
i

i

“main” — 2012/4/20 — 11:53 — page 1 — #1
i

i

i

i

i

i

UNIVERSITÀ DI PISA
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Sommario

La precisione del posizionamento in sistemi di navigazione satellitare dipende dalla

stima del ritardo temporale (TDE) tra i codici trasmessi dai satelliti e le repliche

locali del ricevitore. Questa tesi é incentrata sul problema di migliorare l’accuratezza

della stima dei ritardi dei segnali a spettro espanso (SS), concentrandosi sul tema

fondamentale della teoria della stima e sulle proprietá del segnale trasmesso. I

limiti fondamentali per la stima del ritardo sono indagati a fondo, comprendendo

lo studio del limite di Cramér Rao (CRB) e del limite di Ziv-Zakai (ZZB) e le loro

versioni modificate nel caso di presenza di parametri incogniti in aggiunta al ritardo

temporale. Il limite di Ziv-Zakai é investigato come riferimento per le prestazioni di

stimatori durante la fase sia di acquisizione che di tracking del segnale, studiando

segnali innovativi o standard quali quelli adottati dal sistema Galileo. I principali

contributi di questa tesi comprendono l’analisi di applicabilitá dei segnali a spettro

espanso a fase continua (SS-CPM) e filtrati multitono (SS-FMT) come segnali di

ranging. Un sottoinsieme delle CPM, chiamato SiMSK e ottenuto da una particolare

impostazione dei parametri, si rivela facilmente adattabile alle esigenze di emissioni,

ad inviluppo intrinsecamente costante e spettralmente efficiente, consentendo buone

prestazioni in fase di tracking. Inoltre, una codifica ad hoc delle SiMSK consente

di ottenere un segnale ad inviluppo costante contenente due servizi indipendenti,

senza approssimazioni lato trasmettitore. L’analisi del segnale multiportante ha

rivelato l’elevato grado di libertá nella progettazione dello stesso, proponendo il caso

particolare della modulazione filtrata multitono (FMT) come opzione per segnali di

ranging. La limitatezza in banda e la massima flessibilitá spettrale possedute dal

segnale vengono adoperate per adattare il sistema alle differenti condizioni di canale

o emulare spettri di segnali pre-esistenti o innovativi. Per entrambi gli schemi di

modulazione indagati alcuni algoritmi di stima del ritardo sono testati, confrontando

le loro prestazioni con il corrispondente limite teorico.
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Abstract

Positioning accuracy in satellite navigation systems depends on time-delay estimation

(TDE) between satellite transmitted codes and local receiver replicas. This thesis

is specifically focused on the problem of improving time delay estimation (TDE)

accuracy of SS signals, focusing on the fundamental issue of estimation theory and

on the properties of the transmitted signal. TDE fundamentals limits are deeply

investigated, encompassing the Cramér Rao Bound and the Ziv-Zakai Bound, and

their modified versions to lighten their computation in presence of unknown param-

eters, in addiction to the time delay. The adoption of the ZZB as benchmark for

both acquisition and tracking stage performance is addressed, analyzing innovative

or standard signalling waveforms such as Galileo SIS. The main contributions of this

thesis are dealt with the analysis of applicability of spread spectrum continuous-

phase-modulated (SS-CPM) and spread spectrum filtered multitone (SS-FMT) as

ranging signals. A special subset of CPM, labeled as “Semi-integer MSK (SiMSK)”

obtained by properly setting the modulation parameters, is revealed easily adaptable

to the requirements on emissions, intrinsically constant envelope and spectral efficient,

while still allowing good tracking performance. Besides, an ad hoc encoding of the

SS-SiMSK enables the design of a constant envelope signal bearing two different rate

services, without any approximation at the transmitter side. The analysis of the

multicarrier (MC) signal revealed the high degree of freedom in its design, proposing

the special Filtered Multitone (FMT) modulation as possible candidate for ranging

signals. The strictly bandlimited property and the full spectral flexibility possessed

by the FMT are exploited in some cases of study to adapt the system to channel

conditions or in particular to emulate existing or innovative spectra. For both the SS-

CPM and SS-FMT modulation schemes investigated, some estimation algorithms are

tested and their performance are compared to the correspondent theoretical bound.
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SS-FMT spread spectrum filtered multitone

SS-MC spread spectrum multicarrier

TDE time delay estimation

TMBOC time-multiplexed binary offset carrier
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TOA time-of-arrival

TRS two-rate-service

TWTA traveling wave tube amplifier

U.S. United States

UE user equipment

US user segment

wrt with respect to

ZZB Ziv-Zakai lower bound
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Introduction

Motivations

New global navigation satellite systems (GNSSs) [51] such as GALILEO [1,26] are now

reality, exhibiting higher performance with respect to (wrt) older GNSSs systems like

global positioning system (GPS) [41] [51]. Improvements have been achieved taking

full advantage of the gains obtained in the last years on concepts and technologies,

such as new materials and components for spacecraft or advanced digital signal

processing, just to cite a few. Nevertheless, even if at the time writing GALILEO is

still not fully operational, the need for more systems and signals is already pushing

the researchers to prospect new solutions for future advanced GNSSs [14, 36].

As a matter of fact, timing recovery represents the most critical function in every

radio-location systems, including those based on satellite positioning. Current GNSSs

are in fact based on the capability of a receiver to estimate the propagation times of

a set of spread spectrum (SS) [52] signals broadcast by multiple satellites placed at

known locations. When at least four propagation times are available, the receiver can

unambiguously obtain its own spatial coordinates and the time reference [51]. In this

scenario, positioning accuracy depends on the accuracy in TDE between transmitted

codes and local replicas and it is apparent that the more accurate the TDE is, the

more precise the user position will be.

In particular, time synchronization can easily be cast into a conventional parame-

ter estimation problem [46], to be tackled with the tools of estimation theory [42].

Although acquisition and tracking issues for spreading codes in the field of satellite

positioning are well documented in the literature [13,48], their fundamental limits are

relatively less investigated. Current activities aim at enhancing the overall navigation

performance by providing better navigation signals to those available today, i.e., by

optimizing modulation schemes. Actual ranging signals are based on direct sequence
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spread spectrum (DS-SS) linearly modulated signals and thus signal optimization can

be achieved either improving the code sequences [33], or combining existing signals

like multiplexed binary offset carrier (MBOC) [37], or introducing new modulation

chip waveforms [4, 9, 14, 35, 37] or, at last, optimizing a signature waveform given

by an optimal combination of code and chip waveform as in [28, 62]. As output of

these studies, several DS-SS signal options have been proposed, aiming at improving

tracking performance both in an additive white Gaussian noise (AWGN) channel

and in a channel affected by multipath (MP), while maintaining good acquisition

and multiple access properties. In particular, TDE tracking accuracy is known to be

related to the second order moment of the power spectral density (PSD) of the ranging

signal [28,31,42]: the higher the second order moment the better the performance. As

an example, the binary offset carrier (BOC) [9] modulations used for GALILEO have

been chosen, among other features, for their characteristic of shifting the power at

the edge of the band (and thus ensuring PSD higher second order moment) by means

of subcarriers implemented in the modulation. This feature can reveal in contrast

with the necessity of ensuring tight bandlimitation of the signal spectrum on board

the satellite and the real performance of GPS and GALILEO signals are degraded

wrt the theoretical ones due to the tight filtering [9].

In addition, it has also emerged that guaranteing a modulation scheme with a robust

constant complex envelope has become a relevant signal design constraint that cannot

be relaxed anymore [14]. This is especially true when looking at future GNSSs, where

it is envisioned the use of highly non-linear high power amplifier (HPA), such as the

traveling wave tube amplifier (TWTA), and for which it is foreseen that ranging

signals will have to coexist with services for which out of band (OOB) emission

becomes an issue [36], [14].

Innovative waveforms belonging to multicarrier (MC) modulations have been re-

cently considered as possible GNSS solutions [21, 22, 27, 57], substantiated by their

spectral and temporal flexibilities with its several degrees of freedom in its design,

thanks to the large set of signal constituent parameters. Special cases such as the

orthogonal frequency division multiplexing (OFDM), in Digital Video Broadcasting

(DVB), and in particular the strictly bandlimited Filtered multitone (FMT), in the

Digital Subscriber Line (DSL), now become popular in communication, can be re-

formulated and re-designed for GNSS applications.

This thesis inserts in this lively environment, tackling with the fundamental issues
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Introduction 3

of TDE and concentrating on the ultimate limits in the accuracy of such function, by

focusing on the properties of the transmitted signal.

Several topics on TDE are covered at theoretical levels (thus being applicable to any

positioning system, either a wireless network or a GNSS), while specific considerations

are made with application to satellite positioning, due to the strong motivation in this

field.

Main contributions

This thesis is specifically focused on the problem of improving TDE accuracy of

SS signals [52], focusing on the fundamental issue of estimation theory and on the

properties of the transmitted signal. As such, in this contribution we propose some

signal design criteria and modulation schemes, that can offer practical responses when

envisioning new global navigation satellite system (GNSS) services aiming at improved

accuracy.

The analysis proposed in this thesis is conducted from a theoretical point of view

and can be thus re-applied to many fields of digital signal processing. The results

can easily be readapted to wireless communication by replacing the satellite with the

communication terminal.

In this context, the main contributions of this thesis are as follows:

• the results available in the literature for TDE fundamentals limits are further

exploited; formulations of the Cramér Rao Bound and of the Ziv-Zakai Bound

are reported, deeply investigating on modified versions of the bounds, well known

for the first case and innovative for the latter, to lighten their computation in

presence of unknown parameters. Alternative formulations of the bounds as

a function of the spectral properties of a generic modulation format are also

discussed;

• the adoption of the ZZB as benchmark for both acquisition and tracking stage

performance is addressed, comparing the ZZB with the CRB when the latter

results correct;

• the applicability of SS-CPM as ranging signals is addressed; SS-CPM demon-

strated particularly expedient due to the properties of being intrinsically con-

stant envelope and spectral efficient; it has emerged that setting the modulation
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index h to h > 1 allows the SS-CPM signal to behave like having a subcarrier,

thus improving TDE accuracy; some estimation algorithms for SS-CPM signals

are proposed and tested; an ad hoc encoding of the SS-CPM allows the trans-

mission of two different rate services on a single constant envelope waveform;

• starting from a discussion on the signal properties in time and frequency domain,

we show how a multicarrier (MC) signal can be formatted to obtain maximum

estimation accuracy, or minimum interference or minimum interference simply

by adaptively modifying the system’s parameters, proposing the special case of

Filtered Multitone (FMT) as possible candidate;

• the inherent strictly bandlimited property and the full spectral flexibility pos-

sessed by the FMT is expedient to adapt the system to different channel condi-

tions or in particular to emulate existing or innovative spectra;

• performance of a standard tracking algorithm is tested for some SS-FMT schemes.

Outline

The remainder of this thesis is structured as follows.

In Chapter 1, we recall the basis of positioning systems, posing the link between

time delay estimation (TDE) and positioning estimation.

In Chapter 2, we introduce the concept of signal optimization through TDE. In

particular, we start outlining the basic concepts of estimation theory. We then provide

a deep insight on the Cramér Rao bound (CRB) and on the Ziv-Zakai bound (ZZB) for

TDE of modulated signals, reviewing the literature on them and rewriting the bounds

as a function of the signal spectral properties of a general modulated signal, proofing

their matching in particular conditions. The well known modified CRB is reviewed

and by its formulation we were inspired to similarly find an alternative version of the

ZZB to lighten its computation in the presence of nuisance parameters.

In Chapter 3, we address the applicability of spread spectrum continuous-phase-

modulated (SS-CPM) as ranging signals, due to the properties of SS-CPM signals

of being intrinsically constant envelope and spectrally efficient. In particular, we

investigate the performance of a subset of SS-CPM signals, characterized by a modu-

lation index h greater than one, considering the architecture of a simplified all-digital
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modem. We focus on the problem of spreading code synchronization (code tracking),

presenting few low-complex chip timing recovery loops based on an Offset Quadrature

Phase-Shift Keying (OQPSK) approximation of the signal. The relative performance

of the proposed recovery loops are analyzed in terms of root mean square (RMS)

tracking error and multipath (MP) robustness. Besides, an ad hoc encoding at the

transmitter side is investigated, which allows the transmission of two coupled different

rate services on a single constant envelope waveform by definition.

In Chapter 4, we focus on the applicability of multicarrier (MC) modulation as

ranging signals, for its high degree of freedom, due to the large set of constituent

parameters. In particular, we investigated the special case of the Filtered Multitone

(FMT) modulation, which results very interesting also for its strictly bandlimited

spectrum, with limited out of band (OOB) emission, regardless of the particular

power distribution within the active subcarriers adopted. Particular cases of study

are reported and assessed in terms of root mean square error (RMSE) in AWGN

channel and multipath error envelope (MPEE) in a single MP ray scenario.

In Chapter 5, the adoption of the modified Ziv-Zakai bound (MZZB) as benchmark

for both signal acquisition and tracking performance is addressed. Testing standard

and innovative GNSS cases of study, negative effects of the signal correlation function

ambiguities on the TDE performance are detected and quantified.

In Chapter 6, we finally draw some conclusions for this thesis and we discuss open

issues and further perspectives for this research field.
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Chapter 1

Basics of positioning systems

Navigation is defined as the science of getting a craft or person from one place to

another. In this thesis we explore the fundamental limits of time delay estimation

(TDE) and more properly for navigation of time-of-arrival (TOA) estimation. Even

if the analysis can be generally applied to many fields of digital signal processing, we

here conduct the study with particular application to the satellite positioning systems.

For the description of global navigation satellite systems, we refer to the extensive

bibliography [41,51] on it. In this Chapter, we only recall the fundamentals of satellite

navigation to motivate the link between positioning accuracy and TOA accuracy, as

explained in [41].

1.1 Introduction

Navigation is defined as the science of getting a craft or person from one place to

another. Each of us conducts some form of navigation in our daily lives. Driving

to work or walking to a store requires that we employ fundamental navigation skills.

For most of us, these skills require utilizing our eyes, common sense, and landmarks.

However, in some cases where a more accurate knowledge of our position, intended

course, or transit time to a desired destination is required, navigation aids other

than landmarks are used. These may be in the form of a simple clock to determine

the velocity over a known distance or the odometer in our car to keep track of

the distance traveled. Some other navigation aids transmit electronic signals and

therefore are more complex. These are referred to as radionavigation aids. Signals

from one or more radionavigation aids enable a person (herein referred to as the user)

to compute their position. (Some radionavigation aids provide the capability for
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8 Basics of positioning systems

velocity determination and time dissemination as well.) It is important to note that

it is the users radionavigation receiver that processes these signals and computes

the position fix. The receiver performs the necessary computations (e.g., range,

bearing, and estimated time of arrival) for the user to navigate to a desired location.

In some applications, the receiver may only partially process the received signals,

with the navigation computations performed at another location. Various types

of radionavigation aids exist, and they can be categorized as either ground-based

or space-based. For the most part, the accuracy of ground-based radionavigation

aids is proportional to their operating frequency. Highly accurate systems generally

transmit at relatively short wavelengths, and the user must remain within line of sight

(LOS), whereas systems broadcasting at lower frequencies (longer wavelengths) are

not limited to LOS but are less accurate. Early spaced-based systems (namely, the

U.S. Navy Navigation Satellite Systemreferred to as Transitand the Russian Tsikada

system) provided a two-dimensional high-accuracy positioning service. However, the

frequency of obtaining a position fix is dependent on the users latitude. Theoretically,

a Transit user at the equator could obtain a position fix on the average of once every

110 minutes, whereas at 80 latitude the fix rate would improve to an average of once

every 30 minutes. Limitations applicable to both systems are that each position fix

requires approximately 10 to 15 minutes of receiver processing and an estimate of the

users position. These attributes were suitable for shipboard navigation because of the

low velocities, but not for aircraft and high-dynamic users. It was these shortcomings

that led to the development of the U.S. Global Positioning System (GPS).

1.2 Global Positioning System (GPS)

The NAVSTAR-GPS (NAVigation System for Timing And Ranging - Global Po-

sitioning System) project was officially launched in 1973 by the U.S. Department

of Defense (DoD) to give birth to a positioning service with global coverage and

continuous-time availability. The GPS was originally developed for authorized (mili-

tary) use only and subsequently made available to civil users in 1983. For a detailed

history of the GPS project, the interested reader may refer to [49].

The GPS system is composed of three segments : satellite constellation (the space

segment (SS)), ground control/monitoring network (the operational control segment

(OCS)), and user receiver equipment (the user segment (US)). The OCS, that tracks
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1.2 Global Positioning System (GPS) 9

and maintains the satellite in space, monitors satellite health and signal integrity

and maintains the orbital configuration of the SS. Furthermore, the OCS updates the

satellite clock corrections and ephemerides, as well as other fundamental parameters.

The US is typically the user receiver equipment, that processes the GPS signals to

determine user’s position, velocity, and time (PVT).

At the time of this writing, the current GPS constellation consists of 31 satellites,

positioned on six earth-centered orbital planes with five to six satellites on each

plane. The current constellation is composed of ten Block IIA satellites, launched

between 1990 and 1997, during which the system was declared fully operational,

twelve Block IIR (1997-2004), seven Block IIR-M (2005-2009) and only two Block

IIF (2010-present). Ten prototype satellites (called Block I) have been launched to

test and validate the system concepts between 1978 and 1985 whereas Block II were

launched from 1989 and 1990. First two satellites of next generation Block IIF have

been launched, other ten are in preparation, whereas a number of Block III satellites

are planned to be employed for a post-2014 deployment. The nominal orbital period of

a GPS is one-half of a sidereal day (approximately 11 h 58 min). The orbits are nearly

circular and equally spaced about the equator at a 60◦ separation with an inclination

relative to the equator of nominally 55◦, whereas the orbital radius is approximately

26, 600 km. The GPS constellation provides a 24-hr global user navigation and time

determination capability.

GPS provides two services: the standard position service (SPS) and the precise

position service (PPS). The SPS is designed for the civil community, whereas the

PPS is slated for the United States authorized military and selected government

agency users. Further details are provided in the next subsections.

1.2.1 Modernized GPS

From the launch of the first GPS satellite in 1978 through all of 2004 there have

been three navigation signals on two frequencies. Since the launch of the first Block

IIR-M satellite (Sept. 26th, 2005), the SPS is also available on the L2 channel. In

the near future, the number of navigation signals will increase from three to seven

and the number of frequencies from two to three. In addition, the new signals will

have substantially better characteristics, including a pilot carrier, much longer codes,

the use of forward error correction, and a more flexible message structure with much
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better resolution.

New and modern civil signals will be on L2 and on the new L5 frequency. The current

GPS modernization plan, however, leaves the L1 frequency with only the outdated

C/A signal for civil applications. The next level of modernization will include a

new signal for the L1 frequency, named L1C. With the addition of L1C, all three

GPS frequencies would then provide a modernized civil signal, completing the GPS

modernization process.

There is good reason to concentrate attention on L1. Today it carries C/A, the only

civil GPS signal. In the future, even with new and modern L2 and L5 signals, L1 is

expected to remain the most important civil frequency. This is primarily because it

is less affected by ionospheric refraction error than L2 or L5. (L1 has only 61% of the

L2 error and 56% of the L5 error). This inherent advantage relative to L2 and L5

helps motivate the basic goal of this modernization project.

In order to allow the interoperability between GPS and Galileo systems, the U.S. and

the European Union (EU) completed negotiations about the compatibility of Galileo

L1 signals with both military and civil GPS signals [1]. As part of these negotiations,

the U.S. Department of State proposed that the U.S. would implement a new signal

on L1 with BOC modulation (see Sect. 1.3 for further details) if Europe would do the

same on Galileo.

At the time of this writing, the interface specification [5] describes the current L1C

signal. The L1C signal consists of two main components; one denoted L1CP to

represent a pilot signal, without any data message, that is spread by a ranging code,

and L1CD that is spread by a ranging code and modulated by a data message. The

L1CP is also modulated by an SV unique overlay code, L1CO. The data message

on L1CD, denoted DL1C(t), includes SV ephemerides, system time, system time

offsets, SV clock behavior, status messages, and other data messages. The message

structure and data encoding techniques will include Bose-Chaudhuri-Hocquenghem

(BCH), cyclic redundancy check (CRC) and LDPC! (LDPC!) FEC! (FEC!) codes.

The resulting channel encoded symbols, DL1C(t), representing one message frame, will

be broadcast at 100 sps.

The L1CD signal is modulated on the L1 RF carrier using a Binary Offset Carrier

(BOC) (1, 1) modulation technique [9]. The L1CP signal is modulated on the L1 RF

carrier using a Time-Multiplexed BOC (TMBOC) modulation technique, which uses

a combination of BOC (1, 1) and BOC (6, 1) modulation [5].
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1.3 Galileo

Galileo is the European global navigation satellite system (GNSS) providing a global

positioning service under civilian control. It is inter-operable with GPS and GLONASS,

the American and Russian GNSSs, respectively. The first stage of the Galileo pro-

gramme was agreed upon officially on May 26, 2003 by the EU and the European

Space Agency (ESA).

Galileo is based on a constellation of medium earth orbit (MEO) satellites and

ground stations providing information concerning the positioning of users in many

sectors such as transport (e.g., vehicle location, route searching, speed control, guid-

ance systems), social services (e.g., aid for the disabled and for the elderly), services for

the justice system and customs procedures (e.g., location of suspects, border controls),

public works (e.g., geographical information systems), search and rescue (SAR), and

leisure (e.g., direction-finding at the sea or in the mountains).

The fully deployed Galileo system will consist of 30 satellites (27 operational and

3 spares), positioned in three circular MEO planes at a nominal average orbit semi-

major axis of 29, 601.297 km, and at an inclination of the orbital planes of 56◦ with

reference to the equatorial plane.

In the Galileo project validation phase, the first experimental satellite, GIOVE-A,

was launched in 2005 and was followed by a second test satellite, GIOVE-B, recently

launched in 2008 to provide experimental results for the GPS-Galileo common signal

using the MBOC modulation [37] in accordance with the agreement [1] drawn up by

the EU and the U.S. [25]. Construction of next GIOVE, GIOVE-A2 was terminated

due to the successful launch and in-orbit operation of GIOVE-B.

When in operation, the Galileo system will use two ground operations centres, near

Munich, Germany and in Fucino, Italy. The system was initially expected to become

operational by 2012, but that date has been repeatedly moved back. As of 2011,

initial service is expected around 2014 and completion by 2019.

Five different services are expected from Galileo:

• an open service (OS) providing all information such as positioning, navigation

and timing services, free of charge, for mass market navigation applications, in-

teroperable with other GNSSs, and competitive to the GPS standard positioning

services;
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• a safety-of-life (SoL), compliant to the needs of safety critical users such as

civil aviation, maritime and rail domain. The SoL includes high integrity

and authentication capability, although the activation of these possibilities will

depend on the user communities. Furthermore, the SoL service includes service

guarantees;

• a control segment/commercial service (CS), generating commercial revenue by

providing added value over the OS, such as by dissemination of encrypted

navigation related data, ranging and timing for professional use, with service

guarantees, high integrity level, precise timing services, high data rate broad-

casting, provision of ionospheric delay modes, local differential correction signals

and controlled access;

• a public regulated service (PRS), for application devoted to European and

member states, for critical applications and activities of strategic importance.

It makes use of a robust signal and is controlled by member states. This service

provides services guarantees, high integrity, full range of value added features

and an access controlled by encryption; and

• an search and rescue (SAR) service, providing assistance to the COSPAS-

SARSAT system by detecting emergency beacons and forwarding return link

messages to the emergency beacons. It is a service for SAR applications by

providing near real time reception of distress message and precise location of

alert.

1.4 GLONASS

GLONASS, GLObal’naya NAvigatsionnaya Sputnikovaya Sistema (global navigation

satellite system) is a navigation satellite system developed by the former Soviet

Union in response to the GPS. Like GPS, GLONASS was initially targeted to the

URSS Army needs: navigating and ballistic missile targeting with world coverage.

The setting-up of the system started in 1976 to reach full deployment in 1995. At

that time the constellation comprehended 24 satellites and transmitted on the L1

band using a frequency division multiple access (FDMA). In the following years the

lack of funding, due to collapse of the Russian economy, deeply damaged the system
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efficiency. However, the strategic importance of the satellite navigation was worldwide

affirmed: European Union started the Galileo project and the United States the GPS

modernization. Therefore, in 1999 GLONASS became officially a dual-use system,1

by a Presidential decree [30] and, at the beginning of the new century the GLONASS

reconstruction was boosted by the Russian extra-gain due to the oil and gas export.

The GLONASS system has been under a deep modernization, with the civil side

managed by the Russian Space Agency. Over the three decades of development, the

satellite designs have gone through numerous improvements, and can be divided into

three generations: the original GLONASS (since 1982), GLONASS-M (since 2003)

and GLONASS-K (since 2011). A fully operational constellation with global coverage

consists of 24 satellites, while 18 satellites are necessary for covering the territory of

Russia. At the time of this writing, the full constellation (24 sats) with performance

comparable with GPS are expected by the end of 2011. Although the format and

modulation of GLONASS (CDMA) signals are not fully finalized, statements from

developers indicate that the new signals are essentially GPS/Galileo/COMPASS for-

mat signals placed at the same frequencies, [55].

1.5 Compass/Beidou

Compass is the incoming Chinese GNSS. China started the development of an indige-

nous navigation satellite system technology since the sixties of the last century but

only during the eighties the research become really effective. In 1994 China approved a

new satellite system for navigation purposes based on the radio determination satellite

service (RDSS), a different technology in comparison to the GPS one [40].

The first Chinese system was named Beidou, from the Chinese name of the Northern

Star, the brightest star of the Ursa Minor constellation. Beidou was born like a

regional dual system, both military an civil, to provide navigation and timing to

China and surrounding areas.

With only 3 geostationary (GEO) satellites, it has been offering navigation services

mainly for customers in China and from neighboring regions since 2000. The evolution

of the Beidou system is usually called Beidou-2 or, more usually, Compass. The first

satellite of the Compass navigation satellite system (CNSS), which is a MEO satellite,

1i.e., a system intended for both military and civil applications.
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14 Basics of positioning systems

was launched on April 2007. The second generation of the system, which will be a

global satellite navigation system consisting of 35 satellites, is still under construction.

It is planned to offer services to customers in Asia-Pacific region by 2012 and the global

system should be finished by 2020.

1.6 Ranging using time of arrival (TOA) or time

delay (TD) measurements

GPS utilizes the concept of TOA ranging to determine user position. This concept

entails measuring the time it takes for a signal transmitted by an emitter (e.g., foghorn,

radiobeacon, or satellite) at a known location to reach a user receiver. This time

interval, referred to as the signal propagation time, is then multiplied by the speed

of the signal (e.g., speed of sound or speed of light) to obtain the emitter-to- receiver

distance. By measuring the propagation time of the signal broadcast from multiple

emitters (i.e., navigation aids) at known locations, the receiver can determine its

position. An example of two-dimensional positioning is provided next.

1.6.1 Position determination in two dimensions

Consider the case of a mariner at sea determining his or her vessels position from

a foghorn. Assume that the vessel is equipped with an accurate clock and the

mariner has an approximate knowledge of the vessels position. Also, assume that

the foghorn whistle is sounded precisely on the minute mark and that the vessels

clock is synchronized to the foghorn clock. The mariner notes the elapsed time from

the minute mark until the foghorn whistle is heard. The foghorn whistle propagation

time is the time it took for the foghorn whistle to leave the foghorn and travel to the

mariners ear. This propagation time multiplied by the speed of sound (approximately

335 m/s) is the distance from the foghorn to the mariner. If the foghorn signal took

5 seconds to reach the mariners ear, then the distance to the foghorn is 1,675m. Let

this distance be denoted as R1. Thus, with only one measurement, the mariner knows

that the vessel is somewhere on a circle with radius R1 centered about the foghorn.

Hypothetically, if the mariner simultaneously measured the range from a second

foghorn in the same way, the vessel would be at range R1 from Foghorn 1 and range

R2 from Foghorn 2. It is assumed that the foghorn transmissions are synchronized to
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a common time base and the mariner has knowledge of both foghorn whistle transmis-

sion times. Therefore, the vessel relative to the foghorns is at one of the intersections

of the range circles. Since it was assumed that the mariner has approximate knowledge

of the vessels position, the unlikely fix can be discarded. Resolving the ambiguity can

also be achieved by making a range measurement to a third foghorn.

This development assumed that the vessels clock was precisely synchronized with

the foghorn time base. However, this might not be the case. Let us presume that

the vessels clock is advanced with respect to the foghorn time base by 1 second.

That is, the vessels clock believes the minute mark is occurring 1 second earlier. The

propagation intervals measured by the mariner will be larger by 1 second due to the

offset. The timing offsets are the same for each measurement (i.e., the offsets are

common) because the same incorrect time base is being used for each measurement.

The timing offset equates to a range error of 335m. The separation of intersections

from the true vessel position is a function of the vessels clock offset. If the offset could

be removed or compensated for, the range circles would then intersect at the point of

vessel position.

If this hypothetical scenario were realized, the TOA measurements would not be per-

fect due to errors from atmospheric effects, foghorn clock offset from the foghorn time

base, and interfering sounds. Unlike the vessels clock offset condition cited earlier,

these errors would be generally independent and not common to all measurements.

They would affect each measurement in a unique manner and result in inaccurate

distance computations. Instead of the three range circles intersecting at a single

point, the vessel location is somewhere within a triangular error space.

1.6.2 Principle of Position Determination Via Satellite Rang-

ing Signals

GNSS employs TOA ranging for user position determination. By making TOA mea-

surements to multiple satellites, three-dimensional positioning is achieved. We will

observe that this technique is analogous to the preceding foghorn example; however,

satellite ranging signals travel at the speed of light, which is approximately 3 · 108

m/s. It is assumed that the satellite ephemerides are accurate (i.e., the satellite

locations are precisely known). Assume that there is a single satellite transmitting

a ranging signal. A clock onboard the satellite controls the timing of the ranging
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16 Basics of positioning systems

Figure 1.1: User located at one of two points on shaded circle.

signal broadcast. This clock and others onboard each of the satellites within the

constellation are effectively synchronized to an internal system time scale denoted as

GPS system time (herein referred to as system time). The users receiver also contains

a clock that (for the moment) we assume to be synchronized to system time. Timing

information is embedded within the satellite ranging signal that enables the receiver

to calculate when the signal left the satellite based on the satellite clock time. By

noting the time when the signal was received, the satellite-to-user propagation time

can be computed. The product of the satellite-to-user propagation time and the

speed of light yields the satellite-to-user range, R. As a result of this measurement

process, the user would be located somewhere on the surface of a sphere centered

about the satellite. If a measurement were simultaneously made using the ranging

signal of a second satellite, the user would also be located on the surface of a second

sphere that is concentric about the second satellite. Thus, the user would then be

somewhere on the surface of both spheres, which could be either on the perimeter of

the shaded circle in Fig.1.1, that denotes the plane of intersection of these spheres or

at a single point tangent to both spheres (i.e., where the spheres just touch). This

latter case could only occur if the user were collinear with the satellites, which is not

the typical case. The plane of intersection is perpendicular to a line connecting the

satellites. Repeating the measurement process using a third satellite, the user is at

the intersection of the perimeter of the circle and the surface of the third sphere.

This third sphere intersects the shaded circle perimeter at two points; however, only

one of the points is the correct user position. It can be observed that the candidate

locations are mirror images of one another with respect to the plane of the satellites.
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1.6 Ranging using time of arrival (TOA) or time delay (TD) measurements 17

For a user on the Earths surface, it is apparent that the lower point will be the true

position. However, users that are above the Earths surface may employ measurements

from satellites at negative elevation angles. This complicates the determination of an

unambiguous solution. Airborne/spaceborne receiver solutions may be above or below

the plane containing the satellites, and it may not be clear which point to select unless

the user has ancillary information.

1.6.3 Position Determination Using PRN Codes

GNSS satellite transmissions utilize direct sequence spread spectrum (DSSS) mod-

ulation. DSSS provides the structure for the transmission of ranging signals and

essential navigation data, such as satellite ephemerides and satellite health. The

ranging signals are PRN codes that binary phase shift key (BPSK) modulate the

satellite carrier frequencies. These codes look like and have spectral properties similar

to random binary sequences but are actually deterministic. These codes have a

predictable pattern, which is periodic and can be replicated by a suitably equipped

receiver. At the time of this writing, each GPS satellite broadcasted two types of PRN

ranging codes: a short coarse/acquisition (C/A)-code and a long precision (P)-code.

(Additional signals are planned to be broadcast.) The C/A code has a 1-ms period

and repeats constantly, whereas the P-code satellite transmission is a 7-day sequence

that repeats approximately every Saturday/Sunday midnight. Presently, the P-code

is encrypted. This encrypted code is denoted as the Y-code. The Y-code is accessible

only to PPS users through cryptography.

Determining Satellite-to-User Range Earlier, we examined the theoretical as-

pects of using satellite ranging signals and multiple spheres to solve for user position in

three dimensions. That example was predicated on the assumption that the receiver

clock was perfectly synchronized to system time. In actuality, this is generally not

the case. Prior to solving for three-dimensional user position, we will examine the

fundamental concepts involving satellite-to-user range determination with nonsyn-

chronized clocks and PRN codes. There are a number of error sources that affect range

measurement accuracy (e.g., measurement noise and propagation delays); however,

these can generally be considered negligible when compared to the errors experienced

from nonsynchronized clocks. Therefore, in our development of basic concepts, errors
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Figure 1.2: Use of replica code to determine satellite code transmission time
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1.6 Ranging using time of arrival (TOA) or time delay (TD) measurements 19

Figure 1.3: User position vector representation

other than clock offset are omitted.

In Fig.1.3, we wish to determine vector u, which represents a user receivers position

with respect to the ECEF coordinate system origin. The users position coordinates

px, py, pz are considered unknown. Vector r represents the vector offset from the user

to the satellite. The satellite is located at coordinates xs, ys, zs within the ECEF

Cartesian coordinate system. Vector s represents the position of the satellite relative

to the coordinate origin. Vector s is computed using ephemeris data broadcast by the

satellite. The satellite-to-user vector r−→ is

r−→ = s−→− u−→. (1.1)

The magnitude of vector r−→ is

|| r−→|| = || s−→− u−→||. (1.2)

Let r represent the magnitude of r−→,

r = || s−→− u−→||. (1.3)
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20 Basics of positioning systems

The distance r is computed by measuring the propagation time required for a

satellite-generated ranging code to transit from the satellite to the user receiver

antenna. The propagation time measurement process is illustrated in Fig.1.2. As an

example, a specific code phase generated by the satellite at t1 arrives at the receiver at

t2. The propagation time is represented by t. Within the receiver, an identical coded

ranging signal is generated at t, with respect to the receiver clock. This replica code

is shifted in time until it achieves correlation with the received satellite-generated

ranging code. If the satellite clock and the receiver clock were perfectly synchronized,

the correlation process would yield the true propagation time. By multiplying this

propagation time, ∆t, by the speed of light, the true (i.e., geometric) satellite-to-

user distance can be computed. We would then have the ideal case described in

the previous section. However, the satellite and receiver clocks are generally not

synchronized. The receiver clock will generally have a bias error from system time.

Further, satellite frequency generation and timing is based on a highly accurate free

running cesium or rubidium atomic clock, which is typically offset from system time.

Thus, the range determined by the correlation process is denoted as the pseudorange

. The measurement is called pseudorange because it is the range determined by

multiplying the signal propagation velocity, c, by the time difference between two

nonsynchronized clocks (the satellite clock and the receiver clock). The measurement

contains (1) the geometric satellite-to-user range, (2) an offset attributed to the

difference between system time and the user clock, and (3) an offset between system

time and the satellite clock. The timing relationships are:

• Ts = System time at which the signal left the satellite

• Tu = System time at which the signal reached the user receiver

• t= Offset of the satellite clock from system time [advance is positive; retardation

(delay) is negative]

• tu = Offset of the receiver clock from system time

• Ts + t = Satellite clock reading at the time that the signal left the satellite

• Tu + tu = User receiver clock reading at the time the signal reached the user

receiver

• c = speed of light
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• Geometric range, r = c (Tu − Ts) = c∆t

• Pseudorange Rp = c [(Tu + tu) − (Ts + δt)] = c (Tu − Ts) + c (tu − δt) = r +

c (tu − δt)

Therefore, r can be rewritten as:

Rp − c (tu − δt) = || s−→− u−→|| (1.4)

where tu represents the advance of the receiver clock with respect to system time, ∆t

represents the advance of the satellite clock with respect to system time, and c is the

speed of light.

The satellite clock offset from system time, ∆t, is composed of bias and drift

contributions. The GPS ground-monitoring network determines corrections for these

offset contributions and transmits the corrections to the satellites for rebroadcast

to the users in the navigation message. These corrections are applied within the

user receiver to synchronize the transmission of each ranging signal to system time.

Therefore, we assume that this offset is compensated for and no longer consider ∆t

an unknown. (There is some residual offset, but in the context of this discussion we

assume that this is negligible.) Hence, the preceding equation can be expressed as

Rp − ctu = || s−→− u−→|| (1.5)

Calculation of User Position In order to determine user position in three di-

mensions (px, py, pz) and the offset tu, pseudorange measurements are made to four

satellites resulting in the system of equations

Rpk = || s−→− u−→|| + ctu (1.6)

where k ranges from 1 to 4 and references the satellites. The previous equation

can be expanded into the following set of equations in the unknowns px, py, pz, and

b = c · tu:

Rpk =
√

(xk − px)2 + (yk − py)2 + (zk − pz)2 + b = Dk + b, (1.7)

where xk, yk, and zk denote the k-th satellites position in three dimensions.

These nonlinear equations can be solved for the unknowns by employing either (1)

closed-form solutions , (2) iterative techniques based on linearization, or (3) Kalman
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filtering. (Kalman filtering provides a means for improving PVT estimates based on

optimal processing of time sequence measurements) Linearization is illustrated in the

following paragraphs. If we know approximately where the receiver is, then we can

denote the offset of the true position (px, py, pz) from the approximate position (p̂x ,p̂y

,p̂z ) by a displacement (∆x,∆y,∆z ). By expanding the previous equation in a Taylor

series about the approximate position, we can obtain the position offset (∆xu, ∆yu,

∆zu) as linear functions of the known coordinates and pseudorange measurements.

This process is described next. Let a single pseudorange be represented by

Rpk =
√

(xk − px)2 + (yk − py)2 + (zk − pz)2 + b = Dk + b = f (px, py, pz, b) , (1.8)

Using the approximate position location (p̂x, p̂y, p̂z) and time bias estimate t̂u , an

approximate pseudorange can be calculated:

R̂pk =
√

(xk − p̂x)2 + (yk − p̂y)2 + (zk − p̂z)2 + b̂ = D̂k + b̂ = f
(

p̂x, p̂y, p̂z, b̂
)

, (1.9)

As stated earlier, the unknown user position and receiver clock offset is considered

to consist of an approximate component and an incremental component:

px = p̂x + ∆x

py = p̂y + ∆y

pz = p̂z + ∆z

b = b̂+ ∆b

(1.10)

Therefore, we can write

f (px, py, pz, b) = f(p̂x + ∆x, p̂y + ∆y, p̂z + ∆z, b̂+ ∆b) (1.11)

This latter function can be expanded about the approximate point and associated

predicted receiver clock offset (p̂x ,p̂y ,p̂z ) using a Taylor series:

f(p̂x + ∆x, p̂y + ∆y, p̂z + ∆z, b̂+ ∆b) ∼=

f(p̂x, p̂y, p̂z, b̂) +
∂

∂p̂x
f(p̂x, p̂y, p̂z, b̂)∆px+

∂

∂p̂y
f(p̂x, p̂y, p̂z, b̂)∆py +

∂

∂p̂z
f(p̂x, p̂y, p̂z, b̂)∆pz +

∂

∂b̂
f(p̂x, p̂y, p̂z, b̂)∆b

(1.12)
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The expansion has been truncated after the first-order partial derivatives to eliminate

nonlinear terms. The partial derivatives evaluate as follows:

∂

∂p̂x
f(p̂x, p̂y, p̂z, b̂) = −xk − p̂x

D̂k

∂

∂p̂y
f(p̂x, p̂y, p̂z, b̂) = −yk − p̂y

D̂k

∂

∂p̂z
f(p̂x, p̂y, p̂z, b̂) = −zk − p̂z

D̂k

∂

∂b̂
f(p̂x, p̂y, p̂z, b̂) = 1

(1.13)

where

D̂k =
√

(xk − p̂x)2 + (yk − p̂y)2 + (zk − p̂z)2 (1.14)

The first three derivatives denote the direction cosines of the unit vector pointing

from the approximate user position to the k-th satellite, and we denote them by

(ak, bk, ck ). Substituting and rearranging this expression with the known quantities

on the left and unknowns on right we yield to

Rpk = R̂pk + ak∆x+ bk∆y + ck∆z + ∆b. (1.15)

These equation can be put in matrix form by making the definitions

∆Rp =















∆Rp1

∆Rp2

∆Rp3

∆Rp4















;H =















a1 b1 c1 1

a2 b2 c2 1

a3 b3 c3 1

a4 b4 c4 1















; ∆x =















∆x

∆y

∆z

∆b















; (1.16)

Finally, one obtains:

∆Rp = H × ∆x (1.17)

which has the solution

∆x = H−1 × ∆Rp (1.18)

Once the unknowns are computed, the users coordinates px, py, pz and the receiver

clock offset tu are then calculated. This linearization scheme will work well as long as

the displacement (∆px, ∆py, ∆pz) is within close proximity of the linearization point.

The acceptable displacement is dictated by the users accuracy requirements. If the
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displacement does exceed the acceptable value, this process is reiterated with being

replaced by a new estimate of pseudorange based on the calculated point coordinates

px, py, and pz. In actuality, the true user-to-satellite measurements are corrupted

by uncommon (i.e., independent) errors, such as measurement noise, deviation of the

satellite path from the reported ephemeris, and multipath. These errors translate to

errors in the components of vector ∆x, as shown here:

ǫx = H−1 × ǫmeas (1.19)

where ǫmeas is the vector containing the pseudorange measurement errors and ǫx

is the vector representing errors in the user position and receiver clock offset. The

error contribution ǫx can be minimized by making measurements to more than four

satellites, which will result in an overdetermined solution set of equations similar to

the one just shown. Each of these redundant measurements will generally contain

independent error contributions. Redundant measurements can be processed by

least squares estimation techniques that obtain improved estimates of the unknowns.

Various versions of this technique exist and are usually employed in todays receivers,

which generally employ more than four user-to-satellite measurements to compute

user PVT.
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Chapter 2

Accuracy Limits for

Time-Of-Arrival (TOA)

Estimation

Timing recovery represents the most critical function in every radio-location systems,

including those based on satellite positioning. In particular, positioning accuracy

depends on the accuracy in time delay estimation (TDE) between transmitted codes

and local replicas, to find the absolute time-of-arrival (TOA) of the first ones. In

this scenario, it is apparent that the more accurate the TOA estimation is, the more

precise the user position will be. This thesis proposes some criteria to calculate and

improve TDE or TOA estimation accuracy of SS signals, focusing on the properties

of the transmitted signal, with particular emphasis on investigating the fundamental

limits of tracking performance. The aim of the Chapter is thus to give a close

picture of TOA estimation accuracy and its maximization through signal design,

providing a deep insight into its Cramér-Rao lower bound (CRB) and its Ziv-Zakai

lower bound (ZZB) and their modified versions. In particular, after recalling the bases

on estimation theory in Sect. 2.2 and specifically on the CRB and on the ZZB in 2.3

and 2.4, respectively, we will fix the problem of measuring TOA estimation accuracy

for different signal formats in Sect. 2.5. In fact, specific formulas of the bounds

for TDE in an AWGN channel will be discussed, and in particular Sect. 2.5.3 will

investigate the interpretation of the same CRB and ZZB formulations as functions

of the spectral properties of digitally modulated signal, showing their matching in

specific conditions, and revealing to be the key-point for optimizing different signal
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modulations irrespectively from how they are generated. Finally, some considerations

on the applicability of the bounds are addressed.

2.1 Motivations

Global navigation satellite systems GNSS are based on the capability of a receiver

to estimate the propagation times of a set of spread-spectrum SS signals broadcast

by multiple satellites placed at known locations [41]. When at least four propagation

times are available, the receiver can unambiguously obtain its own spatial coordinates

and the time reference [51].

This thesis is specifically focused on the problem of improving positioning accuracy

for GNSS, directly improving TDE. In particular, time synchronization can easily be

cast into a conventional parameter estimation problem [46], to be tackled with the

tools of estimation theory [42]. Although acquisition and tracking issues for spreading

codes in the field of satellite positioning are well documented in the literature [13,48],

their fundamental limits are relatively less investigated. Many activities [4, 35, 37]

aiming at enhancing the overall navigation performance are currently ongoing. This

is typically performed by designing enhanced signals compared to those available

today, e.g., by optimizing the modulation schemes. This can be achieved either

introducing novel chip waveforms [4, 35] or combining existing signals, as is taken

for the multiplexed binary offset carrier (MBOC) modulation [37], or finally adopting

different modulation schemes.

This thesis proposes some criteria to improve TDE accuracy of SS signals [52],

focusing on the properties of the transmitted signal. The problem is thus assessed

using conventional parameter estimation and signal synchronization tools [42], which

makes the proposed analysis suitable for both navigation and communication systems

and independent of the particular receiver configuration. In the remainder of the

thesis, we focus on satellite positioning, but the results can easily be readapted to

wireless communication by replacing the satellite with the communication terminal.

Following these aims, this Chapter poses the theoretical bases on TDE for signal

optimization. The fundamental limits in time synchronization are here recalled and

further investigated in an AWGN channel. The results of this Chapter either comes

from the literature or can be easily predicted, but are not easy to be explicitly found
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in a unique text.

2.2 Estimation theory

This section recalls the fundamental performance limits on the estimation accuracy

of a scalar parameter [42]. Let λ to be the deterministic parameter to be estimated

and r to be the random vector of the observable samples (or data or outcomes) that

depend on λ. The generic estimation process based on the observation of a realization

of r will be denoted hereafter by λ̂(r) or simply by λ̂.

An estimator is a function that maps a sample design to a set of sample estimates.

A sample design can be thought of as an ordered pair ( r, p (r, λ) ) where p (r, λ) is

the probability density function (pdf). The pdf maps the set of r to the closed interval

[0,1], and has the property that the sum (or integral) of the values of p (r, λ), over all

elements in r, is equal to 1. The pdf is parameterized by the unknown parameter λ,

i.e, there is a class of pdf where each one is different due to a different value of λ [42].

When the pdf is viewed as a function of the unknown parameter (with r fixed), it is

termed the likelihood function.

Intuitively the “sharpness” of the likelihood function determines how accurately we

can estimate the unknown parameter. To quantify this notion it can be observed

that the sharpness is effectively measured by the negative of the second derivative

of the logarithm of the likelihood function at its peak. This is the curvature of the

log-likelihood function.

As such, λ̂(r) is a random variable, since it depends on the particular observation r,

and thus different observations lead to different estimates. As a random variable, λ̂(r)

is characterized by its statistical properties, whose main definitions and properties are

being reported. For all the properties below, the value λ, the estimation formula, the

set of samples, and the set probabilities of the collection of samples, can be considered

fixed. Yet since some of the definitions vary by sample (yet for the same set of samples

and probabilities), we must use r in the notation. Hence, the estimate for a given

sample r is denoted as λ̂(r).

We have the following definitions and attributes.

1. For a given sample r, the error ε of the estimator λ̂ is defined as

ε = λ̂(r) − λ. (2.1)
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Note that the error depends not only on the estimator (the estimation formula

or procedure), but also on the sample itself.

2. The mean squared error of λ̂ is defined as the expected value (probability-

weighted average, over all samples) of the squared errors; that is,

MSE(λ̂) = E[(λ̂− λ)2]. (2.2)

It is used to indicate how far, on average, the collection of estimates are from

the single parameter being estimated.

3. For a given sample r, the sampling deviation of the estimator λ̂ is defined as

λ̂(r) − E(λ̂), (2.3)

where λ̂(r) is the estimate for sample r, and E(λ̂) is the expected value of the

estimator. Note that the sampling deviation depends not only on the estimator,

but also on the sample itself.

4. The variance of λ̂ is simply the expected value of the squared sampling devia-

tions; that is,

var(λ̂) = E[(λ̂− E(λ̂))2]. (2.4)

It is used to indicate how far, on average, the collection of estimates are from the

expected value of the estimates. Note the difference between MSE and variance.

5. The bias of an estimator λ̂ is defined as

b(λ) = E(λ̂) − λ. (2.5)

It is the distance between the average of the collection of estimates, and the

single parameter being estimated. It also is the expected value of the error,

since E(λ̂) − λ = E(λ̂ − λ). The relationship between bias and variance is

analogous to the relationship between accuracy and precision.

6. An estimator λ̂ is an unbiased estimator of λ if and only if b(λ) = 0. Note

that bias is a property of the estimator, not of the estimate. Often, people refer

to a “biased estimate” or an “unbiased estimate”, but they really are talking

about an “estimate from a biased estimator”, or an “estimate from an unbiased

estimator”.
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7. The MSE, variance, and bias, are hence related:

MSE(λ̂) = var(λ̂) + (b(λ))2, (2.6)

i.e. mean squared error = variance + square of bias.

8. The standard deviation of an estimator of λ (the square root of the variance), or

an estimate of the standard deviation of an estimator of λ, is called the standard

error or RMSE of λ.

2.3 Cramér-Rao bound (CRB) and Modified Cramér-

Rao bound (MCRB)

2.3.1 The Cramér-Rao lower bound (CRB)

The Cramér-Rao lower bound (CRB) is a fundamental lower bound on the variance

of any estimator [16, 56] and, as such, it serves as a benchmark for the performance

of actual estimators [2, 42, 46] .

For a scalar parameter λ, the CRB states that the variance (or covariance) of any

estimator of λ with bias function b (λ) is lower bounded by [16, 56]

var(λ̂) = E[(λ̂− E(λ̂))2] ≥ CRB (λ) (2.7)

where CRB (λ) denotes the true CRB, given by [16, 54, 56]

CRB (λ) =

[

1 + db
dλ

]2

Er

{

[

∂ ln p(r|λ)
∂λ

]2
} . (2.8)

The p(r|λ) is the pdf of the observations r when λ is the true value and Er{·} in

(2.7) and (2.8) denotes statistical expectation wrt the pdf p(r).

Obviously, when the estimator is unbiased, the CRB simply reduces to

CRB (λ) =
1

Er

{

[

∂ ln p(r|λ)
∂λ

]2
} (2.9)

or, equivalently, to

CRB (λ) =
1

−Er

{

∂2 ln p(r|λ)
∂λ2

} . (2.10)
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2.3.2 The Modified Cramér-Rao lower bound (MCRB)

The CRB is well known and widely adopted for its simple computation, but its close-

form evaluation becomes mathematically intractable when the vector of observables

contains, in addition to the parameter to be estimated, also some nuisance parameters,

i.e., other unknown random quantities whose values we are not interested in (infor-

mation data, random chips of the code of a ranging signal etc.), but that concurs

to shape the actual values of the observables. To encompass the problem, it has

been shown in [17] that in the presence of nuisance parameters, the variance of any

unbiased estimator is lower bounded by the so-called Modified Cramér-Rao lower

bound (MCRB), which is much simpler to evaluate than the true CRB. As proven

in [17] the MCRB is in general looser than the true CRB, but it has been also

demonstrated that in a few specific cases of synchronization parameter estimation,

the MCRB is essentially as tight as the true CRB.

To better understand the problem, lets assume that the observable is given by a

received waveform in an AWGN channel, whose baseband equivalent (or complex

envelope) is

r (t) = x (t) + n (t) , (2.11)

and which is observed over an interval Tobs. In (2.11) x (t) is the information-bearing

signal and n (t) represents the complex-valued additive white Gaussian noise with

two-sided power spectral density 2N0. If we now assume that the signal is known

in most of its basic characteristics (nominal carrier frequency, modulation format,

signaling interval and so on), the remaining unknown parameters can be divided into

two groups: the group of the parameter/parameters to be estimated and the group

of unwanted parameters. Limiting to the case of estimating one parameter, denoted

by λ, all other parameters, including the data, are collected in a random vector u

having a known pdf p(u) which does not depend on λ. An exact representation of

the observed waveform r (t) would require infinite-dimensional vector spaces, but it is

realistic to assume that a finite-dimensional vector r can be found to represent r (t)

with adequate accuracy. It follows that the observation vector r is thus given by

r = x(λ,u) + w. (2.12)

To compute the CRB as in (2.9) the pdf p(r|λ) is needed. In principle it can be
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computed from the integral

p (r|λ) =

+∞
∫

−∞

p (r|u, λ) ·p (u) du, (2.13)

where p (r|u, λ), the conditional probability density function of r given u and λ,

is easily available, at least for additive Gaussian channels. Unfortunately, in most

cases of practical interest, the computation of (2.9) is impossible because either the

integration in (2.13) cannot be carried out analytically or the expectation in (2.9)

poses insuperable obstacles. It is in this case that the MCRB reveals fundamental.

The MCRB in fact is defined as follows

MCRB (λ) =
1

Er,u

{

[

∂ ln p(r|u,λ)
∂λ

]2
} (2.14)

or, equivalently,

MCRB (λ) =
1

Eu

[

E
r|u

{

[

∂ ln p(r|u,λ)
∂λ

]2
}] (2.15)

and it reveals much easier to compute. In fact, for the Gaussian channel as in (2.12),

the pdf is

p(r|u, λ) = exp

(

− 1

2σ2
w

|r − x(λ,u)|2
)

= exp

(

− 1

2N0
|r − x(λ,u)|2

)

(2.16)

and the MCRB reduces to [17]

MCRB (λ) =
N0

Eu

{

∣

∣

∣

∂x(λ,u)
∂λ

∣

∣

∣

2
} . (2.17)

Coming back to the problem of computing the CRB for the signal r (t) (2.11), in [56]

it is shown that in the limit, as the number of dimensions of r tends to infinity, a

formula like (2.17) does still apply provided that p(r|u, λ) is replaced by the likelihood

function

Λ(u, λ) = exp

(

− 1

2N0

∫

Tobs

|r (t) − x (t)|2 dt
)

, (2.18)

and the expectation over r is replaced by the expectation over the noise process n (t).

With this changes (2.17) becomes

MCRB (λ) =
1

En,u

{

[

∂ lnΛ(u,λ)
∂λ

]2
} (2.19)
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and substituting (2.18) into (2.19) one gets after some manipulations [17],

MCRB (λ) =
N0

Eu

{

∫

Tobs

∣

∣

∣

∂x(t)|u
∂λ

∣

∣

∣

2

dt

} (2.20)

Note that the MCRB is much simple to evaluate than the CRB.

For completeness, we report the CRB expression when no nuisance parameters are

present for the signal (2.11). Starting from (2.9), after some manipulation we get

CRB (λ) =
N0

∫

Tobs

∣

∣

∣

∂x(t)
∂λ

∣

∣

∣

2

dt
(2.21)

whose numerical value clearly depends only on the type of modulation, on the time

of observation and on the parameter to estimate.

2.4 Ziv-Zakai bound (ZZB) and Modified Ziv-Zakai

bound (MZZB)

2.4.1 The Ziv-Zakai lower bound (ZZB)

The ZZB is a theoretical performance limit in signal parameter estimation, for both

biased and unbiased estimators [11], [59] representing a lower benchmark for the mean

squared error (MSE). The Ziv-Zakai formulation of the bound comes out from the

detection theory and it is based on the probability of deciding correctly between two

possible values h and h+∆ of the parameter to estimate. The ZZB belongs to the

family of so-called Bayesian bounds which are adopted to compute the theoretical

performance of random parameters estimators and which take into account the a

priori information (pdf) about the parameters space. In this frangent we consider

only one parameter to be estimated with a uniform pdf in [0,D], even though the

theory proposed here can be expanded for a set of parameters and other distributions

could be adopted [7].

Lets assume that the observable is given by a received waveform in an AWGN

channel, whose baseband equivalent (or complex envelope) is

r (t) = x (t) + n (t) , (2.22)
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and which is observed over an interval Tobs. In (2.22) x (t) is the information-bearing

signal which is a (non-linear) function of a random parameter λ to estimate (x (t, λ))

and n (t) represents the complex-valued additive white Gaussian noise with two-sided

power spectral density 2N0.

The Ziv-Zakai lower bound (ZZB) states that the MSE of any estimator of λ is lower

bounded by

MSE(λ̂) = E[(λ̂ − λ)2] ≥ ZZB (λ) (2.23)

where ZZB (λ) denotes the true ZZB, given by [11]

ZZB (λ) =
1

D

∫ D

0

∆

∫ D−∆

0

Pe (h, h+ ∆) dhd∆ (2.24)

where Pe(h,h+∆) is the minimum probability of error in deciding between the signals

x (t, h) and x (t, h+ ∆), with h and h+∆ trial values of the λ, uniformly distributed

on the uncertainty range [0,D]. Observing the (2.24), the computation of ZZB needs

a double integration and it appears as a two dimensional average of the probability of

error function weighted by the ∆ function, evaluated for all the pairs of trial values.

The (2.24) can be further enhanced by [7, 8, 59]

ZZB (λ) =
1

D

∫ D

0

∆G

[

∫ D−∆

0

Pe (h, h+ ∆) dh

]

d∆ (2.25)

where G [·] is a nonincreasing function of ∆ obtained by filling the valleys (if there

are any) in the bracketed function, obtaining a tighter bound than the basic one.

Assuming that one of the two replicas of the signal is transmitted, each one with

equal probability, the minimum probability of detection error is given by [56]

Pe (h, h+ ∆)=Q





√

d2 (∆, h)

2N0



 (2.26)

where

Q(x)=
1√
2π

∫ +∞

x

exp

(

−z
2

2

)

dz (2.27)

and with the squared distance between the (baseband equivalent) signal replicas

defined as

d2 (∆, h) =

∫ Tobs

0
|x (t, h) − x (t, h+ ∆)|2 dt

2
(2.28)
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where Tobs is the time of observation.

Under these assumptions the improved version of the bound results

ZZB (λ) =
1

D

∫ D

0

∆G





∫ D−∆

0

Q





√

d2 (∆, h)

2N0



 dh



d∆. (2.29)

If the error probability is independent of trial h (Pe (h, h+ ∆) = Pe (∆)), i.e. the

distance does not depend on h, the (improved) ZZB can be reduced to the form

ZZB (λ) =
1

D

∫ D

0

∆G



(D − ∆)Q





√

d2 (∆)

2N0







 d∆ (2.30)

which requires a single integration and can be easier carried out.

2.4.2 The Modified Ziv-Zakai lower bound (MZZB)

The ZZB results relatively easy to compute, but its evaluation becomes mathemati-

cally intractable when the received signal contains, in addition to the parameter to

be estimated also the “stray” (nuisance) parameters. As for the CRB and MCRB

reported in Sect. 2.3, here we define a modified version of the ZZB which results much

simpler to evaluate than the true ZZB. As we proof hereafter, the Modified Ziv-Zakai

lower bound (MZZB) is in general looser than the true ZZB, by definition, but it has

been also demonstrated that in the specific cases of interest, the MZZB is essentially

as tight as the true ZZB, [19, 20].

Recalling the scenario depicted in Sect. 2.3.2, the observable is given by a received

waveform in an AWGN channel, whose baseband equivalent (or complex envelope) is

r (t) = x (t) + n (t) , (2.31)

and which is observed over an interval Tobs. The received signal contains the λ to

estimate and other unknown parameters with a known pdf, collected in a random

vector u, i.e. the nuisance parameters vector.

Retracing the steps seen before, and indicating with Pe (h, h+ ∆|u) the minimum

probability of detection error between x (t, h|u) and x (t, h+∆|u) as in (2.26), we can
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find a conditional bound, assuming that u is known:

MSE(λ̂|u) = Er|u[(λ̂− λ)2] (2.32)

≥ ZZB (λ|u) =
1

D

∫ D

0

∆G

[

∫ D−∆

0

Pe (h, h+ ∆|u) dh

]

d∆

where we have applied the non increasing “valley-filling” function G [·] according

to [8,59]. We obtain the final ZZB, including the nuisance parameters effect, averaging

(2.32) over all possible values of the vector u

Er,u[(λ̂− λ)2] = Eu{Er|u[(λ̂ − λ)2]} (2.33)

≥ Eu {ZZB (λ|u)} = ZZB (λ)

To simplify, we can define the u-conditioned squared distance, and we can cast the

expression of the bound (2.33) into

ZZB(λ)=
1

D

∫ D

0

∆G





∫ D−∆

0

Eu







Q





√

d2 (∆, h|u)

2N0











dh



d∆ (2.34)

that can be further simplified if the distance is independent of h as in (2.30).

Unluckily, the calculation of (2.34) proves to be very heavy due to the presence

of the expectation on u. If K is the size of the nuisance parameters vector u, the

computation of the ZZB (λ) requires an integration on K+2 dimensions. This could

be carried out numerically only for low K, while for large sets of parameters, the

integration is computationally heavy, and at times inaccurate. For this reason, it is

expedient to find some mathematical “tricks” to solve this “impasse”.

A similar situation has been solved for the well known Cramér-Rao Bound (CRB) in

the presence of nuisance parameters. As fully explained in [17], the MCRB is derived

from the original CRB with nuisance parameters by exploiting i) some properties of

the conditional CRB with respect to u, ii) the convexity of the function φ (x)=−ln (x)

on R
+, and iii) the well-known Jensen’s inequality [17], [15]. We can adopt a similar

approach here:

Er,u[(λ̂ − λ)2] = Eu{Er|u[(λ̂− λ)2]} ≥ Eu {ZZB (λ|u)} (2.35)

= ZZB (λ) =
1

D

∫ D

0

∆G





∫ D−∆

0

Eu







Q





√

d2 (∆, h|u)

2N0











dh



d∆
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≥ 1

D

∫ D

0

∆G





∫ D−∆

0

Q





√

Eu{d2(∆, h|u)}
2N0



dhd∆



,MZZB(λ) (2.36)

where the first inequality is derived from the application of the ZZB to λ for a given

vector u, while the last one comes from Jensen’s inequality [15]. In our case, the

strictly convex function φ (x) can be easily proved to be Q (
√
x), and consequently

Q





√

Eu {d2 (∆, h|u)}
2N0



≤Eu







Q





√

d2 (∆, h|u)

2N0











(2.37)

so that (2.35),

MZZB (λ) ≤ ZZB (λ) . (2.38)

To sum-up, the expression of the modified ZZB runs as follows:

MZZB(λ),
1

D

∫ D

0

∆G





∫ D−∆

0

Q





√

Eu{d2(∆, h|u)}
2N0



dhd∆



 (2.39)

that can again be simplified if the distance is independent of h. It is very apparent that

this expression is computationally less heavy than (2.34), since it only requires the

calculation of Eu

{

d2|u
}

=
∫+∞

−∞

(

d2|u
)

pu (u) du with a K-dimensional integration only.

In addition, such computation can often be closed analytically when the statistics of

the nuisance parameters are known and sufficiently simple, as we will show in the

Chapter 5 with some case of study.

2.5 CRB and ZZB in TOA estimation

2.5.1 Motivation

As clearly stated in the Introduction, this thesis deals with topics in signal analysis for

TOA estimation, with particular application to satellite positioning. In particular,

SS modulated signals will be analyzed throughout, as insight to actually adopted

GNSS signals and alternative modulations for future signal-in-space (SIS). In fact, as

delineated in Sect .1.6.3, the modulation actually adopted is GNSS is a DS-SS linear

modulation, thanks to which signals coming from different satellite are univocally

determined by the code sequence associated to each satellite. For this reason, in the
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sequel we will focus on the class of SS modulations, deeply investigating on spread-

spectrum continuous-phase-modulation and multicarrier signals. Performance of the

different SS modulated signals will be thus discussed in details, focusing on TOA

estimation accuracy together with some other parameters of analysis that has to be

taken into account in GNSS systems.

As far as TOA estimation accuracy is concern, the MCRB and MZZB will be used

as performance benchmark, since it is independent from the receiver structure, and

thus it can be used to characterize different signal modulations, relying only on the

signal structure itself.

2.5.2 Signal model

In this section, we formalize the lower bounds in TOA estimation for a generic digitally

modulated signal.

In particular we focus on a bandpass signal, whose format is

xBP (t) = Re

{

x (t) ej(2πf0t+ϕ)
}

, (2.40)

where Re {·} denotes the real part of a complex-valued argument; f0 and ϕ are the

carrier frequency and phase, respectively and x (t) is the complex signal with average

transmitted power Px, digitally modulated by the vector a = {an}. The vector a

represents the data-modulated spreading code, given by the product of the binary

data symbols with the spreading code ranging sequence c = {cn}N−1
n=0 assigned to

each satellite.

In the sequel we will adopt this notation, using the subscript BP when referring to

the real bandpass signal, while nothing will be added when referring to the baseband

equivalent (complex) signal.

In this section, we restrict the study of TOA estimation fundamental limits to a

frequency-flat channel, which represents an acceptable approximation for the satellite

communication channel [29].

Hence, assuming ideal coherent demodulation (thus with the realistic assumption

that during signal tracking the carrier frequency f0 and the carrier phase ϕ are known

to a sufficient accuracy), the baseband-equivalent of the received SS signal reduces to

r (t) = x (t− τ) + n (t) , (2.41)
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where x (t) is the complex-valued SS signal; τ is the group delay experienced by the

radio signal when propagating from the satellite to the receiver (as seen in the reference

time of the receiver) [41] to estimate; and n (t) represents the complex-valued AWGN

with two-sided power spectral density 2N0.

It is worth noting that the following analysis is focused on detecting a single satellite

during the tracking stage (corresponding to single-user detection in a communication

scenario). As a result, although the effects of other users should be explicitly included

in a multiuser model, considering those effects in n (t), as done in (2.41), represents

a good approximation in view of the central limit theorem.

For the sake of simplicity, the transmitted signal is assumed to be an unmodulated

signal, in the sense of data-less signal: a = c. This is equivalent to consider either

a pilot signal, or a data signal in which the data modulation is removed prior to

the tracking stage. This approach does not reduce the generality of the problem,

since the effects of data modulation can be neglected when considering modulated SS

signals with high processing gain N , as is typical in the field of satellite navigation.

Moreover, when secondary codes are used, the following analysis can easily be applied

considering the vector c as the product of the primary code with the secondary code.

As a result, the received signal (2.41) can be seen as the combination of noise with a

“spreading signature waveform x (t) ” defined as a function

x (t) = f (c, p (t) , Tc) , (2.42)

thus depending on the type of modulation f(), code sequence c, chip-rate 1/Tc and

pulse shape p (t) adopted.

2.5.3 Characterization of (M)CRB and (M)ZZB in TOA esti-

mation

In this section we recall the main results analyzed in the previous sections specializing

them for the TOA estimation problem. Assuming the signal model depicted in the

Sect. 2.5.2, the parameter τ to be estimated is the time-of-arrival of the radio signal

x (t) which propagates in the AWGN channel. Hence, following the same notation

of the previous sections, λ = τ and x (t) is the transmitted signal. The CRB and

the MCRB become [17, 46], in absence and in presence of nuisance parameters,
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respectively

CRB (τ) =
N0

∫

Tobs

∣

∣

∣

∂x(t−τ)
∂τ

∣

∣

∣

2

dt
(2.43)

and

MCRB (τ) =
N0

Eu

{

∫

Tobs

∣

∣

∣

∂x(t−τ |u)
∂τ

∣

∣

∣

2

dt

} (2.44)

remembering that these limits are benchmarks for the unbiased estimators variance,

in the estimation of the scalar parameter τ , and that the expressions would change if

biased algorithms are adopted [16, 54, 56].

Let us assume now the parametric random process x (t), in which the sequence of

(symbols) chips assumed binary random is the only nuisance parameter (u = c). If

the (2.44) can not be easy computed in the time domain, the MCRB can be either

computed in the frequency domain [2,27,63], in particular for filtered or bandlimited

signals.

To attain an accurate approximation of the bound, specifically, we have to assume

Tobs very large, so that by applying the Parçeval theorem to the (2.44),

MCRB (τ) =
N0

Tobs4π2
∞
∫

−∞

f2Sx (f) df

=
BeqTc

4π2 · Ec

N0
β2

x

(2.45)

where Sx (f) is the PSD of the complex signal, βx is the root second-order moment

of the signal spectrum, normalized to the complex signal power
∞
∫

−∞

Sx (f)df = 2Px,

i.e. the (squared) Gabor bandwidth; and defined by

β2
x

∆
=

∞
∫

−∞

f2Sx (f)df

∞
∫

−∞

Sx (f) df

, (2.46)

Ec = Px · Tc is also the average signal energy per chip, and Beq = 1/2Tobs is the

(one-sided) noise bandwidth of a closed-loop estimator equivalent to an open-loop

estimator operating on an observation time equal to Tobs. From (2.45)-(2.46), we

conclude that the MCRB depends on the second-order moment of the PSD of the

complex signal, independent of the type of signal format (modulation, spreading,

etc.) that is adopted. In particular, we see that signals with the same PSD have the
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same MCRB even if generated by different modulations. As a proof of it, in Chapter

4 we will demonstrate the equivalence of the MCRB for a single carrier signal and a

multicarrier signal with the same PSD.

For the mean squared error (MSE) benchmark of biased or unbiased τ estimators the

ZZB and the MZZB can be computed in absence and in presence of stray parameters,

respectively by

ZZB (λ) =
1

Tx

∫ Tx

0

∆G



(Tx − ∆)Q





√

d2 (∆)

2N0







 d∆ (2.47)

and

MZZB(τ),
1

Tx

∫ Tx

0

∆G



(Tx − ∆)Q





√

Eu{d2(∆|u)}
2N0







 d∆ (2.48)

where [0,Tx] is the uncertainty range of the τ with uniform pdf, chosen according to

the TOA estimation stage, with the (u-conditioned) squared distance

d2 (∆, h|u) =

∫ Tobs

0
|x (t− h|u) − x (t− h− ∆|u)|2 dt

2
(2.49)

≈
∫ Tobs

0
|x (t|u) − x (t− ∆|u)|2 dt

2
= d2 (∆|u) = 2ETobs

(1−ρTobs
(∆|u))

where the approximation holds when the time of observation Tobs is large enough,

lightening the MZZB computation by an integration; and where the (conditional)

signal correlation function

ρTobs
(∆|u) =

Re

{

∫ Tobs

0
x (t|u)x∗ (t− ∆|u) dt

}

2ETobs

(2.50)

is normalized to the signal energy ETobs
= PxTobs with Px the band-pass (transmitted)

signal power (which is usually also called C).

If we assume binary random sequence of i.i.d. (symbols) chips as nuisance parameter

(u = c), with a long time of observation, when we apply the expectation Ec{·} to

(2.49), computing the MZZB, the (2.50) becomes the (normalized) theoretical signal

correlation function Rx (∆). Hence when the computation of the MZZB could result

heavy in the time domain and easier in the frequency one, an alternative formulation

can be adopted. In the argument of the Q function in (2.48), assuming a large
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time of observation, the c-averaged distance can be re-formulated in the frequency

domain [59] by applying the Parçeval theorem,

Ec{d2 (∆|c)} ≈ 2PxTobs

∞
∫

−∞

Sx (f) [1 − cos(2πf∆)] df

∞
∫

−∞

Sx (f) df

(2.51)

particularly useful for filtered or bandlimited signals, adjusting the integrations limits.

Finally using (2.51), the MZZB can be rewritten as

MZZB(τ),
1

Tx

∫ Tx

0

∆G













(Tx − ∆)Q













√

√

√

√

√

√

√

√

1

BeqTc

Ec

N0

∞
∫

−∞

Sx (f) sin2(πf∆)df

∞
∫

−∞

Sx (f)df

























d∆

(2.52)

Analyzing this alternative formulation some general results can be found [7, 8, 59]:

1. For (very) low Ec/N0 (SNR), the MSE of any estimator tends to σ2
τ = T 2

x/12,

i.e. the variance of a uniform random variable in [0, Tx]. In this region, the

optimum estimator actually uses the a priori information on τ , estimating the

random variable with its mean value, and neglecting the received noisecorrupted

data. This result can be easy found noting that when Ec

N0
→0, Q

(√

αEc

N0

)

→1/2

and MZZB→σ2
τ .

2. However, for high SNR ratios can be proof that the MZZB tends to the MCRB.

In particular, observing that sin2(πf∆) ≤ (πf∆)2 and (2.46), with some math-

ematics [7, 59], can be found that

MZZB(τ)≥ 1

Tx

∫ Tx

0

∆G

[

(Tx − ∆)Q

(
√

π2

BeqTc

Ec

N0
β2

x∆2

)]

d∆ (2.53)

=
1

Tx

∫ Tx

0

∆(Tx − ∆)Q(∆µ)d∆ =
1

µ2

1

µTx

∫ µTx

0

y(µTx − y)Q(y)d∆

with µ2 = π2

BeqTc

Ec

N0
β2

x, which for large SNR (µTx ≫ 1) approaches the limit

→֒ 1

4µ2
=

BeqTc

4π2 · Ec

N0
β2

x

= MCRB(τ) (2.54)
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3. The boundary of the two regions is a threshold which depends on the charac-

teristics of the signaling waveform adopted.

The CRB and the ZZB are functions of the particular values of the “spreading

signature waveform x (t) ” (2.42). Equations (2.43)-(2.48) give a practical criterion to

numerically assess the performance in terms of position accuracy by TOA accuracy.

Thus, designing a signal (2.42) that minimizes the CRB and ZZB appears to be a

motivated approach for improving positioning performance. Therefore, improving

TOA estimation accuracy translates into minimizing (2.43)-(2.48).

As we have underlined, the transmitted signal x(t) can be thought as a “spreading

signature waveform x (t) ” as in (2.42), thus minimizing the bounds can be achieved

by either modifying the code sequence c or the shaping pulse p (t) separately, or by

selecting code sequence and shaping pulse jointly in an optimization process of the

entire “spreading signature waveform” (2.42). This process can imply also to use a

different modulation format, that is, a different function f(·) in (2.42).

In the next chapters, we propose different methods to improve TOA estimation

accuracy for future GNSSs based on signal design at the transmitter side, deeply

discussing the SS-CPM and multicarrier signals. For this reason, in the next chapters

the CRB and ZZB will be specifically re-formulated case by case depending on the

modulation format under investigation.

Obviously, when the signal model will imply nuisance parameters u, TOA accuracy

will be studied making use of the MCRB (2.44) and MZZB (2.48), otherwise the true

bounds will be adopted.

2.5.4 Considerations on the applicability of the bounds

In the previous sections, we have recalled the basics of the estimation theory, giving

particular emphasis to the CRB and ZZB for TOA estimation. Particularities of the

bounds applied to different signal formats, will be discussed in later chapters, as soon

as they will be used. We here mention some general characteristics on the existence

and applicability of such bounds, as coming from the literature.

First of all, the true CRB is never below the MCRB so that the MCRB is in general

looser than the true CRB. However, it was shown in [17] that in a few specific cases
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of synchronization parameter estimation, the MCRB is essentially as tight as the true

CRB at high signal-to-noise ratio (SNR).

Moreover, in [47] it is proven that the MCRB equals the asymptotic CRB at high

SNR when the parameter to be estimated is not coupled with the nuisance parameters,

finding that for considerably many cases of signal synchronization the asymptotic CRB

is essentially the same as the MCRB.

In particular, in [17] it is shown that approximate equality between the CRB and

MCRB is found to occur for estimation of τ when the carrier frequency f0, the carrier

phase ϕ and data are known.

On the other hand, the CRB and the MCRB are known to yield poor results for small

SNR ratios. To this regard, alternative bounds such as the ZZB [11], [60] could be

investigated, as they are known to be tighter bounds at low SNR. At high SNR ratios

the CRB and ZZB performs the same tightness [7,58,59], whereas for medium values

of SNR, ZZB again results tighter than CRB showing a threshold behavior which

depends on the characteristics of the signaling waveform adopted [23, 24, 58, 59].

Similarly to the CRB case, the true ZZB is never below the MZZB so that the MZZB

is in general looser than the true ZZB. However, it was shown in [19,20] that in a few

specific cases of practical interest, when the number of nuisance parameters is high

enough, the MZZB and the ZZB match each other in every SNR regions, with a very

important gain in terms of computation.

Anyhow, in the sequel, we will deal with problems for which the SNR values belong

to a range of medium-high SNR (e.g. tracking stage), for which the CRB/MCRB

validity is ensured, and also we will investigate applications for which the SNR can

span from low to high values (e.g. acquisition stage) for which the ZZB/MZZB will

be adopted.

A second point to be clarified is that the valid application of the (M)CRB (2.9)

requires that the signaling waveform be sufficiently smooth [60], since it has to exist

the second derivative of the signal. To this regard, we can anticipate that in the cases

of practical interest reported in this thesis, this condition results satisfied. Moreover,

for the few cases in which this condition is not fulfilled, an alternative expression of

the bound can be used, since it relies on the signal properties in the frequency domain.

On the other hand, the (M)ZZB can be computed for every signaling waveform

adopted not showing any constraint in these terms, except for the complexity in
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its computation.

Finally, it has to be mentioned that, even if the (M)CRB recalled up till now are

applied when estimating a scalar parameter, they can be used also for the estimation

of a uniformly distributed random variable, as it is our case of interest. (Simply the

reader can note that the tracking process is fulfilled immediately after the acquisition

stage and thus the time delay to be estimated is known to belong to a certain time

interval). In fact, when the estimation of a random variable is quite accurate, the

CRB/MCRB expression for a scalar parameter, can be used as good approximation

of the real expressions [56,60]. In particular, rigourously speaking, if the a priori pdf

of the variable τ to be estimated is known, the performance becomes the ones of an

estimator of a random variable, showing that the lower bound of the mean squared

estimation error (MSEE) is set to [56]

E
{

[τ̂ − τ ]2
}

>
N0

Eτ

{

∫

Tobs

[

∂x(t−τ)
∂τ

]2

dt− ∂2 ln pτ (τ)
∂τ2

} . (2.55)

It follows that the inequality requires the signal being “smooth” (as before), and

also the function ∂2 ln pτ (τ)
∂τ2 existing. When the parameter τ is uniformly distributed,

(and consequently the pdf pτ (τ) holds jump discontinuities), the bound can be

reformulated avoiding the discontinuities in pτ (τ), obtaining [56], [60]

E
{

[τ̂ − τ ]
2
}

>
N0

∫

Tobs

[

∂x(t−τ)
∂τ

]2

dt
, (2.56)

valid when the estimation is accurate, that is, for high SNR values. It can be observed

that, under such hypothesis, (2.56) coincides with (2.44). In the sequel, we will refer

always to formula (2.44), intending either that there is no knowledge on the a-priori

distribution of the τ or, if τ is uniformly distributed, that the approximation (2.56)

is implied.

By definition, the (M)ZZB in (2.47) and (2.48) do not require any approximation

for the estimation of uniformly distributed random parameters [7, 11, 19, 23]. The

computation of the bounds needs the knowledge of the a priori uncertainty of the

τ to estimate. As it will be investigated in the Chapter 5, the uncertainty interval

will be chosen according to the signaling waveform and the application. In particular
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the TOA estimation is addressed, in its acquisition and tracking stages, assuming

different uncertainty ranges within which the exact delay value has to be found by

the estimators.

2.6 Conclusions

This chapter investigated on the ultimate accuracy limits, defined by signal syn-

chronization and estimation theory, for time delay estimation (TDE) of a generic

digitally modulated signal, posing also the basis for some theoretical performance

analysis on specific modulation formats that will be discussed in the following chap-

ters. To this aim, specific inside have been given to the expressions of Cramér-Rao

lower bound (CRB) and Ziv-Zakai lower bound (ZZB) and their modified versions

in presence of nuisance parameters, applying them for TDE of a signal embedded in

the additive white Gaussian noise (AWGN) channel. In fact, the CRB is the lower

bound on the variance of an estimator and, as such, can be used as a design signal

parameter, since signals minimizing TDE bound correspond to signals maximizing

positioning accuracy. The same considerations can be done for the ZZB which is a

theoretical mean squared error (MSE) benchmark, which can be adopted for biased

or unbiased estimators, and whose formulation highlight a correspondence between

the correlation/spectral properties of the signal to its TDE performance. Deeply

investigating on the two bounds, the convergence of both limits to the same value is

addressed, showing that the spectral shaping and placement in frequency of the signal

can heavily affect TOA accuracy and so, positioning accuracy.
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Chapter 3

TOA Estimation with

SS-CPM signals for GNSS

In this Chapter, we investigate the performance of a subset of spread spectrum

continuous-phase-modulated (SS-CPM) signals, characterized by a modulation index

h greater than one, considering the architecture of a simplified digital signal tracker

for GNSS. After a general description of signal spectral properties, we focus on the

problem of ranging code synchronization (code tracking), presenting few low-complex

chip timing recovery loops based on an OQPSK approximation of the signal. The

relative performance of the proposed recovery loops are analyzed in terms of RMS

tracking error and multipath (MP) robustness.

3.1 Introduction

New GNSSs [51] such as Galileo [26] and modernization of GPS will soon become a

reality, exhibiting higher performance wrt older GNSSes like GPS first generation.

Improvements have been achieved taking full advantage of the gains obtained in the

last years on concepts and technologies, such as new materials and components for

spacecraft or advanced digital signal processing [26], just to cite a few. Nevertheless,

even if at the time of writing Galileo is still not fully operational, the need for more

systems and signals is already pushing the researchers to prospect new solutions for

future advanced GNSSes.

To resume the problem, the ultimate goal of satellite positioning systems is enhanced

user position accuracy, that is directly related to the accuracy of time-of-arrival (TOA)
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estimation of ranging signals [50]. Current activities aim at enhancing the overall nav-

igation performance by providing better navigation signals to those available today,

i.e., by optimizing modulation schemes. Present-day ranging signals are based on

DS-SS modulation and thus signal optimization can be achieved by either improving

the code sequences [33], or multiplexing existing signals like multiplexed binary offset

carrier (MBOC) [9], [37], or introducing new modulation chip waveforms [35], [4], [14]

or, optimizing a signature waveform eventually given by an optimal combination of

code and chip waveform as in [62], [28] and [4]. As a result of these studies, several

DS-SS signal options have been proposed, aiming at improving tracking performance

both in an AWGN channel and in a channel affected by multipath (MP), while

maintaining good acquisition and multiple access properties. Another relevant signal

design constraint is the need to guarantee a modulation scheme preserving a constant

envelope. This feature is particularly critical when looking at GNSSes, where the

use of highly non-linear HPA contrasts with severe specifications in terms of OOB

emission for certain services [6], [53], [14].

One of the solutions to the considerations above can be the use of ranging signals

based on robust constant envelope modulations. Spread spectrum continuous-phase-

modulated (SS-CPM) [3] signals are constant envelope modulations by definition and

this ensures insensitivity to nonlinear distortions induced by the transmitter HPA

operated at saturation region.

Specifically, this contribution analyzes SS-CPM signals applied to satellite position-

ing, in terms of signal generation, signal spectral properties, tracking performance

and multipath robustness.

As is known, time delay estimation (TDE) or TOA estimation (hereafter assumed

synonymous) tracking accuracy, and thus positioning accuracy, is related to the second

order moment of the PSD of the ranging signal [42], [28], [31]: the higher the second

order moment, the better the performance. The BOC modulations [9], [37] used

for Galileo were chosen, among other features, for their characteristic of shifting the

power at the edge of the band (and thus ensuring higher PSD second order moment)

by means of subcarriers modulation. For the sake of completeness we here mention

that similar goal is achieved in [6] by multiplying Minimum-Shift-Keying (MSK) and

Gaussian Minimum-Shift-Keying (GMSK) chip waveform with a BOC(m,n) modu-

lation. In this chapter, we present some expedients to achieve this goal by means

of general SS-CPM ranging signal design (note that MSK and GMSK are particular
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CPM subclasses). Setting the modulation index h to semi-integer values with h > 1

allows the SS-CPM signal to behave like having a subcarrier, exactly in the same way

as it happens for the BOC modulation, but with the inherent advantage of preserving

the constant envelope transmission.

In the following sections, once defined the signal properties, some tracking algorithms

suitable for SS-CPM signals are studied and compared to the relevant CRB. In

particular, some TDE algorithms already presented for Spread-Spectrum Generalized-

Minimum-Shift-Keying (SS-GenMSK) timing synchronization and data detection in

communication systems [34], are here generalized and analyzed as applied to signal

tracking. SS-GenMSK modulation is a specific subset of SS-CPM signals, obtained

when the modulation index h is set to h = 0.5. We extend here such algorithms [34]

to the case of semi-integer values h (h=H+1/2, H ∈ N) with h > 1.

Finally, this contribution addresses the issue of mapping two different services onto

a single SS-CPM signal. As case study, two different services are envisioned, either at

the same chiprate (same-rate-services, SRS), or at two different chiprates (two-rate-

services, TRS).

The chapter is organized as follow: Sect. 3.2 theoretically describes the signal

modulations and the service mapping and analyzes the signal correlation and spectral

properties; In Sect. 3.3 SS-CPM tracking loops are described, while different types of

SS-CPM signal configurations are tested in terms of tracking performance in AWGN

(Sect. 3.4.1) and MP resistance (Sect. 3.4.2). Considerations on the use of variable

chip-rates services are then drawn in Sect. 3.4.3 and finally a complete summary of

performance results is reported in Sect. 3.4.4. General comments conclude the chapter

in Sect. 3.5.

3.2 Signal design

3.2.1 Signal definition

The baseband equivalent of a CPM signal with binary symbols is [3]

xCPM (t) =
√

2Px exp

{

j

[

2πh
∑

k

αkq (t− kTc) + φ0

]}

(3.1)
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where Px is the signal power, Tc is the symbol-time, h is the modulation index, αk

are the binary symbols, φ0 is the initial phase and q(t) is the phase pulse related to

the finite-support frequency pulse g(t) by the relation

q (t) =

∫ t

−∞

g (β) dβ (3.2)

The phase response q(t) is normalized such that

q (t) =

{

0 t ≤ 0

1/2 t ≥ LTc

(3.3)

where L, the integer duration of g(t) as measured in symbol times, is called response

length, and represents the system memory. In the following, CPM signals will be

identified by the response length L and the type of frequency pulse, in the common

short form LPULSE [3]. As an example, the CPM using a rectangular pulse with

support L = 1 will be denoted as 1REC. A special case of CPM is the popular

minimum shift keying (MSK) signal (h = 1/2, L = 1, q(t) = t/2Tc for 0 < t < Tc),

that can be interpreted as a Quadrature Phase-Shift Keying (QPSK) signal with

an in-phase-quadrature-phase (I-Q) timing offset of Tc (Offset QPSK) and, as such,

can be demodulated by a simple I-Q linear receiver. This property reduces receiver

complexity, and thus CPM signals bearing this feature are highly desirable.

Generalized Minimum-Shift-Keying (Gen-MSK) [3], is a particular subset of CPM,

with h = 0.5 that can be demodulated using linear MSK-type receivers with limited

loss in performance compared to optimum demodulation. Various ideas for selecting

detection filters for MSK-type receivers are analyzed in the literature [43], [45], while

digital modem architecture for spread spectrum communications employing Gen-MSK

modulated signals have also been studied in [34].

It is also well-known that the Offset QPSK (OQPSK) approximation of Gen-MSK

can be generalized for any constant amplitude binary phase modulation [43], as any

CPM signal can be expressed as a sum of a finite number of time-limited amplitude

modulated pulses (AMP decomposition) and the approximation is often good just

considering a “main pulse” only (as happens with Gen-MSK). In particular, for semi-

integer values of the modulation index h or for phase response with full length (L =

1), the main pulse is the first component of Laurent’s decomposition [43], and the

computation of the approximated signal is simplified. In this chapter, we will focus
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on this particular subset of CPM, that is on CPM signals such that

L = 1 or h = H + 1/2, H ∈ N, (3.4)

and we will name them “Semi-integer MSK (SiMSK)” from now on, extending the

Gen-MSK with the schemes with a semi-integer modulation index greater than 0.5.

For this defined family the CPM signal can be well approximated by

xCPM (t) ∼=
√

2Px

N
∑

n=−∞

JA0,nC0 (t− nTc) (3.5)

where the complex-valued, unit-amplitude coefficient JA0,n associated to the main

pulse C0 at time nTc is

JA0,n = (exp {jhπ})A0,n = (exp {jhπ})
n

P

i=−∞

ai

(3.6)

and the main pulse C0 of length (L+ 1)Tc is

C0 (t) =

L−1
∏

i=0

Si (t) =

L−1
∏

i=0

S0 (t+ iTc) =

L−1
∏

i=0

[

sin (ψ (t+ iTc))

sin (hπ)

]

, 0 ≤ t ≤ (L+ 1) Tc

(3.7)

with ψ (t), the so-called generalized phase pulse function, derived from the phase

response function q(t) as follows:

ψ (t) =

{

2πhq (t) t < LTc

πh− 2πhq (t− LTc) t ≥ LTc.
(3.8)

The generalized phase pulse function ψ (t) has nonzero values only for 0 ≤ t ≤ 2LTc

and it is still more important than q(t) itself, since it allows the definition of the basis

of the Laurent decomposition.

Elaborating the general form (3.5), the CPM signal can also be represented as an

OQPSK, that is,

xCPM (t) ∼=
√

2Px

[

∑

m

γ2m−1C0 (t− 2mTc + Tc) + j
∑

m

γ2mC0 (t− 2mTc)

]

(3.9)

where γk is the I-Q symbol sequence generated by the symbols αk in (3.1) through

differential coding

αk = (−1)
k
γk−1γk (−1)

2h−1
2 . (3.10)
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In equation (3.1), we left unspecified the role of the binary “symbols” αk. In data

transmission, they represent the information bits to be sent on a wireless channel,

and Tc represents the bit time. With minor modifications, we can define a spread

spectrum CPM (SS-CPM) signal as depicted in Fig.3.1.

(−1)[
k+1
2 ]

Tc

(−1)
2h−1

2

di

1/Tc

αkβk
xSS(t)

f0

1/Tc

c|k|N

1/Tc

1/T

Code
Generator

Carrier
Generator

CPM
Modulator

Differential

Encoder

Figure 3.1: SS-CPM Signal generator.

In the scheme the incoming binary data symbols {di} at the bit rate 1/T are encoded

by a binary spreading code {ck} at the chip rate 1/Tc = M/T after an alternate chip

sign inversion. The resulting chip-rate symbols βk = dk//M · c|k|
N

(−1)[
k+1
2 ] are finally

mapped onto the CPM symbols αk = βk−1βk (−1)
2h−1

2 of (3.1), as shown in Fig.3.1,

where k//M denote the integer part of k/M (M = T /Tc is the spreading factor) and

|k|N represents the remainder of k/N (N being the code length).

This generalized explanation allows us now to define the traditional elements of a

signal used in satellite navigation. Clearly the code sequence {ck} corresponds to

the ranging code sequence associated to each satellite, while the symbols sequence

{di} can be associated either to the symbols of the navigation message (if we are

considering the transmission of the data component) or to a fictitious sequence of all

“one-symbols” {di =1} (if we are considering the transmission of the pilot component).
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Our SS-CPM signal has now exactly the same form as (3.9)

xSS−CPM (t) ∼=
√

2Px

[

∑

m

γ2m−1C0 (t− 2mTc + Tc) + j
∑

m

γ2mC0 (t− 2mTc)

]

(3.11)

with Tc the chip duration and γk
∆
= dk//M · c|k|N coming out by the βk and αk

definitions.

Equations (3.11), (3.10), (3.7) can be seen as a generalization of the SS-GenMSK

presented in [34]. Under condition (3.4) OQPSK approximation loss at the receiver is

almost negligible (example depicted in Sect. 3.2.2). Besides equation (3.11) becomes

a perfect equality and not an approximation if L=1 and h=H+1/2.

In the sequel, we will consider only SS-CPM under condition (3.4), namely “SS-

SiMSK” and we will refer indifferently to (3.1) or to its approximated version (3.11)

depending on the needs.

3.2.2 OQPSK approximation validation

In general, using only the first component of the Laurent’s decomposition instead

of complete AMP can cause a performance degradation. Under condition (3.4), the

main pulse C0 (t) is sufficient to ensure a good approximation. To prove this, signal

approximation losses have been analyzed in terms of degradation of the correlation

function. Figure 3.2 reports the normalized auto-correlation function RCPM (τ)

of the CPM signal defined in (3.1), and the normalized cross-correlation function

RCPM−OQPSK (τ) of the transmitted CPM signal (3.1) with its OQPSK version

(3.11), for the case of Gaussian pulse with L = 4 and for two instances of the

modulation index h.

1.0

0.5

0.0

-0.5

-3 -2 -1 0 1 2 3
τ / Tc

 4GAU; BTc=0.4
RCPM

    h=0.5;  h=2.5; 
RCPM-OQPSK     
    h=0.5;  h=2.5;

Figure 3.2: Comparison of normalized correlation functions, for h = 0.5 and h = 2.5.
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PRN codes (ideally random, independent, identically distributed (i.i.d.) and equiprob-

able) are assumed for both CPM and OQPSK version. It is evident that for h = 0.5

the two correlation functions coincide, showing optimal approximation. For h = 2.5

the use of the approximated filter translates into a gap of 1 dB in terms of peak-

to-peak correlation loss. We here mention that the correlation function of a generic

CPM depends on the frequency pulse, on the response length L and on the code

distribution. However, when chips are binary and i.i.d., as in our case, the correlation

function RCPM (τ) is zero for τ ≥ (L+ 1)Tc and relies only on the shape of the

frequency pulse. As a final remark, we recall here that the signal is transmitted

exactly as a CPM (3.1), while its OQPSK interpretation is exploited only at receiver

side. In this way the losses due to this approximation do not affect the constant

envelope of the signal and other spectral characteristics at transmission, avoiding in

particular spectral regrowth at the HPA output.

3.2.3 Mapping to services

Our SS-CPM signal can be used as a ranging signal for GNSS applications. In

particular, we will consider here pilot SS-CPM signal containing no navigation data

and a primary code only [26] (di =1 and thus γk = c|k|
N

). As such, this contribution

will not deal with problems related to data detection.

Mapping a unique code (chip) sequence ck (and thus a unique service) into a CPM

signal (3.1) is trivial. Nonetheless, for the type of CPM we consider here, i.e. subject

to (3.4), the OQPSK approximation (3.11) applies, and two services can be easily

accommodated by using two different spreading codes on the two I-Q components.

Therefore, the CPM pilot signal (3.11) can easily bear either

• a single service at rate fc = 1/Tc (where γk = c|k|
N

, with {ci} being the ranging

code sequence of length N), or

• two (orthogonal) services at half rate f ′
c = 1/(2Tc) each, where γ2m = c

(2)
|m|N2

and γ2m−1 = c
(1)
|m|

N1

, with
{

c
(1)
i

}

and
{

c
(2)
i

}

two (orthogonal) sequences of

length N1 and N2, relative to two different services.

When the two code sequences
{

c
(1)
i

}

and
{

c
(2)
i

}

run at the same rate f ′
c, we will

speak of same-rate-service (SRS).



i

i

“main” — 2012/4/20 — 11:53 — page 55 — #83
i

i

i

i

i

i

3.2 Signal design 55

When instead one out of the two code sequences
{

c
(1)
i

}

and
{

c
(2)
i

}

is given by

the repetition of each code element for “Nrep” times, then the configuration will be

defined as two-rate-service (TRS). We will show in the following that, although the

signal still belong to the general class of CPM, for the TRS case we can identify

a wideband spectral component related to the high-rate service, and a narrowband

component for the low-rate service. In Sect. 3.4.3 we will better analyse the TRS

case, underlining its main characteristics.

3.2.4 Signal spectral analysis

The spectral characteristics of the signal play a crucial role: as it will be discussed

in Sect. 3.3 on one hand it is desirable having a signal with power concentrated

at the edge of the band to ensure better performance in terms of TDE accuracy

and multipath (MP) resistance [38], and on the other hand it is necessary a signal

spectrum that is sufficiently confined in order to guarantee lower OOB emissions. The

PSD of CPM signals can be found following the approach in [3]. The results of such

computation for conventional rectangular (1REC, 2REC), raised cosine (1RC, 2RC)

and Gaussian (4GAU)1 frequency pulses are presented wrt the normalized frequency

in Figs. 3.3a, 3.3b, 3.4a, 3.4b, 3.5, respectively, as a function of the modulation index

h=H+1/2, H ∈ N.

The modulation index h plays a role similar to the modulation depth in analog

FM. The main characteristic for which continuous-phase-modulations (CPMs) are

considered in wireless communication is their spectral efficiency, and consequently

CPMs have been intensively studied for values that preserve spectral compactness

(that is, for h < 1) [3], while spectral characterization has not been usually considered

for h > 1 (H > 0). On the contrary, for navigation applications, CPM signals with h >

1 may reveal interesting, since they result in a spectrum bearing a sort of subcarrier

frequency, thus enhancing performance by shifting the power far from the carrier. In

particular, from the spectral shapes of Fig. 3.3a, 3.3b, 3.4a, 3.4b, 3.5, we see that the

main lobe of the spectra is shifted exactly at f = h/2Tc for the case of 1REC, 2REC,

1The value of the normalized Gaussian filter bandwidth BTc = 0.4 and the GMSK frequency pulse

length L = 4 adopted in the example, were selected according to the relation L=max⌊2/BTc−1, 1⌋.

This ensures that the truncation of the frequency pulse has a negligible effect on the spectrum of the

signal wrt the case of the theoretically infinitely-long pulse.
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Figure 3.3: PSD of the LREC CPM.
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Figure 3.4: PSD of the LRC CPM.
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Figure 3.5: PSD of the LGAU CPM, L = 4.

2RC, and Gaussian, while it is only spread around such frequencies for the 1RC case.

As a result, increasing H will directly increase performance in terms of second order

moment of the spectra (or Gabor bandwidth), even if at the expense of higher sidelobe

levels, when Tc is kept constant. Elaborating on this behaviour, we show in Fig.3.6 the

spectrum of what we have called Binary Offset Carrier-CPM (BOC-CPM) or, more

properly, Square Wave-CPM (SQW-CPM), where the frequency pulse (depicted in

Fig.3.7) is given by

gSQW (t) =
1

2LTc

{

1 + 8A · n · sign

(

cos

(

2πtn

Tc

))}

rect

(

t− LTc/2

LTc

)

(3.12)

where A and n are two integer parameters defining the amplitude and the frequency

of the square-wave subcarrier, and, consequently, the position and the width of the

lobes of the spectral function, as shown in Fig.3.6.

3.2.5 Comparison between SS-CPM and BOC formats

A fair comparison between the new SS-CPM (LPULSE, h) signals and the con-

ventional BOC(m,n) formats as envisaged in modernized GPS and GALILEO is a

bit problematic, owing to the fundamental different features of the two signals, and

is out of the scope of the work. We try here to consider a few specific cases, just

to give a hint about how that comparison should be done. In Fig.3.8 we show the

spectra of the standard BOC(2,1) modulation together with a number of spectra
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Figure 3.7: Square Wave (SQW) frequency pulse.

of SS-CPM with Gaussian pulse and with a modulation index h= 2.5, for different

values of the normalized Gaussian filter bandwidth BTc (and consequently for different

values of the pulse response length L = max⌊2/BTc−1, 1⌋). Values of BTc in the

literature vary between 0.3 and 0.5, but if BTc = 0.3 (L = 5) the spectrum would

be too “flat” loosing the “subcarrier” effect that was created on purpose with h > 1.

On the contrary if BTc = 0.5 (L = 3) the “subcarrier” effect is larger, but OOB

would increase. To have a fair comparison, the parameters of CPM are chosen so

as to “match” the BOC PSD shape. This means that, once the modulation index

h=2.5 is fixed, an ad hoc chip rate is chosen for SS-CPM according to the constraint

h/2Tc =mfg (fg = 1.023MHz), i.e. assuming the same “subcarrier” value for both

modulations. As we see in Fig.3.8a, the spectra of the Gaussian CPM, although

not strictly bandlimited, are very well confined in a narrow band wrt the chip rate,

irrespective of the value of BTc. Conversely the BOC(2,1) PSD decays with a slow

rate due to its rectangular shape in time. We can also see that, as expected, the

spectral efficiency of SS-CPM increases with lower values of BTc. On the other hand,
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low values BTc also entail a loss of the “bimodality” feature of the spectrum, causing

a decrease in the Gabor bandwidth. In the specific case that we present in Fig. 3.8,

all CPM signals have a bandwidth occupancy of 10.23MHz, so a fair comparison

would be with a filtered BOC(2,1) occupying the same bandwidth. If we do this, the

BOC(2,1) has a Gabor bandwidth slightly greater than that of CPMs (by just 0.6dB),

but its correlation sidelobes are higher than those of LGAU CPM, as is documented

in Fig.3.8b that depicts the relevant autocorrelation functions. In addition, filtered

BOC turns out not to have a constant envelope, contrary to SS-CPM.
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Figure 3.8: SS-CPM vs BOC

Concerning receiver complexity, the processing rate in any receiver primarily depends

on the bandwidth of the signal. Hence once the occupied signal bandwidth is fixed

(e.g. B99%, BxdB), the receiver complexity will be similar for (filtered) BOC and

for SS-CPM. The conclusion is that by carefully selecting proper values for the chip

pulse, the chip rate, and the modulation index, we can find a (constant-envelope)

SS-CPM signals whose characteristics are as good as or better than those of existing

formats.
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3.3 Delay tracking performance

In this section we deal with the tracking performance of the proposed SS-CPM

signals in terms of accuracy of TDE. In particular, tracking performance depends

on the signal format and on the specific estimator implemented in the receiver. To

characterize the signal format only, tracking performance will be evaluated in terms

of MCRB, while specific analysis on receiver performance and complexity will be

assessed for some proposed time-delay estimators.

The MCRB [17] for a CPM signal is a function of the frequency pulse shape as in [46]

MCRB(τ) =
T 2

c
Ec

N0
8π2L0ζ

(3.13)

where the observation time is T0 = L0Tc and ζ = C2h
2Tc

∞
∫

−∞

g2 (t) dt is a dimen-

sionless parameter, playing the same role as the normalized Gabor bandwidth that

appears in the MCRB expression for conventional DS-SS modulations [46], and where

C2 = E
{

ci
2
}

= 1 in our case.

When the observation time is sufficiently large, the CRB can be computed in the

frequency domain letting

ζ ∼= ξ =

T 2
c

∞
∫

−∞

f2Sx (f) df

∞
∫

−∞

Sx (f) df

, (3.14)

where Sx (f) denotes the PSD of the signal.

The approximated expression of the MCRB using (3.14) is easier to compute than

(3.13) when the received signal is subject to band limitation, since the effect of filtering

directly affects Sx (f). As anticipated in Sect. 3.2.4, signals with energy shifted at

the edge of the allocated band have better tracking performance.

3.3.1 Code Tracking loop

We can show that the signal formats we are considering can be tracked by a simple

loop, considering the approximated OQPSK version of the signal.
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The baseband equivalent of the SS-CPM tracking loop is depicted in Fig. 3.9, where,

using complex envelope notation, the signal at the output of the matched filter is:

r (t) = y (t) ⊗ hMF (t) = ejϑ x (t) ⊗ hMF (t) + n (t) (3.15)

n (t) = w(t) ⊗ hMF (t) = [wc (t) + jws (t)] ⊗ hMF (t) (3.16)

hMF (t) =
1

Tc
C0 (−t) (3.17)

where w(t) is complex-valued AWGN whose components are mutually independent

and have a PSD Swc
(f) = Sws

(f) = N0, ϑ is the carrier phase offset introduced

during base band conversion, and C0 (t) is the approximated pulse as defined in (3.7).

Assuming that coarse delay estimation (signal acquisition) has already occurred, the

circuit is a classical digital non-coherent early-late code tracking loop [34], [32]. The

received signal r(t) is sampled at the frequency 2/(∆Tc) (where ∆ ∈ (0, 1) is the

normalized correlator spacing), it is matched filtered, and (possibly) decimated to

obtain the sets of prompt samples rk, early samples rk+∆/2 and late samples rk−∆/2,

all running at chip rate 1/Tc, that are passed as input to the code tracking loop. 2

The early-late detector outputs the error signal

em =
∣

∣ z−m
∣

∣

2 −
∣

∣ z+
m

∣

∣

2
(3.18)

where

z+
m =

[

rk+∆/2γk

]

⊗ hb,k (3.19)

z−m =
[

rk−∆/2γk

]

⊗ hb,k (3.20)

∣

∣Hb (f)
∣

∣ =
1

λ

∣

∣

∣

∣

sin (πλfTc)

sin (πfTc)

∣

∣

∣

∣

(3.21)

and where we assumed that the branch filters Hb (f) are moving-average smoother

on a windows length λ.

2The sampling rate 2/(∆Tc) to obtain rk±∆/2 is only “conceptual”. Other, more efficient DSP

arrangements based on digital interpolation to provide the prompt and the early late samples with

the desired spacing ∆ can be found.
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Figure 3.9: SS-CPM Delay Estimator.

The loop recursively updates the time delay error εm estimate on the basis of the

current sample of the error signal em, as follows:

εm+1 = εm − ϕem (3.22)

where ϕ is the step-size of the algorithm. From (3.18)-(3.20) we see that the error

detector of Fig. 3.10a (hereafter labeled DDLL1) relies on the a priori knowledge of the

entire sequence of the code symbols γk, given by the interleaving of both sequences of

the two services, as defined in (3.9)-(3.11). A variant to the DDLL1 scheme, that can

be used autonomously by each service, is shown in Fig. 3.10b (labeled DDLL2). The

DDLL2 calls for the a priori knowledge of only one sequence (and thus one service)

at a time. The DDLL2 exploits the characteristics of the CPM signals decomposed

in the OQPSK form (3.11), delivering the early/late samples to the DDLL at the

rate f ′
c = 1/2Tc instead of the rate 1/Tc, thus reducing the error detector complexity

and allowing separation of the tracking of the I and Q components. As a further

variant of the DDLL2, Fig. 3.10c depicts what we call DDLL3 in which two identical

(half-rate) DDLL2 detectors are used in parallel, one operating on the odd samples

r2k+1+∆/2 and the other operating on the even samples r2k+∆/2, k being the index
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of the symbol rate 1/Tc. The outputs are then used to form the overall loop error em.

As for the DDLL1, the DDLL3 needs a-priori knowledge of both service sequences,

but, differently from DDLL1 and DDLL2, it yields higher performance, as will be

highlighted later.

3.4 Performance results

After the theoretical definition of the code tracking loops given in the previous section,

the performance of these estimators are shown here from different points of view.

First, performance in AWGN are assessed in terms of RMSE, secondly effects of

multipath channels are considered in terms of MPEE, then a subsection investigates

an example of two-rate services SS-CPM performance and finally an overview of the

main performance results is reported.

3.4.1 Performance in the AWGN channel

The performance of the three proposed DDLL schemes are reported in Figures 3.11a,

3.11b and 3.12 in terms of average error characteristic (S-curve) and of root mean

square error estimation (RMSEE), respectively. The average error characteristic (S-

curve) of the loop, denoted by η (ε), is a function of the chip timing error ε and is

defined as the average of the error detector output em when the loop is kept open

(that is, (3.22) is not implemented) and the receiver is operated with a constant chip

timing error ε, that is

η (ε) , 〈E {em|εm = ε}〉 (3.23)

where the operator 〈·〉 stands for “time average over a code period” and E {·} is the

statistical expectation taken over the Gaussian noise. The S-curve determines the

operating range of the synchronizer, but it can be used to find the variance of the

estimator as well. In fact, the main performance parameter of the accuracy of the

code tracking loop is the root mean square error estimation (RMSEE) σε , that is,

the RMS value of the time delay error εm. Resorting to standard linear analysis of

the loop, it is found

σε
∼= 1

A

√

2BLTaSN (0) (3.24)
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where SN (0) is the DC-value of the open-loop error signal PSD:

SN (f) ,
∞
∑

n=−∞

Re (n)e−j2πnfTa (3.25)

Re (n) ,< E
{

emem+n| εm = 0 ∀m
}

> (3.26)

and BLTa represents the one-sided equivalent noise bandwidth of the loop, normalized

to the updating time Ta of the loop equation (3.22). Referring to the proposed

DDLL1-DDLL3 schemes of Figures 3.10a-3.10c, the updating time Ta of the loop

error is set to Ta = λTc for DDLL1, whereas it is 2λTc for DDLL2 and DDLL3.

In particular, for the first order time delay locked loop, the normalized loop noise

bandwidth is

BeqTa =
ϕA

2 (2 − ϕA)
, (3.27)

where A is the slope of the S-curve function nearby the zero error, A = dη(ε)
dε

∣

∣

∣

ε=0
.

Figure 3.12 reports the variance of the proposed schemes for some signal formats,

together with the relevant modified Cramér-Rao bound (MCRB) (3.13), as a reference.

In our numerical calculations of the RMSEE, the loop noise bandwidth is BL = 1Hz,

a typical value for satellite navigation systems, and the bandwidth of the branch filter

Hb (f) is chosen with the constraint Ta ≪ 1/BL. In particular, a value of λ = 10000

is considered for simulations. Once BL and λ (thus Ta) are set, the step-size ϕ can

be found trough (3.27) after computation of the S-curve.

For each RMSEE figure, the correspondent MCRB is computed as in (3.13)-(3.14)

considering an equivalent observation time Tobs = LeqTc = 1
2BL

. Finally, computation

of (3.24) is carried out after evaluation of SN (0) via simulation. The RMSEE curves

are shown here only for the CPM signals with Gaussian frequency pulses, with two

modulation indices (h = 0.5 and h = 2.5), with normalized bandwidth BTc = 0.4 and

support L = 4, chip time value Tc = 195.5ns (Rc = 5.115Mchip/s) and correlator

spacing ∆ = 0.2. Performance with different pulses or different modulation index

h present the same qualitative behavior and the correspondent RMSEE curves can

be easily considered as a “vertical translation” of the “basic” curves depicted in Fig.

3.12. In particular, the relative behavior of the three proposed tracking schemes

reveals independent of the selected signal. As can be seen from Fig. 3.12, irrespective

of the modulation index h, the DDLL1 and DDLL2 present the same performance,

while the DDLL3, as expected, exhibits a 3 dB gain.
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Figure 3.10: Digital Delay Lock Loop code tracking loops.
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As was anticipated, a higher modulation index induces a higher second order moment

of the spectrum and, thus, better tracking accuracy. As depicted in Fig. 3.12, for

example, the MCRB relative to h = 2.5 exhibits a C/N0 gain of 14 dB wrt the

MCRB relative to h = 0.5. Figure 3.12 also shows that the tracking performance of

the DDLL3 practically equals its own MCRB for high C/N0 both when h = 0.5 and

when h = 2.5.
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Figure 3.11: S-curve function of the different DDLL schemes. Simulation for 4GAU

frequency pulse.

3.4.2 Performance in the multipath channel

The signal design analysis described so far is suitable for AWGN channels. However,

multipath still remains the dominant factor in a GNSS error budget. Currently, it is

customary to evaluate the MP performance of a given signal/estimator combination

by its MPEE plot [37], [38]. The MPEE plot reflects the performance of a two-ray

multipath channel (line-of-sight + one reflected ray), by showing the bias induced by
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Figure 3.12: RMSEE for the proposed DDLL schemes. Simulation for 4GAU frequency

pulse for h = 0.5 and h = 2.5.

the non-line-of-sight path onto TDE. The bias is computed establishing a receiver

configuration (TDE estimator, early-late spacing) as a function of the reflected path

delay, and with the MP (relative) amplitude kept constant. As an example, Fig. 3.13

shows the MPEE of CPM modulations for the particular frequency pulse 4GAU . The

curves are computed considering the non-coherent DDLL1, with an early-late spacing

∆ = 0.01 and for different values of h. The signal-to-multipath ratio (SMR) is equal

6 dB, a typical value for ranging systems. For each signal configurations, two lines

are plotted, corresponding to the two worst cases of in-phase reflected signals, whilst

the cases with intermediate phase shifts that lie in between are not considered. The

figure reports the bias error expressed in chip as a function of the delay of the specular

ray expressed in chip as well.

The MPEE curves show smaller errors when the modulation index h of the CPM

signal is higher, i.e. when the bandwidth is larger and RMSEE is smaller.
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Figure 3.13: MPEE figures of SS-CPM for different modulation indices.

3.4.3 Two-rate-service (TRS) performance

As anticipated in Sect. 3.2.3, a TRS signal is characterized by two different chip rates

on the two I-Q components. Figure 3.14 shows the spectrum on the I and Q branches

of a TRS signal characterized by an I branch with Nrep = 10, and 1REC CPM with a

chip time Tc = 97.75ns (Rc = 10.23Mchip/s). In this case, therefore, the “slow” and

the “fast” service chip rates result 1.023Mchip/s and 10.23Mchip/s, respectively on

the I and Q branches. Considering the OQPSK approximation of CPM, the I-Q com-

ponents can be considered as two independent pulse amplitude modulation (PAM),

with basic time pulses bearing different duration. The “expansion” of the time pulse

on the I component by a factorNrep, causes a compression of its spectrum, resulting in

a narrower main lobe wrt the (fast) Q-branch. In particular the width of the spectral

main lobe is inversely proportional to Nrep. Unfortunately, considering only a narrow

band around the first main lobe in the I-branch receiver, causes a non-negligible out

of band power loss (≈ 6 dB).

Figure 3.15 shows the MCRB for TRS TDE with 1REC frequency pulse and mod-

ulation index h = 0.5, considering in the calculation independent I-Q branches and

assuming (coherent) estimators with different spectrum bandwidths. In our compu-

tations, we considered a few cases: slow-rate I-branch with bandwidth equal to that
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of the first lobe, 5 lobes and 13 lobes, and with the fast-rate Q-branch at the 1st

lobe or with infinite bandwidth spectrum. It can be seen that bounds for I-branch

fall far from Q-branch ones, depending on number of spectrum lobes considered. The

advantage in using a TRS is related to the possibility of receiving the slow-rate service

with a narrow band mass-market receiver.
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Figure 3.14: PSD of SS-CPM for Two-Rate-Service (TRS), Nrep = 10, for the I and Q

branches and the total complex envelope.
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3.4.4 Summary of performance results

Due to our parametric analysis, some general conclusions can be drawn.

For all types of frequency pulses, the higher the L, the better the spectral efficiency,

at the expenses of a higher receiver complexity. For our test cases, solutions like

1REC, 2REC, 1RC, 2RC, 3GAU, 4GAU and 5GAU can be easily implemented.

In AWGN channel, the relative behavior of the three proposed tracking schemes

reveals independent of the selected signal. Irrespective of the modulation index h,

the DDLL1 and DDLL2 present the same performance (RMSEE), while the DDLL3

exhibits a 3 dB gain achieving the MCRB. For all the sub-classes of analyzed SS-

CPM signals, a higher modulation index induces a higher signal Gabor bandwidth

and, thus, better tracking accuracy.

In the MP channel, performance in terms of MPEE enhance when h increases for

all the types of frequency pulses.

Examining these results and also the spectral and correlation properties, the effects

of increasing the modulation index h can be compared to the ones induced by an

higher m/n ratio in the BOC(m,n) modulations, thus allowing for higher tracking

performance and MP rejection, at the expense of an increase of autocorrelation

sidelobes and receiver complexity.

Interestingly, some new frequency pulses like the square wave (SQW) frequency pulse

can be designed to allow the desired spectral shaping, while some trivial tricks can

be used to allocate two services.

In conclusion, after analyzing SS-CPM we have seen that they allow much more

flexibility than what expected, by simply tuning the design parameters. When com-

paring to traditional DS-SS modulations (like the BOC(m,n)) it is thus appearing

the same intrinsic binomium between tracking accuracy and acquisition performance

and receiver complexity: since the two aspects are inversely related to the relative

position of the main spectral lobes into the signal bandwidth, thus we cannot improve

one aspect without deteriorating the other one. With this respect, the analyzed SS-

CPM generally behave as the BOC(m,n), while intrinsically ensuring a constant

envelope.

Detailed design and specific comparison among the different SIS classes can be

achieved only when having defined specific system constraints. A possible application

of this design could be foreseen for any new ranging application, like for example the
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C-band usage [14], [6], [53]. In particular in [6], [53] already some MSK and GMSK

cases have been exploited as option to fulfill their system design.

3.5 Conclusions

This chapter has shown how a constant-envelope spread-spectrum CPM signal could

be effectively used as a ranging signal in future-generation GNSS systems. Let us

outline the main conclusions from the sections above:

• The constant-envelope feature of a CPM signal is desirable to get rid of the

detrimental spectral-regrowth effect caused by high-power amplification of a

non-constant-envelope signal;

• Conventional CPM formats are geared towards spectrum-efficient data commu-

nications. In a GNSS system, the focus of SIS design is accurate time-delay

estimation, that calls for a different spectral distribution of the signal power,

namely, an high second-order moment. Semi-integer values of the modulation

index like h=H+1/2,H natural, meet the requirement above when increasing

h to values h>1;

• A semi-integer CPM signal can be easily approximated (via Laurent’s decompo-

sition) with an Offset-QPSK signal, making detection and TDE very easy with

conventional DDLL algorithms;

• The DDLL algorithms mentioned in the chapter come very close to their TDE

CRB in terms of AWGN RMSEE;

• Two-rate services with different chip-rate/bandwdith can be combined into the

same CPM signal via easy I-Q multiplexing and chip code repetition without

constant envelope loss.

The effects of increasing the modulation index h can be compared to the ones

induced by an higher m/n ratio in the BOC(m,n) modulations, thus allowing for

higher tracking performance and MP rejection, at the expense of an increase of

autocorrelation sidelobes and receiver complexity. SS-CPM with ad-hoc settings of

frequency pulse, of Tc and of h could be suitable for forthcoming satellite positioning

systems [6], [53], thanks to their characteristics of spectral flexibility and of constant
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envelope, once requirements from system design are set. More work can and has to

be done in terms of i) optimization of the CPM shaping pulse; ii) reduction of the

performance loss due to out-of-band power of the low-rate service in the two-rate

signal arrangement.
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Chapter 4

TOA Estimation with

SS-FMT signals for GNSS

In this Chapter, we investigate the performance of spread spectrum filtered multitone

(SS-FMT) signals, characterized by a strictly bandlimited basic pulse, considering the

architecture of a standard digital signal tracker for GNSS. After a general description

of signal properties in time and frequency domain, we focus on the problem of ranging

code synchronization (code tracking), presenting a standard chip timing recovery loop

based on the multicarrier signal property to be seen as a single carrier modulation

and so to be tracked with standard delay lock loops. The relative performance of

the proposed recovery loop is analyzed in terms of RMS tracking error and multipath

(MP) robustness.

4.1 Motivation

Current Global Navigation Satellite Systems (GNSSs) state-of-the art is based on

(NRZ) square-chip pulses, that, when digitally generated leads in practice to non-

constant envelope SIS and slow out-of-band spectral decay. Thus, the interest of

considering SIS designs with band-limited waveforms as it is the case in today’s

telecommunication payloads (e.g., DVB-S and DVB-S2) but without compromising

navigation performance is steadily growing. Not too long ago, the need of inno-

vation and the endless demand of optimal performance pushed the researchers to

look for new solutions for future advanced GNSSs also in the field of multicarrier

schemes [27], [21], [22]. Among the advantages of MC techniques, the robustness to
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frequency selective fading, the resistance to inter-symbol-interference and high data

rates are indeed interesting characteristics. In this context the application of the FMT

technique [12] to satellite navigation seems appealing not only for the characteristics

previously listed but also for full spectral flexibility and the limited OOB emissions.

This chapter discusses a number of advantages of using multicarrier (MC) signal as a

possible option for future global navigation satellite systems (GNSSs).

Multicarrier signal could be an interesting “motherboard” on which design every

solution, for its several degrees of freedom in its design. It contains a large set of

constituent parameters as the basic pulse, the number of subcarriers, the subcarriers

frequency spacing, the power distribution within the subcarriers, the ranging code se-

quence, and each of these factors has an influence on the resulting signal performance.

The best advantage of a multicarrier technique is thus its full spectral flexibility.

Basically the number of subcarriers and the power distribution on them (also by

switching off some of them) can be designed in order to obtain a Power Spectral

Density (PSD) shaping which takes into account the constraints and requirements of

the particular application (e.g. time of arrival (TOA) estimation tracking and acqui-

sition performance, intersystem and intra-system interference, multipath resistance).

The interest of this chapter is focused on a particular multicarrier scheme known

as Filtered multitone (FMT), characterized by the strictly bandlimited Square Root

Raised Cosine (SRRC) basic pulse and a subcarrier spacing that allows complete

orthogonality in the frequency domain.

A theoretical formulation of the MC signal is developed focusing on the FMT

technique. The correlation and spectral properties are analyzed and theoretical ex-

pressions are formulated in time and frequency domains highlighting FMT advantages,

such as the full flexibility and the disadvantages related to its non-constant envelope

are investigated. The chapter reports on a number of multicarrier properties which

allow different applications both in navigation and communication systems. In par-

ticular the applicability of the FMT technique for navigation purposes is investigated

in different scenarios. FMT modulation is investigated to synthesize (theoretically)

bandlimited PSD signals or more simply any filtered signals. Existing, new and

“esoteric” modulations can be reproduced with the desired accuracy and growing

bandwidth resolution playing on the FMT signal setting. Interferences mitigation

and coexistence with existing Signal-In-Space are possible adopting an appropriate

FMT adaptive spectra management, for instance filling the gaps of spectra with
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new compatible components moving the available transmission power from interfered

notches to interference-free subcarriers. Finally an Early-Late Delay Lock Loop (DLL)

estimator [56], which comes out from Maximum-Likelihood (ML) theory is tested on a

number of FMT schemes, ensuring its full applicability by comparing its performance

in TOA estimation in Additive White Gaussian Noise (AWGN), in terms of mean

square error (MSE) and variance with the well known modified Cramér-Rao bound

(MCRB) [27].

The modulation performance is also tested in a standard two-ray multipath channel

(line-of-sight plus one reflected ray) analyzing the simulation results with different

signal settings in terms of induced bias on TOA estimation with respect to AWGN

results.

The chapter is organized as follow: Sect. 4.2 theoretically describes the signal

modulation, analyzes the signal correlation and spectral properties; In Sect. 4.3 a

SS-FMT tracking loop is described, while different types of signal configurations are

tested in terms of tracking performance in AWGN (Sect. 4.4.1) and MP resistance

(Sect. 4.4.2) and finally a complete summary of performance results is reported in

Sect. 4.4.3. General comments conclude the chapter in Sect. 4.5.

4.2 Signal Design

4.2.1 Signal definition

The baseband equivalent of a Spread-Spectrum Multicarrier (SS-MC) signal can be

written as:

xSS−MC (t) =
√

2Px

∑

k∈Df

√
wkxk (t)ej2πkfkt = (4.1)

√

2Px

∑

k∈Df

√
wk

[

+∞
∑

n=−∞

γ(k)
n g (t− nTs)

]

ej2π(kfsc+∆f )t

where the coefficient wk identifies the fraction of total power transmitted on the k-

th subcarrier centered in fk with
∑

k∈D

wk = 1, Df is the set of active subcarrier

centers, γ
(k)
n is the symbol/chip (or chip-data product γ

(k)
n = d

(k)
n c

(k)
n ) on the k-th

subcarrier, Px = C is the real total power, fsc is the subcarrier frequency spacing,

∆f is a frequency offset, Ts is the multicarrier (MC) symbol time, Ts = NTc, with
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N the number of equally spaced subcarriers and Tc the chip (symbol) time. The

multicarrier signal is also identified by its basic pulse g (t), which defines a number

of signal properties and it can be for instance time limited or bandlimited. This

generalized explanation allows us now to define the traditional elements of a signal

used in satellite navigation. Clearly the code sequence {ck} corresponds to the ranging

code sequence associated to each satellite, while the symbols sequence {di} can be

associated either to the symbols of the navigation message (if we are considering the

transmission of the data component) or to a fictitious sequence of all “one-symbols”

{di = 1} (if we are considering the transmission of the pilot component). In data

Figure 4.1: General Spread-Spectrum Multicarrier Transmitter.

transmission, γ represents the stream of information symbols to be sent on a wireless

channel. After the mapping of the bits of information into the information symbols,

with Tc the short symbol time, they are sent to a serial-to-parallel (S/P) converter

and transmitted on the sub-channels with a long MC symbol time Ts. Let us consider

for the sake of simplicity only binary data, remembering that all the results found

can be easily generalized to an M-ary modulation case. Figure 4.1 depicts the general

scheme of a SS-MC transmitter. The data stream is spread by the code sequence

with a spreading factor M, and Np is the code length. The main stream is divided

into N sub-streams, then they are shaped by the basic pulse, transmitted on the N

subcarriers and finally summed before to be transmitted.

In this section a Spread spectrum filtered multitone (SS-FMT) transmission scheme

is considered, where the subcarrier spacing is fsc = 1+α
Ts

, chosen as the minimum
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which allows orthogonality between the subcarriers, using a Squared-Root Raised-

Cosine (SRRC) pulse with the roll-off factor α. In this case, the Continuous Fourier

Transform (CFT) of g (t) is defined as G(f)=Ts

√

GN (f)
Ts

with the Raised Cosine pulse

GN (f)=CFT {gN(t)} with GN (0)=Ts and a bandwidth equal to BWsc = 1+α
Ts

. The

bandwidth of the total multicarrier signal so defined can be found as the sum of the N

sub channels’ bandwidths: BW =(1 + α) /Tc =N (1 + α) /Ts =NBWsc. From (4.1),

the baseband model specific for the FMT modulation becomes

xFMT (t) =
√

2Px

∑

k∈D

√
wkxk (t)ej2π(k (1+α)

Ts
+∆f)t = (4.2)

√

2Px

∑

k∈D

√
wk

[

+∞
∑

n=−∞

γ(k)
n gSRRC (t− nTs)

]

ej2π(k (1+α)
Ts

+∆f)t

(4.3)

where the frequency offset ∆f and the power distribution are defined according to

the spectrum and correlation function design.

4.2.2 Signal analysis

Multicarrier signal is constituted by the superposition of N sub-channels. Their

(complex) amplitudes
√
wkγ

(k)
n can be modeled as independent and uncorrelated

random variables belonging to a QAM or PSK constellation. The N components

are orthogonal in the frequency domain and instantaneously they have a different

“phase” due to the different symbols/chips on each subcarrier, so they are non-

coherently summed in time, resulting in a “multilevel” modulation. Fig.4.2 plots the

I/Q components of a representative example of FMT signal, with odd N=127, flat

power distribution with wk = 1/N , γ
(k)
n ∈ {±1}, ∆f = 0 andD =

{

− (N−1)
2 : (N−1)

2

}

.

Obviously according to the power distribution and the set of parameters chosen

the waveforms will be instantaneously different, but statistically similar. The main

disadvantage in using a MC modulation is its non-constant envelope that causes

distortion on the signal at the High Power Amplifier (HPA) output and consequently

inter carrier, inter symbol and inter chip interferences. To evaluate this feature, the

statistical characteristics and the histogram of the absolute value of the envelope is

depicted in Fig.4.3 for the previous FMT example. The result reported is qualitative

but enough to understand how not constant is the envelope of this modulation, when
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Figure 4.2: I/Q components of FMT with flat power distribution, N=127 and α = 0.2.

a not optimized PN code was transmitted on the subcarriers. Peak, Root mean square

(Rms), Peak to Average Power Ratio (PAPR), mean, variance and standard deviation

are reported in the chart with the normalized envelope histogram.

The PAPR is greater than one for any power distribution (the optimum for a

constant envelope is equal to 1), but a better insight is given by the distribution of

probability of the absolute value of the envelope approximated with its histogram. If

one observes the definition of a multicarrier signal (4.1), the I-Q branches samples are

obtained as a sum of N terms with a similar density of probability with finite mean

and variance. This is the hypothesis for the Central Limit Theorem (CLT) which
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Figure 4.3: Histogram of the FMT signal envelope.

states conditions under which a sum of a sufficiently large number of independent

random variables, each with finite mean and variance, will tend to be distributed

according to a Gaussian distribution. The absolute value is calculated as the sum of

the squares of I and Q values which for the CLT are Gaussian random variable, so its

density of probability (histogram) tends to a Rayleigh distribution for N enough great.

Statistical characteristics (mean value, variance, rms) are approximately constant for

N greater than 10 (CLT). Statistically the Peak appears with a very low probability

and by considering only the PAPR could be not fair. A significant performance

parameter for HPA behavior could be the product between the PAPR and the stan-

dard deviation normalized by the RMS. In this way different modulation schemes can

be compared each other with respect to this complete parameter, which takes into

account both the PAPR and the envelope distribution. A number of algorithms for

PAPR reduction are present in the literature [44]: weighting the input sequences with

optimized coefficients; using ad hoc code sequences distributed in time or frequency

domains [57]; the design of additional ad hoc subcarriers. One general countermeasure

could be the selection of a specific set of interdependent subcarrier waveforms [39],



i

i

“main” — 2012/4/20 — 11:53 — page 80 — #108
i

i

i

i

i

i

80 TOA Estimation with SS-FMT signals for GNSS

optimizing the total signal according to the constraints of the system.

4.2.3 Correlation analysis

This section describes some properties of the FMT correlation function. In particular

the subset of signals with symmetric power distribution and identical (symbol) con-

stellation on the equally spaced subcarriers is here analyzed. For the cyclostationary

property, the correlation function is given by:

R (τ) =
1

T0

∫

T0

R̄ (t, τ )dt =
1

T0

∫

T0

E {x (t)x∗ (t− τ)}dt (4.4)

where T0 is the period of the cyclostationarity of R̄ (t, τ ), and the expectation is done

on the data/chips considered here random and uncorrelated. Under the hypothesis of

a symmetric power distribution within the subcarriers, centered around zero, inserting

(4.2) in (4.4) the FMT correlation function can be written as:

RFMT (τ) = 2PxC2gN (τ)

[

∑

k∈D

wk cos

(

2π

(

k
(1 + α)

Ts
+ ∆f

)

τ

)

]

(4.5)

with C2 = E
{

|γ|2
}

, which is the power of the symbols/chips (or chip-data product),

gN (τ) is the autocorrelation function of the SRRC pulse, i.e. the RC pulse. In general

the autocorrelation in (4.5) can be written as the product of two independent terms

RFMT (τ) ∝ Rsubcarrier−pulse (τ) · RPdistr (τ,D,∆f) (4.6)

i.e. the correlation function of the basic pulse and the “array factor” which is a

periodic function and depends on the power distribution and the set of subcarrier

centers. For the sake of simplicity, only two possible FMT configurations for the

subcarriers centers are here analyzed:

• one subcarrier centered on f=0 and ∆f = 0, with an odd number of subcarriers

N, with the set of centers which run in k = − (N−1)
2 : (N−1)

2 ;

• no subcarrier on f=0, maintaining the symmetric distribution with an even

number of subcarriers, the centers of the subcarriers shifted by ∆f = − (1+α)
2Ts

and k = −N
2 + 1 : N

2 .
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A number of other different schemes can be adopted, according to the particular

systems constraints. The charts in Fig.4.4 depict the correlation function composition

expressed in (4.6) for the FMT signal with flat power distribution, N=67 and N=66

and α = 0.25. The array function has the maximum absolute value in multiples
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Figure 4.4: FMT correlation composition

of Ts/ (1 + α) = NTc/ (1 + α). If N is odd the function is periodic of Ts/ (1 + α),

whereas if N is even the function is periodic of Ts/ (1 + α) with alternate sign. In this

case of study the RC pulse represents the “envelope” and it is multiplied by the array

factor to obtain the final correlation. As it can be seen from the plots, the multicarrier

correlation function shows secondary lobes near and far to the zero delay. It will be

explained in the last chapter how these lobes constraint respectively the tracking and

acquisition performance.

Regarding the correlation shape and the sidelobes near the zero, they practically

depend only on the array function because the correlation of the basic pulse appears

locally constant. Hence, they can be properly designed choosing the power distri-

bution within the subcarriers, once the set of centers is chosen. The array function
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repeats every Ts/ (1 + α), with changed sign if N is even, leading to residual (far)

sidelobes dimmed by the basic pulse correlation. These secondary peaks could be

deleted setting properly the basic pulse, so that the maxima of the array factor fall

on the zeros of the basic pulse. In the case of study, the RC pulse has its nulls on

the multiples of Ts = NTc, so for the FMT with SRRC basic pulse there will be no

far side lobes adopting an α = 0, i.e. selecting a rectangular pulse in the frequency

domain. This theoretical result can be only approximated for a realistic truncated

pulse in time. In general, the lower is the roll-off the lower the “far” secondary peaks,

the higher is the filters design complexity. Besides, the higher is α the easier the

synchronization of the signal and TOA estimation. For the cases reported in Fig.4.4

a realistic trade-off value of α was adopted, maintaining the residual sidelobes lower

than 20% of the main peak. Obviously optimized basic pulses with “tails” shorter

than the RC pulse ones, together with one ad hoc power distribution within the

subcarriers could be designed.

4.2.4 Signal spectral analysis

Consider the correlation function in (4.5). The correspondent equivalent baseband

power spectral density (PSD) of FMT signal, supposing random (i.i.d.) code se-

quences on the subcarriers, is defined as

SFMT (f) = 2PxC2

[

∑

k∈D

wkGN

(

f − k(1 + α)

Ts
− ∆f

)

]

(4.7)

with

GN (f) =















Ts |f | ≤ 1−α
2Ts

Ts

2

[

1 + cos
(

πTs

α

(

|f | − 1−α
2Ts

))]

1−α
2Ts

≤ |f | ≤ 1+α
2Ts

0 otherwise















(4.8)

The main characteristics of the FMT signal and more in general of multicarrier

modulations are:

• Limited out of band (OOB) emission;

• Full spectral flexibility.

The SRRC pulse has theoretically no OOB emissions, being strictly bandlimited by

definition, but it should be unlimited in time. In practice, the realistic basic pulse
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has a limited time support. As a consequence GN (f) in (4.8) has to be substituted

by the squared convolution between GT (f) /
√
Ts and Twsinc (fTw), where Tw is the

truncated time window. In spite of this, the OOB emission is still very limited if

the Tw is chosen long enough. Once the bandwidth is set, the spectrum can be

modified acting on the number of subcarriers and on the power distribution within the

subcarriers, obtaining the desired frequency resolution and the desired PSD shaping,

respectively, according to the particular system constraints. The FMT modulation

allows a complete freedom of design regarding its spectrum and its corresponding

autocorrelation. According to the scenario analyzed a fraction of the subcarrier can

be attenuated (also switching off some of them), shifting the power to the other active

subcarriers.

Fig.4.5 reports a number of examples with different masks of power distributed

within the same active subcarriers with flat, triangular and “dovetail” shaping. The

OOB emission (about 80dB) of the cases in Fig.4.5 is obtained with a particular

truncation window Tw of 60 symbol times, which in general can be problematic.

If the OOB is not a determinant system constraint, a narrow time window could be

chosen, decreasing the processing time at the transmitter side. Other interesting cases

Figure 4.5: Masks of power distribution.
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Figure 4.6: Monomodal and bimodal schemes.

are reported in the fig.4.6, where two different FMT schemes are plotted in the same

chart labeled as monomodal and bimodal. These simple schemes, eventually with

a different shaping, can be adopted for example, in case of high-pass and low-pass

preexisting systems occupying the same bandwidth.

4.2.5 Multicarrier flexibility exploitation

In this section we investigated on a number of multicarrier purposes which come out of

the signal characteristics reported in the previous sections. The main signal property

that we have developed is the spectral flexibility. Thanks to the power distribution

freedom degree we can “synthesize” any PSD of any bandlimited or filtered signal.

The group of charts in Fig.4.7 depict an example of FMT synthesis of the BOC(6, 1)

signal filtered. The samples of the analog PSD are normalized and adopted for the

shaping of the FMT power profile directly on the subcarriers. In the reported example

the number of active subcarriers selected was N = 60. In the lower side of the Fig.4.7

the synthesis autocorrelation function is reported. Due to its MC nature, the FMT

correlation of the synthesized waveform presents further sidelobes than the analog
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Figure 4.7: Theoretical BOC(6, 1) PSD - FMT synthesis of filtered BOC(6, 1).



i

i

“main” — 2012/4/20 — 11:53 — page 86 — #114
i

i

i

i

i

i

86 TOA Estimation with SS-FMT signals for GNSS

Figure 4.8: Theoretical BOC(6, 1) PSD - Low-pass FMT solution to minimize inter-systems

interference.

BOC(6, 1) on the multiple of NTFMT
c / (1 + α), where attenuated replicas of the

basic correlation are centered. A greater N can be chosen to shift the secondary lobes

far according to the requirements. Another possible aim of the spectral flexibility

can be the design of innovative PSDs minimizing the interference with an existing

signal or group of system’s signals. In the Fig.4.8 the BOC(6, 1) is considered as the

pre-existing system on which we have to design a new signal. The FMT synthesis

of the signal is realized choosing the power distribution in inverse proportion to the

samples of the BOC PSD. Besides, the subcarriers centers can be placed on the

zeros of the BOC spectrum, filling its gaps to decrease the mutual interference. The

respective autocorrelation function, reported in the lower chart of the Fig.4.8, has not

sidelobes near zeros, but only the ”usual” sidelobes due to the contribution of the

MC (periodic) array factor emphasized in (4.6). For both the examples reported, the

number of subcarrier has to be defined according to the requirements of the system.

The accuracy of the synthesis both in the frequency domain both in time on the

correlation function will depend on the number of ”samples” (subcarriers) adopted

for a fixed bandwidth. A proof of this is explained with an example reported in the

Fig.4.9a with a synthesis of the BPSK(1) PSD, where the number of subcarriers has

been increased from 19 to 41. The (far) sidelobes move from zero proportionally to

N and naturally the FMT resolution in the frequency domain gets better. A parallel

enhancement of the synthesis can be obtained when it is possible, increasing the
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(a) Filtered BPSK(1) synthesis with growing number of subcarriers.

(b) Filtered BOC(1, 1) synthesis with growing available bandwidth.

Figure 4.9: Enhancement of the PSD synthesis.

available bandwidth of the signal as in theBOC(1, 1) example in Fig.4.9b, maintaining

the same subcarrier spacing and increasing the number of subcarriers from 37 to

97. The scenarios in which the FMT can be adopted are different and its spectral

flexibility can be the key factor to solve problems like mitigation of the interference or

coexistence with other preexisting Signal-In-Space. In the group of chart of Fig.4.10 a

very simplified (stylized) example explains how the MC waveform replies to different

kind of interferences. In the upper part there is the PSD of the FMT signal with

flat distribution, which can be considered as the state of the waveform in absence

of interference. If the system implemented is capable to do some sort of spectrum

sensing to detect the interferences the power distribution can be changed according to
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Figure 4.10: FMT power spectral flexibility - no interference, high-pass and low-pass

interference cases.

these, maintaining the other parameters of the waveform. Two cases of interference

are reported in the Fig.4.10, bandpass and lowpass respectively. Supposing spectrum

sensing by the receiver, the channel scenario could be sent to the transmitter side,

where the waveform could be reshaped as seen in the charts, moving the available

transmission power from interfered notches to interference-free subcarriers, or also

with other power profiles minimizing the interference in accord to other requirements

in frequency and in time. In accord to this the receiver will change the modulation

parameters too. If only the receiver knows the channel scenario, it can re-allocate the

power on the interference-free subcarriers of the signal replica, loosing from one side

useful power on the interfered subcarriers received, but on the other hand amplifying

the remaining subcarriers, avoiding the deleterious interference.
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4.2.6 Mapping to services: Time and Frequency domain rang-

ing codes

In the previous sections random codes are considered to characterize the averaged

properties of a multicarrier signal. The ranging sequences adopted in actual posi-

tioning systems based on single carrier waveform are (optimized) codes which try to

approximate a random behavior and which ensure low autocorrelation sidelobes and

low cross-correlation, to maximize the acquisition performance and to minimize the

multiple access interference (MAI) introduced by the contemporary presence of more

than one satellite code at the receiver side, respectively,. In the case of multicarrier

signaling waveform, the design of a ranging code is more critical than the case of a

single carrier signal. The performance will depend on the particular code sequence,

as in the single carrier case, but also on the distribution of the same code chips on

the active subcarriers in frequency, and in the symbol intervals in time, “twisting”

the property of a normal “one-dimension” code. The design of the two-dimension

code has to be performed jointly with the power distribution between the subcarrier,

and in particular with the distribution scheme of the chips in time and frequency,

considering the system constraints to be obtained. In this thesis a single satellite

scenario is analyzed, not dealing with the code optimization. For the cases analyzed

Golden codes are adopted, which are sequentially distributed from the first active

subcarrier to the last one, and the full code length is divided on an integer number

of MC symbol intervals depending on the number of subcarriers.

4.3 Delay tracking performance

In this section we deal with the tracking performance of some proposed SS-FMT

signals in terms of accuracy of TOA estimation. In particular, tracking performance

depends on the signal format and on the specific estimator implemented in the re-

ceiver. To characterize the signal format only, tracking performance will be evaluated

in terms of MCRB, while specific analysis on receiver performance and complexity

will be assessed for some proposed time-of-arrival estimators.

The MCRB for an FMT signal [27] is a function of the basic pulse shape, as in [46],

and of the power distribution within the subcarriers and their centers. Assuming the

code sequence as an array of nuisance parameters, and so averaging on all the possible



i

i

“main” — 2012/4/20 — 11:53 — page 90 — #118
i

i

i

i

i

i

90 TOA Estimation with SS-FMT signals for GNSS

binary code sequences one obtains

MCRB (τ) =
T 2

s

8π2 C
N0
LTs

[

ξ2g + (1+α)2

N

+ N−1
2
∑

k=−N−1
2

k2wk

] (4.9)

for ∆f=0 and N odd, whereas

MCRB (τ) =
T 2

s

8π2 C
N0
LTs

[

ξ2g + (1+α)2

N

+N/2
∑

k=−N/2+1

(

k − 1
2

)2
wk

] (4.10)

for ∆f=− 1+α
2Ts

and N even, where L is the number of MC symbols in the observation

time Tobs =LTs =LNTc. The ξ2g is the so-called Pulse Shape Factor (PSF), an adi-

mensional parameter defined in [46], which represents normalized Gabor bandwidth

of the basic pulse defined as

ξ2g ,

T 2
s ·

∞
∫

−∞

f2 · |G (f)|2df
∞
∫

−∞

|G (f)|2df
=

T 2
s ·

∞
∫

−∞

f2GN (f)df

∞
∫

−∞

GN (f)df

=
1

12
+ α2

(

1

4
− 2

π2

)

(4.11)

and in turn the content of the square brackets in 4.9 and 4.10 represents the normalized

signal Gabor bandwidth which can be labeled as ξ2x. The MCRB can be evaluated

through the use of the signal shaping in time, otherwise when the observation time

is sufficiently large, the limit can be computed in the frequency domain, especially

to evaluate the performance of filtered or bandlimited spectra such as this case, as

defined in the Sect. 2.5. Obviously the particular ranging code adopted could have

slightly different performance compared to the theoretical bound. Anyway, if the

length of the code is large enough and if only (PN) sequences suitable for ranging are

considered, every sequence can be assumed as statistically equal and its performance

will match the averaged behavior. Finally, in accordance with what one evinces in

the 4.9 and the 4.10, and as anticipated in the previous chapters, signals with energy

shifted at the edge of the allocated band have better tracking performance. The best

result in this case can be obtained switching off all the power coefficients wk except

for the two more distant from the centrum, which will have a power coefficient equal

to wk = 1/2 and minimize the expressions discussed before.
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4.3.1 Code tracking loop

The bound evaluated in the previous section depends only on the signal shaping,

and it represents the optimum performance in terms of RMSE for any (unbiased)

estimator. Let us show how the multicarrier signal can be tracked by a standard

loop, considering a particular design in which the received signal can be processed as

a single carrier waveform, without acting on each subcarrier’s code sequence segment.

In communication a number of algorithms use a particular code sequence of pream-

ble, to estimate the time delay. Each subcarrier code segment can be processed

after its baseband demodulation and correlated with the matched filter of the basic

subcarrier pulse. The error output which comes out of each subcarrier can be com-

bined to the others for the delay estimation according to a specific algorithm. This

could result convenient, like in the case of an OFDM modulation, when an efficient

demodulation scheme is adopted, e.g. the Fast Fourier Transform (FFT), such as at

the transmitter side, and if this constraint is more binding than the timing estimation

performance itself. In fact, if the FFT scheme precedes the matched filtering, a loss in

the performance occurs for the Gabor bandwidth (GB) losses of each subcarrier. An

alternative scheme [21, 22, 61] preserves the theoretical GB of the signal, exploiting

coherently the frequency offsets of each subcarrier, and achieving the optimum in the

AWGN scenario. This time delay estimator, applying a standard Maximum Likelihood

technique, simply processes the full signal correlating the received signal with a local

replica of the transmitted waveform.

The scheme consists in an Early-Late (E-L) estimator applied to the FMT waveform,

obtained by a particular (time-frequency) ranging code sequence transmitted within

the Na active subcarriers and an integer number L of FMT symbol times (Ts). The

technique does not depend on the particular MC set of parameters adopted, and

is general for all the waveforms designed. The FMT pilot signal results a periodic

function, with a period multiple of the code length, Tp = qNcodeTc = qLNTc where

Ncode is the code length (in chip) and q is the minimum integer value which makes

integer the number qL (1 + α). In this way, the FMT signal can be considered as

a repetition of a basic window, eventually modulated by a data sequence, assuming

each data spread on M chips, with M an ad-hoc spreading factor, equal to a multiple

of the Ncode. Hence the received signal can be filtered by the basic period matching

filter and processed as a standard single carrier waveform.
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Figure 4.11: SS-FMT Receiver

The baseband equivalent of the SS-FMT receiver is depicted in Fig.4.11, where,

using complex envelope notation, the received signal before to be sampled is

r (t) = ejϑx (t) + w (t) (4.12)

w (t) = [wc (t) + jws (t)] ⊗ hLP (t) (4.13)

where w(t) is complex-valued AWGN whose components are mutually independent

and have a PSD Swc
(f) = Sws

(f) = N0, ϑ is the carrier phase offset introduced

during the (non coherent) base band conversion. The received signal r(t) is sampled

at the frequency 2/(∆Tc) (where ∆ ∈ (0, 1) is the normalized correlator spacing), and

(possibly) decimated to obtain the sets of prompt samples rk, early samples rk+∆/2

and late samples rk−∆/2, all running at the samplimg rate fsa = 1/Tsa, that are

passed as input to the code tracking loop. 1 Assuming that coarse delay estimation

1The sampling rate 2/(∆Tc) to obtain rk±∆/2 is only “conceptual”. Other, more efficient DSP

arrangements based on digital interpolation to provide the prompt and the early late samples with

the desired spacing ∆ can be found.
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Figure 4.12: Non coherent E-L DDLL.

(signal acquisition) has already occurred, the tracking circuit adopted is a classical

digital non-coherent early-late code tracking loop. Hence, the digital delay lock loop

(DDLL) shown in the Fig.4.12 is designed insensitive to residual phase offset. From the

analog discriminator function, the digital version of a non coherent E-L discriminator

output [34], [32] becomes

em =

∣

∣

∣

∫ (m+1)Tint

mTint
r
(

t+ ε̂m + ∆
2

)

s∗ (t) dt
∣

∣

∣

2

−
∣

∣

∣

∫ (m+1)Tint

mTint
r
(

t+ ε̂m − ∆
2

)

s∗ (t) dt
∣

∣

∣

2

T 2
int

(4.14)

=

∣

∣

∣

∣

∣

(m+1)λ
∑

mλ

rk+∆/2s
∗
k

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

(m+1)λ
∑

mλ

rk−∆/2s
∗
k

∣

∣

∣

∣

∣

2

λ2

where Tint = λ ·Tsa is the integration time, which represents the window on which the

early and late versions of the received signal are correlated with the local signal replica,

and subtracted each other to produce the discriminator output error further filtered to

recover from the current time delay error ε̂m. In the case of perfect phase estimation

(ϑ = 0), a coherent version of the discriminator can be adopted substituting the

(squared) absolute value block with the one which computes the real part of the

input, as reported in Fig.4.13.

The loop recursively updates the time delay error εm estimate on the basis of the
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Figure 4.13: Coherent E-L DDLL.

current sample of the error signal em, as follows:

εm+1 = εm − ϕem (4.15)

where ϕ is the step-size of the algorithm and where 4.15 represents the differential

equation (state equation) of the first order loop filter adopted in this analysis.

4.4 Performance results

After the theoretical definition of the code tracking loops given in the previous section,

the performance of the DDLL is shown here from different points of view. First,

performance in AWGN are assessed in terms of root mean square error (RMSE),

secondly effects of multipath channels are considered in terms of multipath error

envelope (MPEE).

4.4.1 Performance in the AWGN channel

Recalling the results reported in the Sect. 3.4.1, the average error characteristic (S-

curve) of the loop, can be computed averaging the error detector output em when

the loop is kept open (that is, (4.15) is not implemented) and the receiver is operated

with a constant timing error ε.
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The S-curve determines the operating range of the synchronizer, and resorting to

standard linear analysis of the loop it can be used to find the variance of the estimator

as well. In this analysis the loop is closed, computing the RMSE performance directly

from the time delay estimates. Besides, for the first order time delay locked loop

analyzed, the normalized loop noise bandwidth is

BeqTa =
ϕA

2 (2 − ϕA)
, (4.16)

where A is the slope of the S-curve function nearby the zero error, normalized by the

updating time Ta of the loop equation (4.15) which in this case corresponds also to

the integration time Tint of the early and late correlators.

In our numerical calculations of the RMSEE, the loop noise bandwidth is Beq = 1Hz,

a typical value for satellite navigation systems, and the integration time is chosen with

the constraint Tint = Ta ≪ 1/BL. Once BL and Ta are set, the step-size ϕ can be

found trough (4.16) after computation of the S-curve. The DDLL is here adopted to

track FMT waveforms with different characteristics.

Flat and Bimodal formats case of study

Let us consider two FMT signal formats labeled as Flat and Bimodal, whose spectra

and correlation function are depicted in Fig.4.14 and Fig.4.15. Both the solutions

show to be strictly bandlimited, thanks to the SRRC basic pulse which shapes every

subcarriers. A standard flat power distribution is compared with a bimodal one, in

which only a fraction of the total subcarriers is activated at the edges of the signal

bandwidth, to test the performance of the proposed DDLL for MC signals. In the

analysis, the SRRC roll-off is set to α = 0.4 and an odd number of subcarriers

N = 1023 with symmetric power distributions within the active subcarriers centered

in zero is adopted. The E-L delta spacing chosen for the simulation is less than a half

of the correlation width ∆ = 0.5Tc. The integration time is equal to one code period,

using a PN Gold sequence of 10230 chips divided on the N subcarriers and on L = 10

symbol times. The chip rate is chosen equal to 1.023Mchip/s and consequently the

signal bandwidth is BW = (1 + α)/Tc = 1.4322MHz.

The bimodal distribution of the power causes a more oscillating correlation function

compared to the flat one. From one hand, the Gabor bandwidth of the bimodal signal

is greater than the flat one, but from the other hand the large number of ambiguities

in the correlation function will have a negative impact on the acquisition performance.
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Figure 4.14: Power spectral density of the FMT schemes.
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Figure 4.16: S-curve function of the non coherent DDLL scheme. Simulation for Flat and

Bimodal distribution on 250/1023 active subcarriers.

The DDLL performance for the two FMT schemes are reported in Figures 4.16 and

4.17 in terms of average error characteristic (S-curve) and of RMSE, respectively.

Following the characteristics of the correlation functions, the S-curve of the bimodal

waveform has an high number of false-lock points and a narrower operating range

than the flat one. Hence, it will need an high precision in the phase of acquisition

with an higher complexity in the receiver to avoid the sidelobes. Figure 4.17 reports

the RMSE and the jitter of the non coherent estimator, together with the relevant

modified Cramér-Rao bound (MCRB) (4.9), as a reference. For medium-high C/N0

values, the DDLL is unbiased and for both the schemes the RMSE lines match the

theoretical bound, which in turn is inversely proportional to the Gabor bandwidth

of the signal, higher for the bimodal distribution. Only in the (very) low C/N0

region a squaring loss appears, due to the presence of nonlinear blocks in the circuit

of estimation, but this can be further enhanced increasing the integration time to

averaging the noise effect.
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Figure 4.17: RMSE for the proposed non coherent DDLL scheme. Simulation for Flat and

Bimodal distribution on 250/1023 active subcarriers.

FMT synthesis of Filtered QPSK and filtered BOC(1,1) spectra

As investigated in the Sect. 4.2.5, the MC signal represents an excellent example of

spectral flexibility. Exploiting this characteristic, two examples of spectral synthesis

are analyzed and tested. The limited bandwidth of the MC signal binds the selection

of the signal to band limited waveforms, so the FMT structure is adopted to emulate

filtered QPSK(1) and filtered BOC(1, 1) spectra, but the method can be adopted

for every pre-existing waveforms. The synthesis is performed by sampling the PSD

of the “analog” signal on equally spaced subcarriers and using the values obtained to

shape the power distribution within the FMT subcarriers. The higher is the number

of the subcarriers, the better the “resolution” and the accuracy of the synthesis.

The synthesized spectra are depicted in the Fig.4.18. The signals result strictly

filtered on a bandwidth of BW = 6R
(a)
c = 6.138MHz, with R

(a)
c = 1.023Mchip/s

the chip rate of the analog signals, showing very limited out-of-band (OOB) emission.

The FMT synthesis chip rate depends on the bandwidth selected and it results R
(s)
c =

BW/(1 + α) = 4.384Mchip/s with α = 0.4. In this analysis N=93 has been chosen.

The integration time is chosen equal to a code period length and the equivalent noise



i

i

“main” — 2012/4/20 — 11:53 — page 99 — #127
i

i

i

i

i

i

4.4 Performance results 99

-140

-120

-100

-80

-60

P
o

w
e
r 

S
p

e
c
tr

a
l 
D

e
n

s
it

y
 [

d
B

]

-4.0x10
6

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0
Frequency [Hz]

FMT synthesis 
 Filtered QPSK(1) 
 Filtered BOC(1,1) 

N=93,Ls=110,Lcode=10230, a=0.4

Rc=Rs=1.023Mchip/s, BW=6Rc=6.138MHz

Rc-FMT=BW/(1+a)=4.384286Mchip/s

Figure 4.18: Spectra of the FMT synthesis.

bandwidth of the loop is assumed equal to 1 Hz. One Gold sequence with a length of

10230 chips is divided on 93 active subcarriers and on 110 symbol times. The delta

correlator spacing is set equal to half chip and one sixth of chip, respectively for the

QPSK and the BOC signal, normalized to the analog chip T
(a)
c . The performance of

the two signals are depicted in Figures 4.19a-4.22, in terms of S-curve and RMSE,

and every results are normalized to the analog chip rate R
(a)
c , which is the same for

both the cases.

The S-curves reported match the standard shaping which could be obtained simu-

lating the corresponding analog signals, except for the residual secondary false locks,

due to the MC nature of the signal, around the multiple of the (MC) symbol time. As

expected, the QPSK(1) S-curve has a larger operating range compared to the BOC

one, considering also that a different delta spacing is adopted for the two waveforms,

however the latter one shows an higher S-curve slope and consequently a lower error

variance and faster tracking.

In the Fig.4.21 and Fig. 4.22 the RMSE and the jitter of the non coherent estimator

are shown, together with the relevant modified Cramér-Rao bound (MCRB) (4.9),

as a reference. In the case of QPSK(1), the upper root of CRB depending on the

non-coherent DLL settings is also adopted [10] and it is obtained from the theoretical

analog filtered spectral shaping, whereas the lower root of MCRB does not depend
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Figure 4.19: S-curve function for the proposed non coherent DDLL scheme. Simulation

for the QPSK(1) SS-FMT synthesis.
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Figure 4.20: S-curve function for the proposed non coherent DDLL scheme. Simulation

for the BOC(1,1) SS-FMT synthesis.
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on the estimation algorithm but only on the signal and it is calculated with the (4.9).

The estimation is unbiased for all the values of C/N0, but a squaring loss is shown

(theoretically and with simulation) at low C/N0 values. The result in this sense can be

improved, increasing the integration time here supposed equal to one code period. The

RMSE curves perfectly match with the bound computed for the specific non coherent

E-L DLL settings (red curve in top of the circles). The 4.2 dB distance from the ideal

lower RMCRB for high C/N0 are related to the selected delta space (∆/T
(a)
c = 0.5).

In the comparison we can see that the FMT waveform obtain the same performance of

the QPSK analog signal, proofing once again, that the TOA estimation performance

depends only on the PSD itself, regardless of the modulation techniques and the signal

processing adopted to implement it. In the case of BOC synthesis, the non coherent

DLL performance matches the theoretical one (RMCRB) for high C/N0 values for the

value of the discriminator delta spacing adopted, whereas a squaring loss is anyway

shown at low C/N0, which can be improved increasing the integration time. Besides,

as expected from the CRB theory, the BOC(1,1) waveform outperforms the QPSK(1)

one in the AWGN channel, because even if they are designed to occupy the same

bandwidth, the Gabor bandwidth in the first case is higher than the latter one.

As already discussed in the previous sections, the FMT schemes here reported can

be supposed as part of a set of waveforms synthesized amidst which the transmitter

and the receiver can choose the best one, according to the particular (interference,

multipath) scenario. In fact, a flexible FMT system can be designed, maintaining all

the systems parameters except for the power distribution, with a modulation tech-

nique adaptable to the changes of the channel, keeping the signal strictly bandlimited

in the available bandwidth regardless of the frequency mask.

4.4.2 Performance in a two-ray Multipath channel

The performance analysis described so far is suitable for AWGN channels. However,

multipath still remains the dominant factor in a GNSS error budget. The MP

performance of a given signal/estimator combination is so analyzed by its MPEE

plot [37], [38]. The MPEE plot reflects the performance of a two-ray multipath channel

(line-of-sight + one reflected ray), by showing the bias induced by the non-line-of-sight

path onto delay estimation. The bias is computed establishing a receiver configuration

(TOA estimator, early-late spacing) as a function of the reflected path delay, and with
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Figure 4.21: RMSE for the proposed non coherent DDLL scheme. Simulation for the
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the MP (relative) amplitude kept constant.Figures 4.23 and 4.24 show the MPEE

of the previous flat and bimodal schemes and SS-FMT synthesis. The curves are

computed considering the non-coherent DDLL, with a different early-late spacing

∆ for each waveform, following the previous section simulation parameters. The

signal-to-multipath ratio (SMR) is equal to 3 dB, 6 dB and 10 dB, typical values for

ranging systems. For each signal configurations, two lines are plotted, corresponding

to the two worst cases of in-phase reflected signals, whilst the cases with intermediate

phase shifts that lie in between are not considered. The figures report the bias error

expressed in chip as a function of the delay of the specular ray expressed in chip as

well.

For the flat and bimodal schemes, the MPEE curves show a different behavior. Even

if smaller errors are shown in the first lobe of the MPEE when the Gabor bandwdth

is higher, for the other values of the specular delay the flat distribution performance

is better than the bimodal one. For the synthesized waveforms, an usual behavior

reports the a BOC(1,1) bias error lower than the QPSK(1) one, for its higher Gabor

bandwidth compared to the latter and also a narrower delta spacing adopted.

4.4.3 Summary of performance results

Different FMT waveforms are designed, spanning from a flat to a bimodal modulation

scheme, synthesizing filtered standard GNSS SIS and showing potentialities of the

multicarrier flexibility.

In the AWGN channel, the relative behavior of the proposed tracking scheme reveals

independent of the selected signal. The DDLL behavior results irrespective of the MC

parameters adopted and its performance is modeled on the theoretical limits. The

estimator correlates the FMT signal replica without any frequency demodulation in

baseband achieving the best theoretical performance.

The modulation schemes tested as example, like the bimodal one or the (synthesized)

BOC(1,1) depicted, with an higher Gabor bandwidth compared to the flat waveform

or the (synthesized) QPSK(1), respectively, reveal better performance in terms of

tracking accuracy as expected.

In the MP channel, performance in terms of MPEE enhance, i.e. multipath resis-

tance, enhances, with the increasing of the oscillating nature of the signal, obtained

by shifting the power at the edges of the available bandwidth.
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Figure 4.23: MPEE figures of flat and bimodal SS-FMT schemes.
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Figure 4.24: MPEE figures of filtered QPSK(1) and filtered BOC(1,1) SS-FMT synthesis.
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Examining these results and also the spectral and correlation properties, maintaining

the very low OOB emission, increasing the Gabor bandwidth allows for higher tracking

performance and MP rejection, at the expense of an increase of autocorrelation

sidelobes and receiver complexity to avoid the deleterious ambiguities.

In conclusion, after analyzing SS-FMT we have seen that they allow an excellent

spectral flexibility, by simply adapting the design parameters to the scenario analyzed.

4.5 Conclusions

This chapter has shown main spread-spectrum multicarrier signal qualities and po-

tentialities to be used as a possible ranging signal in future-generation positioning

systems.

Let us outline the main conclusions from the sections above:

• The full waveform flexibility of a multicarrier signal represents the most impor-

tant signal characteristic in a constrained design scenario. The signal can be

adapted to the different system’s requests, simply modifying some of the basic

parameters of the signalling waveform.

• For the FMT case, the spectral efficiency is allowed by the use of strictly limited

basic pulse, limiting the out-of-band emission and interference with pre-existing

systems, shaping opportunely the power distribution within the subcarriers.

• Conventional multicarrier formats are geared towards spectrum-efficient data

communications. In a GNSS system, the focus of SIS design is accurate time-

delay estimation, that calls for a different spectral distribution of the signal

power, namely, an high second-order moment. FMT signals meet the require-

ment above when shifting the power transmitted on the active subcarriers at

the edges of the permitted bandwidth;

• A spectral signal synthesis can be easily performed, sampling the selected PSD

and tuning with the same spectral shaping the power distribution coefficients.

• The DDLL algorithm mentioned in the chapter match to its TOA CRB in terms

of AWGN RMSEE;



i

i

“main” — 2012/4/20 — 11:53 — page 108 — #136
i

i

i

i

i

i

108 TOA Estimation with SS-FMT signals for GNSS

Increasing the second order moment of the spectrum, allow higher tracking perfor-

mance and MP rejection, at the expense of an increase of autocorrelation sidelobes

and receiver complexity. spread spectrum multicarrier (SS-MC) with ad-hoc settings

of frequency pulse, of Tc and of power distribution could be suitable for forthcoming

satellite positioning systems, thanks to their characteristics of spectral flexibility and

negligible OOB emission, once requirements from system design are set. More work

can and has to be done in terms of i) optimization of the FMT power spectral density

in case of multipath, analyzing also the correspondent theoretical performance [20];

ii) mitigation of the MP impact, engaging an ad-hoc circuit based on the multicarrier

nature of the signal, which jointly estimates the channel parameters and the signal

time of arrival.
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Chapter 5

Application of the MZZB to

Standard and Innovative

GNSS Signals

5.1 Introduction

“One-way signal Time-Of-Arrival (TOA)” estimation represents the basis of all cur-

rent Global Navigation Satellite Systems (GNSSs). The accuracy of user position is

directly related to the (pseudo-)ranges estimation performed by the receiver via TOA

estimation. The mean square error (MSE) is often used to evaluate the performance

of positioning algorithms and to compare different estimators. Their optimality can

be also compared with theoretical lower bounds.

Commonly the well known Cramér-Rao bound (CRB) represents the first choice

amidst all of the analytical tools to calculate the minimum MSE in parameter esti-

mation for its ease of calculation. Unfortunately, it produces significant values only

for high signal-to-noise ratio (SNR), since it does not usually consider (at least in

its simplest and most popular version) any a priori information on the parameter

to be estimated. Various theoretical bounds such as the Bayesian (Gaussian) CRB,

(Bayesian) Bhattacharyya and Barankin bounds have been developed in literature

[56], and can accomodate a priori information, but their analytical evaluation reveals

very complicated. Moreover, the main requirements for application of CRB are

a sufficiently smooth signal waveform [60] and possibly a differentiable parameter

probability density function (pdf). In some cases of practical interest, both these
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conditions are not satisfied - this is the reason of the abovementioned inaccuracy of

the CRB in many practical cases, and especially as far at the standard GNSS Signal-

In-Space are concerned. GPS, GLONASS, Galileo, and other GNSSs adopt Binary

Phase Shift Keying (BPSK) and Binary Offset Carriers (BOC) modulations [9] with

(theoretically) rectangular pulses, so that the CRB is not applicable.

Other bounds can be found in literature, which prove to be tighter than the CRB,

but cannot in general be easily cast into a simple closed form expression. One of these

is the Ziv-Zakai bound (ZZB) [11], [60] that stems out of detection theory and also

considers possible parameter a priori information. The ZZB can be used without any

constraints (signal shape, pdf of the parameter) and for any value of the SNR. For

these reasons, it represents a very interesting MSE benchmark for any signal format.

Regrettably, the received signal very often contains additional unknown and random

parameters other than the time delay (e.g., carrier amplitude and phase, values of the

ranging code chips, channel multipath etc.), defined in the previous sections nuisance

parameters. Computing the ZZB in the presence of nuisance parameters is very hard.

The aim of this section is to analyze the modified version of the bound, i.e. the modified

ZZB (MZZB) [18–20], defined in the Sections 2.4 and 2.5.3, whose computation in

the presence of nuisance parameters is much simpler. We use the MZZB here to

evaluate the performance of TOA estimation during signal acquisition and tracking for

standard GNSS SIS (BPSK, BOC) and for innovative GNSS waveforms designed with

Multicarrier modulation. In particular, assuming the proper a priori information, we

can evaluate for the different applications the minimum C/N0 threshold that is needed

to acquire or track the signal delay with an MSE lower than a fixed value. Numerical

results are shown for the main GNSS standard signal formats: BPSK and (filtered) Bi-

nary Offset Carriers (BOC) modulations in Additive White Gaussian Noise (AWGN)

channel. Finally, performance of Multicarrier signal is also analyzed, with different

signaling waveform characteristics. Through the computation of the MZZB we can

also clearly evaluate the impact of the shape of the signal autocorrelation function on

the estimation performance.

5.2 Application of MZZB to standard SIS

For the sake of clarity let’s recall here the final expressions of ZZB and MZZB for

TOA estimation found in presence of the nuisance parameters u, already defined and
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theoretically deeply discussed in the Chapter 2. The true and modified ZZB result

ZZB (τ) =
1

Tx

∫ Tx

0

∆G



(Tx − ∆)Eu







Q





√

d2 (∆|u)

2N0













 d∆ (5.1)

and

MZZB(τ),
1

Tx

∫ Tx

0

∆G



(Tx − ∆)Q





√

Eu{d2(∆|u)}
2N0







 d∆ (5.2)

where [0,Tx] is the uncertainty range of the delay, assumed with a uniform probability

density function (pdf), chosen according to the TOA estimation stage. Assuming a

realistic time of observation (Tobs), we can adopt the approximation in (2.49), so the

(u-conditioned) squared distance between the signal replicas, delayed by two trial

delays which differ each other of a ∆ value, becomes

d2 (∆|u) =

∫ Tobs

0 |x (t|u) − x (t− ∆|u)|2 dt
2

= 2ETobs
(1−ρTobs

(∆|u)) (5.3)

with the (conditional) signal correlation function ρTobs
(∆|u) defined in (2.50) nor-

malized to the signal energy ETobs
= PxTobs, with Px the transmitted signal power

(which is usually also called C).

Let us consider now the performance of TOA estimation for BPSK and BOC signals

in an Additive White Gaussian Noise (AWGN) channel. Hereafter we compute only

the MZZB, due to the heavy computational cost of ZZB. We can show that the gap

between the original and the modified versions of the ZZB is negligible whenever the

size of the u vector gets large [19, 20].

The BOC(fs, fc) modulations consist of superposing a square wave subcarrier of

frequency fs=mfg to the spreading code of a standard Spread-Spectrum BPSK (SS-

BPSK) of rate fc=nfg=1/Tc , where m and n are two integers and fg=1.023MHz.

The chip time Tc is sliced in Ω half-cycle times Ts

2 of the square wave (Ts =1/fs) and

Ω=2 fs

fc
=2m

n is the modulation order.

The superposition (product) with the square wave leads to splitting and shifting

the baseband SS-BPSK spectrum - for this reason BOC are also known as split-

spectrum modulations. This allows for better performance in terms of tracking

accuracy than the original BPSK owing to Gabor bandwidth enhancement, but at the

cost of a worsening the correlation function. BOC waveforms are characterized by an

autocorrelation function containing multiple peaks that lead to potential acquisition
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and tracking ambiguities. To mitigate this problem, a number of techniques have

been suggested in the literature, at the cost of an increased receiver complexity. One

of the scopes of this section is to emphasize the capability of the MZZB bound to

take into account these deleterious ambiguities [23, 24, 58, 59].

The BOC(fs, fc) signal can be written as

xBOC (t)=xBPSK (t) sign [sin(2πfst)] (5.4)

with

xBPSK (t) =
√

2Px

∑

k

ckrect

(

t− kTc − Tc/2

Tc

)

(5.5)

where Px is the signal power, ck are the independent and identically distributed (i.i.d.)

chips belonging to {±1}. Signal (5.4) can be easily seen as a linear modulation

xBOC (t)=
√

2Px

∑

k

ck(−1)
kΩ
q

(

t− k
ΩTs

2

)

(5.6)

with the basic pulse

q (t) =

Ω−1
∑

m=0

(−1)
m
µ (t−mTs/2) (5.7)

composed of the sum of Ω rectangular pulses

µ (t) = rect

(

t− Ts/4

Ts/2

)

(5.8)

with amplitudes regulated by the factor (−1)kΩ. The distance needed in (5.1) and

(5.2) can be computed starting from (5.6)-(5.8), evaluating the conditional squared

distance (5.3), and carrying out the expectation on nuisance parameters u that in our

case are the i.i.d. code chips u=c. The result after the expectation becomes

Ec{ρBOC (∆|c)} = (5.9)

RBOC (∆)=

Ω−1
∑

k=0

(

Ω − k

Ω

)

(−1)
k

{

Ψ

(

2∆

Ts
−k
)

+Ψ

(

2∆

Ts
+k

)}

−Ψ

(

2∆

Ts

)

where

Ψ

(

2t

Ts

)

=

(

1− 2 |t|
Ts

)

rect

(

t

Ts

)

(5.10)

is the triangular function.
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The final expression of the bound reported for clarity here, becomes

MZZB (τ)=
1

Tx

∫ Tx

0

∆(Tx−∆)Q

(

√

LEc

N0
(1 − RBOC (∆))

)

d∆ (5.11)

=
1

Tx

∫ Tx

0

∆(Tx−∆)Q

(

√

CTobs

N0
(1 −RBOC (∆))

)

d∆

where the Ec = C · Tc is the signal energy per chip, L is the number of observed

chips and C is the power of the received signal. Figure 5.1 shows the normalized

autocorrelation functions of the theoretical BOC signals and of BPSK, with different

chip rates, so that the 99% power bandwidth B99% is the same for all signals. The

BOC autocorrelation function runs out in a single chip time, with a number of

secondary lobes, Ω−1 for each side, that have non negligible relative peaks compared

to the main lobe at τ = 0. If we assume an uncertainty on the delay greater or equal

than a chip time, the estimation will be certainly impaired by the ambiguities caused

by these secondary peaks. Fig.5.2 depicts the MZZB for these signals in terms of

RMSE. The uncertainty on the delay for the MZZB computation is fixed to one chip

time (Tx = Tc), different for each signal, so the integration in (5.11) on ∆ consider

the contributions of all of the correlation side lobes.

For (very) low C/N0 (SNR), the rms error of any estimator tends to Tc/
√

12 i.e.

the standard deviation of a uniform random variable τ in [0, Tc]. In this region,

the optimum estimator actually uses the a priori information on τ , estimating the

variable with its mean value, and neglecting received noise-corrupted data. For a

larger C/N0, the MZZB curves decrease proportionally to (C/N0)
−2 and approach to

each other regardless of the signal, due to the assumption on the same bandwidth

and consequently a similar spectrum shaping. The boundary of the two regions is

a threshold, and the higher the BOC modulation order, the higher the number of

ambiguities in the correlation function and the higher the C/N0 threshold to attain

the “high-SNR” zone. The slope of -20dB/decade sounds strange if compared to the

standard MCRB slope of -10dB/decade (for generic bandlimited signals) [17], due to

the assumption of an infinite-bandwidth rectangular pulse in this theoretical example.

In this case, as previously reported, the CRB can not be computed

In a more realistic scenario, filtered signals have to be considered. Maintaining

the previous hypotheses on binary random chips, the only difference in the resulting
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expression of the MZZB is the correlation function to be used in (5.11) which becomes

RF
BOC(∆)= RBOC(∆) ⊗ h (∆) ⊗ h (−∆) (5.12)

where h (t) is the impulse response of the filter, that we assume low-pass with a −3dB

bandwidth BW . In fig.5.3 we show the RMSE curves for the filtered BOC signals with

BW = B99%. In this case the MCRB can be also computed as a reference, adopting

the frequency domain version [2, 27] for filtered signals introduced in the Sect. 2.5.3.

For low and medium C/N0 values, as expected, the performance is similar to the

ones previous seen (inside the bandwidth the spectra remain practically the same).

In these C/N0 regions the mismatch between the MZZB and the MCRB curves is

due to the absence of a priori information for the latter. For high C/N0, the MZZB

curves decrease proportionally to (C/N0)
−1 perfectly matching with MCRB, and also

show a little improvement for larger values of Ω caused by the increase of the Gabor

bandwidth.
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Figure 5.3: Multi-peaks effect - filtered BOC modulations.
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5.3 Application of (M)ZZB to Multicarrier signals

In the time of writing Multicarrier (MC) modulations have attracted strong interests

both for communication purposes and navigation and positioning ones. After the full

analysis in the Chapter 4, the aim of this section is first to briefly test the matching

between the ZZB and the MZZB considering very easy MC cases of study, hence to

compute the theoretical performance for possible GNSS significant schemes. Recalling

the definition of a multicarrier signal in Chapter 4, its equivalent base-band is

xSS−MC (t) =
√

2Px

∑

k∈Df

√
wkxk (t)ej2πkfkt = (5.13)

√

2Px

∑

k∈Df

√
wk

[

+∞
∑

n=−∞

γ(k)
n g (t− nTs)

]

ej2π(kfsc+∆f )t

where the coefficient wk identifies the fraction of total power transmitted on the k-

th subcarrier centered in fk with
∑

k∈D

wk = 1, Df is the set of active subcarrier

centers, γ
(k)
n is the symbol/chip (or chip-data product γ

(k)
n = d

(k)
n c

(k)
n ) on the k-th

subcarrier, Px = C is the real total power, fsc is the subcarrier frequency spacing,

∆f is a frequency offset, Ts is the multicarrier symbol time, Ts = NTc, with N the

number of equally spaced subcarriers and Tc the chip time. In this section we show

the computation of the the (M)ZZB for TOA estimation error for two MC waveforms,

the Orthogonal Frequency Division Multiplexing (OFDM) and the Filtered Multitone

(FMT) signals, respectively, in Additive White Gaussian Noise (AWGN) channel, but

results found can be easily extended to any multicarrier signal.

For OFDM waveform the subcarrier spacing is fsc = 1/Ts and g (t) is a rectangular

pulse of duration Ts and unit amplitude, while for FMT fsc = 1+α
Ts

using a Squared

Root Raised Cosine (SRRC) pulse with the roll-off factor α = 0.2. In that case, the

Continuous Fourier Transform (CFT) of g (t) is defined as G(f)=Ts

√

GN (f)
Ts

with the

Raised Cosine pulse GN (f)=CFT {gN(t)} with GN (0)=Ts and a bandwidth equal

to 1+α
Ts

.

As we have seen with the (single carrier) BOC modulations analyzed in the previous

Sect. 5.2, the ZZB and MZZB for the MC signals can be obtained from (5.1) and (5.2)

once selected the uncertainty Tx and computed the (conditional) squared distance

in (5.3). For the sake of simplicity, the a priori information on the parameter was

selected equal to the symbol time Ts or the chip time Tc = Ts/N , assuming τ uniformly



i

i

“main” — 2012/4/20 — 11:53 — page 117 — #145
i

i

i

i

i

i

5.3 Application of (M)ZZB to Multicarrier signals 117

distributed in [0, Ts] or [0, Tc], respectively, and identifying u with c, which represents

the vector of nuisance code chips.

The last step, after the squared distance is calculated, is the expectation on the

vector u=c made of independent and identically distributed (i.i.d.) chips belonging

to {±1}. The observed chips are assumed Nc = (L+1)·N for OFDM and Nc = L·N
for FMT in the observation time Tobs = L·N ·Tc.

The ZZB expression for OFDM and FMT are reported in the following (5.14) where

the squared distances are respectively (5.15) and (5.16), assuming the observation

time Tobs=LTs and the frequency offset ∆f = 0.

ZZB (τ) =
1

Tx

∫ Tx

0

∆G







(Tx − ∆)
1

2Nc

2Nc−1
∑

ν=0

Q





√

d2 (∆) |cν

2N0











d∆ (5.14)

d2
OFDM (∆)|cν

2N0
=
LEs

N0
− Es

NN0

L−1
∑

n=0

∑

k,p∈Df

√
wkwpc

(k)ν
n c

(p)ν
n−1

∆

Ts
sinc

(

∆

Ts
(k−p)

)

cos

(

π

(

∆

Ts

)

(k+p)

)

(5.15)

− Es

NN0

L−1
∑

n=0

∑

k,p∈Df

√
wkwpc

(k)ν
n c(p)ν

n

(

1− ∆

Ts

)

sinc

((

1− ∆

Ts

)

(k−p)
)

cos

(

π

(

1+
∆

Ts

)

(k+p)

)

d2
FMT (∆) |cν

2N0
=
LEs

N0
− Es

NN0

L−1
∑

n=0

L−1
∑

m=0

∑

k∈Df

√
wkc

(k)ν
n c(k)ν

m gN

(

∆

Ts
−(n−m)

)

cos

(

2πk(1 + α)
∆

Ts

)

(5.16)

The MZZB expression for MC waveforms (5.13), after the expectation on the nui-

sance chips becomes

MZZB (τ)=
1

Tx

∫ Tx

0

∆G

{

(Tx−∆)Q

(
√

LEs

N0

(

1 −RMC

(

∆

Ts

))

)}

d∆ (5.17)

where

RMC

(

τ

Ts

)

= ρ

(

τ

Ts

)

∑

k∈Df

wk cos (2π(kfsc + ∆f )τ) (5.18)
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is the real part of the normalized (theoretical) correlation function of the signal, fsc

is the subcarriers spacing, ∆f is the frequency offset, with the (specific) normalized

correlation pulses

ρ (∆/Ts) =







(1−|∆/Ts|) , for OFDM ,

gN (∆/Ts) , for FMT .

For OFDM, on every subcarrier, L+1 symbols fall under Tobs observation time. ZZB

for FMT results approximated for low L (it can be considered exact only for high L).

In this case, L represents both the number of intervals of symbol observed and the

number of symbols for every subcarrier considered within Tobs. The approximation

is due to the infinite FMT pulse duration, which makes the computation of the exact

ZZB for low L difficult. As expected, the ZZB computation in (5.14) is feasible only for

very low (“toy”) values of N and L, since the expectation on all possible realizations

of c (2(L+1)·N for OFDM and 2L·N for FMT ) is outside the Q
(√·
)

function. The

situation is different for the modified bound (5.17), in which the expectation is carried

out inside the argument of Q
(√·
)

, so that the expression can be simplified using the

known momenta of i.i.d. binary code chips in c.

5.3.1 True and modified ZZB convergence

Exploiting the expressions reported in the previous section, lets assume, for a compari-

son of the true and modified versions of the bound, a flat power distribution within the

N subcarriers (wk = 1/N) and an asymmetric distribution of the subcarrier centers,

with D = {0, 1, ...N − 1} and ∆f = 0. According to these settings, the correlation

function in (5.18) becomes,

RMC

(

∆

Ts

)

=
ρ
(

∆
Ts

)

cos(π (N−1)∆fsc)sin(πN∆fsc)

N · sin(π∆fsc)
(5.19)

to substitute in the MZZB expression.

The set of curves in Fig. 5.4a-5.4b depicts a comparison between the ZZB and MZZB

for some OFDM and FMT examples. To ensure low complexity of our computations,

only small values of L and N were used, but the results could be extended for larger

values. In Fig. 5.4a the OFDM signal has (N = 3) subcarriers and a common chip

time Tc, whilst the observation time L is variable. Figure 5.4b shows the bounds for
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FMT assuming that the number of observed chip L ·N , the chip time (and therefore

the signal bandwidth) are constant.

Increasing L, i.e. the observation time for a fixed number of subcarriers N involves

a rigid down shift of the curves in Fig.5.4a, as could be easily seen from (5.14)-(5.17)

and [19].

For (very) low C/N0 (SNR), the rms error of any estimator tends to Ts/
√

12 (Tc/
√

12),

i.e. the standard deviation of a uniform random variable τ in [0, Ts] ([0, Tc]). In

this region, the estimator actually uses the a priori information on τ , estimating

the variable with its mean value, and neglecting received noise-corrupted data. For

a larger C/N0, both the ZZB and the MZZB decrease proportionally to (C/N0)
−1

and approach to each other regardless of the particular a priori information. The

two regions are clearly divided by a sort of threshold, which depends on the signal

settings (number of subcarriers N and power distribution) and the estimation time

(Tobs).

As already mentioned, the ZZB, shown in marked curves, was computed, averaging

on all the possible ranging chips sequences, only for low N and L values due to

its heavy computational cost. Despite this, the differences between the two bounds

is almost imperceptible (except for some cases with OFDM). The gap between the

curves is due to low-probabity “bad” sequences of ranging chips, (e.g., ckn constant ∀
n and k) whose specific contribution are observable only in the ZZB whereas they are

averaged in the MZZB.

For high values of the u-vector size (Nc), the MZZB is not only easier to compute,

but it is a very good approximation of the true ZZB whenever the ranging codes in

the ZZB look “random”. When the Nc is in fact large, the chip sequences cν become

statistically “typical” with high probability - the “atypical” sequences like all -1s or

all 1s become very low probability, and the internal and external expectations of the

function Q
(√·
)

tend quickly to be the same. The case of study here reported can be

obviously seen as a generalization of the single carrier case, in which N = 1 and the

(M)ZZB matching enhances with increasing the number of random chips (nuisance

parameters) L.
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Figure 5.4: (M)ZZB of MC in AWGN channel.

5.3.2 MZZB for innovative GNSS waveforms

Once the (M)ZZB matching is proven, we can assume the equivalence between the

bounds for a high number of nuisance parameters (chips) and we can compute here-
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after only the modified bound. As seen in the Chapter 4, the multicarrier modulation

allows a high degree of design thanks to the large set of constituent parameters.

The full MC spectral flexibility and, in specific case of the FMT, also the strict

limited bandwidth give to this waveform the chance to be welcomed in a GNSS

scenario, solving a number of problems related to systems interference, compatibility

and reconfigurability. In this section we analyze two (general) FMT profiles which

could be significant for satellite navigation purposes. The schemes can be properly

modified to match the particular systems requirements. The results depicted for

these particular schemes can be generalized to any waveforms, generate by both single

and multicarrier modulations. Fig.5.5 shows the PSD of the two FMT signals which

occupy one single bandwidth and two separated bandwidths, labeled as low-pass (LP)

and Band-pass (BP) scheme, respectively. The power distributions within the active

subcarriers were selected to obtain different performance and analyze two different

general cases, whereas the other parameters are the same for both the waveforms. The
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Figure 5.5: Low-Pass/Band-Pass FMT schemes Power Spectral Density

signal autocorrelation function of the two waveforms is depicted in Fig.5.6 with black

solid lines, together with the SRRC correlation pulse (in red) and the array function in

the background (in grey). Fig.5.6a shows the correlation of the LP signal. It has only



i

i

“main” — 2012/4/20 — 11:53 — page 122 — #150
i

i

i

i

i

i

122 Application of the MZZB to Standard and Innovative GNSS Signals

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4N
o

rm
a

li
z
e

d
 a

u
to

c
o

rr
e

la
ti

o
n

 f
u

n
c

ti
o

n

6460565248444036322824201612840
Normalized time delay [t/Tc]

LP FMT scheme

(a) Low-Pass FMT scheme

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2N
o

rm
a

li
z
e

d
 a

u
to

c
o

rr
e

la
ti

o
n

 f
u

n
c

ti
o

n

6460565248444036322824201612840
Normalized time delay [t/Tc]

BP FMT scheme

(b) High-Pass FMT scheme

Figure 5.6: Low-Pass/Band-Pass FMT schemes Autocorrelation function
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one main lobe in the near delay region, and other (attenuated) replicas in multiple

of the symbol time (kTs/(1 + α)). In the other case the BP correlation appears very

oscillating in Fig.5.6b with a number of side lobes, which are also periodic around the

multiple of the symbol time. The oscillating nature of the correlation function, from

one hand can be considered deleterious for the induced ambiguities in the detection of

the mainlobe position for the acquisition of the signal. On the other hand, the TOA

estimation accuracy depends on the second-order moment of the spectrum (Gabor

bandwidth, GB), and in particular the higher the Gabor bandwidth and the lower the

error, but the higher the sidelobes. The LP scheme occupies an effective bandwidth

larger than the BP one, with good correlation properties, but conversely it reveals

lower performance in terms of GB. As reported in the Sect. 2.5.3 the MSE dependence

on the GB is evident for high Tx and SNR values in the MZZB approximation (2.53-

2.54), where the CRB and the ZZB converge each other and proportionally decrease

with the product between the SNR and the (squared) Gabor bandwidth, β2
x, defined

as

β2
x

∆
=

∞
∫

−∞

f2Sx (f)df

∞
∫

−∞

Sx (f) df

, (5.20)

where Sx (f) is the PSD of the complex signal.

Theoretical performance for low-pass and band-pass FMT schemes are depicted in

the Fig.5.7-5.8. In the group of charts in Fig.5.7, the RMSE limit is calculated through

the MZZB with respect to ETobs
/N0, where ETobs

is the signal energy in the time of

observation. Additionally, in Fig.5.8 the charts depict the performance of the LP and

BP signals, with respect to the uncertainty interval Tx. In both the groups of charts,

the RMSE values are normalized to the respective signal Gabor bandwidth.

Analyzing the charts in Fig.5.7 we can observe a similar behavior described in the

Sect. 5.2 and in the previous section for the BOC modulation. In both the cases

of study analyzed (LP/BP waveforms) and for (very) low SNR, i.e. in the a priori

information region, the (normalized) RMSE is proportional to the delay uncertainty

Tx and tends to Tx/
√

12, i.e. the standard deviation of a uniform random variable dis-

tributed on [0, Tx]. In the region of high SNRs, the received data are fully informative

and so the curves of RMSE converge to a unique line, which coincides with the CRB,

inversely proportional to the signal Gabor bandwidth βx and the SNR value. The
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Figure 5.7: βx-normalized RMSE vs ETobs
/N0

MZZB takes into account the ambiguities, if there are, within the selected uncertainty

region, especially for medium signal-to-noise ratios, where the profile of the bound

depends on the respective autocorrelation function properties, and in particular, the

larger and the higher the ambiguities (sidelobes) in the correlation function, the larger

the number of bulges and the higher the deterioration of the performance. The charts

in the figures 5.7a and 5.7b show the different behaviors of the two schemes, which

directly depends on the oscillating nature of the BP correlation function conversely

absent in the LP one, for a set of Tx values analyzed. Considering an uncertainty

lower than a chip time, the LP/BP performance is similar, because their correlation

function mainlobes are both greater than one chip time. The RMSE lines result

constant in these cases for a wide range of low-medium SNR values, matching the

CRB only for high SNR.

Figures 5.8a and 5.8b show the performance with respect the uncertainty range. For

low SNR values, the RMSE is proportional to the Tx value, and in general all the

curves are below the straight line σ = Tx/
√

12 reached when ETobs
/N0 → 0 or/and

for very low Tx values. For high Tx and high SNRs, the MZZB matches the CRB,
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hence the lines result constant with respect the uncertainty. The main difference

in comparing the charts of LP and BP schemes, due to the presence of different

correlation ambiguities, is the evident gap in the BP performance experienced over a

particular threshold value approximately equal to Tx =ACW , i.e. the autocorrelation

function mainlobe width. The gap is less evident in the LP performance, for its

(almost) ambiguity-free correlation function, except for the decreasing peaks in the

multiple of Ts/(1 + α).

After to have depicted the general theoretical performance, in the following sections

we will focus on apply these curves to the TOA estimation.

5.4 Relating the bounds for signal acquisition and

tracking

We have seen that the main “ingredients” of the MZZB are i) the signal correlation

function (in the expression of the distance between the delayed replicas), and ii) the
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“a priori” uncertainty on the parameter to be estimated. The correlation function

is directly linked to the signal capability to be detected with different delays, and

intuitively the lower the correlation values, the higher the distance and the lower the

estimation error. Once we choose to analyze the theoretical performance of a certain

signal, the main element that has to be properly chosen is the uncertainty on the

unknown parameter, which depends on the particular stage of estimation and on the

adopted estimator. By properly selecting the a-priori uncertainty, we can model the

two different phases of initial acquisition (large uncertainty) and steady-state tracking

(smaller uncertainty).

Let’s start from TOA acquisition. We assume not to have any information on the

delay, so in general the uncertainty adopted in this phase for the delay is equal to the

full length of the ranging code, NTc. Hence we consider the delay as a random variable

uniformly distributed on a chip code period (Tx = NTc). Once the uncertainty is

fixed, the MZZB can be computed for the acquisition performance and the curve of

RMSE can be plotted wrt the C/N0 ratio, to find the theoretical operating range in

which the optimum estimator can achieve a pre-set accuracy during this phase. We

assume also that acquisition has successfully completed when the estimation error ε

falls within a pre-set range r, |ε| ≤ [r/2]. This defines an event whose probabilty is

just what we call probability of detection: Pd = Pr {|ε| ≤ [r/2]}. Assuming that the

error ε is a Gaussian random variable1 N (0, σ0), then Pd=1−2Q
(

[r/2]
σ0

)

. Inverting

this relation, a maximum standard deviation threshold for the error can be found

for the constrained probability of detection and error range r. From this standard

deviation, a minimum C/NAcq
0 (Pd, r) threshold can be found from the RMSE curve

of the MZZB.

Of course, the MZZB does not depend on the acquisition algorithm that is adopted,

but it only depends on the starting uncertainty interval, here fixed to NTc. Usually,

during signal acquisition the search of the coarse delay is done on a limited number

of “cells” with a duration δT . The total uncertainty interval is partitioned into a

certain number of cells, and the higher the number of cells, the more accurate the

estimation. Once the signal is acquired, the (residual) error will be |ε| ≤ [δT/2]

(r = δT ). On the other hand, the higher the number of cells, the longer the acquisition

time (in GNSS parlance, time to first fix). Usually, the cell time width is proportional

1This is true for instance for Maximum-Likelihood estimator on a large estimation window
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to the pull-in-range (PIR) of the estimator used for the tracking of the signal, to

ensure the tracking is initiated with a sufficiently small error. After acquisition is

(successfully) accomplished, we have to update the uncertainty for the residual TOA

to just the width of a time cell, and a new MZZB, that applies during tracking, has

to be computed.

One possible definition of the pull-in-range is the linear, non-ambiguous region of

the S-curve of the estimator, which depends on the correlation of the signal and on

the estimator that is used. For this analysis we assume a conventional Early-Late

estimator, whose pull-in-range is approximated by the early-late spacing d, which in

turn is usually chosen equal to an half of the autocorrelation main lobe width (named

ACW ) of the tracked signal. To sum up, once the ACW is calculated from the signal

autocorrelation function, we can evaluate the relevant performance during acquisition

through the computation of the MZZB with full uncertainty (one code length) and

with the needed residual error range given by δT =PIR=d= ACW
2 . In particular, we

can find the minimum (threshold) C/N0 which makes sure that an optimum estimator

performing on the bound will have with the prescribed probability a residual error

inside the PIR of the tracking estimator C/NAcq
0 (Pd, r). The RMSE curve of the

bound will depend on the particular shaping of the autocorrelation function of the

signal, and so the threshold C/NAcq
0 will depend on its characteristics.

Coming now to the bound for tracking performance, the ingredients are again the

initial a priori uncertainty on the parameter (much narrower now), and the signal

autocorrelation function. After coarse acquisition, the curves of MZZB for tracking

are re-computed assuming the residual error as a uniform random variable on the

time bin span Tx =δT = ACW
2 . During the tracking phase, the error has to stay inside

the PIR of the estimator, so an operating range can be found choosing the maximum

error deviation threshold with the experimental rule 3σDLL ≤ PIR
2 = ACW

4 , reading

from the MZZB curve the minimum C/NTr
0 which ensures the constraint.

5.4.1 Case of Study - Galileo SIS Results

Once the methodology is clear, we analyzed the performance of BPSK and BOC

Galileo SIS. The signal parameters that we considered are defined in the Open Service

Signal-In-Space Interface Control Document Issue 1 (OS SIS ICD) of February 2010.

In particular, we considered the specific ranging code chip rates, and the primary code
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lengths (Tx =NTc for the acquisition uncertainty), the receiver bandwidths reported

in the document and we computed the correlation CW (Tx = ACW
2 for the tracking

uncertainty) from the theoretical signals. For the standard SIS, we reported the

maximum standard deviations for the acquisition (for a set of probability of detection)

and tracking with the respective minimum C/N0 thresholds to ensure the constraints:

Pd = Pr {|ε| ≤ [PIR/2]} and 3σDLL ≤ PIR
2 . Estimation performance will depend on

the time of observation Tobs for the acquisition stage, or equivalently on the DLL filter

equivalent noise bandwidth Bn for the tracking phase. We assume the equivalence

Tobs = 1/2Bn for the computation of the bounds, considering a Bn value of 10Hz

and an time of observation (for the acquisition) of 0.05 s.

Figure 5.9 shows the curves of RMSE for acquisition and tracking. In addition, Tab.

5.1 summarizes our results and report the parameters adopted in the simulations.

Regarding the acquisition performance, the minimum C/NAcq
0 threshold increases, as

is natural, for increasing Pd, and ranges from a minimum of 28.30 dBHz (BPSK(5),

Pd = 0.99) to a maximum of 29.65 dBHz (BOC(15,2.5), Pd = 0.999). As clearly can

be seen in the (5.11), the MZZB linearly depends on the observation time and C/N0

product, so the results for different values of Tobs (assumed here 0.05s) can be simply

obtained by shifting the curves in Fig.5.9 and so the respective thresholds in Tab.5.1.

Once acquisition is over, fine estimation requires a lower C/NTr
0 than the previous

stage, thanks to its better a priori information. We see in the Tab. 5.1 that the

required values range from 16.40 to 23.06 dBHz, i.e. more than 10 dBHz difference

compared to the acquisition ones. The same remarks reported for the acquisition

analysis remain valid also for the tracking one, in fact when a different DLL filter

bandwidth is adopted the relative performance can be obtained by linearly shifting

the curves in the Fig.5.9 and so the respective thresholds in Tab.5.1.

The σ values reported in the table are the maxima allowable for the minima C/N0.

Obviously better values can be achieved with higher C/N0, following the curves

computed in Fig.5.9.
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Acquisition Uncertainty NTc Pd = 0.99 Pd = 0.995 Pd = 0.999

Modulation Chip Rate Unc [Tc] Unc [Km] σ [m] C/NAcq
0 σ [m] C/NAcq

0 σ [m] C/NAcq
0

BPSK(5) 5115000 5115 300 11.50 28.30 10.43 28.37 8.98 28.48

BPSK(10) 10230000 10230 300 5.75 28.76 5.22 28.83 4.49 28.94

BOC(1,1) 1023000 4092 1200 19.17 28.59 17,39 28.65 14.96 28.74

BOC(6,1) 1023000 4092 1200 2.50 29.64 2.27 29.70 1.95 29.89

BOC(15,10) 10230000 10230 300 1.15 29.20 1.04 29.25 0.90 29.34

BOC(15,2.5) 2557500 4092 480 1.0 29.52 0.91 29.57 0.781 29.65

BOC(10,5) 5115000 5115 300 1.64 29.13 1.49 29.19 1.28 29.28

Tracking AC mainlobe width Uncertainty PIR σ

Modulation Chip Rate BW [MHz] ACW [Tc] ACW [m] Unc [Tc] Unc [m] σ [Tc] σ [m] C/NTr
0

BPSK(5) 5115000 40.92 2.0 117.30 1 58.65103 0.167 9.78 16.40

BPSK(10) 10230000 20.46 2.0 58.65 1 29.32551 0.167 4.89 17.27

BOC(1,1) 1023000 24.552 0.667 195.50 0.33 97.75 0.0556 16.29 16.40

BOC(6,1) 1023000 24.552 0.087 25.50 0.0435 12.75 0.00725 2.12 18.89

BOC(15,10) 10230000 51.15 0.4 11.73 0.2 5.87 0.0333 0.978 18.50

BOC(15,2.5) 2557500 24.552 0.087 10.2 0.0435 5.10 0.00725 0.85 23.06

BOC(10,5) 5115000 40.92 0.286 16.78 0.1429 8.379 0.0238 1.396 18.64

Table 5.1: Acquisition and tracking parameters.
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Figure 5.9: Acquisition and tracking performance of Galileo GNSS.

5.5 Conclusions

This chapter investigated a modified version of the Ziv-Zakai bound, the so-called

MZZB, that makes it feasible to find the bound in the presence of nuisance parameters,

such as the chips of a random ranging code. The MZZB was mainly applied to

BPSK and BOC modulations, and also to some significant MC schemes, allowing

to highlight the impact on time estimation of signal autocorrelation side lobes. The

related performance loss was shown to be strictly related to the number and the

amplitude of the lobes.

The MZZB proved also expedient to estimate the minimum C/N0 thresholds that

ensure safe acquisition of the Galileo SIS under a certain probability of detection, and

to keep signal tracking.
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Chapter 6

Conclusions and perspectives

In this thesis we have investigated the fundamental limits in time delay estimation

(TDE) accuracy of SS signals making use of estimation theory and signal synchro-

nization tools, referring to standard and innovative signalling waveforms.

The focus is addressed on positioning systems, such as the global navigation satellite

system (GNSS), deriving some criteria to improve positioning accuracy in a white

Gaussian noise scenario. As it is well known, positioning accuracy directly depends

on the accuracy of TDE between satellite transmitted codes and local receiver replicas.

We have reviewed the ultimate limits in TDE, characterized by the Cramér-Rao

lower bound (CRB) and the Ziv-Zakai lower bound (ZZB) fully investigating the

AWGN scenario. These limits represent the performance benchmarks for any es-

timator, so the simple criterion to reach the ultimate accuracy of a GNSS system

at transmitter side, is design the signal minimizing such bounds. Nevertheless, the

minimization of the accuracy doesn’t reflect into an optimization of the entire system,

so in general a trade-off has to be found with other system’s constraints.

Innovative SS modulation schemes properties and performance have been analyzed,

adapting the signal characteristics to the requirements of the GNSS systems.

Let us outline the main conclusions from the development above:

• The review of TDE fundamentals limits has been further exploited; formulations

of the CRB and of the ZZB have been focused, defining a modified version of

the ZZB to lighten its heavy computation in presence of nuisance parameters.

Alternative formulations of the bounds as a function of the spectral properties

of a generic modulation format have been discussed;

• the adoption of the ZZB as benchmark for both acquisition and tracking stage
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performance has been addressed, analyzing innovative and standard signalling

waveforms, such as Galileo SIS. The results are independent from the estimation

algorithm adopted and represent the ultimate performance achievable.

• SS-CPM modulation have been analyzed as ranging signals; this waveform

demonstrated particularly expedient due to the properties of being intrinsically

constant envelope and spectral efficient; a special subset of CPM, called here

“Semi-integer MSK (SiMSK)” obtained by properly setting the modulation pa-

rameters, revealed easily adaptable to the requirements on emissions, ensuring a

constant envelope by definition, while still allowing good tracking performance.

Besides, an ad hoc encoding of the SS-SiMSK has allowed the transmission

of a two rate services signal, which allows to be tracked with different TDE

accuracy according to the bandwidth of the receiver. Some standard estimation

algorithms for SS-SiMSK signals have been tested, adopting their linear approx-

imation, which have shown performance close to the correspondent CRB;

• the high degree of freedom in the design of the multicarrier (MC) signal pushed

to the analysis of this waveform as possible new ranging signal. We showed how

MC waveform can be formatted to obtain maximum estimation accuracy or

minimum interference simply by adaptively modifying the system’s parameters,

proposing the special case of Filtered Multitone (FMT) as possible candidate.

The strictly bandlimited property and the full spectral flexibility possessed by

the FMT have been exploited in some cases of study to adapt the system to

channel conditions or in particular to emulate existing or innovative spectra.

Finally a standard tracking algorithm is tested for some SS-FMT waveforms,

showing performance close to the correspondent CRB;

The analysis and fundamental issues investigated in this thesis in terms of estimation

error bounds can be reapplied without any loss to real systems. The proposed

modulation schemes and correspondent estimators reach the theoretical performance

in AWGN channel, showing ready for their use in future GNSS systems. For mul-

ticarrier signals, the theoretical analysis performed with the fundamental estimation

error bounds and with a standard estimator represent the basis for future design

of estimators, that may be further investigated to improve other characteristics of

the system. Design and performance assessment of code-tracking algorithms for

MC ranging signals is ongoing in multipath [20] and interference channel, exploiting



i

i

“main” — 2012/4/20 — 11:53 — page 133 — #161
i

i

i

i

i

i

133

the signal spectral flexibility. Jointly to the design of innovative estimators, also

theoretical bounds have to be investigated in these scenarios.
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