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Abstract We obtain a simple integration formula for Fenchel subdéfdials on Eu-
clidean spaces and analyze some of its consequences. Etohadefined on locally
convex spaces, we present a similar result in terngssaafbdifferentials.
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1 Introduction

The integration of Fenchel subdifferentials, that is, thebem of recovering a con-
vex function from its associated Fenchel subdifferentiapping, is a fundamen-
tal problem in Convex Analysis. Its classical solution isyided by the so called
Rockafellar integration formula, which is implicit in theqof of Theorem 1 of [11].
An alternative integration formula was given by A. Veronalavi.E. Verona [14,
Lemma 2.4]. In [1, Proposition 27], M. Bachir, A. Daniilidéd J.-P. Penot proved
that Rockafellar integration formula applied to a noncorfuaction f yields the sec-
ond Fenchel conjugatE™, provided thatf is lower semicontinuous (I.s.c., in short)
and 1-coercive. This result was extended to the larger ofspi-pointed functions
by J. Benoist and A. Daniilidis [2, Theorem 3.5], who alsovmo its validity for
arbitrary l.s.c. one variable functions [2, Corollary 3.Zater on these authors re-
fined Rockafellar formula for the same class of functionspbgving that one can
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restrict the supremum in formula (7) below to poirtsuch that(x;, f(x)) are ex-
posed points in the epigraph 6f even in the case whehis defined on an infinite
dimensional Banach space with the Radon—Nikodym prop8rfjlieorem 3.7]. An-
other integration result for epi-pointed nonconvex fumes on Banach spaces, in
terms ofe-subdifferentials, has been recently obtained by R. Coi¥e&arcia and
A. Hantoute [5, Theorem 13]. Finally, a variant of this resuhlid for nonnecessarily
epi-pointed functions on general normed spaces, is dueAo Mpez and M. \Volle
[8, Theorem 4].

In this paper we obtain a very simple integration result fmmaex functions on
R", in terms of Fenchel subdifferentials, by means of a quéenentary yet powerful
technique devised by P. Kocourek [7, Proof of Theorem 1], whed it to provide a
simple proof of Corollary 2 below, employed also in [6] to cheterize Lipschitz DC
functions in terms o&-subdifferentials. From our new result, Rockafellar imggmn
formula follows as an immediate corollary, but the two fotesuare significantly
different. Our formula can be expressed by means of a supretike in the case of
Rockafellar formula, but also as an ordinary limit, and do&sequire the knowledge
of the whole subdifferential mapping but just of an arbigrsingle valued selection of
this mapping. We present a detailed analysis of the new flaramd draw several of
its consequences. For functions defined on general locatlyex spaces, we present
an alternative integration formula involvirsggsubdifferentials.

All the convex analytic notions, notations and results wi wge are fairly stan-
dard. We refer to the classical book [12] for finite dimensicBonvex Analysis, and
to [15] for an excellent treatment of its extension to thdisgtof locally convex
spaces.

The rest of the paper consists of three sections. In Sectisa gresent and an-
alyze the new integration formula for Fenchel subdiffeissatof |.s.c. convex func-
tions defined ofR", and discuss some of its consequences. Using the new ititggra
formula, in Section 3 we obtain a characterizatiog«ubgradients in terms of sub-
gradients, which is considerably simpler than that of [9editem 1]. Section 4 deals
with the general locally convex case, in which the difficdaused by the absence of
a suitable result on the nonemptiness of the Fenchel sebeiiffial is overcome by
consideringe-subdifferentials.

2 Integration of Fenchel Subdifferentials of Functions Defied onRR"

In this section we consider |.s.c. convex functions definedbd. The main result,
which is presented next, is a new integration formula fordreh subdifferentials.

Theorem 1 Let f: R" — RU{+} be a |.s.c. convex functiong x ri domf, and
s:ridomf — R" be a selection of the subdifferential mappihfy For x € cl domf,
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m=23,... and i=0,1,...,m, denote x; := Xo + - (X— Xo). Then

f(x) = f(xo) + M‘m% <X— X0, E:s(xm,i)>

m-1
= f(x0)+sup1 <x—xo, %S(Xm,i)> Vx € cl domf. 1)
m M i=
Proof We have
1 .

f(Xmit1) = f(Xmi) > E]<X—XO75(Xm,i)> fori=01,....m-1 (2)

Adding up these inequalities, we get

1 m-1
f(0 - £00) = = (x=%0, 3 sOmi) ). ®3)
i=l

and hence
1 m-1
f(x)—f > lim = ( x— i) ).
(x) (Xo0) > m'Lnoo m X—Xo, 2 S(Xm;i)
On the other hand, we also have
1 .
f(Xmi-1) — f(Xmi) > —ﬁ(x—xo,s(xm’i» fori=1,...,m-1, 4)

and adding up these inequalities we get

m-1
f(x0) — f(Xmm-1) > —% <X—X07 i; S(Xm,i)>§ (5)

therefore, since lig ., f (Xmm-1) > f(X) due to the lower semicontinuity df

-1
<<X—XO, ZO S(xm,i)> - <X—xO,S(xm,o)>>
1 et
:—J:%E<X—X0a i;S(Xm.i)>- (6)

From (3) and (6), equality (1) immediately follows. O

The classical Rockafellar integration formula is an imnageliconsequence of
Theorem 1:
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Corollary 1 [11] Let f and % be as in Theorert. Then, for every x cl domf one
has

m-1
f(x)=f(x)+  sup {20<>Q+1—>Q7X?‘>+<X—Xm,XF}1>}- )
(xi.x'i*)egraph?f

(i=1,....m)

yeeny

Proof The inequality =" in (7) easily follows from the subgradient inequality. To
prove the opposite inequality, use Theorem 1 after setting: Xn1; andx’ :=
S(Xm+1i) in (7), which yields

m-1

20 (X1 = Xi,%) + (X = Xm, X) = ﬁ <X— X0, is(xm+1,i)> :

The following result is an easy consequence of Theorem 1 too.

Corollary 2 [7, Corollary 1]Let f,g: R" — RU{+} be I.s.c. convex functions
with cl Domadf = ¢l Domdg=: C and

af(x)Ndg(x) #0  V¥xeriC. (8)
Then f= g+ const.

Proof We have ri donf C Domdf C domf (see [12, Theorem 23.4]), from which
one can easily deduce that cl dédm= C, and hence ri dorh = riC. In the same
way, we have cl dog= C; by [12, Theorem 6.3], from this equality it follows that
ri domg = riC. Then, forxg € riC, applying Theorem 1 witls: riC = R" such that
s(x) € df(x)Nag(x), we get

f(X)Zf(Xo)+lT|jan%]<X—Xo,TgS(Xm,i)> V xeC,
and
1 m-1
a(x) :g(XO)Jrnlmianﬁ <X—Xo, i; S(Xm,i)> VxeC,
which shows thaf = g+ f(xg) — 9(Xo). O

It is worth mentioning that Corollary 2 also follows from tle&assical integra-
tion result ([11, Theorem 3], [12, Theorem 24.9]) that sayst 0 f = dg implies
f = g+ const Indeed, assuming, without loss of generality, tBdtas a nonempty
interior, condition (8) implies that the gradientsfondg coincide at every common
differentiability point. Since the set of such points is defnC [12, Theorem 25.5]
and, on the other hand, the subdifferential at a point isrdeted by the gradients
at neighboring differentiability points, it turns out thaindition (8) actually implies
the equalityd f = dg.

Our next result states the uniqueness, up to an additivearansef the integral of
a (nonnecessarily maximal) cyclically monotone mappindeasrthe assumption that
its domain has a convex relative interior.
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Corollary 3 Let A: R" = R" be cyclically monotone. Ifi DomA is convex, then
there exists a |.s.c. convex function ¢l DomA — R U {+} such that Ax) C
df(x) for every xe R", uniquely determined up to an additive constant.

Proof By [12, Theorem 24.8], there exists a I.s.c. convex funcfiarR" — RU
{4} such thaA(x) C df(x) for everyx € R". We can assume, without loss of gen-
erality, that cl Dond f = cl DomA. Letg be another function with the same properties
asf, and take a single valued selecti®af A. Sinces(x) € A(x) C d f(x) N dg(x) for
everyx € ri DomA, the conclusion follows from Corollary 2. O

From Corollary 3, the uniqueness part of the classical natiign result for max-
imal cyclically monotone mappings easily follows:

Corollary 4 [12, Theorem 24.9Let A: R" = R" be maximal cyclically monotone.
Then there exists a |.s.c. convex functioncf DomA — R U {+} such that A=
df, uniquely determined up to an additive constant.

Proof Combiningthe existence part of [12, Theorem 24.9]with @@rollary 31.5.2],
we deduce thah is maximal monotone. Hence, by a classical theorem of Mib®] [
(see also [13, Theorem 12.41]), the set Dbiw nearly convex, that is, it contains the
relative interior of its convex hull, which implies that ¢hielative interior coincides
with that of DomA. Therefore ri Do is convex, and thus Corollary 3 appliesO

Our next result is another consequence of Corollary 3.

Corollary 5 Let A: R" = R" be cyclically monotone. BPomA is convex and rela-
tively open, then all the maximal cyclically monotone esimms of A have the same
restriction toDomaA.

Proof Let M1 andM, be two maximal cyclically monotone extensionsfofBy [12,
Theorem 24.9], there exist two |.s.c. convex functibpd, : R" — RU{+o} such
thatd fi = M; (1= 1,2). By Corollary 3, the restrictions of; and f; to cl DomA
coincide up to an additive constant. Hendé; (x) = d f2(X) for everyx € DomaA,
which shows thalM; andM; coincide on DonA\. O

Using the fact that the subdifferential of a convex functfcet a pointin ri donf
is the sum of a compact convex set with the orthogonal sulesieathe affine hull
of ri domf, and its support function is the directional derivativelsttpoint, as a
function of the direction, we obtain the following coroNasf Theorem 1.

Corollary 6 Let f and x be as in Theorer. Then
f(x) = f(xo) + I|m — Zof Xmis X — X0)
= f(Xo )+sup— Z}f Xmi, X —Xo)

= f(xo —I|m—Z)f Xmi, —(X—Xo))

m—o M

= f(xo) — mf—Z}f Xmi,—(X—Xo)) Vxé€ cldomf. 9)
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Proof Apply Theorem 1, first withs(xmi) such that{x—xo, S(Xm;i)) = f'(Xmji, X—Xo),
and then withs(xmi) such thatx— Xo,S(Xmi)) = — ' (Xmi, — (X — Xo))- O

According to the next result, the supremum and the infimun®)ra¢e attained
only in exceptional cases.

Proposition 1 Let f, Xxg and s be as in Theorefn If the supremum or the infimum in
(1) or (9) are attained, then the restriction of f to the segmentx] is polyhedral.

Proof We will just consider the case of (1), since the formulas ingi@ particular
cases. Assume that the supremum is attained &t view of (2), we have

1 .
f(Xmi+1) — F(Xmi) = ﬁ<x—xo,s(xm,i)> fori=0,1,.... m—1.
Hence, fori = 0,1,...,m—1 andt € [0, 1], we obtain

Xmji +t(Xmi+1—Xm,i))

f(
f(Xmi) +t(f(Xmit1) — F(Xmi))
(
(

f(Xmji) +t(Xmi+1 — Xm;i, S(Xm,i))

I/\ I/\

 (mi) + rtn<x X0,5(m. )}
me|)+t<Xm|+1 Xm,i;S(Xm.i»;

thereforef (Xm, +t(Xmji+1 — Xm;i)) = f(Xmi) +t{(Xmj+1 — Xm;i,S(Xmi)), which shows
that the restriction of to the segmenm, Xmi+1] is affine. O

Corollary 7 Let f, xg and s be as in Theorerh If f is strictly convex then the
supremum and the infimum (i) and (9) are not attained.

The sequencest (x—xXo, St s(Xxmi)) }, {& St f/ (Xmi, X—Xo0) }, and{ & 3™
f/(xmi, —(X—Xo))} need not be monotone. Con5|der, for instance, the case when
n=1, f(x) = |x|, xo = —1 andsis the selection of f such thas(0) = 1; in this case,
for x =1 a straightforward calculation yields

1 m-1
E<X_X0’go xm.> Z}f Xm,j, X — X0)

However, it is easy to extract monotone subsequences, dsllbwing proposition
shows.

(1)+1

Proposition 2 Let f, xg and s be as in Theorefn If {m} is an increasing sequence
of positive integer numbers with the property that mis a multiple of mfor each k,
then the subsequencég;ik (X=X, 31 -0 s(xm( int and{ z ' (Xmei, X—Xo) }

are nondecreasing, and the subsequeﬁﬁ‘mez,:O '(Xmei, —(X—Xo))} is nonin-
creasing. These monotonicity properties are strict if ftiscHy convex.
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Proof We prove the result only for the first subsequence. Setting % we get

1 m1 1

m <X—XO7 i; S(er.i)> = iZO (X —Xo,S(Xm, i)
1
Mk

mg— 1 (i+1)z-1
DI o
& =1z

IN

1 Mcli+D)z-
= Z {x—X0,S(xmc,.j))
=l ]=I
1 Mep1—1
i 2 XS]
=

mg1—1

K 3 S )

The preceding inequality follows from the monotonicity b&tsubdifferential map-
ping; indeed, fofj =iz +1,...,(i+ 1)z — 1, we have

<X_ X0, S(Xm,oi) - S(Xm,<+1,j )> = <X_ Xo, S(Xﬁ'k+1.i2k) - S(XW+1,j )>

Mk+1

j _-:_Zk <Xn1(+l7j - an(-%—l’izk’ S(Xrn(-%—bizk) - S(Xm«-LJ )>
<0,

which implies

1 (i+1)z—1
(X—X0,S(Xmi)) < 2 <X_X07

=1z«

S(XW+1,j)> :

If f is strictly convex, all these inequalities are strict, sirteen the subdifferential
mapping is strictly monotone. O

3 A Characterization of e-Subgradients

Using Rockafellar integration formula, an expression ferd-subdifferential opera-
tor of a lower semicontinuous proper convex function in tewhits subdifferential
was given in [9, Theorem 1]. In this section we obtain a simplaaracterization of
e-subgradients thanks to our new integration formula (1).

Theorem 2 Let f and s be as in Theorefiy x € domf, € > 0 and X € R". Then
X* € d¢ f(x) if and only if

X— X0 x*—Em
9 m.

1
s(Xm,i)>>—s vV Xo € ridomf, Ym=1,2,.... (10)
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Proof If x* € d¢f(x) andxgp € ri domf, then f(Xg) > f(X) + (X0 — X,X*) — € and
f(x) > f(x) + %<x—xo,zi";‘ols(xm’i)>. By adding up these inequalities, simplify-
ing and rearranging, we easily obtain (10). Converselyrassthatx* satisfies (10).
Let xg € ri domf anda > f(xg) — f(x). By (1), there existsn such that%(x—
X0, ot s(Xmi)) > —a. Hence, by (10), we have> (X —Xo, = 3 ™ L s(Xmi) — X*) >
—a — (X—Xg,X"). Sincea is any number larger thah(xp) — f(x), it follows that
£>—(f(Xo) — (X)) — (Xx—xXo,X*), i.e., f(Xo) > f(X)+ (X0 —X,X*) — €. Sincef, being
convex, is upper semicontinuous along lines [12, Theorer?]18nd the relative in-
terior of any segment joiningy and a point in donf is contained in ri donfi, the pre-
ceding inequality also holds for an arbitragyc domf. This proves that* € J; f (x).
O

By means of the same argument used in the proof of Corollainp6) Theorem
2 we obtain the following alternative characterizationcesubgradients in terms of
directional derivatives.

Corollary 8 Let f, x, € > 0and X be as in Theorerf. Then the following statements
are equivalent:

(i) x* € 0:f(x).
(i) One has

m-1
<x—x0,x*—1 Z}f’(xm,i,x—xo)>2—e VX eridomf, vm=1,2....
m £
(iii) One has

m-1
<x—x0,x*+% Zj f’(xm,i,—(X—Xo))> >—& Vxgeridomf, ym=12,....
i=

Let us recall that a set is said to be nearly convex if it corg#tie relative interior
of its convex hull.

Corollary 9 Let f:R" — RU{+} be al.s.c. proper convex function. Thefiis
maximal in the set of mappings. R" = R" that have a nearly convex domain and a
single valued selection s @omA satisfying the following property:

1 m-1
— Q— : >
X— Xg, X = i; S(Xmi) ) >0

¥V x € DomA, VX € ri DomA, vX* € A(x), Ym=1,2,.... (11)

Proof Sincedf is maximal monotone, its domain is nearly convex [10]. Maez0
property (11) is an easy consequence of the cyclic monatgrt d f. Maximality
immediately follows by applying Theorem 2 with= 0. O
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4 Integration of e-Subdifferentials of Functions Defined on Locally Convex
Spaces

In this section we consider the more general setting of lpcainvex spaces. Due to
the lack of a suitable result on the nonemptiness of the ffebelntial in this context,
our results will be expressed in termssgubdifferentials.

Theorem 3 Let X be a real locally convex space with dudl Znd duality pairing
(,) : XxX*—R,let f: X — RU{+w} beal.s.c. convex functiong X Domaf,

and s: domf x]0,4-co[— X* be such that &, €) € J; f(x) for every xc domf and
£ > 0. Given xc domf form=2,3,... andi=0,1,...,m, denote x; :=Xo+ = (X—

xo0). If {&em} is a sequence of strictly positive numbers such thgt m 0, then

1 ot
f(x) = f(xo) + nI]ILnOO - <x— X0, i; S(Xmj, em)> . (12)
Hence, for xc domf and X € df(xp), one has

f(x) = f(xo) +3Up{% <<X_XO,X* +ES(Xm,i,£m)>> —(m-— 1)5m} . (13)

Proof The proof follows the same pattern as the proof of Theoremith small
changes. We have

(X—X0,S(Xmji,&m)) —&m for i=1....m—1

3l

fOmiv1) = Fxmi) >

and, takingx* € df(xp),

f(Xm1) — f(X0) > = (X—Xo,X).

1
m
Adding up these inequalities, we get

m-1

f(x) - f(x0) = %‘ <X—xO,x* + i; S(xm.i,em)> —(m—1)&m,

and hence
_ 1 m-1
f(x)— f(xp) > numw = <x— X0, i; S(Xmi, sm)> ) (14)
On the other hand, we also have
1 .
f(Xmi—1) — f(Xm;i) > —E]<x—xo,s(xm,i,em)> —&m fori=1...m-1

and adding up these inequalities we get

m-1

f(x0) — f(Xmm-1) > —% <X— Xo, i; S(Xmi 5m)> —(M—1)ém,
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therefore, since ling .., f (Xmm-1) > f(X) due to the lower semicontinuity df

f(X0) — f(x) > — lim %<X—X0al'nz‘ls(xm.i,5m)>- (15)

From (14) and (15), equality (12) imediately follows. To pedq13), we observe that
the inequality =" is immediate, and obtain the opposite inequality using) b2
gether with the equality

) 1 m-1
dim — <X—XO, i; S(xm,i,em)>
(1 m-1
= Mw <E1 <x—x0,x* + i; s(xm,i,em)> —(m— 1)£m> .

O
From Theorem 3, one can easily derive the following analegii€orollaries 1

and 2 by mimicking their proofs.

Corollary 10 Let X, f and ¥ be as in Theorer. Then, for every x domf one has

m-1
f(x) = f(x0)+ sup Z)<>q+l—>q,xf‘>+<x—xm,x§1>—(m+1)s . (16)
(%i,%")€graphd fe
(i=1,...m)
>0

A formula very similar to (16) for the |.s.c. convex hull of epi-pointed function
defined on a Banach space has been obtained by R. Correacfa@ad A. Hantoute
[5, Theorem 13].

Corollary 11 (see [4, Corollary 2.5]).et X be a real locally convex space angdy f
X — RU{+o} bel.s.c. convex functions with a common dontimf = domg =:
C, and such thabomd f NnDomdg # 0 and

Oef(X)Ndeg(x) £0 VxeC, Ve > 0.

Then f= g+ const.

Acknowledgements | am very grateful to two anonymous referees for their helpfmarks; | feel par-
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