 28 duplicate packets while for the

RESTlet case there were only 13 duplicates when the number of data generating

nodes is five. The other observation is the difference in packet loss between NON

and CON transactions. As expected, the NON transactions suffer from packet loss

in both RESTlet and NO-RESTlet cases with staggering 15% and 30% loss,

respectively when the number of data generating nodes is four. Finally, comparing

the CONfirmable and NON-confirmable transmissions of packets, it is not

surprising to see that the CONfirmable messages result in a higher latency as

compared to NON-confirmable transactions. However, when there is large number

of data generating nodes, the latency difference gets smaller for NON-confirmable

transactions. The reason is the higher rate of packet loss forces the processing of

packets to be made at the end of the five second interval.

C. Impact of Other Nodes

Under normal working conditions, other communications may take place inside

the LLN that may interfere with the interactions under consideration. To study the

impact of such side traffic, we added another node that sends packets every 500

ms to the border router (Figure 3-21). The result is depicted in Figure 3-22. As

expected, due to the additional packets at the border router, the latency has shown

some increase.

Figure 3-21: Network Topology including a Node Generating Side Traffic.

98 Chapter 3

Figure 3-22: Impact of Side Traffic on Latency. (a) CONfirmable; (b) NON-

Confirmable transaction

D. Impact of Difference of Data Arrival Time

All the above tests showed that, the higher the number of packets that are being

generated and transmitted inside the constrained network, the performance of both

solutions, especially the NO-RESTlet solution, suffers. We run additional tests to

observe the impact of the data arrival time difference on the latency by inserting

an artificial gap in the data generation at the sensor nodes. All data generation

nodes are made to generate data randomly between 0 ms and a maximum interval

(this represents real world cases where multiple sensors observe the same physical

phenomenon almost simultaneously). We used 500, 1000, 1500 and 2000 ms as

maximum interval. The topology used is the same as the first test (Figure 3-18).

We also run the experiment to observe the impact for number of data generation

nodes. As can be seen in Figure 3-23, when there is no data generation gap (0 ms

gap), the NO-RESTlet solution has much higher latency in most cases. The

frequent arrival of packets at the border router creates congestion at the node. Due

to the limited queue size of the constrained nodes, some packets will be dropped

requiring retransmissions. This is the reason for the significantly high latency at 0

ms gap. When we look at the general trend in all graphs, the latency for both cases

reduces until 1000ms data generation gap and starts rising slightly after that. The

reason is simple. The introduction of artificial delays at the sensor node results in

an additional delay in the end-to-end transmission. This means, the performance

gain obtained by separating the arrival times will be countered by the artificial

delay and as a result the overall latency starts to rise.

Bindings and RESTlets 99

Figure 3-23: Impact of Packet Arrival Time Gap on Latency

E. Impact of Noise

Under normal working conditions, sensor and actuator nodes suffer from

interference from other sources. This might create loss of packets requiring

retransmissions in case of CONfirmable transmissions which, in turn, leads to

increased latency. NON-confirmable transactions also suffer from increased

latency since every lost packet leads to processing to be delayed until the 5 s

interval is reached. To study the impact of lossy networks on latency, we run tests

by setting the Transmission/Reception (TX/RX) loss from 0% (no loss), 5% and

10% losses. The topology we used is given in Figure 3-24. As the figure shows,

there are three data generating nodes that send packets every five seconds without

any time gap between the data generations. We selected three nodes to avoid the

impact of having too many or too few data nodes which might skew the result to

either side. Too little data generating nodes may influence the result in favor of

NO-RESTlet case while too many nodes favor the other. The test is done both for

CONfirmable and NON-Confirmable transactions.

100 Chapter 3

Figure 3-24: Network Topology for Noisy Networks

It is not a surprise that the results of the experiments in Figure 3-25 show higher

overall latency for the NO-RESTlet case in both CON and NON communications.

However, it is quite interesting to see that the difference between the NO-RESTlet

and the RESTlet cases gets higher at higher TX/RX loss ratios. This indicates that,

our solution is relatively more robust under lossy conditions for both CON and

NON transactions.

Figure 3-25: Impact of TX/RX Reception Ratio on Latency. (a) CONfirmable

Communication; (b) NON-Confirmable Communication.

3.7 Conclusions and the Way Forward

In this paper, we presented two novel concepts that simplify sensor and actuator

interactions and IoT application development by leveraging on CoAP as a protocol

in combination with the Resource Observation extension. The binding concept

effectively enables flexible direct interactions between sensors and actuators

making gateway/cloud based solutions where intermediary devices accept input

from sensors in order to trigger actuators redundant. The proposed solution,

reduces the packet flow to the gateway and hence reduces latency and number of

packets in the LLN compared to gateway or cloud based solutions. Through

Bindings and RESTlets 101

experiments we showed that the overhead (e.g., memory footprint) introduced by

the binding solution is not significant compared to the gateway/cloud based

solutions. In fact, regarding many aspects such as communication delay and

number of packets, the binding solution out performs traditional solutions. We also

showed that this flexibility can be achieved by only making minor changes to the

CoAP protocol and the observe extension. The other novel concept, RESTlets,

builds upon this binding concept. RESTlets are IoT application building blocks

with data and control inputs, processing logic and data output. We showed that by

using RESTlets as IoT application building blocks, we can do in-network

processing and aggregation in order to reduce the number of packets that traverse

the whole LLN to the edge of the network and/or to the cloud which otherwise

would lead to higher latency. We also showed that by interconnecting the data

inputs and outputs of RESTlets to sensor outputs, actuator inputs or other

RESTlets, we can build a complete IoT application within the LLN. Since the

RESTlet approach allows distributed deployment of the processing logic at

different nodes, there will not be too many resource hungry processes on one

single node. It also gives greater flexibility in developing IoT applications by

placing simple processing functionality inside the LLN and more complex one at

the gateway or in the cloud. We ran several experiments in order to evaluate the

performance of our solution by comparing it to traditional gateway-based or cloud

solutions by using a different number of data generating nodes, data generating

gap and TX/RX ratio. In all cases, our solution is capable of outperforming

traditional solutions in terms of latency. Interestingly, the RESTlet solution

provides a very good opportunity to use visual programming techniques to reduce

the IoT application development to a set of drag-and-drop or point-and-click

activities. We do realize that this solution can be optimized further. One possible

optimization could be achieved by looking at cross-layer processing activities.

This is one of the potential areas of work in the future. In this paper, we stored the

RESTlet code in the nodes at compile time which makes it inefficient in case that

node is not selected to host that particular RESTlet. A more optimized solution

would consist of the dynamic deployment of selected RESTlets at run-time. This

is another area for future work. Optimal placement of RESTlet nodes in the

network is also another future research topic. From the experiments we conducted,

we found out that whenever the RESTlet is closer to the data generating nodes, the

RESTlet solution performs better. In the future, we will come up with

mathematical models which will lead to optimal placement of the RESTlet nodes.

Acknowledgments:

The research leading to these results has received funding from VLIR-UOS as a

Ph.D. Scholarship to Girum K. Teklemariam through the Inter University

Collaboration (IUC) Program at Jimma University, Ethiopia. Author

Contributions: Girum K. Teklemariam wrote this paper as part of a Ph.D. thesis

102 Chapter 3

under the supervision of Jeroen Hoebeke, Ingrid Moerman, and Piet Demeester.

Floris Van den Abeele put forward several ideas and comments while defining the

binding solution. Conflicts of Interest: The authors declare no conflict of interest.

References

[3.1] Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. RFC4944—

Transmission of IPv6 Packets Over IEEE 802.15.4 Networks. Available

online: http://tools.ietf.org/html/rfc4944 (accessed on 2 May 2016).

[3.2] Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur,

J.P.; Alexander, R. RFC6550—RPL: Routing Protocol for Low Power and

Lossy Networks. Available online: http://tools.ietf.org/html/rfc6550

(accessed on 13 June 2016).

[3.3] Shelby, Z. Embedded Web Services. IEEE Wirel. Commun. 2010, 17, 52–

57.

[3.4] Shelby, Z. RFC 7252 – The Constrained Application Protocol (CoAP).

Available online: https://datatracker. ietf.org/doc/rfc7252/ (accessed on 13

May 2016).

[3.5] Hartke, K. RFC 7641: Observing Resources in the Constrained Application

Protocol (CoAP). September 2015. Available online:

http://datatracker.ietf.org/doc/rfc7641 (accessed on 13 May 2016).

[3.6] Teklemariam, G.K.; Hoebeke, J.; Moerman, I.; Demeester, P. Facilitating

the creation of IoT applications through conditional observations in CoAP.

EURASIP J. Wirel. Commun. Netw. 2013, 177. [CrossRef]

[3.7] Kovatsch, M. Demo Abstract: Human—CoAP Interaction with Copper. In

Proceedings of the 7th IEEE International Conference on Distributed

Computing in Sensor Systems (DCOSS 2011), Barcelona, Spain, 27–29

June 2011.

[3.8] Shelby, Z.; Vial, M.V. CoRE Interfaces (Draft-Shelby-Core-Interfaces-05)

(Work in Progress). March 2013. Available online:

https://tools.ietf.org/html/draft-shelby-core-interfaces-05 (accessed on 14

May 2016).

[3.9] ZigBee Alliance. Zigbee Specification; ZigBee Standards Organization:

San Ramon, CA, USA, 2008.

[3.10] Lee, Y.; Liu, H.-S.; Wei, M.-S.; Peng, C.-H. A Flexible Binding

Mechanism for Zigbee Sensors. In Proceedings of the 5th International

Conference on, Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP), Melbourn, Australia, 7–10 December 2009; pp. 273–

278.

Bindings and RESTlets 103

[3.11] Pautasso, C.; Zimmermann, O.; Leymann, F. RESTful Web Services vs.

‘Big’ Web Services: Making the Right Architectural Decision. In

Proceedings of the 17th International World Wide Web Conference

(WWW 2008), Beijing, China, 21–25 April 2008.

[3.12] Guinard, D.; Ion, I.; Mayer, S. In Search of an Internet of Things Service

Architecture: REST or WS-*? A Developers’ Perspective. In Mobile and

Ubiquitous Systems: Computing, Networking, and Services; Springer:

Berlin, Germany, 2011; pp. 326–337.

[3.13] Kovatsch, M.; Lanter, M.; Duquennoy, S. Actinium: A RESTful Runtime

Container for Scriptable Internet of Things Applications. In Proceedings of

the 3rd International Conference on the Internet of Things (IoT), Wuxi,

China, 24–26 October 2012; pp. 135–142.

[3.14] Alessandrelli, D.; Patracca, M.; Pagano, P. T-Res: Enabling Reconfigurable

in-Network Processing in IoT-Based WSNs. In Proceedings of the IEEE

International Conference on Distributed Computing in Sensor Systems,

Cambridge, MA, USA, 20–23 May 2013; pp. 337–344.

[3.15] Azzara, A.; Mottola, L. Virtual Resources for the Internet of Things. In

Proceedings of the IEEE 2nd World Forum on Internet of Things (WF-

IoT), Milan, Italy, 14–16 December 2015.

[3.16] Hughes, D.; Thoelen, K.; Horré, W.; Matthys, N.; Del Cid, J.; Michiels, S.;

Huygens, C.; Joosen, W. LooCI: A Loosely-coupled Component

Infrastructure for Networked Embedded Systems. In Proceedings of the 7th

International Conference on Advances in Mobile Computing and

Multimedia (MoMM2009), Kuala Lampur, Malaysia, 14–16 December

2009.

[3.17] Shelby, Z.; Chauvenet, C. The IPSO Application Framework (Draftipso-

App-Framework-04). Available online: http://www.ipso-alliance.org/wp-

content/uploads/2016/01/draft-ipso-app-framework-04.pdf (accessed on 1

August 2016).

[3.18] Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A Lightweight and Flexible

Operating System for Tiny Networked Sensors. In Proceedings of the 29th

Annual IEEE International Conference on Local Computer Networks,

Tampa, FL, USA, 16–18 November 2004; pp. 455–462.

[3.19] Kovatsch, M.; Duquennoy, S.; Dunkels, A. A Low-Power CoAP for

Contiki. In Proceedings of the 8th IEEE International Conference on

Mobile Ad-Hoc and Sensor Systems (MASS 2011), Valencia, Spain, 17–

22 October 2011; pp. 855–860.

4
Dynamic Deployment of RESTlets

on Constrained Devices

In the previous chapter, we introduced RESTlets as IoT application building

blocks that can be hosted by any device including the constrained devices. The

main limitation of our initial design of this concept for constrained devices, was

that RESTlets had to be defined first on the device hosting them, after which they

can be instantiated many times. Such a static definition of RESTlets on constrained

devices implies that even if we do not need their functionality, they remain on the

device and take up memory. This situation is not favorable for constrained objects.

Therefore, in this chapter, we introduce a dynamic RESTlet deployment

mechanism on constrained devices.

Girum Ketema Teklemariam, Floris Van den Abeele, Peter Ruckebusch,

Ingrid Moerman, Piet Demeester, Jeroen Hoebeke. Dynamic Deployment of

RESTlets on Constrained Devices. Submitted to International Journal of

Distributed Sensor Networks May 2017.

106 Chapter 4

Abstract: CoAP-based IoT applications can be developed in a distributed manner

by using enablers such as RESTlets and Bindings. RESTlets accept inputs and

produce outputs by defining processing logic of an IoT application. It can be

hosted either on a constrained device or on non-constrained devices. Development

of the IoT application is completed by interconnecting sensors, actuators and

RESTlets by establishing a CoAP observe relationship among these components.

This is what we call binding. Instead of deploying the RESTlets on constrained

devices statically, we provided a mechanism of dynamic deployment of RESTlets

on constrained devices, where they are deployed at run-time. Potential hosts are

configured with a dynamic loader resource, which accepts dynamic modules sent

through the CoAP Block-wise transfer method. Once all the blocks are accepted,

the Contiki Dynamic Loader loads them in memory. The mechanism adds

significant flexibility to development of distributed IoT applications.

4.1 Introduction

The term Internet of Things (IoT) has become a catch-phrase in just less than two

decades of its first use by Kevin Ashton in 1999 [4.1]. There is no single definition

for IoT yet. As per the recommendations of ITU-T Y.2060, ITU-T defines IoT as

an infrastructure that “enables advanced services by interconnecting (physical and

virtual) things based on existing and evolving interoperable information and

communication technologies [4.2]. [4.3] defines IoT as scenarios where

connectivity and processing capacity is extended to smart objects allowing them

to generate and use data with minimal human intervention. These two definitions

stress that there will be interconnections between the physical world (the “things”)

and the virtual world using a plethora of technologies that needs to be

interoperable. According to the definitions, autonomous operation is also key to

the IoT concept where the “things” generate, exchange and use data with minimal

human intervention giving more emphasis to Machine-to-Machine interactions in

IoT systems. Such IoT systems are gaining more and more attention. Gartner Inc.

identifies IoT as one of the top 10 strategic technology trends for the past 5 years

[4.3]–[4.8]. There are also predictions that put the number of interconnected

devices (“things”) to be more than 20 billion according to Gartner [4.9], and 50

billion according to Cisco and Ericsson [4.10], [4.11].

Due to the rapid growth of various technologies, different means of

communications were introduced to realize the IoT vision. Most of these solutions

have been developed keeping specific applications in mind since different

application areas yield different constraints and requirements. This balkanization

of efforts leads to vertical silos where “things” designed for one application (or

designed by one manufacturer) cannot interact with applications or “things”

coming from a different vendor. This limitation is a big challenge that needs to be

Dynamic Deployment of RESTlets on Constrained Nodes 107

overcome in order to fully realize the IoT Vision where every “thing” is

interconnected.

We may look at the problem from either an IoT application development

framework perspective or a technology choice perspective. Absence of

standardized development platforms force vendors to use proprietary solutions

that are based on custom designed protocol stacks and communication modalities.

Most of the “things” in the IoT paradigm are devices that have constraints in terms

of memory capacity, processing and communication power. Due to this reason,

vendors are tempted to come up with their own proprietary communication

protocols among these devices leading to disjoint networks that cannot directly

communicate with each other. As a result, vendors are forced to use (proprietary)

gateways to interconnect their own set of devices with the Internet. This approach

poses a serious interoperability issue if there are devices from multiple vendors in

the same network. As a solution to this problem, IETF has been active in providing

standardized communication protocols that are suitable for the constrained

devices. 6LoWPAN [4.12], RPL [4.13], and CoAP [4.14] are some of the

standards proposed by IETF to address these issues. In general, such

standardization initiatives and efforts lead to the realization of IoT applications

that can span across application areas and across different platforms.

To avoid the vertical silos and ensure fully connected IoT devices and applications,

it is vital to use standardized protocols to build IoT applications. In this paper, we

present a dynamic and CoAP-based distributed IoT application development and

configuration model that can be deployed in the constrained network or low-power

and lossy network (LLN), at the Gateway and/or in the cloud. It essentially breaks

down IoT data processing into chains of processing blocks that can be distributed

over all levels of an IoT system. At the heart of this model lies the concept of

RESTlets, application building blocks that take input and produce outputs after

performing some processing tasks. They also contain control parameters that can

be used to configure the RESTlets dynamically at runtime. The RESTlets can be

assigned to receive inputs from sensors (and other RESTlets) and send out their

outputs to other RESTlets and/or devices (e.g. Actuators) using direct bindings.

All interactions are realized by using the standardized CoAP protocol in order to

achieve interoperability with limited overhead. A major challenge, however, is the

dynamic deployment of such RESTlets in order to alter the way how data is being

generated and processed down to the level of the most constrained devices.

Assuming that application needs may change over time, it must be possible to alter

the application level behavior of constrained devices during their lifetime. Our

contribution is a system that dynamically deploys RESTlets at runtime offering

significant flexibility for the deployment and configuration of RESTlet-based IoT

applications. To validate our solution, we demonstrate how the concept of

108 Chapter 4

Conditional Observation can be implemented using RESTlets which would

otherwise require protocol modification.

The remainder of the paper is organized as follows. Related work in IoT

application deployment and configuration options are discussed in the next section

followed by a section that briefly describes RESTlets and Bindings, which are

enablers for the distributed IoT application development. How conditional

observation can be implemented using RESTlets is also discussed in this section.

The fourth section describes RESTlet based IoT application development

architecture and dynamic deployment of RESTlets in greater detail and explains

how this concept can be used to implement conditional observation. The fifth

section discusses results of functional and performance evaluations. The last

section gives conclusion and indicates the way forward.

4.2 Related Work

As mentioned earlier, “things” in IoT applications are interconnected and should

have the capacity to generate, exchange and consume data without (or with

minimal) human intervention making Machine-to-Machine (M2M)

communication a crucial component of IoT applications. Embedded Web services

are considered to be an excellent mechanism for M2M communication [4.15].

They are tailored to constrained devices as they have very small communication

overhead. One such a protocol is the Constrained Application Protocol (CoAP)

[4.14]. CoAP is an open standard proposed by the IETF Constrained RESTful

Environment (CoRE) working group. It is similar to HTTP in that it enables a

RESTful approach where nodes expose their data as resource representations that

can be accessed by GET, POST, PUT and DELETE methods [4.16]. Unlike HTTP,

it uses UDP at the transport layer to avoid the overhead introduced by TCP. If

reliability is required, packets can be transmitted as confirmable messages, which

should be acknowledged by the receiver. In many IoT applications, data is

generated by some nodes and is sent out to other nodes or to a central location.

Resource observation is an important extension of CoAP that lets clients register

their interest in resource state changes. As a result, the server will send

notifications to the registered clients whenever there is a state change of that

resource. Conditional observation [4.17], [4.18] further optimizes the observation

by including notification criteria that tell the server to only send notifications when

the criteria is met. This way, the number of packets in the network is significantly

reduced especially in environments where small and insignificant changes in

resource state are frequent.

Among the plethora of IoT applications that make use of web-services, a number

of them are cloud-centric where the responsibility of the constrained devices is

Dynamic Deployment of RESTlets on Constrained Nodes 109

limited to sending sensed data and/or affecting their environment [4.19]. In such

systems, the entire intelligence of the applications resides in the cloud. In many

cases, the results of the computations performed in the cloud are sent back to the

constrained network. An alternative approach is performing some processing at

the edge [4.20] or in the constrained network [4.21]–[4.24].

One of the challenges for using in-network processing for IoT applications is

related to the flexible deployment and configuration of the IoT components that

reside in the constrained network. [4.25] proposes a mobile phone based system

which collects data from a variety of sensors and communicates the information

to the application component in the cloud. This method relieves the

communication burden of the nodes and also provides the possibility for the

mobile phone to do prior filtering, if needed, before communication. This is

considerably different from our work which focuses on dynamically deploying the

IoT application development components anywhere in the network so that

processing can take place in the constrained network, at the gateway or in the

cloud. Another work on dynamic deployment is [4.26] which proposes a

framework for IoT application development by delegating processing of some of

the business logic to the edge of the constrained network. The framework targets

the constrained network gateways and managing them. The framework provides

the ability to deploy application components dynamically at several gateways and

systematically manage them so that a large number of gateways, and hence a large

number of constrained devices, are easily managed. Our work, however, allows

the constrained nodes to do simple processing tasks.

4.3 RESTlets and Bindings

As mentioned before, in IoT applications, data processing can be done in the LLN,

at the gateway or in the cloud. In this section, we will briefly explain how

RESTlets are used to process data in the network and how they can be

interconnected with each other and with other devices to build distributed IoT

applications. Detailed description and evaluation of RESTlets and Bindings can

be obtained in [4.27].

4.3.1 RESTlets

RESTlets are IoT application building blocks that accept data inputs and produce

output after processing. They also have control parameters that can be used to

dynamically configure the RESTlets (Figure 4-1). The inputs could be sensor

outputs or outputs of other RESTlets while the outputs can be redirected, as an

input, to another RESTlet, an actuator or a component of the IoT application at the

gateway or in the cloud. A RESTlet can be placed on a node in the LLN or at the

gateway or in the cloud. The processing logic actually defines the type of RESTlet.

110 Chapter 4

On constrained devices we may have simple processing tasks such as averaging

or thresholding while more capable nodes may perform complex tasks such as

sending SMS or feature detection based on sensor data.

Figure 4-1 RESTlet

Using CoAP, we represent data inputs, control parameters and output of RESTlets

as resources that can be manipulated and accessed using GET, POST, PUT and

DELETE methods. In a very generic setup, in order to develop IoT applications

using RESTlets, we first need to break down the problem that the application needs

to address into smaller components and create RESTlets for each component.

Next, we select nodes that will host the different RESTlets and deploy the

RESTlets either dynamically or statically. Static deployment assumes the node

possesses the knowledge on available RESTlet types as well as their

implementation, allowing their on-demand instantiation. The selected nodes could

be constrained devices, the LLN gateway or a component in the cloud. Once the

RESTlets are hosted on devices, we can instantiate the RESTlets as required in

order to make their functionalities available via CoAP resources. Finally, we

interconnect the different components of the application (e.g. sensors, actuators,

and other RESTlets) with each other to finalize the application development.

4.3.2 Bindings

Individual RESTlets are not usable unless the input and output resources are

connected to some data sources and sinks. Sensors and actuators are very common

data sources and sinks, respectively. Outputs of RESTlets can also be used as

inputs for other RESTlets. To achieve such interconnection of components in a

RESTful manner, we use bindings. Bindings are resource observation

relationships between a client and server established by a third-party device that

is not involved in subsequent interactions once the relationship is established. This

is different from the normal CoAP observe mechanism [4.28] where clients

register their observation interest after which they will receive all notifications

themselves. In addition, the mechanism enables the generation of specific CoAP

Dynamic Deployment of RESTlets on Constrained Nodes 111

requests upon the occurrence of a resource state change, instead of simply sending

a CoAP request containing the new state (i.e. a notification).

Figure 4-2: Binding Relationship Establishment

In order to create such flexible direct bindings, we must send a GET request to the

node that hosts the observed resource, which contains the observe option as well

as all details about who should be notified and how. This is done by adding a set

of additional CoAP binding options (IPv6 address, port number, resource URI path

and optional payload). Figure 4-2 illustrates how a binding relationship is

established and how notifications are communicated. The sensor has an observable

resource identified by /s/t and we would like this SENSOR node to notify the first

input resource of the first RESTlet (represented by /restlet/0/in/0) hosted on the

node NODE. To achieve this, we send a GET request that includes the CoAP

observe option along with the binding options to the node [SENSOR] so that the

observer is registered. Once the observer is registered, the SENSOR sends every

resource state change directly to the /restlet/0/in/0 resource on the node NODE.

The binding request may be sent from any device connected to the Internet only

once. All subsequent notifications do not involve the binder. The binding

relationship can also be between a sensor and an actuator (e.g. a wireless light

switch and a wireless light bulb.) A detailed description of the implementation and

evaluation of bindings is given in [4.27].

112 Chapter 4

4.3.3 Example 1 – Sample IoT Application

Figure 4-3: RESTlet-based IoT Application

To give a concrete view of the whole process, we consider the example of a simple

home automation application that turns on/off the AC of an occupied room based

on the average temperature of the room. Temperature values are obtained from

three sensor nodes placed in the room and occupancy information is obtained from

a motion sensor. Figure 4-3 shows a block diagram that shows how this can be

achieved using RESTlets. For this simple IoT application, we need two RESTlets.

The first RESTlet that performs the averaging has 3 inputs (each associated with

a temperature sensor), an output and a control parameter (that indicates the cut-off

point). The second RESTlet, AND (having 2 inputs and 1 output) performs a

logical AND operation on the output of the AVERAGE RESTlet and the value

obtained from the motion sensor. The output of this second RESTlet is connected

to the actuator. Assuming that the first temperature sensor (T1) hosts the

AVERAGE RESTlet and the motion sensor (M) hosts the AND RESTlet, the

following sequence of CoAP requests will complete programming of the IoT

application.

Dynamic Deployment of RESTlets on Constrained Nodes 113

Figure 4-4: Statements to Create RESTlet-based IoT Application

Figure 4-4 shows list of statements needed for the creation of the RESTlet-based

IoT application. The first two statements create the RESTlets on the nodes T1 and

M while the third statement initializes the first control parameter of the AVG

RESTlet to 25. Statements 4 through 7 bind the sensor outputs to the respective

inputs of the RESTlets. Statement 8 associates the output of the AVG RESTlet (on

node T1) to the first input of the AND RESTlet (on node M) while the last

statement binds the output of the AND RESTlet with a resource on the actuator

(A).

4.3.4 Example 2 – RESTlets and Conditional Observe

Conditional observation [4.17], [4.18] extends the CoAP observe option by giving

server-side filtering possibility. This feature is realized through the definition of a

new Condition option. Clients include this newly introduced Condition option

along with the Observe option to specify their observation interest and criteria of

notification. The condition option (Figure 4-5) could be between 1 to 5 bytes in

size. The five most significant bits of the most significant byte, labeled CT in the

figure, are used to indicate the condition type, allowing 32 possible condition

types. The RF bit is a reliability flag indicating whether the response should be

sent as a confirmable or non-confirmable message. The last two bits indicate the

data type of the value. Currently, there have been 3 types identified, namely,

integer, float and duration. The following bytes, if available, are the actual filtering

conditions or threshold values.

114 Chapter 4

Figure 4-5: Conditional Observe Option Format

All interested observers register their interest along with the filtering criteria by

sending a CoAP observe request to the server by setting the appropriate values for

the Condition Option. Once the registration process is complete, the server checks

if the condition is met before notifying the observer whenever there are resource

state changes.

Figure 4-6: Conditional Observation Processing Logic Flow-chart

Conditional observe is beneficial in order to reduce the number of messages

exchanged in the constrained network. However, it requires an extension of the

CoAP protocol, i.e. the implementation of the Condition option on all involved

devices (clients and servers). As an alternative, the RESTlet concept can be used

to emulate the conditional observe functionality by defining a RESTlet that

changes its output only when a certain condition is met. The RESTlet will have at

least 1 input, a control parameter and at least 1 output. If multiple sensors exist on

a single node, we can simply increase the number of inputs, controls and outputs,

enabling the behavior for multiple sensors. Moreover, if clients are interested in

different condition values of the same sensor, we have to use a different control

parameter and output set. The input of the RESTlet will be associated with the

sensor output, i.e. the measured value. The control parameter holds the

information that is normally stored in the Condition Option. Changing the value

Dynamic Deployment of RESTlets on Constrained Nodes 115

of the control parameter at runtime (using PUT requests), effectively changes the

RESTlet behavior by changing any of the condition option components. The

processing logic detects the condition type and performs the appropriate filtering

on the data to decide whether the new output needs to be communicated to

observers or not as shown in the flow chart (Figure 4-6). As a result, similar

functionality is achieved without requiring any extension to the CoAP protocol.

This is a clear example of how the RESTlet concept can be used to enrich the

functionality of a node, after deployment and depending on the needs of an

application.

4.4 Architecture and Dynamic Deployment of

RESTlets

In IoT systems that use web services (e.g. CoAP), data is generated by constrained

nodes to be consumed by other devices. The data may have to be processed before

it is used. In a generic system, data processing can be done by different devices

based on the device capacity and the requirements of the application (Figure 4-7).

As shown in the figure, we may see different approaches in IoT application

development. In the first approach, data is processed inside the constrained

network by selected constrained nodes. This may be achieved by performing

simple processing or aggregation tasks by the constrained nodes and possibly

consuming the resulting data within the constrained network. A completely

opposite approach is a cloud-centric [4.29] approach where every piece of data is

sent to the cloud for processing and the result is sent back to the constrained

network if required. Processing can also be done at an intermediate location such

as a gateway. Conditional observation mentioned in the previous paragraph is an

example of In-Network processing while Actinium [4.30] is a cloud centric

solution.

116 Chapter 4

Figure 4-7: Generic IoT System

As discussed above, the RESTlet concept can be used to realize such generic IoT

systems. One possible architecture to realize such a generic IoT system using

RESTlets is given in Figure 4-8. The generic RESTlet architecture shown in the

figure illustrates different constituent parts of a RESTlet-based system as it resides

on a single node.

Figure 4-8: Generic RESTlet Architecture

Depending on its capacity, a node may have multiple RESTlets, each RESTlet

having its own processing logic and associated interfaces as CoAP resources. We

may have different options for deployment (static vs. dynamic) and instantiation

of the RESTlets. The RESTlet management module takes care of these tasks. If

the RESTlet template already exists on the node, the RESTlet management module

just sends instantiation message to the operation module so that the required

resources are created. Alternatively, if new RESTlets are required, the

management module dynamically deploys the RESTlet and informs the details of

the new RESTlet to the operation module. If necessary, the dynamically deployed

RESTlet can be instantiated immediately. The RESTlet operation module provides

interfaces to use CoAP methods to interact with RESTlet resources. The RESTlet

Dynamic Deployment of RESTlets on Constrained Nodes 117

CoAP resource management part of the RESTlet operation module performs tasks

such as creating of RESTlet CoAP resources when a RESTlet is instantiated while

the CoAP request/resource handler responds to requests. Whenever a request

arrives, the data and control parameters are sent to the RESTlet which returns the

output after processing the data. The handler then sends out the processed output

to the client. A list of instantiated RESTlets should also be maintained to keep

track of all available RESTlets and their instances and make them ready for

discovery. The RESTlet Registration and Discovery components of the RESTlet

operation modules accomplish this task.

In such generic systems, a CoAP resource, named /restlet, may be used as both a

management interface for instantiating new RESTlets as well as an entry point to

the RESTlets that are already defined (or deployed) on a node. Sending a CoAP

POST request to this resource by specifying the name of the RESTlet, the number

of inputs, outputs and control parameters as a payload instantiates the RESTlet.

This implies that a new CoAP resource is created and activated for each input,

output and control parameter. The resulting resources may be accessed in a way

that uniquely identifies the specific RESTlet instance and its interfaces. For

instance, the resource /restlet/0/in/1 may refer to the second input resource of the

first RESTlet and /restlet/1/con/2 may refer to the third control parameter of the

second RESTlet. Further lookups may be used to reveal the names of the RESTlets

(which is not actually required for the IoT application development). A RESTlet

may be instantiated multiple times depending on the application. For instance, the

AVERAGE RESTlet may be defined twice on a node to compute the averages of

two different sets of sensor readings. Once a RESTlet has been instantiated, further

interactions can be made to the resources by sending GET and PUT requests to

specific resources. For example, a PUT request sent to the /restlet/0/in/1 will

update the second input resource of the first RESTlet while a GET request to

/restlet/0/out/0 results in a response with the current representation of the first

output of the first RESTlet. Changes in input may result in calling the processing

logic which in turn may result in new output(s). Outputs are made observable so

that changes are immediately communicated to observers. PUT requests sent to

the control parameters may be used to configure the RESTlets by changing some

RESTlet parameters at runtime. DELETE may be used to remove a RESTlet

instance along with its resources or delete a specific resource of an instantiated

RESTlet (e.g., an input resource of a RESTlet).

However, due to the fact that RESTlets can be placed on various devices with

different capabilities and lack of a priori knowledge of RESTlets required for an

application, a single implementation option of this architecture leads to inefficient

IoT applications. High level implementation possibilities of such a RESTlet

architecture are given in Figure 4-9.

118 Chapter 4

(a)

(b)

Dynamic Deployment of RESTlets on Constrained Nodes 119

Figure 4-9: Implementation Options of Generic RESTlet Architecture. a) Static. b)

Template Based. c) Dynamic. d) Hybrid

Figure 4-9a depicts a static implementation where all RESTlets and RESTlet

instances the IoT application needs are known and are hard-coded. In this

approach, all RESTlets are compiled into the application and will be instantiated

when the application is loaded. Therefore, there is no need for RESTlet

management module since deployment and instantiation is already done. A

relatively flexible implementation option is given in Figure 4-9b. In such template

based implementations, the templates of the RESTlets that might be needed are

already loaded into memory along with the application. But, instantiation is done

only if there is a need for an instance of a specific RESTlet template. Multiple

instantiations of the same RESTlet template is also possible. For such solutions,

RESTlet instantiation API must be provided to interact with the RESTlet

management module to enable instantiation at run-time. In cases where a priori

knowledge of required RESTlets doesn’t exist before hand, dynamic deployment

(c)

(d)

120 Chapter 4

is a better solution. The application will be loaded without RESTlets but APIs for

deployment of RESTlets will be provided (Figure 4-9c). When the need arises, a

RESTlet will be dynamically deployed and instantiated immediately. This is a very

flexible option that can be implemented on a very constrained device too. The last

implementation option, shown in Figure 4-9d, is a hybrid system which supports

every possible method of using RESTlets. Pre-defined RESTlet templates can be

instantiated at loading time or on-demand. In addition, new RESTlets can be

created dynamically on the fly. The dynamic RESTlets can also be instantiated

immediately after loading or later-on. To provide this flexibility, both deployment

and instantiation API’s needs to be provided.

The Need for Dynamic Deployment

The previous subsection described a generic architecture for the RESTlet concept

that can be implemented on a constrained or non-constrained device. The static

and template based mechanisms require nodes to already define the RESTlets

statically as part of their firmware or code base. However, due to the resource

scarcity of constrained devices, a priori definition and subsequent instantiation of

multiple RESTlets may be too heavy for nodes with significantly small memory.

In addition, static deployment and instantiation is not flexible as it may require

flashing of the whole firmware of a node just to add a new RESTlet to it. Therefore,

a better option for constrained devices is to dynamically deploy and instantiate

RESTlets on selected nodes at runtime.

Dynamic deployment is a better alternative for non-constrained devices too, but

for a whole different reason. Due to the distributed nature of RESTlet-based IoT

applications, we do not have prior information about which REStlets are best

hosted on which device. It is not also feasible and efficient to define all possible

RESTlets on all involved non-constrained devices beforehand. This also calls for

dynamic deployment options that allow dynamic creation and removal of

RESTlets.

4.5 Implementation and Evaluation

4.5.1 Implementation of Dynamic RESTlets on Constrained

Devices

As this work is a continuation of earlier work on bindings and RESTlets, we used

similar tools to implement dynamic RESTlets and evaluate the performance. For

constrained devices, we based our experiments on Contiki 2.7 [4.31]. The µIP

implementation of Contiki along with 6LoWPAN and RPL are used for

communication between nodes. Erbium [4.32], a CoAP implementation for

Dynamic Deployment of RESTlets on Constrained Nodes 121

Contiki, is also used and extended to support bindings and dynamic deployment

of RESTlets. For non-constrained devices, we used CoAP++, our in-house CoAP

framework.

As described in detail in [4.32], Erbium needs to be modified to support direct

flexible bindings and RESTlets. To support bindings, four new CoAP options have

been introduced, namely BIND_URI_HOST, BIND_URI_PORT,

BIND_URI_PATH and BIND_PAYLOAD with option numbers 42, 46, 50 and

54. These options are used in a request in combination with the CoAP observe

option. The first three options are used to uniquely specify the resource that needs

to be triggered upon the state change of the resource targeted in the observe

request. The CoAP PUT method is used in the notification packets. The optional

BIND_PAYLOAD option contains the payload that needs to be sent. In its

absence, the new state representation of the observed resource that triggered the

notification is communicated.

The RESTlets on constrained and non-constrained devices are implemented

following different implementation options as explained in section 4. Figure 4-10

shows implementation of dynamic RESTlets on constrained devices.

Figure 4-10: Implementation of Dynamic RESTlets on Constrained Devices

There are static components that are part of the device firmware and a dynamic

component that is loaded at run-time. All RESTlet-ready nodes will have a

simplified RESTlet engine which contains a generic handler function that

facilitates CoAP interactions with the RESTlet resources. In addition, a function

is defined to allow periodic notification of RESTlet output resource state changes.

Unless a RESTlet is deployed and instantiated, the RESTlet engine will not be

122 Chapter 4

activated to avoid wastage of CPU processing cycles. We also need a data structure

that stores all relevant information about a RESTlet that is dynamically loaded.

Table 4-1 shows the resulting structure. Finally, the dynamic loader is another

component that is also available statically.

The dynamic deployment process starts when the user sends a CoAP PUT request

to the Dynamic Loader (the /dloader CoAP resource). The payload of the request

is the binary file of the dynamic module. Due to its relatively large size, a bulk

transfer mechanism, such as the CoAP block-wise transfer [4.33], must be

employed to transfer the binary file. Upon successful transfer, the code resides in

an external memory of the node until it is loaded into memory. The Contiki

dynamic loader loads the dynamic module into memory (RAM/ROM) to be called

by the RESTlet engine. During the loading process, all relevant RESTlet resources

will be created and the RESTlet engine will be activated so that the RESTlet is

instantiated and is ready for use. In our current implementation, we have only one

RESTlet and one instance of that RESTlet on a node but this can be easily extended

in order to support more RESTlets. Therefore, the RESTlet resources may be

accessed using the name of the RESTlet and the type of component and the

component number. For example, the first input of the AVG RESTlet is referenced

using the resource /AVG/in/0. Once the loading process has completed

successfully, further bindings, notifications, resource state modifications and

retrievals may commence using the available CoAP methods in the same manner

as the static RESTlets discussed in [4.27].

Table 4-1: RESTlet Structure

When we look more closely at the dynamic module, we see that all RESTlets have

a similar structure. The first and most important component is the processing logic.

Depending on their purpose, every RESTlet should define a function that takes

input data and (optionally) control parameters to produce output(s). We also need

Dynamic Deployment of RESTlets on Constrained Nodes 123

to transfer the details of the RESTlet to the RESTlet engine, which is part of the

statically loaded firmware. This is achieved by defining the restlet structure as an

external global variable in the dynamic module and then initialize the variables

using RESTlet specific information. The RESTlet name, the number of inputs,

outputs, control parameters and address of the function implementing the RESTlet

processing logic are some of the values that have to be initialized. In Contiki-based

systems, the best place to do such initializations is the main process thread which

is the other component of the dynamic module. The main process thread is defined

as an autostart process that will be automatically run after the dynamic loader has

loaded the module. Optionally, the function(s) that update the inputs and control

parameters may be defined here in the dynamic module. This requires adding their

function pointer in the restlet struct. But we need to carefully weigh the trade-off

between size of the dynamic module and memory footprint of the static firmware.

If we keep these functions in the dynamic module, the size of the module will

become too big, requiring more packets to transfer the RESTlet code, in turn

leading to increased power consumption. On the contrary, if we keep it in the

firmware, it takes more memory from the very beginning even if no RESTlet has

been loaded. In all our tests, the input and control parameter updating functions

are defined statically as part of the RESTlet engine.

Once the relevant components have been defined, the dynamic module can be

compiled as a normal Contiki application using the Contiki make system.

However, since this is a dynamic module, we need to strip off unnecessary

symbols and keep only the relevant components. For instance, we do not need the

entire communication stack (RDC drivers, MAC drivers, uIP, RPL, 6LoWPAN

…), sensors, and radio drivers for the dynamic module. The compiler removes all

these and other irrelevant components and only keeps the components that we

defined earlier in the dynamic module. In addition, since we use the restlet struct

from the firmware to be used by the dynamic module, we must make sure that it

is included in the symbol table of the firmware so that proper relocation of code

takes place.

The compiled dynamic modules are deployed on selected nodes using CoAP

block-wise transfer. We can send the file by assigning different block sizes for the

CoAP block1 option. Since we need all the blocks to arrive for proper deployment,

we use CONfirmable messages for the block-wise transfer. Contiki uses different

mechanisms to load executable modules dynamically. In our tests, we used the

Contiki elfloader [4.34]. The elfloader takes Executable and Linkable Format

(ELF) files stored on external storage as input and loads them in memory (RAM

or ROM) after performing all the required relocations. Furthermore, Contiki uses

different Makefiles to set different compiler and loader flags to build the firmware

and the dynamic modules. We made some modifications to one of the Makefiles

124 Chapter 4

and the elfloader so that the dynamic modules are loaded properly. The Makefile

that needs modification is the CPU specific Makefile which defines parameters

specific to the CPU of the node. We are using Zolertia nodes [4.35] which use a

MSP430 [4.36] microcontroller. Some parameters of the MSP430 Makefile put

the code in the appropriate memory region so that they are relocated and loaded

accordingly. The Contiki elfloader also expects specific code segments to be

placed in specific regions. Therefore, the MSP430 Makefile and the elfloader

should have a common name and location for the different components. Therefore,

we made some changes to the Makefile and the elfloader.

The Makefile is modified to load the data and code segments of the firmware and

the dynamic module anywhere in memory (in the lower or upper memory area of

the Zolertia motes) depending on the overall size of the firmware. However, to

improve the memory usage of the firmware, each function and data are made to be

placed in separate sections. This is not required for the dynamic module as it is

small in size. Moreover, doing so for the dynamic module will increase the

complexity of the elfloader. So, the Makefile is made to selectively set the

appropriate flags for the dynamic module and the firmware (Figure 4-11).

Figure 4-11: Instructions from MSP430 Makefile

The elfloader also needs to be modified in order to handle the dynamic module.

The default Contiki elfloader recognizes .text, .data, .bss, and .rodata sections and

their corresponding relocation sections of the dynamic module and looks for them

while loading. However, the MSP430 Makefile flags put the dynamic module’s

text and data segments (and their associated relocation segments) in .any.text and

.any.data segments. This new set of segments should be included in the list of

sections the elfloader searches in place of their original counter parts. These two

modifications enable proper loading and initialization of the dynamic module.

Dynamic Deployment of RESTlets on Constrained Nodes 125

4.5.2 Implementation of Conditional Observe using Dynamic

RESTlets

The previous discussions show how RESTlets can be deployed dynamically on

constrained devices and how they can be used to build IoT applications. Here, we

will show how dynamic RESTlets can be used to implement conditional

observation. The simplified block diagram is shown in Figure 4-12.

Figure 4-12: Block Diagram of Implementation of Conditional Observe Using

Dynamic RESTlets

In order to implement conditional observations using RESTlets, we need to define

one RESTlet per sensor node. Multiple input, output and control parameters can

be defined for each sensor on the node. The figure shows two sensors, whose

resources are represented by /s/t and /s/h, on a single node that performs the server-

side filtering. The resources of the two sensors are associated with two inputs of

the CND RESTlet. The outputs of the RESTlet is associated with two actuators.

(It is also possible to associate them with the same actuator depending on the

application and purpose of the actuator.) The processing logic of the RESTlet

makes use of the control parameters (not shown in the diagram) that are defined

for each set of input and output. The control parameters contain important

information such as condition type, reliability flag,value type and condition value.

The processing logic makes use of the corresponding control parameter on the

input to determine the output. There are various ways to implement the processing

logic and produce different types of output. For the sake of experimentation, we

made the output to be 1 if the sensor output (which is the input to the RESTlet)

should be communicated and 0, otherwise.

126 Chapter 4

4.5.3 Functional Evaluation

4.5.3.a Compilation of the Dynamic Module

As explained before, the dynamic loading process starts with compiling the

dynamic module with the appropriate flags. Figure 4-13 shows the screenshot of

compilation process of the CND RESTlet. The Contiki make rule compiles the

program as a Contiki application and strips off unnecessary components from the

file.

Figure 4-13: Compiling Dynamic RESTlet (CND)

Upon successful compilation, a dynamic module named cnd.ce will be created.

This module can be uploaded by the Contiki elfloader later on.

4.5.3.b Block-wise Transfer

CoAP++ allows transferring large binary files through CoAP Block-Wise transfer.

We used this functionality to transfer the dynamic module to the host node. Table

4-2 summarizes the most important set of information required for the transfer.

Table 4-2: Information Required to Transfer the Dynamic Module

CoAP++ creates packets containing the contents of the binary file as payload and

starts transferring the file to the selected node. The receiving node stores the file

in the Contiki file system on an external flash. The screenshot (Figure 4-14) shows

the time of arrival of the block, including the Node ID, block 1 size and block

number. All blocks except the last one are suffixed with a ‘+’ indicating

subsequent blocks are following. In this case, as soon as Block 32 has been

received, transfer of the entire dynamic module is complete and loading may

follow.

Dynamic Deployment of RESTlets on Constrained Nodes 127

Figure 4-14: Cooja Simulation Showing Transfer of the last Blocks

4.5.3.c Loading and Instantiation

During a CoAP block transfer, every packet shows the availability of more packets

as part of the CoAP Block option. After the last block has been transferred, the

loading process begins which performs relocation and copies the code and data

into memory (RAM or ROM). The loading process culminates by calling the main

process thread of the dynamic module which is defined as an automatically started

process. The main process thread initializes the restlet structure which is defined

to store details of the RESTlet being created. Finally, the RESTlet will be

instantiated by creating resources. Once the instantiation is completed, the

RESTlet may be used in the same way as it was defined statically as detailed in

[4.27].

4.5.4 Performance Evaluation

We used Zolertia Z1 motes for performance evaluation. The motes have 8KB

RAM and 92KB ROM. They also have 16MB external flash that can be used to

store the dynamic module before loading. Since different RESTlets have different

size, the type of RESTlet considered will have an impact on memory footprint and

transfer time. For this reason, we used 3 RESTlet types. The first one is the AND

RESTlet which performs the logical AND operation on all of its inputs to provide

an output. The RESTlet may have any number of inputs but produces only one

output with value either 0 or 1. The default number of inputs used for this test is

2. The second RESTlet defined was AVG that outputs the average value of the

inputs supplied. Here the default number of inputs considered is 2 as well and the

number of outputs is one. These two RESTlets do not use any control parameter.

The last RESTlet defined is the CND RESTlet which is the implementation of

conditional observation using RESTlets. Unlike the previous two RESTlets, which

use all inputs to produce an output, this RESTlet uses one input source and one

control parameter to produce an output. The input is assumed to be associated with

a sensor on the same device. If multiple sensors exist on one node, we define

additional input and associated control and output resources. The control

128 Chapter 4

parameters store the encoded conditional observation information and have to be

provided when establishing the binding.

We run several tests to measure energy consumption and transfer time for dynamic

deployment of RESTlet modules using different radio duty cycling (RDC) options,

namely ContikiMAC and NULLRDC. We also evaluate the impact of hop count

on the transfer time and power consumption.

4.5.4.a Memory Footprint

One of the constraints of smart nodes is memory. According to RFC7228 [4.37]

the most constrained devices, Class 0 devices, have less than 10KiB of RAM and

less than 100KiB of ROM. The memory footprint of our implementation to

support the dynamic deployment of RESTlets is given in Table 4-3. The first two

rows of the table show the memory footprint of the firmware with dynamic

modules (The Contiki Dynamic loader allows placement of dynamic modules in

RAM or ROM). In both cases, the RAM requirement is less than 8KiB and the

ROM requirement is less than 100KiB making the solution applicable to Class 0

devices such as the Zolertia Z1 motes. Of course, the solution uses more RAM and

ROM as compared to its static counterpart (last row). However, the important issue

here is not the actual amount of memory used. As long as the program code and

data fits in a constrained device of Class 0, it is a viable solution for IoT application

development.

Table 4-3: Firmware Size (Byte)

Closing up on the three architectural components of our RESTlet architecture

(Table 4-4), we observe that the most significant increase in memory consumption

is due to the dynamic deployer that contributes to more than 95% of the extra

memory (Figure 4-15). Apart from this, the RESTlet engine and the RESTlets

themselves do not contribute a lot to the extra memory. The main reason for the

excessive memory usage of the deployer is the inclusion of the Contiki elfloader

and file system modules. The former was added to enable dynamic deployment

while the later was added to allow the node to store the dynamic module in external

memory before loading.

Dynamic Deployment of RESTlets on Constrained Nodes 129

Table 4-4: Sizes of RESTlet Architectural Components

Figure 4-15: Contribution of RESTlet Architectural Components to the Overall

Memory Footprint

4.5.4.b Number of Packets

The size of the dynamic modules on disk is much larger than their size in memory.

In addition to the program code and data, the file on disk contains extra

information such as section headers, symbol tables, string tables and relocation

entries. The Contiki dynamic loader uses this extra information to properly

relocate the data and code segments and load them in the appropriate memory

location. The entire file on disk needs to be transferred to the node prior to loading

into ROM or RAM of the node. Table 4-5 shows the size of the 3 RESTlets on

disk and the number of packets required to transfer them to the constrained node.

130 Chapter 4

Table 4-5: Number of Packets Required to Transfer RESTlets

It is clear that using small block sizes to transfer the files results in an increased

number of packets and the values become even more pronounced for multi-hop

transactions. When we translate this to the deployment time (Figure 4-16), we can

make two interesting observations.

Dynamic Deployment of RESTlets on Constrained Nodes 131

Figure 4-16: Dynamic RESTlet Deployment Time

The first observation, which is rather obvious, is that the time required to transfer

the whole dynamic module increases with small block sizes and more hops.

Actually, transferring a small block takes less time as compared to transferring

larger blocks. But the increased number of packets required to send the complete

module, which resulted from using small packets, cancels this advantage and

makes using large block sizes preferable. According to the experiment a block size

of 64 bytes is ideal for block transfer. If we go beyond 64 bytes, the next possible

block size would be 128 bytes. But due to the limits set by the 802.15.4

specification the maximum size of packets at the MAC layer is only 127 bytes

132 Chapter 4

(including headers). So, if the size is more than 127 bytes, the packet will be

fragmented leading to suboptimal performance. Due to this reason, the upcoming

tests are done using a block size of 64 bytes.

The second observation is the interesting impact of the mechanism used at the

underlying radio duty cycling (RDC) layer on the total deployment time. For this

test, we used ContikiMAC with channel check rate of 8Hz and NULLRDC at that

layer. The ContikiMAC Protocol [4.38] switches off the radio for 99% of the time

saving a significant amount of energy that would otherwise be used for passive

listening. This means, if the receiver’s radio is off when the sender is ready to

transmit, it has to wait until the receiver’s radio is back on. On the other hand,

NULLRDC keeps the radio on all the time allowing immediate transmission and

reception of packets. This means, packet transmission through ContikiMAC takes

more time than NULLRDC. This clearly explains the shorter deployment time

when no RDC is used.

However, this does not necessarily mean that NULLRDC is preferable for

dynamic deployment of RESTlets. In fact, ContikiMAC is a better option as

demonstrated in the next subsection.

4.5.4.c Energy Consumption

To evaluate the energy usage for transferring dynamic RESTlet modules we used

the formula given in [4.39]. According to [4.39], for constrained devices running

Contiki, Energy, E, can be computed as,

𝐸 = 𝐸𝐶𝑃𝑈 + 𝐸𝐿𝑃𝑀 + 𝐸𝑇𝑥 + 𝐸𝑅𝑥 + 𝐸𝐼𝑑𝑙𝑒 + 𝐸𝑂𝑡ℎ𝑒𝑟
Where

ECPU = Energy consumption of the microcontroller when it is Active

ELPM = Energy consumption of the microcontroller at low power mode

(inactive)

ETx = Energy consumption of the radio transceiver during Transmission

ERx = Energy consumption of the radio transceiver during Reception

EIdle = Energy consumption of the radio transceiver while sleeping

EOther = Energy consumed by other components such as Sensors and LEDs

The other components are not used for the purpose of this evaluation. Therefore,

we exclude it and use the following modified formula to compare energy usage

among different options.

𝐸′ = 𝐸𝐶𝑃𝑈 + 𝐸𝐿𝑃𝑀 + 𝐸𝑇𝑥 + 𝐸𝑅𝑥 + 𝐸𝐼𝑑𝑙𝑒

Energy usage can be defined as power consumption over a period of time. Hence,

Dynamic Deployment of RESTlets on Constrained Nodes 133

𝐸′ = (𝑃𝐶𝑃𝑈 × 𝑇𝐶𝑃𝑈) + (𝑃𝐿𝑃𝑀 × 𝑇𝐿𝑃𝑀) + (𝑃𝑇𝑥 × 𝑇𝑇𝑥) + (𝑃𝑅𝑥 × 𝑇𝑅𝑥) + (𝑃𝐼𝑑𝑙𝑒 × 𝑇𝐼𝑑𝑙𝑒)

and power is Voltage multiplied by current drawn by that particular component.

For simplicity, we assume that the voltage is uniform and constant for all

components while the current drawn is different as per the specification of the

component. Hence, we used the following formula to compute energy

consumption of the dynamic deployment process.

𝐸′ = (𝑉 × 𝐼𝐶𝑃𝑈 × 𝑇𝐶𝑃𝑈) + (𝑉 × 𝐼𝐿𝑃𝑀 × 𝑇𝐿𝑃𝑀) + (𝑉 × 𝐼𝑇𝑥 × 𝑇𝑇𝑥) + (𝑉 × 𝐼𝑅𝑥

× 𝑇𝑅𝑥) + (𝑉 × 𝐼𝐼𝑑𝑙𝑒 × 𝑇𝐼𝑑𝑙𝑒)

The voltage and current values are obtained from Zolertia Z1 datasheet (Table 4-6)

and the timing values are obtained through experimentation.

Table 4-6: Power Specification of Zolertia Z1 Mote

Figure 4-17 clearly shows that using no RDC mechanism at RDC layer leads to an

increased energy consumption as compared to ContikiMAC in all cases. The small

figures inside Figure 4-17 show that the increased consumption is mainly

attributed to the passive listening of the radio where the radio is waiting for packets

to be transmitted.

134 Chapter 4

(a)

(b)

Figure 4-17: Energy Usage for Dynamic Deployment. a) No RDC Protocol. b)

ContikiMAC RDC

4.5.4.d Implementation of Conditional Observation using RESTlets

In [4.18], we made a mathematical computation to demonstrate the reduction in

power consumption due to conditional observation as compared to normal

Dynamic Deployment of RESTlets on Constrained Nodes 135

observation. Given an environment where resource state changes every S seconds,

the power consumption of normal observation in that period of time, O(S), is given

by

𝑂(𝑆) = 𝑃𝐶𝑃𝑈 × 𝑇𝐶𝑃𝑈 + 𝑃𝐿𝑃𝑀 × (𝑠 − 𝑇𝐶𝑃𝑈)
+ 𝑃𝑇𝑥 × (𝑁 × 𝐿)
+ 𝑃𝑅𝑥 × (𝑆 − 𝑁 × 𝐿) × 𝑑
+𝑃𝐼𝑑𝑙𝑒 × (𝑆 − 𝑁 × 𝐿) × (1 − 𝑑)

If the Max-Age value is set at some arbitrarily higher value for conditional

observation, the formula for conditional observation, CO(S), is

𝐶𝑂(𝑆) = 𝑃𝐶𝑃𝑈 × (𝑇𝐶𝑃𝑈 + ∆𝑝𝑟𝑜𝑐) +𝑃𝐿𝑃𝑀 × (𝑆 − 𝑇𝐶𝑃𝑈 − ∆𝑝𝑟𝑜𝑐)

+ 𝑝 × [𝑃𝑇𝑥 × 0 + 𝑃𝑅𝑥 × 𝑆 × 𝑑 + 𝑃𝐼𝑑𝑙𝑒 × 𝑆 × (1 − 𝑑)]
 + (1 − 𝑝) × [𝑃𝑇𝑥 × 𝐿 + 𝑃𝑅𝑥 × (𝑆 − 𝐿) × 𝑑 + 𝑃𝐼𝑑𝑙𝑒 × (𝑆 − 𝐿) × (1 − 𝑑)]

In [4.18], we have made protocol modification and were able to alter the behavior

of Max-Age values to come up with the formula given above. But, in the current

implementation, we do not perform protocol modification and hence the impact of

max-age value expiration needs to be considered. Therefore, the formula will be

modified to include the energy consumption due to the max-age expiration. In an

environment where resource state changes every S seconds, the number of packets,

M, transmitted due to Max-age expiration, i.e., irrespective of the resource state

change or the transmission criteria, is:

𝑀 = 𝐹𝑙𝑜𝑜𝑟 (
𝑆

𝑀𝑎𝑥_𝑎𝑔𝑒
)

Therefore, CO(S) will be

𝐶𝑂(𝑆) = 𝑃𝐶𝑃𝑈 × (𝑇𝐶𝑃𝑈 + ∆𝑝𝑟𝑜𝑐) + 𝑃𝐿𝑃𝑀 × (𝑆 − 𝑇𝐶𝑃𝑈 − ∆𝑝𝑟𝑜𝑐)

 + 𝑝 × [𝑃𝑇𝑥 × (𝑀 × 𝐿) + 𝑃𝑅𝑥 × (𝑆 − (𝑀 × 𝐿)) × 𝑑 + 𝑃𝐼𝑑𝑙𝑒 × (𝑆 − (𝑀 × 𝐿)
× (1 − 𝑑)]

+ (1 − 𝑝) × [𝑃𝑇𝑥 × (𝑀 + 1) × 𝐿 + 𝑃𝑅𝑥 × (𝑆 − (𝑀 + 1) × 𝐿) × 𝑑 + 𝑃𝐼𝑑𝑙𝑒

× (𝑆 − (𝑀 + 1) × 𝐿) × (1 − 𝑑)]
Where,

S = resource state change duration

proc = processing time to evaluate conditions (from prior experiment, this value is

1ms)

p = probability that condition is not fulfilled (hence, no packet transmission)

d = duty cycle (0.01 for ContikiMAC)

L = Length of complete duty cycle (125ms based on ContikiMAC specification)

N = Number of packets transmitted in normal observation in the duration, S

136 Chapter 4

[4.18] gives detailed analysis of energy saving that resulted from using conditional

observation. However, by using dynamic deployment of RESTlets for conditional

observation, we will consume additional energy for transferring the dynamic

module which may result in losing the advantage we got. Table 4-7 shows the

energy consumed during transmission. Columns labeled CPU and LPM indicate

the energy consumed by the microcontroller in active mode (at 16MHz) and Low

Power Mode (LPM), respectively, while the next three columns indicate the

energy consumed by the radio for packet transmission and reception and in idle

mode as well.

Table 4-7: Energy consumed for Dynamic Deployment

Here, the good news is that deployment takes place only once, i.e. the moment we

decide to host the RESTlet on that particular node. Once deployed, further

communications will take place just like the statically created conditional

observation modules. This means, after the node starts using conditional

observation to send some notification packets, we can start saving energy due to

the conditional observe mechanism that results in a reduced number of

notifications that needs to be transmitted. This way, we can regain the advantage

we lost due to the dynamic deployment. Figure 4-18, shows the time it takes to

gain back the advantage of using conditional observation considering the impact

of max-age expiration.

Dynamic Deployment of RESTlets on Constrained Nodes 137

Figure 4-18: Time required to regain power consumed during dynamic

deployment

Understandably, the time required to achieve breakeven point increases with the

frequency of state change. The effect of p, the probability that the state change

does not trigger transmission, also becomes pronounced for cases where state

change is not frequent. The increased gap between the data lines towards the right-

hand side of the graph suggests this fact. At this point, it is important to note that

once the specified number of seconds have elapsed, the node will be saving energy

for the rest of its lifetime which is generally measured in months and years.

If the impact of max-age is ignored for conditional observation, we will get a

completely different graph (Figure 4-19).

138 Chapter 4

Figure 4-19: Time required to regain power consumed during dynamic

deployment (Max-age = 60s)

Just like Figure 4-18, when the probability of sending notifications is low (i.e. low

probability that the condition is fulfilled), the time required to reach break-even

point is low, especially when the data generation / state change frequency is higher.

In the figure, we see that around 60 seconds we see a drastic decrease in required

time for break-even. This is attributed to the max-age expiration which triggers

generation of another packet in normal observe leading to more energy saving.

However, when the resource state change time is higher, the effect of the max-age

gets smaller.

4.6 Conclusion and Future work

This paper presented an important extension of our earlier work on RESTlets and

Bindings. RESTlets were introduced as CoAP based IoT application building

blocks that can be used to develop distributed IoT applications. RESTlets can be

linked with sensors to receive inputs and actuators to send their outputs using

direct flexible bindings. In our previous work, we showed how statically defined

RESTlets can be used for IoT application development. In this paper, we extended

this work to introduce dynamic deployment of RESTlets.

We looked at the dynamic deployment of RESTlets on constrained and non-

constrained devices separately as the two devices have completely different

capabilities. Due to the memory and processing power scarcity of constrained

devices, we dynamically deploy only one RESTlet per node which can be

instantiated only once but the architecture allows for more RESTlets to be

Dynamic Deployment of RESTlets on Constrained Nodes 139

deployed. On the other hand, non-constrained devices may have dynamic or static

RESTlets and may be instantiated multiple times. Dynamic deployment on

constrained devices involves the creation of a dynamic module and the transfer of

the entire program code into external storage of the constrained node using a bulk

transfer method such as CoAP Block-wise transfer. The dynamic loader of the

node’s firmware will then relocate the code in memory (RAM/ROM) to make it

part of the firmware. The deployment process is completed with the creation of

CoAP resources for all inputs, outputs and control parameters. This provides

greater flexibility to the RESTlet concept by giving an IoT application developer

the possibility to select and deploy RESTlets even after the nodes have been

deployed in the field. However, this advantage comes with a tradeoff. The first

tradeoff is the increased memory requirement due to the inclusion of the Contiki

dynamic loader and the file system. But, despite the increase in memory footprint,

we have shown that the entire firmware still fits in Class 0 constrained devices.

The deployment time and energy consumed for dynamic deployment is another

tradeoff. Evaluations performed on Z1 nodes show that, a reasonable sized

dynamic module can be deployed in less than 10 seconds on a node after 3 hops

(using ContikiMAC). Such a deployment will consume energy, but, in turn, the

data processing capabilities offered by the RESTlet may lead to a reduction of the

number of packets transferred in the network and thus an overall reduction in

energy consumption after some time.

This paper also discussed how our earlier conditional observation mechanism,

which was implemented as a CoAP protocol extension, can be implemented by

using the RESTlet concept in combination with normal observe. We defined one

input, one output and one control parameter per sensor on a node and created a

binding relationship between the sensor output and the RESTlet input. The control

parameter is used to store the condition types and values. Whenever the sensor

output changes, the input of the RESTlet is modified and the processing logic

determines if the change needs to be communicated. This way the server side

filtering is realized. Even if there is no significant difference in processing time,

the dynamic loading introduces some wastage of resources which may counter-

balance the energy saved by conditional observation (as compared to normal

observation). However, we showed that after a few notifications, the conditional

observe method starts saving energy.

Still the proposed solutions can be further optimized. One of the ideas we will be

looking at is cross-layer optimization options. Optimal placement of RESTlets is

another potential area for improvement. Providing an easy to use programming

interface is also a possible future work. By providing visual programming tools,

we may reduce RESTlet-based IoT application development to a simple drag and

drop operation.

140 Chapter 4

Acknowledgement
The scholarship of the corresponding author is covered by VLIR-UOS through the

collaboration with Jimma University in the IUCJU program.

References

[4.1] A. Wood, “The internet of things is revolutionizing our lives, but standards

are a must,” The Guardian, 2015. [Online]. Available:

https://www.theguardian.com/media-network/2015/mar/31/the-internet-

of-things-is-revolutionising-our-lives-but-standards-are-a-must.

[Accessed: 14-Sep-2016].

[4.2] ITU-T, “Recommendation ITU-T Y.2060: Overview of the Internet of

things.” International Telecommunication Union, Geneva, 2013.

[4.3] K. Rose, S. Eldridge, and C. Lyman, “The internet of things: an overview,”

Internet Soc., no. October, p. 53, 2015.

[4.4] F. Orlando, “Gartner Identifies the Top 10 Strategic Technologies for

2012,” Gartner Inc., 2011. [Online]. Available: Gartner Identifies the Top

10 Strategic Technologies for 2012. [Accessed: 15-Sep-2016].

[4.5] F. Orlando, “Gartner Identifies the Top 10 Strategic Technology Trends for

2013,” Gartner Inc., 2012. [Online]. Available:

http://www.gartner.com/newsroom/id/2209615. [Accessed: 16-Sep-2016].

[4.6] F. Orlando, “Gartner Identifies the Top 10 Strategic Technology Trends for

2014,” Gartner Inc., 2013. .

[4.7] F. Orlando, “Gartner Identifies the Top 10 Strategic Technology Trends for

2015,” Gartner Inc., 2014. [Online]. Available:

http://www.gartner.com/newsroom/id/2867917. [Accessed: 01-Sep-2016].

[4.8] F. Orlando, “Gartner Identifies the Top 10 Strategic Technology Trends for

2016,” Gartner Inc., 2015. [Online]. Available:

http://www.gartner.com/newsroom/id/3143521. [Accessed: 16-Sep-2016].

[4.9] C. Stamford, “Gartner Says 6.4 Billion Connected ‘Things’ Will Be in Use

in 2016, Up 30 Percent From 2015,” Gartner Inc., 2015. [Online].

Available: http://www.gartner.com/newsroom/id/3165317. [Accessed: 16-

Sep-2016].

[4.10] Dave Evans, “The Internet of Things,” Cisco Inc., 2011. [Online].

Available: http://blogs.cisco.com/diversity/the-internet-of-things-

infographic. [Accessed: 16-Sep-2016].

[4.11] Ericsson, “More Than 50 Billion Connected Devices,” White Pap., no.

February, pp. 1–12, 2011.

Dynamic Deployment of RESTlets on Constrained Nodes 141

[4.12] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “RFC 4944:

Transmission of IPv6 Packets over IEEE 802.15.4 Networks.” IETF, pp.

1–30, 2007.

[4.13] T. Winter, P. Thubert, A. R. Corporation, and R. Kelsey, “RFC6550: RPL:

IPv6 Routing Protocol for Low-Power and Lossy Networks.” IETF, pp. 1–

157, 2012.

[4.14] Z. Shelby, K. Hartke, and C. Bormann, “RFC 7252: The Constrained

Application Protocol (CoAP).” IETF, pp. 1–112, 2014.

[4.15] Z. Shelby, “Embedded web services,” IEEE Wirel. Commun., vol. 17, no.

6, pp. 52–57, 2010.

[4.16] L. Richardson and S. Ruby, RESTful Web Services, First. O’REILLY, 2007.

[4.17] S. Li, K. Li., J. Hoebeke, F. Van den Abeele, and A. Jara, “Conditional

observe in CoAP.” IETF, 2014.

[4.18] G. Teklemariam, J. Hoebeke, I. Moerman, and P. Demeester, “Facilitating

the creation of IoT applications through conditional observations in

CoAP,” EURASIP J. Wirel. Commun. Netw., vol. 1, no. 1, 2013.

[4.19] M. Kovatsch, “Firm firmware and apps for the internet of things,”

Proceeding 2nd Work. Softw. Eng. Sens. Netw. Appl. - SESENA ’11, p. 61,

2011.

[4.20] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway:

BridgingWireless Sensor Networks into Internet of Things,” 2010

IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput., pp. 347–352, 2010.

[4.21] D. Alessandrelli, M. Petracca, and P. Pagano, “T-Res: Enabling

reconfigurable in-network processing in IoT-based WSNs,” Proc. - IEEE

Int. Conf. Distrib. Comput. Sens. Syst. DCoSS 2013, vol. 317671, pp. 337–

344, 2013.

[4.22] J. Liu, J. Reich, and F. Zhao, “Collaborative in-network processing for

target tracking,” EURASIP J. Appl. Signal Processing, vol. 2003, no. 4, pp.

378–391, 2003.

[4.23] E. FASOLO, M. ROSSI, J. WIDMER, and M. Zorzi, “IN-NETWORK

AGGREGATION TECHNIQUES FOR WIRELESS SENSOR

NETWORKS: A SURVEY,” IEEE Wirel. Commun., no. April, pp. 70–87,

2007.

[4.24] A. Azzara and L. Mottola, “Virtual resources for the Internet of Things,”

IEEE World Forum Internet Things, WF-IoT 2015 - Proc., pp. 245–250,

2016.

142 Chapter 4

[4.25] C. Perera, P. P. Jayaraman, A. Zaslavsky, P. Christen, and D.

Georgakopoulos, “Sensor Discovery and Configuration Framework for

The Internet of Things Paradigm,” 2013.

[4.26] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “DIANE –

Dynamic IoT Application Deployment,” 2015.

[4.27] G. Teklemariam, F. Van den Abeele, I. Moerman, P. Demeester, and J.

Hoebeke, “Bindings and RESTlets: A Novel Set of CoAP-Based

Application Enablers to Build IoT Applications,” Sensors (Basel)., vol. 16,

no. 8, 2016.

[4.28] K. Hartke, “RFC 7641: Observing Resources in the Constrained

Application Protocol (CoAP).” IETF, pp. 1–30, 2015.

[4.29] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Futur.

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[4.30] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A RESTful

runtime container for scriptable internet of things applications,” Proc. 2012

Int. Conf. Internet Things, IOT 2012, pp. 135–142, 2012.

[4.31] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - A lightweight and

flexible operating system for tiny networked sensors,” Proc. - Conf. Local

Comput. Networks, LCN, pp. 455–462, 2004.

[4.32] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for

Contiki,” Proc. - 8th IEEE Int. Conf. Mob. Ad-hoc Sens. Syst. MASS 2011,

pp. 855–860, 2011.

[4.33] C. Bormann and Z. (Ed. . Shelby, “RFC 7959: Block-Wise Transfers in the

Constrained Application Protocol (CoAP).” IEEE, pp. 1–37, 2016.

[4.34] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic linking

for reprogramming wireless sensor networks,” Proc. 4th Int. Conf. Embed.

networked Sens. Syst. - SenSys ’06, p. 15, 2006.

[4.35] Zolertia, “Z1 Datasheet,” pp. 1–20, 2010.

[4.36] Texas Instruments, “MSP430x2xx Family USER ’ s Guide.” 2013.

[4.37] C. Bormann, M. Ersue, and A. Keranen, “RFC 7228: Terminology for

Constrained-Node Networks.” IETF, pp. 1–17, 2014.

[4.38] A. Dunkels, “The ContikiMAC Radio Duty Cycling Protocol,” SICS Tech.

Rep. T201113 , ISSN 1100-3154, pp. 1–11, 2011.

[4.39] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line

energy estimation for sensor nodes,” Proc. 4th Work. Embed. networked

sensors - EmNets ’07, p. 28, 2007.

5
Transparent Recovery of Dynamic

States on Constrained Nodes

through Deep Packet Inspection

One of the fundamental components of IoT applications are smart objects which

are usually characterized by several resource constraints. Due to these constraints

and other maintenance activities, these devices may have to go through a power

cycle. When they come back online, they will lose all data that was created

dynamically during runtime as a result of interactions with other nodes and that

was stored in volatile memory. These dynamic states must be recovered for the IoT

application to operate as required. In this chapter, we discuss a transparent

dynamic state recovery mechanism that makes use of deep packet inspection. A

state directory is built at the LLN gateway by dynamically intercepting every

packet that traverses the gateway. The state directory entry contains all the

necessary information that can be used to regenerate any dynamic state on a node.

When a node boots up, the state directory is consulted and the packets that

previously created the dynamic states will be replayed. This process is done

transparently without the involvement of the communicating parties.

Girum Ketema Teklemariam, Floris Van den Abeele, Ingrid Moerman, Piet Demeester,

Jeroen Hoebeke. Transparent Recovery of Dynamic States on Constrained Nodes through

Deep Packet Inspection. Submitted to Journal of Sensors, December 2017

144 Chapter 5

Abstract: Many IoT applications make extensive use of constrained devices which

are characterized by unexpected failures. In addition, nodes could be put offline

temporarily for maintenance (e.g. battery replacement). These incidents lead to

loss of dynamic data that is generated due to the interactions between nodes. For

instance, configuration settings adjusted by sending PUT request to the sensor will

be lost when the node is rebooted. The lost data, which we call dynamic states,

leads to erroneous results or malfunctions of the IoT application. In this paper, we

introduce an intelligent dynamic state recovery mechanism through deep packet

inspection. A State Directory, placed at the gateway, intercepts every

communication between an external device and constrained devices and stores (or

updates) information that is important to restore dynamic states. When a node

reports a reboot, the state directory replays the packets that generated the dynamic

state so that all dynamic states are restored. We implemented the solution on a

non-constrained device that acts as a gateway to the constrained network and

tested the results using Cooja simulator.

5.1 Introduction

IoT applications heavily depend on the interconnection of smart objects through

wireless links. The smart objects are characterized by limited capabilities such as

memory, power supply, processing power and communication bandwidth. Due to

these constraints, the communication network is characterized by unstable links.

In combination with the low power aspect, these networks are often referred to as

Low-Power and Lossy Network (LLN). Usually, LLNs are connected to external

networks, ultimately to the Internet, through gateways. This architecture allows

IoT application components to reside entirely in the LLN or to be distributed

across different locations (in the LLN, at the gateway and in the cloud). In such

models, components of the IoT application residing outside the LLN need to

interact with components residing inside. For instance, in a home automation

application, a user may adjust the house temperature using his/her smartphone

from the Internet. The client is residing outside the LLN while the temperature

sensor and actuator are inside.

Different approaches can be used to enable interactions among the different

components of the IoT application. One such approach is the use of CoAP-based

communication between clients and servers. The Constrained Application

Protocol (CoAP) is a light-weight HTTP-like protocol that uses the same GET,

PUT, POST and DELETE methods to access and update resource representations

hosted on servers [5.1]. Unlike HTTP, CoAP uses UDP at the transport layer to

avoid the overhead introduced by TCP. However, the protocol offers reliability

through Confirmable messages. An important extension of CoAP, named Observe

[5.2], is also used in IoT applications involving monitoring of resource states. This

Transparent Recovery of Dynamic States through Deep Packet Inspection 145

protocol lets clients register their desire for updated information from the server.

After successful registration, the server sends every resource state change to the

client until the relationship expires or is proactively terminated by the client. As

such, the data collection part of IoT applications can be developed by

programming the different components entirely using CoAP and its observe

extension.

Such interactions may generate dynamic states that have to be stored in the volatile

memory of the constrained device. In addition, other dynamic states such as the

list of clients which established observation relationships with the server or

bindings [5.9] are also stored in the volatile memory. All dynamically created

states will be lost in case the node reboots for any reason. A reboot can be triggered

by a crash or can be the consequence of a firmware update. Such reboots may

occur and necessitate the recovery of the application state in order to ensure

continuity of the applications outside of the network. This can be achieved by

letting the application detect the failure and reinstall the state. This process can be

time-consuming and must be managed properly by the applications. Therefore, a

fast and automatic recovery mechanism that can deal with crashes in a way that is

transparent for the applications is very relevant.

In this paper, a novel approach for crash recovery is introduced. We introduce the

concept of a State Directory at the LLN gateway which automatically intercepts

and inspects all interactions between clients and servers residing at either side of

the gateway. Besides monitoring all application-layer interactions with the LLN,

it is able to store all dynamic states generated on the constrained nodes. Upon

reception of a start-up message from a node, the state directory replays the requests

that generated the dynamic states to recover them on the server. Four types of

interactions from external clients that may create dynamic states are intercepted.

These are, PUT requests that modify configuration parameters, observation

requests, binding requests and dynamic loading requests.

The remainder of the paper is organized as follows. The next section discusses

related work in the area of the recovery of nodes and resources. Dynamic states

and state recovery is discussed in more detail in Section three. Dynamic state

recovery options, including our novel transparent dynamic state recovery

mechanism, are explained in section four, while Section five describes the

implementation of the proposed solution. Functional and performance evaluation

of the proposed mechanism is given in Section six. Section seven concludes the

paper.

146 Chapter 5

5.2 Related Work

Many IoT applications that involve embedded sensors and actuators rely on LLNs

formed by the interconnection of constrained devices. A failure of a constrained

device that results in a reboot may affect the entire operation of the application.

Several attempts have been made to reduce the impact of such failing nodes on the

accuracy of the applications [5.3]–[5.5]. Most of these works focus on finding

alternative nodes or links in order to avoid malfunctioning. In contrast, our work

focuses on regenerating dynamic states on nodes in order to resume their function

when they are back online. This way, the IoT application that depends on the

installed state is able to continue its operation without taking any specific actions.

The aforementioned works focus completely on failed/failing nodes or routes.

Another approach, which has similarities to ours, focuses on storing dynamic

states at a location from where it can be restored. The first notable work in this

category is given in [5.6]. The paper presents a sensor network model in which

each node stores sensor data locally and provides a database query interface to the

data. Each sensor device runs its own database system using Antelope. Antelope

provides a dynamic database system that enables runtime creation and deletion of

databases and indices. Antelope uses energy-efficient indexing techniques that

significantly improve the performance of queries. This technique may be used for

storing state information in neighboring constrained devices and can be used to

restore the states when the node comes back from failure. However, this approach

is different from ours in many aspects. Firstly, the approach needs a database

system and an interface to interact with the database on the constrained node,

which is expensive for the node. Secondly, the info is stored on a constrained node

which is also prone to failure. We select the gateway to store the state information

to avoid this issue. Finally, the state information collection is done exclusively

using database query interfaces which uses either push or pull methods, whereas

our approach is fully transparent to both the client and the server. Yet another

notable work is LUSTER [5.7]. LUSTER presents a hierarchical architecture that

includes distributed reliable storage, delay-tolerant networking and deployment

time validation techniques. Fault-tolerant storage is provided by discretely

listening to sensor node communications without the need of dedicated queries.

This is realized through an overlaid, non-intrusive reliable storage layer that

provides distributed non-volatile storage of sensor data for online query, or for

later manual collection. The storage layer is used for storing sensor data. The

permanent storage that is used to store dynamic data is the only similarity of this

approach to ours. However, LUSTER uses a storage layer while we use the

gateway for permanent storage.

Transparent Recovery of Dynamic States through Deep Packet Inspection 147

5.3 Dynamic States and State Recovery

5.3.1 Dynamic States

IoT applications that make use of embedded web services often involve one or

more constrained devices that generate or consume data inside a Low-Power and

Lossy Network (LLN). Sensor nodes usually generate data to be consumed by

another constrained node or by a non-constrained device residing outside the

constrained network. Similarly, actuator nodes consume data that is generated

inside the LLN by a sensor node or by a non-constrained device on the Internet.

As such, interactions between different components need to take place to realize

the desired functionality of IoT applications. In most, if not all, cases, these

interactions originate from external devices such as smartphones or monitoring

stations. In rare cases, interactions may also originate from the LLN nodes if they

are pre-configured to interact with each other. Such interactions may result in the

generation of new state information that is either used immediately or stored at the

constrained device for future use. For instance, a simple GET request sent to a

sensor node from a smartphone usually results in the generation of sensed data and

the immediate transmission of responses containing that data. Such information

does not need be stored in the LLN as subsequent requests will result in the

generation of new data values that will be communicated back. On the contrary,

PUT requests that modify the operation threshold of a temperature sensor result in

information that needs to be stored locally. We call such information Dynamic

States. At this juncture, it is important to distinguish between dynamic states and

sensor resource states. Sensor resource states are sensor readings exposed as a

CoAP resource to be accessed by clients while dynamic states are any set of

information generated as a result of interaction between sensors, actuators and

other devices and are stored in memory.

Various approaches can be followed to recover lost state information, but all

solutions involve storing duplicate information, preferably, on a more permanent

or reliable storage. We call these entities State Directories (SD). A State Directory

(SD) can be defined to collect and store all dynamic states at a central location.

The state directory is then referred and updated regularly by intercepting every

potential interaction between devices that may generate or modify dynamic states.

The interception may be done by a device that is powerful enough to store and

process dynamic states and that has access to the traffic flow without much

overhead. Considering this, the LLN gateway may be a good candidate to host the

SD and intercept the traffic.

Interactions that result in data that needs to be stored are of great importance for

IoT applications. Some of these interactions are:

148 Chapter 5

A. Parameter Modification at Runtime – PUT requests sent to nodes in the

LLN usually affect some parameters of the node. Such information needs to

be stored in memory so that the node can operate as per the new requirement.

Examples of such information include alteration of operation thresholds,

control parameter modifications and actuations. Every request may change a

default value generating a new dynamic state or update the existing one.

Figure 5-1: CoAP Interaction - PUT Request

Figure 5-1 shows a PUT request sent to the /s/t resource of the sensor S to change

the value to 20. On its way to the destination, the gateway (GW) intercepts the

packet and stores the client and server information along with the type of entry

and the value in the SD.

B. Observation Request – In monitoring applications, clients send observation

request to sensors to be registered as observers so that an up-to-date

representation is sent to them as soon as it becomes available. After receiving

the request, the sensor node stores the details of the client for future

notifications. If conditional observe is used, as described in [5.8], notification

criteria will also be stored at the sensor. In addition to this, subsequent

notifications may also update the dynamically generated states (Figure 5-2).

Transparent Recovery of Dynamic States through Deep Packet Inspection 149

Figure 5-2: CoAP Interaction - Observation Request

Both Observation registration requests and notifications generate dynamic

states. In Figure 5-2, the registration packet result in the generation of a new

entry in the SD. In this case, the observe counter, set to 0, and the

retransmission counter (also set to 0) along with the client and server

information are stored. Subsequent notifications are also shown, updating the

observe counter from 0 to 12, 20 and 44, respectively. The retransmission

counter is updated only if there are retransmissions that will lead to the

cancelation of the relationship when the maximum number of retransmissions

is reached.

C. Flexible Binding Relationship Creation – A flexible binding relationship is

an observation relationship between devices that is established by a third party

device [5.9]. Bindings are established by devices residing outside the LLN

and notifications may be sent to nodes in the LLN. Unlike observation

relationships, bindings generate new PUT requests instead of responses for

the original GET request. The information on how to generate the PUT

request needs to be stored by the node.

Only the binding request that is sent from the external device is intercepted

by the GW (Figure 5-3). Binding requests are identified by the BIND_INFO

included in the GET request. As the binding information is required to recover

the state later on, this information is stored in the state directory. Notifications

generated by the sensor and sent to the actuator are not intercepted and have

no impact on the information stored in the SD.

150 Chapter 5

Figure 5-3: CoAP Interaction - Binding Request

D. Runtime Deployment of Application Code – Some node architecture allow

the deployment of code at runtime [5.10] . The dynamic code may range from

small bug fixes to replacements of a portion of the firmware [5.11]. Runtime

deployment can also be used to provide processing capacity to constrained

nodes. Dynamically deployed RESTlets [5.10] are examples of code

fragments that are deployed at runtime. In many cases, the dynamic

component is first sent to a permanent storage (e.g. external flash) on the node

before it is relocated and loaded into the main memory. Even if the file

containing the raw code is in external storage, the relocated, ready-to-use

component is stored in memory and can be referred to as dynamic state

information. Once loaded into the memory, there are no further interactions

that modify the stored information unless it is a new update, which is treated

as a new request that replaces the old information.

Figure 5-4: CoAP Interaction – Runtime Deployment

As shown in Figure 5-4, dynamic modules are transferred using CoAP Block-

wise transfer. Once all the blocks have been received by the node, the

Transparent Recovery of Dynamic States through Deep Packet Inspection 151

filename will be stored on the GW together with other relevant information.

This will enable the device to dynamically load the module from external

memory of the node. Alternatively, we may store the entire dynamic code

locally in the SD and replay the transfer of the entire module from the SD.

5.3.2 Recovery of Dynamic States

The states generated through the aforementioned interactions are stored in the

memory of the constrained nodes. In this work, we consider state information that

is stored in volatile memory and that is lost after rebooting the node. So, in case

the constrained nodes go through a power cycle due to an internal error (e.g.

software error) or are temporarily put offline for maintenance (e.g. battery

replacement), the nodes have lost all dynamic states when they come back online.

This situation affects all IoT applications that rely on the previously installed state

in that node. A structured and efficient state restoration mechanism is crucial to

ensure that all dynamic state information is captured and updated and the latest

state is restored when the node comes back to life. Figure 5-5 shows an example

of a structured state restoration process.

Figure 5-5: Dynamic State Restoration Cycle

1. State Generation – As explained above, several nodes involved in IoT

applications generate dynamic states as a result of interactions with other

constrained or non-constrained nodes. Some interactions generate new

state information every time, while others continuously update the

dynamically created state. For instance, every observation relationship

request creates a new dynamic state, whereas notifications generated due

to resource state changes update part of the already existing dynamic state

(e.g. the latest observe counter).

2. State Information Collection – In order to successfully recover the

dynamic states, it is imperative to carefully collect the states as soon as

they are generated and/or modified. Some interactions create new states

and others modify existing ones. Some interactions may also result in the

removal of the dynamic state (For instance, a GET request with the

152 Chapter 5

observe option set to 1). Therefore, it is vital to distinguish between these

interactions and take the appropriate action. Collection of state

information must be done transparently without human intervention and

knowledge of the involved parties.

3. Failure Detection (Optional) – A node might not be available for some

time due to physical failure or link failure. In some cases, failure

detection is important to defer re-registration (or cancelation) of

relationships by clients due to the unavailability of sensors for a short

period of time. The best example of such a scenario is an observation

relationship established between a client and a sensor node with a fixed

Max-Age value. If the node takes more time than the Max-Age value to

get back online, the client sends a new GET request to re-register its

interest or even a RST to actively cancel the relationship. The re-

registration (and possible cancelation) may be avoided in case the failure

is detected earlier and an intermediary can respond to the requests in

place of the sensor. Early detection may also allow intermediary devices,

such as the LLN gateway, to play a role in establishing a separate

relationship with replacement devices if the original sensor is gone

forever [5.12]. Once the replacement is put in place having the same IP

address, the intermediary may store all states of the old node into the new

node so that the transaction continues as before. If such intervention is

not required, failure detection is not mandatory, startup detection is.

4. Startup Detection – A node that is not available for some time does not

necessarily imply that it has physically failed. Possible link failures on

the path between the sensor and the client can break the communication.

Timely startup detection is a vital step in state information recovery. A

mechanism must be in place to differentiate between physical node

failure and link failure to properly recover state information, as link

failures typically do not require recovery.

5. State Information Restoration – This is the last step that puts all the

dynamic state information back into the memory of the node. Since all

transactions are expected to continue as before, we must make sure that

all states are restored before the client is aware of the brief absence of the

constrained node. In addition, we must make sure that the recovery

procedures do not lead to the generation of too much communication

creating congestion at specific nodes in the network leading to further

timeouts in other communications.

5.4 Dynamic State Recovery

As described in the previous section, IoT applications that make use of constrained

objects usually depend on dynamically generated states. The loss of such states

Transparent Recovery of Dynamic States through Deep Packet Inspection 153

negatively impacts the performance and/or accuracy of the application. This very

idea makes state recovery an important component of IoT applications.

As mentioned earlier, one of the important steps in dynamic state recovery is the

collection of the state information in a way that is easy to recover. Dynamic state

collection can be done by the node itself using a push mechanism, where the node

sends every new or updated state to a pre-configured or negotiated state directory

as soon as it is created. The major drawback of this mechanism is the additional

overhead it creates in the constrained network, in order to store the states at the

SD. Every transaction that gives rise to new or updated dynamic state information

results in the generation of a packet towards the SD. This may lead to various

problems including an increased power consumption as well as an increased

number of packets inside the LLN that results in network congestion. The opposite

of this approach is a pull mechanism initiated by the SD. This can be done either

by continuous polling or using publish/subscribe mechanisms such as CoAP

observe. In both cases, the approach suffers from the same drawback as the push

mechanism.

An innovative and less expensive approach is to do the state collection in a way

that is transparent to both the client and the server. This can be done by

intercepting and inspecting the packets as they traverse the network towards their

destination and deciding whether they will result in a new or updated dynamic

state. As the interactions that affect the stored dynamic states of a node are known,

it is easy to anticipate the change and store the appropriate information in the SD.

Such methods generally work well for unencrypted transactions. Encrypted

messages cannot be easily inspected and require another approach. However, this

can be overcome by using a a trusted gateway and sensor virtualization as shown

in [5.12]. The next two subsections describe in more detail the transparent state

recovery for both unencrypted and encrypted communications, followed by a

subsection on alternative approaches.

5.4.1 Transparent Dynamic State Recovery for Unencrypted

Communication

An essential aspect for this approach to work is the location of the state directory.

Most interactions, if not all, that alter dynamic states of a constrained device

originate from the non-constrained network such as the Internet. Such packets

must pass through the LLN gateway before they reach the constrained node.

Similarly, responses also go through the gateway on their way to the external

device. Moreover, the LLN gateway is a non-constrained device that is always on

and can handle the real-time interception and inspection of all packets to and from

154 Chapter 5

the LLN. All these features make the LLN gateway an ideal location to place the

SD. Our transparent dynamic state recovery solution is based on this basic idea.

The gateway intercepts all the traffic between the LLN and the external network

and stores all relevant information needed to recreate the dynamic states at a later

time when recovery is required (Figure 5-6). As shown in the figure, a PUT request

sent from a smartphone to a constrained node residing in the LLN passes through

the gateway, which also houses the state directory. The state directory contains a

list of values required to regenerate all dynamic states on the constrained devices.

Figure 5-6: Placement of State Directory at the LLN Gateway

Other mechanisms could be incorporated to our solution in order to capture

interactions originating and terminating in the LLN, but this is outside the scope

of this work. The different steps involved in the transparent dynamic state

recovery, as introduced in Figure 5-5, and how they can be realized are discussed

below.

5.4.1.a SD – Node Association

The first step in the transparent dynamic state recovery mechanism is establishing

a relationship between the state directory and the sensor nodes inside the LLN.

This step is important for subsequent steps too. This can be done in several ways.

Proactive Registration: one possible method is to allow explicit registration of

nodes upon startup. Whenever a node boots up, it is expected to send a packet to

the gateway, which registers the node as a potential node that may store dynamic

states. Hereafter, any request-response interaction that may modify the dynamic

states on this node will be intercepted. In addition, the registration request can also

be used to detect the startup of the node and may trigger the state recovery process.

In this case, the packets intercepted will be the ones sent to and from the registered

nodes. The main drawback of this approach is that if the registration request is lost

Transparent Recovery of Dynamic States through Deep Packet Inspection 155

in between, the gateway will not be able to know the existence of this node.

However, this can be overcome by sending confirmable registration requests.

Reactive Registration: by default, the gateway inspects all packets entering the

LLN. The moment the first packet is sent towards a node inside the LLN, the node

association is created. Further, the packet is inspected and, if needed, the gateway

stores the dynamic state provisionally and starts a timer. If an error message is sent

back from the LLN stating absence of the node or unwillingness to comply to the

request before the timer expires, the provisional information will be removed from

the SD. However, if a positive response is intercepted or the timer expires, the

provisional status will be changed to permanent. All further packets to and from

that node will now be intercepted. This is a completely transparent mechanism

where neither the client nor the sensor are aware of the existence of the SD. In

addition, no prior registration is required for the operation. However, if an error

message is generated and gets lost on its way to the gateway, the gateway will still

store a state that does not exist, resulting in inconsistent information. This is the

major downside of this method. In addition, we need another mechanism to detect

rebooting of the nodes as the approach does not provide an inherent way to detect

startups.

Inference from the LLN Routing Table: in RPL based networks, the root of the

DODAG stores all available nodes in the LLN. The LLN gateway, being closest

to the RPL root, may just store all available nodes by collecting the route

information from the root node. This can easily be achieved if the root node

exposes the route information as a CoAP resource to the gateway and the gateway

registers as an observer. The gateway stores all the nodes in the LLN irrespective

of their capacity and role and packets to/from these nodes are intercepted. Also

nodes that are not involved in any dynamic state generating interaction (such as

simple routers) are stored at the SD. This approach suffers from multiple

drawbacks. First, re-registration of a node at the DODAG root does not necessarily

mean the node is rebooting. When a link to the parent fails, a node chooses a new

route and is re-registered at the DODAG root. This information reaches the SD

giving it an incorrect information that the node is coming back up from failure.

Second, when a node or a link fails, all nodes that use the failed link or node will

find an alternate route and notify the DODAG root. Again, this gives inaccurate

information to the SD informing it to start the recovery process. Finally, every

node sends keep-alives to the root periodically which are treated as updates.

5.4.1.b State Information Collection

State information collection is done to ensure that the correct dynamic state is

captured in the state directory. As mentioned before, all requests with the potential

of updating a dynamic state must be intercepted so that the SD information is

updated. Figure 5-7 shows how the dynamic state collection works.

156 Chapter 5

Figure 5-7: Dynamic State Information Collection

Every packet that passes through the gateway is intercepted and different actions

are taken based on the origin of the packet. If the packet originates from the LLN,

the SD entry associated with the content of the intercepted packet will be updated

only if the packet is an observe notification. However, if a request with the

potential of creating or modifying a dynamic state on a node in the LLN is

intercepted from the Internet, an existing entry will be updated or a new one is

created on the SD. As mentioned before, the intercepted requests from the Internet

are PUT requests, observe requests, binding Requests and dynamic deployment

requests.

A PUT request from the external network triggers the gateway to check the SD for

a matching request to the destination. If it exists, the value will be updated.

Otherwise, a new entry will be created for the destination. For instance, if a user

updates the operating temperature of a thermostat multiple times, the first request

creates the information in the SD and subsequent requests will update it.

Transparent Recovery of Dynamic States through Deep Packet Inspection 157

Figure 5-8: Observe Request Information Collection

Observation requests require more thorough examination of the packet before the

gateway decides how to update the SD (Figure 5-8). Observe request from the

external network with an observe value different from 1 will establish a new

observe relationship between the sender and the LLN node. Accordingly, the

gateway creates a new entry in the SD. In case there is already an existing observe

relationship between these two parties, this will be indicated by the existence of

an entry in the SD. Then, the information will be updated as the same will happen

at the LLN node when it receives another observe request from the same client to

the same resource. On the other hand, an observe request from the external

network with the observe value set to 1, removes an existing relationship and

hence is implied by removing an existing entry from the SD. All packets that

originate from the LLN that include the observe option are notifications generated

as a result of resource state changes affecting an existing observe relationship. So,

the gateway captures the packets and updates the current entry in the SD. This is

particularly important for two reasons. One, if the node reboots, after successful

dynamic state recovery, the observe value used in subsequent notifications must

be a continuation of the last notification. Otherwise, the client will ignore the value

as obsolete eventually leading to Max-age expiration and, consequently, to re-

registration or cancellation of the relationship. The second reason is to capture

timeouts. Every now and then, the sensor obliges the client to acknowledge

reception of notifications. However, if the client is not available to do so, the

sensor retransmits the packets for a fixed number of times and removes the observe

relationship in case it fails to get any acknowledgement. This means, the entry

should also be removed from the SD. By examining the packet, we detect

retransmissions and hence can remove the SD entry after the maximum number of

retransmissions is reached.

158 Chapter 5

Binding relationships are established by sending packets from the external

network to the LLN. The packets contain the observe option along with the four

binding options explained in [5.10]. Any binding request must be intercepted and

the appropriate information stored in the SD. Unlike the regular observe operation,

subsequent transactions, except the response to the first request, do not reach the

gateway. Therefore, no update will be made for binding relationships after the

relationship is established. In order to capture events happening inside the LLN,

e.g. cancellation of the binding relationship by either party, different mechanisms

may be applied. For instance, the gateway may regularly check the binding

directory of the sensor node to see if all bindings are intact.

Requests sent to dynamically loaded RESTlets, can be identified by the block

transfer option sent to the dynamic loader resource of the constrained node. As far

as storing information in the SD is concerned, we have two options here. The first

option is capturing all blocks and storing the dynamic module at the gateway so

that recovery can be done by resending the dynamic module to the constrained

node. The other option will be storing only the filename and the node’s address at

the SD. But for this to work, the dynamic module must be available at a permanent

storage of the node. Upon reboot, the gateway will send a packet to the node to

read and load the dynamic module from the storage.

5.4.1.c Failure Detection

Failure detection is optional and enables the gateway to perform some proxying

tasks until the failed node is back online. This can be done by looking at the routing

table entries or by periodically polling resources. We do not do failure detection

in our implementation.

5.4.1.d Startup Detection

All stored state directory entries must be restored on the corresponding nodes as

early as possible in order to avoid the client to miss expected notifications and/or

avoid erratic operation of the IoT application. Startup detection triggers restoration

of the dynamic states in the node. If nodes proactively register their presence at

boot time, this message can be used by the gateway as a mechanism to detect

startup. In cases where the node does not get registered at the gateway proactively,

other startup detection mechanisms should be in place. One possible method is

observing node entries in the LLN routing table at the RPL root coupled with

follow-up requests sent to the node. Any change in the LLN is reflected at the RPL

root. When a node is not reachable for some time, this information may or may

not reach the RPL root immediately. When it comes back, the node tries to become

part of the DODAG again and hence the root tries to install this route in the routing

table. This information will be communicated to the gateway to indicate that a

node has attempted to rejoin the network. However, this does not necessarily mean

Transparent Recovery of Dynamic States through Deep Packet Inspection 159

that the node is recovering from a failure. The node could have been unreachable

for various reasons (e.g. mobility). The gateway may send a request to the client

to check if an already stored state is available. If the requested dynamic state does

not exist or if the value is different, the node is rebooting.

5.4.1.e State Restoration

The final step of the state recovery procedure is state restoration. Once the gateway

realizes a node has just finished booting up, it starts the state restoration in a

transparent way by replaying the original requests that resulted in the existing

dynamic states. For instance, if a PUT request has set the threshold value of a

resource, the same request will be sent to the node to restore this value. Similarly,

an observe relationship between a device and the node will be restored by sending

the same observation request by spoofing the IP address of the originating device.

The same works for binding relationships. Recovering dynamic RESTlets may

work in either of two ways. If the node has a permanent memory where the

dynamic module is stored, the restoration process only takes the filename from the

gateway and just does relocation and loading of the module from its local store.

Otherwise, the gateway may replay the whole block-wise transfer request to

transfer the dynamic modules from the SD.

5.4.2 Transparent Dynamic State Recovery for Encrypted

Communication

Secured communication with constrained networks is difficult to be intercepted.

In addition, a gateway cannot simply spoof and replay packets. However, [5.12],

gives an innovative way of providing DTLS-based secured communication

between LLNs and the Internet by introducing a trusted gateway. The solution

exposes a virtual device for every physical device in the LLN at the gateway. This

virtual device will minimally expose the same CoAP resources as the physical

device. Security between the physical resource and a client in the Internet, is then

provided by dividing the connection in two separate secured communication

components. The first component securely connects the virtual resources at the

gateway and the external client while the second component connects the virtual

resource to the physical resource. This way, external networks only see virtualized

devices that are perceived as real devices. Every packet addressed to such a virtual

node will be terminated at the gateway and a separate packet is sent to the physical

node. Responses are also handled in the same manner. This way, it becomes

possible to intercept and inspect all packets, even when using DTLS. Of course,

the underlying assumption is that the gateway is a trusted device. This can be

compared to e.g. SSL/TLS termination in data centers for purposes of load

balancing and deep packet inspection.

160 Chapter 5

With this approach, transparent dynamic state recovery can be done, as the

interception and inspection of packets takes place at the gateway after decrypting

the packets coming from either side of the gateway. Once the inspection is done,

the SD entries will be updated or new entries will be created as per the content of

the packet. During recovery, the replayed packets from the SD will be encrypted

before they are sent to the constrained node.

This mechanism will effectively address the recovery of dynamic states on

constrained nodes without affecting the security of the whole system.

5.4.3 Other Dynamic State Recovery Mechanisms

5.4.3.a SD on External Storage

An alternative way of resuming communication after a node comes back from

failure is to store a copy of all important dynamic states in external memory

(Figure 5-9). Every time a node boots, it checks its own state directory for the

availability of stored states. If there are stored dynamic states, it restores them back

into volatile memory before continuing its normal operation. Once normal

operation resumes, every change will be stored both in the volatile memory (RAM)

and in the storage. In this approach, startup detection is an integral part of the

firmware while failure detection is not applicable. State information collection is

merely storing new states and modifications in the storage space as a copy.

Recovery is the reverse process of copying information from external flash to

memory. One of the advantages of this approach is that it does not require

additional devices to collect and recover dynamic states. Because of that, no

additional packet transmission is required. It is also the fastest way to recover the

states. However, it has also its own limitations. First, this approach only works for

nodes with external storage which is optional in many smart objects. As external

devices are not aware of the process, it is not possible to keep connections alive

temporarily in cases where the power cycling process takes longer. Finally, it only

works for devices that have been designed in such a way and cannot be retrofitted

to legacy devices.

Transparent Recovery of Dynamic States through Deep Packet Inspection 161

Figure 5-9: Dynamic State Recovery with State Directory on the Node

5.4.3.b SD on Immediate Parent in Multi-Hop Network

Another alternative is to put the state directory at the immediate parent of the node

that operates in a multi-hop network. In tree-based multi-hop networks, all

communication of a node with the external world goes through a parent node. This

makes it easier for the node to store all dynamic states locally to make it available

in case of failure of the child node. State information collection may take place

transparently by intercepting every packet that passes through the parent node. The

parent and child nodes periodically exchange control messages in order to indicate

that they are alive. The parent is able to detect the failure of the child node when

such messages do not arrive when expected. Upon detecting the failure, the parent

node may take actions such as responding for requests on behalf of the child in

order to defer re-registration or cancelation of pre-established relationships until

the node is back online. The routing control messages that will be sent out upon

boot time by a node also reach the immediate parent making its availability known

to the parent. The parent may initiate the restoration process as soon as it receives

such control messages. Since a third-party is involved in the process, state

restoration takes place transparently without the knowledge of both the client and

the sensor. In addition, the packet interception at the parent avoids additional

packets that might be needed for state collection if the SD was placed elsewhere.

Moreover, the parent works on behalf of the sensor until it is back online serving

clients with strict deadlines. However, this approach puts a lot of load on the parent

162 Chapter 5

node, which is most likely a constrained node itself. In addition, being a

constrained device, the parent node may also fail losing all the stored information.

Since there is no backup of the parent node, there is no way of putting the states

back in the parent node when it resumes functioning after failure. Moreover,

topology changes may result in changing parents which actually means losing the

stored information.

5.5 Implementation

The transparent dynamic state recovery mechanism that has been presented in

section 5.1.1 was implemented at the gateway node running CoAP++, an in-house

implementation of the CoAP protocol and many additional features using Click

Router [5.13]. The LLN devices are Zolertia Z1 motes [5.14] running Contiki 2.7

[5.15] and Erbium [5.16].

Figure 5-10: Implementation of Transparent Dynamic State Recovery

The SD functionality at the gateway performs the interception just after the IPv6

routing is done. After this step, the destination (sub) network is determined

indicating if the transaction is from the LLN to an external network or vice versa.

By doing the interception here, we can perform the required processing tasks

depending on the origin of the packet. Packets originating from the LLN will be

checked for notifications and the exact state information to store (or remove).

Figure 5-10 shows the flow of control to successfully recover lost dynamic states

of constrained nodes.

A. SD – Node Association – We make use of the proactive registration method

by nodes to create the association between a node and the gateway. Since the

node has earlier knowledge of the gateway, it will just send a registration

request to the gateway after initializing its REST engine. Upon receipt of the

request, the gateway checks if it has already stored information for that node.

Transparent Recovery of Dynamic States through Deep Packet Inspection 163

The presence of such information ensures that the node is rebooting and

triggers recovery. Otherwise, the node’s information will be stored in the SD.

We use confirmable blocking requests to block all other activities from

commencing before the acknowledgement is received from the gateway. This

way we can be sure that the association is created properly.

B. Dynamic State Collection – dynamic state collection takes place by

intercepting all traffic that comes from both sides – the LLN and external

network. If the packet is originating from the external network, the state

directory will be updated either by creating a new entry or by modifying

existing one or even removing entries. Packets originating from the LLN

always either modify the existing data (if they are notifications to observers)

or remove the entry (if they are retransmissions and max-retransmission is

reached).

C. Startup-Detection – as mentioned above, a proactive registration request sent

from an LLN node indicates that the node is booting and also alerts the

gateway if there needs to be recovery attempts.

D. Dynamic State Recovery/Restoration – the decision to restore dynamic

states is made by the gateway after it gets a registration request from an LLN

node and verifying that the node already has SD entries associated with it. If

the stored information is an observe relationship or a PUT request, the

gateway replays the original requests by using the original sender’s IPv6

address as source address and using the values stored in the SD as required.

For instance, the gateway uses the latest observe counter value and the

observers IPv6 address when reestablishing the observation relationship and

suppresses the response. Restoration of binding relationship requires

specifying the binding information along with the observe option value set to

0. The gateway uses one of its own IPv6 addresses as the source address.

Finally, to recover dynamic RESTlets, we just specify the name of the file in

URI query while sending the recovery information. Upon reception of this

packet the node looks for the file in its external memory and reloads it to

memory.

164 Chapter 5

5.6 Evaluation

5.6.1 Functional Evaluation

5.6.1.a Node-SD Association

Figure 5-11: Registration of a node at the gateway

As explained before, at startup every node sends a CoAP request to a specific

resource on the gateway to inform its availability. The message is sent as a

blocking request so that every CoAP related operation is blocked until

confirmation is received from the gateway. This is required in order to allow the

Node-SD association to be in place before further interactions. The SD receives

the packet and checks for stored dynamic states for that node and initiates recovery

if found (Figure 5-11). Otherwise, the node is stored as a potential host for

dynamic states.

5.6.1.b Dynamic State Collection

Figure 5-12: Dynamic State Collection (using PUT method)

Dynamic state collection is done by intercepting all traffic in a way that is

transparent to both the client and the server. Figure 5-12 shows the CoAP Copper

Transparent Recovery of Dynamic States through Deep Packet Inspection 165

Plugin setting the value of the /a/lb resource to 10 on the node with address

[aaaa::c30c:0:0:2] through a PUT request (label 1 and 2 on the figure). The server

responds that the operation was successful as indicated in label 3. This operation

is totally transparent and both the client and the server are unaware of the

interception made by the SD. When this request passes through the gateway, the

SD intercepts the packet and stores the information locally as shown in Figure

5-13. The SD entry shows the client address, the server address and the entry type,

among other values. Entry Type (ET) 2 means the record is for a PUT request.

Figure 5-13: Intercepted PUT Request from Client

166 Chapter 5

5.6.1.c Observation Request and Notification Handling

Figure 5-14: CoAP Observe Request Sent from Copper Client

As explained earlier, observation requests are treated differently as opposed to

other intercepted requests. Figure 5-14 shows Copper sending an observation

request to the /gpio/btn resource on node [aaaa::c30c:0:0:2]. Since this is the first

observation request from this client, the observe counter is set to 0. This means,

the SD needs to store an entry for this request after successful interception (Figure

5-15).

Transparent Recovery of Dynamic States through Deep Packet Inspection 167

Figure 5-15: Interception of a New Observe Request at the SD

All notifications sent from the sensor node are intercepted and the SD Entry is

updated. When the client wishes to stop the relationship, the RST message will be

sent and the entry is removed from the SD.

5.6.1.d Dynamic State Restoration

Figure 5-16: List of Entries in the SD Before Node [aaaa::c30c:0:0:2]

The restoration process starts as the gateway receives a registration request from

a node in the LLN. If entries exist in the SD, the SD initiates the restoration process

and generates packets containing the right information to regenerate the dynamic

states on the nodes. Figure 5-16 shows 3 entries in the SD before node

[aaaa::c30c:0:0:2] reboots. There are two PUT requests and one Observe request

stored in the SD for that node.

168 Chapter 5

Figure 5-17: SD Containing 3 Records

Upon reception of a registration request from the node, the SD checks the list of

entries associated with the registered nodes. Figure 5-17 shows the 3 records in

the SD associated with the rebooted node. The first two records are PUT requests

to resources a/lb and a/m, respectively, while the last record is an observation

relationship. Accordingly, the SD initiates regeneration of the dynamic states on

the node by sending the PUT and Observe requests to the node.

Figure 5-18: Output of the node after receiving the 3 packets from the SD

Transparent Recovery of Dynamic States through Deep Packet Inspection 169

Figure 5-18 shows the outputs of the node on Cooja, illustrating the receipt of the

3 packets while Figure 5-19 shows the CoAP Message Log in Copper. When we

closely look at the output of Figure 5-18, we see that the sender’s address used to

regenerate the observation relationship is the address of the client itself, i.e.,

[cccc::3]. This is important because the server always registers the client as an

observer and sends notifications to him. Resumption of normal observation

operation can be seen on Figure 5-19 by simply looking at the message IDs (MID).

The change of MID from 12855 to 62713 indicates the re-initialization of the

message IDs after reboot.

Figure 5-19: CoAP Message on Copper Showing Resumption of the Observe

Operation

5.6.2 Performance Evaluation

5.6.2.a Delay Introduced by SD-Node Association

Figure 5-20: Delay Introduced by SD-Node Association Process

170 Chapter 5

The first step in the transparent crash recovery solution is the association between

nodes and the state directory. After rebooting, the node sends a confirmable

blocking request to the SD in order to get registered. The SD registers the node

and sends a confirmation back. This process introduces delay in the overall crash

recovery process. Figure 5-20 shows the delay introduced due to this process using

NullRDC and ContikiMAC as Radio Duty Cycling (RDC) protocols. In both

cases, the delay increases with the hop count. This means that larger networks may

suffer from longer delays. Yet, the delay for 3 hops is still less than 1 second for

ContikiMAC and less than 100ms for NullRDC. Moreover, the increment is linear

and the delay may not be very significant unless the network is too big. However,

when we compare the results of ContikiMAC and NullRDC, the difference is quite

high even for the same hop count. This is due to the nature of the two RDC

protocols. NullRDC keeps the radio on all the time in order to receive packets as

soon as the sender attempts to transmit them. This makes all transmission and

reception faster but keeping the radio on all the time wastes energy. But

ContikiMAC keeps the radio off 99% of the time in order to save energy. Due to

this fact, senders have to wait for some time until the sleeping nodes are available

making the communication delays higher.

5.6.2.b Impact of Intercepting Packets

Every packet that traverses the gateway needs to be intercepted which may

introduce delays in the overall recovery process. We measured the arrival time

difference by enabling and disabling interception and found out that the impact is

minimal (<100ms). This is due to the fact that the interception is being handled by

a non-constrained device.

5.6.2.c Impact of Routing Hops on the Recovery Process

Transparent Recovery of Dynamic States through Deep Packet Inspection 171

Figure 5-21: Impact of Hop Count on Recovery Delay

Delays are introduced when packets traverse from their source to destination. The

delay is especially pronounced in LLNs. Therefore, it is important to study the

impact of the distance, expressed in number of hops, between the node and the

SD. As expected, the delay increases with the hop count (Figure 5-21).

5.6.2.d Impact of Number of Relationships on a Single Server

A single server may have multiple dynamic states created as a result of multiple

requests from clients. When the node recovers from a crash, every dynamic state

has to be recovered. In order to study the impact of multiple states on the recovery

time, we sent 3 PUT requests to a single server and measured the recovery delay

after the crash. We used ContikiMAC as Radio Duty Cycling (RDC) protocol

which lets nodes sleep for most of the time to reduce energy consumed by passive

listening. Figure 5-22 shows that the time required to recover states increases with

the number of dynamic states required. The delay is due to the increased number

of packets traversing the network, each containing information about a particular

dynamic state that will be restored. The impact will be more visible when the

number of hops increases because of the number of nodes it traverses to reach the

server. When the number of states is a lot more than what we showed here, there

is a possibility of congestion while trying to recover the states. In such cases, the

SD must have a strategy to inject the recovery requests in the network.

172 Chapter 5

Figure 5-22: Impact of Number of Dynamic States that needs to be recovered on

recovery time

5.7 Conclusion and Way Forward

CoAP-based IoT applications may depend on devices located inside a LLN. These

devices may reboot for some reason or could be put offline temporarily for

maintenance. Dynamic states, values which are created as a result of interaction

with other nodes and that are stored in the volatile memory of the nodes, will be

lost when the devices are back online. In this paper, we discussed the importance

of dynamic state recovery in this context and the possible steps that might be taken

to successfully recover the states. In addition, we presented a mechanism for the

recovery of these dynamic states in a manner that is transparent to both the client

and the server. Our proposed solution intercepts transactions with the potential of

creating (and modifying) dynamic states on the nodes at the LLN gateway and

stores relevant information in its state directory. The requests that are intercepted

are PUT requests that may alter configuration parameters, observation requests,

binding requests and dynamic deployment requests. The gateway is selected to

host the state directory for two reasons. First, the gateway is a non-constrained

device that can handle all interactions. Second, almost all such transactions

originate from the outside network and go through the gateway to reach the LLN.

The recovery process starts when a node reboots and sends a registration message

to the gateway. Upon reception of the message, the gateway checks its state

directory for any dynamic state information in the state directory. If a relevant

directory entry exists, the gateway sends all the requests that created the dynamic

Transparent Recovery of Dynamic States through Deep Packet Inspection 173

states to the node. The current work focuses on capturing interactions between

clients residing outside the LLN and servers inside. In the future, we will work on

recovery of dynamic states that are created due to interaction of nodes within the

LLN.

174 Chapter 5

Reference

[5.1] Z. Shelby, K. Hartke, and C. Bormann, “RFC 7252: The Constrained

Application Protocol (CoAP).” IETF, pp. 1–112, 2014.

[5.2] K. Hartke, “RFC 7641: Observing Resources in the Constrained

Application Protocol (CoAP).” IETF, pp. 1–30, 2015.

[5.3] S. Cherrier, Y. M. Ghamri-doudane, S. Lohier, and G. Roussel, “Fault-

recovery and Coherence in Internet of Things Choreographies,” pp. 532–

537, 2014.

[5.4] A. Akbari, A. Dana, A. Khademzadeh, and N. Beikmahdavi, “Fault

Detection and Recovery in Wireless Sensor Network Using Clustering,”

vol. 3, no. 1, pp. 130–138, 2011.

[5.5] P. Milano et al., “A Novel Technique for ZigBee Coordinator Failure

Recovery and Its Impact on Timing A Novel Technique for ZigBee

Coordinator Failure Recovery and Its Impact on Timing Synchronization,”

no. November, 2016.

[5.6] N. Tsiftes and A. Dunkels, “A Database in Every Sensor,” in Proceedings

of the 9th ACM Conference on Embedded Networked Sensor Systems,

2011, pp. 316–332.

[5.7] L. Selavo et al., “LUSTER : Wireless Sensor Network for Environmental

Research,” in Proceedings of the 5th international conference on

Embedded networked sensor systems, 2007, pp. 103–116.

[5.8] G. Teklemariam, J. Hoebeke, I. Moerman, and P. Demeester, “Facilitating

the creation of IoT applications through conditional observations in

CoAP,” EURASIP J. Wirel. Commun. Netw., vol. 1, no. 1, 2013.

[5.9] G. Teklemariam, F. Van den Abeele, I. Moerman, P. Demeester, and J.

Hoebeke, “Bindings and RESTlets: A Novel Set of CoAP-Based

Application Enablers to Build IoT Applications,” Sensors (Basel)., vol. 16,

no. 8, 2016.

[5.10] G. K. Teklemariam, F. Van Den Abeele, P. Ruckebusch, I. Moerman, and

P. Demeester, “Dynamic Deployment of RESTlets on Constrained Devices

(unpublished).”

[5.11] P. Ruckebusch, E. De Poorter, C. Fortuna, and I. Moerman, “GITAR :

Generic extension for Internet-of-Things ARchitectures enabling dynamic

updates of network and application modules,” Ad Hoc Networks, vol. 0, pp.

1–25, 2015.

[5.12] F. Van Den Abeele, T. Vandewinckele, J. Hoebeke, I. Moerman, and P.

Demeester, “Secure communication in IP-based wireless sensor networks

Transparent Recovery of Dynamic States through Deep Packet Inspection 175

via a trusted gateway Secure communication in IP-based wireless sensor

networks via a trusted gateway,” no. October, 2015.

[5.13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click

Modular Router,” in Proceedings of the 17th Symposium on Operating

Systems Principles, 1999, pp. 217–231.

[5.14] Zolertia, “Z1 Datasheet,” pp. 1–20, 2010.

[5.15] T. V. Adam Dunkels, Bj¨ orn Gr¨ onvall, “Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors,” in 29th Annual

IEEE International Conference on Local Computer Networks, 2004.

[5.16] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for

Contiki,” Proc. - 8th IEEE Int. Conf. Mob. Ad-hoc Sens. Syst. MASS 2011,

pp. 855–860, 2011.

6
Conclusion

 “Perfection is achieved, not when there is nothing more to add, but when

there is nothing left to take away.”

—Antoine de Saint-Exupéry (1900 – 1944)

The advent of electromechanical technologies coupled with the evolution of

wireless communication technologies created new possibilities and challenges to

the Internet. Devices previously not considered to be online have now become an

integral part of the Internet. Nowadays, household devices such as refrigerators

and microwave ovens, medical utilities such as pacemakers are capable of

communicating wirelessly. Novel applications involving self-driving cars, smart

buildings and smart container tracking systems have appeared. All these

innovations have something in common – smart objects. Smart Objects are sensors

and actuators that have rather limited processing and communication capabilities.

Despite this limitation, they are capable of sensing their environment and

communicating the results after performing limited processing. They can also

receive wireless signals from other devices and alter their environment.

178 Chapter 6

Making use of these devices in a smaller scope with limited accessibility (e.g.

inside a house) can easily be achieved by using proprietary protocols and devices.

However, making these devices an integral part of the Internet is the biggest

challenge for the current Internet. Firstly, the devices have severe resource

constraints, making existing communication protocols impossible to be used.

Secondly, several assumptions that are made while designing existing protocols

may not hold for constrained devices due to their nature. Finally, there are new

requirements of the constrained devices which are not addressed by existing

protocols.

Several protocols have been developed to address the communication needs of

constrained devices ranging from proprietary protocols designed to be used by

devices manufactured by a specific company to open standards developed by

international standardization bodies. In this PhD work, we focus on one of the

standardized application layer protocols designed for constrained objects, named

the Constrained Application Protocol (CoAP). CoAP is a lightweight counterpart

of the HTTP protocol. It uses the same GET, PUT, POST and DELETE methods

for communication between clients and servers. One of the major differences

between HTTP and CoAP is the fact that CoAP uses UDP at the transport layer

while HTTP uses TCP. However, in order to achieve reliability CoAP uses

Confirmable messages on top of UDP to let servers send Acknowledgements for

every successful transaction. In order to allow seamless interaction between

devices translation of CoAP into HTTP and vice versa is also possible. CoAP has

several extensions that gives the protocol additional features. One of these

extensions is Observe. The main goal of the PhD work is to leverage upon CoAP

and design extensions in order to improve the performance of CoAP-based IoT

applications.

6.1 Summary and Conclusion

In this dissertation, we presented a set of novel enablers that can make CoAP-

based IoT applications more robust and flexible through extensions of the

underlying protocols. One of the improvements discussed in this dissertation is the

concept of conditional observation which is aimed at improving the standard

CoAP observe functionality. The design of this concept was driven by the need to

have a lightweight, efficient and compact solution for subscribing for very specific

events, which is an important functionality when building IoT applications that

directly interact with constrained devices. Normal observe in combination with

client-side filtering can realize similar functionality, but suffers from the

transmission of excessive packets that are not of interest to clients. We

demonstrated the feasibility of implementing this functionality on constrained

Conclusion 179

devices. Using this implementation, we presented comparative results of using

normal observation and client-side filtering versus conditional observation. We

also presented theoretical evaluations of normal and conditional observation. From

both the experimental and theoretical results, it is evident that conditional

observations are a very useful extension to the basic observe behavior, both from

an application point of view and from a network efficiency point of view. It

enables clients to receive notifications that contain only state changes they are

interested in. This has a twofold advantage: an application has the expressiveness

to selectively collect data and the data of no interest does not have to travel over

the network. The latter advantage will become even more important in larger

constrained networks where notifications have to travel over multiple hops. As

such, conditional observations can greatly contribute to the reduction of power

consumption and increase of network lifetime. In addition, many scenarios can be

thought of that can benefit from this functionality. As such, conditional

observation is an interesting and easy-to-use enabler for many IoT applications.

The other enabler presented in this dissertation is the concept of Bindings. In

monitoring applications that make use of the CoAP observe protocol, direct and

flexible interactions between two constrained nodes (e.g., a sensor and an actuator)

in a flexible way is not possible. The most common way used to curb this situation

is for a non-constrained device (e.g., the LLN gateway) to establish an observe

relationship with a sensor, get notified of every change and trigger an actuator

based on the data received from the sensor. Our proposed solution introduces the

concept of flexible bindings which are observation relationships between two

devices established by a third party (e.g., smartphone). Once the relationship has

been established, the initiator is no longer involved in subsequent communications

between the two devices. The proposed solution, reduces the packet flow to the

gateway and hence reduces the latency and the number of packets in the LLN

compared to gateway or cloud based solutions. Through experiments we showed

that the overhead (e.g., memory footprint) introduced by the binding solution is

not significant compared to the gateway/cloud based solutions. In fact, regarding

many aspects such as communication delay and number of packets, the binding

solution outperforms traditional solutions. We also showed that this flexibility can

be achieved by only making minor changes to the CoAP protocol and the observe

extension.

RESTlets are the third novel enabler introduced in this dissertation. RESTlets are

IoT application building blocks with data and control inputs, processing logic and

data output. The RESTlet inputs can be associated with sensor or other RESTlet

outputs through bindings to get input for processing. Once the RESTlet processes

the data it produces outputs that will, in turn, be associated with other devices such

as actuators or other resources in the LLN gateway or in the cloud. RESTlets can

180 Chapter 6

be defined once and be instantiated multiple times. In this PhD work, we showed

that by using RESTlets as IoT application building blocks, we can do in-network

processing and aggregation in order to reduce the number of packets that traverse

the whole LLN to the edge of the network and/or to the cloud which otherwise

would lead to higher latency. We also showed that by interconnecting the data

inputs and outputs of RESTlets to sensor outputs, actuator inputs or other

RESTlets, we can easily build a complete IoT application within the LLN. Since

the RESTlet approach allows distributed deployment of the processing logic at

different nodes, there will not be too many resource hungry processes on one

single node. It also gives greater flexibility in developing IoT applications by

placing simple processing functionality inside the LLN and more complex one at

the gateway or in the cloud. We ran several experiments in order to evaluate the

performance of our solution by comparing it to traditional gateway-based or cloud

solutions by using a different number of data generating nodes, data generating

gap and TX/RX ratio. In all cases, our solution is capable of outperforming

traditional solutions in terms of latency. Interestingly, the RESTlet solution

provides a very good opportunity to use visual programming techniques to reduce

the IoT application development to a set of drag-and-drop or point-and-click

activities.

RESTlets can be hosted on both constrained and non-constrained devices alike.

We looked at the dynamic deployment of RESTlets on constrained and non-

constrained devices separately as the two devices have completely different

capabilities. Due to the memory and processing power scarcity of constrained

devices, we dynamically deploy only one RESTlet per node which can be

instantiated only once but the architecture allows for more RESTlets to be

deployed. On the other hand, non-constrained devices may have dynamic or static

RESTlets and may be instantiated multiple times. Dynamic deployment on

constrained devices involves the creation of a dynamic module and the transfer of

the entire program code into external storage of the constrained node using a bulk

transfer method such as CoAP Block-wise transfer. The dynamic loader of the

node’s firmware will then relocate the code in memory (RAM/ROM) to make it

part of the firmware. The deployment process is completed with the creation of

CoAP resources for all inputs, outputs and control parameters. This provides

greater flexibility to the RESTlet concept by giving an IoT application developer

the possibility to select and deploy RESTlets even after the nodes have been

deployed in the field. However, this advantage comes with a tradeoff. The first

tradeoff is the increased memory requirement due to the inclusion of the Contiki

dynamic loader and the file system. But, despite the increase in memory footprint,

we have shown that the entire firmware still fits in Class 0 constrained devices.

The deployment time and energy consumed for dynamic deployment is another

tradeoff. Evaluations performed on Z1 nodes show that a reasonable sized

Conclusion 181

dynamic module can be deployed in less than 10 seconds on a node after 3 hops

(using ContikiMAC as RDC protocol). Such a deployment will consume energy,

but, in turn, the data processing capabilities offered by the RESTlet may lead to a

reduction of the number of packets transferred in the network and thus an overall

reduction in energy consumption after some time.

CoAP-based IoT applications may depend on devices located inside a LLN. These

devices may reboot for some reason or could be put offline temporarily for

maintenance. Dynamic states, values which are created as a result of interaction

with other nodes and that are stored in the volatile memory of the nodes, will be

lost when the devices are back online. In this dissertation, we discussed the

importance of dynamic state recovery in this context and the possible steps that

might be taken to successfully recover the states. In addition, we presented a

mechanism for the recovery of these dynamic states in a manner that is transparent

to both the client and the server. Our proposed solution intercepts transactions with

the potential of creating (and modifying) dynamic states on the nodes at the LLN

gateway and stores relevant information in its state directory. The requests that are

intercepted are PUT requests that may alter configuration parameters, observation

requests, binding requests and dynamic deployment requests. The gateway is

selected to host the state directory for two reasons. First, the gateway is a non-

constrained device that can handle all interactions. Second, almost all such

transactions originate from the outside network and go through the gateway to

reach the LLN. The recovery process starts when a node reboots and sends a

registration message to the gateway. Upon reception of the message, the gateway

checks its state directory for any dynamic state information. If a relevant directory

entry exists, the gateway sends all the requests that created the dynamic states to

the node.

6.2 Future work

A number of novel ideas have been introduced and implemented in this PhD work.

Yet, further enhancements and optimizations are possible to improve the

performance of the solutions and can be interesting topics for future research work.

The current work on conditional observation assumed one conditional observation

relationship on one resource. However, the impact of multiple dissimilar

conditional observation relationships on a single resource needs further study.

Moreover, the conditional observation solution can benefit from an efficient

mechanism that aggregates multiple relationships into a single one. Further

research is required to provide this solution.

182 Chapter 6

From the tests conducted on the flexible bindings, we noticed that the relative

position of the sensor and actuator results in varied performance in terms of latency

and power consumption. The gain can be further optimized by performing cross-

layer optimization techniques that look into the bindings and optimize the

communication between the sensors and actuators that have binding relationships.

For instance, ongoing research in 802.15.4e, particularly in IPv6 over the TSCH

mode of IEEE 802.15.4e (6TiSCH) can be further investigated to find optimal

performance using targeted scheduling. All in all, optimization of all

communication protocols from the application layer to the physical layer should

be investigated thoroughly in order to come to an optimal solution. Further work

needs to be done also on finding a transparent solution to find out existing binding

relationships and build a binding directory by using the concepts introduced in the

crash recovery solution.

The RESTlets also benefit from such optimization as their performance is directly

related to the binding relationships between components. In addition to this, the

tests conducted showed that placing the RESTlets closer to the data generating

nodes results in a better performance of the RESTlet solution. Providing

mathematical models that will lead to optimal placement of RESTlets is another

area that needs further investigation. The concept may further be extended to be

used in more powerful nodes by leveraging on trending technologies such as

OSGi and Spring. Also, the easy-of-use for creating IoT applications based on this

concept can be enhanced by studying easy-to-use programming interfaces. By

providing visual programming tools, we may reduce RESTlet-based IoT

application development to a simple drag and drop operation.

Likewise, further work needs to be done on the crash recovery solution too. The

behaviour of the solution when there are 10s, 100s or even 1000s of states are

stored should be studied. Particularly, how to replay packets to avoid congestion

needs further investigation. In some cases, nodes may fail and become unusable.

A mechanism of quickly replacing a failed node is also another future work. The

solution must be able to capture the data both in the volatile and non-volatile

memory of the failed node.

As mentioned repeatedly, the entire PhD work is focused on CoAP-based IoT

applications. However, it is interesting to see the performance of our solutions

against other similar protocols used in the IoT arena. Hence, comparing our

CoAP-based solutions against other similar protocols (eg. MQTT) is another

potential research area.

Another area for future work is the impact of these solutions on Low Power

Wide Area Network (LPWAN) technologies. Since most of our solutions are

Conclusion 183

aimed at decreasing power consumption through reduced traffic flow, we believe

that devices that use such technologies (e.g. LoRaWAN devices) benefit more

from our solution.

Further standardization of our solutions may also be considered as future work.

There are current initiatives in the IETF to standardize dynamic resource linking

for constrained RESTful environments using a different approach. We can look

into possible integration of our solutions with the proposed internet drafts.

	Blank Pages
	titlepg_recto_verso_Teklemariam
	franse_pg_recto_Teklemariam_nieuw.pdf
	franse_pg_verso_Teklemariam_nieuw.pdf

	PhD Book Girum Final_Edited

