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Abstract 

In this paper we present an automatic clustering procedure with the main aim to predict the number of clusters 

of unknown, heterogeneous images. We used the Fisher-vector for mathematical representation of the images and 

these vectors were considered as input data points for the clustering algorithm. We implemented a novel variant 

of K-means, the kernel K-means++, furthermore the min-max kernel K-means plusplus (MMKK++) as clustering 

method. The proposed approach examines some candidate cluster numbers and determines the strength of the 

clustering to estimate how well the data fit into 𝐾 clusters, as well as the law of large numbers was used in order 

to choose the optimal cluster size. We conducted experiments on four image sets to demonstrate the efficiency of 

our solution. The first two image sets are subsets of different popular collections; the third is their union; the fourth 

is the complete Caltech101 image set. The result showed that our approach was able to give a better estimation for 

the number of clusters than the competitor methods. Furthermore, we defined two new metrics for evaluation of 

predicting the appropriate cluster number, which are capable of measuring the goodness in a more sophisticated 

way, instead of binary evaluation. 
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1 Introduction 

The image grouping is an existing problem [7] in processing large collections of heterogeneous images in 

order to organize a large set of images into clusters, such that images within the same cluster have similar 

meaning. Image clustering provides high-level summarization of large image collections, and thus has many 

useful applications. For example, image repositories (in Media Content Management Systems) are more 

convenient for users to browse. Grouping is a category of image sorting problem that can be found in many 

other areas and applications as well. Every day the use of images from mobile devices as evidence in legal 

lawsuits is more usual and common. Therefore, forensic analysis of mobile device images takes on special 

importance, which can be based on the identification of the source, specifically on the grouping of images 

according to their source acquisition [54]. Another area is the World Wide Web, where clustered web image 

search results can help end users. Furthermore, image grouping can be used to better align the semantics of the 

Web image and text. Near-duplicate image clustering can be used to group web images into a set of clusters 

of near-duplicate images according to their visual similarities. The near-duplicate web images in the same 

cluster could share similar semantics [55]. There is a problem type in evesryday life or in social life where the 

aim is to summarize image collections that correspond to a single event [39], furthermore in the work [2] the 
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task was grouping images into clusters of different events using the image features and related metadata. In 

agricultural area there is a similar problem, the systematization, grouping of large amount of gathered plants. 

There is a gap in botanists’ knowledge: there are many plant species we know about now and the species yet 

to be discovered and named, which do not yet “exist” scientifically. This gap is called taxonomic gap [1], that 

is an open problem, but clustering the images with smart image analytics using computer science and image 

processing is promising direction in a long way of solution, and this can help with stakeholders in agricultural 

area, therefore may have a strong impact. 

Our work is based on only visual information, without any existence of manual information about the 

foreground or background, without any user’s help and the aim is to cluster the whole image data set, in 

heterogeneous environment. Our solution is based on image analytics and data mining algorithm. The image 

processing procedure begins with feature extraction, and gives multidimensional descriptor vectors as 

mathematical representations of the images. The next stage of our solution is a clustering process, which uses 

the vector representations of the images as input data points. We constructed a new clustering algorithm, which 

is the largest contribution of this paper and it contains more cycles for finding a good solution. In the next 

sections we will describe the implemented solution in more details. We conducted experiments to demonstrate 

the efficiency of our proposed approach, and we compared our results with the performance of other methods. 

We used four image sets during the tests (see Figure 1 for example images). We defined novel metrics to 

measure the goodness of the predicted cluster number for a given data set, which is the second contribution of 

this paper. We presented the experimental results in the last chapter. 

 

 
Figure 1 Example images from the test sets. The first two rows show an image from each category of the first test set 

(Plant10), and the last two rows show examples from the second test set (Cal10) 
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2 Related Work 

There are many works deal with image clustering; in some of them the grouping is in pixel level (low level), 

where the aim is image segmentation. At the others the goal is to cluster the images itself (higher level), and 

we focused on this level. The works can be categorized by some viewpoints: 

 available information (only visual information or more information), 

 granularity (whole images or parts of them), 

 existence of an uncluttered background, 

 amount of user’s help. 

Some metadata can be used for the grouping [53][50][40][2], which can help for better clustering; but in 

our task only visual information was available for grouping. Not only the metadata, but also other high level 

semantic informational structure can provide additional information. For example Object Relation Network 

(ORN) [8] is an informational structure to capture image semantics. ORN is a graphical model that links objects 

in an image through meaningful relations. Therefore, an image can be described by the ontology class 

assignments in the ORN [7][6]. 

Based on granularity different purposes can be defined at the grouping of images: the aim can be clustering 

the images itself (i.e. not the parts of them, like in [39][2]) or objects [27][3] (can be seen) in the parts of the 

images. The first task is easier, because there is not required to distinguish important and unimportant parts in 

the images. 

Considering the subset of object clustering the next viewpoint in the task categorization is the existence of 

background. Sometimes there is nothing disturbing, interfering background, only an object can be seen in each 

image [27][34], but sometimes it is difficult to separate the foreground and the background. However, in our 

task we used heterogeneous image sets, so some of the objects are in unknown background and some of them 

have no background at all. Some works [33] have used such image databases – like Columbia Object Image 

Library [38] with 1440 gray scale image database representing 20 objects – where there is no any background 

in the image (i.e. the background is black), so the foreground is the object itself. In some works the user helps 

the system (e.g. the user gives the number of the clusters [39]), but in the beginning of our work we have 

defined a fully automatic clustering without any user help. 

At comparison of our work with others, in spite of many image clustering papers, there are only a few 

works where the aim and the details of the task are similar to our purposes. A recent work deals with the 

problem of summarizing image collections that correspond to a single event [39]. For this purpose several 

clustering algorithms were used, K-means, Hierarchical clustering using complete linkage [13], Hierarchical 

clustering using single linkage [48], Partitioning Around Medoids (PAM) [30], Affinity Propagation [19] and 

the Farthest First Traversal Algorithm [21]. In the experiences the K-means algorithm gave the best results, 

but the numbers of clusters were fix (K=10 in the collection) or in the other alternative the user should give it. 

Another paper suggests two clustering algorithms (K-Means and Fuzzy K-Means) for image grouping [44], 

but the system was not tested, so there is no information about the results, thus we cannot compare them. 

There are some pioneer image clustering researches [43][33] and a promising work [3]. In an early paper 

[43] Qiu presented a stochastic algorithm to jointly cluster images and their description features, but the work 

was only theoretical without any goodness indicator for measurement of the results. 

A similar work [33] dealt with only such images, where the background did not take the problem to be 

more complicated; but in our environment the objects can be found in a various, heterogeneous background. 

Another investigated paper [3] works with only known clustering algorithm (k-means, partitioning around 

medoids: PAM, fuzzy c-means, and hierarchical). The largest difference between the earlier publication and 

our suggestion is the usefulness of the solution, because our system can be used in more general cases. The 

earlier published solution contains only color-based feature extraction methods: 3x3x3, 5x5x5 and 6x6x6 

quantized RGB histogram (27, 125 and 216 bins) and a 32-, 128-, and 256-cell quantized HMMD (MPEG-7-

compatible) histogram [25] (32, 128 and 256 bins). These feature extraction methods are not able to grasp 

variety of an object type (with different shape and illumination). The tested image set consists of traffic signs, 

which always look like similar, thus the method is not capable to use in heterogeneous environment. However, 

in our solution we have used more sophisticated feature extraction methods, which are able to represent and 
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handle larger variety of objects, thus due to wider application area our system can be considered as more 

general (and more useful). 

Hancer E. and Karaboga D. [26] created a comprehensive survey of methods related to automatic cluster 

number evaluation, however the most similar works to our paper are the Silhouette method, which was first 

described by Peter J. Rousseeuw [47] and the cluster validity proposed in [52]. In this paper we compare the 

performance of our solution to these techniques. The former provides a succinct graphical representation of 

how well each object lies within its cluster. The silhouette coefficient contrasts the average distance of elements 

in the same cluster with the average distance of elements in other clusters. Objects with a high silhouette value 

are considered well clustered; objects with a low value may be outliers. The entire clustering is displayed by a 

single plot, allowing an overview of the relative quality of the clustering and the configuration of the data. This 

index works well with K-means clustering, and is also used to determine the optimal number of clusters. 

Siddheswar Ray and Rose H. Turi used cluster validity [52] to determine the number of clusters in K-means 

clustering and they applied this technique in color image segmentation. Cluster validity is the ratio of the 

average of all intra-cluster distances and the minimum of the inter-cluster distances, and by minimizing this 

metric, the number of clusters can be determined automatically. We chose these techniques for comparison, 

because our solution also focuses on finding the optimal cluster number. 

3 Image Representation 

It is important to represent the visual content of the images using sophisticated and state-of-the-art 

techniques, since the descriptor vectors of images will be the input of the clustering algorithm. We used BoW 

(Bag-of-Words) [17][29][32] model to represent an image (based on its visual content) with so-called visual 

code words while ignoring their spatial distribution. Firstly, to construct such visual code words, we selected 

keypoints in the images with the Harris-Laplace corner detector [5][37], then we used SIFT (Scale Invariant 

Feature Transform) [35] to extract and describe the local attributes of those keypoints. Note that we used the 

default parameterization of SIFT proposed by Lowe; therefore, we got descriptor vectors with 128 dimensions. 

There are several low level features, like RGB histogram or HOG (Histogram of Oriented Gradients) [12], but 

we chose SIFT because it is a robust and frequently used feature. It could be used in every grid point in the 

images, this is the “dense” version of SIFT, but Harris-Laplace corner detector is more feasible, because this 

takes the most important points, the keypoints in the images. 

We used GMM (Gaussian Mixture Model) [46][51][4] to define the visual code words from the descriptor 

vectors, which is a parametric probability density function represented as a weighted sum of (in our case 256) 

Gaussian component densities, as can be seen in Equation 1. 

 

𝑝(𝑋|) =  ∑ 𝜔𝑗𝑔(𝑋|𝜇𝑗, 𝜎𝑗)

𝐾

𝑗=1

 (1) 

where 𝑋 is the concatenation of all SIFT descriptors, 𝜔𝑗, 𝜇𝑗 and 𝜎𝑗 denote the weight, expected value and 

variance of the 𝑗𝑡ℎ Gaussian component, respectively, and 𝐾 =  256. We calculated the  parameter, which 

includes the parameters of all Gaussian functions, with ML (Maximum Likelihood) estimation by using the 

iterative EM (Expectation Maximization) algorithm [51][16][24]. We performed K-means clustering [36] over 

all the descriptors with 256 clusters to get the initial parameter model for the EM. The next step was to create 

a descriptor that specifies the distribution of the visual code words in an image, called high-level descriptor. 

To represent an image with high-level descriptor, the GMM based Fisher-vector [18][42] was calculated. This 

is an appropriate and complex descriptor vector, because this is able to take the semantic essence of the picture, 

and this is already validated in classification problems [18][42][41][22]. The Fisher-vector is computed from 

the SIFT descriptors of an image based on the visual code words by taking the derivative of the logarithmic of 

the Gaussian functions (see Equation 2), thus it describes the distribution of the visual elements for an image. 

These vectors were the final representations (image descriptor) of the images, and we used them as the input 

data for the clustering algorithm. 

  



34       Dávid Papp and Gábor Szűcs / Electronic Letters on Computer Vision and Image Analysis 16(3):30-45, 2017 

 𝐹 = ∇ log 𝑝(𝑋|) (2) 

where 𝑝(𝑋|) is the probability density function introduced in Equation 1, 𝑋 denotes the SIFT descriptors of 

an image and  represents the parameter of GMM ( = {𝜔𝑗, 𝜇𝑗, 𝜎𝑗|𝑗 = 1 … 𝐾}). 

4 Proposed automatic image clustering solution 

4.1 Determination of cluster number 

The basis of our approach is the well-known K-means algorithm [36]. It has two important inputs, the initial 

cluster centers, and the number of clusters (𝐾). In our case the value of 𝐾 was unknown, since this would 

require prior knowledge of the test set, and our algorithm aims to deal with unknown image collections. The 

K-means minimizes the sum of squared distances from all points to their cluster centers, so the results will be 

compact and well-separated clusters (ideally). Because of that the compactness of clusters can be measured by 

using an internal evaluation technique, which estimates how well the data fit into 𝐾 clusters. There are several 

existing internal evaluation measures that can be used in K-means clustering, for example the Davies-Bouldin 

index [11], the Dunn index [15], the cluster validity [52], and the Silhouette coefficients [47]. The latter two 

measures were introduced in the papers that suggest procedures to find the number of clusters, but in different 

environment. Cluster validity was proposed to segment color images, however our goal was to cluster 

heterogeneous images based on their representatives (Fisher-vectors). The main difference between these 

problems is that the input space in case of image segmentation is complete (i.e. every pixel represents an input 

data point); while in our case the space allotted by the Fisher-vectors is rather sparse. Moreover, in case of 

complete space the cluster centers are some particular points from the input data, but in case of sparse space 

the cluster centers can be new data points. 

In this paper we define the strength of the clustering by 𝑣𝑅𝐷𝐼, which is based on the intra-cluster and inter-

cluster distances; by this measure we were able to compare clustering results with different cluster numbers 

and then select the most suitable one. We calculated the intra-cluster distance of a cluster by averaging the 

Euclidean distances of all data vectors from their cluster center, as can be seen in Equation 3. Equation 4 

describes the inter-cluster distance of two clusters, which is the Euclidean distance between their furthermost 

element pair. Smaller intra-cluster distance implies tighter cluster and larger inter-cluster distance refers for 

better separated clusters, therefore we aim to minimize the former and maximize the latter one. 

 
𝑖𝑛𝑡𝑟𝑎𝐶𝐷 = 𝐷′(𝐶𝑙) = ∑ ‖𝑥𝑖 − 𝑧𝑙‖

𝑥𝑖∈𝐶𝑙

 
 

(3) 

 𝑖𝑛𝑡𝑒𝑟𝐶𝐷 = 𝐷(𝐶𝑙 , 𝐶𝑗) = max
{𝑥𝑖∈𝐶𝑙,𝑦𝑘∈𝐶𝑗}

‖𝑥𝑖 − 𝑦𝑘‖   (4) 

where 𝑧𝑙 is the center of 𝐶𝑙 cluster, 𝑥𝑖 and 𝑦𝑘 are data vectors in 𝐶𝑙 and 𝐶𝑗 clusters respectively, and ‖𝑥 − 𝑦‖ 

denotes the Euclidean distance between vector 𝑥 and 𝑦. The goal is to assess the whole grouping, so the 

averages of the above metrics were taken over all clusters (over all pairs of clusters in case of inter-cluster 

distance), nevertheless this does not change the need to look for extreme values. We define 𝑣𝑅𝐷𝐼 (Ratio of 

Distances between Intra and inter) as the ratio of these measures, as can be seen in Equations 5-7; thereby 

lower 𝑣𝑅𝐷𝐼 value suggests more desirable clustering and more appropriate cluster number. 

 

avg
1≤𝐶𝑙≤𝐾

𝐷′(𝐶𝑙) =
1

𝑛
∑ ∑ ‖𝑥𝑖 − 𝑧𝑙‖

𝑥𝑖∈𝐶𝑙

𝐾

𝑙=1

 (5) 

 

avg
1≤𝐼<𝐽≤𝐾

𝐷(𝐶𝑙, 𝐶𝑗) =
1

𝐾 ∗ (𝐾 − 1)/2
∑ ∑ max

{𝑥𝑖∈𝐶𝑙,𝑦𝑘∈𝐶𝑗}
‖𝑥𝑖 − 𝑦

𝑘
‖

𝐾

𝑗=𝑙+1

𝐾−1

𝑙=1

 (6) 
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𝑣𝑅𝐷𝐼 =

avg
1≤𝐶𝑙≤𝐾

𝐷′(𝐶𝑙)

avg
1≤𝐶𝑙<𝐶𝑗≤𝐾

𝐷(𝐶𝑙 , 𝐶𝑗)
 (7) 

where 𝐾 denotes the number of clusters and 𝑛 represents the number of data vectors. 

In order to choose the optimum cluster number, some candidate 𝐾 values should be examined, so an upper 

(𝑚𝑎𝑥𝐾) and lower (𝑚𝑖𝑛𝐾) limit should be set. The algorithm cycles through these candidates, and in each 

iteration it calculates the 𝑣𝑅𝐷𝐼 measure. Then 𝐾 with minimum 𝑣𝑅𝐷𝐼 is selected as the number of clusters. 

This procedure works well with low dimensional data and with similar shapes of clusters, however, a Fisher-

vector consists of 65791 dimensions. We applied an upgraded version of K-means in the algorithm, and we 

did not use the traditional K-means. 

4.2 Kernel K-means++ 

The basic K-means performs less efficiently when the clusters are not linearly separable, or the data 

contains arbitrarily shaped clusters of different densities. Because of that we used kernel K-means [9][14] (an 

extension of K-means), which is mapping the data points from input space to a higher dimensional feature 

space through a nonlinear transformation 𝜗. Then K-means is applied in the feature space to solve the clustering 

problem, since in this new space the data points are linearly separable and the separators correspond to 

nonlinear separators in input space. This procedure is called kernel trick and it allows operating in a high-

dimensional, implicit (often called imaginary) feature space by simply computing the inner products between 

the images of all pairs of data in the feature space. These inner products can be expressed by so-called kernel 

functions of the data pairs; examples of certain functions are shown below in Table 1. Usually these kernels 

are used to directly provide the inner product without explicitly defining transformation 𝜗. 

 Table 1 Examples of frequently used kernel functions 

Linear kernel 𝐾𝑒𝑟(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇 × 𝑥𝑗 

Gaussian kernel 
𝐾𝑒𝑟(𝑥𝑖, 𝑥𝑗) = 𝑒

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2  

Polynomial kernel 𝐾𝑒𝑟(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 × 𝑥𝑗 + 1)
𝑑

 

Sigmoid kernel 𝐾𝑒𝑟(𝑥𝑖, 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑘(𝑥𝑖 × 𝑥𝑗) + 𝜃) 

We mentioned before that K-means aims to minimize the sum of squared distances from all points to their 

cluster centers (see Equation 8). The objective of kernel K-means is to solve the same minimization problem, 

but in the feature space 𝑥𝑖 → 𝜗(𝑥𝑖), as it can be seen in Equation 9. We use the same notations that were 

introduced in the previous sub-section, thus 𝑧𝑙 is the center of cluster 𝐶𝑙 and in feature space it can be written 

as in Equation 10, where 𝑛𝑙 denotes the number of data vectors in cluster 𝐶𝑙. The squared distance between 

the transformed data 𝜗(𝑥𝑖) and the cluster center 𝑧𝑙 can be expressed by Equation 11. 

 

E = min (∑ ∑ ‖𝑥𝑖 − 𝑧𝑙‖2

𝑥𝑖∈𝐶𝑙

𝐾

𝑙=1

) (8) 

 

E = min (∑ ∑ ‖𝜗(𝑥𝑖) − 𝑧𝑙‖2

𝑥𝑖∈𝐶𝑙

𝐾

𝑙=1

) (9) 

 

𝑧𝑙 =
∑ 𝜗(𝑥𝑗)𝑥𝑗∈𝐶𝑙

𝑛𝑙
 (10) 



36       Dávid Papp and Gábor Szűcs / Electronic Letters on Computer Vision and Image Analysis 16(3):30-45, 2017 

 

‖𝜗(𝑥𝑖) −
∑ 𝜗(𝑥𝑗)𝑥𝑗∈𝐶𝑙

𝑛𝑙
‖

2

= 

𝜗(𝑥𝑖) × 𝜗(𝑥𝑖) −
2 × ∑ 𝜗(𝑥𝑗) × 𝜗(𝑥𝑖)𝑥𝑗∈𝐶𝑙

𝑛𝑙
+

∑ 𝜗(𝑥𝑗) × 𝜗(𝑥𝑘)𝑥𝑗,𝑥𝑘∈𝐶𝑙

𝑛𝑙
2

 

(11) 

As we can see, transformed data points are only present as part of an inner product, therefore we can 

substitute them with their kernel representatives. We used Gaussian kernel in the algorithm and we created a 

kernel matrix 𝐾𝑒𝑟 where 𝐾𝑒𝑟𝑖𝑗 = 𝐾𝑒𝑟(𝑥𝑖 , 𝑥𝑗). After that the clusters can be obtained by solving an 

optimization problem (see Equation 12) as described in [14][9]. 

 

E = min (∑ ∑ ‖𝜗(𝑥𝑖) − 𝑧𝑙‖2

𝑥𝑖∈𝐶𝑙

𝐾

𝑙=1

) ≈ max (𝑡𝑟𝑎𝑐𝑒(𝑈𝐾𝑒𝑟𝑈′)) (12) 

where 𝑈 is the optimal normalized cluster membership matrix.  

Algorithm 1 gives an overview of the procedure of kernel K-means; furthermore we used plusplus cluster 

center initialization (see Algorithm 2) before the iterative steps, which was proposed by D Arthur and S 

Vassilvitskii [10]. This approach aims to spread the initial cluster centers to reduce randomness and speed-up 

the convergence. The first cluster center is randomly selected from the data points, after that each subsequent 

cluster center is chosen from the data points with probability proportional to its squared distance from the 

closest existing cluster center. This method yields considerable improvement in the final error of K-means, 

furthermore this seeding lowers the computation time. This is why we used this initialization technique, since 

kernel K-means tries to minimize the same error function and thus the effects are expected to be similar. 

Algorithm 1 Kernel K-means 

input: data vectors: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}; number of clusters: 𝐾 

Initialize cluster centers 𝑧𝑙;  𝑙 = 1 … 𝐾 

1. Compute distances of each data point to all cluster centers by using Equation 11 

2. Assign each data point to the closest cluster center 

3. Update cluster centers based on Equation 10 

4. If not converged, go to step 1, otherwise return the clusters and calculate 𝐸 by using Equation 12 

Algorithm 2 Plusplus cluster center initialization 

input: data vectors: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}; number of clusters: 𝐾 

1. Randomly choose a data point from 𝑋 as first cluster center 𝑧1 

2. Calculate 𝐷𝑖𝑠𝑡(𝑥𝑖) for all 𝑥𝑖 ∈ 𝑋, which denotes the distance to the closest cluster center 

3. Take a new center 𝑧𝑙 , choosing 𝑥𝑖 ∈ 𝑋 with the following probability: 
𝐷𝑖𝑠𝑡(𝑥𝑖)2

∑ 𝐷𝑖𝑠𝑡(𝑥𝑖)2
𝑥𝑖∈𝑋

 

4. Repeat step 2-3 until 𝐾 centers are selected 

4.3 MMKK++ 

Our proposed algorithm, the min-max kernel K-means plusplus (MMKK++) focuses on estimating the 

cluster size that is optimal for the respective input data. We combined the approaches described in the previous 

sub-sections to determine the “goodness” of a candidate cluster number: the strength of the clustering was 

evaluated on the results that were given by kernel K-means++ clustering. We defined a minimal cluster number 

(𝑚𝑖𝑛𝐾) and a maximal cluster number (𝑚𝑎𝑥𝐾), then each candidate 𝐾′ value was examined between them. 

Finally, we chose the clustering result with the lowest corresponding 𝑣𝑅𝐷𝐼 measure. 

Due to the randomness of K-means, and thus kernel K-means, cluster size prediction is not deterministic. 

However according to the LLN (law of large numbers) the average of the results obtained from a large number 

of trials should be close to the expected value, and will tend to become closer as more trials are performed. It 
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is an important law for random events, since it “guarantees” stable long-term results. In order to estimate 𝐾, 

our algorithm runs multiple times, and the expected value comes from a large number of observations. Min-

max kernel K-means++ aims to further minimize the error function 𝐸 (given in Equation 12) over the input 

data to select the most appropriate clustering, which will be the final clustering of the input data. This is 

necessary even using plusplus initialization, because it is not eliminating the randomness of the initial cluster 

center distribution. After estimating the cluster number 𝐾, the algorithm applies kernel K-means++ 𝑙 times on 

the data and chose the clustering that gave the lowest error. Algorithm 3 shows a pseudo code of our proposed 

approach (MMKK++). 

Algorithm 3 MMKK++: min-max kernel K-means plusplus 

input: data vectors: 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}; integers: 𝑚𝑖𝑛𝐾, 𝑚𝑎𝑥𝐾, 𝑚, 𝑙 
Let 𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥 be a matrix with 𝑚 rows and 𝑚𝑎𝑥𝐾 − 𝑚𝑖𝑛𝐾 + 1 columns 
for ∀ 𝑖 =  1 … 𝑚 
 for ∀ 𝐾’ =  𝑚𝑖𝑛𝐾 … 𝑚𝑎𝑥𝐾 
  Plusplus initialization of cluster centers 
  Perform kernel K-means on 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} with 𝐾’ as cluster number 
  Calculate 𝑣𝑅𝐷𝐼 metric 
  Save its value into 𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝐾′) 
 end for 
end for 
Estimate the cluster size (𝐾) based on the 𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥 
Introduce 𝑚𝑖𝑛𝐸 = ∞ 
for ∀ 𝑖 =  1 … 𝑙 
 Plusplus initialization of cluster centers 
 Perform kernel K-means on 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} with 𝐾 as cluster number 
 Let 𝐶 be the cluster centers 
 Let 𝐴 be the assignment of the data vectors 
 if 𝐸 < 𝑚𝑖𝑛𝐸 
  𝑚𝑖𝑛𝐸 = 𝐸 
  Save the {𝐶, 𝐴} pair 
 end if 
end for 
The saved {𝐶, 𝐴} defines the final clustering 

We define a matrix called 𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥 (see Equation 13), which is actually a memory and every row of it 

stores the corresponding 𝑣𝑅𝐷𝐼 measure for each candidate cluster number 𝐾′. This matrix has as many rows 

as many runs (𝑚) are performed to approximate the expected value of the optimal cluster number. 

 
𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥(𝑖, 𝐾′) = 𝑣𝑅𝐷𝐼 𝐾′  (13) 

where 𝑖 = 1 … 𝑚, 𝑗 = 𝑚𝑖𝑛𝐾 … 𝑚𝑎𝑥𝐾 and 𝑣𝑅𝐷𝐼 𝐾′ is the strength of clustering with cluster number 𝐾′. 

MMKK++ predicts the cluster size based on this memory matrix. As we mentioned in Section 4.1, lower 𝑣𝑅𝐷𝐼 

metric implies better clustering result, thus an optimal cluster number 𝐾 can be estimated from each row of 

𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥; i.e. 𝐾𝑖 is the cluster number with the lowest corresponding 𝑣𝑅𝐷𝐼 measure in the 𝑖𝑡ℎ run, as can 

be seen in Equation 14. 

 
𝐾𝑖 = { 𝐾∗ | 𝑣𝑅𝐷𝐼 𝐾∗ = min

𝐾′∈𝜃
{𝑣𝑅𝐷𝐼 𝐾′} } (14) 

where 𝜃 denotes the set of all possible cluster numbers and 𝑖 = 1 … 𝑚. We define 3 different techniques to 

calculate the final cluster number, which are the following: 

 freq K: the most frequently occurring 𝐾𝑖 in 𝑚 observations 

 avg K: the rounded average of all 𝐾𝑖 in 𝑚 observations 

 avg Metric: 𝐾𝑖 that corresponds to the minimum of column-wise rounded averages of 

𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥 
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5 Experimental Results 

5.1 Experimental environment 

In this section we present the experimental results of our proposed min-max kernel K-means++ approach. 

We compared our method with two additional techniques, the Silhouette coefficients Rousseeuw [47] and the 

cluster validity [52]. Both of these competitor methods are internal evaluation techniques, and in order to test 

them the calculation of 𝑣𝑅𝐷𝐼 metric in MMKK++ were replaced with one and the other. This means that we 

actually tested these internal evaluation approaches in our proposed algorithmic environment. 

 

𝑣𝑎𝑙𝑖𝑑𝑖𝑡𝑦 =

avg
1≤𝐶𝑙≤𝐾

𝐷′(𝐶𝑙)

min
1≤𝐶𝑙<𝐶𝑗≤𝐾

𝐷(𝐶𝑙, 𝐶𝑗)
 (15) 

 

𝐷𝑢𝑛𝑛 =

min
1≤𝐶𝑙<𝐶𝑗≤𝐾

𝐷(𝐶𝑙, 𝐶𝑗)

max
1≤𝐶𝑙≤𝐾

𝐷′(𝐶𝑙)
 (16) 

As can be seen in Equation 15 above the cluster validity is the ratio of the average of all intra-cluster distances 

and the minimum of the inter-cluster distances, thus it throws away additional information about the remaining 

cluster distribution. Moreover, they defined the distance between two clusters as the distance of their centroids. 

This cluster validity is a variant of Dunn index [15], because the composition of these measures are similar 

(see Equation 15-16), however validity uses the average intra-cluster distances instead of the maximum one; 

and it explicitly defines the calculation procedure of intra- and inter-cluster distances. Therefore our 𝑣𝑅𝐷𝐼 

measure can also be considered as a variant of Dunn index. 

 Table 2 Cardinality of the clusters in the Plant10 and Cal10 test sets 

 Cluster #1 Cluster #2 Cluster #3 Cluster #4 Cluster #5 

Plant10 51 23 41 19 82 

Cal10 27 19 22 46 26 

 Cluster #6 Cluster #7 Cluster #8 Cluster #9 Cluster #10 

Plant10 54 45 48 73 49 

Cal10 222 45 90 53 60 

We used four image sets in our experiments: the first two are subsets of different popular image collections 

(see example images in Figure 1) and both of them consist of 10 clusters. The first test set (called Plant10) 

contains 485 images, which were selected from the training data of PlantCLEF [28][20][49] competition 

published by the LifeCLEF campaign under ImageCLEF. The second test set (called Cal10) is a subset of the 

Caltech101 [31] and Caltech256 [23] image collections and contains 610 images. In Table 2 we summarized 

the distribution of the images between the clusters. We used the union of the Plant10 and Cal10 images as third 

test set (called Merged20) which is a real heterogeneous collection, since it includes pictures of leafs, flowers, 

food, vehicles, animals and people. Furthermore, some of the images are drawings and the rest are photos as 

can be seen in Figure 2, the first row corresponds to the “ying-yang” cluster, which is almost entirely consists 

of drawings; on the other hand, the second row shows some example images from the “ibis” cluster where the 

images are photos; finally, the “pizza” cluster in the third row is a mixed cluster from this point of view, 

because it is half drawing and half photo. The fourth test set was the compete Caltech101 image set without 

the “noise” category, so it contained a total of 8677 images from 101 categories (clusters). 
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Figure 2 Heterogeneous images from the test sets 

5.2 New metrics for evaluation of the cluster numbers 

We used Rand Index (RI) [45] to evaluate how similar the predicted clusters (returned by the algorithm) 

were to the ground truth clustering. This metric is well-known and commonly used to measure the percentage 

of the correct decisions made by the algorithm. However, it cannot tell us any information about the number 

of clusters or the adequacy of this number. The easiest way for this is the direct comparison of the “real” cluster 

number and the predicted cluster number, but it is a rather raw technique since it only gives us a binary decision 

and the magnitude of the difference in case of mismatch. Therefore, we introduce a new metric the Cluster 

Number Indicator based on Rand Index (CNI-RI), which is capable of measuring this in a more sophisticated 

way, as can be seen in the following Equation. 

 

𝐶𝑁𝐼-𝑅𝐼 =  
𝑅𝐼𝐾

max
𝐾′∈𝜃

{𝑅𝐼𝐾′}
 (17) 

where 𝐾 denotes the estimated cluster number, 𝜃 denotes the set of all possible cluster numbers and 𝑅𝐼𝐾 

denotes the Rand Index with 𝐾 clusters. The value of CNI-RI is 1 if the predicted cluster number gives the 

highest RI among the candidates. Note that the cluster number with the highest RI and the “real” cluster number 

is not necessarily the same, because this metric takes the clustering error into consideration. In many cases a 

clustering algorithm is not capable to perfectly cluster the data, even if the value of 𝐾 is known; therefore it is 

possible that the algorithm achieves a higher percentage of correct decisions with a different 𝐾. To calculate 

this metric we evaluated the Rand Index for each candidate 𝐾′ values for each test sets. 

Furthermore, we define an adjusted scale of RI values for each test set, based on the evaluation of the 

metric; i.e. the set of values were transformed from the 0-1 scale to the min-max RI scale. Let us denote the 

adjusted RI (aRI) of 𝐾 with 𝑎𝑅𝐼𝐾, it can be calculated as described in Equation 18. 
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𝑎𝑅𝐼𝐾 =
𝑅𝐼𝐾 − min

𝐾′∈𝜃
{𝑅𝐼𝐾′}

max
𝐾′∈𝜃

{𝑅𝐼𝐾′} − min
𝐾′∈𝜃

{𝑅𝐼𝐾′}
 (18) 

There are many other external evaluation measures, e.g. entropy, purity, mutual information and F-measure, 

but they are useful when the goal is to evaluate a clustering result with a fix cluster number and measure the 

similarity between the prediction and the ground truth. Of course it is possible to indirectly infer to the 

goodness of the estimated cluster number 𝐾, but it also can be misleading; for example purity is maximal if 

every data point can be found in a separate cluster. CNI-RI and aRI directly measure the adequacy of the cluster 

number 𝐾, therefore we only evaluated these metrics. 

5.3 Results 

In this sub-section we present the detailed results of the tests. We executed the MMKK++ with the above 

mentioned three different internal evaluation techniques: 𝑣𝑅𝐷𝐼 metric, Silhouette coefficient, cluster validity. 

As can be seen in Algorithm 3, we used the 𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥 to store these indexes for the multiple runs and for 

the candidate cluster numbers. During our experiments, we set both 𝑚 and 𝑙 to 100; in case of the first two test 

sets the 𝑚𝑖𝑛𝐾 was set to 2 and the 𝑚𝑎𝑥𝐾 to 20, in case of the third test set we changed the 𝑚𝑎𝑥𝐾 to 40 (since 

the ground truth cluster size was doubled as well); finally in case of Caltech101 test set we set 𝑚𝑖𝑛𝐾 to 5 and 

𝑚𝑎𝑥𝐾 to 150. Based on the 𝐿𝐿𝑁_𝑀𝑎𝑡𝑟𝑖𝑥 we used three different techniques to predict the cluster number: 

freq K, avg K, avg Metric. Thereby we had total of 9 different techniques and we tested them on each data set, 

then evaluated the RI, CNI-RI and aRI measures (based on the estimated 𝐾). We summarized the total results 

in Table 3 and Figure 3, both of them consist of four sub-parts and present the Plant10, Cal10, Merged20 and 

Caltech101 in the upper left, upper right, bottom left and bottom right parts, respectively. 

As can be seen from the results of Plant 10 in Table 3, the “real” (10) cluster number was only predicted 

by using the 𝑣𝑅𝐷𝐼 measure, however the highest CNI-RI was achieved when the images were clustered into 

11 clusters, as can be seen in Figure 3. The other two methods estimated 8 and 12 as closest cluster numbers 

to 10, and as we can see in the last three columns of Table 3 the evaluated metrics are higher in case of 𝐾 = 12 

than in case of 𝐾 = 8, even though both of them differ from the ground truth number by 2. This is the reason 

we use complex metrics to evaluate the results, because 𝐾 = 8 and 𝐾 = 12 could improperly be considered as 

similar results in terms of difference. 

In case of the Cal10 test set, all of the techniques gave similar results, but in spite of the other two methods, 

with our proposed 𝑣𝑅𝐷𝐼 metric the predicted cluster number is 9 with each estimation technique (freq K, avg 

K, avg metric). The results in the bottom left sub-table of Table 5 show that the Merged20 is a more difficult 

image set to cluster. The ground truth cluster number is 20, and the closest prediction to that number was 17, 

estimated by using 𝑣𝑅𝐷𝐼 and avg K technique. Also, the CNI-RI was highest with 26 clusters (see bottom left 

sub-figure in Figure 3), what means that the clustering algorithm was not confident clustering this image 

collection. The last test set was even more complex due to the large number of clusters and images. The best 

prediction was 57 by using 𝑣𝑅𝐷𝐼 measure and avg K methods. As can be seen in the following table, 𝑣𝑅𝐷𝐼 

metric with avg K technique gave the best (or it was one among multiple best) results in every cases, thus we 

highlighted the corresponding rows. 

During the experiments we integrated the Silhouette and cluster validity methods into the MMKK++ 

algorithm, so we only tested the improved version of these techniques and compared the results to the 𝑣𝑅𝐷𝐼. 

Summarizing the results in the tables we can conclude that our method outperforms the others in the literature, 

in spite of the fact that we built the competitor methods into our framework. Note that the difference in CNI-

RI values for the different evaluation methods were not too high, because of the many TN (True Negative) 

decisions. Therefore, the slightest difference in values could in fact imply significant difference in the actual 

structure of the clusters. 
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Table 3 Summary of the results got on each test set. The abbreviations SC, CV, avg M and est. K represent the Silhouette 

coefficient, cluster validity, average Metric and estimated K, respectively. 

      Plant10         Cal10 

 est. K RI CNI-RI aRI  est. K RI CNI-RI aRI 

SC freq K 7 0.741 0.853 0.613 SC freq K 9 0.851 0.998 0.993 

avg K 7 0.741 0.853 0.613 avg K 9 0.851 0.998 0.993 

avg M 12 0.828 0.953 0.877 avg M 6 0.777 0.912 0.637 

CV freq K 8 0.764 0.879 0.682 CV freq K 9 0.851 0.998 0.993 

avg K 8 0.764 0.879 0.682 avg K 11 0.846 0.992 0.969 

avg M 7 0.741 0.853 0.613 avg M 9 0.851 0.998 0.993 

vRDI freq K 10 0.839 0.965 0.909 vRDI freq K 9 0.851 0.998 0.993 

avg K 10 0.839 0.965 0.909 avg K 9 0.851 0.998 0.993 

avg M 8 0.764 0.879 0.682 avg M 9 0.851 0.998 0.993 

     Merged20     Caltech101 

 est. K RI CNI-RI aRI  est. K RI CNI-RI aRI 

SC freq K 11 0.793 0.84’ 0.648 SC freq K 25 0.940 0.841 0.862 

avg K 10 0.788 0.835 0.635 avg K 28 0.944 0.880 0.972 

avg M 16 0.898 0.953 0.895 avg M 22 0.930 0.816 0.958 

CV freq K 7 0.756 0.801 0.560 CV freq K 30 0.949 0.977 0.901 

avg K 7 0.756 0.801 0.560 avg K 35 0.954 0.983 0.925 

avg M 12 0.867 0.920 0.822 avg M 39 0.955 0.984 0.929 

vRDI freq K 14 0.877 0.930 0.845 vRDI freq K 55 0.962 0.990 0.958 

avg K 17 0.914 0.969 0.931 avg K 57 0.962 0.991 0.960 

avg M 16 0.898 0,953 0.895 avg M 49 0.959 0.988 0.947 

Caltech101 is a collection of images that was created for testing classification approaches. Numerous 

different types of difficulties are present in this image set that makes it hard to perform unsupervised learning 

on it. For example, there are two separate classes named “Faces” and “Faces easy”, while both of them contains 

faces, therefore it is easily possible that a clustering algorithm merges these categories, because of the high 

similarity between the images. The predictions in case of this data set were far from the real cluster number as 

we can see in the bottom right sub-table of Table 3: the “best” estimations from Silhouette, cluster validity and 

𝑣𝑅𝐷𝐼 were 28, 39 and 57 respectively. Despite the poor results, 𝑣𝑅𝐷𝐼 outperformed the competitor methods 

at testing of Caltech101 images. 

In Figure 3 we present the results of the evaluation of the CNI-RI and aRI metrics on the test sets. As can 

be seen in the diagrams, the values of these metrics are very close to each other in those cases where the cluster 

number is close to the ground truth. Considering that the algorithm aims to cluster images based on their visual 

content, it is acceptable; e.g. the classification of leafs based on plant species is a way to categorize them, but 

two leafs are possible (even likely) to be visually similar independently of their species. From this aspect the 

algorithm makes no large mistake if it merges two clusters with photos of leafs from different species. When 

the estimated cluster number was lower than the one given as ground truth, this kind of “mis-clustering” was 

a typical reason for the “wrong” prediction. Another possibility is to split up clusters; e.g. it is possible that 

some images have different background then others in the same cluster, but the backgrounds could be grouped 

into two or more separate “background types”. In this case the algorithm may choose to split the cluster based 

on the “hidden clusters” that were discovered in the backgrounds, and this causes a higher estimated cluster 

number. 
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Figure 3 Visualization of the values of CNI-RI and aRI metrics got on each test set 

6 Conclusion 

In this paper we presented the proposed MMKK++ (min-max kernel K-means plusplus) algorithm for 

clustering whole images with prediction the number of clusters of unknown, heterogeneous images. We used 

only the visual content of the images to represent them with descriptor vectors using the state-of-the-art Fisher-

vector. The mathematical representations were the input data for our clustering algorithm. This approach uses 

our proposed new internal evaluation procedure (𝑣𝑅𝐷𝐼) to evaluate the adequacy of the given cluster number. 

We examined some candidate cluster numbers to predict the most appropriate one. The algorithm uses the law 

of large numbers to estimate the value of 𝐾, so it runs multiple times and the prediction comes from a large 

number of observations. We conducted experiments on four test sets: two of them were subsets of larger 

collections, the third one was the union of the first two, and the fourth was the Caltech101 collection. 

Furthermore we defined two new metrics for evaluation of predicting the appropriate cluster number, which 

are capable of measuring the goodness in a more sophisticated way, instead of binary evaluation. We evaluated 

the results and compared the proposed 𝑣𝑅𝐷𝐼 measure to two other techniques, to the Silhouette coefficient and 

to the cluster validity. The results showed that the 𝑣𝑅𝐷𝐼 slightly outperforms the other methods, and it also 

showed that the MMKK++ can be considered as a useful tool for automatic clustering of heterogeneous 

images. 
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