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Sommario

Con il rapido sviluppo e la crescente complessità delle reti di com-

puter, i meccanismi tradizionali di network security non riescono a

fornire soluzioni dinamiche e integrate adatte a garantire la completa

sicurezza di un sistema. In questo contesto, l’uso di sistemi per la rile-

vazione delle intrusioni (Intrusion Detection System - IDS) è diventato

un elemento chiave nell’ambito della sicurezza delle reti.

In questo lavoro di tesi affrontiamo tale problematica, proponendo

soluzioni innovative per l’intrusion detection, basate sull’uso di tec-

niche statistiche (Wavelet Aanalysis, Principal Component Analysis,

etc.) la cui applicazione per la rilevazione delle anomalie nel traffico

di rete, risulta del tutto originale.

L’analisi dei risultati presentata, in questo lavoro di tesi, evidenzia

l’efficacia dei metodi proposti.
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Abstract

With the rapid development and the increasing complexity of com-

puter and communication systems and networks, traditional security

technologies and measures can not meet the demand for integrated

and dynamic security solutions. In this scenario, the use of Intrusion

Detection Systems has emerged as a key element in network security.

In this thesis we address the problem considering some novel statisti-

cal techniques (e.g., Wavelet Analysis, Principal Component Analysis,

etc.) for detecting anomalies in network traffic.

The performance analysis, presented in this work, shows the effec-

tiveness of the proposed methods.
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Introduction

With the rapid development and the increasing complexity of com-

puter and communication systems and networks, traditional security

technologies and measures can not meet the demand for integrated

and dynamic security solutions. Moreover, along with the prolifera-

tion of new services, the threats from spammers, attackers and crim-

inal enterprises also grow.

Recent advances in encryption, public key exchange, digital signa-

ture, and the development of related standards have set a foundation

for network security. However, security on a network goes beyond

these issues. Indeed it must include security of computer systems and

networks, at all levels, top to bottom.

Since it seems impossible to guarantee complete protection to a sys-

tem by means of prevention mechanisms (e.g., authentication tech-

niques and data encryption), the use of an Intrusion Detection System

(IDS) is of primary importance to reveal intrusions in a network or in

a system.

State of the art in the field of intrusion detection is mostly rep-

resented by misuse based IDSs that are designed to detect known

attacks by utilizing the signatures of those attacks. Considering that

most attacks are realized with known tools, available on the Internet,

a signature based IDS could seem a good solution. Nevertheless such
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2 Introduction

systems require frequent rule-base updates and signature updates, and

are not capable of detecting unknown attacks.

In contrast, anomaly detection systems, a subset of IDSs, model the

normal system/network behavior, which enables them to be extremely

effective in finding and foiling both known as well as unknown or zero

day attacks. This is the main reason why our work focuses on the

development of an anomaly based IDS.

In particular we propose several novel statistical methods to be used

for the description of the “normal” behavior of the network traffic. In

more detail we explore the use of Wavelet Analysis, Principal Compo-

nent Analysis, as well as techniques for Change-Point Detection and

Heavy Hitter Detection.

All the proposed Anomaly based IDSs work on the top of a proba-

bilistic structure, namely the sketch, that allows a random aggregation

of the data, so as to obtain a more scalable system.

The remainder of this work is organized as follows: Chapter 1 is

devoted to the description of the fundamentals of network security,

mainly focusing on the description of the statistical Intrusion Detec-

tion Systems.

Chapter 2 presents some theoretical background on the sketch data

model, used in this work as a common substrate for all the proposed

systems.

The subsequent four chapters, namely Chapter 3, 4, 5, and 6, are

dedicated to the detailed discussion of the implemented methods. In

more detail Chapter 3, at first provides a quick overview of the the-

oretical background about Principal Component Analysis and then

discusses the system architecture and the experimental results. Anal-
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Introduction 3

ogously Chapter 4 is devoted to the presentation of the architecture of

the system based on the Wavelet Analysis, as well as of the achieved

performance. Chapter 5 provides an overview of the Change Detec-

tion algorithms used by the implemented system (CUSUM, Heavy

Hitter and Heavy Change detection algorithms) and then details the

architecture and the performance of the system. Then Chapter 6 dis-

cusses both the architecture and the performance of a system based

on a combined use of Wavelet Analysis and CUSUM.

Finally, Chapter 7 concludes the work with some final remarks.
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Chapter 1

Intrusion Detection

System

1.1 Network security

In the field of networking the area of network security [1] [2] usually

refers to a complex process, which involves mechanisms and services

necessary to guarantee the security of the information in a distributed

context (e.g., the Internet).

The main objective of this process is to define a security policy that

the network administrator can adopt to prevent and monitor unautho-

rized access, misuse, modification, or denial of the computer network

and network-accessible resources.

To perform such operations it is necessary to keep in mind three

important concepts:

• Absolute security can not be guaranteed : any system can be

compromised, at least, by means of a brute-force attack 1

1A brute force attack is a method of defeating a security scheme by trying a

large number of possibilities; for example, exhaustively working through all possible
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6 Intrusion Detection System

• Security asymptotically improves: securing a system is not a

cost-less operation. Thus, it is necessary to attentively perform

a risk evaluation phase

• Security and easiness are opposite concepts: adding security

mechanisms to a system implies adding complexity

When talking about network security, there mainly exist two stan-

dard documents: RFC 2828 titled “Internet Security Glossary” [3]

and the recommendation X.800 by ITU-T [4]. In the following sec-

tions we describe the architecture presented in X.800, only referring

to [3] in some special cases.

1.1.1 The OSI security architecture

ITU-T recommendation X.800 defines a systematic approach to the

security problems. For our purposes, the OSI security architecture

provides a useful, if abstract, overview of many of the security con-

cepts. The OSI security architecture focuses on security attacks,

mechanisms, and services. These can be defined briefly as follows:

• Security attack: any action that compromises the security of

information owned by an organization

• Security mechanism: a process (or a device incorporating

such a process) that is designed to detect, prevent, or recover

from a security attack

• Security service: a processing or communication service that

enhances the security of the data processing systems and the

keys in order to decrypt a message
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1.1 Network security 7

information transfers of an organization. The services are in-

tended to counter security attacks, and they make use of one or

more security mechanisms to provide the service

In the following we present, in more detail, each of these concepts.

Security services

X.800 defines a security service as a service provided by a protocol

layer of communicating open systems, which ensures adequate security

of the systems or of data transfers. Perhaps a clearer definition is

found in [3], which provides the following definition: “a processing or

communication service that is provided by a system to give a specific

kind of protection to system resources; security services implement

security policies and are implemented by security mechanisms”.

X.800 divides these services into five categories and fourteen specific

services:

• Authentication: the authentication service is concerned with

assuring that a communication is authentic. In the case of a

single message, such as a warning or alarm signal, the function

of the authentication service is to assure the recipient that the

message is from the source that it claims to be from. In the case

of an ongoing interaction, such as the connection of a terminal to

a host, two aspects are involved. First, at the time of connection

initiation, the service assures that the two entities are authentic,

that is, that each is the entity that it claims to be. Second, the

service must assure that the connection is not interfered with in

such a way that a third party can masquerade as one of the two
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8 Intrusion Detection System

legitimate parties for the purposes of unauthorized transmission

or reception. Two specific authentication services are defined in

X.800:

– Peer entity authentication: used in association with a log-

ical connection to provide confidence in the identity of the

entities connected

– Data-origin authentication: in a connectionless transfer,

provides assurance that the source of received data is as

claimed

• Access control: in the context of network security, access con-

trol is the ability to limit and control the access to host systems

and applications via communications links. To achieve this, each

entity trying to gain access must first be identified, or authen-

ticated, so that access rights can be tailored to the individual

• Data confidentiality: confidentiality is the protection of trans-

mitted data from passive attacks. With respect to the content

of a data transmission, several levels of protection can be iden-

tified:

– Connection confidentiality: the protection of all user data

on a connection

– Connectionless confidentiality: the protection of all user

data in a single data block

– Selective-field confidentiality: the confidentiality of selected

fields within the user data on a connection or in a single

data block
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1.1 Network security 9

– Traffic-flow confidentiality: the protection of the informa-

tion that might be derived from observation of traffic flows

• Data integrity: as with confidentiality, integrity can apply to

a stream of messages, a single message, or selected fields within

a message. Again, the most useful and straightforward approach

is total stream protection. As in the previous case, several types

of data integrity are defined in X.800:

– Connection integrity with recovery: provides for the in-

tegrity of all user data on a connection and detects any

modification, insertion, deletion, or replay of any data within

an entire data sequence, with recovery attempted

– Connection integrity without recovery: as above, but pro-

vides only detection without recovery

– Selective-field connection integrity: provides for the in-

tegrity of selected fields within the user data of a data

block and takes the form of determination of whether the

selected fields have been modified, inserted, deleted, or re-

played

– Connectionless integrity: provides for the integrity of a sin-

gle connectionless data block and may take the form of de-

tection of data modification. Additionally, a limited form

of replay detection may be provided

– Selective-field connectionless integrity: provides for the in-

tegrity of selected fields within a single connectionless data

block; takes the form of determination of whether the se-

lected fields have been modified
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10 Intrusion Detection System

• Nonrepudiation: nonrepudiation prevents either sender or re-

ceiver from denying a transmitted message

– Nonrepudiation, origin: proves that the message was sent

by the specified party

– Nonrepudiation, destination : proves that the message was

received by the specified party

• Availability: availability is the property of a system or a sys-

tem resource being accessible and usable upon demand by an

authorized system entity, according to performance specifica-

tions for the system.

It is worth noticing that X.800 treats availability as a property to

be associated with various security services. However, it makes

sense to call out specifically an availability service. An availabil-

ity service is one that protects a system to ensure its availability.

This service addresses the security concerns raised by denial-of-

service attacks. It depends on proper management and control

of system resources and thus depends on access control service

and other security services.

Security mechanisms

In the following we describe the security mechanisms defined in X.800.

As can be seen the mechanisms are divided into those that are imple-

mented in a specific protocol layer and those that are not specific to

any particular protocol layer or security service.

• Specific security mechanisms: may be incorporated into the
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1.1 Network security 11

appropriate protocol layer in order to provide some of the OSI

security services

– Encipherment: the use of mathematical algorithms to trans-

form data into a form that is not readily intelligible. The

transformation and subsequent recovery of the data depend

on an algorithm and zero or more encryption keys

– Digital signature: data appended to, or a cryptographic

transformation of, a data unit that allows a recipient of

the data unit to prove the source and integrity of the data

unit and protect against forgery

– Access control: a variety of mechanisms that enforce access

rights to resources

– Data integrity: a variety of mechanisms used to assure the

integrity of a data unit or stream of data units

– Authentication exchange: a mechanism intended to ensure

the identity of an entity by means of information exchange

– Traffic padding: the insertion of bits into gaps in a data

stream to frustrate traffic analysis attempts

– Routing control: enables selection of particular physically

secure routes for certain data and allows routing changes,

especially when a breach of security is suspected

– Notarization: the use of a trusted third party to assure

certain properties of a data exchange

• Pervasive security mechanisms: mechanisms that are not

specific to any particular OSI security service or protocol layer
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12 Intrusion Detection System

– Trusted functionality: that which is perceived to be cor-

rect with respect to some criteria (e.g., as established by a

security policy)

– Security label: the marking bound to a resource (which

may be a data unit) that names or designates the security

attributes of that resource

– Event detection: detection of security-relevant events

– Security audit trail: data collected and potentially used to

facilitate a security audit, which is an independent review

and examination of system records and activities

– Security recovery: deals with requests from mechanisms,

such as event handling and management functions, and

takes recovery actions

Security Attacks

In the literature, the terms threat and attack are commonly used to

mean more or less the same thing. But, RFC 2828, defines this two

concept in a different way:

• Threat: a potential for violation of security, which exists when

there is a circumstance, capability, action, or event that could

breach security and cause harm. That is, a threat is a possible

danger that might exploit a vulnerability

• Attack: an assault on system security that derives from an

intelligent threat; that is, an intelligent act that is a deliberate

attempt (especially in the sense of a method or technique) to

evade security services and violate the security policy of a system
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1.1 Network security 13

Regarding the attacks, X.800 defines several specific attacks, divided

into passive and active:

• Active attacks: active attacks involve some modification of

the data stream or the creation of a false stream and can be

subdivided into four categories:

– Masquerade: one entity pretends to be a different entity

– Replay: involves the passive capture of a data unit and

its subsequent retransmission to produce an unauthorized

effect

– Modification of messages: simply means that some portion

of a legitimate message is altered, or that messages are

delayed or reordered, to produce an unauthorized effect

– Denial of Service (DoS): prevents or inhibits the normal

use or management of communications facilities

• Passive attacks: passive attacks are in the nature of eaves-

dropping on, or monitoring of, transmissions. The goal of the

opponent is to obtain information that is being transmitted.

Passive attacks are very difficult to detect because they do not

involve any alteration of the data. Typically, the message traffic

is sent and received in an apparently normal fashion and neither

the sender nor receiver is aware that a third party has read the

messages or observed the traffic pattern.Two types of passive

attacks are:

– Release of message content: we would like to prevent an

opponent from learning the contents of a data transmission
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14 Intrusion Detection System

– Traffic Analysis: traffic analysis, is a subtler type of at-

tack. Suppose that we had a way of masking the contents

of messages or other information traffic so that opponents,

even if they captured the message, could not extract the

information from the message. The common technique for

masking contents is encryption. If we had encryption pro-

tection in place, an opponent might still be able to observe

the pattern of these messages. The opponent could deter-

mine the location and identity of communicating hosts and

could observe the frequency and length of messages being

exchanged. This information might be useful in guessing

the nature of the communication that was taking place

1.2 Intrusion Detection Systems

Since, inevitably, the best intrusion prevention system will fail, we

need a mechanism which should act when an intrusion occurs. For

this reason the IDS has been the focus of much research in recent

years.

Definition 1 An IDS is a software or hardware tool aimed at detect-

ing unauthorized access to a computer system or a network.

In other word, an intrusion detection is the act of detecting actions

that attempt to compromise the confidentiality, integrity or availabil-

ity of a system/network.

The attention IDSs have had is motivated by several considerations,

including the following:
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1.2 Intrusion Detection Systems 15

• If an intrusion is detected quickly enough, the intruder can be

identified and ejected from the system before any damage is

done or any data are compromised. Even if the detection is

not sufficiently timely to preempt the intruder, the sooner the

intrusion is detected, the less the amount of damage and the

more quickly recovery can be achieved

• An effective IDS can serve as a deterrent, so acting to prevent

intrusions

• Intrusion detection enables the collection of information about

intrusion techniques that can be used to strengthen the intrusion

prevention facility

Intrusion detection is based on the assumption that the behavior of

intruder significantly differs from that of a legitimate user.

The concept of IDS was first introduced by Anderson in the early

80s [5]. The idea was to perform a post-processing of the audit data

produced by a machine, so as to reveal if any intrusion had been

carried out. The main flaw of this kind of system is that the detection

was performed off-line.

For this reason, 1987 is usually considered as birth date of the IDSs,

when Denning in [6] introduced her Intrusion Detection Expert Sys-

tem (IDES).

The main characteristic of IDES is to be independent of any partic-

ular system, application environment, system vulnerability, or type of

intrusion. IDES is, in fact, a framework for a general-purpose IDS.

Moreover, one of the most relevant feature of IDES is that it intro-

duces the idea of performing the detection of intrusions by means of
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16 Intrusion Detection System

a statistical analysis of the system input data. Thus, roughly speak-

ing, the working of the system is based on the characterization of

the behavior of a subject, with respect to a given object, by means of

a statistical profile. An intrusion is revealed if such a profile is not

respected by the input data.

In more detail, the model has six main components:

• Subjects: subjects are the initiators of actions in the target

system. A subject is typically a terminal user, but might also

be a process acting on behalf of users or groups of users, or

might be the system itself. Subjects can be grouped into classes

by type (groups may overlap)

• Objects: objects are the receptors of actions and typically in-

clude such entities as files, programs, messages, records, termi-

nals, printers, and user- or program-created structures. When

subjects can be recipients of actions (e.g., electronic mail), then

those subjects are also considered to be objects in the model.

Objects can be grouped into classes by type

• Audit records: generated by the target system in response

to actions performed or attempted by subjects on objects-user

login, command execution, file access, and so on

• Profiles: structures that characterize the behavior of a given

subject (or set of subjects) with respect to a given object (or

set thereof), thereby serving as a signature or description of

normal activity for its respective subject and object. Observed

behavior is characterized in terms of a statistical metric and
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1.2 Intrusion Detection Systems 17

model. A metric is a random variable x representing a quanti-

tative measure accumulated over a period. The period may be

a fixed interval of time, or the time between two audit-related

events. Observations xi of x obtained from the audit records

are used together with a statistical model to determine whether

a new observation is abnormal. The statistical model makes no

assumptions about the underlying distribution of x; all knowl-

edge about x is obtained from observations. In more detail the

metric can be:

– Event Counter: x is the number of audit records satisfying

some property occurring during a period of time

– Interval Timer: x is the length of time between two related

events

– Resource Measure: x is the quantity of resources consumed

by some action during a period as specified in the Resource-

Usage field of the audit records

Instead, the statistical model can be:

– Operational model: this model is based on the operational

assumption that abnormality can be decided by comparing

a new observation of x against fixed limits. Although the

previous sample points for x are not used, presumably the

limits are determined from prior observations of the same

type of variable

– Mean and standard deviation model: this model is based

on the assumption that all we know about x1, x2, . . . , xn,
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18 Intrusion Detection System

are mean and standard deviation. A new observation xn+1

is defined to be abnormal if it falls outside a confidence

interval

– Multivariate model: this model is similar to the mean and

standard deviation model except that it is based on corre-

lations among two or more metrics

– Markov process model: this model, which applies only to

event counters, regards each distinct type of event as a

state variable, and uses a state transition matrix to char-

acterize the transition frequencies between states. A new

observation is defined to be abnormal if its probability as

determined by the previous state and the transition matrix

is too low

– Time series model: this model, which uses an interval timer

together with an event counter or resource measure, takes

into account the order and interarrival times of the ob-

servations x1, x2, . . . , xn, as well as their values. A new

observation is abnormal if its probability of occurring at

that time is too low

• Anomaly records: generated when abnormal behavior is de-

tected

• Activity rules: actions taken when some condition is satisfied,

which update profiles, detect abnormal behavior, relate anoma-

lies to suspected intrusions, and produce reports
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1.2 Intrusion Detection Systems 19

1.2.1 IDS taxonomy

IDSs are usually classified on the basis of several aspects, in the follow-

ing we describe the most important categories of these systems [7] [8].

Host-based IDS vs. Network-based IDS

A first distinction is usually made between host-based IDS (HIDS)

and network-based IDS (NIDS). The main difference between these

two categories is given by the input data of the system: a HIDS

mainly processes the operating system’s logs, while a NIDS processes

the network traffic.

As a consequence of that, the first class of IDSs reveals those attacks,

towards a single host, that leave some traces in the host’s audit files.

It should be clear that the most relevant limitation of this approach is

given by the fact that these systems strongly depend on the OS. This

fact usually takes to a low level of interoperability among different

systems.

On the contrary, the NIDSs, processing low level data, do not depend

on the hosts architecture. Moreover, these system are able to detect

attacks that do not affect the system log files and can protect an entire

LAN rather than a single host.

Stateless IDS vs. Stateful IDS

The second distinction we present, between stateful and stateless

IDSs, is based on the approach, used to process the input data. A

stateless system processes each event of the input data independently

of the previous and the following events. On the contrary a stateful
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20 Intrusion Detection System

IDS considers each event of the input data, as part of a stream of

events. Thus the IDS decisions do not only depend on the observed

event, but also on the position of the event in the stream.

It is worth noticing that the stateful technique represents a much

more effective approach, since most intrusions are based, not on a

single act, but on a sequence of operations, which has to be considered

in the whole.

Misuse-based IDS vs. Anomaly-based IDS

A last distinction, probably the most important, is done on the basis

of the detection technique. In this case we can distinguish between

misuse-based IDS (also called signature-based IDS) and anomaly based

IDS.

These two categories are based on a completely different approach to

the intrusion detection problem. Indeed a misuse-based IDS reveals

the intrusions, looking for patterns of action that are known to be

related to an intrusion. These systems have a database, where the

signatures of all the know attacks are stored. Thus, for each observed

event, they run a pattern matching algorithm2, to check if any of those

signatures is present in the input data. To be noted that the use of a

pattern matching algorithm usually implies an heavy computational

effort, which often makes these systems too slow for on-line detection.

On the opposite, an anomaly-based IDS is based on the knowledge of

a model, representing the normal behavior of the controlled system,

2A pattern matching algorithm, sometimes called string searching algorithm,

is an algorithm that looks for a place where one or several patterns (also called

strings) are found within a larger string or text
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1.2 Intrusion Detection Systems 21

and an intrusion is considered as a significant deviation from that

model. Such a model is usually learned by the IDS, during a training

phase, performed on attack free input data. It is worth noticing that

this kind of systems can also detect never seen before intrusions, while

a misuse-based IDS, not having the signature in the database, can

not detect any new attack. This ability is countervailed by a greater

number of false alarms, which usually characterizes the anomaly-based

systems.

Figure 1.1: IDS - hybrid architecture

To conclude such an overview of the different categories, we have to

highlight that to completely protect a computer network we have to

simultaneously use a good combination of all the described systems.

As an example, figure 1.1 shows how the anomaly-based approach

and the misuse based approach can be combined to improve the over-

all performance. Indeed, the first check on data is performed by the

anomaly-based IDS, which only forwards the suspicious data to the

misuse-based system; in this way the second block only checks a small

quantity of data, without excessively slowing down the processing. In

the meanwhile, the misuse-based block, re-processing the data con-



!

!

“main” — 2012/4/20 — 12:48 — page 22 — #36
!

!

!

!

!

!

22 Intrusion Detection System

sidered as anomalous by the first block, reduces the number of false

alarms, which would be generated by the anomaly-based system.

1.3 Abilene/Internet2 Network

The proposed systems have been tested using a publicly available

dataset, composed of traffic traces collected in the Abilene/Internet2

Network [9].

The Internet2 Network is a hybrid optical and packet network used

by the U.S. research and education community. The backbone net-

work consists of nine distinct routers distributed in nine different

states in the U.S., as you can see in Figure 1.2.

Figure 1.2: Abilene/Internet2 Network



!

!

“main” — 2012/4/20 — 12:48 — page 23 — #37
!

!

!

!

!

!

1.3 Abilene/Internet2 Network 23

The used traces consist of the traffic related to these routers, col-

lected in one week, and organized into 2016 files, each one containing

data about five minutes of traffic (Netflow data). To be noted that the

last 11 bits of the IP addresses are anonymized for privacy reasons;

nevertheless we have more than 220000 distinct IP addresses.

Since the data provided by the Internet2 project do not have a

ground truth file, we are not capable of saying a priori if any anomaly

is present in the data. Because of this reason we have performed a

manual verification of the data (according to the method presented

in [10]), analyzing the traces for which our system reveals the biggest

anomalies. Moreover we have synthetically added some anomalies in

the data, so as to be able to correctly interpret the offered results. In

more detail, we have added anomalies that can be associated to DoS

and DDoS attacks, represented by four or five distinct traffic flows,

each one carrying a traffic of 5 · 108 bytes (154 anomalies in total),

that span over a single or multiple time-bins.

Since the proposed systems work with ASCII data files, in all these

systems, the input data are processed by a module called, Data For-

matting. This module is responsible of reading the Netflow [11] traces

and of transforming them in ASCII data files, by means of the Flow-

Tools [12]. The output of this module is given by text files containing

on each line an IP address and the number of bytes received by that

IP in the last time-bin.

Note that from the Netflow traces we can extract several other traffic

descriptors. Thus, instead of considering the number of bytes received

by a given IP, the system administrator can easily choose of using an-

other feature, if that better allows her to detect the different attacks.
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Chapter 2

Sketch data model

2.1 Sketch

2.1.1 Data streaming model

In the last years, several data models have been proposed in the lit-

erature. In this section, we describe the streaming data, by using the

most general model: the Turnstile Model [13].

According to this model, the input data are viewed as a stream that

arrives sequentially, item by item. Let I = σ1,σ2, . . . ,σn be the input

stream.

Each item σt = (it, ct) consists of a key, it ∈ (1, . . . , N), and a weight,

ct. The arrival of a new data item causes the update of an underlying

function Ui[t] += ct, which represents the sum of the weights of a

given key until time t.

Given the underlying function Ui[t] for all the keys of the stream, we

can define the total sum S(t), at step t, as follows:

S(t) =
∑

i

Ui[t] (2.1)

This model is very general and can be used in quite different scenar-
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26 Sketch data model

ios. As an example, in the context of network anomaly detection, the

key can be defined using one or more fields of the packet header (IP

addresses, L4 ports), or entities (like network prefixes or AS number)

to achieve higher level of aggregation, while the underlying function

can be the total number of bytes or packets in a flow.

2.1.2 Sketch

Sketches are powerful data structures that can be efficiently used for

keeping an accurate estimate of the function U .

In general, sketches are a family of data structures that use the same

underlying hashing scheme for summarizing data. They differ in how

they update hash buckets and use hashed data to derive estimates.

Among the different sketches, the one with the best time and space

bounds is the so called count-min sketch [14].

In more detail, the sketch data structure is a two-dimensional D ×
W array T [l][j], where each row l (l = 1, . . . ,D) is associated to a

given hash function hl. These functions give an output in the interval

(1, . . . ,W ) and these outputs are associated to the columns of the

array. As an example, the element T [l][j] is associated to the output

value j of the hash function l.

Let I = {(it, ct)} be an input stream observed during a given time

interval. When a new item arrives, the sketch is updated as follows:

T [l][hl(it)]← T [l][hl(it)] + ct (2.2)

The update procedure is realized for all the different hash functions

as shown in Figure 2.1. In this way, at a given time-bin t, the bucket

T [l][hl(it)] will contain an estimate of the quantity Ui[t].
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2.1 Sketch 27

Figure 2.1: Sketch - Update Function

In this work, the sketches have been taken into consideration for two

distinct reasons, which will be clearer in the following: on one hand

they allow the storing of big quantities of data (in our case we have

to store the traffic generated by more than 220000 IP addresses) with

big memory savings, on the other hand they permit a random aggre-

gation of the traffic flows. Indeed , given the use of hash functions, it

is possible to have some collisions in the sketch table. In more detail,

this last fact implies that each traffic flow will be part of several ran-

dom aggregates, each of which will be analyzed to check if it presents

any anomaly. This means that, in practice, any flow will be checked

more than once (within different aggregates), thus, it will be easier to

detect an anomaly. Indeed an anomaly could be masked in a given

traffic aggregate, while being detectable in another one.
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2.1.3 Reversible Sketch

Sketch data structures have a major drawback: they are not reversible.

That is, a sketch cannot efficiently report the set of all keys (in our

case, the flows) that correspond to a given bucket.

To overcome such a limitation, [15] proposes a novel algorithm for

efficiently reversing sketches.

The basic idea is to perform an “intelligent” hash by modifying the

input keys and/or the hashing functions so as to make possible to

recover the keys with certain properties like big changes without sac-

rificing the detection accuracy.

In more detail the update procedure for the k-ary sketch is modified

by introducing modular hashing and IP mangling techniques.

The modular hashing works partitioning the n-bit long hash key x

into q words of equal length n/q, that are hashed separately using

a different hash function, hdi (i = (1, . . . , q)) (let us consider that

the output of each function is m-bit long). Finally, these outputs are

concatenated to form the final hash value (as depicted in Figure 2.2).

δd(x) = hd1(x)|hd2(x)| . . . |hdq(x) (2.3)

Since the final hash value consists of q ×m bits, it can assume w =

2q×m different values.

Note that the use of the modular hashing can cause a highly skewed

distribution of the hash outputs. Consider, as an example, our case in

which IP addresses are used as hash keys. In network traffic streams

there are strong spatial localities in the IP addresses since many IP

addresses share the same prefix. This means that the first octets
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Figure 2.2: Modular Hashing

(equal in most addresses) will be mapped into the same hash values

increasing the collision probability of such addresses.

To effectively resolve this problem, the IP mangling technique has

to be applied before computing the hash functions. By using such a

technique the system randomizes, in a reversible way, the input data

so as to remove the correlation or spatial locality.

Essentially, this technique transforms the input set to a mangled

set and performs all the operations on this set. The output is then

transformed back to the original input keys. The function used for

such a transformation is a bijective (one-to-one) function from key

space [2n] to [2n].

A typical function used for this purpose is a function of the form

f(x) ≡ a·x mod 2n (2.4)

with a and 2n relatively prime to guarantee the invertibility of the

function.
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30 Sketch data model

The mangled key can easily be reversed by computing a−1 and ap-

plying the same function to the mangled key, using a−1 instead of

a.

This function has the advantage of being extremely fast to compute

but performs well only for non-adversarial key spaces in which no cor-

relation exists among keys that have different (non empty) prefixes.

Indeed, for any two keys that share the last bits, the mangled ver-

sions will also share the same last bits. Thus distinct keys that have

common suffixes will be more likely to collide than keys with distinct

suffixes.

However, in the particular case of IP addresses, this is not a prob-

lem. Due to the hierarchical nature of IP addresses, it is perfectly

reasonable to assume that there is no correlation between the traffic

of two IP addresses if they differ in their most significant bits.

However, this is not a safe assumption in general. For example, in

the case of keys consisting of source and destination IP address pairs,

the hierarchical assumption should not apply, and we expect to see

traffic correlation among keys sharing the same destination IP but

completely different IP source. And even for single IP address keys, it

is plausible that an attacker could antagonistically cause a non-heavy-

change IP address to be reported as a false positive by creating large

traffic changes for an IP address that has a similar suffix to the target

- also known as behavior aliasing.

Thus, to prevent adversarial attacks against the hashing scheme, a

more sophisticated mangling function is needed.

In [15] the authors propose an attack-resilient scheme based on sim-

ple arithmetic operations on a Galois Extension Field GF(2l), where
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2.1 Sketch 31

l = log2 2n.

The function is now defined as follows:

f(x) ≡ a⊗ x⊕ b (2.5)

where “ ⊗ ” is the multiplication operation defined on GF(2l) and

“ ⊕ ” is the bit-wise XOR operation. a and b are randomly chosen

from {1, 2, · · · , 2l − 1}.
By precomputing a−1 on GF(2l), we can easily reverse a mangled

key y using

f−1(y) = a−1 ⊗ (x⊕ b). (2.6)

The direct computation of a⊗ x can be very expensive, as it would

require multiplying two polynomials (of degree l− 1) modulo an irre-

ducible polynomial (of degree l) on a Galois Field GF(2).

In practice this mangling scheme effectively resolves the highly skewed

distribution caused by the modular hash functions as shown in Figure

2.3. Figure 2.3 shows the distribution of the number of keys (source

IP address of each flow) per bucket for three different hashing scheme:

• modular hashing with no IP mangling

• modular hashing with the GF transformation for IP mangling

• direct hashing (a completely random hash function)

We observe that the key distribution of modular hashing with the

GF transformation is essentially the same as that of direct hashing.

The distribution for modular hashing without IP mangling is highly

skewed.
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32 Sketch data model

Figure 2.3: IP Mangling - Distribution of number of keys for each bucket

Thus IP mangling is very effective in randomizing the input keys

and removing hierarchical correlations among the keys. In addition,

the scheme is resilient to behavior aliasing attacks because attackers

cannot create collisions in the reversible sketch buckets to make up

false positive heavy changes. Any distinct pair of keys will be mapped

completely randomly to two buckets for each hash table.

The other key point introduced in [15] is the algorithm for reversing

the sketch, given the use of modular hashing and IP mangling.
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Notation for the general algorithm

Let us introduce some notations useful for understanding the algo-

rithm.

Let the dth row of the sketch table contain td heavy buckets. Let t

be the value of the largest td. For each row of the sketch assign an

arbitrary indexing of the td heavy buckets and let td,j be the index in

the row d of heavy bucket number j. Also define σp(x) to be the pth

word of a q word integer x. For example, if the jth heavy bucket in

the row d is td,j = 5.3.0.2 for q = 4, then σ2(td,j) = 3.

For each d ∈ [D] and word p, denote the reverse mapping set of

each modular hash function hd,p by the 2m×2
n
q
−m table h−1

d,w of n
q bit

words. That is, let h−1
d,w[j][k] denote the kth 2

n
q bit key in the reverse

mapping of j for hd,p. Further, let h−1
d,p[j] = {x ∈ [2

n
q ]|hd,p(x) = j}.

Let Ip = {x|x ∈
⋃td−1

j=0 h−1
d,w[σp(td,j)] for at least D−r values d ∈ [D]}.

That is, Ip is the set of all x ∈ [2
n
q ] such that x is in the reverse

mapping for hd,p for some heavy bucket in at least D−r of the D hash

tables. We occasionally refer to this set as the intersected modular

potentials for word p. For instance, in Figure 2.4, I1 has three elements

and I2 two.

For each word we also define the mapping Bp which specifies for

any x ∈ Ip exactly which heavy buckets x occurs in for each hash

table. In detail, Bp(x) = 〈Lp[0][x], Lp[1][x], . . . , Lp[D − 1][x]〉 where

Lp[i][x] = {j ∈ [t]|x ∈ h−1
d,p[σp(ti,j)]}

⋃
∗. That is, Lp[i][x] denotes the

collection of indices in [t] such that x is in the modular bucket potential

set for the heavy bucket corresponding to the given index. The special

character ∗ is included so that no intersection of sets Lp yields an

empty set. For example, Bp(129) = 〈{1, 3, 8}, {5}, {2, 4}, {9}, {3, 2}〉
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means that the reverse mapping of the 1st , 3rd , and 8th heavy bucket

under h0,p all contain the modular key 129.

We can think of each vector Bp(x) as a set of all D dimensional

vectors such that the dth entry is an element of Lp[d][x]. For exam-

ple, B3(23) = 〈{1, 3}, {16}, {∗}, {9}, {2}〉 is indeed a set of two vec-

tors: 〈{1}, {16}, {∗}, {9}, {2}〉 and 〈{3}, {16}, {∗}, {9}, {2}. We refer

to Bp(x) as the bucket index matrix for x, and a decomposed vector

in a set Bp(x) as a bucket index vector for x. We note that although

the size of the bucket index vector set is exponential in D, the bucket

index matrix representation is only polynomial in size and permits the

operation of intersection to be performed in polynomial time. Such a

set like B1(a) can be viewed as a node in Figure 2.4.

Define the r intersection of two such sets to be B
⋂r C = {v ∈

B
⋂

C|v has at most r of its D entries equal to ∗}. For example,

Bp(x)
⋂r Bp+1(y) represents all of the different ways to choose a sin-

gle heavy bucket from each of at least D − r of the hash tables such

that each chosen bucket contains x in its reverse mapping for the

pth word and y for the p + 1th word. For instance, in Figure 2.4,

B1(a)
⋂r B2(d) = 〈{2}, {1}, {4}, {∗}, {3}〉, which is denoted as a link

in the figure. Note that there is not such a link between B1(a) and

B2(e). Intuitively, the a.d sequence can be part of a heavy change key

because these keys share common heavy buckets for at least D − r

hash tables. In addition, it is clear that a key x ∈ [2n] is a suspect

key for the sketch if and only if
⋂r

p=1...q Bp(xp) += 0.

Finally, we define the sets Ap which we compute in our algorithm

to find the suspect keys. Let A1 = {(〈x1〉, v)|x1 ∈ I1 and v ∈ B1(x1)}.
Recursively define Ap+1 = {(〈x1, x2, . . . , xp+1〉, v)|(〈x1, x2, . . . , xw〉, v) ∈
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Aw and v ∈ Bw+1(xw+1)}. Take Figure 2.4 for example. Here A4 con-

tains 〈a, d, f, i〉, 〈2, 1, 4, ∗, 3〉 which is the suspect key. Each element

of Ap can be denoted as a path in Figure 2.4. The following lemma

tells us that it is sufficient to compute Aq to solve the reverse sketch

problem.

Lemma 1 A key x = x1 · x2 . . . xq ∈ [2n] is a suspect key if and only

if (〈x1, x2, . . . , xq〉, v) ∈ Aq for some vector v.

General algorithm for Reverse Hashing

To solve the reverse sketch problem we first compute the q sets Ip and

bucket index matrices Bp. From these we iteratively create each Ap

starting from some base Ac for any c where 1 ≤ c ≤ q up until we

have Aq. We then output the set of heavy change keys via Lemma

1. Intuitively, we start with nodes as in Figure 2.4, I1 is essentially

A1. The links between I1 and I2 give A2, then the link pairs between

(I1I2) and (I2I3) give A3, etc.

The choice of the base case Ac affects the performance of the algo-

rithm. The size of the set A1 is likely to be exponentially large in

D. However, with good random hashing, the size of Ap for p ≥ 2

will be only polynomial in D, q, and t with high probability with the

detailed algorithm and analysis below. Note we must choose a fairly

small value c to start with because the complexity of computing the

base case grows exponentially in c.

The pseudocode of the Reverse Hashing algorithm is reported in

Algorithm 1. Instead, the pseudocode for the functions MODULAR

POTENTIALS and EXTEND is reported in Algorithms 2 and 3,

respectively.
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Algorithm 1 REVERSE HASH(r)

1: for p = 1 : l do

2: (IpBp) = MODULAR POTENTIALS(p, r)

3: end for

4: A2 = 0

5: for x ∈ I1, y ∈ I2 and corresponding v ∈ B1(x)
⋂r B2(y) do

6: insert (〈x, y〉, v) into A2

7: end for

8: for any given Ap do

9: Ap+1 = EXTEND(Ap, Ip+1, Bp+1)

10: end for

11: Output all x1.x2. · · · .xq ∈ [n] s.t. (〈x1, . . . , xq〉, v) ∈ Aq for some

v

2.2 Implementation

Reversible Sketches are a common substrate for all the proposed sys-

tems, used to perform a random aggregation of the data.

In the implemented systems, the module responsible for the con-

struction of the reversible sketch tables takes in input the data files

described in Section 1.2.

As said before, each line of these files contains an IP destination

address and the number of the bytes received by that IP in the last

time bin (i.e. five minutes of traffic).

Each file is thus used to build a distinct sketch table. In more detail,

according to the Tunstile model, presented in Section 2.1.1, the IP

address IPt is considered as the hash key it, while the number of

bytes Bt is considered as the weight ct.
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Algorithm 2 MODULAR POTENTIALS(p, r)

1: Create an D × 2
n
q table of sets L initialized to all contain the

special character ∗
2: Create a size [2

n
q ] array of counters hits initialized to all zeros

3: for i ∈ [D], j ∈ [t], and k ∈ [2
n
q
−m] do

4: insert h−1
d,p[σp(td,j)][k] into L[d][x]

5: if L[d][x] == 0 then

6: hits[x] + +

7: end if

8: end for

9: for x ∈ [2
n
q ] s.t. hits[x] ≥ D − r do

10: insert x into Ip

11: Bp(x) = 〈L[0][x], L[1][x], . . . L[D − 1][x]〉
12: end for

13: Output (Ip, Bp)

Algorithm 3 EXTEND(Ap, Ip+1, Bp+1)

1: Ap+1 = 0

2: for y ∈ Ip+1, (〈x1, . . . , xp〉, v) ∈ Ap do

3: if thenv
⋂r Bp+1(y) += null)

4: insert (〈x1, . . . , xp〉, v
⋂r Bp+1(y)) into Ap+1

5: end if

6: end for

7: Output (Ap+1)

Note that in our implementation we have used d = 32 distinct hash

functions, which give output in the interval [0;w−1], that means that
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the resulting sketches will be ∈ Nd×w, where w can be varied.

As far as the hash functions are concerned, we have used 4-universal

hashes1 [16], obtained as:

h(x) =
3∑

i=0

ai · xi mod p mod w (2.7)

where the coefficients ai are randomly chosen in the set [0, p− 1] and

p is an arbitrary prime number (we have considered the Mersenne

numbers).

At this point, given that we had N distinct time-bins, we have ob-

tained N distinct sketch tables. Starting from these we consider the

temporal evolution of each bucket Tlj of the sketch table, constructing

d · w time series of N samples Tlj [n] each.

The pseudocode about the sketch computation is given in Algorithm

4.

For sake of brevity we do not describe the function IP MANGLING

and MODULAR HASHING already described in Section 2.1.3.

1A class of hash functions H : (1, . . . , N) → (1, . . . , w) is a k-universal hash if

for any distinct x0, . . . xk−1 ∈ (1, . . . , N) and any possible v0, . . . vk−1 ∈ (1, . . . , w):

Prh∈H = {h(xi) = vi;∀i ∈ (1, . . . , k)} = 1

wk
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Algorithm 4 Building the sketch

1: Input: IP destination address - ip1.ip2.ip3.ip4

2: for l = 1 : d do

3: for j = 1 : w do

4: Tn[l][j] = 0 ! sketch table initialization

5: end for

6: end for

7: for n = 1 : N do

8: for t = 1 : S do

9: IP MANGLING(ipt)

10: δ = MODULAR HASHING(ipt)

11: Store : ip1t, ip2t, ip3t, ip4t

12: for l = 1 : d do

13: Tn[l][δ]+ = Bt

14: end for

15: end for

16: end for

17: Output: N distinct hash tables Tn.
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Figure 2.4: Reverse hashing procedure (example)
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Chapter 3

Principal Component

Analysis

3.1 Pricipal Component Analysis

The Principal Components Analysis (PCA) is a linear transformation

that maps a coordinate space onto a new coordinate system whose

axes, called Principal Components (PCs), have the property to point

in the direction of maximum variance of the residual data (i.e., the

difference between the original data and the data mapped onto the

previous PCs).

In more detail, the first PC captures the greatest degree of data

variance in a single direction, the second one captures the greatest

degree of variance of data in the remaining orthogonal directions, and

so on.

A simple illustration of the PCA is shown in Figure 3.1 where the

PCs of a two dimensional dataset are plotted. As you can see in the

figure, the number of PCs is equal to the dimensionality of the original

dataset; the first PC is in the direction that maximizes the variance

of the projected data (green line), the second PC, instead, is in the
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orthogonal direction (blue line).

Figure 3.1: PCs of a two-dimentional dataset

In mathematical terms, to calculate the PCs is equivalent to compute

the eigenvectors of the covariance matrix.

In more detail, given the matrix of data B = {Bi,j}, with 1 < i < m

and 1 < j < t (e.g., a dataset of m samples captured in t time-bins),

each PC, vi, is the i − th eigenvector computed from the spectral

decomposition of the covariance matrix C = BBT , that is:

BBTvi = λivi i = 1, . . . ,m (3.1)

where λi is the “ordered” eigenvalue corresponding to the eigenvector

vi.

In practice, the first PC, v1, is computed as follows:
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v1 = arg max
‖v‖=1

‖Bv‖ (3.2)

where ‖Bv‖2 is proportional to the variance of the data measured

along v.

Proceeding recursively, once the first k−1 PCs have been determined,

the k − th PC can be evaluated as follows:

vk = arg max
‖v‖=1

∥∥∥∥∥
(B −

k−1∑

i=1

Bviv
T
i )v

∥∥∥∥∥
(3.3)

where || · || denotes the L2 norm.

Once the PCs have been computed, given a set of data and its as-

sociated coordinate space, we can perform a data transformation by

projecting them onto the new axis.

Typically, the first PCs contribute most of the variance in the original

dataset, so that we can describe them with only these PCs, neglecting

the others, with minimal loss of variance.

For this reason, the PCA is also used as a linear dimension reduction

technique. The main idea is to calculate the PCs and establish how

many of them are sufficient to describe the original dataset. To select

the PCs we can perform the scree plot method.

A scree-plot is a plot, like the one represented in Figure 3.2, of the

percentage of variance captured by a given PC. Thus, studying the

scree plot we can determine the optimal number of variables, in order

to lower the dimensionality of a complex dataset, while maintaing the

most of the variance of the original dataset.
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Figure 3.2: Scree Plot

3.2 System architecture

In this Section, we present the architecture of the system we have

implemented to detect anomalies in the network traffic.

In Figure 4.3 is reported a block scheme of the proposed system.

We can distinguish four main block:

• Data Formatting

• Flow Aggregation

• Time-series Construction

• Anomaly Detector
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• Identification

Figure 3.3: PCA - System Architecture

For sake of brevity we skip the detail related to the Data Formatting

module since a detailed analysis of this block has been made in Section

1.2.

3.2.1 Flow Aggregation

To facilitate the detection of correlation and periodic trends in the

data, we have studied different levels of aggregation. In more de-

tail, the block called Flow Aggregation realizes four different levels of

aggregation:
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• Ingress Router (IR)

• Origin Destination (OD) flows

• Input Link (IL)

• Random Aggregation

Using the IR aggregation, data are organized according to which

router they entered the network. The OD flow aggregates traffic based

on the ingress and egress routers used by an IP flow. Instead, the IL

aggregates IP flows with the same ingress router and input interface.

Finally, the random aggregation is performed by means of the sketch

(as described in Chapter 2).

The output of this block is given by 4T distinct files, each one cor-

responding to a specific time-bin and a specific aggregate.

3.2.2 Time-series Construction

After the data have been correctly formatted, they are passed as input

to the third module, responsible for the construction of the time-series.

Typically the distribution of packet features (packet header fields)

observed in flow traces reveals both the presence and the “structure”

of a wide range of anomalies. Indeed, traffic anomalies induce changes

in the normal distribution of the features.

Based on this observation, we have examined the distributions of

traffic features as a means to detect and to classify network anomalies.

More specifically, in this work, we have taken into consideration the

number of bytes sent by each IP source address.
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The feature distribution has been estimated with the empirical his-

togram. Thus, in each time-bin for each aggregate we have evaluated

the histogram as follows:

Xt = {nt
i, i = 1, . . . , N} (3.4)

where nt
i is the number of bytes transmitted by the i− th IP address

in the time-bin t.

Unfortunately, the histogram is an high-dimensional object quite

difficult to handle with low computational resources.

For this reason we have tried to concentrate the information taken

by the histogram in a single value, able to hold the most of the useful

information, that, in our case, is the trend of the distribution.

Previous works [17] [18] [10] have emphasized the possibility to ex-

tract very useful information from the entropy of the distribution.

The entropy provides a computationally efficient metric for estimat-

ing the degree of dispersion or concentration of a distribution.

Given the empirical histogram, Xt, we can evaluate the entropy value

as follows:

Ht = −
N∑

i=1

nt
i

S
log2

nt
i

S
with S =

N∑

i=1

nt
i (3.5)

Nevertheless, the entropy is only able to capture the information

related to a single time-bin, while from our point of view it would be

much more important to capture the the difference between packet

feature distributions of two adjacent time-bins.

For this reason, in this work we have also used another metric that

is the Kullback-Leibler (KL) divergence. Given two histograms Xt
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(captured in time-bin t) and Xt−1 (captured in time-bin t − 1), the

KL divergence is defined as follows:

Dt
KL =

N∑

i=1

nt−1
i log

nt−1
i

nt
i

(3.6)

Despite of the method used, this module will output a matrix for

each type of aggregation in which, for all the aggregates, the values

of the metric (entropy or KL divergence) evaluated in each time-bin

are reported.

This matrix has the following structure:

Y =






y11 · · · y1N

...
...

yT1 · · · yTN




 (3.7)

where N is the number of aggregates and T the number of time-bins.

3.2.3 Anomaly Detector

This block is the main component of the detection system. It consists

of a Detection phase, during which the system detects anomalies by

means of the PCA technique, and an Identification phase to identify

the IPs responsible of the anomalies.

PCs computation

After the time-series have been constructed, they are passed to the

module that applies the PCA. The computation of the PCs is per-

formed using Equations (3.2) and (3.3). As described before, typically
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there is a set of PCs (called dominant PCs) that contributes most of

the variance in the original dataset.

The idea is to select the dominant PCs and describe the normal

behavior only using these ones.

It is worth highlighting that the number of dominant PCs is a very

important parameter, and needs to be properly tuned when using the

PCA as a traffic anomaly detector.

In our approach the set of dominant PCs is selected by means of the

scree-plot method. As a result, we separate the PCs into two sets,

dominant and negligible PCs, that will be then used to distinguish

between normal and anomalous variations in traffic.

Figure 3.2 reports a scree-plot of a particular dataset used in our

study. Visually, from the graph we can observe that the first r = 5

PCs are able to correctly capture the majority of the variance. These

PCs are the dominant PCs:

P = (v1, . . . , vr) (3.8)

The method is based on the assumption that these PCs are sufficient

to describe the normal behavior of traffic.

Detection Phase

The detection phase is performed by separating the high-dimensional

space of traffic measurements into two subspaces, which capture nor-

mal and anomalous variations, respectively.

In more detail, once the matrix P has been constructed, we can par-

tition the space into a normal subspace (Ŝ), spanned by the dominant

PCs, and an anomalous subspace (S̃), spanned by the remaining PCs



!

!

“main” — 2012/4/20 — 12:48 — page 50 — #64
!

!

!

!

!

!

50 Principal Component Analysis

The normal and anomalous components of data can be obtained by

projecting the aggregate traffic onto these two subspaces.

Thus, the original data, in the time-bin t, Yt are decomposed into

two parts as follows:

Yt = Ŷt + Ỹt (3.9)

where Ŷt and Ỹt are the projection onto Ŝ and S̃, respectively, and

can be evaluate as follows:

Ŷt = PP T Yt (3.10)

Ỹt = (I − PP T )Yt (3.11)

To be noted that, when anomalous traffic crosses the network, a large

change in the anomalous component (Ỹt) occurs. Thus, an efficient

method to detect traffic anomalies is to compare ‖Ỹt‖2 with a given

threshold (ξ).

In more detail, if ‖Ỹt‖2 exceeds the given threshold ξ, the traffic is

considered anomalous, and we mark the time-bin (t) as an anomalous

time-bin (Figure 3.4).

If we use a random aggregation the detection phase can be improved

performing a further step.

Indeed, in this case, since we have used d different hash functions hj

we have d data matrices, Y j (one for each function). So, the previ-

ously described analysis (performed for each Y j) returns d different

responses.
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Figure 3.4: PCA - Data matrix

Thus, a voting analysis is performed. We evaluate the number of

produced alarms and we decide if the time-bin is anomalous or not

according to the following rule:





anomalous if number of alarms >

d

2
− 1

normal otherwise

More details about the detection phase are given in Algorithm 5.

3.2.4 Identification

If an anomaly has been detected, the system performs a further phase

called anomaly identification.

Note that the PCA works on a single time-series, so in the detec-

tion phase we are able to identify the time-bin during which traffic is

anomalous. But, at this point, we do not know the specific network

event that has caused the detection.
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Algorithm 5 Detection

1: Input: Data matrices - Y j , j = 0, . . . , d

2: alarm = 0

3: for j = 1 : d do

4: Compute the PCs

5: Select the dominant PCs : P = (v1, . . . , vr)

6: Ỹ j = (I − PP T )Y j ! anomalous component of the traffic

7: if ‖Ỹt‖
2 > ξ then

8: alarm + +

9: end if

10: end for

11: if alarm > d
2
− 1 then

12: the time-bin is anomalous

13: end if

In fact, it is worth noticing that an anomalous time-bin may contain

multiple anomalous events, and that a single anomalous event can

span over multiple time-bins.

In this phase we want to identify the specific flows responsible for

the revealed anomaly.

Note that if the traffic aggregation is performed by means of IR, OD

flow, and IL we are not able to determine the specific flow responsible

for the revealed anomaly.

On the contrary, when we use random traffic aggregation, since we

use the reversible sketches, we are able to correctly identify the spe-

cific flows involved in the anomalous traffic. In more detail, at first,

we search the specific traffic aggregation in which the anomaly has

occurred. Then reversing the sketch we can identify the specific flows

that have caused the anomaly.
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3.3 Experimental results

The proposed system has been tested using the dataset presented in

Section 1.2.

Before detailing the performance achieved by the system in terms of

number of detected anomalies and detection rate, let us analyze the

sensitivity of our method to two key parameters, i.e., the dimension

of the normal subspace (number of dominant PCs, r) and the sketch

size w.

It is important to say that the presented performance have been

obtained varying the value of the threshold ξ in a range chosen on the

basis of the values of ||Y ||2.
As previously said, for the selection of an appropriate number of PCs

we can use the scree-plot method. The scree-plot reported in Figure

3.2 is related to random aggregation for a sketch size w of 64 and

bin-size of 5 minutes. From the plot we can easily notice that most

of the data energy is captured by the first five PCs and that after

the eighth PC, the contribution of the remaining PCs is less than 4%.

Thus we have decided to perform our analysis with a number of PCs

r ∈ [2, 7].

Figure 3.5 shows the detection rate (computed over the synthetically

added anomalies) when varying the number of PCs (note that, given

the nature of the dataset, we cannot plot a ROC curve).

It is worth noticing that a very low value of r takes to correctly detect

a good number of anomalies, also raising a big number of false alarms,

due to the fact that also the “normal” components are considered in

the anomalous subspace. Vice-versa, considering a high value of r

takes to a bad detection rate, behavior due to the fact that considering
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a high number of PCs implies to insert in the normal subspace some

anomalous components. Given this, it is evident that r is an important

parameter and it has to be chosen so as to obtain a good trade-off

between detection rate and false alarm rate.
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Figure 3.5: PCA - Detection Rate vs. Number of PCs

Concerning the sketch size, it is important to highlight that in our

implementation we have used d = 8 distinct hash functions, which

give output in the interval [0, w − 1]; so the resulting sketch tables

will be ∈ N8×w, where w is a parameter to set.

The choice of w is very important, since this parameter determines

the number and the composition of the aggregates, significantly in-

fluencing the detection rate. For this reason, we have studied the
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detection rate achieved by the system when varying the sketch size.

Figure 3.6 shows the results of such an analysis, when r has been fixed

equal to 5. From an analysis of the achieved results we have concluded

that the best performance are achieved when w = 64. Indeed, even

though the graph shows better performance for w = 32, in that case

there are too few traffic aggregates taking to a huge number of false

alarms.
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Figure 3.6: PCA - Detection Rate vs. Sketch Size

In the following subsections we show the performance achieved by

our system, in terms of detection rate (computed over the syntheti-

cally added anomalies) and total number of detected anomalies. It is



!

!

“main” — 2012/4/20 — 12:48 — page 56 — #70
!

!

!

!

!

!

56 Principal Component Analysis

important to highlight that the system stops analyzing a given time-

bin, once an anomaly has been detected, this implies that the number

of detected anomalies is equal to the number of anomalous time-bins.

The presence of multiple anomalies in a time-bin will be eventually

detected during the identification phase.

Such a results discussion is divided into two distinct parts:

• performance achieved with the different types of traffic aggre-

gations

• performance achieved by using KL divergence

3.3.1 Traffic aggregations

The aim of this first performance evaluation is to establish if con-

sidering different traffic aggregation criteria can somehow modify the

detection rate achieved by the system, and in particular to evaluate

the effectiveness of the random aggregation provided by the use of

sketch. The graphs presented in this section have been obtained with

a sketch size w = 64 and the use of entropy.

Figures 3.7 and 3.8 respectively show the detection rate and the total

number of detected anomalies when the OD aggregation is used. The

different curves have been obtained varying the number of PCs. As

expected the best detection rate is obtained when considering a very

low number of PCs, but this implies to have a high number of false

positives. By manual inspecting the dataset, it appears that the best

trade-off is achieved when using 5 PCs.

From the graphs we can see that the performance do not strongly

depend on the number of PCs and that the detection rate and the
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Figure 3.7: PCA - Detection Rate for OD traffic aggregation

total number of detected anomalies decrease following the same trend,

when varying the threshold.

Regarding the IR aggregation the achieved performance are shown

in Figures 3.9 and 3.10. Differently from the previous graphs we

can notice that, in this case, the performance strongly depend on the

number of PCs, and that we have a strong worsening when we consider

more than 3 PCs.

It is also important to notice that, when using IR aggregation, the

total number of detected anomalous events is much lower than in

the previous case. This last consideration can take us to conclude
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Figure 3.8: PCA - Detected Anomalies for OD traffic aggregation

that the IR aggregation behaves better than the OD one, but the

strong dependence of this aggregation on the number of PCs makes

the method hard to be tuned.

From Figures 3.11 and 3.12 we can see that the IL aggregation

presents almost the same behavior of the OD aggregation. Indeed

the performance do not strongly depend on the number of PCs and

present the same trend when varying the threshold.

To conclude this analysis, Figures 3.13 and 3.14 present the perfor-

mance achieved when using random aggregation.

As we can see this method allows us to obtain better performance
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Figure 3.9: PCA - Detection Rate for IR traffic aggregation

in terms of detection rate: indeed the detection rate is stable over the

95%, for several values of the threshold, while the total number of

detected anomalies decreases faster.

To better compare the presented results, in Table 3.1 we show the

detection rate achieved by using the different aggregations, once fixed

the total number of detected anomalies. It is easy to conclude that

the best performance are given by the IR and random aggregations.
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Figure 3.10: PCA - Detected Anomalies for IR traffic aggregation

OD IR IL Random

Detection Rate 51% 90% 43% 90%

Anomalous time-bins 910 910 910 910

Table 3.1: PCA - Detection Rate vs. Anomalous Time-Bins

Moreover, if we consider that in a given time-bin there can be more

than an anomaly, it is clear that OD, IR, and IL aggregation do not

allow us to distinguish between them, since they just reveal an anoma-

lous time-bin, while using the sketch we can also distinguish between
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Figure 3.11: PCA - Detection Rate for IL traffic aggregation

contemporary anomalies, since each flow is part of several aggregates.

It is also important to highlight that we can take profit from this fact,

so as to be able to identify the flows that contribute to the anomaly

in a given time-bin, as previously described.

To sum up we can conclude that the best performance are obtained

with the use of the random aggregation, which is also the only one

that allows the identification of the anomalous flows.
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Figure 3.12: PCA - Detected Anomalies for IL traffic aggregation

3.3.2 KL divergence

The last session of experiments has been conducted to evaluate the

effectiveness of using KL divergence instead of the entropy.

Figures 3.15 and 3.16 respectively show the detection rate and the

number of detected anomalies achieved when using KL divergence.

By comparing these graphs with those related to the use of entropy

(Figures 3.13 and 3.14), it is easy to conclude that the performance

are quite different.

Nevertheless, it is not easy to directly compare these results. To

be able to perform a more significant comparison between the results
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Figure 3.13: PCA - Detection Rate for Random Aggregation

obtained with the different approaches and to realize if, in fact, it takes

to some improvements, we have evaluated some more parameters.

For this reason in Table 3.2 we present the increase in the detection

rate offered by the use of KL divergence. We can notice that the com-

bined use of entropy and KL divergence takes to great improvements

in the performance. As an example, if we consider to use 5 PCs with

a detection rate of 70%, we can see that the 55% of the anomalies are

detected by both the systems, while the 15% detected by using the

entropy is different from the 15% detected by using KL divergence,

thus in this case the detection rate improves from 70% to 85%.
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Figure 3.14: PCA - Detected Anomalies for Random Aggregation

PC Number Detection Rate Additive Detections

3 82% 10%

4 81% 9%

5 81% 10%

3 73% 15%

4 72% 16%

5 70% 15%

Table 3.2: PCA - Kl-entropy Additive Detections



!

!

“main” — 2012/4/20 — 12:48 — page 65 — #79
!

!

!

!

!

!

3.3 Experimental results 65

 0

 500

 1000

 1500

 2000

 0.0005  0.001  0.0015  0.002  0.0025  0.003

An
om

al
ou

s 
tim

e-
bi

ns

Threshold

’2 PC’
’3 PC’
’4 PC’
’5 PC’
’6 PC’
’7 PC’

Figure 3.15: PCA - Detected Anomalies - KL divergence
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Figure 3.16: PCA - Detection Rate - KL divergence
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Chapter 4

Wavelet Analysis

4.1 Wavelet Decomposition and Multiresolu-

tion Analysis

The Wavelet Decomposition [19] is based on the representation of any

finite–energy signal x(t) ∈ L2(R) by means of its inner products with

a family of functions

ψa,b(t) = |a|−
1

2ψ

(
t− b

a

)

where ψ is a fixed function called mother wavelet.

Thus, the analysis equation for a Continuous Wavelet Transform

(CWT) is defined as follows:

Wx(a, b) = 〈x,ψa,b〉 = |a|−
1

2

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt

Starting from the CWT we can derive the Discrete Wavelet Trans-

form (DWT) restricting a and b to a finite discrete set of values.

In more detail, for the discretization we can choose a = am
0 , where

m ∈ Z and a0 += 1. For convenience, we can assume a0 > 1. For m =

0, it seems natural to discretize b by taking only the integer multiples
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of one fixed b0 (for convenience b0 > 0), where b0 is appropriately

chosen so that the ψ(t − nb0) cover the whole line. Varing m, the

width of a
−m

2

0 ψ(a−m
0 t) is am

0 times the width of ψ(t) so that the choice

b = nb0am
0 will ensure that the discretized wavelets at level m cover

the line in the same way that the ψ(t− nb0) do.

This correspond to use a set of functions {ψm,n(t)}m,n∈Z
defined as

follows:

ψm,n(t) = a
−m

2

0 ψ

(
t− nb0am

0

am
0

)
= a

−m
2

0 ψ(a−mt− nb0)

obtained choosing a = am
0 , b = nb0am

0 , with n,m ∈ Z. The values

a0 > 1 and b0 > 0 are fixed and depend on the mather wavelet ψ.

Under quite stringent constraints on the choice of the mother wavelet,

the functions {ψm,n(t)}m,n∈Z
may define an orthonormal dyadic wavelet

basis (corresponding to a0 = 2 and b0 = 1). In this case, ψ(t) can be

represented in terms of the so–called scaling function φ(t)

ψ(t) =
√

2
∑

n

gnφ(2t− n)

where φ(t) itself is defined by a two–scale difference equation

φ(t) =
√

2
∑

n

hnφ(2t− n)

with the additional constraint that gn = (−1)n−1 h−n−1.

In this work, we will consider the well–known Daubechies bases fam-

ily of compactly–supported mother wavelets, introduced by the Bel-

gian mathematician Ingrid Daubechies in 1988. The number of non

null coefficients hn depends on the regularity of the mother wavelet

and the number of vanishing moments: for the Daubechies basis Nψ
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of order N (with N vanishing moments) only 2N coefficients are non

zero, so that both Nφ and Nψ has compact support of width 2N − 1.

Figure 4.1 shows the Daubechies bases of order N = 2, 5, 9.

(a) ψ2 (b) ψ5

(c) ψ9

Figure 4.1: Daubechies mother wavelet

The multiresolution analysis represents the theoretical framework

for the efficient calculation of the wavelet decomposition [20]. Let

x = (x1, x2, . . .) denote the approximation of a finite–energy signal

x(t) at a given resolution; the wavelet coefficients {xm,n} at lower

resolutions can be obtained considering the filter bank shown in fig-

ure 4.2, where the coefficients hn and gn depend on the chosen mother

wavelet. In particular, the outputs of the high-pass filter hn give the
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detail coefficients (at the given resolution), while the outputs of the

low-pass filter give an approximation at a lower resolution, which is

further decomposed in a similar way.

g

h 2

2g

h 2

2g

h 2

2x

Level 1 Level 3Level 2

Figure 4.2: Wavelet Decomposition

Wavelet analysis is often used in image processing for edge detection,

that is a method, which aims at identifying points at which the image

brightness changes sharply or has discontinuities. Thus the detection

of anomalies (that can be seen as discontinuities in the network traffic)

seems to be a good application field for wavelet analysis.

4.2 System architecture

In this section, we present the architecture of the system we have

implemented to detect anomalies in the network traffic, whose block

scheme is reported in Figure 4.3. Before detailing the system, in Table

4.1 we present the notations used in the rest of the chapter.

The system is composed of four blocks:
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Symbol Meaning

ξ threshold

AX detection matrix at step X

Bt number of bytes received from ipt, used as weight in the sketch

ct weigth corresponding to the key it

d number of hash functions - number of rows of Tn

DX
lj Euclidean distance at step X for the time series Tlj

E(Dlj) average value of DX
lj over all the DX

lj for the element of

the sketch table up to the step X − 1

Fx time series (traffic sent) referred to IPx

it hash key

ipt IP address, used as hash key in the sketch

{IPx}x→X set of source IP addresses that contributes to step X

k constant factor

N number of time-bins

pX
lj transformed coefficients at step X for the time series Tlj

Plj reference coefficients for the time series Tlj

s sliding window length

S number of samples of a given input file

t input samples to wavelet transform

Tn sketch table for time-bin n

Tlj time series built from the elements (l, j) of the sketch tables

v sliding window overlap factor

w possible distinct outputs of the hash function - number of

columns of Tn

X detection step

Table 4.1: Wavelet - Notations
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Figure 4.3: Wavelet - System architecture

• Data Formatting

• Sketch module

• Anomaly Detector

• Identification

In the following we have reported a detailed description of each block

skipping the details related to the Data Formatting module and the

Sketch module since an exhaustive analysis of these blocks has been

made in Section 1.2 and 2.2 respectively.
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However, it is important to highlight that as output of this two blocks

we have N (number of distinct time bin) distinct hash tables. Starting

from these, we consider the temporal evolution of each element Tlj of

the sketch table, constructing d · w time series of N samples Tlj [n].

4.2.1 Anomaly Detector

Wavelet coefficients computation

In this block the wavelet transform is applied to each time series. To

perform such an operation the system makes use of a sliding window

(see Figure 4.4) of dimension s = 16 samples (with an overlap factor v

equal to 8 samples), and computes the transformed coefficients pX
lj of

each block of s samples. The first time we compute such coefficients

(for the first s samples), we just store them as reference coefficients

Plj , while for all the other samples of the time series, we use such

coefficients to compute the Euclidean distance DX
lj between them and

the reference coefficients.

If such a distance is lower than a given threshold ξ (see next sub-

section to understand how this threshold is computed) we update

the reference coefficients, setting them to the newly computed trans-

formed coefficients, otherwise, if DX
lj > ξ, the system has revealed an

anomaly and the reference coefficients are not updated.

The output of such a phase is a binary table, where the generic

element (l, j) is equal to one if there is an anomaly (i.e., DX
lj > ξ), is

equal to zero otherwise.

More details about this and the subsequent phase are given in Algo-

rithm 6.
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Figure 4.4: Wavelet Analysis

Threshold Computation

As described in the previous subsection, to evaluate the temporal evo-

lution of the wavelet coefficients pX
lj of the given time series Tlj[n], we

compute the Euclidean distance between the transformed coefficients

of subsequent blocks of samples. Such a distance is then compared to

a threshold ξ.

To avoid the use of a statically designed threshold, we have developed

a method that allows ξ to adapt to the temporal evolution of the values

of the computed distances. In more detail, ξ at a given step is set to

the average value of the distances computed over all the sketch table

up to the previous step plus the standard deviation multiplied by a
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constant value k, that is ξ = E(Dlj) + k · σ.

Note that, since ξ is initialized equal to zero, when the system starts

working, it has a transitory phase during which it will not be able to

detect anomalies.

It is worth noticing that the system, differently from many other

anomaly detection algorithms, does not need a training phase during

which it has to be fed with anomaly-free traffic (see experimental

results section for more details). Indeed it just presents a transitory

phase, necessary to compute the first reference coefficients as well as

the parameters needed to compute the threshold.

4.2.2 Identification

If an anomaly has been detected during the detection phase, the sys-

tem performs a new phase called anomaly identification. Note that

this phase is necessary since we are not able to determine, up to this

point, which flows are responsible for the revealed anomaly; indeed we

can only determine in which traffic aggregation (randomly determined

by the use of the sketch) the anomaly has occurred.

Given the use of the reversible sketch, we can identify the specific

flows that have caused the anomaly, “simply” reversing the sketch.

4.3 Experimental results

Also in this case the proposed system has been tested using the dataset

presented in Section 1.2.

To demonstrate the effectiveness of combining sketch and wavelet

analysis, the results obtained by our system have been compared with
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Algorithm 6 Detection

1: ξ = 0

2: X = 0

3: for l = 1 : d do

4: for j = 1 : w do

5: for a = 1 : (s − v) : (N − s + 1) do ! sliding window: a from 1 to

(N − s + 1) with increment (s − v)

6: b = a + s − 1

7: for r = a : b do

8: t[r] = Tlj [r] ! samples for the wavelet transform

9: end for

10: compute the transformed coefficients pX
lj

11: if X == 0 then

12: Plj = pX
lj

13: else

14: compute the Euclidean distance DX
ij between Plj and pX

lj

15: ξ = E(Dlj) + kσ(Dlj)

16: if DX
lj ≤ ξ then

17: Plj = pX
lj

18: else

19: AX [l][j] = 1 ! Matrix containing 1 if there is an anomaly, 0

otherwise

20: end if

21: end if

22: X+ = 1

23: end for

24: end for

25: end for
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those achieved by using a “classical” heavy change method built on

the top of sketches, based on the evaluation of the traffic received by

each aggregate in a given time-bin, with respect to the previous time-

bin [21]. Note that, we have not compared our system to one simply

based on the wavelet analysis of each traffic flow, because this kind of

approach would be computationally unfeasible in a real scenario.

Before detailing the performance achieved by the system in terms

of number of detected anomalies and detection rate, let us analyze

some graphs showing the distances computed in the detection phase,

comparing them with the threshold computed as described in the

previous section.
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Figure 4.5: Wavelet - Distance - Original Traces

The Figures 4.5, 4.6 show the distances computed for the first row

of the sketch table, related to the traffic of a single router (the same

considerations still hold for all the other rows and routers). These

distance were computed over the original traces and over the traces

where we have added the anomalies. The red line in the graphs rep-
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Figure 4.6: Wavelet - Distance - Traces with artificial anomalies

resents the threshold evolution.

In Figure 4.5 where we show the distances computed over the original

traces, the distances present some peaks that, after a manual analysis

of the traces, have resulted to be connected to network attacks.

Figure 4.6 shows the same distances, after that the synthetic anoma-

lies were added. It is easy to notice that the inserted anomalies are

represented by peaks in the graph that can be easily detected by our

system.

The graphs in Figures 4.7-4.9 show the performance of the system,

in terms of number of detected anomalies and detection rate, and

compare them to the performance of a “classical” heavy change-based

method.

In Figure 4.7 we plot the number of detected anomalies, both con-

sidering the original traces and those obtained after having inserted

the synthetic anomalies, as a function of the threshold (i.e., of the

constant factor k).
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Figure 4.7: Wavelet - Number of detected attacks

It is easy to see that the system is able to correctly detect all the in-

serted anomalies (477 distinct flows), as also testified by the detection

rate plotted in Figure 4.9. It is worth noticing that, when detecting all

the synthetic anomalies, our system also detects some more anomalies

(about 70 anomalous flows), which after a manual inspection of the

traces have mainly resulted to be due to network anomalies.

Note that our approach decreases the number of false alarms with

respect to the heavy change detection method, as demonstrated by

Figure 4.8. Indeed, from this figure, where we report the detections

for the heavy change method, we can see that the number of detected
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Figure 4.8: Heavy Change Detection: number of detected attacks

flows, not corresponding to synthetic anomalies, increases to about

120 and, in this case, the inspection of the traces has revealed that

many of these flows correspond, in fact, to “normal” traffic. Moreover,

we can also note that with this “classical” method the number of ar-

tificial anomalies detected by the system suddenly decreases, making

hard to correctly choose the “working point” of the system.

It is also important to notice that the system has resulted to be

robust to the presence of anomalies in the very initial time-bins, cor-

responding to a transitory phase, during which the system is not yet

able to correctly compute the threshold as well as the reference coef-
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Chapter 5

Change Detection

5.1 Change-Point Detection

Change-point detection is the problem of discovering time points at

which properties of time series change. The main idea is that the

structure of an information system can be described by a stochastic

model, and that a failure leads to an abrupt change of the structure.

This change occurs at an unknown point in time. The change-point

detection allows us to detect such an event.

The problem can be formalized as follows. Let Xn, n ≥ 1, be a

sequence of observations that are being chosen for monitoring. The

observed random variables X1,X2, . . . have a joint probability density

function (pdf) p0(X1, . . . ,Xn) until a change occurs at an unknown

time ta. After the change occurs, the observations have another distri-

bution p1(X1, . . . ,Xn). In other words, it is assumed that X1,X2, . . .

have the conditional pdf p0(Xn|X1, . . . ,Xn−1) for n < ta and the con-

ditional pdf p1(Xn|X1, . . . ,Xn−1) for n ≥ ta, where p0 and p1 are pre-

change and post-change pdfs, respectively. Therefore, if the change

occurs at time ta = k, then the conditional density of the kth obser-

vation changes from p0(Xk|X1, . . . ,Xk−1) to p1(Xk|X1, . . . ,Xk−1). A
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sequential change-point detection procedure is identified with a stop-

ping time τ for an observed sequence Xnn≥1 i.e., the time of alarm

τ , at which it is declared that a change has occurred, is a random

variable depending on the observations.

The problem of discovering time points at which properties of time

series change is attracting a lot of attention in the network anomaly

detection field.

The idea of the approach is based on the observation that an attack

leads to relatively abrupt changes in statistical models of traffic com-

pared to the “normal mode”. This changes occur at unknown points

in time and should be detected “as soon as possible”. Therefore, the

problem of detecting an attack can be formulated and solved as a

change-point detection problem.

5.1.1 Cumulative Sum control chart(CUSUM)

The CUSUM is a sequential analysis technique, typically used for

monitoring change detection.

Let us suppose to have a time series, given by the samples xn from a

process, the goal of the algorithm is to detect with the smallest pos-

sible delay a change in the distribution of the data. The assumption

of the method is that the distribution before and after the change

(fθ1
(x) and fθ2

(x)) are known. As its name implies, CUSUM involves

the calculation of a cumulative sum, as follows:

S0 = x0

Sn+1 = Sn + log
( fθ2

(x)
fθ1

(x)

) (5.1)

The rationale behind the CUSUM algorithm is that, before the
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change the quantity log
( fθ2

(x)
fθ1

(x)

)
is negative, whereas after the change

it is positive: as a consequence, the test statistics Sn decreases be-

fore the change, and it increases linearly with a positive slope after

the change, until it reaches the threshold ξ when the alarm is raised.

Figure 5.1 shows an intuitive derivation of the method.

Figure 5.1: Intuitive derivation of the CUSUM: time series (upper graph)

and CUSUM statistics (lower graph)



!

!

“main” — 2012/4/20 — 12:48 — page 86 — #100
!

!

!

!

!

!

86 Change Detection

Note that the assumption about the knowledge of the two distribu-

tions fθ1
(x) and fθ2

(x), implies that CUSUM is only able to decide

between two simple hypotheses. But, in case of network anomalies we

cannot suppose that the distribution after the change is known (usu-

ally neither the distribution before the change is known). This implies

the need of using the non parametric version of the algorithm [22],

which leads to a different definition of the cumulative sum Sn. In

more detail in this work we have used the multi-chart non parametric

CUSUM (MNP-CUSUM), in which the quantity Sn is defined as:

S0 = x0

Sn+1 = (Sn + xn − (µn + c · σn))+
(5.2)

where µn and σn are the mean value and the standard deviation until

step n, while c is a tunable parameter of the algorithm.

5.2 Streaming Change Detection

Using Streaming technique, the anomaly detection problem can be

formulated as a Heavy Hitter (HH) detection problem or a Heavy

Change (HC) detection problem. In the HH detection problem, the

goal is to identify the set of flows that represent a significantly large

portion of the ongoing traffic or the capacity of the link. In the HC

detection problem, the goal is to detect the set of flows that have

drastic change from one time period to another.
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5.2.1 Heavy Hitter Detection

A HH, in a dataset, is an element whose relative frequency exceeds a

specified threshold.

In more detail, given an input stream I = {(it, ct)} with the as-

sociated total sum S, a HH is a key, whose associated underlaying

function U [i] is not smaller than a specified portion of the expected

size of the whole dataset. The problem can be formalized as follows.

Given a threshold ξ (0 < ξ < 1) the set of HHs is defined as:

HH = {i | U [i] > ξ · S} (5.3)

In the context of network anomaly detection, a HH is an entity which

accounts for at least a specified portion of the total activity measured

in terms of number of packets, bytes, connections, etc. A HH could

correspond to an individual flow or connection. It could also be an

aggregation of multiple flows/connections that share some common

property, but which themselves may not be HH.

Given this, we define the HH detection problem as the problem of

finding all the HHs, and their associated values, in a data stream. As

an example, let us consider that the destination IP address is the key,

and the byte count the weight; then in this case the corresponding

HH detection problem is to find all the destination IP addresses that

account for at least a portion ξ of the total traffic.

5.2.2 Heavy Change Detection

In the contest of anomaly detection, the goal of HC detection is to

efficiently identify the set of flows that have drastic changefrom one
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time period to another with small memory requirements and limited

state information.

Modelling the data stream using the Turnstile model the problem

can be formalized as follows:

A HC is a key i, whose associated underlaying function U [i], eval-

uated in a given time-bin, significantly differs in size if compared to

the same function evaluated in the previous time-bins.

For sake of simplicity, let us suppose that we want to detect the HC

related to two adjacent time-bins. In this case, a key is a HC if the

difference between the values evaluated in the two time-bins exceeds

a given threshold (ψ). The problem can be formalized as follows. Let

U1[i] and U2[i] be the values associated to the key i, evaluated in the

time-bin 1 and 2 respectively, and let Di be the relative difference,

defined as Di = |U1[i] − U2[i]|. Then the set of HCs is defined as

follows:

HC = {i | Di > ψ} (5.4)

As an example, in the context of network anomaly detection, the

goal of HC detection can be to identify the flows that have significant

changes in traffic volume from one time period to another.

5.3 System architecture

In this section we detail the architecture of the proposed systems.

We have implemented three different systems based on the three

different Change Detection approaches described in the previous sec-

tions.
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Figure 5.2: Change Detection - System Architecture
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Figure 5.2 shows a block scheme of the systems.

We can distinguish four main blocks:

• Data Formatting

• Sketch module

• Anomaly Detector

• Identification

As you can see in the figure the three systems share the first two

blocks (already described in Section 1.2) and the Identification mod-

ule, while they differ for the Anomaly Detector module.

The HC-based method is called Method 1 in the figure, while Method

2 and Method 3 respectively refers to a HH change detection approach

and a CUSUM based method.

The following subsections describe the Anomaly Detector module of

the proposed systems.

5.3.1 Anomaly Detector

Method 1

Method 1 is a simple HC-based method that works comparing the

data related to two adjiacent time-bins, that is two consecutive sketch

tables.

In practice, the system computes the euclidean distance dij between

each element T [i][j] of the current sketch table and the corresponding

element T ref[i][j], where T ref[i][j] is the element T [i][j] corresponding

to the last non anomalous time-bin.
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In more detail, assuming that the system is processing the time-

bin n, then each element of the sketch table T n is compared with

the corresponding element of the “reference” sketch table T ref, where

T ref is equal to the “last occurred” non anomalous sketch table, i.e.,

T ref = T n−r for some (r = 1, 2, . . . , n). Note that this algorithm has

been introduced to avoid the “masking effect” that can be caused by

anomalies that span over multiple time-bins.

If the computed distances exceed a given threshold (dn
ij > ξ) in at

least H distinct rows of the sketch table (where H is a tunable pa-

rameter), the system considers the current time-bin as anomalous and

then performs the anomaly identification for revealing the responsible

IP flows.

The pseudo-code related to the detection algorithm, run at each

time-bin, is reported in Algorithm 7.

Method 2

This method, is much more complex than the first one but it still

results to be (as demonstrated in the experimental section) suitable for

on-line detection of anomalous flows. Basically, it tracks the variations

in the HH distribution of the network traffic.

In more detail, as it can be seen from Figure 5.2, the sketch T is

given in input to two distinct modules, namely a forecast module and

a HH matrix construction module.

The forecast module takes in input its own output at the previous

step and the “reference” sketch table T ref, that is -as in the previous

case- the “last occurred” non anomalous sketch table, and uses these

two elements for forecasting the value of the next sketch table. Note
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Algorithm 7 Detection: Method 1

1: for i = 1 : D do

2: ci = 0

3: end for

4: C = 0

5: for i = 1 : D do

6: for j = 1 : W do

7: dn
i,j = |T n[i][j] − T ref[i][j]|

8: if dn
i,j > ξ then

9: ci = 1

10: end if

11: end for

12: C+ = ci

13: end for

14: if C > H then ! H tunable parameter

15: time-bin n is anomalous

16: else

17: T ref = T n

18: end if

19: Output: anomalous time-bins
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that the use of T ref has been introduced, as in Method 1, to avoid the

“masking effect” due to “long” anomalies.

The prediction phase is performed by using an Exponentially Weighted

Moving Average (EWMA) forecast algorithm, described by the follow-

ing equation:

T̂ n = αT n−1 + (1− α)T̂ n−1

or the Non-Seasonal Holt-Winters (NSHW) algorithm,

T̂ n = T̂ n
s + T̂ n

t

with

T̂ n
s = αT ref + (1− α)T̂ n−1

T̂ n
t = β(T̂ n

s − T̂ n−1
s ) + (1− β)T̂ n−1

t

where α and β ∈ [0, 1] are tunable parameters.

Algorithms 8 and 9 report the pseudo code for the forecasting phase

at each time-bin using EWMA and NSHW, respectively.

Algorithm 8 Building the forecasted sketch (EWMA)

1: for i = 1 : D do

2: for j = 1 : w do

3: if n == 2 then

4: bT n[i][j] = T 1[i][j]

5: end if

6: if n > 2 then

7: bT n[i][j] = αT ref[i][j] + (1 − α) bT n−1[i][j]

8: end if

9: end for

10: end for

11: Output: forecasted sketch
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Algorithm 9 Building the forecasted sketch (NSHW)

1: for i = 1 : D do

2: for j = 1 : w do

3: if n == 2 then

4: cTs

n
[i][j] = T 1[i][j]

5: bTt

n
[i][j] = T 2[i][j] − T 1[i][j]

6: end if

7: if n > 2 then

8: cTs

n
[i][j] = αT ref[i][j] + (α− 1) bT n−1[i][j]

9: bTt

n
[i][j] = β(T n

s [i][j] − T n−1
s [i][j]) + (1 − β) bTt

n−1

[i][j]

10: end if

11: bT n[i][j] = T n
s [i][j] + T n

t [i][j]

12: end for

13: end for

14: Output: forecasted sketch

Given this step, the system has two distinct values for the sketch at

time-bin n, the real value T n and the predicted value T̂ n. Both these

tables are fed to a module, responsible for computing an empirical

distribution of the HHs.

This “distribution” is computed by evaluating the HHs present in the

traffic, that is the traffic aggregates (namely the sketch buckets) that

exceed a given threshold, given by a percentage of the total traffic in

the time-bin, Sn. The related buckets are then updated by inserting

the quantity of traffic for which that aggregate exceed the threshold,

while all the other buckets are set to one byte (this last point is mainly

done for computational reasons). Finally each row of the matrix is

normalized so as that its elements sum to one. Algorithm 10 illustrates

the procedure for computing this matrix in a given time-bin.

This matrix is named Mn
HH if computed starting from T n and M̂n

HH
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Algorithm 10 Building the HH matrix

1: for i = 1 : D do

2: for j = 1 : w do

3: Mn
HH [i][j] = 1 ! HH matrix initialization

4: end for

5: end for

6: for i = 1 : D do

7: NF = 0

8: for j = 1 : w do

9: if T [i][j] − ξSn > 0 then

10: Mn
HH [i][j] = T n[i][j] − ξSn ! Sn total traffic in the time-bin

11: end if

12: NF+ = Mn
HH [i][j]

13: end for

14: for j = 1 : w do

15: Mn
HH [i][j] = Mn

HH [i][j]/NF ! matrix normalization

16: end for

17: end for

18: Output: matrix of the distribution of the HH
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if calculated starting from T̂ n.

Given these two matrices, the system compares the actual HH dis-

tribution in MHH with the forecasted one in M̂HH . To perform such

a task the system computes a distance between each line of the two

matrices. In this case, the system allows us to choose between the

Kullback-Leibler (KL) divergence, KL(Mn
HH [i][·], M̂n

HH [i][·]) and the

Jensen-Shannon divergence (JSD), JSD(Mn
HH [i][·], M̂n

HH [i][·]). Note

that JSD has been introduced in this system to overcome the poten-

tial limitations given by the asymmetric nature of KL. Indeed, the

JSD between two generic vectors P and Q is defined as:

JSD(P,Q) =
1

2
· KL(P,M) +

1

2
· KL(M,Q) (5.5)

where KL is defined as

KL(P,Q) =
∑

i

pi · log(pi/qi) (5.6)

and M is the “average” of P and Q, that is mi = (pi + qi)/2.

To decide if the considered time-bin is anomalous, we have imple-

mented a voting algorithm, that is if the computed distance exceeds

a given threshold ψ for more than H rows of the matrix, the system

reveals an anomalous time-bin and the anomaly is thus identified.

The whole detection phase, for a given time-bin, is described by the

pseudo code in Algorithm 11.

Method 3

This third method is based on the use of the MNP-CUSUM algorithm,

described in Section 5.1.1.
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Algorithm 11 Detection: Method 2

1: C = 0

2: for i = 1 : D do

3: dn
i = Dist(Mn

HH [i][·], cMn
HH [i][·] = 1)

4: ! Dist = JSD or Dist = KL

5: if dn
i > ψ then

6: C + +

7: end if

8: end for

9: if C > H then ! H tunable parameter

10: time-bin n is anomalous

11: else

12: T ref = T n

13: end if

14: Output: anomalous time-bins

As it can be seen from Figure 5.2, this module takes in input the

sketch T . It is worth noticing that in this method the single buckets

of the sketch are used independently to construct d ·w time series on

which the CUSUM algorithm is applied. Hence, the value contained

in each bucket of T is used to update the CUSUM statistics, related

to the time series associated to that bucket.

About the algorithm parameters, the quantity µ and σ have been

estimated by using the EWMA algorithm, while the value of the pa-

rameter c has been set equal to 0.5 (note that the algorithm has

experimentally shown to be robust to the choice of this parameter).

An anomaly, in a given time series, is thus detected at a given time-

bin, if the test statistics starts increasing with a positive slope and

exceeds the threshold ξ (in the experimental tests the threshold ξ has

been set by means of Monte Carlo Simulation).
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The output of this phase is a binary matrix A[d][w], for each time-

bin, that contains a “1” if the time series corresponding to a given

bucket is considered anomalous at that time-bin, “0” otherwise.

Note that, given the nature of the sketches, each traffic flow is part

of several random aggregates (namely D aggregates), corresponding

to the D different hash functions.

Due to this fact, a voting algorithm is applied to the matrix A. The

algorithm simply verifies if at least H rows of A contain at least a

bucket set to “1” (H is a tunable parameter).

5.3.2 Identification

In all the three cases, if the voting system outputs the presence of an

anomaly in a given time-bin, the system applies the reversible sketch

algorithm (described in Chapter 2) to the sketch given by the value

of all the time series in that time-bin for identifying the IP flows

responsible for the anomalies.

5.4 Experimental results

The proposed systems have been tested using the dataset described

in Section 1.2.

Tables 5.1 to 5.12 report the results achieved by the three systems.

Since, given the nature of the dataset, we cannot plot a ROC curve, in

these tables we report the total number of detected anomalies and the

number of synthetic anomalies detected by the systems. Note that the

tables have been obtained varying the values of the threshold. The real

values of such a threshold are not reported since are not significant
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Total Synthetic

Threshold Anomalies Anomalies

tha 1969 154

thb 1920 48

thc 1381 28

thd 1269 23

Table 5.1: Change Detection - Method 1

in themselves, just consider that the first values correspond to the

highest threshold value for which the three systems detect all the 154

synthetic anomalies.

Hence, in general, the system is always able to obtain a 100% de-

tection rate (revealing all the 154 synthetic anomalies), but the per-

formance can be strongly different depending on the total number of

detected anomalies that has a direct impact on the number of false

alarms.

To start with, let us analyze the performance offered by the “clas-

sical” HC-based system, reported in Table 5.1. In this case, we can

easily see that for detecting all the synthetic anomalies, we have to

accept a total number of detection equal to 1969, which is not accept-

able. Moreover the number of detected synthetic anomalies suddenly

decreases when increasing the threshold, while the number of total

detected anomalies remains quite stable, making very hard the appli-

cation of the system in the “real world”.

Concerning Method 2, a first set of experimental tests has been re-

alized to evaluate the impact of the sketch dimension (namely the

impact of the parameter w) on the system performance. The ob-
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Threshold Total Anomalies Synthetic Anomalies

ψ1 1018 154

ψ2 602 152

ψ3 254 145

ψ4 192 142

ψ5 177 135

ψ6 157 127

ψ7 137 109

ψ8 115 90

ψ9 91 70

ψ10 65 46

Table 5.2: Change Detection - Method 2 (w = 256, EWMA α = 0.2, JSD)

Threshold Total Anomalies Synthetic Anomalies

ψ1 310 154

ψ2 256 152

ψ3 199 148

ψ4 179 144

ψ5 172 142

ψ6 167 137

ψ7 163 133

ψ8 151 123

ψ9 135 111

ψ10 115 94

Table 5.3: Change Detection - Method 2 (w = 512, EWMA α = 0.2, JSD)
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Threshold Total Anomalies Synthetic Anomalies

ψ1 210 154

ψ2 191 151

ψ3 175 145

ψ4 164 136

ψ5 144 123

ψ6 125 105

ψ7 80 61

ψ8 45 26

ψ9 34 16

ψ10 24 6

Table 5.4: Change Detection - Method 2 (w = 1024, EWMA α = 0.2, JSD)

tained results are presented in Tables 5.2 - 5.4 and correspond to

three distinct values of w, namely w = 256, w = 512, and w = 1024.

Regarding the other parameters, these tests have been realized us-

ing the EWMA forecasting algorithm (with α = 0.2) and the JSD

divergence.

Note that varying the value of the parameter w, not only does it have

an impact on the memory and computational resource consumption

(that would take to choose the lowest possible value for w), but it also

determines the dimension of the traffic aggregates. Indeed, sketches

are implicitly used for randomly aggregating the traffic flows. Thus a

low value of w means having few big aggregates and vice-versa a big

value of w means having many small aggregates. It is quite obvious

that this can influence the possibility of detecting anomalous flows in

the aggregates.
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From Table 5.2 we can easily see that using a sketch of dimension

w = 256 takes to unacceptable performance. Indeed, in this case,

for having a 100% detection rate, we have 1018 total detection of

anomalous time-bins (over a total of 2016) that correspond to a high

number of false alarms.

Things get definite better when considering w = 512 (see Table 5.3)

and w = 1024 (see Table 5.4). Indeed in these cases the system is able

to detect all the synthetic anomalies, with a total number of detections

of 310 and 210 respectively. To really evaluate the performance of the

two settings, we have performed a manual verification of the dataset,

checking the additional detections of the system. After that we can

conclude that, almost all the additional detections obtained with w =

512 (310 total detections minus the 154 synthetic anomalies) are real

anomalies already present in the traces. From this analysis we can

thus conclude that the best performance are obtained with w = 512,

indeed w = 256 takes to a big number of false alarms, while = 1024

takes to some false negatives (missed detections).

Moreover, note that, in any case, event though all the additional

detections obtained with w = 512 would not be “real” anomalies they

would correspond to a maximum false alarm rate of 8.3% that could

be considered as “acceptable”.

We can also easily notice, by analyzing Table 5.3, that the number of

detected synthetic anomalies varies quite slowly when increasing the

value of the threshold, while the number of total detection decreases

much faster. This fact makes easy the tuning of the system.

The second and third sets of experimental tests have been conducted

to tune the parameter of the forecasting algorithms, EWMA and
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Threshold Total Anomalies Synthetic Anomalies

ψ1 473 154

ψ2 333 153

ψ3 246 150

ψ4 208 146

ψ5 190 144

ψ6 172 137

ψ7 167 134

ψ8 150 121

ψ9 1697 117

ψ10 125 100

Table 5.5: Change Detection - Method 2 (w = 512, EWMA α = 0.5, JSD)

Threshold Total Anomalies Synthetic Anomalies

ψ1 688 154

ψ2 344 152

ψ3 284 149

ψ4 225 146

ψ5 1320 142

ψ6 276 136

ψ7 157 122

ψ8 1697 119

ψ9 1767 109

ψ10 126 85

Table 5.6: Change Detection - Method 2 (w = 512, EWMA α = 0.8, JSD)
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NSHW respectively.

In more detail, Tables 5.3, 5.5, and 5.6 present the results achieved

by the system using a sketch table of dimension w = 512, the JSD

divergence, and three distinct value of the smoothing parameter of

the EWMA algorithm, namely α = 0.2, α = 0.5, and α = 0.8.

From the tables we can notice that when increasing the value of

the smoothing parameter, we have an increase in the number of total

detection. Indeed for detecting all the synthetic anomalies the system

detects a total number of anomalies equal to 310 (case α = 0.2), 473

(case α = 0.5), or 688 (case α = 0.8). Also in this case, a manual

verification of the dataset has highlighted that most of the additional

detections obtained varying α corresponds to false alarms.

Moreover, additional tests (not shown for sake of brevity) have demon-

strated that varying the smoothing parameter around the value 0.2

(i.e., α ∈ [0.1, 0.3]), does not take to any significant variation in the

system performance.

From these considerations we can conclude that the best performance

are obtained when α = 0.2. Note that this is also supported by the

literature, indeed it is known that 0.2 is in the typical range of the

“optimal” smoothing parameter.

Moreover, using a low value of the smoothing parameter implies the

use of a model not much responsive to the fluctuations in the data.

This has a direct impact on our system performance. Indeed, by

analyzing Tables 5.5 and 5.6 we can notice that the system present

a “strange” behavior. Indeed the total number of detections is not

always decreasing, when increasing the value of the threshold. This

is due to the presence of “noisy samples” in the data and it is hence
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Threshold Total Anomalies Synthetic Anomalies

ψ1 402 154

ψ2 299 152

ψ3 237 146

ψ4 206 144

ψ5 187 139

ψ6 166 133

ψ7 159 128

ψ8 137 111

ψ9 122 98

ψ10 107 87

Table 5.7: Change Detection - Method 2 ( w = 512, NSHW α = 0.2

β = 0.2, JSD)

mitigated when the parameter α tends to zero.

Analogously to what done for tuning the smoothing parameter of

the EWMA algorithm, Tables 5.7 - 5.9 present an analysis of the

system performance obtained varying the value of the parameter β of

the NSHW algorithm (for sake of brevity we do not show the results

corresponding to different values of α, since they are similar to those

obtained for EWMA). In more detail the presented results have been

obtained by using a sketch dimension w = 512, the JSD divergence,

α = 0.2, and three distinct values of β, namely β = 0.2 (Table 5.7),

β = 0.5 (Table 5.8), and β = 0.8 (Table 5.9).

For these tables, the considerations done for the previous set of tests

are still valid and take us to conclude that the best value for the β

parameter is β = 0.2.
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Threshold Total Anomalies Synthetic Anomalies

ψ1 531 154

ψ2 372 153

ψ3 279 150

ψ4 237 144

ψ5 196 139

ψ6 185 133

ψ7 165 129

ψ8 154 118

ψ9 1695 113

ψ10 122 94

Table 5.8: Change Detection - Method 2 ( w = 512, NSHW α = 0.2

β = 0.5, JSD)

Threshold Total Anomalies Synthetic Anomalies

ψ1 660 154

ψ2 436 152

ψ3 322 150

ψ4 252 145

ψ5 206 140

ψ6 186 137

ψ7 185 132

ψ8 158 121

ψ9 1696 115

ψ10 146 99

Table 5.9: Change Detection - Method 2 ( w = 512, NSHW α = 0.2

β = 0.8, JSD)



!

!

“main” — 2012/4/20 — 12:48 — page 107 — #121
!

!

!

!

!

!

5.4 Experimental results 107

Threshold Total Anomalies Synthetic Anomalies

ψ1 968 154

ψ2 538 153

ψ3 329 150

ψ4 276 147

ψ5 1326 146

ψ6 412 136

ψ7 1319 127

ψ8 1768 122

ψ9 1767 111

ψ10 659 89

Table 5.10: Change Detection - Method 2 (w = 512, no forecasting, JSD)

Given these results, we can make a comparison between the use

of the EWMA and the NSHW algorithms, by comparing Table 5.3

and 5.7 that correspond to the best settings for the two considered

cases. The inspection of the dataset takes us to conclude that the

best performance are achieved when using the EWMA algorithm.

Table 5.10 present the results of the system when disabling the fore-

casting module (M̂HH is directly computed starting from T ref). By

comparing this table with the previous ones, we can see that disabling

the forecasting module takes to worsen the performance. This result

was predictable, indeed disabling the forecasting module is equivalent

to use the EWMA algorithm with α = 1, and the previous analysis

had already highlighted that the best performance are achieved with

low values of the smoothing parameter.

Lastly, Table 5.11 presents the performance achieved using the KL
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Threshold Total Anomalies Synthetic Anomalies

ψ1 221 154

ψ2 197 152

ψ3 182 148

ψ4 178 144

ψ5 174 141

ψ6 168 137

ψ7 161 130

ψ8 135 104

ψ9 115 86

ψ10 90 63

Table 5.11: Change Detection - Method 2 (w = 512, EWMA α = 0.2, KL)

divergence instead of the JSD divergence. Note that JSD divergence

has been introduced to overcome the potential limitations due to the

non-symmetric nature of the KL divergence, but no evidence is pro-

vided in the literature to conclude that it can offer better performance

in our case. Nevertheless the results presented in Table 5.11 (and the

manual inspection of the dataset), compared to those in Table 5.3,

confirm our intuition.

After this analysis we can thus conclude that the presented system

outperforms the “classical” HC-based methods and that the best set-

tings are those corresponding to the results presented in Table 5.3,

that is w = 512, EWMA algorithm with α = 0.2, and JSD diver-

gence.

Instead, concerning the CUSUM based method (see Table 5.12), we

can conclude that the system behaves very similarly to Method 2 (with
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w = 512 and α = 0.2), when reaching a detection rate of 100%. In-

deed when detecting all the 154 synthetic anomalies, the system only

detects 135 more anomalies, most of them corresponding to “real”

anomalies already present in the traces (as for Method 2). But its

performance are much less stable than those of Method 2, when rais-

ing the threshold. Indeed, when detecting a total number of about

180 anomalies we can see that Method 3 only detects 35 synthetic

anomalies, while our proposed method (Method 2) still detects 144

synthetic anomalies. This greater stability of our system makes eas-

ier the tuning of the system parameters and makes the method more

suitable for “real world” application.

Finally, to evaluate the computational complexity in time and mem-

ory space of Method 2 (we have not performed the same kind of test

for Method 1 and Method 3 because they are computationally much

easier), we have used a general purpose PC, equipped with an Intel

Core 2 Duo processor at 3GHz and 2GB of RAM. The experimental

results have shown that the system is able to process a whole week of

traffic from the Abilene/Internet2 network in about 531s, with a max-

imum memory consumption of 0.9% (about 1.8 MB). In more detail

the system is able to analyze a single time-bin of 5 minutes of traffic

related to a single router in about 29ms, demonstrating to be suitable

for the on-line detection of anomalies in backbone networks.
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Total Synthetic

Threshold Anomalies Anomalies

thA 289 154

thB 287 153

thB 178 35

thB 160 14

thC 154 12

thD 134 10

thE 125 8

thF 107 7

thG 94 6

thH 88 5

thI 73 4

thL 47 3

Table 5.12: Change Detection - Method 3
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Chapter 6

Wave-CUSUM -

combining Wavelet and

CUSUM

6.1 Wavelet Pre-Filtering

The direct application of the methods described in the previous chap-

ters is sometimes difficult because of the time-varying nature of the

traffic (e.g., daily and weekly trends) that makes somehow hard to

distinguish a network anomaly from a “normal” variation of the dis-

tribution of the traffic.

To solve such an issue, we propose to combine a “classical” CUSUM

based approach together with the wavelet analysis. In more detail the

latter is used to filter out the seasonal trends in the network traffic

before applying the “real” anomaly detection algorithm, based on the

CUSUM method.

The main idea is used the Wavelet Decomposition for organizing

the data onto different components, that is a hierarchy of component
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“signals”.

The lower component contains very sparse filtered information that

can be thought of as sophisticated aggregations of the original data.

We refer to that part of the representation as the low-frequency rep-

resentation. In contrast, the very high strata in the hierarchy capture

fine-grained details of the data, such as spontaneous variations. These

are referred to as the high-frequency strata.

In more detail the method works as follows.

At first, we extract from the original signal the aforementioned hi-

erarchy of derived signals. This is done as an iterative process.

g

h 2

2g

h 2

2g

h 2

2x

Level 1 Level 3Level 2

Figure 6.1: Wavelet Decomposition

The input for each iteration is a signal x (see Figure 6.1) of length

N . The output is a collection of two or more derived signals, each of

which is of length N/2. Each output signal is obtained by convolving

x with an specially designed filter F and then decimating every other

coefficient of that convolution product. We denote by F (x) the output

signal so obtained.
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One of the special filters, denoted in the figure as g, has a smooth-

ing/averaging effect, and its corresponding output g(x) is the low-

frequency output. Instead, the output of the other filter h(x) should

capture only the fine-grained details, i.e. the high-frequency content

of the signal x.

The iterations proceed with the further decomposition of g(x), cre-

ating the (shorter) signals g2(x), h1g(x). Continuing in this manner,

we obtain a family of output signals of the form higj−1(x). The index

j counts the number of low-pass filtering iterations applied to obtain

the output signal: the larger the value of j, the lower the derived signal

is in our hierarchy. Indeed, we refer to higj−1(x) as belonging to the

jth frequency level, and consider a higher value of j to corresponding

to a lower frequency. If our original signal x consists of measurements

taken at five minute intervals, then the derived signal higj−1(x) con-

sists of data values that are 2j × 5 minutes apart one from the other.

Thus, as j grows, the corresponding output signal becomes shorter

and records a smoother part of the signal. The values of the derived

signals higj−1(x) are known as the wavelet coefficients.

Instead, if we perform the synthesis iterations at each step the input

signals for the iteration are gj(x), higj−1(x), and the output is the

signal gj−1(x). This is exactly the inverse of the jth iteration of the

analysis algorithm. By employing that step sufficiently many times,

one recaptures the original signal.

Instead, if we would like to ignore some information we can alter

some of the values of some of the derived signals of the decomposition

step and then applying reconstruction. The general idea is to suppress

all the values that carry information that we would like to ignore. For
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example, if we wish to view the fine-grained spontaneous changes in

the data only, we will apply a threshold to the entries in all the low-

frequency levels, i.e. replace them by zeros.

 0
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Figure 6.2: Original Signal (traffic aggregate over one week)

Thus, using the wavelet analysis we are able to extract three different

output signals:

• Low-frequency component (Figure 6.3)

• Mid-frequency component (Figure 6.4)

• High-frequency component (Figure 6.5)

The Low-frequency component (L-component) is obtained by syn-

thesizing all the low-frequency wavelet coefficients from levels 9 and
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Figure 6.3: Reconstructed Signal - Low-frequency Component
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Figure 6.4: Reconstructed Signal - Mid-frequency Component



!

!

“main” — 2012/4/20 — 12:48 — page 117 — #131
!

!

!

!

!

!

6.1 Wavelet Pre-Filtering 117

-2.5e+06

-2e+06

-1.5e+06

-1e+06

-500000

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  500  1000  1500  2000

by
te

time

Figure 6.5: Reconstructed Signal - High-frequency Component

up. It is able to capture patterns and anomalies of very long duration

(several days and up). The signal here is very sparse, and captures

weekly patterns in the data quite well. For many different types of In-

ternet data, the L-component of the signal reveals a very high degree

of regularity and consistency in the traffic, hence can reliably capture

anomalies of long duration.

The Mid-frequency component (M-component), instead, is obtained

by synthesizing the wavelets coefficients from frequency levels 6, 7, 8.

The signal here has zero-mean, and is supposed to mainly capture the

daily variations in the data.

Finally, the High-frequency component (H-component) is obtained
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by thresholding the wavelet coefficients in the first 5 frequency levels,

i.e. setting to zero all coefficients whose absolute value falls below

a chosen threshold (and setting to zero all the coefficients in level 6

and up). The need for thresholding stems from the fact that most of

the data in the high-frequency component consists of small short-term

variations, variations that we think of as “noise” and do not aid us in

our anomaly detection objective.

6.2 System Architecture

In this section we detail the architecture of the proposed Intrusion

Detection System, (Figure 6.6 depicts the proposed architecture).

The system is composed of four blocks:

• Data Formatting

• Sketch Module

• Anomaly Detector

• Identification

In the following we describe the Anomaly Detector and the Identi-

fication module. Instead, for an exhaustive analysis of the first two

blocks refer to Section 1.2.

Note that at the end of this first two phases, given that we had N

distinct time-bins, we have obtained N distinct sketch tables T n
D×w,

where n ∈ (1, 2, . . . , N) is the time-bin.
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Figure 6.6: Wave-CUSUM - System Architecture
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6.2.1 Wavelet Module

At this point, starting from the N distinct sketch tables we consider

the temporal evolution of each bucket Tlj of the sketch table, con-

structing d · w time series of N samples Tlj[n].

These time series are given as input to the wavelet module, which

computes the coefficients of the transformed signal. The wavelet de-

composition is performed on six steps (namely we obtain six levels

of transformed coefficients) by using Daubechies-4 as mother wavelet.

To filter out the daily and weekly trends the signal is then recon-

structed by using the coefficients from levels one to five, and inserting

null coefficients in the sixth level. The result of this synthesis op-

eration (as shown in Section 6.3) is the original signal without the

seasonal behavior.

Note that, taking the value of the different time series at each time-

bin, we are able to reconstruct the corresponding sketch table (this will

be used in the following for the detection and identification phases).

6.2.2 Detection Module

The reconstructed time series obtained after the wavelet analysis and

synthesis, are given in input to the detection module, where the MNP-

CUSUM algorithm is performed (analogously to what already de-

scribed in Section 5.3.1).

About the MNP-CUSUM algorithm it is worth noticing that the

quantity µ and σ have been estimated by using the EWMA algorithm,

while the value of the parameter c has been set equal to 0.5 (also note

that the algorithm has experimentally shown to be robust to the choice

of this parameter).
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An anomaly, in a given time series, is thus detected at a given time-

bin, if the test statistics starts increasing with a positive slope and

exceeds the threshold ξ. Note that, in the experimental tests the

threshold ξ has been set by means of Monte Carlo Simulation.

The output of this phase is a binary matrix (A[d][w]), for each time-

bin, that contains a “1” if the time series corresponding to a given

bucket is considered anomalous at that time-bin , “0” otherwise.

Note that, given the nature of the sketches, each traffic flow is part

of several random aggregates (namely D aggregates), corresponding

to the D different hash functions. This means that, in practice, any

flow will be checked D times to verify if it presents any anomaly (this

is done because an anomalous flow could be masked in a given traffic

aggregate, while being detectable in another one).

Due to this fact, a voting algorithm is applied to the matrix A. The

algorithm simply verifies if at least H rows of A contain at least a

bucket set to “1” (H is a tunable parameter). If so, the mediator

reveals an anomaly, otherwise the matrix A is discarded.

6.2.3 Identification phase

In case the voting system outputs the presence of an anomaly in a

given time-bin, the system applies the reversible sketch algorithm to

the sketch table given by the value of all the time series in that time-

bin for identifying IP flows responsible for the anomalies (see Chapter

2 for the algorithm details).
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6.3 Experimental results

Before analyzing the performance of the system in terms of detected

anomalies, in the first three figures we empirically show the reason for

which the method is able to improve the “classical” CUSUM methods.

Figure 6.2 shows the temporal evolution of one of the buckets of the

sketch over one week, before performing the wavelet analysis. In more

detail, it represents the number of bytes received by an IP aggregate

and, as can be clearly observed, presents the “typical” seasonality of

the network traffic, with a daily and a weekly trend. It is easy to

understand that the seasonality in the data can make difficult the

detection of some anomalies, which can be masked by such a trend.

Figure 6.7 shows the same traffic aggregate, after the wavelet anal-

ysis. As described in the previous section the signal has been recon-

structed after that the wavelet coefficients corresponding to the low

frequencies (level six) have been put to zero. The result is that the

daily as well as the weekly trends of the signal have “disappeared”,

making intuitively easier the detection of the anomalies.

This intuition is confirmed by the plot of the CUSUM statistics in

Figure 6.8, where we can easily see that the statistics related to the

original signal (dotted line) is much more “rugged” than the one re-

lated to the reconstructed signal (solid line). Hence, considering that

(as stated in the theoretical section on CUSUM) an anomaly is re-

vealed if the CUSUM statistics starts increasing and exceeds a given

threshold, our method seems to be more robust to signal noise that

the “classical” method; the following tables show that this intuition

is confirmed by the experimental results.

Since, given the nature of the dataset, we cannot plot a ROC curve,
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Figure 6.7: Wave-CUSUM - Reconstructed Signal

in the following tables we report the total number of detected anoma-

lies and the number of synthetic anomalies detected by the system.

Note that the tables have been obtained varying the values of the

threshold ξ. The real values of such thresholds (set by Monte-Carlo

simulation) are not reported since are not significant in themselves,

just consider that the first values (namely ξ1) always corresponds to

the highest threshold value for which the system is able to detect all

the 154 synthetic anomalies.

Hence, in general, the system is always able to obtain a 100% de-

tection rate (revealing all the 154 synthetic anomalies), but the per-

formance can be strongly different depending on the total number of
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Figure 6.8: Wave-CUSUM - CUSUM statistics

detected anomalies that has a direct impact on the number of false

alarms.

Slightly differently to what done when testing the systems described

in the previous chapters, in this case to assess the validity of the

proposed system we have carried out three distinct sets of simulations,

in which we have injected, in the original traces, anomalies of low,

medium and high intensity/volume. It is worth noticing that, in all

the three cases, these anomalies result to be much “smaller” than

those used for the previous systems. This is justified by the fact that

using the same traces used for the other methods, the behavior of the

CUSUM method already takes to very good performance and it is thus
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Threshold Total Anomalies Synthetic Anomalies

ξ1 703 154

ξ2 412 137

ξ3 348 94

ξ4 297 67

ξ5 226 9

ξ6 189 7

ξ7 102 6

Table 6.1: Wave-CUSUM - low volume anomalies

difficult to demonstrate that the wavelet pre-filtering phase effectively

takes to some improvements. But, this becomes much more evident

when using anomalies of smaller entity as the one used in this section.

Tables 6.1 and 6.2 respectively present the performance of our system

(named Wave-CUSUM) and of the classical CUSUM system, when

facing the detection of low volume anomalies. We can easily notice

that the performance are strongly different; indeed our system, when

detecting all the 154 synthetic, also detects 549 additional anomalies

(703 total anomalies minus the synthetic ones), while the “classical”

system detects 809 additional anomalies. In this case, to really eval-

uate the performance of the system, we have performed a manual

verification of the dataset, checking the additional detections of the

system. From that, we can conclude that, about 150 anomalies of the

549 detected by our system are real anomalies and 150 are suspicious

activities. That means that our system has a false positive rate be-

tween the 12% and 20%, when the detection rate (over the synthetic
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Threshold Total Anomalies Synthetic Anomalies

ξ1 963 154

ξ2 806 19

ξ3 778 17

ξ4 740 16

ξ5 710 14

ξ6 623 13

ξ7 595 12

Table 6.2: CUSUM - low volume anomalies

anomalies) is 100%, while for the classical system the false positive

rate raises to about the 25%-33%. Note that the “classical” system

does not detect all the anomalies already present in the data, while

detecting some more “false” anomalies. Moreover we can notice from

Table 6.1 that we can obtain a negligible false alarm rate, when the

detection rate is about the 89%, while it is not possible to lower the

false alarm rate without significantly worsen the detection rate for the

classical system.

Tables 6.3 and 6.4 represent the same results seen in the previous

tables, when considering medium volume anomalies. Also in this case,

we can easily see that the two systems present strongly different per-

formance. Indeed, in this case our system is able to achieve an almost

ideal behavior obtaining the 100% of correct detection in correspon-

dence of a negligible false alarm rate, while the “classical” system,

when achieving the 100% of detection rate also has a false alarm rate

between 22% and 30%. Also we can notice has our system results to
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Threshold Total Anomalies Synthetic Anomalies

ξ1 308 154

ξ2 256 117

ξ3 205 80

ξ4 182 75

ξ5 121 16

ξ6 80 7

ξ7 60 6

Table 6.3: Wave-CUSUM - medium volume anomalies

Threshold Total Anomalies Synthetic Anomalies

ξ1 751 154

ξ2 612 23

ξ3 598 17

ξ4 571 16

ξ5 537 15

ξ6 514 13

ξ7 491 11

Table 6.4: CUSUM - medium volume anomalies
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Threshold Total Anomalies Synthetic Anomalies

ξ1 303 154

ξ1 262 154

ξ2 127 19

ξ3 124 17

ξ4 85 16

ξ5 39 14

ξ6 33 13

Table 6.5: Wave-CUSUM - high volume anomalies

be robust to small variations in the values of the threshold, while the

“classical” method performance abruptly change when varying the

threshold.

Finally, Tables 6.5 and 6.6 show the performance of the two systems

in the detection of high volume anomalies. Note that in this case, in

our system, the value of ξ1 is not the highest value for which the system

detects all the synthetic anomalies, but the highest value for which the

system is able to also detect the about 150 anomalies already present

in the original data. For these results, the considerations done in the

previous two cases are still valid. Indeed our system is able to detect

all the anomalies with a negligible false alarm rate, while with the

“classical” system we must accept a high false alarm rate, also when

not detecting all the anomalies.
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6.3 Experimental results 129

Threshold Total Anomalies Synthetic Anomalies

ξ1 554 154

ξ2 424 27

ξ3 418 14

ξ4 382 12

ξ5 365 10

ξ6 340 9

ξ7 317 8

Table 6.6: CUSUM - high volume anomalies
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Chapter 7

Conclusions

In the last years, the increasing number and variety of security attacks

in IP-based network infrastructures have caused growing problems for

network operators and users, leading to the need of developing new

security architectures.

In this scenario the use of Intrusion Detection Systems has emerged

as a key element, since it permits to tackle security threats by mas-

querader, misfeasor and clandestine users. In order to identify new

ad hoc attacks, the development of anomaly based NIDSs assumes a

primary role.

In this dissertation we have presented some novel anomaly based

NIDSs, which detect anomalies by means of some novel statistical

techniques.

We have discussed several statistical approaches, such as Wavelet

Analysis, Principal Component Analysis, Heavy change detection, and

CUSUM.

In more detail, regarding the Wavelet Analysis we have detailed a

novel multi time-scale anomaly detection method, based on a com-

bined use of sketch and wavelet analysis. The use of wavelet trans-

form is justified, despite our approach is original in several aspects,
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by the vast literature on the topic, which demonstrates the effective-

ness of such analysis in detecting network anomalies. Nevertheless,

the application of the wavelets to the single traffic flows results to be

unscalable and thus not applicable in modern backbone networks. For

this reason we have applied this transform on the top of probabilistic

structures, namely the sketches, that allow us to obtain a scalable

real-time system, while simultaneously improving the detection rate

of classical approaches.

As far as Principal Component Analysis is concerned, we have based

our approach on the main idea of using PCA to decompose the traffic

variations into their normal and anomalous components, thus reveal-

ing an anomaly if the anomalous components exceed an appropriate

threshold. It is important to highlight that all we have worked at dif-

ferent time-scales and on different levels of aggregation so as to detect

anomalies that could be masked at some aggregation level. More-

over, we have applied the method both to the entropy associated to

some given traffic descriptors and to the Kullback-Leibler divergence

computed over the histogram of such descriptors.

Regarding the change detection techniques, we have explored both

the use of “classical” methods and novel methods. In more detail, we

have presented a novel method, based on the idea of discovering heavy

changes in the distribution of the heavy hitters in the network traffic.

To this aim we have explored the use of several forecasting algorithms

for predicting the near-future distribution of the heavy hitters and

we have then applied heavy change based methods to the predicted

values.

Finally we have discussed the combined use of the wavelet analysis
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and the CUSUM algorithm. The CUSUM (CUmulative SUM) algo-

rithm is one of the most promising techniques to detect significant

changes in the descriptors of the network traffic. Thus the main idea

is to use the variation of the distribution of these descriptors to de-

tect a network anomalies. Nevertheless the time-varying nature of

the traffic (e.g., daily and weekly trends) makes somehow difficult to

distinguish a network anomaly from a normal variation of the distri-

bution of the traffic. To solve such an issue, in this thesis, we have

proposed to combine a classical CUSUM based approach together

with the wavelet analysis. In more detail the latter is used to filter

out the seasonality from the traffic aggregates so as to improve the

performance of the CUSUM based anomaly detection techniques.

For all of these techniques we have discussed the system architecture.

Moreover we have shown the performance achieved by the different

systems over the Abilene/Internet2 dataset. The performance analysis

has highlighted that all the implemented systems obtain, for a proper

choice of their parameters, very good performance.
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