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ABSTRACT 

The reduction of environmental pollution is one of the greatest challenges for humanity, today and 

for the immediate future. Air quality is one of the most critical aspects in determining people’s 

health, particularly in big cities, and transportation emissions are currently considered accountable 

for almost 32% of total air contamination.  

The more widespread use of green vehicles could have important effects both on the environment 

and the economy, and this thesis work intends to focus on reliability and maintainability of pure-

electric vehicles (EVs). 

The main objectives of this paper are: 

 To conduct research into state-of -art of pure-electric car powertrain technology, describing 

the functions and operations of its various components: mechanical, electrical and the 

control links between those components are all carefully considered. 

 To identify and define a long term maintenance plan for the power train system, utilising 

the RCM method. 

In order to achieve these targets and objectives, a wide literature review will be conducted on 

existing electric vehicle technology, taking already published and available information from 

similar technologies which are more mature than EVs one, but with comparable run conditions and 

operations. 

The method adopted for this maintenance study is Reliability Centred Maintenance (RCM): this 

logic will be reviewed and applied to the powertrain system, designing and completing proper 

worksheets (COFA worksheet and PM task worksheet) which will form the suggested maintenance 

plan. This proposed plan consists of various elements including: failure modes identification, failure 

effects on the vehicle, criticality classification of the components, failure causes identification and 

suggested preventive maintenance tasks with proper periodicity. 

In the final part of the paper, the results and outcomes of the analysis will be discussed, and possible 

future developments will be identified. 
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Chapter 1 

 

1. INTRODUCTION 

 

1.1 BACKGROUND 

The large number of automobiles currently in use around the world is one of the major causes of 

environmental pollution and energy problems: air pollution, global warming and consumption of 

Earth’s petroleum resources are the main consequences and contributing effects of the rapid 

development and expansion of the conventional automotive industry. 

In an internal combustion engine, the energy is supplied by the combustion of hydrocarbon fuels 

and the reaction products are released into the atmosphere. The more toxic molecules to human 

health are nitrogen oxides (NOx), carbon monoxides (CO), and unburned hydrocarbons. [1] [2] 

Global warming is the result of the “greenhouse effect” induced by high concentrations of carbon 

dioxide and other gases in the atmosphere. Many human activities contribute towards this 

phenomenon, and transportation accounts for a large share (32% from 1980 to 1999) of carbon 

dioxide emissions. 

 

FIGURE 1.1 

Carbon dioxide emission distribution 1980 – 1999 [3] 

 

In recent decades, research activity has focused on the development of alternative transportations, 

with qualities like high efficiency, reduction of emission, and use of unconventional energy sources.  

32% 

19% 15% 

34% Transportation 

Residential 

Commercial 

Industrial 



  

3 

 

 

FIGURE 1.2  

Carbon dioxide emissions from energy consumption by End-Use sector, 1949-2010 [4] 

 

As shown in the above figure, the production of CO2 in the environment tends to increase year on 

year in all the considered human circumstances, such as industrial activity, residential, commercial 

and transportation. Furthermore, the system of transportation is particularly critical in effecting 

human health because it produces air pollution directly in the place where people live, which can 

result in serious effects upon the quality of life.  

Considering pure-electric vehicles (EVs), even if the production of electricity is still mostly 

supplied by fossil fuels, there are several advantages among the utilization of petrol as vehicle fuel: 

- The power plants are usually located far from cities and urban centers; 

- The efficiency of power plants is higher than transportation vehicles, which is a base 

condition to save energy sources; 

- Power plants are equipped with systems for the reduction of pollution which are more 

effective than vehicles, in particular, old vehicles and trucks. Only coal plants utilization 

could increase the emission of NOx, SOx and particulates, with some potential negative 

consequences for air acidification. These impacts would reduce over time if greater 
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proportions of renewable power were introduced and the amounts of cold generation were 

reduced.  

Electric vehicles have zero emissions at the point of use, so-called ‘tank-to-wheel’, when powered 

solely by the battery. The ‘well-to-wheel’ concept includes the CO2 emissions during electricity 

generation, which depends on the current mixture of fuels used to make the electricity for the grid. 

To make a correct comparison with emissions from all cars, you have to use the ‘well to wheel’ 

concept, which includes the CO2 emissions during production, refining and distribution of 

petrol/diesel.  

On a comparable basis taking into account both electricity generation and the processes necessary to 

deliver petrol and diesel to the vehicle, emission factors and lifetime carbon use have been 

calculated for vehicles manufactured in 2010, 2020 and 2030. For ICEVs, the addition of pre-

combustion emissions (extraction, refining, transport, etc.) typically adds another 10-18% to the 

‘tank to wheel’ figure.  The table below presents these ‘well to wheel’ figures. 

 

Vehicle manufactured in 2010 

 EV ICEV 

 GaBi 4 factors grid mix
1
 Petrol Diesel 

Emission factor  
well to wheel gCO2/km 

106 172 156 

Lifetime vehicle carbon 
use 

kg CO2 - equiv 
19,161 30,916 28,012 

Vehicle manufactured in 2020 

Emission factor  
well to wheel gCO2/km 

56 144 130 

Lifetime vehicle carbon 
use 

kg CO2 - equiv 
10,132 25,864 23,435 

Vehicle manufactured in 2030 

Emission factor  
well to wheel gCO2/km 

41 120 109 

Lifetime vehicle carbon 
use 

kg CO2 - equiv 
7,390 21,639 19,606 

TAB. 1.1 

Comparison of an EV and an ICEV over the Vehicle Life (defined as 180,000 km) [5] 

 

                                                           
 

1
 GaBi 4 is a Life Cycle Assessment tool conforming to the ISO 14040 Life Cycle Assessment (LCA) standards.  It is 

designed to allow the user to model the whole life cycle (or part) of a product or service, and provides a quantitative 

output on a range of environmental impacts. 
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As electricity production decarbonises through an increase in low carbon generation, the overall 

emission figure for running an EV will drop further. The current lowest emitting ICEV produces 

tailpipe (tank to wheel) emissions of 86g CO2/km [6]. Adding the average ‘well to tank’ proportion 

(which starts at 10% and equates to 8.6g CO2/km) means ICEVs can achieve ‘well to wheel’ 

emissions as low as 94.6g CO2/km and ICE vehicles are being refined to further reduce the ‘tank to 

wheel’ emissions.  

It is worth noting that the standard industry metrics only consider CO2 emissions. However, tailpipe 

emissions include oxides of nitrogen (NOx) and particulate matter (tiny particles of solid or liquid 

matter suspended in a gas or liquid) which furthermore contribute to air pollution. This is why 

vehicle manufacturers are striving to reduce tailpipe emissions and why any vehicle operating 

solely on battery power can play a significant role in improving local air quality. [6] 

In a world where environmental protection and energy conservation are ever more critical, the 

development of green transportation technology has taken on an accelerated pace and Electric 

Vehicles, Hybrid electric vehicles (HEVs) and Fuel cell vehicles are typically proposed to replace 

the ICE vehicles in the near future [7]. 
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1.2 WORK OBJECTIVES 

The main objective of this thesis work is to produce a maintenance program for the modern EVs 

power train, consisting in both the traction system and the energy source system. The focus of this 

program is on electronic control units, communication units and traction power units. The auxiliary 

system and cooling system analysis is not within the scope of this paper: the purpose is to produce 

an applicable and effective maintenance program, and the research strategy has been to concentrate 

the resources in the traction-power subsystem, instead of the whole system.  

The maintenance study is based on the Reliability Centred Maintenance (RCM) method: in the 

chapter 3 Methodology, the principals of this method are further described and discussed. 

The objectives proposed to be achieved on this thesis are: 

1. Analysis and understanding of the typical architecture of the electric car powertrain. 

1.1. Description and schematic drawing of the structure of a typical electric car power train 

representing mechanical, electrical and control links between components; 

1.2. Description of structure and operations of each system component; 

1.3. Reliability Block Diagram for general reliability considerations on the whole system. 

2. Identification of the best maintenance strategy for the power train system, employing the RCM 

method. Definition of a long-term maintenance plan. 

2.1.  Identification of functions, functional failures, failure modes, and criticality classification 

of each powertrain component; 

2.2. For each component (except for run-to-failure
2
 ones), identification of failure causes, 

definition of the proper Preventive Maintenance tasks and related periodicity. 

 

  

                                                           
 

2
 Run-to-failure are those components which can be replaced after the occurrence of their failure, without preventive 

maintenance activities. 
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1.3 THESIS STRUCTURE 

The Chapter 2 will focus on a literature review of the technology related to electric traction, 

electronic control system and energy storage system, and it refers to the first macro-objective. 

Different configurations will be compared through a pros-and-cons analysis and the complete 

scheme of the power train system will be drawn.  

The methodology of the research will be reported in Chapter 3, and in this section the Reliability 

Centred Maintenance logic will be described: it is the method applied to the power train to produce 

a maintenance program (ref. Appendix A and B). The RCM principles will be defined, the 

reliability analysis process will be planned and the maintenance worksheets (COFA worksheet and 

PM task worksheet) will be designed. 

The core section of the thesis work forms Chapter 4, in which the overall results and findings are 

described. In this part, the second objective of the research, the identification of the best 

maintenance strategy for the powertrain and definition of a long-term maintenance plan, is reviewed 

and presented. In particular, the outcomes of six interesting components will be widely described. 

Finally, in Chapter 5, the results and outcomes of the analysis and possible future developments will 

be discussed. 
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Chapter 2  

 

 

2. LITERATURE REVIEW 

 

2.1 STRUCTURE OF A TYPICAL EV POWER TRAIN

 

2.1.1 INTRODUCTION 

The conventional vehicles employ a combustion engine for propulsion and the energy source 

is either liquid petrol or diesel. In contrast, pure-electric vehicles (EVs) use an electric motor 

for traction, and chemical batteries, fuel cells, ultracapacitors, or flywheels as energy 

sources
3
. These vehicle types have different advantages over the internal combustion engine 

vehicles (ICEVs), such as an absence of emissions, high efficiency, flexible structure, 

independence from petroleum
4
 and quiet operation. 

This chapter investigates the state of the art of the modern EVs power train structure: 

describing the operational and fundamental principles, the multiple drive train configurations 

and the typical system composition by detailed diagrams.  

 

2.1.2 ICE VEHICLES POWER TRAIN 

An automotive power train, or drive train, is the electromechanical system that allows the 

flow of power from the energy source to the road. 

Basically, any vehicle power train has four main assignments: 

I. Develop sufficient power to match the requirements of the load; 

II. Carry sufficient energy to support vehicle driving on a target range; 

                                                           
 

3
  Presently achievable energy of ultracapacitors and flywheels can’t be the sole energy sources for EVs. 

4
 Without considering the process of electricity generation, tank to wheel figure. 
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III. Demonstrate high efficiency; 

IV. Emit limited environmental pollution. 

A usual drive train consists of a power plant (engine or electric motor), a clutch in manual 

transmission or a torque converter in automatic transmission, a gearbox (transmission), final 

drive, differential, drive shaft, and driven wheels. 

In Figure 2.1 represents a schematic drive train of an ICE vehicle. 

 

 

FIGURE 2.1 

Conceptual illustration of an automobile power train [3] 

The clutch is used in manual transmission to couple to or decouple the gearbox from the 

power plant. The torque converter replaces the clutch in automatic transmission: it consists in 

a hydrodynamic device with a continuously variable gear ratio. The gearbox supply a few 

gear ratios from its input shaft to its output shaft for the power plant torque-speed profile to 

meet the demand of vehicle performance: by incorporating both clutch and gearbox, the 

driver can shift the gear ratio and hence the torque going to wheels. The final drive is usually 

a pair of gears that reduce further the speed and distribute the torque to each wheel through 

the differential. Differential is a mechanical device that allows the wheels to have different 

speed along a curved path, where the outer wheel rotates faster than inner one. 

In ICEVs, all the links between these devices are mechanical links and this is why the drive 

train configuration is not so flexible. 

Nowadays more and more significance is given to the environmental impact of the vehicles, 

emphasizing the development of high efficiency, clean, and safe transportation, able to take 

place of conventional ICEVs. 
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2.1.3 ELECTRIC VEHICLES POWER TRAIN 

Previously, the EV was mainly converted from the existing ICEV by replacing some 

components with new devices that have the same function, like internal combustion engine 

with electric motor drive and fuel tank with battery pack, while retaining all the other 

components, as in following Figure 2.2. 

 

 

FIGURE 2.2 

Primary electric vehicle power train [3] 

 

The lower flexibility, performance degradation, and the heavy weight have caused the use of 

this type of EV to fade out. To solve this negative aspect, the modern EV is built based on 

original body and frame design. This solution takes the significant advantage over the 

“converted” one because it provides the engineer with the flexibility to coordinate and 

integrate various subsystems so that they can work together efficiently. 

Compared with an ICE vehicle, the configuration of an EV is particularly flexible. This is due 

to several factors. Firstly, the energy flows in the EV is mainly via flexible electrical wires 

rather than bolted flanges and rigid shafts. Secondly, since the torque-speed characteristic of 

an engine covers only a narrow range, the required performances of the vehicle have to be 

achieved through gear changing. On the other side, the electric vehicle propulsion design can 

be more flexible, namely single or multiple motors, with or without reduction gearing, with 

or without differential gearing, and axel or wheel motors. Furthermore, EV gives the 

possibility to choose different energy sources (such as battery and fuel cell) that have 
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different weights, sizes and shapes. The corresponding refuelling system also involves 

different hardware and mechanism: for example, the battery can be recharged both via 

conductive or inductive means. 

 

2.1.3.1 STRUCTURE AND BEHAVIOUR 

Figure 2.3 shows the general configuration of an EV, consisting of three major subsystems: 

[8] 

 Electric motor propulsion; 

 Energy source system; 

 Auxiliary system. 
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FIGURE 2.3 

General EV configuration 

The electric propulsion subsystem consists of the motor drive, transmission device and 

wheels. The heart of this system is motor drive, comprising of the electric motor, power 
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converter and electronic controller, and the major requirements of the EV motor drive are 

summarized as follow: 

 High instant power and high power density; 

 High torque at low speed for starting and climbing as well as high speed and low 

torque for cruising; 

 High efficiency over wide speed and torque ranges; 

 High reliability and robustness for various vehicle operating conditions; 

 Reasonable cost. 

The energy source subsystem consists of energy source, energy management unit and energy 

refuelling unit. 

The auxiliary subsystem involves the power steering unit, temperature control unit and 

auxiliary power supply. 

Based on the control inputs from the accelerator and brake pedals, the electronic controller 

provides proper control signals to switch on or off the electronic power converter, which 

functions to regulate the power flow between the energy source and electric motor. The 

backward power flow is due to the regenerative braking of the EV and this regenerated 

energy can be restored to the energy source, provided the energy source is receptive. Notice 

that most EV batteries as well as ultracapacitors and flywheels readily possess the ability to 

accept regenerated energy. The energy management unit cooperates with the vehicle 

controller to control the regenerative braking and its energy recovery. It also works with the 

energy refueling unit to control the refueling unit, and to monitor the usability of the energy 

source. The auxiliary power supply provides the necessary power at different voltage levels 

for all the EV auxiliaries, especially the temperature control and power steering units. [8] 

Typically, a Permanent Magnet Synchronous brushless motor is selected for a modern EV 

and the corresponding power converter is a three-phase PWM inverter. In general a Lithium-

based (Li-Ion) battery pack is used as energy source, and consequently the refueling unit 

becomes a battery charger. The temperature control unit consists of a cooler and/or a heater. 

[3] 
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This typical configuration is shown in Figure 2.4. 

 

DSP
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inverter
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FIGURE 2.4 

Typical EV drive train configuration 

 

2.1.3.2 DRIVE TRAIN CONFIGURATIONS 

As mentioned above, there is a variety of possible EV configurations, due to the multiple 

types of propulsion devices and energy sources, and due to the flexibility of electric links. 

Focusing on the power train shape, in Figure 2.5 are shown six typical alternatives. 

2.5.a. Figure 2.5.a shows the configuration of the first alternative, in which an 

electric motor replaces the IC engine of a conventional vehicle power train. It consists 

of an electric motor, a clutch, a gearbox and a differential.  

2.5.b. With an electric motor, which has constant power in a long speed range, a 

fixed gearing can replace the multispeed gearbox and reduce the need for a clutch. 

This configuration not only reduces the weight and size of the mechanical 

transmission, but also simplifies the drive train control because gear shifting is not 

required. 

2.5.c. The electric motor, the fixed gearing, and the differential device are further 

integrated into a single assembly, while both axles point at both driving wheels. 
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2.5.d. In this configuration the mechanical action of differential is electronically 

replaced by two electric motors operating a different speed, each of them drives one 

side wheel. 

2.5.e. In order to further shorten the drive train from the electric motor to the driving 

wheels, the traction motors can be placed inside a wheel (in-wheel drive). A thin 

planetary gear set can be used to reduce the motor speed and enhance the motor 

torque. 

2.5.f. By fully abandoning any mechanical gearing, the out-rotor of a low-speed 

electric motor can be directly connected to the driving wheel. Figure 2.5.f shows a 

gearless arrangement in which the speed control of motor is equivalent to the control 

of the wheel and hence the vehicle speed. However, this configuration requires the 

electric motor to have a higher torque to start and accelerate the vehicle. 

 

 

FIGURE 2.5 

Possible EV configuration [8] 

As mentioned before, the system configuration of EV propulsion can adopt a single motor or 

multiple motors, as shown in the following Figure 2.6 and 2.7.  
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Since these two configurations have their individual merits, both of them are adopted in 

modern EVs but the use of single-motor configuration is still the majority today, for example 

the new Nissan Leaf and Renault Z.E. fleet. [3] [9] [10]  

That choice is explained especially by several reasons: 

 Costs: the multiple-motor is a completely new configuration and requires a complete 

redesign of OEMs production plants and consequently very high investments, not 

justified by the current market demand; 

 Maintenance benefits: the number of components is inversely related with the 

reliability of the system, even if in the multiple-motor configuration there is not a 

differential unit, affected by wear and ageing; 

  Total weight reduction: the single-motor structure is lighter, even if the multiple-

motor one allows a better distribution of the mass of the vehicle. [3] [7] 
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Single-motor configuration 

FIGURE 2.7 

Multiple-motor configuration 
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2.1.3.3 ULTIMATE SYSTEM SOLUTIONS 

Analysing the configurations showed in Figure 2.5, it is possible to notice a strong evolution 

from “conventional structures” toward very innovative structures. The major changes are in 

gearbox and differential concepts. 

For ICEVs, there is no alternative to the use of variable gearing, because the torque-speed 

characteristics of the engine cannot offer the desired performances in a complete driving 

cycle, such as high torque for hill climbing and high speed for cruising. So primarily, were 

applied the same concepts to the first electric vehicles. However, the concept of converted 

electric vehicle is almost obsolete, as it cannot fully utilize the flexibility and potentiality of 

EVs. Some obsolete theory claimed that variable gearing could also improve the regenerative 

braking efficacy and the motor efficiency operation over a wide speed range. The modern 

EVs, with the advances of power electronics and control algorithms, can achieve that aims by 

electronic means rather than mechanical means. Electric motors can supply the requested 

vehicle performances and so fixed gearing transmission can replace variable gearing, 

reducing the overall complexity, size, weight, cost of the transmission and costs of 

maintenance. 

A more controversial aspect is the possibility in EV to replace the differential device, Figures 

2.8 and 2.9, with two or even four electric motor coupled to the driving wheels (as anticipated 

in Figures 2.5.d, 2.5.e and 2.5.f).  

 

  

FIGURE 2.8     FIGURE 2.9 

Mechanical differential [8]    Electronic differential [8] 
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The differential action can be supplied by several motors, controlling the speed of each wheel 

independently with an electronic control rather than a mechanical device, as in Figure 2.9.  

In this arrangement, the weight is better distributed than in the conventional one, but 

negatively, the use of double motor and power converter causes an increase of initial costs 

and an increase of number of components, with critical consequences in reliability. 

Nowadays thanks to the low-cost electronic technology, it is possible to find solutions that 

increase the reliability level, for example using redundant microprocessor in the electronic 

controller. 

The ultimate solution in EVs configurations is the in-wheel drives, as shown in the relative 

configurations in Figure 2.5.e and 2.5.f. By placing the motor inside the wheel, there is the 

advantage of minimizing or even removing any mechanical transmission path between motor 

and wheel. 

If using a high-speed inner-rotor motor (represented in the following Figure 2.10.a), a high-

speed reduction becomes necessary to attain a realistic wheel speed. On the other hand, the 

transmission can be totally removed when a low-speed outer-rotor motor is used: in this case, 

the outer rotor itself is the wheel rim, and no gears are required (Figure 2.10.b).  

Both these solutions could be applied to modern EVs: the high-speed inner-rotor motor has 

the advantage of smaller size, lighter weight and lower cost, but needs an additional planetary 

gear set; the low-speed outer-rotor motor has the great advantage of gearless and simplicity 

but it is heavier, bigger in size and more expensive. 
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FIGURE 2.10 

In-wheel drives [8] 
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2.2 EV POWER TRAIN: COMPONENTS OPERATIONS, FUNCTIONS 

AND RBD 

 

2.2.1 INTRODUCTION 

This section consists in an overview on the modern electric cars propulsion system 

configurations: several combinations of units offer different possibilities of power train 

structure. The most proper electric motor drives are compared and described in their 

operations and main characteristics. The technologies of power converter and energy source 

are overviewed, as well as the modern possibilities of electronic control systems. A base 

evaluation of the reliability of the entire power train is made by the Reliability Block 

Diagram (RBD). 

The electric propulsion subsystem is the heart of EVs. Its role is to link energy source to 

wheels, converting electric energy in vehicle motion with high efficiency and matching the 

required performances. 

It consists of: 

 electric motor;  

 electronic controller; 

 power converter.  

Electric motor supplies mechanical energy converting electric one from batteries to wheels, 

and can generate electricity during the braking phase to recharge energy storage. 

Regenerative braking is a key process for EV appeal because it enhances vehicle efficiency of 

between 20 - 25 %. 

The power converter supplies the electric motor with the appropriate current and voltage. 

Electronic controller provides control signals to power converter and so it controls the 

electric motor behaviour in order to achieve the requested torque and speed, according to 

commands from the driver. [8] [11] 

In the following Figure 2.11, the functional block diagram of electric propulsion system is 

shown, listing some possible devices used for each unit. 
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 FIGURE 2.11 

Functional block diagram of an EV propulsion system: technical options for each function. 

 

The choice of components and shape mainly depends on three factors: user driver 

expectation, vehicle constraints and energy source. 

Driver expectation depends on performance and driving cycle: automobile manufacturers 

have to take into account that customers will compare ICEVs performances with EVs ones. 

Vehicle constraints are linked with vehicle type, vehicle weight and payload. 

Electric propulsion subsystem depends on what kind of source is adopted, such as batteries, 

ultracapacitors, flywheels, fuel cells and various hybrid sources. 
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2.2.2 ELECTRIC MOTOR 

The operations requested to the vehicle motor vary widely during a normal drive cycle: 

frequent start/stop, high rate of acceleration/deceleration (overcoming or braking phase), high 

torque at slow speed (hill climbing), high speed at low torque (cruising highways). 

For these reasons, motors for EV form an individual class, quite different from industrial 

devices, which operate on a narrow range of conditions.  

Industrial motors are generally optimized at rated torque and speed; while EVs need to match 

four/five times the nominal torque and speed for temporary acceleration and for cruising. 

Furthermore, industrial motors work usually in fixed place instead of mobile vehicles with 

harsh operating conditions such as high temperature, frequent vibrations and bad weather. 

The motor drives for EVs can be classified as two main groups, namely the commutator 

motors and commutatorless motors, as shown in Figure 2.12.  

The former refer mainly to the classical DC (direct current) motors, which need commutators 

and brushes to feed current into the armature, making them less reliable and suitable for 

maintenance-free and high speed. Nevertheless, in recent past DC motors have been 

prominent thanks to their mature technology and simple control. 

With technological progress, commutatorless motors are now more attractive than the 

conventional. Advantages include higher efficiency, higher power density, lower operating 

costs, greater reliability and maintenance-free. In fact, the absence of brushes and 

commutator increases widely the reliability of the motors and reduces failure probability. [8]  

EV motor
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Self-

excited

Separately

-excited

SHUNTSERIES
PM 

EXCITED

FIELD-

EXCITED

SyncronousInduction
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reluctance
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SQUIRREL 

CAGE

WOUND-

ROTOR

PM 

ROTOR
RELUCTANCE

WOUND-

ROTOR

FIGURE 2.12  

Classification of EV motors 
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2.2.2.1 ELECTRIC MOTORS: PROS AND CONS ANALYSIS 

The most proper motors in modern EVs are Induction motors, PM Synchronous motors, 

Switched Reluctance motors and PM Hybrid motors. 

 

Induction motor  

It is a widely accepted type of device for EV propulsion thanks to its low cost, high reliability 

and maintenance free, and at present, it is one of the most mature technologies among various 

commutatorless motor drives. The main advantages of this type of device are: [12] 

 Light weight 

 Small volume 

 Low initial cost 

 High efficiency 

 Low maintenance 

These strengths can outweigh the major weakness of induction motors, namely the control 

complexity. 

 

Permanent Magnet synchronous motors 

By simply replacing the field winding of a DC motor with permanent magnets, PM 

synchronous motors can eliminate conventional brushes, slip-rings and field copper losses. 

The major advantages of this kind of motor are: [3] [12] 

 High efficiency 

 Compactness 

 Ease of control 

 Low maintenance 

However, it presents also several drawbacks: 

 High initial cost 

 Limited constant power range 
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 Magnet demagnetization 

 Small speed range 

 

Switched reluctance motors  

SR motors have been recognized to have big potential for EV propulsion. They have the 

definite merits of: [3] 

 Simple structure 

 Low initial cost 

 Proper torque-speed characteristics 

Although they hold these advantages, there are also some weaknesses: 

 Design complexity 

 Control complexity 

 Acoustic noises 

 

PM Hybrid motor 

There are different kinds of hybridization, namely the PM and reluctance hybrid, the PM and 

hysteresis hybrid, and the PM and field-winding hybrid. Each type has particular advantages 

that are summarised as: [3] 

 High efficiency 

 High power density 

 Wide speed range 

 Ease of control 

 Low maintenance 

 Quiet operation 

The most important disadvantages are linked to the lack of technological maturity and costs. 
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In Tab.1, the results of a comparative analysis by a grading system are depicted: each type of 

motor is evaluated for six major characteristics from 1 to 5 points. At the end of each column, 

there is the final rating: induction motor and PM brushless motors are the most relatively 

acceptable for EV driving. On the other hand, conventional DC motors are leaving their 

leadership to the modern solutions. [3][12] 

DC motor
Induction 

motor

PM 

brushless 

motor

SR motor
PM hybrid 

motor

Power density 2.5 3.5 5 3.5 4

Efficiency 2.5 3.5 5 3.5 5

Controllability 5 3 4 3 4

Reliability 3 5 4 5 4

Maturity 5 5 4 4 3

Cost 4 5 3 4 3

Total 22 25 25 23 23  

TAB. 2.1 

Evaluation of EV motors [8] 

 

2.2.2.2 DIRECT CURRENT (DC) MOTOR 

The DC motors are classified in two categories: wound-field motor and PM motor. In the 

former, magnetic field is produced by a set of winding and it can be controlled by the dc 

current, in the latter magnetic field is made by permanent magnets and it is uncontrollable.  

Traditionally this type of motor has been widely adopted in cases requiring adjustable speed, 

frequent start/stop, braking and reversing.  

The torque is produced by the Lorentz principle, which states that any current-carrying 

conductor placed within an external magnetic field (B) generates a force (F). If the conductor 

is a coil, than there is a torque, as shown in Figure 2.13. 

In order to keep the same direction of rotation, DC motors need commutators and brushes, 

which periodically reverse current direction between rotor and stator. These components 

cause the principal drawbacks of this kind of motor: commutators limit the motor speed and 

generate torque ripples; brushes are responsible for friction and wear, so that periodic 

maintenance is definitely required. Nevertheless, DC motor has been the most used device for 

vehicle propulsion for years, especially thanks to its controllability.  
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FIGURE 2.13 

Operation principle of a DC motor [3] 

 

In EV starting operation, from zero to base speed, rotor coil voltage must be increased 

proportionally with the increase of speed (Armature Control). At the base speed, the armature 

voltage reaches the rated value and cannot be further increased. In order to reach higher speed 

it is possible to weaken the magnetic field (Field Control), keeping constant armature current. 

The torque produced drops parabolically with the increase of speed and the output power 

remains constant, as shown in Figure 2.14. [12] 

 

2.2.2.3 INDUCTION MOTOR DRIVES 

In order to overcome the weaknesses of conventional DC motors, one of the most mature 

alternatives available is the induction motor drive (IM). It is a type of AC motor (alternative 

current) where power is supplied to the rotor by electromagnetic induction. There are two 

typology of IMs namely wound-rotor and squirrel cage. Because of high cost and high 

maintenance, the former is less attractive than the latter, especially for EV drive train. [3] 

Induction motor has some important advantages as low cost, ruggedness, easy maintenance, 

lightweight and high efficiency. On the other hand, the principal problem is the complexity of 

speed control, which can be solved only with advanced electronic technology and modern 

control solutions, increasing the total cost of propulsion system. 

FIGURE 2.14  

Combined armature and field control of DC motor [3] 
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FIGURE 2.15  

Operation principle of an Induction Motor [12] 

 

2.2.2.4 PM SYNCHRONOUS MOTOR DRIVES 

Considering the waveform feeding into the PM motors, they can be classified into two 

categories: 

 PM DC motor drive; 

 PM AC motor drive. 

Because of the absence of brushes and commutators, the latter is usually named PM brushless 

motor drive. This kind of drives is the most capable to compete with induction motor drives 

for electric propulsion. Their advantages are summarized as following: [12] 

 Since the magnetic field is excited by high-energy PMs, the weight and volume can 

be reduced for a given output power (higher power density); 

 Greater efficiency than induction motor, thanks to the absence of rotor copper losses; 

 Since the heat mainly originates in the stator, it can be more easily dissipated; 

 Higher reliability, since PM excitation presents low risks of manufacturing defects, 

overheating or mechanical damage. 

The system configuration of PM brushless motor drives is similar to that of induction motors, 

such as single or multiple motors configuration. Basically, the single-motor configuration 
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consists of a PM brushless motor, a voltage-fed inverter, an electronic controller and 

reduction & differential gears.  

Compared with the induction motor solution, there is a further difference: the PM brushless 

motor is not restricted to be three-phase. In fact, a higher number of phases allows reducing 

phase current and current rating of power devices.  

PM AC motor drives can be further classified in three categories: 

 PM synchronous motor (PMSM); 

 PM brushless dc motor (PMBM); 

 PM hybrid motors (PMHM). 

The first two typologies are much more mature for electric propulsion utilization. 

The Motor control system 

PMSMs are fed by sinusoidal ac waves and use continuous rotor-position feedback signal to 

control the commutation, whereas PMBMs are fed by rectangular ac wave and use discreet 

rotor position feedback signals to control the commutation.  

Because of the rectangular interaction between flux and current, the PMBM has the ability to 

produce larger torque and, by specially arranging the stator winding and flux path, it has 

superior dynamic performance and flexible controllability. In particular, the easier control 

system is one of the principal reasons to choice a PM AC motor drive instead of an induction 

one. [3] [8] 

 

 

FIGURE 2.16 

Block diagram of the torque and speed control of the PM brushless motor [3] 
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In Figure 2.16 a torque and speed control scheme is shown for a PM brushless motor drive. 

Torque, speed and current controller functions are embedded in the Electronic Controller 

module of EV (DSP). The desired speed ωr
*
 is compared with the motor speed ωr, identified 

by a sensor, then Δω is processed by the speed controller producing the commanded torque 

T
*
. The desired current Is

*
 is the result of a simple equation that relates current and torque. 

The current controller receives Is
*
 and the motor position information from a position sensor, 

and then produces gating signal to control the inverter. By this gate signal, the inverter can 

produce the required phase current to properly control the electric motor torque. The current 

controller provides the properly sequenced gating signals to the three-phase inverter while 

comparing sensed currents to a reference to maintain a constant peak current control: using 

position information, the commutation sequencer causes the inverter to electronically 

commutate, acting as the mechanical commutator of a conventional DC machine.  

Many high-performance applications include current feedback for torque control. At the 

minimum, a DC bus current feedback is required to protect the drive and machine from 

overcurrent. [3] 

Early permanent magnet motors suffered from the tendency for the magnets to be 

demagnetized by the high stator currents during starting, and from a restricted maximum 

allowable temperature. Much improved versions using high coercivity rare-earth magnets 

were developed to overcome these problems. [12] 

A stumbling block to the actual spread of PM brushless motors is the cost of this kind of rare-

earth magnets, but currently, the principal automotive manufacturers are adopting PM 

Synchronous motors for their electric vehicles traction, as in the cases of Nissan Leaf and 

Renault Z.E. fleet [9] [10]. For this reason, the maintenance analysis in the following sections 

of this paper will consider only the PMSM. 
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2.2.3 EV POWER CONVERTERS 

A power converter is an electrical device that links energy source with motor, feeding current 

with the proper characteristics (AC/DC, voltage and frequency). The evolution of power 

converter topologies normally follows that of power devices, aiming to achieve high power 

density, high efficiency, high controllability and high reliability (Bose, 1992). 

There are several types of power converters, namely ac-dc, ac-ac at the same frequency, ac-ac 

at different frequencies, dc-dc and dc-ac. 

Dc-dc converter are usually named dc choppers, dc-ac are named inverters, which are 

respectively used for dc motor and ac motor drives. 

Inverters are classified into two categories: voltage-fed and current-fed. The former is almost 

exclusively used for EV propulsion because it has a very simple construction and allows 

power flow in either direction: the inverter converts direct current (dc) from the car's batteries 

to alternating current (ac) to drive the electric motor that provides power to the wheels. The 

inverter also converts ac to dc when it takes power from the motor-generator to recharge the 

batteries (regenerative braking). [8] 

A typical inverter adopted with induction motor or PM brushless motors is a 3-phase voltage-

fed PWM inverter. PWM refers to the output waveform.  

The electronic scheme of this device is shown in Figure 2.17. This inverter has three legs (S1 

and S4, S3 and S6, and S5 and S2) which feed phase a, phase b, and phase c of the induction 

motor. When the switches S1, S3, and S5 are closed, S4, S6, and S2 are opened, and phases a, 

b, and c are supplied with a positive voltage (Vd/2). Similarly, when S1, S3, and S5 are 

opened and S4, S6, and S2 are closed, phases a, b, and c are supplied with a negative voltage. 

All the diodes provide a path for the reverse current of each phase. [3] 

 

 

FIGURE 2.17 

DC/AC three-phase  

Voltage-fed inverter [3] 
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2.2.4 ELECTRONIC CONTROLLER 

The Electronic controller provides control signals to power converter: in this way it’s 

possible to control the electric motor operations and supply the request torque and speed 

according to command from the driver. The controller receives feedback signals from the 

vehicle about load parameters and conditions (actual speed driver request speed, battery 

status, etc.), it analyzes them and sends output to control behavior and matches the proper 

performances. The control system is divided into three functional units: sensors, interface 

circuitry and processor.  

Sensors translate physical parameters (such as speed, current level, temperature) into electric 

signals through the interface circuitry. These signals, after being conditionate, are fed into the 

microprocessor, which processes them and produces the proper outputs to control the vehicle. 

Sensors are very critical components from the reliability point of view, because they have to 

work in contact with stressed devices often at high temperature, increasing the fault 

probability. 

Microelectronics technology has gone through an intense evolution in last thirty years. 

Modern microelectronic devices can be classified in three categories: 

 Microprocessors; 

 Digital signals processors (DSPs); 

 Microcontrollers. 

Microprocessor is the calculator (CPU) of the electronic system, which decodes instructions 

and controls operations. 

DSPs are specialized processors for the fast operational needs of digital signal processing to 

implement sophisticated control algorithms for high performances motors for electric 

propulsion [13]. It is a very common solution and a functional scheme of a DSP is shown in 

Figure 2.18. Further reliability considerations will be discussed in the following Chapter 4. 
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FIGURE 2.18 

Digital sugnal processor - block diagram [14] 

 

Microcontroller includes all resources to control the system (CPU, ROM or EPROM, RAM, 

DMA, timers, A/D and D/A converters and I/O signal ports). This control solution has the 

definite advantage of compact hardware and smooth software.  

A modern example of microcontroller is the Fujitsu MB91580: it offers a 3-phase inverter 

motor control and an embedded resolver interface for electric and hybrid electric vehicles. 

The device offers a 12-bit Analog to Digital Converter (ADC) and a 12-bit Resolver to 

Digital Converter (RDC) to detect motor current and position at high speed and with high 

resolution. The electric angle of the revolver, which is calculated by the RDC, is latched into 

dedicated registers and synchronized with the three-phase current detected by the ADC. [15] 

  



  

32 

 

2.2.5 ENERGY SOURCE: BATTERIES 

There is no doubt that the energy source device is the most critical element in the 

development and spread of modern EVs. In order to compete with ICEVs, energy sources 

have to offer: 

 High specific energy: the key parameter related to the driving range; 

 High specific power: the key parameter related to the acceleration and climbing 

capability; 

 Long cycle life: defined as the number of deep-discharge cycles before failure; 

 High efficiency: defined as the ratio between output energy and input energy; 

 Low total cost: it consists of initial cost (manufacturing) and running cost 

(maintenance) and the former is generally dominant the latter. It’s a very sensitive 

parameter to compete with ICEVs. [8] [16] 

There are different kinds of technical solutions, namely rechargeable electrochemical 

batteries, fuel cells, ultracapacitors, ultrahigh-speed flywheels, and each one presents specific 

strengths. 

At present and in the near future, batteries have been identified as the best solution, thanks to 

the mature technology and reasonable cost. [17] 

Batteries are electrochemical devices which convert chemical energy into electric energy 

(discharging) and vice versa (charging), so they have both functions of source and storage. 

Several types of batteries are available in the market, classified into lead-acid battery, nickel-

based battery, zinc-halogen battery, metal-air battery, sodium-β battery, and ambient-

temperature lithium battery [3]. 

The US Advanced Battery Consortium (USABC) is a R&D organization composed by US 

Department of Energy, Ford, Chrysler, General Motors and battery manufacturers, with the 

objective of fund research on advanced battery technology. This organization has set the 

long-term performance goals for EV batteries, as shown in Tab. 2.2. [18]  
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Parameter (units) of fully burdened 

system 

Minimum goals for long term 

commercialization 
Long term goal 

Power density (W/L) 460 600 

Specific power – discharge 

80% DOD/30sec
5
 (W/kg) 

300 400 

Specific power – regen  

20% DOD/20sec (W/kg) 
150 200 

Energy density – C/3 discharge 

rate
6
 (Wh/L)  

230 300 

Specific energy – C/3 discharge rate 

(Wh/kg) 
150 200 

Specific power / specific energy 2 / 1 2 / 1 

Total pack size (kWh) 40 40 

Life (years) 10 10 

Life 80% DOD (Cycles) 1,000 1,000 

Power & capacity degradation  

(% of rated spec) 
20 20 

Selling price 25,000 units @ 40 kWh 

($/kWh) 
<150 100 

Operating environment (°C) 

-40 to +50 

20% performance loss 

(10% desired) 

-40 to +85 

Normal recharge time 
6 hours  

(4 hours desired) 
3 to 6 hours 

High rate charge 

20% - 70% SOC
7
 in <30min  

@ 150 W/kg 

(<20 min @ 270W/kg desired) 

40% - 80% SOC  

in 15 minutes 

Continuous discharge in 1 hour – 

no failure (% of rated energy 

capacity) 

75 75 

TAB. 2.2 

USABC goals for advanced EVs batteries [19] 

                                                           
 

5
 DOD = Depth of Discharge, is the percentage of battery energy spent in the load. [40] 

6
 C-rate is the charge/discharge rate of a battery [41] 

7
 SOC = State of charge 



  

34 

 

USABC aims to make EVs as close in performance to ICEVs as possible and there is no a 

unique energy device able to completely satisfy these requests. The status of the art of 

batteries performances is explained in the following Table 2.3.  

 

 

TAB. 2.3 

Status of batteries performances for automotive applications [3] 

 

Lithium is the metal with the lightest atomic weight and the highest negative potential, so it 

presents very interesting characteristics from an electrochemical point of view. Lithium-

based battery allows a high electrochemical potential and provides the largest energy density 

for weight, providing to EVs the greatest performance characteristics in terms of acceleration 

and range. Two different technologies are available for lithium-based battery: 

 Lithium-Polymer (Li-P) Battery 

 Lithium-Ion (Li-Ion) Battery 
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The Li-Ion has been identified by many battery manufacturers to be the most promising EV 

battery: as shown in Tab. 2.3 this energy device presents the higher efficiency rate (>95%), 

one of the major power density range (200-300 W/Kg), a very high specific energy (80-130 

Wh/Kg) and wide life duration (more than 1000 deep-discharge cycles). 

During discharging phase, Lithium ions (Li
+
) are released from the anode and travel through 

an organic electrolyte toward the cathode. [16]  

When the Lithium ions reach the cathode they are quickly incorporated into this material. 

This process is easily reversible and, thanks to this, lithium-ion batteries can charge and 

discharge faster than others typologies. In addition, Li-ion batteries produce the same amount 

of energy of NiMH cell, but they are 40% smaller and half lighter: this is one of the most 

important aspects considering that energy storage is the heaviest subsystem of the vehicle. 

Moreover, this allows using twice as many batteries, doubling the amount of energy stored 

and widely increasing the drive range. [16] [17] 

The fast development in battery technology is helping to build EVs increasingly similar for 

performances to the conventional ICEVs. 
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2.2.6 MAINTENANCE CONCEPTS: RELIABILITY BLOCK DIAGRAM 

The Reliability Block Diagram (RBD) is a useful analysis tool to evaluate the reliability of 

complex systems. By RBD method, the analyst represents by simple blocks the functional 

components of the system, linking them in serial path or in parallel path respectively if the 

fault of a single unit affects directly the working of the entire system, or if this fault can be 

bypassed through an alternative path. The RBD has nothing to do with the functional block 

diagram of the system behavior: the aim is to represent the reliability relations between 

components and system. 

Each component can reside in one of two mutually exclusive operational states: functioning 

adequately or failed.  

There are some simple rules to produce a Reliability Block Diagram: 

1. Each block can represent a subsystem of components, whose reliability could be 

calculated; 

2. Blocks are represented in a serial path if all of them are required to allows entire 

system to run; 

3. Several series of blocks are represented in parallel paths if is enough that one of them 

is working properly; 

4. A failed block can be replaced by a “open circuit”; 

5. A block with a 100% reliability can be replaced by a “short circuit”; 

6. RBD method refers to a maintenance strategy without repair activities: a failed block 

is not repaired if the system still works; 

7. Blocks failures are independent each other. 

Some examples of block diagrams are shown in the following Figure 2.19.  
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FIGURE 2.19  

Examples of basic RBD structures [20] 
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There are some rules to calculate the reliability of the whole system, assembling single blocks 

of the RBD: [20] 

 The reliability of a serial path of blocks is the product of all blocks reliability; 

 

 

 
             

 

 (1) 

Rs (t) = system reliability  

Ri (t) = component reliability 

 

 Reliability of several blocks in different parallel paths is calculated according to the 

following equation: 

 

 

 
                    

 

 (2) 

The units in parallel systems are referred to as redundant units, since at least one of 

the units must succeed for the system to succeed. That’s why adding redundancy is 

one of several methods of improving system reliability.  

 

In general, reliability of a serial path is lower than that of any of its members; whereas 

reliability of a parallel system is higher than that of the most reliable block. [20] 

Estimation of system reliability is a very critical and complex activity; it’s strictly linked to 

the failure rate λ(t) of each component and a wide number of failure data is necessary to 

calculate it with good approximation. 
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The general equation which connects reliability and failure rate of a component is the 

following: 

 

 
               

 

  (3) 

This equation can be easily simplified if component has a constant failure rate in the time: 

this is the case of electronic units which are not affected by wear and so failure probability 

does not increase over time. 

 

 
           (4) 

Electric cars power train consists in major part of electric and electronic units, so 

maintenance strategy has to consider failure behavior of this kind of components.  

Considering electric vehicle configuration from a reliability point of view it’s possible to 

understand the relationship between components and system, to produce the RBD and 

evaluate the reliability of the entire structure.  

The components of the system are the following:  

 Digital Signal Processor; 

 Propulsion battery pack (Li-Ion); 

 12V auxiliary battery; 

 Power inverter; 

 Electric motor drive; 

 Fixed reduction gearing. 

Digital Signal Processor (DSP) is the “brain” of the vehicle; it receives and sends signals to 

each unit in order to obtain the request performances.  

Battery pack is the energy source and energy storage which supplies power to the electric 

motor.  

Auxiliary battery is the energy provider of the auxiliary subsystem (cooler ad heater, steering 

unit, radio, etc.).  
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Power inverter is the electronic device that links energy source with motor, feeding current 

with the proper characteristics (AC/DC, voltage and frequency).  

Electric motor supplies mechanical energy converting electric one from batteries to wheels.  

Fixed reduction gearing plays the role of connect electric motor to the wheels shaft. 

Considering the behavior of the vehicle, each component is necessary to allow the system to 

work: without any of these units it’s impossible to have the correct operation. The proper way 

to show this kind of system is a serial path, as described in the following RBD (Figure 2.20). 

 

Electronic 

controller and 

sensors

Propulsion 

battery system

12V auxiliary 

battery
Inverter

A.C. Electric 

Motor

Fixed 

reduction 

gearing

Charging 

system

 

FIGURE 2.20 

EV power train: Reliability Block Diagram 

 

The main weakness is the serial structure: this configuration, with absence of redundancies, 

underlines a criticality from the reliability point of view: the proper operation of each 

component is absolutely required to allow the whole system to run. For this reason the 

reliability of the system is strongly related to the less reliable component of the structure, and 

consequently, the manufacturing quality of each components and an effective preventive 

maintenance program are very important. 

Considering that great part of the system is composed by electronic and electric components, 

marked by a constant failure rate, it’s very important to predict the main time between 

failures of each of them, in order to apply a preventive maintenance strategy to avoid system 

breakdown. 
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2.3 CHAPTER CONCLUSIONS 

In this chapter, the structure of a normal ICE car has been shortly introduced in order to 

explain the first idea of electric vehicles, replacing conventional components with electric 

ones. Then, several configurations of EVs have been described, with pros and cons analysis 

of functions and operations. Particular considerations have been reserved to the differential 

unit and mechanical transmission, identifying the potentiality offered by the new electric 

propulsion (in-wheel drive and electronic differential). 

The scheme of the power train is reported with the main links between components, 

distinguishing for control, electric and mechanical links, in order to understand clearly the 

role of each component in relation with the others. 

In the second subsection, the components of an EV power train have been described; and 

different configurations and technical solutions have been compared on their specific 

features. 

In particular, have been analyzed the following parts of a power train: 

 electric motor;  

 electronic controller; 

 power converter; 

 energy source.  

Finally, prime maintenance aspects have been considered and discussed through the 

Reliability Block Diagram: the system is a serial path and its reliability is strongly related to 

the less reliable component, according to equation (1). 

As result of this literature review, a typical power train configuration (Figure 2.21), currently 

adopted by OEMs, is so described: a single-motor drive train, mainly consisting in a ≈60-80 

kW Permanent Magnets synchronous motor drive, with fixed reduction gearing and 

differential to transmit power to the wheels; the propulsion energy source and storage 

consists in a ≈22-24 kWh Li-Ion battery pack [9] [10]. The power converter unit is generally 

a voltage-fed inverter, controlled by a Digital Signal Processor. Finally, a conventional 12V 

battery is required to supply the auxiliary subsystem of the vehicle, taking energy from the 

Li-Ion battery through the DC/DC converter. 
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FIGURE 2.21 

Typical EV configuration. Illustration of control, electric and mechanical links.  
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Chapter 3 

 

3. METHODOLOGY 

 

3.1 INTRODUCTION 

This thesis work started with a literature review of the technology related to electric traction, 

electronic control system and energy storage system. Different configurations have been 

considered and compared through a pros-and-cons analysis. Latest academic papers, 

reference books, industrial publications and individual theses have been studied for 

understanding the typical failure modes and proper PM tasks of an electric vehicle power 

train. 

Reliability Centred Maintenance (RCM) is the approach used in this analysis to produce a 

long period maintenance program for electric cars power train. In this section the major 

reasons for the choice of this method will be explained, its base principles, the logic steps and 

phases. 

 

3.2 RCM APPROACH 

RCM is a logical method to identify and prevent plant failures, according to the formal 

definition: a process used to determine what must be done to ensure that any physical asset 

continues to do what its users want it to do in its present operating context. [21] 

Over the past twenty years, maintenance has changed a lot, jointly with the huge increase of 

number and variety of physical assets (such as plants, equipment and buildings), with the 

increase of complex structures, new maintenance techniques and new ways of organizing 

maintenance. Moreover, the growing attention and sensitivity to the safety and environmental 

effects of equipment failures, trying to keep costs down, is leading maintenance towards a 

systematic and integrated approach: RCM seems to be the most effective method to face with 

these challenges.  
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There are several ways to apply the RCM method: different start points of the logical path 

(i.e. system level or component level) and different analysis tools (i.e. FMECA or COFA), 

but the common principles of the method are clear. RCM is focused on preserving system 

functions, classifying components in categories in order to find the right maintenance tasks to 

keep the system available, as close as possible to the 100% threshold.  

Furthermore, each RCM approach adopts as its own guideline seven basic questions about the 

asset or system under review, [21] as follows: 

1. What are the functions and associated performance standards of the asset in its present 

operating context? 

2. In what ways does it fail to fulfil its functions? 

3. What causes its functional failure? 

4. What happen when each failure occurs? 

5. In what way does each failure matter? 

6. What can be done to predict or prevent each failure? 

7. What should be done if a suitable proactive task cannot be found? 

In this chapter is presented the logic path, which will be used in the following analysis of the 

electric cars power train, paying attention to each phase of the method, each single decision 

step and the structure of the worksheets produced. 

 

3.3 RCM METHOD: FUNDAMENTAL CONCEPTS 

The RCM method consists in three macro-phases, each one made by a set of steps: [22] 

 Phase 1: identify equipment, which are important for the plant’s safety, production 

and asset protection. These are the parts of the system, which require a preventive 

maintenance strategy to prevent failure, in order to preserve critical equipment 

functions. 

 Phase 2: specify the type of preventive maintenance tasks and the periodicities that 

should be prescribed to the equipment identified in phase 1. 

 Phase 3: execute the activities specified in the previous phase and control if the 

planned scheduling is observed. 
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A first output of the method is the classification of the system components, at the end of the 

first macro-phase, in order of priority as following: [22] 

 Critical component: when the occurrence of the component failure is evident and 

causes an immediate unwanted consequence at the plant level, from a safety, 

operational and environmental point of view. For these reasons, this kind of failure 

has to be avoided before its occurrence by Preventive Maintenance (PM) tasks. 

 Potentially critical component: this is probably the most subtle concept in RCM 

approach and is strictly correlated to the meaning of hidden failure.  

Firstly, a failure is hidden if there is no indication of failure and there are no 

operational consequences to the facility when it happens (i.e. the failure in one or 

more component in a parallel design without indication of failure for each individual 

component). So, a component should be classified as potentially critical if its failure is 

hidden but has the potential to become critical just with an additional failure, or with 

the duration of time. That is why a multiple-failure analysis is required when this kind 

of situation is detected. A potentially critical component refers to the potential 

consequence of failure to the plant, after the hidden failure of that component has 

already occurred, and there is no evidence of this event.  

The difference between critical and potentially critical components is that the former 

manifest themselves immediately and the latter are hidden without consequence until 

a second failure occurs (in most cases) or certain time duration occurs.  

 Commitment component: this definition is related with those components which have 

regulatory, environmental, occupational, safety, health and administration (OHSA) 

commitments that must be fulfilled, requiring a PM strategy to preclude components 

from failing and causing a commitment to be missed.  

 Economic component: the failure of this type of component has economic 

consequence only and has no effect on system safety and operability. 

 Run-to-failure (RTF) component: to be classified as RTF, a component must have no 

safety, operational, commitment or economic consequence as the result of a single 

failure. Moreover, the occurrence of the failure has to be evident to operations 

personnel. A common mistake is to consider equipment as run-to-failure just because 

it has no unwanted consequences to the facility: the difference between RTF and 

potentially critical component is that the former’s failure has to be evident, while the 

latter’s one is hidden. 
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RTF components do not require preventive maintenance prior to failure, but then 

corrective maintenance is required in a timely manner after failure. 

Quite often it occurs that several failure modes are detected for a single component, and those 

failure modes are classified in different categories each other (i.e. a critical failure mode and 

a RTF one): also, the final classification of that component is the most limiting and 

precautionary (i.e. critical).  

A typical misunderstanding of meaning, and also of maintenance analysis, concerns the 

concepts of standby/backup function and redundant function. [22] 

 When a component performs a standby (or backup) function in a facility, it usually 

does not operate and is called to run only in case of failure of the normally operating 

component. Thus, if the backup should fail, an unwanted consequence at plant level 

could occur and the component is considered critical and PM task is required. 

 Redundant components usually operate simultaneously. If individual indication of 

failure is evident, the components are identified as RTF, otherwise as potentially 

critical. 

Later in the chapter will be exposed the logic tree used in the analysis to classify each 

component of the electric vehicle drive train system, with the final aim to specify the 

appropriate PM tasks. 

 

3.3.1 PHASE 1: RCM IMPLEMENTATION PROCESS 

In this paragraph will be briefly described steps and tools, which will be used in the RCM 

application of EV power train. The implementation process is built in a sequence of elements, 

beginning from the Asset Reliability Criteria. [22] 

Define the Asset Reliability Criteria (ARC) 

Defining ARC means identifying all the unwanted consequences of failure, concerning safety 

and operability, that can occur in the analysed plant and that must be prevented. Economic 

criteria are separate from safety and operability criteria and will be discussed later, as well as 

commitment components that are determined by the commitment requirements. 
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Component functional failures that can trigger one or more asset reliability criteria will lead 

in a component classification of either critical or potentially critical. Also, components will 

be classified as following: 

 Critical for safety or operability concern; 

 Potentially critical for safety or operability concern; 

 Commitment; 

 Economic. 

Any component with one of these classifications should have a PM strategy to prevent its 

failure, or a design change should be implemented if an effective PM task cannot be 

specified. 

The asset reliability criteria specified for safety and operability concerns, related with EV 

power train are as following:  

 

 

  

Asset Reliability Criteria for Electric Vehicle power train 

Safety concerns 

 No personnel safety or public safety concerns (mandatory) 

 No facility safety concern (mandatory) 

Operability concerns 

 No unplanned facility shutdowns 

 No power reduction 

 No technical specification violations 

 No range reduction over 50% 
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RCM COFA logic tree, Potentially critical guideline and  

Economically significant guideline 

The classification of components follows a simple logic path, that begins by identifying 

critical components, than potentially critical, than commitment, than economical components 

and finally run-to-failure components, in order of importance. [22] 

 

Is the component

Failure mode evident?

NO

(Hidden failure)

YES

Are there direct 

adverse effects on 

personnel and 

operating safety?

Are there direct 

adverse effects on 

asset reliability 

criteria?

NO

YES

CRITICAL FAILURE

Related to safety 

concern (ARC)

CRITICAL FAILURE

Related to operability 

concern (ARC)

YES

ECONOMIC 

COMPONENT

or

RTF COMPONENT

NO

POTENTIALLY 

CRITICAL

or

COMMITMENT 

COMPONENT

or

ECONOMIC 

COMPONENT

Go to 

Potentially critical 

guideline

Go to 

Economically 

significant guideline

FIGURE 3.1 

RCM COFA Logic Tree 

Potentially critical guideline 

Can the component failure, in combination with an additional failure or initiating event, or over time, 

result in an unwanted consequence that has a direct adverse effect on one or more of the asset 

reliability criteria? 

If YES, this is a potentially critical component. It could be potentially critical for safety or for 

operability concerns depending on its consequence of failure. 

If NO, is the component associated with a commitment? If it is, this is a commitment component. If 

it is not associated with a commitment, proceed to the following Economically Significant Guideline. 

  



  

49 

 

Economically significant guideline 

Will the component failure result in a high cost of restoration? 

Will the component failure result in a high cost of related corrective maintenance (CM)? 

Will the component failure result in significant downtime? 

Will the component failure result in a long lead-time for replacement parts? Are the parts obsolete 

or in short supply? 

If YES to any of the above questions and a PM is further justified by the Economic Evaluation, this 

is an economic component. 

If NO to all of the above, this is a run-to-failure component (RTF). 

 

This logic consists in a system of filters, through which all component failure modes have to 

pass. The critical components are identified by the COFA logic tree, the first filter. 

Potentially critical components are detected by the second filter, Potentially Critical 

Guideline. Those components making it through the first two filters then must pass through 

the commitment filter, included in the Potentially Critical Guideline. Fourth filter consists in 

the Economically Significant Guideline. If a component passes through all filters, it is 

classified as RTF. 

 

The Consequence of Failure Analysis (COFA) Worksheet 

The COFA worksheet is the main document produced in the phase 1 of RCM process, 

regarding the identification and classification of failure modes for each component. This 

worksheet integrates the COFA Logic Tree and the two guidelines, and its structure runs the 

RCM logic, as following: [22] 

 COLUMN A: Specification of component I.D. and description; 

 COLUMN B: Description of all function of the component; 

there are several functions for each component, the functions are the explanation for 

why the component is installed and preserving these functions is the main objective of 

the maintenance program. 
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 COLUMN C: Description of the ways each function can fail; 

typically functional failures are the opposite of functions. 

 COLUMN D: Description of the dominant component failure mode for each 

functional failure; 

the failure modes are the several ways a component can fail to provide a specified 

function. 

 COLUMN E: Is the occurrence of the failure evident? 

the answer to this question comes directly from COFA Logic Tree. The failure must 

be evident during normal activities, and it can happen thanks to indication alarm, or 

by routinely performed rounds or by the unwanted consequence at facility level. 

 COLUMN F: Description of the system effect for each failure mode; 

the ultimate aim of the analysis is to identify the consequences of failure at facility 

level, note that hidden failures have not system effects. 

 COLUMN G: Description of the consequence of failure based on the Asset 

Reliability Criteria; 

these consequences are at plant level and they are identified for each failure mode. 

 COLUMN H: Criticality classification of each failure mode; 

 COLUMN I: Criticality classification of the component; 

there could be different classification for the same component: the final one defaults 

to the highest level, according to the classification ranking. 

At the end of the COFA Worksheet, the first phase of RCM process can be considered 

complete. 

C.# Column A #.# Column B Column C Column D Col. E Column F Column G Column H Column I

Component 

functional 

failures

Dominant 

component 

failure mode for 

each functional 

failure 

Evident 

failure?

Vehicle 

effect for 

each failure 

mode

Consequence 

of failure, 

based on the 

ARC

Failure 

Classific.

Component 

Classification

Component I.D. 

and description

Component 

functions

TAB. 3.1 

Structure of the COFA worksheet 
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3.3.2 PHASE 2: PM TASKS SELECTION PROCESS 

In this phase of RCM process, preventive maintenance activities are specified to address the 

causes of failure identified in the previous phase. [22] 

There are three main categories of PM task: 

 Condition directed: this kind of task is addressed to know the real condition of the 

equipment by measuring, monitoring or analysing activities. Predictive maintenance 

(PdM) tasks, such as vibration analysis, oil analysis, thermography, etc., refer all to 

condition directed maintenance. 

 Time directed tasks include usually replacements, overhauls, or restoration of 

component at planned periodicity. 

 Failure finding is a strategy to ascertain, at a periodic interval, whether a component 

is already failed or not, before it results in a plant level consequence. That is why it is 

a proper activity only for hidden failures. 

 

The PM task selection logic tree 

The first tool used to approach the phase 2 of RCM process is the following logic tree, used 

to identify what kind of PM activity is required for each failure cause identified in the COFA 

Logic Tree. 

The preferable task is a nonintrusive one, so it is firstly evaluated if a predictive maintenance 

is applicable. The second choice is a time-directed task, which usually is intrusive and could 

require downtime. A failure-finding task can be applicable only to potentially critical 

components, and it is the choice if a task to prevent the failure cannot be found. Finally, if no 

PM task is selected for the component, the alternative solutions could be a design change or 

accept the risk of the failure. 

The condition-based maintenance is preferred to the time-based because, when a component 

is replaced or overhauled, its lifetime is restored but its failure probability increases highly 

for two reasons: premature failure and infant mortality, according to the common rule 

described by the “bathtub” curve, Figure 3.3. 
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FIGURE 3.2 

PM Task selection Logic Tree 

 

 

FIGURE 3.3 

The “bathtub” curve [20] 
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The PM task worksheet 

After COFA Worksheet and PM Task Logic Tree, it is possible to issue the last document of 

the phase 2 of RCM process, the PM Task Worksheet that takes results from the previous 

analysis, as following: [22] 

 COLUMN A: component I.D. and description (from COFA Worksheet); 

 COLUMN B: what were the consequences of failure? (from COFA Worksheet); 

 COLUMN C: describe each dominant component failure mode (from COFA 

Worksheet); 

 COLUMN D: describe the vehicle effects for each failure mode (from COFA 

Worksheet); 

 COLUMN E: criticality classification of the component (from COFA Worksheet); 

 COLUMN F: describe the credible failure cause for each dominant failure mode; 

 COLUMN G: describe the applicable and effective PM task for each failure 

cause (from PM Task Logic Tree); 

 COLUMN H: define frequency and interval for each pm task (from PM Task 

Logic Tree); 

 COLUMN I: is a design change recommended? 

 

C.# Column A #.# Column B Column C Column D Column E Column F Column G Column H Column I

Dominant 

failure mode 

for each 

functional 

failure 

Vehicle effect 

for each 

failure mode

Component 

Classification

Failure 

causes for 

each 

function

PM tasks for 

each failure 

cause

Frequency 

and interval 

for each 

PM task 

Design 

change?

Component 

I.D. and 

description

Component 

functions

TAB. 3.2 

Structure of the PM Task worksheet 

 

Each failure mode has one or more PM tasks to address it. Therefore, a single component 

may have several different PM activities associated with it. The PM Worksheet is where the 

piece of parts (or subassemblies) of the components are introduced: these parts are the 

credible causes of failure, such as bearing failures, motor winding failure, plug-in failure. 
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The Economic evaluation worksheet 

The evaluation of PM activities for economic component needs further analysis. This kind of 

component results only in a monetary cost of labour and/or material, so a break-even point 

analysis is required between the cost of failure and the cost for performing a PM to prevent 

the failure. To allow this equation every cost must be calculated on an annualized basis. 

 

3.4 RCM ANALYSIS FORMAT: FMECA versus COFA 

The common analysis format in RCM method is FMECA (failure modes, effects and 

criticality analysis), which leads the analyst in the identification of components criticality, 

beginning from the functions of equipment at system level in a top-down way. An alternative 

format is the COFA (consequence of failure analysis): it includes all the same attribute of 

FMECA as well as additional attributes, but the analysis begins at the component level that is 

the final destination for detect consequences of failures. Furthermore, COFA includes the 

decision process for determining the consequence of failure based on asset reliability criteria 

specified. COFA maintains clear separation among phase 1, identification of equipment, and 

phase 2, specification of PM tasks, resulting in a simpler format than FMECA. 

Concerning the phase 1, a COFA worksheet will be developed, defining the Asset Reliability 

Criteria and following the COFA Logic Tree with Guidelines; regarding to the phase 2, will 

be developed the PM task worksheet and the Economic evaluation worksheet. All these tools 

will be described later in the document. [21] [22] 
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3.5 COMPONENTS LABELLING 

The very first stage of RCM analysis is the classification and labelling of the systems 

components. Labelling components is a basic activity because it allows, thanks to modern IT 

facility, to link efficiently under a unique code a lot of different information, using CMMS 

software, ERP software, database, etc.  

Multiple data can be associated to a component label, such as component functions, risk 

classification, PM tasks, and even warehouse location of replacement parts, supplier, price, 

date of warehousing and so on.  

Is very important to define a method to produce standard labels for each component: in this 

paper, the entire structure has been divided in three subsystems, as shown in the previous 

Figure 2.21, Electric Propulsion Subsystem, Energy Source Subsystem and Auxiliary 

Subsystem; only the first two of these are considered in the RCM analysis. 

The structure of a label consists in several sections, to define each component uniquely: 

 The subsystem in which the component is placed; 

 The general function of the component (i.e. motor, battery, controller); 

 The particular typology of the component (i.e. PM motor, Li-Ion battery) 

 

In the following table, the labelling of each component analysed is shown. 
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Electric propulsion subsystem (EP) Energy source subsystem (ES) 

LABEL DESCRIPTION LABEL DESCRIPTION 

EP-CTRL-DSP  
Electronic controller, digital 
signal processor 

ES-CTRL 
Energy management 
unit 

EP-INV-3PH 
Traction motor inverter, 
3phase voltage-fed PWM 

ES-BAT-LIP Li-Ion Battery Pack 

EP-EMOT-PMSM 
Permanent Magnet 
Synchronous  traction 
motor  

ES-CH-OB 
Battery on-board 
charging unit 

EP-GR-PLAN Planetary reduction gear ES-CH-PT Charge port 

EP-SNS-M-P Motor position sensor ES-BAT-HT 
Li-Ion battery heater 
unit 

EP-SNS-M-S Motor speed sensor ES-BAT-12V Auxiliary 12 V battery 

EP-SNS-M-T Motor temperature sensor ES-SNS-12V 
Voltage and 
temperature sensor of 
12V battery 

EP-SNS-ACC Accelerator pedal sensor ES-SNS-LIP-C 
Li-Ion Battery current 
sensor 

EP-SNS-BRK Brake pedal sensor ES-SNS-LIP-T 
Li-Ion Battery 
temperature sensor 

EP-SNS-INVPH Inverter phases sensor ES-PLUG-LIP 
Li-Ion battery service 
plug 

EP-CIR BRK Fail-safe circuit breaker ES-SNS-CHPT 
Charge port 
temperature sensor 

EP-REL-DSP DSP relay ES-CON-DCDC DC/DC converter  

    ES-REL-LIP Li-Ion battery relay 

   ES-REL-CHOB Charging relays 

    ES-REL-EMU 
Energy management 
unit relay 

TAB. 3.3 

Table of components labelling 
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3.6 CHAPTER CONCLUSIONS 

In this chapter the research process has been described, starting from the literature review of 

the vehicle power train system. The RCM analysis method has been presented, with 

particular attention to the logical steps of the process, which will be followed in the 

application to EVs.  

In this study, only the first two phases of RCM are applied, in order to produce a preventive 

maintenance program, and all the needed tools, such as logic trees, guidelines and Asset 

Reliability Criteria, have been described. 

Finally, all the components of the analyzed system have been labeled, in order to better refer 

to them during the application of the RCM method.  
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Chapter 4 

 

4. RESULTS AND FINDINGS 

 

4.1 INTRODUCTION 

In the COFA worksheet and PM task worksheet, shown in the Appendices, each component 

of the Traction Subsystem and Energy Source Subsystem is analyzed. In this chapter of the 

paper the principal findings of the analysis will be reported, describing the main failure 

modes of those components, their criticality level and the Preventive Maintenance tasks 

identified to address these failure modes. 

 

4.2 COMPONENTS CLASSIFICATION AND EFFECTS OF FAILURES 

The first step of the Reliability Centered Maintenance method is to identify the likely failure 

modes of components and classify them from the criticality point of view. The COFA 

worksheet is at the same time a report template and a guide for the analysis, and has been 

filled following the COFA logic tree and the Guidelines, as explained in the Methodology 

chapter. 

As expected from the Reliability Block Diagram in Figure 2.20 at page 40, the great majority 

of the components are classified as CRITICAL, meaning that a lot of components have direct 

impact on the car’s principal functions and behavior. On 26 components, 22 are classified as 

CRITICAL (85%), 3 are classified as POTENTIALLY CRITICAL (11%), and only one is 

considered as RUN TO FAILURE (4%). 

From a reliability point of view, this situation could appear very risky and, indeed, it’s 

enough that one of those components fails to have the vehicle shut-down. According to the 

theory explained in the Paragraph 2.2.6, the reliability of a serial path structure is given by 

the product of all components reliability, as in the following equation: [22] 
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 (1) 

For this reason each component must have a very high reliability to keep the system risk 

acceptable, and this is the goal of the proposed Preventive Maintenance program. 

 

 

FIGURE 4.1 

Components criticality classification 

 

In some cases, a component has different classifications for different failure modes, so the 

final classification defaults in the most critical according to the ranking: Critical (safety 

concern), Critical (operability concern), Potentially critical, Commitment, Economic and Run 

to Failure. 

From the above diagram it is immediately obvious that 85% of components, the Critical 

components, require a Single-failure analysis because the failures are evident and cause 

immediate unwanted consequences. Only the 11% of devices are Potentially critical and 

therefore requiring a Multiple-failure analysis, because of their hidden failures to address. 

This has a double meaning: the system needs a very effective PM program to be reliable, but 

it is quite easy to identify failure modes and failure causes of the majority of components. 

Potentially critical components are, indeed, the most dangerous components for the system, 

because their failure modes are hidden and because they have the potential to be critical in 

conjunction with an additional failure. In these cases the analysis has to be very careful 

because is important to identify every failure-links between components, in order to address 

16; 62% 

6; 23% 

3; 11% 

1; 4% 

CRITICAL operability concern 

CRITICAL safety concern 

POTENTIALLY CRITICAL 

RUN TO FAILURE 
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the root-causes with proper PM tasks applied on several components (Multiple-failure 

analysis).  

It is important to notice that it has not been identified any Economic or Commitment 

component across the classification: as explained in the Chapter 3 Methodology, there is a 

standard process, explained in the COFA logic tree (Figure 3.1), to classify the components 

of the vehicles traction system, according to the RCM principles. From a reliability point of 

view it’s important to make decisions with caution and, indeed, for all the components 

considered in this study, except for one RTF, each failure mode has been classified as more 

critical than commitment and economical. 

In the COFA worksheet, Appendix A, the likely effects of each failure mode have been 

identified, and the consequences have been categorized according to the Asset Reliability 

Criteria. These consequences at system level have been divided into 4 classes: 

- Vehicle shutdown; 

- Power reduction; 

- Range reduction; 

- Safety risks for users or maintenance operators. 

In the following diagram the percentage of consequence for all the failure modes is shown: 

the most likely effect is the breakdown of the vehicle, which is the effect of almost half of the 

identified failure cases. This is an important outcome that addresses considerations on the 

criticality of the whole system and the importance of preventive maintenance. 

Power reduction and Range reduction are, respectively the 21% and 24% of all consequences 

of failure, and Safety risk is the 6%. 

 

FIGURE 4.2 

Consequences of failures, according to the ARC 
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4.3 THE MOST IMPORTANT RESULTS 

In the Appendices it is possible to see the analysis divided in two worksheets, COFA 

worksheet and PM task worksheet, in which all the 26 component are processed.  

In the COFA, 60 likely failure modes of the powertrain components have been identified and, 

in the PM task worksheet, 100 failure causes linked with those failure modes have been 

detected. Thanks to academic papers, technical articles and industrial publications, has been 

possible to produce a maintenance program, with Preventive Maintenance activities and 

relative periodicities, in order to address the failure causes of each component. 

In this section of the paper the most important and interesting units of the vehicle powertrain 

will be described, for further details refer to the Appendices. 

 

 Li-Ion battery pack 

Code: ES-BAT-LIP 

Classification: CRITICAL operability concern 

 

The battery pack is probably the most critical component of an electric car power train 

for cost, performances and weight, and, already for this, it needs particular attention. 

Modern batteries hold more and more power density and capacity, but the drive range 

is still the most important lack for the spreading of electric vehicles. 

 

The basic functions of this unit are: 

- Provide energy to the PM electric motor through the inverter device; 

- Provide energy to the auxiliary system (i.e. heather/air conditioned, radio, steering 

unit, etc.) through the 12V battery and the DC/DC converter; 

- Store energy generated by the PM electric motor during regenerative braking. 

The likely failure modes identified for the battery system are: [23] [24] [25] 

- Short circuit; 

- Overheating; 

- Internal resistance increasing; 
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- Over-charge; 

- Over/under-current. 

These failure modes and effects on the vehicle have been evaluated, according with 

the COFA logic tree, the Asset Reliability Criteria, Potentially Critical guideline and 

Economically critical guideline in order to identify their criticality level. 

The battery pack is finally classified as CRITICAL for safety concerns, and electronic 

system is vital to provide safe operations of this important unit. In the following table 

are reported detection and protection devices for each safety related failure mode. [23] 

 

Abnormal/abusive 
condition 

Detection device Protection device 

Over temperature Temperature sensor 
Power switch is opened 

and insulates battery 
from load and rectifier 

Over charge 
Permanent screening of 

charging unit 
Power switch 

Over current Charge current sensor Power switch 

Short circuit Fuse status detector Electrical fuse 

TAB. 4.1  

Safety system of the battery pack: detection and protection 

 

The detection functions ensure that all the physical data are accurately measured. It 

seems obvious that, without reliable acquisition of data at intervals relevant with the 

application, electronics will not be able to protect the lithium cells or to optimize their 

performances. 

The data to be measured in a lithium-based battery may vary with the 

electrochemistry, but the following values are usually acquired by sensors: [23] 

- each individual cell voltage; 

- overall battery voltage; 

- charge current; 

- temperature of the cells; 

- temperature of the electronics; 

- ambient temperature inside the battery. 
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Protection is the most critical type of action, since safety depends on it. A common 

type of protection is the fast opening of a reversible power switch, which isolates the 

battery system from the rectifier and the load. This isolation prevents a number of 

abusive conditions being applied to the battery. Over-charge is one example of an 

abusive condition imposed by the charger; a short circuit would be an example of a 

condition imposed by the load. When conditions come back to normal, the power 

switch closes. For all these reasons is evident that apply preventive maintenance 

activity to the electronic control system is as necessary as to the battery itself. 

During the study, proper Preventive Maintenance tasks have been identified for the 

Li-Ion battery pack, with the aim to address the root failure causes linked with each 

failure mode. The following PM activities are extracted from the PM task worksheet 

in Appendix B: [24] [26] 

Failure causes 
PM tasks for each failure 

cause 

Frequency and interval 
for each PM task  
[months / miles] 

Connector/terminal failure 
Check connector conditions and 
keep clean from moisture and 

chemical 
12 / 15,000 

Failure of battery heater 
Check the heater device 

operability 
12 / 15,000 

Failure of battery sensor Check the sensor operability 12 / 15,000 

Mechanical stress, ageing 
wear 

Check the battery charge 
controller to verify the correct 

voltage settings 
12 / 15,000 

 
 
 

Failure of Battery Control 
Module 

Check the battery charge 
controller to verify the correct 

voltage settings 
12 / 15,000 

 
Check and compare the voltage 

readings at the battery 
connections and at the controller 

12 / 15,000 

Failure of Battery Charger Check all charging subsystems 12 / 15,000 

TAB. 4.2  

Failure causes and PM tasks for the Li-Ion battery pack 
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 Vehicle control unit - Digital signal processor (DSP) 

Code: EP-CTRL-DSP 

Classification: CRITICAL operability concern 

 

The Digital signal processor is the unit that receives signals from other vehicle’s 

components through sensors, analyzes these signals according to preinstalled 

algorithms, and sends feedback to control the vehicle’s functions and behavior. 

Due to advances in semiconductor technology, ever more complex DSP algorithms 

and applications are now feasible, which, in the same time, increase the complexity of 

the systems and products. As the complexity increases, the system reliability is no 

longer solely defined by the hardware reliability: system reliability is increasingly 

determined by both hardware and software architecture and the level of design 

maintainability. [14] [25] 

 

The basic functions of this unit are: 

- Provide control signals to power converter; 

- Monitor vehicle status analyzing signals from sensors; 

- Process inputs from driver (accelerator and brake pedals signals); 

- Calculate range considering battery state of charge. 

The likely failure modes identified for the DSP are: 

- Device cannot initialize; 

- Device cannot provide proper output; 

- Device cannot analyze input signals. 

During the research, proper Preventive Maintenance tasks have been identified for the 

Digital Signal Processor, with the aim to address the root failure causes linked with 

each failure mode. The following table shows the PM activities with suggested 

frequency. The most critical cause of failure is about the software ability to 

communicate with vehicle’s different units: as a new technology, the control 

algorithm could have some lacks and bugs, and a careful updating of the software is 

vital. 
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A few of the more common causes of DSP software bugs are due to: [14] 

- Failure of interrupts to completely restore processor state upon completion; 

- Failing to properly initialize or disable circular buffering addressing modes; 

- Memory leaks, the gradual consumption of available volatile memory due to 

failure of a thread to release all memory when finished; 

- Dependency of DSP routines on specific memory arrangements of variables; 

- Conflict or excessive latency between peripheral accesses;  

- Subroutine execution times dependent on input data or configuration. 

These failure modes and effects on the vehicle have been evaluated, according with 

the COFA logic tree, the Asset Reliability Criteria, Potentially Critical guideline and 

Economically critical guideline in order to identify their criticality level. 

The Digital Signal Processor is finally classified as CRITICAL for operability 

concerns. [14] [27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

TAB. 4.3 

Failure causes and PM tasks for the Digital Signal Processor 

Failure causes PM tasks for each failure cause 
Frequency and interval 

for each PM task  
[months / miles] 

Over/under power voltage Check relay EP-REL-DSP 12 / - 

Software bugs 
Update software and report known 
bugs to supplier, by internet access 

If available 

Incorrect installation 
Check list of standard installation 

procedure 
- 

Abnormal output signal Check I/O peripherals 12 / - 
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 Permanent Magnet Synchronous traction motor (PMSM) 

Code: EP-EMOT-PMSM 

Classification: CRITICAL operability concern 

 

The electric motor has the main role of providing the traction power to the wheels and 

moving the vehicle but, in the case of pure-electric transportation, the range limitation 

induced manufacturers to research in solutions able to increase the efficiency. 

The idea of Regenerative Braking goes on this direction, and it consists of the ability 

to generate electric energy during the braking phase of the car: the motor works as a 

generator charging the battery and increases the driving range of almost 20 - 25%. 

The main functions of the electric motor are: 

- Convert electric energy to mechanical energy; 

- Convert kinetic energy to electric energy. 

The likely failure modes identified for this component are: [28] [29] 

- Winding failure; 

- Bearings failure; 

- Rotor and shaft failure. 

Each of these principal failure modes has several failure causes that could generate 

the unwonted effect, and in the PM worksheet the proper maintenance activities have 

been planned. [26] [28] [29] 
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Failure causes 
PM tasks for each failure 

cause 

Frequency and 
interval for each 

PM task  
[months / miles] 

Windings failure for Insulation breakdown 
Keep motor clean with good 

air flow 
- 

Windings failure for electrical fault 
Store motor correctly away 
from moisture and chemical 

- 

Windings failure for AC drive stress Perform regular inspection 24 / 30,000 

Windings failure for cycling/flexing due to 
frequent start/stop 

Keep motor clean with good 
air flow 

- 

Bearings failure for mechanical breakage Replace bearings Corrective task 

Bearings failure for start/stop loss of lube 
film 

Replace bearings Corrective task 

Bearings failure for improper lubricant Replace bearings Corrective task 

Bearings failure for improper 
handling/storage 

Replace bearings Corrective task 

Store motor correctly away 
from moisture and chemical 

- 

Rotor failure for physical damage and 
corrosion 

Check list of standard 
installation procedure 

- 

TAB. 4.4 

Failure causes and PM tasks for the PMSM 

 

Major part of maintenance tasks relate to keep the motor away from moisture, 

pollution, dust and chemical, both during the storing and the running, because these 

are the main root causes of failure.  

Indeed an electric motor has a very few components moving inside the housing, 

unlike a classic internal combustion engine, so friction is not a big problem and the 

reliability is much more high. On the other hand, the strong magnetic field generated 

by the rotor permanent magnets has an ageing effect on the bearings, which besides 

continue to have a long life cycle and assure duration. 

According to Terry Harris in the web seminar for UE system Inc [29], the failures of 

an electric motor can be divided into 6 main classes: 

- Bearings; 

- Stator winding (i.e. overload, water); 

- External (i.e. environment, voltage, load); 
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- Rotor bar; 

- Shaft or coupling. 

In the following diagram are shown the average percentage of occurrence for these 

classes. 

 

 

FIGURE 4.3 

Percentage of occurrence of each failure cause of the PMSM electric motor 

 

In the following table, the main failure causes are summarized for each constituent of 

the motor structure. [28] 
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MOTOR COMPONENT FAILURE CAUSE 

Housing 

- improper installation 
- physical damage 
- corrosion 
- material build-up 

Stator 

- physical damage  
- contamination 
- corrosion 
- voltage imbalance 
- high temperature 
- broken support 

Rotor 

- thermal stress 
- imbalance 
- physical damage 
- contamination 

Bearings 

- improper handling/storage 
- improper installation 
- misalignment 
- improper lubricant 
- start/stop loss of lube film 
- contamination 

Fan 
- physical damage 
- ice build-up 
- corrosion 

Winding / insulation 

- contamination 
- overheating 
- improper storage 
- moisture 
- thermal stress 
- AC drive stress 

Shaft 

- physical damage 
- improper installation 
- improper manufacturing 
- corrosion 

TAB. 4.5 

Failure causes for each component of the Electric Motor 

Breakdown maintenance and overhaul jobs are handled at maintenance service 

provider facilities. However, breakdown maintenance for electric traction motors is 

not common due to their low failure rates, almost 4.0x10
-5

 (failure/hour). [25] [28] 
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 Power converter – 3 phase Inverter 

Code: EP-INV-3PH 

Classification: CRITICAL operability concern 

 

The Inverter has the role of connection between the battery and the motor, addressing 

two main functions: 

- Control the electric traction motor converting current at the required voltage; 

- Charge the battery during regenerative braking, converting energy generated by 

the motor. 

The basis failure modes identified for this device are mainly three: 

- Device cannot initialize; 

- Abnormal output to the motor; 

- Abnormal output to the battery. 

In the following table are shown the failure causes and proper maintenance tasks to 

address these causes, with suggested frequency of application. [26] [28] 

 

Failure causes PM tasks for each failure cause 

Frequency and 
interval for each  

PM task  
[months / miles] 

Winding insulation breakdown Check winding insulation condition 24 / 30,000 

Insulation bushing breakdown Check insulation bushing 24 / 30,000 

Mechanical breaking, cracking, 
loosening, abrading, or 

deforming of 
static or structural parts 

Keep device clean 24 / 30,000 

Malfunction of protective relay Check protective relay operability 12 / - 

Normal deterioration from age 
and corrosion phenomenon 

Keep device clean 24 / 30,000 

Overheating 
Temperature monitoring, by DSP 

unit 
- 

Transient overvoltage 
disturbance (switching surges, 

arcing ground fault, etc.)  
Switchgear inspection 24 / 30,000 

TAB. 4.6 

Failure causes and PM tasks for the Inverter device  
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 Fail-safe circuit breaker 

Code: EP-CIR BRK 

Classification: CRITICAL safety concern 

 

Circuit breakers are used in a power system to break or make current flow through 

power system apparatus, in order to protect an electrical circuit from damage caused 

by overload or short circuit. Its basic function is to detect a fault condition and, by 

interrupting continuity, to immediately discontinue electrical flow. Unlike a fuse, 

which operates once and then has to be replaced, a circuit breaker can be reset to 

resume normal operation. 

Reliable operation of circuit breakers is critical to the ability to reconfigure a power 

system and can be assured by regular inspection and maintenance. [26] [28] [30] [31] 

 

The likely failure modes identified for this critical component are: 

- Stuck switch in on position; 

- Stuck switch in off position. 

The first failure has no evident effects on the vehicle, because the current is able to 

flow through the circuit, but in the case of electrical malfunction, the switch could not 

work. It is a typical example of hidden failure, impossible to detect without a proper 

preventive maintenance program, and in this particular case very dangerous for safety 

reasons. This failure mode is classified as potentially critical for the vehicle. 

Obviously, the second failure brings evident consequences on the system because 

electricity cannot flow through the power system, and it results in the breakdown of 

the vehicle, with possible consequences on safety. For this second failure mode, the 

component is finally classified as CRITICAL for safety concerns. 

As the majority of electrical devices, the circuit breaker is often replaced in case of 

failure, but is vital to replace it before the occurrence of the failure: this is the reason 

for apply a preventive maintenance program, as shown in the following table. 
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Failure causes PM tasks for each failure cause 

Frequency and 
interval for each 

PM task  
[months / miles] 

Normal deterioration from 
age 

Inspect breaker-operating mechanism 
for loose hardware and missing or 

broken cotter pins, etc. Examine latch 
and roller surfaces 

12 / - 

Loss or deficiency of oil or 
cooling medium 

Clean and relubricate operating 
mechanism with a light machine oil 

12 / - 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - 

Exposure to abnormal 
moisture, chemicals or dust 

Wipe and clean the insulating parts, 
including bushings 

12 / - 

Misoperations or testing 
error 

Check list of standard operation and test 
procedure 

- 

TAB. 4.7 

Failure causes and PM tasks for Circuit Breaker 

 

 Temperature sensor of 12V battery 

Code: ES-SNS-12V 

Classification: POTENTIALLY CRITICAL operability concern 

 

This sensor has the role of detecting and communicating to the Battery Control unit 

the thermal status of the auxiliary 12 V battery. The processor analyzes these data and 

controls the flux of energy through DC/DC converter, in order to avoid a failure of the 

battery. 

This component is classified as POTENTIALLY CRITICAL, because its failure is 

hidden, and only with the addition of another failure, as the failure of the battery, 

there is a consequence at the vehicle level. 

If this failure is made evident by the Vehicle Control System (DSP), then the 

Temperature sensor could be classified as a Run to Failure component, and replaced 

after its breakdown. 

 

In the following table are shown the PM tasks planned for this component and relative 

periodicity. [26] [28] [32] 



  

73 

 

Failure causes 
PM tasks for each failure 

cause 

Frequency and interval 
for each PM task  
[months / miles] 

Incorrect installation 
Check list of standard 
installation procedure 

- 

Connector/terminal failure 
Check connector conditions 

and keep clean from 
moisture and chemical 

36 / 45,000 

TAB. 4.8 

Failure causes and PM tasks for Circuit Breaker 

 

All the sensors of the system require similar maintenance activities, being part of the 

same technology family and being subjected to similar work conditions. 

 

4.4 DISCUSSION 

Other than the Li-Ion battery and the final gearing, EVs are much less likely to suffer from 

ageing wear compared to conventional ICE vehicles. The majority of failures are originated 

from electric circuit problems and defective manufacturing. [25] 

A first reason for that is the lower number of components by which the power train is made 

up. As explained in the section 4.1 of this chapter, the reliability of a serial system is 

inversely proportional to the number of its constituents. Moreover, thanks to the nature of 

electric propulsion, there are few components in mutual contact with each other, so reducing 

friction cases and the need of replace lubrication oil and failed parts. On the contrary, ICEVs 

have numerous moving parts such as valves and cams, which increase the failure occurrence 

and the costs for spare parts.  

In general, maintenance for electric cars is supposed to cost almost 25 – 50% less than for 

conventional vehicles [33], but a proper evaluation of this aspect could be done only after a 

wide commercialization and utilization of this new transportation. 

The future development, that likely will have the ability to increase the reliability of electric 

vehicles, relates with Predictive maintenance with on-board failures self-detection systems. 

Prognostic methods, with the capability of predicting system degradation before breakdown, 

are very promising and more affordable on electronics systems than mechanical systems: 
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thanks to the modern digital technology, the ability of self-detection and anticipation of 

failures are much increased. Early detection of the likely critical failures relies on capabilities 

of the Electronic controller, both of the algorithm and the hardware structure. Further 

investigation and testing are important for electric cars development. 

The on-board predictive maintenance (PdM) application needs a system composed by 

sensors, which detect the conditions of the single components and then communicate with a 

processor. The calculator unit has to translate the signals in readable data and compare them 

with threshold values.  

In general, on-board and off-board PdM for electric motor systems mainly refers to vibration 

analysis, thermal analysis and ultrasound analysis. However, in the case of a vehicle, the 

operative conditions have to be considered very carefully and the real affordability must be 

evaluated by a cost/benefit analysis.  

A very important development suggested for EVs refers to the capability to communicate 

real-time relevant vehicle health data to OEMs. Communication systems are, at the present 

time, mature and reliable to provide an effective feedback to the manufacturers, creating the 

conditions for a real continuous improvement of the product and the service to the customers. 

Indeed, the final objective of the maintenance strategy is to increase the customer 

satisfaction, and reliability is one of the most important factors influencing cars purchases, as 

underlined in the following Table 4.9. [34] 

Factors influencing car purchase  

Most important Medium importance Least important 

- Vehicle price 

- Size 

- Reliability 

- Comfort 

- Safety 

- Running costs 

- Fuel consumption 

- Appearance 

- Performance 

- Power 

- Image 

- Brand name 

- Insurance costs 

- Engine size 

- Equipment 

- Depreciation 

- Sales package 

- Personal experience 

- Dealership 

- Recommendation 

- Road tax 

- Environment 

- Vehicle emission 

- Alternative fuel 

TAB. 4.9 

Factors influencing car purchase (as in King Review 2007) 
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4.5 CHAPTER CONCLUSIONS 

In this chapter, some general considerations on the reliability of the EVs power train have 

been presented, underlining the below concepts: 

- Electric traction systems are much more reliable than ICEVs drive train, thanks to 

the lower number of components and to the lower number of moving components 

in contact with each other; 

- The most critical component is the battery system, which suffers from wear and 

ageing, and is the most expensive to replace; 

- From a reliability point of view the power train has a serial structure, see RBD in 

Figure 4.20, and it is the reason of a wide number of component classified as 

critical (85%); 

- An effective Preventive Maintenance program is indispensable to keep the 

functions of the system; 

- The most likely vehicle effect in case of failure is the shutdown of the entire 

system (49%). This is an important outcome that addresses considerations on the 

criticality of the vehicle and the importance of preventive maintenance. Power 

reduction and range reduction represent respectively the 21% and 24% of all 

consequences of failure, and Safety risk the 6%. 

Furthermore, six relevant components are described in detail, explaining their main functions, 

likely failure modes, failure causes, suggested PM tasks and periodicity. These components 

are the Li-Ion Battery pack, the PMSM electric motor, the 3phase Inverter, the DSP vehicle 

controller, the Fail-safe Circuit Breaker and the Thermal sensor of 12V battery.  

The outcomes for all the 26 components of the EVs power train are reported in the COFA 

and PM tasks worksheets, in the Appendices of this paper: 60 different failure modes and 100 

failure causes have been identified, and for each failure cause, the proper PM activities have 

been planned. These documents together represent the maintenance program based on RCM 

principles. 
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Chapter 5 

 

5. CONCLUSIONS AND FUTURE 

DEVELOPMENT 

 

The objectives of this thesis work, as stated in the introduction section, have been: 

1. Analysis and understanding of the typical architecture of the electric car powertrain. 

1.1. Description and schematic drawing of the structure of a typical electric car power 

train representing the mechanical, electrical and control links between components; 

1.2. Description of structure and operations of each system component; 

1.3. Reliability Block Diagram for general considerations on the whole system. 

2. Identification of the best maintenance strategy for the power train system employing the 

RCM method and definition of a long-term maintenance plan. 

2.1.  Identification of functions, functional failures, failure modes, and criticality 

classification of each powertrain component; 

2.2. For each component (except run-to-failure ones), identification of failure causes, 

definition of the proper Preventive Maintenance tasks and relative periodicity. 

The first section of this thesis work, Chapter 1, consists of a general consideration and over-

view about the important role that EVs could play in the near future, specifically regarding 

environmental issues and their reduction of air pollution in metropolitan areas. Transportation 

has a big impact on the air quality, equating to 32% of human pollution, and a comparative 

analysis between ICEVs and EVs has therefore been reported with associated numerical data 

in order to demonstrate the great potential of green vehicles. 

The availability of accurate data regarding environmental topics has proven to be very useful 

in laying the foundations for further research and development. 

The Chapter 2 is focused on a literature review of the technology related to electric traction, 

electronic control system and energy storage system, and it is referred to as the first macro-

objective. Different configurations have been compared through a pros-and-cons analysis. 

The EV models, currently produced by OEMs, have been considered and the complete 

scheme of the power train system has been drawn.  
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Latest academic papers, reference books, industrial publications and individual theses were 

studied for a more detailed understanding of the state of the art of this technology. 

This part of the work has been quite complex because of the relative youth and continuous 

nature of development of this technology: in this situation, a reference written a few years 

ago could already be obsolete, but, at the same time, finding very recent sources has been 

quite difficult. A great source has been the on-line archives of IEEE, where it has been 

possible to locate and have access to the most recently available research publications. 

The methodology of the research is reported in Chapter 3, and in this section the Reliability 

Centred Maintenance logic, which is the method applied to produce a maintenance program 

(ref. Appendix A and B), is reported and discussed. Additionally, other major reasons for the 

choice of this method have been explained. 

Authoritative references have been utilized in this review: the principles and logic of the 

method are very intelligible, but the application on a real case, such as the powertrain of EVs, 

requires much attention and care. 

Finally, the core section of the thesis work forms Chapter 4, in which the overall results and 

findings are described. In this part, the second objective of the research, the identification of 

the best maintenance strategy for the powertrain and definition of a long-term maintenance 

plan, is reviewed and presented. General considerations on the reliability of the EV power 

system are reported and the outcomes of six interesting components are widely described. For 

each component, the functions, the typical failure modes, the causes of malfunctions and the 

proper PM tasks and relative periodicity are reported and discussed. The reliability results 

and maintenance suggestions for all the powertrain system units are reported in the Appendix 

A and B, at the end of this paper. 

The most serious issue in this part of the research has been the lack of reliability and 

maintenance information. The youth of the technology and the reluctance of manufacturers to 

divulge and share sensitive data, for image reasons and in order to retain competitive 

advantage, have been the main cause for the scarcity of this information. This issue has been 

resolved by researching information from similar technologies, more mature than EVs one, 

but which have comparable run condition and operations. 

Some maintenance findings of this thesis work, i.e. preventive tasks and periodicity, are 

based on general data from academic articles papers, technical books, industrial publications 
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and individual theses. These sources are absolutely accurate and authoritative, but often based 

on simulations, laboratory studies and statistical outcomes, instead of field experience. [35] 

The data about failures are very sensitive for manufacturers: they are afraid to publish 

information that could provide a negative impact on the customers and affect their 

competitive advantages. Furthermore, in the particular case of a new technology, such as 

electric vehicles, OEMs probably do not hold so much data from the field: the car equipped 

with an on-line communication system could definitely help to fill this lack of information. 

Some European projects are working to increase the number of electric vehicles in the cities, 

attracting early adopters. People interested in the new mobility solutions and available to test 

cars and charging infrastructure takes part to these projects providing feedback to the 

manufacturers: a recent example is E-mobility project in Italy that is a partnership between 

Smart of Daimler group and Enel s.p.a. (the first electricity provider in the country). In some 

Italian cities, as Roma, Milano, Bologna and Pisa, this collaboration has begun to provide 

results both for the manufacturer and customers, bringing new clean vehicles on the streets. 

Throughout this paper, a maintenance program for EVs power train has been planned by 

Reliability Centred Maintenance principles. RCM is an effective method that considers 

maintenance as the means to maintain the functions a user may require of machinery, but 

good quality records are necessary: the lack of actual failure data is a major constraint on 

early studies regarding electric car reliability. Future works on this subject could have the 

possibility to take advantage from more updated references. 
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C.# Column A #.# Column B Column C Column D Col. E Column F Column G Column H Column I 

Component I.D. and 
description 

Component functions 
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

1. 

EP-CTRL-DSP  
Electronic 

controller, digital 
signal processor 

[14] [25] [27] 

1.1 
Provide control signals 

to power converter 

Fail to provide control 
signals to power 

converter 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Device cannot 
provide proper output 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

1.2 
Monitor vehicle status 
analyzing signals from 

sensors 

Fail to monitor vehicle 
status analyzing signals 

from sensors 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Device cannot 
analyze input signals 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

1.3 
Process inputs from 

driver (accelerator and 
brake pedals signals) 

Fail to process inputs 
from driver (accelerator 

and brake pedals 
signals) 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Device cannot 
analyze input signals 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

1.4 
Calculate range 

considering battery 
state of charge 

Fail to calculate range 
considering battery level 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Device cannot 
analyze input signals 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

2. 

EP-INV-3PH 
Traction motor 

inverter, 3phase 
voltage-fed 

PWM 
[26] [28] 

2.1 

Control the electric 
traction motor 

converting current at 
the required voltage 

Fail to control the 
electric traction motor 

converting current at the 
required voltage 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Abnormal output to 
the motor 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

2.2 

Charge the battery 
during regenerative 
braking, converting  

energy generated by 
the motor 

Fail to charge the 
battery during 

regenerative braking 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Abnormal output to 
the battery 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern) 
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Component I.D. and 
description 

Component functions 
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

3. 

EP-EMOT-
PMSM 

Permanent 
Magnet 

Synchronous 
traction motor 

[25] [26]  
[28] [29]  

3.1 
Convert electric energy 
to mechanical energy 

Fail to convert electric 
energy to mechanical 

energy 

Winding failure 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Bearing failure EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Rotor and shaft 
failure 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

3.2 
Convert kinetic energy 

to electric energy 
Fail to convert kinetic 

energy to electric energy 

Winding failure 

no 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern) 

Bearing failure 
Battery cannot be 

charged 
Range reduction 

Critical failure 
(operability concern) 

Rotor and shaft 
failure 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern) 

4. 

EP-GR-PLAN 
Planetary 

reduction gear 
[36] 

4.1 
Reduce electric motor 
speed and increase 

torque 

Fail to reduce electric 
motor speed and 
increase torque 

Gear seizing 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) CRITICAL 
operability 
concern Gear breaking EV cannot move 

Vehicle 
shutdown 

Critical failure 
(operability concern) 
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Component I.D. and 
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Component functions 
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

5. 

ES-CTRL 
Energy 

management 
unit 

[14] [25]  
[27] [38] 

[39] 

5.1 

Optimize voltage and 
current output 

according to load and 
battery state of charge  

Fail to optimize voltage 
and current output 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Device cannot 
analyze input signals 

Reduction of range Range reduction 
Critical failure 

(operability concern) 

Device cannot 
provide proper output 

Reduction of power Power reduction 
Critical failure 

(operability concern) 

5.2 
Detect battery state of 

charge 
Fail to detect battery 

state of charge 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Device cannot 
analyze input signals 

Reduction of charging Range reduction 
Critical failure 

(operability concern) 

5.3 
Detect battery 
temperature 

Fail to detect battery 
temperature 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Device cannot 
analyze input signals 

Reduction of range Range reduction 
Critical failure 

(operability concern) 

5.4 
Control energy 
refuelling unit 

Fail to control energy 
refuelling unit 

Device cannot 
initialize 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Device cannot 
analyze input signals 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern) 

Device cannot 
provide proper output 

Reduction of power Power reduction 
Critical failure 

(operability concern) 
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

6. 

ES-BAT-LIP 
Li-Ion Battery 

Pack 
[23] [24] 
[25] [26] 

6.1 
Provide energy to the 

PMSM through the 3P-
PWM-INV 

Fail to provide energy to 
the PMSM through the  

3P-PWM-INV 

Short circuit 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure (safety 

concern) 

CRITICAL 
safety concern 

Overheating EV cannot move 
Vehicle 

shutdown 
Critical failure (safety 

concern) 

Internal resistance 
increasing 

Reduction of power Power reduction 
Critical failure 

(operability concern) 

Over-charge Reduction of power 
Power reduction 

or Vehicle 
shutdown 

Critical failure (safety 
concern) 

Over/under-current Reduction of power 
Power reduction 

or Vehicle 
shutdown 

Critical failure (safety 
concern) 

6.2 
Provide energy to the 

12V battery through the 
DC/DC converter 

Fail to provide energy to 
the 12V battery through 

the DC/DC converter 

Short circuit 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure (safety 

concern) 

Overheating EV cannot move 
Vehicle 

shutdown 
Critical failure (safety 

concern) 

Internal resistance 
increasing 

Reduction of power Power reduction 
Critical failure 

(operability concern) 

Over-charge Reduction of power 
Vehicle 

shutdown 
Critical failure (safety 

concern) 

Over/under-current Reduction of power 
Vehicle 

shutdown 
Critical failure (safety 

concern) 

6.3 
Store energy from the 

PMSM during 
regenerative braking 

Fail to store energy from 
the PMSM during 

regenerative braking 

Short circuit 

yes 

Battery cannot be 
charged 

Vehicle 
shutdown 

Critical failure (safety 
concern)  

Overheating EV cannot move 
Vehicle 

shutdown 
Critical failure (safety 

concern)  

Over-discharge Reduction of range Range reduction 
Critical failure 

(operability concern)  

Internal resistance 
increasing 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern)  
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

7. 

ES-CH-OB 
Battery on-board 

charging unit 
[26] [28] 

7.1 

Provide the proper 
energy refuelling from 
external power grid, 

converting AC power to 
DC power, according to 

the signals from  
BAT-CTRL unit 

Fail to provide the 
proper energy refuelling 
from external power grid 

Device cannot 
initialize 

yes 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Overheating 
Battery cannot be 

charged 
Range reduction 

Critical failure 
(operability concern) 

Under-voltage output Reduction of charging Range reduction 
Critical failure 

(operability concern) 

Under-current output Reduction of charging Range reduction 
Critical failure 

(operability concern) 

Communication error 
with BAT-CTRL unit 

Reduction of charging Range reduction 
Critical failure 

(operability concern) 

8. 
ES-CH-PT 

Charge port 
[26] [28] 

8.1 
Connect vehicle on-

board charging unit to 
the external power grid 

Fail to connect vehicle 
on-board charging unit 
to the external power 

grid 

Communication error 
with BAT-CTRL unit 

yes 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Over/under-voltage 
to BAT-OB-CHARG 

Reduction of charging Range reduction 
Critical failure 

(operability concern) 

Over/under-current 
to BAT-OB-CHARG 

Reduction of charging Range reduction 
Critical failure 

(operability concern) 

9. 

ES-BAT-HT 
Li-Ion battery 

heater unit 
[26] [28] 

9.1 
Heat the Li-Ion battery 

to the standard 
operating temperature 

Fail to heat the Li-Ion 
battery to the standard 
operating temperature 

Device cannot 
initialize 

no 
EV cannot move at 

very low temperature 
- 

Potentially critical 
failure 

POTENTIALLY 
CRITICAL 
operability 
concern 

10. 

ES-BAT-12V 
Auxiliary 12 V 

battery 
[32] [37] 

10.1 
Provide 12V DC power 
to the DSP and BAT-

CTRL unit 

Fail to provide 12V DC 
power to the DSP and 

BAT-CTRL unit 

Cell failure 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Overcharging 
Loss of battery 

capacity 
- 

Potentially critical 
failure 

Undercharging 
Loss of battery 

capacity 
- 

Potentially critical 
failure 

10.2 
Provide 12V DC power 

to accessories and 
gauges 

Fail to provide 12V DC 
power to accessories 

and gauges 

Cell failure 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Overcharging 
Loss of battery 

capacity 
- 

Potentially critical 
failure 

Undercharging 
Loss of battery 

capacity 
- 

Potentially critical 
failure 
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Component functions 
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

11. 

EP-SNS-M-P 
Motor position 

sensor 
[26] [28] 

11.1 
Detect rotation angle of 
traction electric motor 

Fail to detect rotation 
angle of traction electric 

motor 

Abnormal values 
reading 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

11.2 
Report signals output 

to the DSP 
Fail to send signals 
output to the DSP 

Abnormal signal 
output 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

12. 

EP-SNS-M-S 
Motor speed 

sensor 
[26] [28] 

12.1 
Detect rotation speed 

of traction electric 
motor 

Fail to detect rotation 
speed of traction electric 

motor 

Abnormal values 
reading 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

12.2 
Report signals output 

to the DSP 
Fail to send signals 
output to the DSP 

Abnormal signal 
output 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

13. 

EP-SNS-M-T 
Motor 

temperature 
sensor 

[26] [28] 

13.1 

Detect electric motor 
operating temperature 

Fail to detect electric 
motor operating 

temperature 

Abnormal values 
reading 

yes 

- - 
Run to failure 
component RUN TO 

FAILURE 
Report signal output to 

the DSP 
Fail to report signal 
output to the DSP 

Abnormal signal 
output 

- - 
Run to failure 
component 

           

           



Appendix A – COFA worksheet  

90 

 

C.# Column A #.# Column B Column C Column D Col. E Column F Column G Column H Column I 

Component I.D. and 
description 

Component functions 
APPENDIX A – COFA worksheet 

Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

14. 

EP-SNS-ACC 
Accelerator 

pedal sensor 
[26] [28] 

14.1 

Convert accelerator 
pedal position in 

signals to the DSP unit, 
in order to control 
motor acceleration 

Fail to convert 
accelerator pedal 

position in signals to the 
DSP unit 

Abnormal values 
reading 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

Abnormal signal 
output 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

15. 

EP-SNS-BRK 
Brake pedal 

sensor 
[26] [28] 

15.1 

Convert brake pedal 
position in signals to 

the DSP unit, in order 
to control motor 

acceleration 

Fail to convert brake 
pedal position in signals 

to the DSP unit 

Abnormal values 
reading 

yes 

EV cannot brake 
Safety risks for 

user  
Critical failure (safety 

concern) CRITICAL 
safety concern Abnormal signal 

output 
EV cannot brake 

Safety risks for 
user  

Critical failure (safety 
concern) 

16. 

ES-SNS-12V 
Temperature 
sensor of 12V 

battery 
[26] [28] [32] 

16.1 
Detect operating 

temperature of the 12V 
auxiliary battery 

Fail to detect operating 
temperature of the 12V 

auxiliary battery 

Abnormal values 
reading 

no 
No effects until failure 

of the 12V battery 
- 

Potentially critical 
failure 

POTENTIALLY 
CRITICAL 
operability 
concern 16.2 

Report signals output 
to the BAT-CTRL unit 

Report signals output to 
the BAT-CTRL unit 

Abnormal signal 
output 

no 
No effects until failure 

of the 12V battery 
- 

Potentially critical 
failure 

17. 

ES-SNS-LIP-C 
Li-Ion Battery 
current sensor 

[26] [28] 

17.1 
Detect state of charge 
and charge/discharge 
current of battery pack  

Fail to detect state of 
charge and 

charge/discharge 
current of battery pack  

Abnormal values 
reading 

yes EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) CRITICAL 
operability 
concern 

17.2 
Report signals output 
to the BAT-CTRL unit 

Fail to report signals 
output to the BAT-CTRL 

unit 

Abnormal signal 
output 

yes EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

18. 

ES-SNS-LIP-T 
Li-Ion Battery 
temperature 

sensor 
[26] [28] 

18.1 
Detect operating 

temperature of battery 
pack  

Fail to detect operating 
temperature of battery 

pack  

Abnormal values 
reading 

yes EV cannot move 
Vehicle 

shutdown 
Critical failure (safety 

concern) 
CRITICAL  

safety concern 

18.2 
Report signals output 
to the BAT-CTRL unit 

Fail to report signals 
output to the BAT-CTRL 

unit 

Abnormal signal 
output 

yes EV cannot move 
Vehicle 

shutdown 
Critical failure (safety 

concern) 
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

19. 

ES-PLUG-LIP 
Li-Ion battery 
service plug 

[26] [28] 
[30] [31] 

19.1 
Turn off/on the high 

voltage current for EV 
maintenance tasks 

Fail to turn off/on the 
high voltage current for 
EV maintenance tasks 

Stuck switch in off 
position 

yes EV cannot move 
Vehicle 

shutdown 

Critical failure (safety 
concern) 

CRITICAL 
safety concern Stuck switch in on 

position 
yes 

Electric power cannot 
be turned off 

Safety risks for 
user and 

maintenance 
operator 

20. 

ES-SNS-CHPT 
Charge port 
temperature 

sensor 
[26] [28] 

20.1 
Detect operating 

temperature of charge 
port 

Fail to detect operating 
temperature of charge 

port 

Abnormal values 
reading 

yes 
Battery cannot be 

charged 
Range reduction 

Critical failure 
(operability concern) CRITICAL 

operability 
concern 

20.2 
Report signals output 
to the BAT-CTRL unit 

Fail to report signals 
output to the BAT-CTRL 

unit 

Abnormal signal 
output 

yes 
Battery cannot be 

charged 
Range reduction 

Critical failure 
(operability concern) 

21. 

EP-SNS-INVPH 
Inverter phases 

sensor 
[26] [28] 

21.1 

Detect the 3-phases 
current supplied to 
traction motor by 

inverter 

Fail to detect the 3-
phases current supplied 

to traction motor by 
inverter 

Abnormal values 
reading 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

CRITICAL 
operability 
concern 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

21.2 
Report output values to 

the DSP 
Fail to report output 
values to the DSP 

Abnormal signal 
output 

yes 

EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

Traction power 
uncontrollable 

Power reduction 
Critical failure 

(operability concern) 

22. 

ES-CON-DCDC 
DC/DC 

converter  
[26] [28] 

22.1 

Step down the high 
voltage DC current 

from the Li-Ion battery 
to a 12V DC current 

Fail to step down the 
high voltage DC current 

from the 
Li-Ion battery to a 12V 

DC current 

Device cannot 
initialize 

no 
No effects until 

failure/discharge of 
the 12V battery 

- 
Potentially critical 

failure 

POTENTIALLY 
CRITICAL 
operability 
concern Abnormal output 
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Component functional 
failures 

Dominant 
component failure 

mode for each 
functional failure  

Evident 
failure? 

Vehicle effect for 
each failure mode 

Consequence 
of failure, 

based on the 
ARC 

Failure 
Classification 

Component 
Classification 

23. 

EP-CIR BRK 
Fail-safe circuit 

breaker 
[26] [28] 
[30] [31] 

23.1 
Turn off the main 

power in case of a 
dangerous malfunction 

Fail to turn off the main 
power in case of a 

dangerous malfunction 

Stuck switch in on 
position 

no - 

Safety risks for 
user and 

maintenance 
operator 

Potentially critical 
failure (safety 

concern) CRITICAL 
safety concern 

Stuck switch in off 
position 

yes EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

24. 

ES-REL-LIP 
Li-Ion battery 

relay 
[26] [28] 
[30] [31] 

24.1 
Turn off/on the high 

voltage current at the 
EV 

Fail to turn off/on the 
high voltage current at 

the EV 

Stuck switch in on 
position 

no - 
Safety risks for 

user  

Potentially critical 
failure (safety 

concern) CRITICAL  
safety concern 

Stuck switch in off 
position 

yes EV cannot move 
Vehicle 

shutdown 
Critical failure 

(operability concern) 

25. 

EP-REL-DSP 
DSP relay 
[26] [28] 
[30] [31] 

25.1 

Turn off/on the power 
to the electronic 

controller DSP in case 
of over-voltage 

Fail to turn off/on the 
power to the electronic 
controller DSP in case 

of over-voltage 

Stuck switch in on 
position 

no 
DSP failure in case of 

over-voltage 
- 

Potentially critical 
failure 

CRITICAL 
operability 
concern Stuck switch in off 

position 
yes EV cannot move 

Vehicle 
shutdown 

Critical failure 
(operability concern) 

26. 

ES-REL-CHOB 
Charging relay 

[26] [28] 
[30] [31] 

26.1 
Turn off/on the 

charging power to the 
Li-Ion battery 

Fail to turn off/on the 
charging power to the 

Li-Ion battery 

Stuck switch in on 
position 

no 
On-board charger 

failure in case of over-
voltage 

- 
Potentially critical 

failure CRITICAL 
operability 
concern Stuck switch in off 

position 
yes 

Battery cannot be 
charged 

Range reduction 
Critical failure 

(operability concern) 
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function 
PM tasks for each failure cause 

Frequency  
months/miles 

Design 
change? 

1. 

EP-CTRL-DSP  
Electronic 

controller, digital 
signal processor 

[14] [25] [27] 

1.1 
Provide control 
signals to power 

converter 

Device cannot 
initialise 

EV cannot move 

CRITICAL 
operability 
concern 

Over/under power voltage Check relay EP-REL-DSP 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
provide proper 

output 

EV cannot match 
the driver request 

Abnormal output signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

1.2 

Monitor vehicle 
status analyzing 

signals from 
sensors 

Device cannot 
initialise 

EV cannot move 

Over/under power voltage Check relay EP-REL-DSP 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
analyze input 

signals 

EV cannot match 
the driver request 

Abnormal input signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

1.3 

Process inputs 
from driver 

(accelerator and 
brake pedals 

signals) 

Device cannot 
initialise 

EV cannot move 

Over/under power voltage Check relay EP-REL-DSP 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
analyze input 

signals 

EV cannot match 
the driver request 

Abnormal input signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

1.4 
Calculate range 

considering battery 
state of charge 

Device cannot 
initialise 

EV cannot move 

Over/under power voltage Check relay EP-REL-DSP 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
analyze input 

signals 

EV cannot match 
the driver request 

Abnormal input signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 
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Design 
change? 

2. 

EP-INV-3PH 
Traction motor 

inverter, 3phase 
voltage-fed PWM 

[26] [28] 

2.1 

Control the electric 
traction motor 

converting current 
at the required 

voltage 

Device cannot 
initialise 

EV cannot move 

CRITICAL 
operability 
concern 

Winding insulation 
breakdown 

Check winding insulation condition 24 / 30,000 No 

Insulation bushing 
breakdown 

Check insulation bushing 24 / 30,000 No 

Mechanical breaking, 
cracking, 

loosening, abrading, or 
deforming of 

static or structural parts 

Keep device clean 24 / 30,000 No 

Malfunction of protective 
relay 

Check protective relay operability 12 / - No 

Normal deterioration from 
age and corrosion 

phenomenon 
Keep device clean 24 / 30,000 No 

Abnormal output 
to the motor 

Abnormal power 
output 

Overheating Temperature monitoring, by DSP unit - No 

Transient overvoltage 
disturbance 

(switching surges, arcing 
ground fault, 

etc.)  

Switchgear inspection 24 / 30,000 No 

2.2 

Charge the battery 
during 

regenerative 
braking, converting 
energy generated 

by the motor 

Device cannot 
initialise 

EV cannot move 

Winding insulation 
breakdown 

Check winding insulation condition 24 / 30,000 No 

Insulation bushing 
breakdown 

Check insulation bushing 24 / 30,000 No 

Mechanical breaking, 
cracking, 

loosening, abrading, or 
deforming of 

static or structural parts 

Keep device clean 24 / 30,000 No 

Malfunction of protective 
relay 

Check protective relay operability 12 / - No 

Normal deterioration from 
age and corrosion 

phenomenon 
Keep device clean 24 / 30,000 No 

Abnormal output 
to the battery 

Battery cannot be 
charged 

Overheating Temperature monitoring, by DSP unit - No 

Transient overvoltage 
disturbance 

(switching surges, arcing 
ground fault, 

etc.)  

Switchgear inspection 24 / 30,000 No 
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3. 

EP-EMOT-PMSM 
Permanent 

Magnet 
Synchronous 
traction motor 

[25] [26]  
[28] [29]  

3.1 
Convert electric 

energy to 
mechanical energy 

Winding failure EV cannot move 

CRITICAL 
operability 
concern 

Windings failure for 
Insulation breakdown 

Keep motor clean with good air flow - No 

Windings failure for 
electrical fault 

Store motor correctly away from moisture 
and chemical 

- No 

Windings failure for AC 
drive stress 

Perform regular inspection 24 / 30,000 No 

Windings failure for 
cycling/flexing due to 

frequent start/stop 
Keep motor clean with good air flow - No 

Bearing failure EV cannot move 

Bearings failure for 
mechanical breakage 

Replace bearings Corrective task No 

Bearings failure for 
start/stop loss of lube film 

Replace bearings Corrective task No 

Bearings failure for improper 
lubricant 

Replace bearings Corrective task No 

Bearings failure for improper 
handling/storage 

Replace bearings Corrective task No 

Store motor correctly away from moisture 
and chemical 

- No 

Rotor and shaft 
failure 

EV cannot move 
Rotor failure for physical 
damage and corrosion 

Check list of standard installation 
procedure 

- No 

3.2 
Convert kinetic 

energy to electric 
energy 

Winding failure 
Battery cannot be 

charged 

Windings failure for 
Insulation breakdown 

Keep motor clean with good air flow - No 

Windings failure for 
electrical fault 

Store motor correctly away from moisture 
and chemical 

- No 

Windings failure for AC 
drive stress 

Perform regular inspection 24 / 30,000 No 

Windings failure for 
cycling/flexing due to 

frequent start/stop 
Keep motor clean with good air flow - No 

Bearing failure 
Battery cannot be 

charged 

Bearings failure for 
mechanical breakage 

Replace bearings Corrective task No 

Bearings failure for 
start/stop loss of lube film 

Replace bearings Corrective task No 

Bearings failure for improper 
lubricant 

Replace bearings Corrective task No 

Bearings failure for improper 
handling/storage 

Replace bearings Corrective task No 

Store motor correctly away from moisture 
and chemical 

- No 

Rotor and shaft 
failure 

Battery cannot be 
charged 

Rotor failure for physical 
damage and corrosion 

Check list of standard installation 
procedure 

- No 
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4. 

EP-GR-PLAN 
Planetary 

reduction gear 
[36] 

4.1 
Reduce electric 

motor speed and 
increase torque 

Gear seizing EV cannot move 

CRITICAL 
operability 
concern 

Bearings failure for 
mechanical breakage 

Replace bearings Corrective task No 

Bearings failure for 
start/stop loss of lube film 

Replace bearings Corrective task No 

Bearings failure for improper 
lubricant 

Replace bearings Corrective task No 

Bearings failure for improper 
handling/storage 

Replace bearings Corrective task No 

Store motor correctly away from moisture 
and chemical 

- No 

Gear breaking EV cannot move 

Fatigue 
Check the wear condition of the gear 

surface 
12 / 15,000 No 

Friction between teeth Keep gear clean and correctly lubricated 12 / 15,000 No 

Torsional and lateral 
vibration 

Check the wear condition of the gear 
surface 

12 / 15,000 No 

Misalignment 
Check the wear condition of the gear 

surface 
12 / 15,000 No 

5. 

ES-CTRL 
Energy 

management unit 
[14] [25]  
[27] [38] 

[39] 

5.1 

Optimize voltage 
and current output 
according to load 

and battery state of 
charge  

Device cannot 
initialise 

EV cannot move 

CRITICAL 
operability 
concern 

Over/under power voltage Check relay EP-REL-EMU 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
analyze input 

signals 
Range reduction 

Abnormal input signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
provide proper 

output 
Reduction of power 

Abnormal output signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 
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5.2 
Detect battery 
state of charge 

Device cannot 
initialise 

EV cannot move 

Over/under power voltage Check relay EP-REL-EMU 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
analyze input 

signals 

Reduction of 
charging 

Abnormal input signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

5.3 
Detect battery 
temperature 

Device cannot 
initialise 

EV cannot move 

Over/under power voltage Check relay EP-REL-EMU 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
analyze input 

signals 
Range reduction 

Abnormal input signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

5.4 
Control energy 
refuelling unit 

Device cannot 
initialise 

EV cannot move 

Over/under power voltage Check relay EP-REL-EMU 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
analyze input 

signals 

Battery cannot be 
charged 

Abnormal input signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Device cannot 
provide proper 

output 
Reduction of power 

Abnormal output signal Check I/O peripherals 12 / - No 

Software bugs 
Update software and report known bugs 

to supplier, by internet access 
If available No 

Incorrect installation 
Check list of standard installation 

procedure 
- No 



Appendix B – PM tasks worksheet  

98 

 

C.# Column A #.# Column B Column C Column D Column E Column F Column G Column H Column I 

Component I.D. and 
description 

Component functions 
APPENDIX B – PM tasks worksheet  

Component 
failure mode  

Vehicle effect for 
each failure mode 

Comp. Classif. 
Failure causes for each 

function 
PM tasks for each failure cause 

Frequency  
months/miles 

Design 
change? 

6. 

ES-BAT-LIP 
Li-Ion Battery 

Pack 
[23] [24] 
[25] [26] 

6.1 
Provide energy to 
the PMSM through 
the 3P-PWM-INV 

Short circuit EV cannot move 

CRITICAL 
safety concern 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
12 / 15,000 No 

Overheating EV cannot move 
Failure of battery heater Check the heater device operability 12 / 15,000 No 

Failure of battery sensor Check the sensor operability 12 / 15,000 No 

Internal 
resistance 
increasing 

Reduction of power 
Mechanical stress, ageing 

wear 
Check the battery charge controller to 

verify the correct voltage settings 
12 / 15,000 No 

Over-charge 
Abnormal power 

output 

Failure of Battery Control 
Module 

Check the battery charge controller to 
verify the correct voltage settings 

12 / 15,000 No 

Check and compare the voltage readings 
at the battery connections and at the 

controller 
12 / 15,000 No 

Failure of Battery Charger Check all charging subsystems 12 / 15,000 No 

Over/under-
current 

Abnormal power 
output 

Failure of Battery Control 
Module 

Check the battery charge controller to 
verify the correct voltage settings 

12 / 15,000 No 

Check and compare the voltage readings 
at the battery connections and at the 

controller 
12 / 15,000 No 

6.2 

Provide energy to 
the 12V battery 

through the DC/DC 
converter 

Short circuit EV cannot move Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
12 / 15,000 No 

Overheating EV cannot move 

Failure of battery heater Check the heater device operability 12 / 15,000 No 

Failure of battery sensor Check the sensor operability 12 / 15,000 No 

Internal 
resistance 
increasing 

Reduction of power 
Mechanical stress, ageing 

wear 
Check the battery charge controller to 

verify the correct voltage settings 
12 / 15,000 No 

Over-charge 
Abnormal power 

output 

Failure of Battery Control 
Module 

Check the battery charge controller to 
verify the correct voltage settings 

12 / 15,000 No 

Check and compare the voltage readings 
at the battery connections and at the 

controller 
12 / 15,000 No 

Failure of Battery Charger Check all charging subsystems 12 / 15,000 No 

Over/under-
current 

Abnormal power 
output 

Failure of Battery Control 
Module 

Check the battery charge controller to 
verify the correct voltage settings 

12 / 15,000 No 

Check and compare the voltage readings 
at the battery connections and at the 

controller 
12 / 15,000 No 
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6.3 

Store energy from 
the PMSM during 

regenerative 
braking 

Short circuit 
Battery cannot be 

charged 
Connector/terminal failure 

Check connector conditions and keep 
clean from moisture and chemical 

12 / 15,000 No 

Overheating EV cannot move 
Failure of battery heater Check the heater device operability 12 / 15,000 No 

Failure of battery sensor Check the sensor operability 12 / 15,000 No 

Over-discharge Reduction of range 
Mechanical stress, ageing 

wear 
Check the battery charge controller to 

verify the correct voltage settings 
12 / 15,000 No 

Internal 
resistance 
increasing 

Battery cannot be 
charged 

Failure of Battery Control 
Module 

Check the battery charge controller to 
verify the correct voltage settings 

12 / 15,000 No 

Check and compare the voltage readings 
at the battery connections and at the 

controller 
12 / 15,000 No 

7. 

ES-CH-OB 
Battery on-board 

charging unit 
[26] [28] 

7.1 

Provide the proper 
energy refuelling 

from external 
power grid, 

converting AC 
power to DC 

power, according 
to the signals from  

BAT-CTRL unit 

Device cannot 
initialise 

Battery cannot be 
charged 

CRITICAL 
operability 
concern 

Winding insulation 
breakdown 

Check winding insulation condition 24 / 30,000 No 

Insulation bushing 
breakdown 

Check insulation bushing 24 / 30,000 No 

Mechanical breaking, 
cracking, 

loosening, abrading, or 
deforming of 

static or structural parts 

Keep device clean 24 / 30,000 No 

Malfunction of protective 
relay 

Check protective relay operability 12 / - No 

Normal deterioration from 
age and corrosion 

phenomenon 
Keep device clean 24 / 30,000 No 

Under-voltage 
output 

Reduction of 
charging 

Overheating Temperature monitoring, by DSP unit - No 

Transient overvoltage 
disturbance 

(switching surges, arcing 
ground fault, etc.)  

Switchgear inspection 24 / 30,000 No 

Under-current 
output 

Reduction of 
charging 

Overheating Temperature monitoring, by DSP unit - No 

Transient overvoltage 
disturbance 

(switching surges, arcing 
ground fault, etc.)  

Switchgear inspection 24 / 30,000 No 

Communication 
error with BAT-

CTRL unit 

Reduction of 
charging 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
24 / 30,000 No 
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8. 
ES-CH-PT 

Charge port 
[26] [28] 

8.1 

Connect vehicle 
on-board charging 
unit to the external 

power grid 

Communication 
error with BAT-

CTRL unit 

Battery cannot be 
charged 

CRITICAL 
operability 
concern 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
6 / 7,500 No 

Over/under-
voltage to BAT-

OB-CHARG 

Reduction of 
charging 

Transient overvoltage 
disturbance 

(switching surges, arcing 
ground fault, 

etc.)  

Relay inspection 6 / 7,500 No 

Normal deterioration from 
age and corrosion 

phenomenon 
Check device condition 6 / 7,500 No 

Over/under-
current to BAT-

OB-CHARG 

Reduction of 
charging 

Transient overvoltage 
disturbance 

(switching surges, arcing 
ground fault, 

etc.)  

Relay inspection 6 / 7,500 No 

Normal deterioration from 
age and corrosion 

phenomenon 
Check device condition 6 / 7,500 No 

9. 

ES-BAT-HT 
Li-Ion battery 

heater unit 
[26] [28] 

9.1 

Heat the Li-Ion 
battery to the 

standard operating 
temperature 

Device cannot 
initialise 

EV cannot move at 
very low 

temperature 

POTENTIALLY 
CRITICAL 
operability 
concern 

Heater element failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

Short circuit 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

10. 

ES-BAT-12V 
Auxiliary 12 V 

battery 
[32] [37] 

10.1 

Provide 12V DC 
power to the DSP 
and BAT-CTRL 

unit 

Cell failure EV cannot move 

CRITICAL 
operability 
concern 

Phenomenon of sulfation Inspection and monitoring individual cell 
voltages 

12 / - No 
Grid corrosion 

Overcharging 
Loss of battery 

capacity 

Incorrect charge regulation 

Check the battery charge controller to 
verify the correct voltage settings 

12 / - No 

Faulty charge regulation can be detected 
by monitoring the system voltage 

12 / - No 

High series resistance path 
in the controller sense 

circuit causing the controller 
to receive a lower battery 

voltage than is correct 

Check and compare the voltage readings 
at the battery connections and at the 

controller 
12 / - No 

Undercharging 
Loss of battery 

capacity 

Improper controller charging 
set points 

Check all charging subsystems before 
considering adjustment of charge 

controller set points 
12 / - No 

Higher than anticipated load 
use 

Inspection and monitoring individual cell 
voltages 

12 / - No 
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10.2 

Provide 12V DC 
power to 

accessories and 
gauges 

Cell failure EV cannot move 
Phenomenon of sulfation Inspection and monitoring individual cell 

voltages 
12 / - No 

Grid corrosion 

Overcharging 
Loss of battery 

capacity 

Incorrect charge regulation 

Check the battery charge controller to 
verify the correct voltage settings 

12 / - No 

Faulty charge regulation can be detected 
by monitoring the system voltage 

12 / - No 

High series resistance path 
in the controller sense 

circuit causing the controller 
to receive a lower battery 

voltage than is correct 

Check and compare the voltage readings 
at the battery connections and at the 

controller 
12 / - No 

Undercharging 
Loss of battery 

capacity 

Improper controller charging 
set points 

Check all charging subsystems before 
considering adjustment of charge 

controller set points 
12 / - No 

Higher than anticipated load 
use 

Inspection and monitoring individual cell 
voltages 

12 / - No 

11. 

EP-SNS-M-P 
Motor position 

sensor 
[26] [28] 

11.1 
Detect rotation 

angle of traction 
electric motor 

Abnormal values 
reading 

EV cannot move 

CRITICAL 
operability 
concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

11.2 
Report signals 

output to the DSP 
Abnormal signal 

output 

EV cannot move Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

12. 

EP-SNS-M-S 
Motor speed 

sensor 
[26] [28] 

12.1 
Detect rotation 

speed of traction 
electric motor 

Abnormal values 
reading 

EV cannot move 

CRITICAL 
operability 
concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

12.2 
Report signals 

output to the DSP 
Abnormal signal 

output 

EV cannot move Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

13. 

EP-SNS-M-T 
Motor temperature 

sensor 
[26] [28] 

13.1 
Detect electric 

motor operating 
temperature 

Abnormal values 
reading 

- 
RUN TO 
FAILURE 

- - - No 

Abnormal signal 
output 

- - - - No 
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Frequency  
months/miles 
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14. 

EP-SNS-ACC 
Accelerator pedal 

sensor 
[26] [28] 

14.1 

Convert 
accelerator pedal 
position in signals 
to the DSP unit, in 

order to control 
motor acceleration 

Abnormal values 
reading 

EV cannot move 

CRITICAL 
operability 
concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

Abnormal signal 
output 

EV cannot move Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

15. 

EP-SNS-BRK 
Brake pedal 

sensor 
[26] [28] 

15.1 

Convert brake 
pedal position in 

signals to the DSP 
unit, in order to 
control motor 
acceleration 

Abnormal values 
reading 

EV cannot brake 

CRITICAL 
safety concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

Abnormal signal 
output 

EV cannot brake 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

16. 

ES-SNS-
12VTemperature 

sensor of 12V 
battery 

[26] [28] [32] 

16.1 

Detect operating 
temperature of the 

12V auxiliary 
battery 

Abnormal values 
reading 

No effects until 
failure of the 12V 

battery POTENTIALLY 
CRITICAL 
operability 
concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

16.2 
Report signals to 

the BAT-CTRL unit 
Abnormal signal 

output 

No effects until 
failure of the 12V 

battery 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

17. 

ES-SNS-LIP-C 
Li-Ion Battery 
current sensor 

[26] [28] 

17.1 

Detect state of 
charge and 

charge/discharge 
current of battery 

pack  

Abnormal values 
reading 

EV cannot move 

CRITICAL 
operability 
concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

17.2 
Report signals 

output to the BAT-
CTRL unit 

Abnormal signal 
output 

EV cannot move 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 
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18. 

ES-SNS-LIP-T 
Li-Ion Battery 
temperature 

sensor 
[26] [28] 

18.1 
Detect operating 
temperature of 
battery pack  

Abnormal values 
reading 

EV cannot move 

CRITICAL  
safety concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

18.2 
Report signals 

output to the BAT-
CTRL unit 

Abnormal signal 
output 

EV cannot move 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

19. 

ES-PLUG-LIP 
Li-Ion battery 
service plug 

[26] [28] 
[30] [31] 

19.1 

Turn off/on the 
high voltage 

current for EV 
maintenance tasks 

Stuck switch in 
off position 

EV cannot move 

CRITICAL 
safety concern 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 

Stuck switch in 
on position 

Electric power 
cannot be turned 

off 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 

20. 

ES-SNS-CHPT 
Charge port 
temperature 

sensor 
[26] [28] 

20.1 
Detect operating 
temperature of 

charge port 

Abnormal values 
reading 

Battery cannot be 
charged 

CRITICAL 
operability 
concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

20.2 
Report signals 

output to the BAT-
CTRL unit 

Abnormal signal 
output 

Battery cannot be 
charged 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 
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21. 

EP-SNS-INVPH 
Inverter phases 

sensor 
[26] [28] 

21.1 

Detect the 3-
phases current 

supplied to traction 
motor by inverter 

Abnormal values 
reading 

EV cannot move 

CRITICAL 
operability 
concern 

Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

21.2 
Report output 

values to the DSP 
Abnormal signal 

output 

EV cannot move Incorrect installation 
Check list of standard installation 

procedure 
- No 

Traction power 
uncontrollable 

Connector/terminal failure 
Check connector conditions and keep 

clean from moisture and chemical 
36 / 45,000 No 

22. 
ES-CON-DCDC 
DC/DC converter 

[26] [28]  
22.1 

Step down the high 
voltage DC current 

from the Li-Ion 
battery to a 12V 

DC current 

Device cannot 
initialise 

No effects until 
failure/discharge of 

the 12V battery 

POTENTIALLY 
CRITICAL 
operability 
concern 

Winding insulation 
breakdown 

Check winding insulation condition 24 / 30,000 No 

Insulation bushing 
breakdown 

Check insulation bushing 24 / 30,000 No 

Mechanical breaking, 
cracking, abrading, 

deforming of structural parts 
Keep device clean 24 / 30,000 No 

Malfunction of protective 
relay 

Check protective relay operability 12 / - No 

Normal deterioration from 
age and corrosion  

Keep device clean 24 / 30,000 No 

Overheating Temperature monitoring, by DSP unit - No 

Transient overvoltage 
disturbance  

(switching surges, arcing 
ground faulted.)  

Switchgear inspection 24 / 30,000 No 

Abnormal output 
No effects until 

failure/discharge of 
the 12V battery 

Winding insulation 
breakdown 

Check winding insulation condition 24 / 30,000 No 

Insulation bushing 
breakdown 

Check insulation bushing 24 / 30,000 No 

Mechanical breaking, 
cracking, abrading, or 

deforming of structural parts 
Keep device clean 24 / 30,000 No 

Malfunction of protective 
relay 

Check protective relay operability 12 / - No 

Normal deterioration from 
age and corrosion 

Keep device clean 24 / 30,000 No 

Overheating Temperature monitoring, by DSP unit - No 

Transient overvoltage 
disturbance  

(switching surges, arcing 
ground faulted.)  

Switchgear inspection 24 / 30,000 No 
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23. 

EP-CIR BRK 
Fail-safe circuit 

breaker 
[26] [28] 
[30] [31] 

23.1 

Turn off the main 
power in case of a 

dangerous 
malfunction 

Stuck switch in 
on position 

- 

CRITICAL 
safety concern 

Normal deterioration from 
age 

Inspect breaker-operating mechanism for 
loose hardware and missing or broken 

cotter pins, etc. Examine latch and roller 
surfaces 

12 / - No 

Loss or deficiency of oil or 
cooling medium 

Clean and relubricate operating 
mechanism with a light machine oil 

12 / - No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Exposure to abnormal 
moisture, chemicals or dust 

Wipe and clean the insulating parts, 
including bushings 

12 / - No 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Stuck switch in 
off position 

EV cannot move 

Normal deterioration from 
age 

Inspect breaker-operating mechanism for 
loose hardware and missing or broken 

cotter pins, etc. Examine latch and roller 
surfaces 

12 / - No 

Loss or deficiency of oil or 
cooling medium 

Clean and relubricate operating 
mechanism with a light machine oil 

12 / - No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Exposure to abnormal 
moisture or chemicals 

Wipe and clean the insulating parts, 
including bushings 

12 / - No 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 
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24. 

ES-REL-LIP 
Li-Ion battery relay 

[26] [28] 
[30] [31] 

24.1 
Turn off/on the 
high voltage 

current at the EV 

Stuck switch in 
on position 

- 

CRITICAL  
safety concern 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 

Stuck switch in 
off position 

EV cannot move 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 

25. 

EP-REL-DSP 
DSP relay 
[26] [28] 
[30] [31] 

25.1 

Turn off/on the 
power to the 

electronic 
controller DSP in 

case of over-
voltage 

Stuck switch in 
on position 

- 

CRITICAL 
operability 
concern 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 

Stuck switch in 
off position 

EV cannot move 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 
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26. 

ES-REL-CHOB 
Charging relay 

[26] [28] 
[30] [31] 

26.1 
Turn off/on the 

charging power to 
the Li-Ion battery 

Stuck switch in 
on position 

- 

CRITICAL 
operability 
concern 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 

Stuck switch in 
off position 

Battery cannot be 
charged 

Misoperation or testing error 
Check list of standard operation and test 

procedure 
- No 

Persistent overloading 
Replace component if contacts are badly 
worn or burned and check control device 

for freedom of operation 
12 / - No 

Normal deterioration from 
age 

Inspect relays for physical damage and 
deterioration 

12 / - No 

 


