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Beyond predator satiation: Masting but also the effects of rainfall
stochasticity on weevils drive acorn predation
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Abstract. Escaping seed predation is a classic “economy of scale” hypotheses (predator satiation hypothe-
sis, Psh) to explain the selection for the synchronous production of massive and nil seed crops (masting) in
plants. The Psh postulates that predator satiation occurs through a combination of (1) “functional satia-
tion,” as not all seeds can be consumed during a massive crop, and (2) “numerical satiation,” as predator
populations collapse during poor crop years. Many studies advocate for the Psh, but few have investigated
the importance of masting compared to other factors for the control of predation extent. Namely, environ-
mental cues prompting masting could also determine predator’s success and, ultimately, influence directly
and independently seed predation intensity. We explored this question in Mediterranean oaks, as they
exhibit strong masting behavior; acorns are heavily predated upon by weevils; and rainfall stochasticity
drives masting and the emergence of adult weevils from the soil. Results of two mid-term studies (4 and
11 yr) showed that acorn production and predation were highly variable across years, while the abun-
dance of adult weevils was positively related to autumn rainfall and to the number of infested acorns the
previous years. Ultimately, acorn predation was negatively influenced by inter-annual fluctuation of seed
production (masting) yet, mainly and positively, prompted by autumn rainfall and acorn crop size (only in
one site). Our results highlight the relevance of masting to reduce seed predation. Yet evidences that rain-
fall stochasticity directly determines the success of weevils, and it independently influences seed predation
extent, indicate that environmental cues prompting masting may also fine-tune the output of this repro-
ductive behavior. Additionally, local differences suggest that the relevance of masting may change with
tree characteristics (low vs. high seed production) and landscape structure (isolated vs. dense forests). We
also discuss what can be the effects of increasing drought in Mediterranean areas for this antagonistic
interaction, triggered by rainfall.
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INTRODUCTION

The synchronous and intermittent production
of large and nil seed crops (often termed masting)
is a taxonomically and geographically wide-
spread reproductive behavior among plants
(Kelly and Sork 2002). The superabundance of
seeds in certain years combined with periods of
almost no reproduction not only influences the
temporal patterns of seedling recruitment in
these species (De Steven and Wright 2002,
Oddou-Muratorio et al. 2011) but also results in
an erratic pulse of resources triggering a cascade
of “bottom-up” effects across trophic levels: seed
consumers (Selva et al. 2012), predators of seed
consumers (Ritchie and Johnson 2009), parasites
(Jones et al. 1998), and even parasitoids (Satake
et al. 2004).

Evolutionary hypotheses for the advantages of
masting as a reproductive strategy are based on
an “economy of scale” principle: A single but
extraordinary reproductive episode should be
more beneficial than continuous but moderate
reproductive events (Kelly and Sork 2002). In this
sense, the advantage of masting as a mechanism
to reduce seed predation (the seed predation satia-
tion hypothesis sensu Janzen 1971, see also Silver-
stown 1980) has probably been one of the
hypotheses receiving greatest attention (Kelly
et al. 2000, Yu et al. 2003, Espelta et al. 2008,
Fukumoto and Kajimura 2011, Archibald et al.
2012, Moreira et al. 2017). As proposed by Satake
et al. (2004), the synchronous, irregular produc-
tion of large and nil seed crops would lead to
predator satiation by combining two different
mechanisms: (1) “functional satiation” (large seed
crops surpass the feeding capacity of predators,
see also Ims 1990) and (2) “numerical satiation”
(the current number of predators may be too low
to consume many seeds if the previous year’s crop
was small, Bonal et al. 2012). Certainly, masting is
expected to be especially effective in controlling
predators with specialized seed-feeding habits,
limited mobility, and a short life span encom-
passed within the seeding season (Shibata et al.
1998). This is the case of many preeminent seed
consumers such as granivorous insects (e.g.,
weevils in Mulder et al. 2012, Munoz et al. 2014,
bruchids in Peguero et al. 2014).

Evidences of the benefits that extreme inter-
annual variability in seed production may play
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in reducing seed predation have been extensively
suggested (Satake et al. 2004, Espelta et al. 2008,
Peguero et al. 2014, Moreira et al. 2017). How-
ever, few studies have tested whether environ-
mental factors (proximate causes) influencing
masting might also be directly involved in con-
trolling seed predator’s populations and thus
also contribute to escape seed predation (but see
Poncet et al. 2009). Therefore, while the relevance
of environmental conditions for synchrony in
reproduction and variability in seed crops has
been thoroughly investigated (temperature in
Schauber et al. 2002, Kelly et al. 2013, rainfall in
Pérez-Ramos et al. 2010, Fernandez-Martinez
etal. 2015, or even “weather packages” in
Fernandez-Martinez et al. 2016, see also Koenig
et al. 2016), their potential direct impact on the
predators that consume these seeds has often
been neglected. Temperature and precipitation
may certainly have an effect on predation extent
by determining food resource (crops) variability,
but they may also directly influence the popula-
tion size or the performance of seed consumers.
For example, meteorological conditions are
known to directly affect the population size and
activity of rodents (e.g., squirrels in Kneip et al.
2011, wood mice in Wrdbel and Bogdziewicz
2015, Sunyer et al. 2016) and ungulates (Servanty
et al. 2009). Similarly, rainfall amount and its sea-
sonal distribution may influence oviposition by
granivorous insects (Bonal et al. 2010) by affect-
ing the number of adults emerging from the soil
(Schraer et al. 1998), or even altering their sex
ratio (Bonal et al. 2015).

Disentangling the issue as to whether seed pre-
dation is mainly controlled by variability in seed
production or by the direct impact of meteoro-
logical conditions on predators may help in
shedding light on the evolution of this reproduc-
tive behavior in plants as well as to understand
its relevance under new climatic scenarios arising
from climate change. Mediterranean oaks (Quer-
cus spp.) offer a worthwhile opportunity to
examine this question since they show clear
masting behavior (Koenig and Knops 2000) and
acorns are largely consumed by seed predator
specialists such as acorn weevils (Curculio spp.;
Bonal et al. 2007). Moreover, rainfall stochastic-
ity, including the occurrence of severe drought
episodes, influence masting in these species
(Espelta et al. 2008, Pérez-Ramos et al. 2010,
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Fernandez-Martinez et al. 2012) and the emer-
gence of adult weevils from the soil after dia-
pause (Bonal et al. 2010). Thus, the main aim of
this study was to elucidate the contribution of
the inter-annual variability in acorn crop size
and the direct effects of precipitation (i.e., condi-
tioning the likelihood of acorn weevil emergence
from the soil) for the extent of acorn predation.
To test this, we used an intensive four-year moni-
toring of acorn production, rainfall variability,
adult weevil emergence from the soil after dia-
pause, and acorn predation in isolated Quercus
ilex trees in a savannah-like landscape, and also a
database (11 yr) of acorn production, rainfall
variability, and acorn predation by weevils in 15
forest stands. We specifically assessed (1) the
inter-annual variability of acorn production and
acorn predation, (2) the effect of rainfall on adult
emergence from the soil and thus on the abun-
dance of adult weevils, and (3) the dependence
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of acorn predation rates on current crop size,
inter-annual variability in acorn crop sizes, and
rainfall amount, as a surrogate of the abundance
of adult weevils. We hypothesize that, apart from
the reported effects of rainfall stochasticity in
determining masting in Mediterranean oaks
(Espelta et al. 2008, Fernandez-Martinez et al.
2012), it may play a relevant role in acorn infesta-
tion through its direct effect on the number of
adult weevils present, thus fine-tuning the
expected effects of masting on predation.

MATERIALS AND METHODS

Study area and species

This study was conducted in two different
areas of Spain: Huecas (Toledo, central Spain)
and Collserola (Barcelona, northeast Spain;
Fig. 1) where the reproductive patterns of Quer-
cus ilex and acorn predation by weevils (Curculio

Fig. 1. Location of the study sites (Huecas and Collserola) in Peninsular Spain. Notice that Huecas (A) corre-
sponds to a savannah-like landscape (“dehesa”) with scattered oaks, while Collserola (B) is an old-coppiced oak
forest. Photograph A courtesy of Helena Ruiz-Carbayo.
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spp.) have been thoroughly studied (Bonal et al.
2007, 2010, Espelta et al. 2008, 2009). Huecas is a
savannah-like landscape with scattered Q. ilex
trees (from 1 to 100 trees/ha, up to 2 km apart)
embedded in a cropland matrix (Fig. 1A).
Climate is continental Mediterranean with cold
winters, extremely hot, dry summers, and rain
concentrated in spring and autumn. Mean
annual temperature ranges from 14.6° to 16°C,
and mean annual precipitation ranges from 350
to 450 mm per year. The landscape structure
allows the intensive monitoring of separate indi-
vidual trees that are like “islands” for insects’
specialists on oaks (Ruiz-Carbayo et al. 2017).
For the purpose of this study, we selected 24 focal
trees and monitored acorn production and seed
predation rates over four years (2009, 2010, 2011,
and 2012) and adult weevil emergence from the
soil beneath each tree over five years (2008, 2009,
2010, 2011, and 2012). Rainfall patterns from
2008 to 2012 were obtained from a local weather
station. Collserola Natural Park is a coastal mas-
sif covered by dense, old-coppiced Q. ilex forests
(see Fig. 1B). Climate is typically Mediterranean,
with 614 mm of mean annual precipitation and
monthly temperatures with a maximum of
24.3° £ 0.7°C in August and a minimum of
8.5° + 0.6°C in January. Summer is the warmest,
driest season, while most rainfall occurs in spring
and autumn (Fernandez-Martinez et al. 2012).
For the purposes of this study, we used the data
collected from 15 Q. ilex trees in 15 forest stands
(~225 trees) where acorn production and seed
predation were monitored from 1998 to 2009 (see
Espelta et al. 2008 for methodological details).
The annual pattern of rainfall per plot from 1998
to 2009 was obtained from the meteorological
database developed in the MONTES project (M.
Ninyerola and M. Batalla).

Quercus ilex acorns mature in one year and
seed production is subjected to strong inter-
annual fluctuations (Espelta et al. 2008). In
Collserola, acorns are subjected to pre-dispersal
predation by two weevil species, Curculio glan-
dium and Curculio elephas (Espelta et al. 2009),
while C. elephas is the prevalent acorn parasite in
Huecas (Bonal et al. 2007). Curculio glandium is
widely distributed in Europe associated with oak
trees (Quercus spp.), while C. elephas is present in
central and southern Europe, also associated
with oaks (Quercus spp.) and chestnuts (Castanea
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sativa). In the two study areas, both weevils can
only infest acorns since there are no chestnuts
around. Both C. glandium and C. elephas over-
winter underground, but the two species present
different phenologies: C. glandium emerges ear-
lier, mostly in spring (Pélisson et al. 2013), while
the emergence of C. elephas is restricted to
autumn (Espelta et al. 2009, Bonal et al. 2012).
After emerging, adult weevils climb to the crown
for mating. This is the time when acorn preda-
tion also takes place (Bonal and Munoz 2009,
Espelta et al. 2009), after females drill a tiny hole
in the seed cover with their rostrum and gener-
ally deposit a single egg in the developing acorn
using their oviscapt. The two weevil species also
differ in their dispersal ability and dormancy
strategy. Adults of C. glandium emerge from the
soil two years after larvae development and are
able to fly up to 10 km, while C. elephas emerges
in early autumn and has a much lower dispersal
ability (Venner et al. 2011, Pélisson et al. 2013).
In fact for C. elephas, genetic differences and
restricted gene flow among populations are
observed beyond 300 m (H. Ruiz-Carbayo, un-
published manuscript). This species also has the
ability to spread the emergence of adults up to
three years (~66% emerging the first year, 30% in
the second, and 4% during the third year; see
Venner et al. 2011, Pélisson et al. 2013).

Sampling design

In Huecas, acorns were collected using buckets
(0.12 m* x 0.5 m) hung from the lower branches
of every tree to prevent predation by large ungu-
lates. The number of traps per tree was propor-
tional to its canopy surface, and covered at least
1.5-2% of the canopy (see Bonal and Munoz 2009
for details). Seed traps were sampled periodically
and, after the first infested acorns were collected,
traps were checked every 10 d until acorn fall
ceased. On each revision, seeds were taken to the
laboratory to identify sound and infested ones
(Bonal and Munoz 2009). In addition, to estimate
the population size of acorn weevils and the phe-
nology of their emergence from the ground, a
survey of adult emergence was carried out from
August 2008 to October 2012, using emergence
traps attached to the trunks of focal trees. Each
trap consisted of a cone of mosquito netting
attached to the tree trunk with a closed bottle on
top. After emerging from the soil, the weevils
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climbed up the trunk and were trapped in the
bottle (see Bonal et al. 2012 for further details).
Distance between trees and their location in a
hostile media for weevils (croplands) make suc-
cessful dispersal of C. elephas among trees almost
impossible (Bonal et al. 2012). Traps were
checked on a daily basis from August to late
October in order to record the number of individ-
uals that had emerged. At the same time, weekly
precipitation was measured at a local weather
station for the same period in order to determine
the possible influence of rainfall on the emer-
gence of adults.

In Collserola Natural Park, acorn production
and predation rates were recorded in 15 plots
established in oak forests in 1998. At each plot,
15 trees were randomly selected (225 trees in
total) from among those with most of their
crowns exposed to full sun and with similar dbh.
Each tree was tagged and four branches of simi-
lar size (~2-3 cm in diameter) were randomly
chosen from different sections of the canopy (see
Espelta et al. 2008 for further details). From 1998
to 2009, the number of acorns produced and
infested was counted on these branches at the
peak of the acorn crop in the area (usually in
early to mid-September, Espelta et al. 2009). This
sampling protocol was selected because the inter-
mingling of tree branches precludes the possibil-
ity of individual monitoring of seed production
per tree by means of seed traps (see Fig. 1B).
Similarly, surveys of adult emergence were not
conducted owing to the difficulties of performing
them in these dense old-coppiced forests
(~1500-2000 individuals/ha).

For each tree, we calculated the number of
sound acorns produced per year, the number of
parasited acorns, the inter-annual variability in
acorn production (CV, coefficient of variation of
seed production across years), and synchrony in
the pattern of seed production. Synchrony was
calculated as the Pearson’s coefficient of correla-
tion (r) of non-log-transformed data of each tree
with the rest of trees in Huecas and with all trees
in the same plot in Collserola (see Espelta et al.
2008 for further details).

Data analysis

Generalized linear mixed models (GLMMs),
following a binomial distribution, were used to
test for the effects of several variables on acorn

ECOSPHERE *%* www.esajournals.org

ESPELTA ET AL.

predation rate (i.e., the ratio of infested acorns to
the total number of acorns in year t). Seed preda-
tion rate is the variable commonly used to inves-
tigate whether temporal variability in seed
production (masting) may influence seed preda-
tion extent (see Satake et al. 2004, Bonal et al.
2007, Espelta et al. 2008, Moreira et al. 2017), as
the use of the crude number of seeds depredated
can be tightly linked to the number of seeds
available. The rationale behind the inclusion of
the different independent variables in the model
and their expected impact (positive or negative)
on acorn predation is listed below:

1. Acorn crop size in year t—This variable may
have a negative effect on predation if func-
tional satiation takes place (Satake et al.
2004). Conversely, it could have a positive
effect, especially in Collserola where the
weevil with the highest dispersal ability is
found (C. glandium), if weevils are attracted
by more productive trees. Therefore, differ-
ences between the two study sites Huecas
and Collserola may be expected due to their
extremely different tree density.

2. Number of infested acorns in year,_; and
year;_,—The number of infested acorns
during previous years can be assumed to be
an estimate of the current size of the wee-
vils” population in year f, especially if envi-
ronmental conditions do not affect their
success (no effects of rain). We added
infested acorns in the previous two years, as
the weevil species present both in Collserola
and in Huecas (C. elephas) exhibits extended
diapause (i.e, 96% of adults emerging in
two years; Venner et al. 2011), and the other
species present in Collserola (C. glandium)
emerges after two years (Venner et al. 2011).
This variable is expected to increase acorn
predation (Bonal et al. 2010).

3. Inter-annual fluctuation on seed production (i.e.,
ratio of mature acorn crop size in year t to that in
year,_q and year,_,)—Inter-annual fluctuation
in seed production is the variable often used
to explore the potential advantages of mast-
ing for escaping seed predation by combin-
ing the numerical and functional satiation of
predators (see Satake et al. 2004, Espelta
et al. 2008, Tachiki and Iwasa 2013, Moreira
et al. 2017). This variable is the ratio of the
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size of the current acorn crop available to
previous year crops, as the proxy of the
potential number of adult weevils present in
year t. This ratio is expected to be negatively
related to acorn predation: A high ratio (a
large acorn crop size in year ¢ and a low seed
production in previous years) would mean
the presence of few adult weevils and a high
number of acorns in year ¢, thus resulting in
low predation rates.

4. Rainfall—As rainfall amount is suggested to
be a crucial factor to allow the emergence of
adult weevils from the soil (Alverson et al.
1984), and this may directly affect acorn pre-
dation, we included in the analyses the val-
ues of total rainfall for the periods when the
emergence of weevils has been observed in
our study areas in previous studies: from
September to October for C. elephas in Hue-
cas and Collserola (Espelta et al. 2009, Bonal
et al. 2010) and from May to June for
C. glandium in Collserola (Espelta et al.
2009). In the two sites, we expected rainfall
to have a positive effect on acorn predation
as the greater the amount of rainfall, the
more weevils would be able to emerge from
the soil (Schraer et al. 1998) and potentially
infest acorns.

The “plot” and the “tree” factors in Collserola
and the “tree” factor in Huecas were included as
random effects in the GLMM analyses to account
for the repeated nature of the measurements and
other unexplained variation. Selection of the
most adequate model was done by using the
dredge function of the MuMIn package in
R (Barton 2015). Comparison of sets of alterna-
tive models was done by using differences in the
second-order (or corrected) Akaike Information
Criterion (AIC.) and contrasting models by using
¥> tests. Inclusion of a variable in the model
required a significant % test (P = 0.05) and a dif-
ference between AIC (delta: AAIC,) of at least
of four units compared to the same model
excluding that variable. Pseudo-coefficients of
determination (R?) were used to estimate the
contribution (in %) of fixed effects (R? ) and

. 2marginal .
both fixed and random effects (RZ, . gitona) i
explaining the variability of acorn predation.

To test for the main factors accounting for the

abundance of adult weevils in a given year in the
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site. where we monitored their emergence
(Huecas), we ran a GLM including the number of
weevils emerging per tree and year as the depen-
dent variable and rainfall during the season of
emergence (from September to October) and the
number of acorns infested during year; ; and
year; , per tree as the independent factors. In
addition, we analyzed the relationship between
rainfall and emergence of adult weevils from the
soil at a fine-grained temporal scale by plotting
the number of emerged weevils and the amount
of rainfall per week. We then ran correlation analy-
ses comparing rainfall accumulated in one or two
weeks and the number of emerged weevils one
week later, since a minimum rainfall threshold is
needed to soften the soil enough for weevil emer-
gence (Mulder et al. 2012 and references therein).

Data analyses were performed using the R
statistical software program, version 3.1.1 (R
Development Core Team 2014).

REesuLTs

Annual acorn production varied in both study
sites with years of abundant and low seed crops,
although this pattern was much more evident in
Collserola than in Huecas (Fig. 2, CV =197 £
0.07 in Collserola and 0.94 + 0.11 in Huecas). In
Collserola, oaks usually exhibited very low acorn
production (422 + 139 acorns-tree '-yr '), and
there were high pulses of production in only
three out of 11 yr (Fig. 2A): remarkable peaks in
2002, 2004, and 2008 and almost no mature acorn
production in 2000, 2001, and 2005. In Huecas,
trees were more productive (5281 £ 1608
acorns-tree '-yr'), yet similar to Collserola, and
despite a shorter time series, there was a year
with a remarkable crop size (2012) preceded by
some with lower values (Fig. 2B). Synchrony
among trees in their inter-annual pattern of seed
production was also higher in Collserola than in
Huecas (Pearson’s r: 0.67 + 0.05 and 0.36 + 0.09,
respectively). Parallel to the large variation
observed in seed production, the proportion of
acorns depredated by weevils exhibited large
variability over the years in both sites, with a pat-
tern of low values in years of high seed produc-
tion and more variable rates (both low and high)
in years of lower acorn crops (Fig. 2). In Collser-
ola, the higher predation rates were observed in
2001, 2003, 2006, and 2009 as opposed to 2000,
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Fig. 2. Mean acorn production per tree (columns), mean acorn predation percentage per tree (black dots), and
cumulative rainfall (empty squares) in early autumn (September and October) in Collserola (A) and Huecas (B).

2002, and 2007 (Fig. 2A), while in Huecas
(Fig. 2B) 2009 and 2012 showed lower predation
rates than 2010 and 2011.

The detailed (“per tree”) monitoring of adult
weevil emergence conducted in Huecas revealed
that the number of adult weevils present in a
given year was significantly and positively
related to the amount of autumn rainfall that year
(F=1261, P <0.001) and to the number of
infested acorns—a proxy of the number of larvae
—the two previous years (F =24.9, P <0.001).
This relationship between the numbers of adult
weevils present (emerged from the soil) and
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rainfall amount in early autumn is also supported
by the weekly patterns of rain accumulated and
the number of weevils emerged and trapped
(Fig. 3). In the four years included in the study,
emergence of adult weevils from the soil started
in early September and peaked some weeks later,
roughly at the end of October, concurrent with
rainfall accumulation patterns (see Fig. 3). In fact,
emergence was positively correlated (r = 0.53,
P < 0.001) with the amount of rainfall in the pre-
vious two weeks, probably because some time is
needed to moisten and soften the soil enough to
facilitate the emergence process.
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Fig. 3. Weekly precipitation (gray columns) and adult weevil emergence (black dots) from early September to
late October for the years 2008 to 2012 in Huecas. S = September; O = October; 1 = first half month; 2 = second

half month.

As shown in Table 1, in Collserola, acorn pre-
dation per tree was significantly influenced by
the size of the current acorn crop, rainfall amount
in early autumn, and inter-annual fluctuation of

Table 1. Coefficients of the significant effects in the gen-
eralized linear mixed models on the effects of crop
size;, Crop Size;_q and t—2 inter-annual variability in
crop size (ratio of crop year; to crop year;_1 and -2
hereafter crop ratio), autumn rainfall, and spring
rainfall on acorn predation rate per tree in year ¢ (see
the Data analysis section for further details about
these variables).

Site Effect Estimate  Std.error  z-Value
Huecas Intercept —0.56682 0.16953 3.277**
A. Rainfall 1.02438 0.14032 7.155%**

Crop ratio  —0.44428 0.14161 3.075**
Collserola Intercept -3.9772 0.2330 16.091***
Crop; 0.7540 0.2210 3.284%**

A. Rainfall 1.8931 0.2617 6.915%**

Crop ratio —-1.3791 0.2687 5.572%**

Notes: A. rainfall, autumn rainfall. Predictors are ordered by
relative importance established by the dredging process accord-
ing to maximum likelihood and the model average function.

“P < 0.05, **P < 0.01, and ***P < 0.001.
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seed production (ratio of acorn crop ¢ to acorn
crop t—1 and ¢—2). In the model, acorn crop size
and autumn rainfall had a positive effect on
acorn predation, while inter-annual fluctuation
in seed production (masting) had a negative
effect. Similarly, in Huecas, the proportion of
infested acorns per tree was significantly affected
by inter-annual fluctuation in seed production
and by autumn precipitation (Table 1). As
observed in Collserola, rainfall had a positive
effect on acorn predation, while inter-annual
fluctuation had a negative effect (Table 1). In
both sites, considering the relative importance of
all variables included in the model, early autumn
rainfall was the main source of acorn predation
variability followed by inter-annual fluctuation
in seed production (see Table 2 and also Fig. 2
for the similarity in the patterns of early autumn
rainfall amount and acorn predation).

DiscussionN
Our results demonstrate that early autumn

rainfall stochasticity directly affects the emer-
gence of adult weevils from the soil, and this
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Table 2. Relative contribution of the different variables explaining acorn predation calculated by comparing the
best model and alternative models with an identical fixed-effects structure, but ignoring one variable at a time.

RZ
Site Model df pod. AIC, AAIC, Afest . Marg. Condit.

Huecas Best model 6 374.3 0.205 0.385
A. Rainfall 4 408.6 34.2 2 39.0%** 0.015 0.398

Crop ratio 4 378.7 44 2 9.1* 0.175 0.395

Collserola Best model 8 6417.3 0.167 0.910
A. Rainfall 6 6504.2 68.9 2 74.0%** 0.068 0.900

Crop ratio 6 6495.5 33.1 37.2%x* 0.123 0.912

Crop; 7 6437.7 9.3 1 10.9%** 0.152 0.903

Note: df,q: degrees of freedom of the model; dfi.y: degrees of freedom of the test; marg.: marginal R?, proportion of vari-
ance explained by the fixed factors alone; condit: conditional R?, proportion of variance explained by both the fixed and random

factors; AIC., Akaike Information Criterion.
*P < 0.05, **P < 0.01, and ***P < 0.001.

effect may become as important as the inter-
annual variation in acorn crop size (masting) for
acorn predation extent. Interestingly, as masting
in Mediterranean oaks is also driven by inter-
annual differences in rainfall amount, mostly in
spring and summer (see Espelta et al. 2008,
Ferndndez-Martinez et al. 2012, 2015, Koenig
et al. 2016), rainfall stochasticity appears as the
trigger point of this complex plant-animal inter-
action and its final outcome: acorn predation.
Indeed, our results do not falsify the predator
satiation hypothesis as an ultimate cause for the
selection of masting. Yet they highlight that prox-
imate environmental causes involved in this
reproductive phenomenon may also directly and
independently influence seed predation extent,
thus fine-tuning the effects of inter-annual seed
variability. To what extent this role may change
under new ecological scenarios arising from cli-
mate change (e.g., increasing drought in Mediter-
ranean areas) remains a challenging question to
be further investigated.

Early autumn rainfall influenced the emer-
gence of adults of Curculio elephas from the soil,
and this is the most likely explanation for the
positive influence of precipitation during this
season on acorn predation extent. Previous stud-
ies, both experimental (Alverson et al. 1984,
Schraer et al. 1998) and observational (Bonal
et al. 2010), had already shown a positive rela-
tionship between precipitation and adult weevil
abundance, with the need of a certain rainfall
amount threshold to enhance their emergence
(Fig. 3, see also Mulder et al. 2012). Yet for the
first time, we demonstrate that this effect may
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influence seed predation extent. Rainfall in early
autumn certainly would benefit the emergence of
C. elephas, the weevil with a later phenology, and
the only one present in Huecas, but not Curculio
glandium, the second species present in Collserola
that emerges in spring. The lack of significant
effects of spring rainfall we observed for acorn
predation in this site may be due to the fact that
moister conditions during late winter and initial
spring observed in the soils of the study area
(Sanchez-Costa et al. 2015) make rainfall not to
be such a crucial factor for the emergence of
C. glandium as it is for C. elephas after summer.

The effect of rainfall stochasticity on the emer-
gence of some weevil species becomes crucial to
explain why predation rates do not always match
the functional and numerical satiation effects pre-
sumably associated with inter-annual crop vari-
ability. For example, as shown in Fig. 2A, acorn
predation in Collserola in 2007 was as low as the
values observed during the two masting events
(2002 and 2008), although the crop size in 2007
was much lower (poor functional satiation expected)
and very similar to that of the previous year 2006
(poor numerical satiation expected). Interestingly, in
2007, rainfall in September—October was extremely
low (Fig. 2A) and this could constrain weevil
emergence from the soil and reduce predation
intensity. Similarly, in Huecas, predation in 2011
was much lower than that in 2010, even though
the number of acorns produced in these two years
was very similar (Fig. 2B), probably owing to the
extremely dry autumn in 2011 (see Fig. 3).

Our results demonstrate that aside from acorns,
weevils require perforce a certain amount of
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rainfall at a very precise time of the year (autumn)
in order to be able to emerge from the soil and
successfully infest the acorns. Interestingly, this
environmental requirement is uncoupled with the
ones driving acorn production as this mostly
depends on rainfall in spring and early summer
(Espelta et al. 2008, Fernandez-Martinez et al.
2012, 2015), with barely any effects of autumn
rain, when acorns have almost fully developed
(Espelta et al. 2009). Therefore, in a year with a
large acorn crop available after optimal conditions
in spring and summer, weevils could not benefit
from it, if a dry autumn occurs and it blocks their
emergence. This suggests that extended diapause
in weevils is indeed a complex phenomenon that
might have evolved not only to cope with the
extreme inter-annual variability in seed crop size
but also to cope with the effects of climate uncer-
tainty (see also Venner et al. 2011, Pélisson et al.
2013). At the same time, it is challenging whether
masting promoted variable diapause or it was
the unpredictable emergence of weevil adults,
prompted by rainfall stochasticity, what made
masting advantageous for oaks. In any case, theo-
retical models developed by Satake and Bjernstad
(2004) suggest that, whatever the origin for
extended diapause in a predator, extremely high
temporal variability in seed production (masting)
would benefit the host to buffer its effects.

The relevance of rainfall for controlling seed
predation by weevils also challenges which will
be the outcome of this antagonistic interaction in
new climatic scenarios arising from climate
change. In Mediterranean-type areas, the pre-
dicted increase in the intensity and length of
drought events will certainly affect the patterns
of acorn production, reducing the size of acorn
crops, as has been already tested in experiments
of rainfall exclusion (Sanchez-Humanes and
Espelta 2011). Yet extended drought may also
directly affect weevil populations by limiting the
success of their emergence (Bonal et al. 2010) or
even altering the sex ratio of populations (Bonal
et al. 2015). This raises the question as to
whether inter-annual variability in seed predic-
tion or direct rainfall shortage effects on weevils
will increase in importance for controlling acorn
predation as climate change progresses (see also
McKone et al. 1998, Poncet et al. 2009).

The observed effect of inter-annual crop vari-
ability to reduce acorn predation supports
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predator satiation as one of the evolutionary
hypotheses based on a plant-animal interaction
to explain masting in oaks. Certainly, it could be
argued that there are other animals also feeding
on acorns such as rodents, birds, or ungulates
not included in this study. However, weevils are
one of the most important pre-dispersal acorn
consumers, being able to destroy up to 60% of
the crop in a given year (Leiva and Fernandez-
Alés 2005), and the only ones that comply with
the three characteristics suggested by Shibata
et al. (1998) to make a predator highly sensitive
to inter-annual seed variability: short life span,
reduced mobility, and high specificity. In addi-
tion to these effects, we cannot discard that the
production of extraordinary large crops may also
increase the chances of successful seed dispersal
and recruitment in these species both by increas-
ing the attraction of avian seed dispersers
(Pesendorfer and Koenig 2016) and by reducing
the removal of cached seeds during masting
years (dispersal satiation hypothesis in vander
Wall 2010, see also Zwolak et al. 2016).

In contrast to some previous studies, we did
not observe a higher proportion of seeds con-
sumed at low levels of seed availability, the
so-called type II functional response of seed con-
sumers (sensu Holling 1959, see also Moreira
et al. 2017), indicating that the effects of masting
may be somewhat idiosyncratic. In fact, although
the effects of masting and early autumn rain on
acorn predation were similar in the two localities,
they differed in the intensity of these effects and
the importance of other variables: greater impor-
tance of masting in Collserola and of rainfall in
Huecas and significant effect of the current acorn
crop sizes in the former site (see Tables 1 and 2).
Moreover, in Collserola, the high value of the R?
conditional (~0.90), which accounts for the vari-
ability explained by random factors, suggests a
major importance of the factor “plot” that may
be due, among others, to differences in acorn
production among forest stands (see also Espelta
et al. 2008). Considering the size of crops pro-
duced in the two sites, it seems reasonable that
masting had more importance in a site like Col-
Iserola where trees produce smaller crops (~10%
of the values recorded in Huecas, see Fig. 1 and
Espelta et al. 2008), forests are more continuous,
and adult weevils of C. glandium are much more
able to disperse from one tree to another. The
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production of moderate-low seed crops and the
intermingling of trees may explain why weevils
disperse and may concentrate on relatively more
productive trees, a pattern suggested by the posi-
tive effect we observed of the current acorn crop
size on predation (Table 1). This scenario would
give masting a greater importance to control seed
predation (see also Maeto and Ozaki 2003). Con-
versely, isolated trees in the savannah-like land-
scape of Huecas are bigger, less resource limited,
and may produce larger acorn crops regularly
(Moran-Lopez et al. 2016). In this situation,
although masting remains still important, the
direct effects of rainfall stochasticity on weevils
may become more relevant to control acorn pre-
dation extent. Altogether, these local differences
suggest that the relevance of masting may be
somewhat context dependent and change with
the size and productivity of trees and the land-
scape structure (see also Espelta et al. 2008,
Yamauchi et al. 2013), especially in long-lived
tree species such as oaks, a question that has
been barely addressed up to now and requires
further research.

CONCLUSION

The main contribution of our study has been
to demonstrate that irregular seed crops (mast-
ing) certainly help escaping acorn predation in
Mediterranean oaks, yet the direct effects of rain-
fall stochasticity on the success of weevil popula-
tions may be as important as in reducing seed
predation extent. Furthermore, our results sug-
gest that the importance of masting to mitigate
seed predation may change with individual char-
acteristics (e.g., seed production) and spatial
attributes (i.e., isolation). Our findings also ques-
tion whether the increase in more severe and
long-lasting drought events in Mediterranean
areas owing to climate change will have a posi-
tive or negative impact in the outcome of this
plant-animal interaction.
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