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1 Introduction

The integration of Fenchel subdifferentials, that is, the problem of recovering a con-
vex function from its associated Fenchel subdifferential mapping, is a fundamen-
tal problem in Convex Analysis. Its classical solution is provided by the so called
Rockafellar integration formula, which is implicit in the proof of Theorem 1 of [11].
An alternative integration formula was given by A. Verona and M.E. Verona [14,
Lemma 2.4]. In [1, Proposition 27], M. Bachir, A. Daniilidisand J.-P. Penot proved
that Rockafellar integration formula applied to a nonconvex function f yields the sec-
ond Fenchel conjugatef ∗∗, provided thatf is lower semicontinuous (l.s.c., in short)
and 1-coercive. This result was extended to the larger classof epi-pointed functions
by J. Benoist and A. Daniilidis [2, Theorem 3.5], who also proved its validity for
arbitrary l.s.c. one variable functions [2, Corollary 3.7]. Later on these authors re-
fined Rockafellar formula for the same class of functions, byproving that one can
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restrict the supremum in formula (7) below to pointsxi such that(xi , f (xi)) are ex-
posed points in the epigraph off , even in the case whenf is defined on an infinite
dimensional Banach space with the Radon–Nikodym property [3, Theorem 3.7]. An-
other integration result for epi-pointed nonconvex functions on Banach spaces, in
terms ofε-subdifferentials, has been recently obtained by R. Correa, Y. Garcı́a and
A. Hantoute [5, Theorem 13]. Finally, a variant of this result, valid for nonnecessarily
epi-pointed functions on general normed spaces, is due to M.A. López and M. Volle
[8, Theorem 4].

In this paper we obtain a very simple integration result for convex functions on
R

n, in terms of Fenchel subdifferentials, by means of a quite elementary yet powerful
technique devised by P. Kocourek [7, Proof of Theorem 1], whoused it to provide a
simple proof of Corollary 2 below, employed also in [6] to characterize Lipschitz DC
functions in terms ofε-subdifferentials. From our new result, Rockafellar integration
formula follows as an immediate corollary, but the two formulas are significantly
different. Our formula can be expressed by means of a supremum, like in the case of
Rockafellar formula, but also as an ordinary limit, and doesnot require the knowledge
of the whole subdifferential mapping but just of an arbitrary single valued selection of
this mapping. We present a detailed analysis of the new formula and draw several of
its consequences. For functions defined on general locally convex spaces, we present
an alternative integration formula involvingε-subdifferentials.

All the convex analytic notions, notations and results we will use are fairly stan-
dard. We refer to the classical book [12] for finite dimensional Convex Analysis, and
to [15] for an excellent treatment of its extension to the setting of locally convex
spaces.

The rest of the paper consists of three sections. In Section 2we present and an-
alyze the new integration formula for Fenchel subdifferentials of l.s.c. convex func-
tions defined onRn, and discuss some of its consequences. Using the new integration
formula, in Section 3 we obtain a characterization ofε-subgradients in terms of sub-
gradients, which is considerably simpler than that of [9, Theorem 1]. Section 4 deals
with the general locally convex case, in which the difficultycaused by the absence of
a suitable result on the nonemptiness of the Fenchel subdifferential is overcome by
consideringε-subdifferentials.

2 Integration of Fenchel Subdifferentials of Functions Defined onRn

In this section we consider l.s.c. convex functions defined on R
n. The main result,

which is presented next, is a new integration formula for Fenchel subdifferentials.

Theorem 1 Let f : Rn −→ R∪{+∞} be a l.s.c. convex function, x0 ∈ ri dom f , and
s: ri dom f −→R

n be a selection of the subdifferential mapping∂ f . For x∈ cl domf ,
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m= 2,3, . . . and i= 0,1, . . . ,m, denote xm,i := x0+
i
m(x− x0). Then

f (x) = f (x0)+ lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

= f (x0)+ sup
m

1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

∀x∈ cl domf . (1)

Proof We have

f (xm,i+1)− f (xm,i)≥
1
m
〈x− x0,s(xm,i)〉 for i = 0,1, . . . ,m−1. (2)

Adding up these inequalities, we get

f (x)− f (x0)≥
1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

, (3)

and hence

f (x)− f (x0)≥ lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

.

On the other hand, we also have

f (xm,i−1)− f (xm,i)≥−
1
m
〈x− x0,s(xm,i)〉 for i = 1, . . . ,m−1, (4)

and adding up these inequalities we get

f (x0)− f (xm,m−1)≥−
1
m

〈

x− x0,

m−1

∑
i=1

s(xm,i)

〉

; (5)

therefore, since limm→∞ f (xm,m−1)≥ f (x) due to the lower semicontinuity off ,

f (x0)− f (x) ≥ − lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=1

s(xm,i)

〉

= − lim
m→∞

1
m

(〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

−〈x− x0,s(xm,0)〉

)

= − lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

. (6)

From (3) and (6), equality (1) immediately follows. ⊓⊔

The classical Rockafellar integration formula is an immediate consequence of
Theorem 1:
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Corollary 1 [11] Let f and x0 be as in Theorem1. Then, for every x∈ cl domf one
has

f (x) = f (x0)+ sup
(xi ,x

∗
i )∈graph∂ f

(i=1,...,m)

{

m−1

∑
i=0

〈xi+1− xi,x
∗
i 〉+ 〈x− xm,x

∗
m〉

}

. (7)

Proof The inequality “≥” in (7) easily follows from the subgradient inequality. To
prove the opposite inequality, use Theorem 1 after settingxi := xm+1,i and x∗i :=
s(xm+1,i) in (7), which yields

m−1

∑
i=0

〈xi+1− xi,x
∗
i 〉+ 〈x− xm,x

∗
m〉=

1
m+1

〈

x− x0,

m

∑
i=0

s(xm+1,i)

〉

.

⊓⊔

The following result is an easy consequence of Theorem 1 too.

Corollary 2 [7, Corollary 1] Let f,g : Rn −→ R∪{+∞} be l.s.c. convex functions
with cl Dom∂ f = cl Dom∂g=: C and

∂ f (x)∩∂g(x) 6= /0 ∀x∈ riC. (8)

Then f= g+ const.

Proof We have ri domf ⊆ Dom∂ f ⊆ domf (see [12, Theorem 23.4]), from which
one can easily deduce that cl domf = C, and hence ri domf = riC. In the same
way, we have cl domg= C; by [12, Theorem 6.3], from this equality it follows that
ri domg= riC. Then, forx0 ∈ riC, applying Theorem 1 withs : riC⇉ R

n such that
s(x) ∈ ∂ f (x)∩∂g(x), we get

f (x) = f (x0)+ lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

∀ x∈C,

and

g(x) = g(x0)+ lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

∀ x∈C,

which shows thatf = g+ f (x0)−g(x0). ⊓⊔

It is worth mentioning that Corollary 2 also follows from theclassical integra-
tion result ([11, Theorem 3], [12, Theorem 24.9]) that says that ∂ f = ∂g implies
f = g+ const. Indeed, assuming, without loss of generality, thatC has a nonempty
interior, condition (8) implies that the gradients off andg coincide at every common
differentiability point. Since the set of such points is dense inC [12, Theorem 25.5]
and, on the other hand, the subdifferential at a point is determined by the gradients
at neighboring differentiability points, it turns out thatcondition (8) actually implies
the equality∂ f = ∂g.

Our next result states the uniqueness, up to an additive constant, of the integral of
a (nonnecessarily maximal) cyclically monotone mapping under the assumption that
its domain has a convex relative interior.
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Corollary 3 Let A : Rn
⇉ R

n be cyclically monotone. Ifri DomA is convex, then
there exists a l.s.c. convex function f: cl DomA −→ R∪ {+∞} such that A(x) ⊆
∂ f (x) for every x∈R

n, uniquely determined up to an additive constant.

Proof By [12, Theorem 24.8], there exists a l.s.c. convex functionf : Rn −→ R∪
{+∞} such thatA(x)⊆ ∂ f (x) for everyx∈R

n. We can assume, without loss of gen-
erality, that cl Dom∂ f = cl DomA. Letgbe another function with the same properties
as f , and take a single valued selectionsof A. Sinces(x) ∈ A(x)⊆ ∂ f (x)∩∂g(x) for
everyx∈ ri DomA, the conclusion follows from Corollary 2. ⊓⊔

From Corollary 3, the uniqueness part of the classical integration result for max-
imal cyclically monotone mappings easily follows:

Corollary 4 [12, Theorem 24.9]Let A: Rn
⇉ R

n be maximal cyclically monotone.
Then there exists a l.s.c. convex function f: cl DomA−→ R∪{+∞} such that A=
∂ f , uniquely determined up to an additive constant.

Proof Combining the existence part of [12, Theorem 24.9] with [12,Corollary 31.5.2],
we deduce thatA is maximal monotone. Hence, by a classical theorem of Minty [10]
(see also [13, Theorem 12.41]), the set DomA is nearly convex, that is, it contains the
relative interior of its convex hull, which implies that this relative interior coincides
with that of DomA. Therefore ri DomA is convex, and thus Corollary 3 applies.⊓⊔

Our next result is another consequence of Corollary 3.

Corollary 5 Let A: Rn
⇉ R

n be cyclically monotone. IfDomA is convex and rela-
tively open, then all the maximal cyclically monotone extensions of A have the same
restriction toDomA.

Proof Let M1 andM2 be two maximal cyclically monotone extensions ofA. By [12,
Theorem 24.9], there exist two l.s.c. convex functionsf1, f2 : Rn −→R∪{+∞} such
that ∂ fi = Mi (1 = 1,2). By Corollary 3, the restrictions off1 and f2 to cl DomA
coincide up to an additive constant. Hence,∂ f1(x) = ∂ f2(x) for everyx ∈ DomA,
which shows thatM1 andM2 coincide on DomA. ⊓⊔

Using the fact that the subdifferential of a convex functionf at a point in ri domf
is the sum of a compact convex set with the orthogonal subspace to the affine hull
of ri dom f , and its support function is the directional derivative at that point, as a
function of the direction, we obtain the following corollary of Theorem 1.

Corollary 6 Let f and x0 be as in Theorem1. Then

f (x) = f (x0)+ lim
m→∞

1
m

m−1

∑
i=0

f ′(xm,i ,x− x0)

= f (x0)+ sup
m

1
m

m−1

∑
i=0

f ′(xm,i ,x− x0)

= f (x0)− lim
m→∞

1
m

m−1

∑
i=0

f ′(xm,i ,−(x− x0))

= f (x0)− inf
m

1
m

m−1

∑
i=0

f ′(xm,i ,−(x− x0)) ∀ x∈ cl domf . (9)
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Proof Apply Theorem 1, first withs(xm,i) such that〈x−x0,s(xm,i)〉= f ′(xm,i ,x−x0),
and then withs(xm,i) such that〈x− x0,s(xm,i)〉=− f ′(xm,i ,−(x− x0)). ⊓⊔

According to the next result, the supremum and the infimum in (9) are attained
only in exceptional cases.

Proposition 1 Let f, x0 and s be as in Theorem1. If the supremum or the infimum in
(1) or (9) are attained, then the restriction of f to the segment[x0,x] is polyhedral.

Proof We will just consider the case of (1), since the formulas in (9) are particular
cases. Assume that the supremum is attained atm. In view of (2), we have

f (xm,i+1)− f (xm,i) =
1
m
〈x− x0,s(xm,i)〉 for i = 0,1, . . . ,m−1.

Hence, fori = 0,1, . . . ,m−1 andt ∈ [0,1], we obtain

f (xm,i)+ t〈xm,i+1− xm,i ,s(xm,i)〉 ≤ f (xm,i + t(xm,i+1− xm,i))

≤ f (xm,i)+ t( f (xm,i+1)− f (xm,i))

= f (xm,i)+
t
m
〈x− x0,s(xm,i)〉

= f (xm,i)+ t〈xm,i+1− xm,i ,s(xm,i)〉;

thereforef (xm,i + t(xm,i+1− xm,i)) = f (xm,i)+ t〈xm,i+1 − xm,i ,s(xm,i)〉, which shows
that the restriction off to the segment[xm,i ,xm,i+1] is affine. ⊓⊔

Corollary 7 Let f, x0 and s be as in Theorem1. If f is strictly convex then the
supremum and the infimum in(1) and (9) are not attained.

The sequences{ 1
m〈x−x0,∑m−1

i=0 s(xm,i)〉}, {
1
m ∑m−1

i=0 f ′(xm,i ,x−x0)}, and{ 1
m ∑m−1

i=0
f ′(xm,i ,−(x− x0))} need not be monotone. Consider, for instance, the case when
n= 1, f (x) = |x|, x0 =−1 ands is the selection of∂ f such thats(0) = 1; in this case,
for x= 1 a straightforward calculation yields

1
m

〈

x− x0,

m−1

∑
i=0

s(xm,i)

〉

=
1
m

m−1

∑
i=0

f ′(xm,i ,x− x0) =
(−1)m+1

m
.

However, it is easy to extract monotone subsequences, as thefollowing proposition
shows.

Proposition 2 Let f, x0 and s be as in Theorem1. If {mk} is an increasing sequence
of positive integer numbers with the property that mk+1 is a multiple of mk for each k,
then the subsequences{ 1

mk
〈x− x0,∑

mk−1
i=0 s(xmk,i)〉} and{ 1

mk
∑mk−1

i=0 f ′(xmk,i ,x− x0)}

are nondecreasing, and the subsequence{ 1
mk

∑mk−1
i=0 f ′(xmk,i ,−(x− x0))} is nonin-

creasing. These monotonicity properties are strict if f is strictly convex.



Integration of Fenchel Subdifferentials Revisited 7

Proof We prove the result only for the first subsequence. Settingzk := mk+1
mk

, we get

1
mk

〈

x− x0,

mk−1

∑
i=0

s(xmk,i)

〉

=
1

mk

mk−1

∑
i=0

〈x− x0,s(xmk,i)〉

≤
1

mk

mk−1

∑
i=0

1
zk

〈

x− x0,

(i+1)zk−1

∑
j=izk

s(xmk+1, j)

〉

=
1

mkzk

mk−1

∑
i=0

(i+1)zk−1

∑
j=izk

〈x− x0,s(xmk+1, j)〉

=
1

mk+1

mk+1−1

∑
i=0

〈x− x0,s(xmk+1,i)〉

=
1

mk+1
〈x− x0,

mk+1−1

∑
i=0

s(xmk+1,i)〉.

The preceding inequality follows from the monotonicity of the subdifferential map-
ping; indeed, forj = izk+1, . . . ,(i +1)zk−1, we have

〈x− x0,s(xmk,i)− s(xmk+1, j)〉 = 〈x− x0,s(xmk+1,izk)− s(xmk+1, j)〉

=
mk+1

j − izk
〈xmk+1, j − xmk+1,izk ,s(xmk+1,izk)− s(xmk+1, j)〉

≤ 0,

which implies

〈x− x0,s(xmk,i)〉 ≤
1
zk

〈

x− x0,

(i+1)zk−1

∑
j=izk

s(xmk+1, j)

〉

.

If f is strictly convex, all these inequalities are strict, since then the subdifferential
mapping is strictly monotone. ⊓⊔

3 A Characterization of ε-Subgradients

Using Rockafellar integration formula, an expression for theε-subdifferential opera-
tor of a lower semicontinuous proper convex function in terms of its subdifferential
was given in [9, Theorem 1]. In this section we obtain a simpler characterization of
ε-subgradients thanks to our new integration formula (1).

Theorem 2 Let f and s be as in Theorem1, x ∈ domf , ε ≥ 0 and x∗ ∈ R
n. Then

x∗ ∈ ∂ε f (x) if and only if
〈

x− x0,x
∗−

1
m

m−1

∑
i=0

s(xm,i)

〉

≥−ε ∀ x0 ∈ ri dom f , ∀m= 1,2, . . . . (10)
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Proof If x∗ ∈ ∂ε f (x) and x0 ∈ ri dom f , then f (x0) ≥ f (x) + 〈x0 − x,x∗〉 − ε and
f (x) ≥ f (x0) +

1
m〈x− x0,∑m−1

i=0 s(xm,i)〉. By adding up these inequalities, simplify-
ing and rearranging, we easily obtain (10). Conversely, assume thatx∗ satisfies (10).
Let x0 ∈ ri dom f and α > f (x0)− f (x). By (1), there existsm such that 1

m〈x−
x0,∑m−1

i=0 s(xm,i)〉>−α. Hence, by (10), we haveε ≥ 〈x−x0,
1
m ∑m−1

i=0 s(xm,i)−x∗〉>
−α −〈x− x0,x∗〉. Sinceα is any number larger thanf (x0)− f (x), it follows that
ε ≥−( f (x0)− f (x))−〈x−x0,x∗〉, i.e., f (x0)≥ f (x)+〈x0−x,x∗〉−ε. Sincef , being
convex, is upper semicontinuous along lines [12, Theorem 10.2], and the relative in-
terior of any segment joiningx0 and a point in domf is contained in ri domf , the pre-
ceding inequality also holds for an arbitraryx0 ∈ domf . This proves thatx∗ ∈ ∂ε f (x).

⊓⊔

By means of the same argument used in the proof of Corollary 6,from Theorem
2 we obtain the following alternative characterization ofε-subgradients in terms of
directional derivatives.

Corollary 8 Let f, x, ε ≥ 0 and x∗ be as in Theorem2. Then the following statements
are equivalent:

(i) x∗ ∈ ∂ε f (x).
(ii) One has

〈

x− x0,x
∗−

1
m

m−1

∑
i=0

f ′(xm,i ,x− x0)

〉

≥−ε ∀ x0 ∈ ri dom f , ∀m= 1,2, . . . .

(iii) One has

〈

x− x0,x
∗+

1
m

m−1

∑
i=0

f ′(xm,i ,−(x− x0))

〉

≥−ε ∀ x0 ∈ ri dom f , ∀m= 1,2, . . . .

Let us recall that a set is said to be nearly convex if it contains the relative interior
of its convex hull.

Corollary 9 Let f : Rn −→R∪{+∞} be a l.s.c. proper convex function. Then∂ f is
maximal in the set of mappings A: Rn

⇉R
n that have a nearly convex domain and a

single valued selection s onDomA satisfying the following property:

〈

x− x0,x
∗−

1
m

m−1

∑
i=0

s(xm,i)

〉

≥ 0

∀ x∈ DomA, ∀x0 ∈ ri DomA, ∀x∗ ∈ A(x), ∀m= 1,2, . . . . (11)

Proof Since∂ f is maximal monotone, its domain is nearly convex [10]. Moreover,
property (11) is an easy consequence of the cyclic monotonicity of ∂ f . Maximality
immediately follows by applying Theorem 2 withε = 0. ⊓⊔
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4 Integration of ε-Subdifferentials of Functions Defined on Locally Convex
Spaces

In this section we consider the more general setting of locally convex spaces. Due to
the lack of a suitable result on the nonemptiness of the subdifferential in this context,
our results will be expressed in terms ofε-subdifferentials.

Theorem 3 Let X be a real locally convex space with dual X∗ and duality pairing
〈·, ·〉 : X×X∗ −→R, let f : X −→R∪{+∞} be a l.s.c. convex function, x0 ∈Dom∂ f ,
and s: domf×]0,+∞[−→ X∗ be such that s(x,ε) ∈ ∂ε f (x) for every x∈ domf and
ε > 0. Given x∈ domf for m= 2,3, . . . and i= 0,1, . . . ,m, denote xm,i := x0+

i
m(x−

x0). If {εm} is a sequence of strictly positive numbers such that mεm → 0, then

f (x) = f (x0)+ lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=1

s(xm,i ,εm)

〉

. (12)

Hence, for x∈ domf and x∗ ∈ ∂ f (x0), one has

f (x) = f (x0)+ sup
m

{

1
m

(〈

x− x0,x
∗+

m−1

∑
i=1

s(xm,i ,εm)

〉)

− (m−1)εm

}

. (13)

Proof The proof follows the same pattern as the proof of Theorem 1, with small
changes. We have

f (xm,i+1)− f (xm,i)≥
1
m
〈x− x0,s(xm,i ,εm)〉− εm for i = 1, . . . ,m−1

and, takingx∗ ∈ ∂ f (x0),

f (xm,1)− f (x0)≥
1
m
〈x− x0,x

∗〉.

Adding up these inequalities, we get

f (x)− f (x0)≥
1
m

〈

x− x0,x
∗+

m−1

∑
i=1

s(xm,i ,εm)

〉

− (m−1)εm,

and hence

f (x)− f (x0)≥ lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=1

s(xm,i ,εm)

〉

. (14)

On the other hand, we also have

f (xm,i−1)− f (xm,i)≥−
1
m
〈x− x0,s(xm,i ,εm)〉− εm for i = 1, . . . ,m−1,

and adding up these inequalities we get

f (x0)− f (xm,m−1)≥−
1
m

〈

x− x0,

m−1

∑
i=1

s(xm,i ,εm)

〉

− (m−1)εm;
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therefore, since limm→∞ f (xm,m−1)≥ f (x) due to the lower semicontinuity off ,

f (x0)− f (x)≥− lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=1

s(xm,i ,εm)

〉

. (15)

From (14) and (15), equality (12) imediately follows. To prove (13), we observe that
the inequality “≥” is immediate, and obtain the opposite inequality using (12) to-
gether with the equality

lim
m→∞

1
m

〈

x− x0,

m−1

∑
i=1

s(xm,i ,εm)

〉

= lim
m→∞

(

1
m

〈

x− x0,x
∗+

m−1

∑
i=1

s(xm,i ,εm)

〉

− (m−1)εm

)

.

⊓⊔

From Theorem 3, one can easily derive the following analogues of Corollaries 1
and 2 by mimicking their proofs.

Corollary 10 Let X, f and x0 be as in Theorem3. Then, for every x∈ domf one has

f (x) = f (x0)+ sup
(xi ,x∗i )∈graph∂ fε

(i=1,...,m)
ε>0

{

m−1

∑
i=0

〈xi+1− xi,x
∗
i 〉+ 〈x− xm,x

∗
m〉− (m+1)ε

}

. (16)

A formula very similar to (16) for the l.s.c. convex hull of anepi-pointed function
defined on a Banach space has been obtained by R. Correa, Y. Garcı́a and A. Hantoute
[5, Theorem 13].

Corollary 11 (see [4, Corollary 2.5])Let X be a real locally convex space and f,g :
X −→R∪{+∞} be l.s.c. convex functions with a common domaindomf = domg=:
C, and such thatDom∂ f ∩Dom∂g 6= /0 and

∂ε f (x)∩∂ε g(x) 6= /0 ∀x∈C, ∀ε > 0.

Then f= g+ const.

Acknowledgements I am very grateful to two anonymous referees for their helpful remarks; I feel par-
ticularly indebted to the one who pointed out that the intialversion needed several important corrections.

References

1. Bachir, M., Daniilidis, A., Penot, J.-P.: Lower subdifferentiability and integration. Set-Valued Anal.
10, 89–108 (2002)

2. Benoist, J., Daniilidis, A.: Integration of Fenchel subdifferentials of epi-pointed functions. SIAM J.
Optim.12, 575–582 (2002)

3. Benoist, J., Daniilidis, A.: Subdifferential representation of convex functions: refinements and appli-
cations. J. Convex Anal.12, 255–265 (2005)



Integration of Fenchel Subdifferentials Revisited 11

4. Burachik, R.S., Martı́nez-Legaz, J.E., Rocco, M.: On a sufficient condition for equality of two maxi-
mal monotone operators. Set-Valued Anal.18, 327–335 (2010)

5. Correa, R., Garcı́a, Y., Hantoute, A.: Integration formulas via the Fenchel subdifferential of nonconvex
functions. Nonlinear Anal.75, 1188–1201 (2012)

6. Hantoute, A., Martı́nez-Legaz, J.E.: Characterizationof Lipschitz continuous difference of convex
functions. J. Optim. Theory Appl.159, 673–680 (2013).

7. Kocourek, P.: An elementary new proof of the determination of a convex function by its subdifferen-
tial. Optimization59, 1231–1233 (2010)
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