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Abstract

We present necessary and sufficient optimality conditions for the mini-

mization of pseudoconvex functions over convex sets defined by non neces-

sarily convex functions, in terms of tangential subdifferentials. Our main

result unifies a recent KKT type theorem obtained by Lasserre for differ-

entiable functions with a nonsmooth version due to Dutta and Lalitha.

1 Introduction

In the interesting article [3], Lasserre proved the surprising result that, in the
case of differentiable problems satisfying the Slater constraint qualification and
a mild nondegeneracy condition, for the KKT optimality conditions to be neces-
sary and sufficient one can weaken the assumption that the constraint functions
are convex, by just imposing the feasible set to be convex. A nonsmooth ver-
sion of this result for locally Lipschitz functions has been recently obtained by
Dutta and Lalitha [1], in terms of Clarke subdifferentials. This latter results uses
the crucial assumption that the constraint functions are regular in the sense of
Clarke, and therefore it does not generalize Lasserre result, since differentiable
functions are not necessarily regular unless they are continuously differentiable.
Thus the question arises whether it is possible to unify Lasserre’s result with the
one of Dutta and Lalitha, by obtaining a general statement of which those re-
sults would be corollaries. The present paper provides an affirmative answer to
this question, by presenting a KKT type theorem (Theorem 9) based on the no-
tion of tangential subdifferential, a notion due to Pshenichnyi [5]. Additionally,
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we show that the convexity assumption on the objective function, considered in
[3] and [1], can be relaxed to pseudoconvexity, a condition which is not required
for the necessity of the KKT conditions, but only for their sufficiency. This ob-
servation has also been made, in a differentiable context, by Giorgi in a recent
paper [2].

Our method of proof essentially follows the same approach as the ones in
[3] and [1], but our presentation is different and reveals the simple underlying
geometry (see Proposition 1). We also give a more precise characterization of
the convexity of the feasible set (Proposition 6), by showing that it is equivalent
to its representability in a specific way by means of the directional derivatives
of the constraint functions.

For convex analytic notions, we will use the same notation as in the classical
book [6], and rbd we will denote relative boundary.

2 Results

We start with a simple geometric result, which will be fundamental in the char-
acterization of convexity that underlies our main result.

Proposition 1 Let S ⊆ R
n be such that ri S 6= ∅ and C ⊆ R

n be a convex set
such that S ⊆ C ⊆ aff S and rbd S ⊆ rbd C, then C ⊆ cl ri S.

Proof. Let x ∈ C and take x ∈ ri S. Since aff S = aff C, we have ri S ⊆
ri C; hence x ∈ ri C. Therefore, for every λ ∈ [0, 1[ one has (1− λ) x+λx ∈ ri C
and thus (1− λ)x + λx /∈ rbd C, which implies that (1− λ)x + λx /∈ rbd S.
It follows that (1− λ) x + λx ∈ ri S for every λ ∈ [0, 1[ , since otherwise there
would exist λ ∈ ]0, 1[ such that

(
1− λ

)
x + λx /∈ S and hence, as x ∈ ri S, by

connectedness there would exist λ′ ∈
]
0, λ

]
such that (1− λ′)x + λ′x ∈ rbd S,

which is a contradiction. We conclude that x ∈ cl ri S.

Remark 2 It is easy to see that, under the assumptions ri S 6= ∅ and rbd S ⊆
rbd C, the chain of inclusions S ⊆ C ⊆ aff S is equivalent to ri S ⊆ ri C.

The next result is a straightforward consequence of Proposition 1.

Corollary 3 Let S ⊆ R
n be a closed set such that ri S 6= ∅. The following

statements are equivalent:
(i) S is convex.
(ii) rbd S = rbd conv S.
(iii) rbd S ⊆ rbd conv S.
(iv) conv S ⊆ cl ri S.

Proof. Implications (i) =⇒ (ii) =⇒ (iii) are obvious. Implication (iii) =⇒ (iv)
follows from Proposition 1 by taking C := conv S. Finally, if (iv) holds then
conv S ⊆ cl ri S ⊆ cl S = S ⊆ conv S, which implies (i).

The following class of functions was introduced by Pshenichnyi [5]; they were
called ”tangentially convex” by Lemaréchal [4].
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Definition 4 A function f : Rn −→ R ∪ {+∞} is called tangentially convex

at x ∈ f−1 (R) if for every d ∈ R
n the limit f ′ (x, d) := limt−→0+

f(x+td)−f(x)
t

exists, is finite, and is a convex function of d.

It is worth noticing that, since f ′ (x, ·) is positively homogeneous, if f is
tangentially convex at x then f ′ (x, ·) is sublinear.

The class of tangentially convex functions is rather large. It contains every
convex function which has an open domain. Moreover, every function which is
Gateaux differentiable at a point x is tangentially convex at x, since in such a
case the directional derivative f ′ (x, ·) is linear. In particular, a function with
open domain which is Gateux differentiable everywhere is tangentially convex
at each point of its domain, even though it is obviously not necessarily convex.
Notice that the class of tangentially convex functions at a given point is a
real vector space; hence, in particular, the sum of a convex function with a
differentiable function provides an example of a tangentially convex function
which, in general, is nonconvex and nondifferentiable. Another such example is
the product of two nonnegative tangentially convex functions.

The notion of tangentially convex function suggests the introduction of an
associated concept of subdifferential. The following definition is implicitly given
in [5].

Definition 5 The tangential subdifferential of f : Rn −→ R ∪ {+∞} at x ∈
f−1 (R) is the set

∂T f (x) := {x∗ ∈ R
n : 〈x∗, d〉 ≤ f ′ (x, d) ∀d ∈ R

n} .

Clearly, if f is tangentially convex at x, from the sublinearity of f ′ (x, ·) it
follows that ∂T f (x) 6= ∅ and f ′ (x, ·) is the support functional of ∂T f (x) , that
is, for every d ∈ R

n one has

f ′ (x, d) = max
x∗∈∂T f(x)

〈x∗, d〉 .

In the particular case when f is convex, its tangential subdifferential at x
coincides with the classical Fenchel subdifferential at x. In the case of a Gateaux
differentiable function, its tangential subdifferential at a point is the singleton of
the gradient. Tangential subdifferentials enjoy rich calculus rules. For instance,
given two functions f and g which are tangentially convex at a common point
x, one has ∂T (f + g) (x) = ∂T f (x) + ∂T g (x) ; this additivity property easily
follows from the relationship between tangential subdifferentials and directional
derivatives, taking into account that the equality (f + g)

′
(x, d) = f ′ (x, d) +

g′ (x, d) holds for every d ∈ R
n.

Proposition 6 If the functions gi : R
n −→ R∪{+∞} (i = 1, ...,m) are contin-

uous, the system gi (x) ≤ 0 (i = 1, ...,m) satisfies the Slater condition, and for
every x ∈ S := {x ∈ R

n : gi (x) ≤ 0, i = 1, ...,m} and i ∈ {1, ...,m} such that
gi (x) = 0 the function gi is tangentially convex at x and ∂T gi (x) 6= {0} , then
S is convex if anf only if

S = {y ∈ R
n : g′i (x, y − x) ≤ 0 ∀ (x, i) ∈ S × {1, ...,m} s. t. gi (x) = 0} . (1)
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Proof. Let C denote the right hand side of (1). This set is convex and closed,
due to the tangential convexity assumption on the functions gi; hence, the ”if”
statement is obvious. Conversely, assume that S is convex. The inclusion ⊆
in (1) easily follows from the definition of directional derivative. To prove the
opposite inclusion, in view of Proposition 1 we only need to prove that bd S ⊆
bd C. Let x ∈ bd S. We have x ∈ C and, since the functions gi are continuous,
gi (x) = 0 for some i ∈ {1, ...,m} . Take x∗ ∈ ∂T gi (x) \ {0} ; then 〈x∗, y − x〉 ≤
g′i (x, y − x) ≤ 0 for every y ∈ C, which shows that the hyperplane 〈x∗, y − x〉 =
0 supports C at x. Therefore, x ∈ bd C. We have thus proved the required
inclusion bd S ⊆ bd C.

We next extend the well known notion of pseudoconvexity for differentiable
functions to the tangentially convex setting.

Definition 7 A function f : Rn −→ R∪ {+∞} which is tangentially convex at
x ∈ f−1 (R) is said to be pseudoconvex at x if f (y) ≥ f (x) for every y ∈ R

n

such that f ′ (x, y − x) ≥ 0.

Notice that, for a tangentially convex function, pseudoconvexity is a much
weaker condition than convexity; for instance, every Gateaux differentiable pseu-
doconvex function is tangentially convex but not necessarily convex (consider,
e.g., the one variable function f given by f (x) = −ex).

In the proof of the main theorem, we will use the following lemma.

Lemma 8 Let s : Rn −→ R ∪ {+∞} be a sublinear function. If s vanishes on
an open set, then it is nonnegative everywhere.

Proof. Assume that s vanishes on the open ball B with center c and radius r,
and let x ∈ R

n. Set b := c− r
2‖x‖x; since b ∈ B, by the sublinearity of s we have

s (x) ≥ 2‖x‖
r

(s (c)− s (b)) = 0.

The following theorem is the main result in this paper.

Theorem 9 Let the functions gi : R
n −→ R ∪ {+∞} (i = 1, ...,m) satisfy all

the assumptions of Proposition 6. Assume further that the set

S := {x ∈ R
n : gi (x) ≤ 0, i = 1, ...,m}

is convex, the function f : Rn −→ R ∪ {+∞} is tangentially convex at x ∈ S.
If either gi (x) < 0 for every i ∈ {1, ...,m} or there exists some i ∈ {1, ...,m}
such that gi (x) = 0 and 0 /∈ ∂T gi (x) , a necessary condition for x to be a global
minimizer of f over S is the existence of real numbers λi ≥ 0 (i = 1, ...,m) such
that

i) 0 ∈ ∂T f (x) +

m∑

i=1

λi∂T gi (x) ,

ii) λigi (x) = 0, ∀i = 1, ...,m.
If f is pseudoconvex at x, this condition is sufficient.
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Proof. If x is a global minimizer, then, by [5, p. 88, Corollary], there exist
real numbers λi ≥ 0 (i = 0, 1, ...,m) , not all zero, satisfying ii) and λ0f

′ (x, d)+
m∑

i=1

λig
′
i (x, d) ≥ 0, ∀d ∈ R

n. In particular, setting I := {i ∈ {1, ...,m} : λi > 0} ,

for a Slater point x̂ we have

λ0f
′ (x, x̂− x) +

∑

i∈I

λig
′
i (x, x̂− x) = λ0f

′ (x, x̂− x) +
m∑

i=1

λig
′
i (x, x̂− x)

≥ 0.

Hence, if we had λ0 = 0, then, by ii) and (1), we would have g′i (x, x̂− x) = 0 for
all i ∈ I; moreover, I 6= ∅, which implies the existence of some i ∈ {1, ...,m} such
that gi (x) = 0. Since the functions gi are continuous, the set of Slater points is
open, and therefore, using Lemma 8, we can easily prove that g′i (x, d) ≥ 0 for all
i ∈ I and d ∈ R

n, that is, 0 ∈ ∂T gi (x) , which is a contradiction. Thus λ0 > 0,
and without loss of generality we can take λ0 = 1. Then, for every d ∈ R

n we
have

max

x∗∈∂T f(x)+

m∑

i=1

λi∂T gi(x)

〈x∗, d〉 = f ′ (x, d) +
m∑

i=1

λig
′
i (x, d) ≥ 0,

which, since the set ∂T f (x) +

m∑

i=1

λi∂T gi (x) is convex and closed, implies i).

Conversely, assume that f is pseudoconvex at x and there exist real numbers
λi ≥ 0 (i = 1, ...,m) , not all zero, such that i) and ii) hold. Then, by i), for
every x ∈ S we have

f ′ (x, x− x) +
∑

i∈I

λig
′
i (x, x− x) = max

x∗∈∂T f(x)+

∑

i∈I

λi∂T gi(x)

〈x∗, x− x〉

≥ 0.

Hence, as from ii) and Proposition 6 it follows that g′i (x, x− x) ≤ 0 for every
i ∈ I, we deduce that f ′ (x, x− x) ≥ 0; therefore, by the pseudoconvexity of f
at x, we have f (x) ≥ f (x) . This proves that x is a global minimizer of f over
S.

To conclude, we show that the KKT type theorems due to Lasserre and to
Dutta and Lalitha easily follow from Theorem 9.

Corollary 10 [3, Thm. 2.3] Let the functions f, gi : R
n −→ R ∪ {+∞}

(i = 1, ...,m) be differentiable, the set S := {x ∈ R
n : gi (x) ≤ 0, i = 1, ...,m}

be convex, and assume that the system gi (x) ≤ 0 (i = 1, ...,m) satisfies the
Slater condition and the nondegeneracy property

∇gi (x) 6= 0 for every x ∈ S and i ∈ {1, ...,m} such that gi (x) = 0.
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If f is convex then, a necessary and sufficient condition for x ∈ S to be a global
minimum of f over S is the existence of real numbers λi ≥ 0 (i = 1, ...,m) such
that

i) ∇f (x) +

m∑

i=1

λi∇gi (x) = 0,

ii) λigi (x) = 0, ∀i = 1, ...,m.

Proof. It is an immediate consequence of Theorem 9, since a differentiable
function f is tangentially convex at every point x, with ∂T f (x) = {∇f (x)} ,
and every convex function is pseudoconvex at every point.

Corollary 11 [1, Thm. 2.4] Let f : R
n −→ R be convex, the functions

gi : R
n −→ R (i = 1, ...,m) be locally Lipschitz and regular in the sense of

Clarke, the set S := {x ∈ R
n : gi (x) ≤ 0, i = 1, ...,m} be convex, and assume

that the system gi (x) ≤ 0 (i = 1, ...,m) satisfies the Slater condition and the
nondegeneracy property

0 /∈ ∂ogi (x) for every x ∈ S and i ∈ {1, ...,m} such that gi (x) = 0.

Then a necessary and sufficient condition for x ∈ S to be a global minimum of
f over S is the existence of real numbers λi ≥ 0 (i = 1, ...,m) such that

i) 0 ∈ ∂f (x) +

m∑

i=1

λi∂
ogi (x) = 0,

ii) λigi (x) = 0, ∀i = 1, ...,m.

Proof. It is an immediate consequence of Theorem 9, since every locally Lips-
chitz regular function g is tangentially convex at every point x, with ∂T g (x) =
∂og (x) , and a convex function f is pseudoconvex and tangentially convex at
every point x, with ∂T f (x) = ∂f (x) .
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