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Abstract
This article surveys the main contributions of K.-H. Elster to the theory of
generalized conjugate functions and its applications to duality in nonconvex
optimization.
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theory, generalized convexity, optimality conditions, fractional program-
ming, geometric vector inequality
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1. Introduction

Since the seminal work of W. Fenchel [18], the theory of conjugate functions plays
a fundamental role in convex optimization, especially in connection with dual-
ity theory. With the main objective of extending convex duality theory to the
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nonconvex case, many generalized conjugation concepts have been introduced in
the literature (see [21] and the references contained therein). One of the main
researchers in this �eld was K.-H. Elster, who already more than twenty years
ago proposed in a joint paper with R. Deumlich [1] one of the pioneering general-
ized conjugation notions, called �-conjugation, based on geometrical properties of
Fenchel conjugation. Between 1977 and 1990 he published several papers devoted
to this notion as well as to other generalized conjugation concepts, and developed
their application to duality theory in nonconvex optimization. The aim of this
article is to survey the main ideas and results presented in those papers.
Let us recall some basic concepts and notation that will be used throughout the

paper. Even though most results are valid in an in�nite-dimensional setting (see,
e.g., [8]), for simplicity we shall only consider �nite-dimensional spaces. The do-
main, the graph, the epigraph and the hypograph of f : Rn ! R[ f�1g are the
sets dom f = fx 2 Rn = f (x) 2 Rg ; graph f = f(x; z) 2 Rn � R = f (x) = zg,
epi f = f(x; z) 2 Rn � R = f (x) � zg and hypo f = f(x; z) 2 Rn � R = f (x) � zg ;
respectively. A vector x� 2 Rn is said to be a subgradient of f at x0 2 dom f if

f (x) � f (x0) + x�T (x� x0) 8 x 2 dom f

(vectors in Rn are to be interpreted as column vectors and the superscript T

denotes transpose). The set @f (x0) of all subgradients of f at x0 is called the
subdi¤erential of f at x0: The superdi¤erential of f at x0 is the set @uf (x0) =
�@ (�f) (x0) ; it consists of all supergradients of f at x0; that is, all vectors x� 2 Rn
such that

f (x) � f (x0) + x�T (x� x0) 8 x 2 dom f:

The Euclidean norm will be denoted by k:k : For a set C � Rn; ri C and cl C will
mean the relative interior and the closure of C; respectively.

2. �-conjugate functions [1, 11, 12, 3, 4]

The main notion of generalized conjugate function due to K.-H. Elster and his
collaborators is that of �-conjugation: It is based on an interpretation of the
convex conjugation operator in terms of polarity with respect to a paraboloid
[18]. Recall that the polar of a point x0 2 Rn with respect to the regular quadric

hypersurface
�
1 xT

�� a0 aT

a C

��
1
x

�
= 0; where C is a symmetric nxn
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matrix, a 2 Rn, a0 2 R, and det

�
a0 aT

a C

�
6= 0; is the hyperplane of equation

�
1 xT0

�� a0 aT

a C

��
1
x

�
= 0:

Let f : G! R be a convex function de�ned on the convex region G � Rn; and
consider the paraboloid in Rn+1 consisting of all points (x1; :::; xn; xn+1) satisfying

x21 + :::+ x
2
n � 2xn+1 = 0: (2.1)

The envelope of the polar hyperplanes of the points of the hypersurface xn+1 =
f (x1; :::; xn) is the hypersurface x�n+1 = f � (x�1; :::; x

�
n) ; that is, the graph of the

Fenchel conjugate f � of f de�ned by f � (x�1; :::; x
�
n) = sup f

Pn
i=1 xix

�
i � f (x1; :::; xn)g

on the set G� of points (x�1; :::; x
�
n) for which this supremum is �nite. More ex-

plicitely, x�n+1 = f � (x�1; :::; x
�
n) is the envelope of the hyperplanes x1x

�
1 + ::: +

xnx
�
n� x�n+1 = xn+1 corresponding to the points (x1; :::; xn; xn+1) of the hypersur-

face xn+1 = f (x1; :::; xn) :
The notion of �-conjugation is based on replacing the hyperparaboloid (2.1)

by an arbitrary regular quadric hypersurface � in Rn+1; de�ned by the equation

�
1 xT xn+1

�
A

0@ 1
x
xn+1

1A = 0; with A =

0@ a0 aT c
a B e
c eT b

1A ; (2.2)

where (x; xn+1) 2 Rn�R; (a0; a; c) 2 R�Rn�R; B is a symmetric n�n matrix,
(e; b) 2 Rn � R; and the matrix A is assumed to be nonsingular: The conjugates
of a set are de�ned as follows:

De�nition 1. Let F � Rn+1 be a nonempty set, � be the regular quadric hyper-
surface in Rn+1 de�ned by (2.2), and h : Rn � R� Rn � R! R be the function

de�ned by h (x; z; x�; z�) =
�
1 xT z

�
A

0@ 1
x�

z�

1A. Then the sets
F� =

�
(x�; z�) = inf

(x;z)2F
h (x; z; x�; z�) = 0

�
and

F� =

(
(x�; z�) = sup

(x;z)2F
h (x; z; x�; z�) = 0

)

3
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are called the lower �-conjugate of F and the upper �-conjugate of F; respectively.

The corresonding de�nitions for functions are given next:

De�nition 2. Let f : Rn ! R [ f�1g be such that

graph f �
�
(x; z) = c+ eTx+ bz 6= 0

	
;

and set

k (x; z; x�) = �h (x; z; x
�; 0)

c+ eTx+ bz
:

Then the extended real valued functions f� and f� de�ned by

f� (x
�) = inf

x2dom f
k (x; f (x) ; x�)

and
f� (x�) = sup

x2dom f
k (x; f (x) ; x�)

are called the lower �-conjugate function of f and the upper �-conjugate function
of f; respectively:

Some fundamental properties of �-conjugate functions are collected in the
following theorem, the proof of which can found in [1].

Theorem 1. [1, 12, 4] For any function f : Rn ! R [ f�1g the following
statements hold:
(i) f� is concave and upper semicontinuous.
(ii) f� is convex and lower semicontinuous.
(iii) If graph f �

�
(x; z) = c+ eTx+ bz > 0

	
then the following inequalities

are satis�ed:

h
�
x; f (x) ; x�; f� (x�)

�
� 0 8 (x; x�) 2 dom f � dom f�;

h (x; f (x) ; x�; f� (x
�)) � 0 8 (x; x�) 2 dom f � dom f�;

if, instead, graph f �
�
(x; z) = c+ eTx+ bz < 0

	
; then the opposite inequalities

are satis�ed.

Second �-conjugate functions are also of capital importance; they are de�ned
as follows:

4
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De�nition 3. Let f : Rn ! R[ f�1g : If b � 0 and the graphs of f and f� are
contained in the open halfspace

�
(x�; z) = c+ eTx� + bz > 0

	
then the function

f�� =
�
f�
��
is said to be the upper �-biconjugate function of f; and the function

f�� de�ned by
f�� (x

�) = inf
c+eT x+bf�(x�)>0

k (x�; f� (x
�) ; x)

is said to be the lower �-biconjugate function of f:
If b < 0 and the graphs of f and f� are contained in the open halfspace�

(x�; z) = c+ eTx� + bz > 0
	
then the function f�� = (f�)� is said to be the

lower �-biconjugate function of f; and the function f�� de�ned by

f�� (x�) = sup
c+eT x+bf�(x�)>0

k
�
x�; f� (x�) ; x

�
is said to be the upper �-biconjugate function of f:

The relations between an arbitrary function and its �-biconjugate functions
are given next:

Theorem 2. [4] If the graph of f : Rn ! R [ f�1g is contained in the open
halfspace

�
(x; z) = c+ eTx+ bz > 0

	
then the following statements hold:

(i) If either b � 0 and graph f� �
�
(x�; z) = c+ eTx� + bz > 0

	
or b < 0 and

graph f� �
�
(x�; z) = c+ eTx� + bz > 0

	
then

f�� (x) � f (x) � f�� (x) 8 x 2 dom f:

(ii) If b � 0 and the graph of f� (of f�) is contained in the open halfspace�
(x�; z) = c+ eTx� + bz > 0

	
and there is a supporting hyperplane z = mTx+ �

of epi f (resp., hypo f) at (x0; f (x0)) such that for

0@ btbxbz
1A = A�1

0@ 1
0
0

1A one has

bz �mT bx� �bt > 0 then f�� (x0) = f (x0) (resp., f�� (x0) = f (x0)):
The assumption in statement (ii) of the preceding theorem about the existence

of a supporting hyperplane to the epigraph (hypograph) of f at (x0; f (x0)) is of
course related to the nonemptiness of the subdi¤erential (resp., the superdi¤eren-
tial) of f at x0; namely, it is well known in convex analysis that the hyperplane
z = mTx + � is a supportimg hyperplane of epi f (hypo f) at (x0; f (x0)) if and
only if m 2 @f (x0) (resp., m 2 �@ (�f) (x0)) and � = f (x0)�mTx0:

5
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An abstract approach to �-conjugation theory is provided in [15, 16], where

a notion of conjugation associated to a polarity between two sets X and Y (that
is, a mapping from 2X into 2Y which transforms unions into intersections) is
introduced. This notion allows for unifying �-conjugation and the generalized
Fenchel conjugation theory introduced by Moreau [20]. Some other results on this
concept of conjugation are provided in [14].

3. Applications of �-conjugation to nonconvex optimization
[2, 12, 4, 5, 6, 7, 8]

The most typical application of generalized conjugation is to duality theory in
optimization. In the case of �-conjugate functions, assuming that the matrix A
of (2.2) satis�es c2+kek2+b2 > 0 and that the functions f : Rn ! R[f�1g and
g : Rn ! R[f�1g are such that graph f� �

�
(x�; z) = c+ eTx� + bz 6= 0

	
and

graph g �
�
(x; z) = c+ eTx+ bz > 0

	
; one considers the pair of dual problems

(P1) Minimize p1 (x) =
c+ eTx+ bf (x)

c+ eTx+ bg (x)
; x 2 dom f \ dom g;

(D1) Maximize d1 (x�) =
c+ eTx� + bg� (x

�)

c+ eTx� + bf� (x�)
; x� 2 dom f� \ dom g�;

in the case b 6= 0; and
(P2) Minimize p2 (x) =

f (x)� g (x)
c+ eTx

; x 2 dom f \ dom g;

(D2) Maximize d2 (x�) =
g� (x

�)� f� (x�)
c+ eTx�

; x 2 dom f� \ dom g�;

in the case b = 0: The following weak duality theorem holds:

Theorem 1. [4] Let the graphs of f; g and f� be contained in the open halfspace�
(x; z) = c+ eTx+ bz > 0

	
and b � 0. Then

inf
x2dom f\dom g

pj (x) � sup
x�2dom f�\dom g�

dj (x
�) (j = 1; 2) :

Corollary 2. [4] Under the assumptions of Theorem 1, if j 2 f1; 2g ; x0 2 dom
f \ dom g and x�0 2 dom f� \ dom g� are such that pj (x0) = dj (x�0) then x0 and
x�0 are optimal solutions of (Pj) and (Dj) ; respectively.

To get strong duality theorems, some suitable convexity assumptions are re-

quired. As in the previous section, we denote

0@ btbxbz
1A = A�1

0@ 1
0
0

1A :
6
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Theorem 3. [2, 4] Assume that f is convex, g is concave and the hypotheses of
Theorem 1 hold. If b > 0 and the conditions
(i) ri dom f \ ri dom g 6= ;;
(ii) bt < 0;
(iii)

bxbt 2 cl (dom f \ dom g) ;

(iv) lim �!0bxbt+�2dom g

g

�bxbt + �
�
>
bzbt ;

(v) infx2dom f\dom g

�
c+ eTx+ bf (x)

	
> 0

are satis�ed then there exists x�0 2 dom f� \ dom g� such that

inf
x2dom f\dom g

p1 (x) = max
x�2dom f�\dom g�

d1 (x
�) = d1 (x

�
0) :

Theorem 4. [2, 4, 7] Assume that f is convex, g is concave and the hypotheses
of Theorem 1 hold. If b > 0 and the conditions
(i) ri dom f \ ri dom g 6= ;;
(ii) bt � 0;
(iii)

bxbt 2 cl (dom f \ dom g) ; if bt < 0;
(iv) lim �!0bxbt+�2dom g

g

�bxbt + �
�
>
bzbt ; if bt < 0;

(v) infx2dom f\dom g p2 (x) > �1
are satis�ed then there exists x�0 2 dom f� \ dom g� such that

inf
x2dom f\dom g

p2 (x) = max
x�2dom f�\dom g�

d2 (x
�) = d2 (x

�
0) :

The following theorem gives optimality conditions for problems (Pj) and (Dj)
(j = 1; 2) in geometrical terms:

Theorem 5. [2, 4] Let the graphs of f; g and f� be contained in the open
halfspace

�
(x; z) = c+ eTx+ bz > 0

	
; b � 0; x0 2 dom f \ dom g; x�0 2 dom

f� \ dom g� and j 2 f1; 2g.
(1) The following statements are equivalent:
(i) x0 and x�0 are optimal solutions of (Pj) and (Dj) ; respectively, and

pj (x0) = dj (x
�
0) : (3.1)

7
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(ii) There exist ��1; �

�
2 2 R with (x�0; ��1) ; (x�0; ��2) 2

�
(x; z) = c+ eTx+ bz > 0

	
such that

z = k (x�0; �
�
1; x)

is a supporting hyperplane of epi f at (x0; f (x0)) and

z = k (x�0; �
�
2; x)

is a supporting hyperplane of hypo g at (x0; g (x0)) :
(2) If the equality (3.1) holds then there exist �1; �2 2 R with (x0; �1) ; (x0; �2) 2�
(x; z) = c+ eTx+ bz > 0

	
such that

z� = k (x0; �1; x
�) (3.2)

is a supporting hyperplane of epi f� at
�
x�0; f

� (x�0)
�
and

z� = k (x0; �2; x
�) (3.3)

is a supporting hyperplane of hypo g� at (x�0; g� (x
�
0)) :

(3) If f is convex, g is concave,
�
x = btx = bx	 6= ;; and there exist �1; �2 2 R with

(x0; �1) ; (x0; �2) 2
�
(x; z) = c+ eTx+ bz > 0

	
such that (3.2) is a supporting

hyperplane of epi f� at
�
x�0; f

� (x�0)
�
and (3.3) is a supporting hyperplane of

hypo g� at (x�0; g� (x
�
0)) then x

�
0 is an optimal solution of (Dj) and there exists

a sequence fx�g in dom f \ dom g converging to x0 such that lim�!1 pj (x�) =
dj (x

�
0) :

By the equivalence between supporting hyperplanes to epigraphs (hypographs)
and subdi¤erentials (resp., superdi¤erentials) that has been recalled at the end of
the preceding section, one can give analytic versions of the preceding theorem [4,
Thm. 3.7 and Cor. 3.7].
The special case when c = 0; e = 0 and b = 1; which corresponds to ordinary

fractional programming, was anlayzed in more detail in [7].

Example 1. [5] Let f : R! R and g :
�
�
p
5;
p
5
�
! R be given by f (x) =

1

2
(x+ 3)2 + 2 and g (x) = �1

2
x2 +

5

2
; respectively, and consider the optimization

problem

Minimize p1 (x) =
f (x)

g (x)
; x 2

�
�
p
5;
p
5
�
;

8
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which has x0 = �1 as its unique optimal solution, with p1 (x0) = 2: This problem
has the format (P1) ; to introduce a dual problem with format (D1) ; we choose

A =

0@ ��2 0 0
0 1 0
0 0 1

1A ; � > 0:

Then the �-conjugate functions f� : R! R and g� :
�
� �

2

p
5
;
�2p
5

�
! R are gven

by

f� (x�) =
1

4

�p
�4 + 6�2x� + 13x�2 + �2 + 3x�

�
and

g� (x
�) =

1

5

�p
�4 � 5x�2 + �2

�
;

therefore, the dual problem (D1) reduces to

Maximize

d1 (x
�) =

1
5

�p
�4 � 5x�2 + �2

�
1
4

�p
�4 + 6�2x� + 13x�2 + �2 + 3x�

� ; x� 2
�
� �

2

p
5
;
�2p
5

�
;

which has x�0 = �
�2

3
as its unique optimal solution, with d1 (x�0) = 2 = p1 (x0) :

The hyperplanes z = 2x+6 and z = x+3 support epi f at (x0; f (x0)) and hypo g at
(x0; g (x0)) ; respectively. Similarly, the hyperplanes 4z� = x�+�2 and 2z� = x�+�2

support epi f� at
�
x�0; f

� (x�0)
�
and hypo g� at (x�0; g� (x

�
0)) ;respectively.

Example 2. [5] Let a 2 Rn and b; c > 0, de�ne f :
�
x = aTx+ b > 0

	
! R

and g :
�
x = kxk <

p
2c
	
! R by f (x) = aTx + b and g (x) = �1

2
kxk2 + c;

respectively, and consider the optimization problem

Minimize p1 (x) =
f (x)

g (x)
; x 2

n
x = aTx+ b > 0; kxk <

p
2c
o
;

which has

x0 =

8<: � a
kak2

�
b�

q
b2 � 2c kak2

�
; if a 6= 0

0; if a = 0

9
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as its unique optimal solution: As in the preceding example, this problem has the
format (P1) ; we choose again the matrix

A =

0@ ��2 0 0
0 In 0
0 0 1

1A ; � > 0; In the n� n identity matrix.

Then the�-conjugate functions f� :
�
��

2

b

�
! R and g� :

�
y 2 Rn = kyk �

p
2c
	
! R

are gven by

f� (x�) =
�2

b

and

g� (x
�) =

1

2c

�
�2 +

q
�4 � 2c kx�k2

�
;

therefore, the dual problem (D1) reduces to

Maximize

d1 (x
�) =

1
2c

�
�2 +

q
�4 � 2c kx�k2

�
�2

b

; x� 2
�
��

2

b

�
;

which has x�0 = �
�2

b
as its unique feasible (hence, optimal) solution, with d1 (x�0) =

1

2c

�
b+

q
b2 � 2c kak2

�
: Therefore, fromTheorem 4 it follows that infaT x+b>0;kxk<p2c p1 (x) =

1

2c

�
b+

q
b2 � 2c kak2

�
:

An analytic characterization of dual pairs of optimal solutions in the case when
strong duality holds is given in the next theorem:

Theorem 6. [6] If b � 0 and graph f [ graph g �
�
(x; z) = c+ eTx+ bz > 0

	
then the following statements hold:
(i) The following assertions are equivalent:

(1) x0 2 dom f \ dom g and x�0 2 dom f� \ dom g� are solutions of the
optimization problems (Pi) and (Di) ; respectively and pi (x0) = di (x�0) ; I = 1; 2:

10
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(2) There exist pairs (x�0; �

�
1) ; (x

�
0; �

�
2) 2

�
(x; z) = c+ eTx+ bz > 0

	
such

that
(a) h (x�0; �

�
1; x0; f (x0)) = 0; h (x

�
0; �

�
2; x0; g (x0)) = 0:

(b) �a+Bx
�
0 + e�

�
1

c+ eTx�0 + b�
�
1

2 @f (x0) ; �
a+Bx�0 + e�

�
2

c+ eTx�0 + b�
�
2

2 @ug (x0) :
(ii) If statement (i)(1) holds, then there exist �j 2 R; j = 1; 2; such that

c+ eTx0 + b�j > 0 and
(3) h

�
x�0; f

� (x�0) ; x0; �1
�
= 0; h (x�0; g� (x

�
0) ; x0; �2) = 0;

(4) �a+Bx0 + e�1
c+ eTx0 + b�1

2 @f� (x�0) ; �
a+Bx0 + e�2
c+ eTx0 + b�2

2 @ug� (x�0) :

Another treatment of duality in fractional optimization, based on the notion
of conjugation associated to a polarity introduced in [16], is provided in [17].
For the nonconvex duality theory based on �-conjugation presented in this

section a suitable generalized concept of Lagrangian was introduced in [9], encom-
passing the classical one of convex duality as well as a Lagrangian considered by
Golstein [19] for fractional programming problems. A perturbational approach fol-
lowing a similar pattern as in convex optimization and a related notion of stability
are provided in [10].
Some more details and further developments on nonconvex duality using �-

conjugate functions can be found in [13].
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