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The Pareto IV power series cure rate model
with applications

Diego I. Gallardo1, Yolanda M. Gómez2, Barry C. Arnold3

and Héctor W. Gómez4

Abstract

Cutaneous melanoma is thought to be triggered by intense, occasional exposure to ultraviolet ra-
diation, either from the sun or tanning beds, especially in people who are genetically predisposed
to the disease. When skin cells are damaged by ultraviolet light in this way, often showing up as a
sunburn, they are more prone to genetic defects that cause them to rapidly multiply and form po-
tentially fatal (malignant) tumors. Melanoma originates in a type of skin cell called a melanocyte,
such cells help produce the pigments of our skin, hair, and eyes. We propose a new cure rate sur-
vival regression model for predicting cutaneous melanoma. We assume that the unknown number
of competing causes that can influence the survival time is governed by a power series distribu-
tion and that the time until the tumor cells are activated follows the Pareto IV distribution. The
parameter estimation is based on the EM algorithm which for this model can be implemented in
a simple way in computational terms. Simulation studies are presented, showing the good perfor-
mance of the proposed estimation procedure. Finally, two real applications related to a cutaneous
melanoma and melanoma data sets are presented.

MSC: 62N01, 62N02, 62P10.

Keywords: Competing risks, cure rate models, EM algorithm, Pareto IV distribution, power series
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1. Introduction

Cancer is a process of uncontrolled growth and dissemination of cells. It can occur in
practically any location in the body. The tumor can invade the neighbouring region of the
body and can also provoke metastasis in parts of the body remote from the original site.
Many types of cancer can be prevented by avoiding exposure to common risk factors
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such as, for example, tobacco smoke. Moreover, a major proportion of cancers can be
cured by surgery, chemotherapy or radiation, especially if they are detected at an early
stage. Melanoma that occurs on the skin, called cutaneous melanoma, is the most com-
mon type of melanoma. This type of melanoma occurs in all parts of the skin, including
the soles of feet, on the palms of the hand, in between toes and fingers, and underneath
the finger and toe nails.
Skin melanoma occurs most frequently in people with a light complexion, since

they are least protected against UV radiation. Also, people with more than 50 moles, a
family history of melanoma, a weakened immune system, or those who sunbathe or use
tanning beds, are at increased risk. Melanoma is the fastest growing cancer in men and
the second fastest growing cancer in women (after lung cancer).
Regression models for survival data with a surviving fraction (also known as cure

rate models or long-term survival models) play an important role in reliability and sur-
vival analysis. These models typically assume that all units under study are susceptible
to an event of interest and will eventually experience it if follow-up is sufficiently long.
However, there are situations in which a fraction of individuals are not expected to ex-
perience the event of interest, that is, those individuals are cured or not susceptible. For
example, researchers may be interested in analysing the recurrence of a disease. Many
individuals may never experience a recurrence; therefore, a cured fraction of the popu-
lation exists. Cure rate models have been applied to investigate the possible existence of
a cured fraction. An approach for those models is the following.
Let M be a random variable denoting the initial number of carcinogenic cells of

an individual. Several different assumptions about the probability mass function of M
have appeared in the literature: Bernoulli (Berkson and Gage, 1952), Poisson (Yakolev
and Tsodikov, 1996), Negative Binomial (Rodrigues et al., 2009a), among others. A
generalization that includes all these models is the power series distribution (Noack,
1950) used by Cancho, Louzada and Ortega (2013a) in the cure rate context. Evidently
this model doesn’t include all distributions that can be used in this context (see for
instance, Rodrigues et al., 2009b and Rodrigues et al., 2015).
On the other hand, let Wa be a random variable expressing the time at which the

a-th cell produces a detectable cancer. In their proposal, Cancho et al. (2013a) used the
Weibull distribution. Other approaches include the generalized gamma (Ortega et al.,
2014), the Beta-Weibull (Ortega et al., 2015) and the Birnbaum-Saunders distribution
(Cordeiro et al., 2016). Our proposal is one in which we assume for eachWa a Pareto
IV distribution (Arnold 1983, 2015). This is a very flexible model which includes some
interesting distributions as particular cases and which has the characteristic that both,
the survival and density functions, have analytic tractable forms.
The sections of this paper are organized in the following manner. In Section 2, we

explain the model formulation and give some of its main properties. In Section 3, we
develop parameter estimation for the model based on the EM algorithm. In Section 4,
two real data applications are discussed. In Section 5, a simulation study is presented.
Finally, some conclusions are given in Section 6.
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2. The Pareto IV power series cure rate model

The model proposed in Cancho et al. (2013a) can be defined as follows. Let M be a
random variable denoting the initial number of carcinogenic cells of an individual with
probability mass function given as in Noack (1950) by

P(M = m;θ) =
amθm

A(θ)
, m= 0,1,2, . . . , (1)

where am > 0 and A(θ) =
∑∞

m=0 amθ
m. θ is the so-called power parameter of the distri-

bution and A(θ) is the series function. We denote the distribution in (1) by PS(θ,A(θ)).
Table 1 shows some particular cases of this distribution. Θ denotes the parameter space
for θ in each model.

Table 1: Some particular cases of PS(θ,A(θ)).

Distribution am A(θ) Eθ [M
d ], d = 1,2 Θ

Poisson (m!)−1 eθ θ+(d−1)θ2 (0,∞)

Logarithmic (m+1)−1 − log(1−θ)

θ
1− θ

(1−θ) log(1−θ)

(
3+2θ
1−θ

)d−1
(0,1)

Negative Binomial

(
m+q−1

m

)
(1−θ)−q

(
θ

1−θ

)(
1+qθ
1−θ

)d−1
(0,1)

Binomial

(
q
m

)
(1+θ)q q

(
θ

1+θ

)(
qθ2+(q+1)θ+1

q(1+θ)

)d−1
(0,∞)

Note: We denote those distributions as Po(θ), Lo(θ), NB(q,θ) and Bin(q,θ) respectively. In both, NB(q,θ) and
Bin(q,θ), q is considered known.

Denote byWa the random variable representing the time at which the a-th cell pro-
duces a detectable cancer. For non-cured patients, M > 0 and Wa, a = 1,2, . . . ,M, are
conditionally independent givenM and identically distributed with common cumulative
distribution and survival functions F(t;λ) and S(t;λ) = 1−F(t;λ), where λ is a vector
of unknown parameters. For cured patients,M= 0 and it is assumed that P(W0=∞) = 1.
The distribution F is assumed to be a proper distribution function. The time until the
event of interest depends upon the count variable (M) and the survival time variables
(W1, . . . ,WM) and can be expressed by T = min{Wa, 0 ≤ a ≤ M}. As mentioned by
Cancho et al. (2013a), it can be verified that the survival function for T (also known as
population survival function) is given by

Spop(t;θ,λ) =
A(θS(t;λ))

A(θ)
. (2)
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From (2), it is possible to verify that the cure fraction of the model is p0 = A(0)/A(θ)=
a0/A(θ) and the corresponding density function for (2) is given by

fpop(t;θ,λ) =
A′(θS(t;λ))

A(θ)
θ f (t;λ),

where A′(η) = ∂A(η)
∂η and f (t;λ) is the density function corresponding to time till the

event of interest for each of the carcinogenic cellsWa.
The Weibull distribution is extensively used in survival analysis because it explains

biological processes relatively well and because it is a distribution that is easy to work
with. For these reasons, Cancho et al. (2013a) considered this distribution.
However, the Pareto IV distribution is more flexible than the Weibull distribution

and is not markedly more difficult to work with in the cure rate models context. For
this reason, we propose to use the Pareto IV distribution for modeling the time until the
activation of the carcinogenic cells.
The Pareto IV distribution (Arnold 1983, 2015) is very flexible and has the conve-

nient feature that its survival function is available in a simple analytic form. LetW be
a random variable with a Pareto IV distribution and corresponding vector of parameters
(μ,σ,γ,α). (We denote this byW ∼ P4(μ,σ,γ,α)). The survival function ofW is

S(w;μ,σ,γ,α) =

[
1+

(
w−μ
σ

)1/γ]−α

, w> μ,μ ∈ R,σ,γ,α > 0,

with the corresponding density function

f (w;μ,σ,γ,α)=
α

γσ

[
1+

(
w−μ
σ

)1/γ]−α−1(
w−μ
σ

)1/γ−1
,w>μ,μ∈R,σ,γ,α> 0.

The s-th moment of this distribution is given by

E(Ws) =
σsΓ(α−γs)Γ(1+γs)

Γ(α)
, if −1< γs< α, (3)

and the pth quantile, say wp, is given by

wp = σ(p−1/α−1)γ, 0< p< 1. (4)

Since we are working in a context of positive variables which are not bounded away
from 0, we fix μ= 0. Thus, the parameter vector related to the initial concurrent causes
are defined by λλλ= (σ,γ,α).
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Some particular cases of this distribution are the following

• γ = 1: The Pareto II distribution (P2) also known as Lomax distribution.

• α= 1: The Pareto III distribution (P3).

Since these models are particular cases of the P4 distribution, it is possible to use, for
instance, likelihood ratio tests to decide between the hypothesis H0 : γ = 1 (α= 1) and
H1 : γ �= 1 (α �= 1).
The model in (2) in which we assume that S(·;λλλ) is the survival function of a P4

distribution will be called the Pareto IV Power series cure rate model (henceforth, P4PS).
Below we describe some particular cases of this model.

• The Binomial Pareto IV (BP4) model. If A(θ) = (1+ θ)q, then M ∼ Bin(q,θ).
Note that q is a positive integer that can be interpreted as the maximum number of
carcinogenic cells for each individual. The cure rate is p0 = (1+ θ)−1. The case
q = 1 (M ∼ Bernoulli(θ)) corresponds to the first survival model with cure rate
in the literature (the mixture model) proposed in Berkson and Gage (1952). The
population survival function of the BP4 model is

Spop(t;θ,λ) =

⎛⎜⎝1+ θ
[
1+

(
t
σ

)1/γ]−α

1+ θ

⎞⎟⎠
q

.

• The Poisson Pareto IV (PP4) model. If A(θ) = eθ, then M ∼ Po(θ). This is the
same assumption used in Yakolev and Tsodikov (1996), the so-called promotion
time cure rate model and it is the only cure rate model with proportional hazard
structure (see Theorem 5 in Rodrigues et al., 2009a). The cure rate of the model is
p0 = e−θ. The population survival function is

Spop(t;θ,λ) = exp

{
−θ

(
1−

[
1+

( t
σ

)1/γ]−α
)}

.

• The Negative Binomial Pareto IVmodel. If A(θ)= (1−θ)−q, thenM∼NB(q,θ).
Here, typically, q is a positive integer although the definition remains valid if q is
any positive real number. The Negative Binomial distribution includes the Poisson
distribution as a limiting case. Moreover an extended definition of the Negative
Binomial distribution (introduced by Piegorsch, 1990) allowing q to be negative
permits one to view the binomial and Bernoulli distributions as particular cases.
This observation was used in Rodrigues et al. (2009a) in unifying the mixture
model and the promotion time cure rate model (the most popular cure rate model
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until then). The cure rate is given by p0 = (1− θ)q. The particular case q = 1,
i.e., when M has a Geometric distribution, it is usually used in literature. (For in-
stance, Cancho, Louzada and Barriga, 2013b and Gómez and Bolfarine, 2016).
The population survival function is

Spop(t;θ,λλλ) =

⎛⎜⎝ 1− θ
1− θ

[
1+

(
t
σ

)1/γ]−α

⎞⎟⎠
q

.

• The Logarithmic Pareto IV model. If A(θ) =−θ−1 log(1− θ), then M ∼ Lo(θ)
in contrast to the other models, the mode ofM in this case is zero implying that the
probabilities for M are decreasing. The cure rate is given by p0 =−θ/ log(1− θ).
This is not a very common model in literature. The population survival function is

Spop(t;θ,λλλ) =
log

(
1− θ

[
1+

(
t
σ

)1/γ]−α
)

[
1+

(
t
σ

)1/γ]−α
log(1− θ)

.

3. Estimation

In this section, we discuss the estimation for the P4PS cure rate model using a classical
approach. Assume that the data are obtained with right censoring. Thus, the observed
data for the i-th individual can be represented by Ti =min(T ∗

i ,Ci) and δi = I(T ∗
i ≤Ci),

1, . . . ,n, where T ∗
i andCi denote failure and censoring times respectively. Denote the ob-

served data by Dobs = (t,δδδ,z), with t= (t1, . . . , tn)
T, δδδ = (δ1, . . . ,δn)

T and z= (zi, . . . ,zn)
T,

where zi is a vector of covariates (of dimension r× 1) related to the cure of the i-th
individual. For each individual, those covariates can be introduced into the model by
allowing the parameter θ to depend on the covariates in the following manner,

θi =

⎧⎪⎨⎪⎩
exp(zTiβββ) for the Poisson and Binomial models

exp(zTiβββ)
1+ exp{zTiβββ}

for the Logarithmic and Negative Binomial models
(5)

where βββ = (β1,β2, . . . ,βr)
T is a vector of parameters of dimension r. Note that this spec-

ification guarantees the identifiability of the model in the sense of Li et al. (2001) and
Hanin and Li-Shang (2014).
On the other hand, note that the vectorM = (M1, . . . ,Mn) is non-observable and thus

the complete data areDcomp= (t,δδδ,z,M). In Cancho et al. (2013a), the estimation proce-
dure forψψψ= (βββ,λλλ)was performedmaximizing the observed likelihood, i.e., maximizing
the following expression
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�(ψψψ |Dobs) =

n∑
i=1

[
δi log fpop(ti;ψψψ)+(1− δi) logSpop(ti;ψψψ)

]
=

n∑
i=1

[
logA(θiS(ti;λλλ))

+ δi (logθi+ log f (ti;λλλ)+ logA
′(θiS(ti;λλλ))− logA(θiS(ti;λλλ)))− logA(θi)

]
.

(6)

However, the maximization of �(·) can be difficult because there are many parame-
ters, especially when the number of covariates that are used is high. For this reason,
in a cure rate model context there are many proposals based on the EM algorithm (see
for instance, Gallardo, Bolfarine and Pedroso-de-Lima, 2016a; Gallardo and Bolfarine,
2016b; Gallardo, Romeo and Meyer, 2016c and Pal and Balakrishnan, 2016). Particu-
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Figure 1: Population hazard function for P4PS model with different parameters and cure rate fixed at
50%. Left upper: Poisson. Right upper: Logarithmic. Left lower: Negative Binomial (q= 1). Right lower:
Binomial (q= 1).
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larly, we follows a similar scheme that Gallardo et al. (2016c) and we omit technical
details about the method.
The k-th iteration of the algorithm (assuming q is known in the Binomial and Nega-

tive Binomial cases) takes the form:

• E-step: Define μ(k)i = θ
(k)
i S(ti;λλλ(k)) and κ

(k)
i =

(
1− μ

(k)
i(

1−μ
(k)
i

)
log
(
1−μ

(k)
i

)
)
and com-

pute for i= 1, . . . ,n,

M̃(k)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi+μ
(k−1)
i for Poisson model

(1−δi)κ
(k−1)
i +δi

(
1−μ

(k−1)
i

)2
log
(
1−μ

(k−1)
i

)
−μ

(k−1)
i

(
3+2μ(k−1)

i

)
(
1−μ

(k−1)
i

)
logμ(k−1)

i −μ
(k−1)
i

for Logarithmic model

δi+μ
(k−1)
i +(q−1)δiμ(k−1)

i

1−μ
(k−1)
i

for NB model

(1−δi)q

(
μ
(k−1)
i

1+μ
(k−1)
i

)
+δi

(
q
[
μ
(k−1)
i

]2
+(q+1)μ(k−1)

i +1

q
(
1+μ

(k−1)
i

)
)

for Binomial model

• CM-step I: Using M(k) = (M(k)
1 , . . . ,M(k)

n ) obtained previously in the E-step, up-
date β̂(k) maximizing

Q1(β |ψψψ(k)) =

n∑
i=1

[
M̃(k)
i logθi− logA(θi)

]

with respect to β.

• CM-step II: Update α̂(k) as follows

α̂(k) =

n∑
i=1

δi

n∑
i=1

M(k)
i log

(
1+

( ti
σ̂(k−1)

) 1
γ̂(k−1)

)

• CM-step III: With M(k),α(k) and γ(k−1), update σ̂(k) solving the following non-
linear equation for σ

n∑
i=1

⎡⎢⎣
(
α(k)M(k)

i +2δi
)( ti

σ

)1/γ(k−1)
+ δi(

1+
( ti
σ

)1/γ(k−1))
⎤⎥⎦= 0
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• CM-step IV: WithM(k),α(k) and σ(k), update γ̂(k) solving the following non-linear
equation for γ

n∑
i=1

(
ti

σ(k)

)1/γ (
2δi log

(
σ(k)

)−α(k)M(k)
i log

(
ti

σ(k)

)
+γδi

)
+ δi

(
log

(
σ(k)ti

)
+γ(k)

)
(
1+

(
ti

σ(k)

)1/γ(k)) = 0.

The E and CM-I/CM-IV steps are alternated repeatedly until a suitable convergence
rule is satisfied, e.g., the difference in successive values of the estimates is less than a
tolerance value. The variance of (βββ,α,σ,γ) can be estimated based on the inverse of
minus the hessian matrix of the model. Details about this matrix can be seen in the
additional material.
Finally, for the binomial and the negative binomial distributions for which q will

typically be unknown, we can consider a grid of values for q, sayQ= q1,q2, . . . ,qB and
we apply the EM algorithm for each value in Q, obtaining for each q j, j = 1, . . . ,B, a

set of estimates parameters, say ψ̂ψψ1,ψ̂ψψ2, . . . ,ψ̂ψψB. Then, we choose q = qb as the value in
Q such that

max
j=1,...,B

�(ψ̂ψψ j | Dobs) = �(ψ̂ψψb | Dobs),

where �(·) is the observed likelihood function defined in (6).

3.1. Interpreting the parameters

We highlight that, up till now, we have been unable to find in the literature any work
where the regression coefficients are interpreted in a cure rate model context, except
in the case in which Mi ∼ Bin(1,θ) corresponding to the mixture model. In that setting
the coefficients can be interpreted in terms of the log-odds ratio, similar to the case of
logistic regression for dichotomic responses.
In general, efforts to interpret the coefficients are limited to illustrating the behaviour

in the cure rate when varying a continuous covariate and fixing the others (as we shall
illustrate this issue in the application Section). To this end, we propose the following
methodology. Note that, based on a Taylor expansion of the first order around the in-
tercept (or another convenient point) of the logarithm of the cure rate, we can write
q0i ≈ exp{a0+b0z

T
iβββ}, where a0 and b0 depends on the respective model and the value

for the intercept. If zi( j) represents the zi vector with the j-th element increased in 1 unit,
then the ratio between q0i( j) and q0i is

q0i( j)
q0i

≈
exp{a0+b0z

T

i( j)βββ}
exp{a0+b0zTiβββ}

= exp{b0β j},
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providing an approximate way to interpret the β j’s in terms of the percentage increment
(or decrease) in the cure rate, maintaining the rest of the covariates fixed.
Finally, in relation to the vector λλλ, rather than interpreting each component it may

be of more interest to evaluate descriptive measure related to the distribution of Wa’s.
For instance, mean, variance and quantiles can be obtained using (3) or (4). Confidence
intervals can also be constructed for those quantities using the delta method Sen, Singer
and Pedroso-de-Lima (2010).

4. Applications

In this section we consider two applications of the PSP4 model to real data sets.

4.1. Cutaneous melanoma data set

This data set refers to patients involved in a Phase III cutaneous melanoma clinical trial
presented in Ibrahim, Chen and Sinha (2001) and is available at http://merlot.stat.
uconn.edu/˜mhchen/survbook/, labeled as E1690 data. The data set comes from a
clinical trial for the evaluation of postoperative treatment performance with a high dose
of the drug interferon alpha-2b in order to prevent recurrence. Patients were included in
the study from 1991 to 1995, and follow-up was conducted until 1998. The response is
considered to be the relapse-free survival time (in years). The data set includes informa-
tion on 408 patients, for each of which the following covariates were measured: treat-
ment (0: placebo, 198 patients; 1: interferon alpha-2b, 210 patients); tumor thickness (in
mm, mean = 3.98 and standard deviation = 3.22) and nodal category (1: 110 patients;
2: 131 patients; 3: 86 patients; 4: 81 patients). Figure 2 shows the Kaplan-Meier (KM)
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Figure 2: KM estimator by nodal category for Phase III cutaneous melanoma clinical trial.
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estimator of the survival function by nodal category. As expected, the survival function
decrease faster in more advanced categories. However, in all cases the survival function
is stabilized at a certain value, suggesting that there is a proportion of patients for whom
the malignant melanoma will never recur (in all nodal categories).
We fit the P2PS, P3PS and P4PSmodel for four particular cases.Model selection was

performed based on the AIC and SBC criteria (Akaike, 1974 and Schwarz, 1978, respec-
tively). Those criteria are presented in Table 2. We also fit the gamma and Birnbaum-
Saunders (BS) PS model for the concurrent causes. The Birnbaum-Saunders model has
been the subject of intense research in cure rate models in recent years. For instance,
Cancho et al. (2013b) and Cordeiro et al. (2016).

Table 2: AIC and SBC criterion for power series cure rate model with Pareto IV and BS distribution for
concurrent causes.

P2 P3 P4 Gamma BS

Poisson 841.42/873.51 835.66/867.75 837.23/873.33 837.96/874.06 888.27/924.37
Logarithmic 849.52/881.61 826.26/858.35 827.78/863.89 828.10/864.20 927.71/963.81

Geometric 841.70/873.79 830.14/862.23 831.64/867.74 831.76/867.87 907.44/943.54
Binomial 844.87/876.96 840.33/872.42 842.38/878.48 845.14/881.24 875.33/911.43

Both criterion suggest that the Logarithmic cure rate model with a Pareto III distri-
bution for the concurrent causes is the best model. For this model, we also tested the
hypothesesH0 : α= 1 versus H1 : α �= 1 using the log-likelihood ratio (LR) test and the
Wald test. In both cases, we failed to reject the null hypothesis at the 5% of significance
and consequently we prefer the P3 instead of the P4 distribution for the time-to-event in
the concurrent causes.
Estimates of the parameters of the selected model, i.e., the Logarithmic P3 cure rate

model, are presented in Table 3. Based on the Taylor expansion of first order (around
zero in this case) discussed in Section 3.1 for the logarithmic model, we obtain b0 ≈
−0.1596685. For this reason, we present the following approximated interpretations for
the regression coefficients:

• exp
(
b0× (β̂nodule1− β̂nodule2)

)
= 1.193, i.e., the cure rate for patients with nodule

in stage one is 19.3% greater than the cure rate for patients in stage two.

• exp
(
b0× (β̂nodule1− β̂nodule3)

)
= 1.342, i.e., the cure rate for patients with nodule

in stage one is 34.2% greater than the cure rate for patients in stage three.

• exp
(
b0× (β̂nodule1− β̂nodule3)

)
= 1.624, i.e., the cure rate for patients with nodule

in stage one is 62.4% greater than the cure rate for patients in stage four.

• exp
(
−b0× β̂thickness

)
= 1.019, i.e., for each mm that is increased the tumor thick-

ness the cure rate is decreased in 1.9%.
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• exp
(
b0× β̂treatment

)
= 1.079, i.e., the cure rate for patients receiving treatment is

7.9% greater than the cure rate for patients witouth treatment.

On the other hand, the mean and median of the time-to-event of carcinogenic cells
are 3.97 and 1.82 years respectively with their respective 95% confidence intervals
(1.74,6.21) and (1.18,2.46).

Table 3: Estimates, standard errors (s.e.) and 95% confidence interval for logarithmic P3 cure rate model
for Phase III cutaneous melanoma clinical trial.

Parameter estimate s.e. 95% Conf. Interval

βnodule1 −0.2471 0.2584 −0.2594 −0.7536
βnodule2 −1.3547 0.1658 −1.0296 −1.6797
βnodule3 −2.0878 0.2186 −1.6593 −2.5163
βnodule4 −3.2853 0.2736 −2.7491 −3.8216
βthickness −0.1178 0.0034 −0.1111 −0.1245
βtreatment −0.4738 0.0973 −0.6645 −0.2832

σ −1.8368 0.1126 −1.6161 −2.0575
γ −0.6415 0.0023 −0.6370 −0.6460

We also show in Figure 3 some plots showing the cure rate in terms of tumor thick-
ness for combinations of nodule and treatment.
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Figure 3: Estimated cure rate for patients that received and not received treatment (left and right panel
respectively) and nodule in stage 1 and 4. The continuous line represent the point estimation and the dashed
line represent the respective 95% confidence interval.

Additionally, in order to analyse possible influential observations, we compute the
jackknife residuals defined by
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Ji =
(
ψ̂ψψ− ψ̂ψψ(i)

)T

Ĥ
−1(

ψ̂ψψ− ψ̂ψψ(i)

)
, i= 1, . . . ,n.

where ψψψ(i) represents the estimator of ψψψ without the i-th observation. Figure 4 show
these residuals. Note that observation 11 is a potentially influential observation. This
observation corresponded to an individual with a nodule in stage 1 who received treat-
ment. Table 4 show a descriptive comparison of this observation with the others in same
nodule stage and with treatment. Observation 11 was a patient who died in a short time
when compared with others patients in similar conditions. Also his tumor thickness was
very big in relation to other patients in similar conditions.
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Figure 4: Jackknife residuals for cutaneous melanoma data set.

Table 4: Descriptive analysis for observation 11.

Observation ti δi thickness

11 0.0767 1 14.000

Mean∗ 5.900 0.34 5.900

Median∗ 2.437 0.00 6.611

*Considering the 56 observations in

stage 1 that received treatment.

Finally, Table 5 shows the estimates for all parameters with observation 11 deleted
from the data set. Note that the magnitudes of the estimates are different from thecor-
responding values in Table 3. However, the significance and the sense of all parameter
estimates is maintained.
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Table 5: Estimates, standard errors (s.e.) and 95% confidence interval for logarithmic P3 cure rate model
for Phase III cutaneous melanoma clinical trial without observation 11.

Parameter estimate s.e. 95% Conf. Interval

βnodule1 −0.3335 0.2516 −0.1597 −0.8267
βnodule2 −1.4401 0.1674 −1.1120 −1.7681
βnodule3 −2.1708 0.2216 −1.7365 −2.6050
βnodule4 −3.3909 0.2787 −2.8446 −3.9372
βthickness −0.0989 0.0032 −0.0926 −0.1053
βtreatment −0.5190 0.0980 −0.7110 −0.3269

σ −1.8228 0.1071 −1.6130 −2.0327
γ −0.6336 0.0022 −0.6292 −0.6380

4.2. Melanoma data set

This data set is available at timereg package in R Scheike (2015). The data set refers
to 205 patients with malignant melanoma, followed up after removing the lesions. The
following covariates were measured: ulceration (absent: 115 patients; present: 90 pa-
tients); tumor thickness (in mm, mean = 2.92 and standard deviation = 2.96). Figure 5
shows the KM estimator by ulceration status. Note that the survival function is lower
for patients with ulceration. On the other hand, the survival function is stabilized at a
certain value, suggesting in this study also the existence of a proportion of patients for
whom the malignant melanoma will never recur.
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Figure 5: KM estimator by nodal category ulceration status for melanoma data set.
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Table 6: AIC/SBC criteria for power series cure rate model with Pareto IV and BS distribution for concur-
rent causes in the melanoma data set.

P2 P3 P4 Gamma BS

Poisson 438.55/458.49 427.77/447.70 427.59/447.53 427.42/447.35 430.16/450.10
Logarithmic 447.47/467.41 418.31/438.25 418.39/438.33 418.31/438.25 425.88/445.82
Geometric 438.13/458.07 423.04/442.98 422.76/442.70 422.83/442.77 428.63/448.56
Binomial 441.42/461.36 432.79/452.72 432.79/452.73 432.84/452.78 432.84/452.78

In this case, we also fit the P2PS, P3PS and P4PS model for four particular cases,
together with the gamma and BS models. The AIC and SBC criteria are presented in
Table 6.
Both criterion suggest that the Logarithmic cure rate model with a Pareto III and

gamma distributions for the concurrent causes are the best models, both yielding sim-
ilar results. We also tested the hypotheses H0 : α = 1 versus H1 : α �= 1 using the log-
likelihood ratio (LR) test and the Wald test. In both cases, we failed to reject the null
hypothesis at the 5% significance level and consequently, we prefer the P3 instead of
the P4 distribution for the time-to-event in the concurrent causes. Parameter estimates
of both selected model are presented in Table 7.

Table 7: Estimates and standard errors (s.e.) for logarithmic P3 and gamma cure rate models for
melanoma data set.

Estimate s.e. Estimate s.e.

βintercept −0.8874 0.5714 βintercept −0.9761 0.5967

βulceration −1.9991 0.5864 βulceration −1.9619 0.5846

βthickness −0.3753 0.1304 βthickness −0.3774 0.1339

σ −7.3228 2.3068 α −2.6801 0.5092

γ −0.4325 0.0594 ν −0.3399 0.1726

Note that all parameters related to the regression are significantly different from zero
in both models. Once more, based on a Taylor expansion of first order (around the inter-
cept in this case) for the logarithmic model, we obtain b0≈−0.1162651. In this manner,
we present the following approximate interpretations of the regression coefficients:

• exp
(
−b0× β̂thickness

)
= 1.045, i.e., for each mm that is increased the tumor thick-

ness the cure rate is decreased in 4.5%.

• exp
(
−b0× β̂ulceration

)
= 1.262, i.e., patients without ulceration have a cure rate

26.2% greater than patients with ulceration.

On the other hand, the mean and median of the time-to-event of carcinogenic cells
are 10.18 and 7.32 years respectively with their respective 95% confidence intervals
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Figure 6: Jackknife residuals for melanoma data set.

Table 8: Estimates, standard errors (s.e.) and 95% confidence interval for logarithmic P3 cure rate model
for Phase III cutaneous melanoma clinical trial without possible influence observations.

deleted observations

149 154 171 149, 154 and 171

estimate s.e. estimate s.e. estimate s.e. estimate s.e.

βintercept −1.0667 0.5242 −1.0099 0.5208 −1.0247 0.5151 −1.2670 0.4673

βulceration −2.0037 0.5691 −1.9633 0.5728 −1.9602 0.5722 −1.9473 0.5536

βthickness −0.3656 0.1269 −0.3708 0.1296 −0.3712 0.1297 −0.3614 0.1271

σ −6.6195 1.8311 −6.6301 1.8278 −6.5522 1.7669 −5.5503 1.2191

γ −0.4262 0.0587 −0.4229 0.0583 −0.4205 0.0579 −0.4026 0.0558

(2.54,17.82) and (2.80,11.84). It can be verified that both models provide similar results
in terms of estimated cure rates and survival functions. For this reason, henceforth we
will continue the analysis based only on the logarithmic P3 model. Figure 6 shows
the Jackknife residuals for this data set, suggesting that observations 149, 154 and 171
are possible influential observations. Based on a simple descriptive analysis, we note
that those observations present large observed times even though the respective tumor
thickness also are large.
Table 8 shows the estimates for the logarithmic P3 model deleting the possible in-

fluence observations separately and jointly. Note that in all cases the significance of
parameters is unchanged and the estimates are very close to the estimations using the
complete data set. Finally, Figure 7 presents the estimated cure rate and the respective
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0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Tumor thickness (mm)

C
ur

e 
ra

te

Ulc. absent
Ulc. present

Figure 7: Estimated cure rate for patients with ulceration status absent and present. The continuous line
represent the point estimation and the dashed line represent the respective 95% confidence interval.

95% confidence intervals, suggesting that ulceration is a risk factor. On the other hand,
tumor thickness influences in the cure rate of patients subject to this intervention mainly
for small tumors.

5. Simulation study

In this section we report a simulation study to assess the recovery of known parameters
by the proposed estimation procedure. The data were drawn in conformity with the
P4PS model. We assume the Pareto IV distribution with parameters α= 0.4, σ = 1 and
γ = 0.6 for the concurrent causes, i.e., a similar scheme to that fitted in the applications.
We assume that observations belong to two groups, say z1 = 0 or z1 = 1. In addition, we
assume a second continuous covariate, say z2. For i= 1, . . . ,n, we drew z1i and z2i from a
Bernoulli distribution with success probability equal to 0.5 and a Uniform distribution in
the interval (0,20) respectively. For each model, the parameters related to the cure were
computing by fixing cure rates (say q0 and q1) at determined values for each group,
without considering the effect of covariate z2i. We consider three kinds of cure rates:
high (q0 = 0.8 and q1 = 0.65), medium (q0 = 0.6 and q1 = 0.45) and low (q0 = 0.4 and
q1 = 0.25). To achieve this, the values for β0 and β1 for each distribution assumed for
M are given in Table 9.
On the other hand, the value for β2 was fixed as 0.1 in all cases. Using this setup, for

each i = 1, . . . ,n the value of θi was computed according to (5) and Mi was simulated
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Table 9: Values for β0 and β1 assumed in the simulation study.

Distribution High cure rate Medium cure rate Lower cure rate

assumed forM β0 β1 β0 β1 β0 β1

Poisson −1.4999 0.6578 −0.6717 0.4467 −0.0874 0.4141

Logarithmic −0.5264 0.9607 −0.7343 0.9857 −2.1180 1.7826

NB (q= 1) −1.3863 0.7673 −0.4055 0.6061 −0.4055 0.6931

Binomial (q= 1) −1.3863 0.7673 −0.4055 0.6061 −0.4055 0.6931

depending on each of the four power series distributions. We define W0i = ∞ and for
Mi> 0, we drewW1i, . . . ,WMii from a Pareto IV distribution (ifU ∼U(0,1), so σ(U− 1

α −
1)γ ∼ P4(α,σ,γ)). Then, we define T ∗

i =min(W0i,W1i, . . . ,WMii). The failure time was
defined as Ti=min(T ∗

i ,10) and δi= I(T ∗
i ≤ 10).We consider three sample sizes: n= 50,

n= 100 and n= 200. Each case was replicated 10,000 times and we report the average
bias (AB) and the average of mean square error (AMSE) of the estimates. Results are
presented in Table 10.

Table 10: Simulation study for PSP4 model with cure rate.

Distribution n= 50 n= 100 n= 200

for M bias MSE bias MSE bias MSE

High cure rate

Poisson β0 −0.050 0.423 −0.024 0.186 −0.015 0.085

β1 −0.043 0.203 −0.016 0.092 −0.011 0.042

β2 −0.007 0.002 −0.003 0.001 −0.002 0.000

α −0.040 0.254 −0.033 0.163 −0.021 0.094

σ −0.098 0.501 −0.054 0.201 −0.031 0.103

γ −0.010 0.341 −0.005 0.119 −0.001 0.052

Logarithmic β0 −0.030 2.320 −0.012 0.607 −0.020 0.245

β1 −0.143 1.105 −0.048 0.392 −0.030 0.185

β2 −0.016 0.009 −0.006 0.003 −0.003 0.001

α −0.045 0.287 −0.037 0.195 −0.019 0.087

σ −0.116 0.592 −0.076 0.257 −0.024 0.121

γ −0.037 0.320 −0.017 0.067 −0.007 0.045

Geometric β0 −0.053 0.668 −0.027 0.286 −0.017 0.132

β1 −0.059 0.379 −0.025 0.171 −0.012 0.082

β2 −0.007 0.003 −0.003 0.001 −0.002 0.001

α −0.045 0.237 −0.037 0.195 −0.019 0.057

σ −0.136 0.574 −0.065 0.266 −0.091 0.078

γ −0.019 0.219 −0.008 0.110 −0.004 0.055
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Table 10: Simulation study for PSP4 model with cure rate (continuation).

Distribution n= 50 n= 100 n= 200

for M bias MSE bias MSE bias MSE

High cure rate

Bernoulli β0 −0.088 0.798 −0.079 0.355 −0.038 0.156

β1 −0.065 0.541 −0.050 0.307 −0.019 0.112

β2 −0.015 0.006 −0.008 0.003 −0.003 0.001

α −0.058 0.277 −0.037 0.178 −0.019 0.051

σ −0.100 0.612 −0.063 0.186 −0.022 0.067

γ −0.023 0.321 −0.004 0.009 −0.002 0.005

Medium cure rate

Poisson β0 −0.010 0.255 −0.013 0.116 −0.003 0.054

β1 −0.030 0.134 −0.013 0.061 −0.006 0.029

β2 −0.007 0.001 −0.004 0.001 −0.002 0.000

α −0.034 0.233 −0.029 0.136 −0.015 0.087

σ −0.087 0.452 −0.051 0.186 −0.027 0.092

γ −0.009 0.321 −0.004 0.100 −0.001 0.043

Logarithmic β0 −0.168 2.616 −0.025 0.656 −0.011 0.269

β1 −0.147 1.234 −0.072 0.492 −0.023 0.223

β2 −0.014 0.010 −0.007 0.004 −0.002 0.002

α −0.039 0.254 −0.031 0.143 −0.015 0.076

σ −0.102 0.475 −0.062 0.212 −0.021 0.112

γ −0.034 0.287 −0.014 0.062 −0.006 0.038

Geometric β0 −0.009 0.518 −0.005 0.225 −0.001 0.103

β1 −0.040 0.314 −0.017 0.141 −0.008 0.069

β2 −0.008 0.003 −0.003 0.001 −0.001 0.001

α −0.040 0.212 −0.032 0.171 −0.015 0.043

σ −0.117 0.534 −0.061 0.247 −0.072 0.054

γ −0.015 0.192 −0.007 0.087 −0.003 0.049

Bernoulli β0 −0.074 0.542 −0.057 0.314 −0.032 0.139

β1 −0.055 0.451 −0.043 0.236 −0.015 0.100

β2 −0.011 0.005 −0.006 0.002 −0.002 0.001

α −0.041 0.243 −0.037 0.141 −0.011 0.034

σ −0.081 0.517 −0.052 0.159 −0.015 0.053

γ −0.019 0.259 −0.003 0.008 −0.002 0.004
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Table 10: Simulation study for PSP4 model with cure rate (continuation).

Distribution n= 50 n= 100 n= 200

for M bias MSE bias MSE bias MSE

Poisson β0 −0.045 0.231 −0.017 0.098 −0.009 0.045

β1 −0.025 0.115 −0.009 0.050 −0.004 0.024

β2 −0.007 0.001 −0.004 0.000 −0.002 0.000

α −0.029 0.198 −0.025 0.119 −0.011 0.053

σ −0.075 0.276 −0.043 0.150 −0.021 0.076

γ −0.008 0.276 −0.003 0.086 −0.000 0.033

Logarithmic β0 −0.350 0.253 −0.013 1.014 −0.044 0.427

β1 −0.253 3.837 −0.082 0.789 −0.044 0.341

β2 −0.013 1.993 −0.007 0.005 −0.003 0.002

α −0.032 0.214 −0.028 0.113 −0.012 0.059

σ −0.089 0.429 −0.053 0.189 −0.018 0.097

γ −0.021 0.253 −0.010 0.042 −0.004 0.025

Geometric β0 −0.063 0.012 −0.030 0.232 −0.013 0.106

β1 −0.050 0.287 −0.021 0.134 −0.007 0.065

β2 −0.005 0.002 −0.003 0.001 −0.001 0.001

α −0.030 0.193 −0.023 0.154 −0.011 0.031

σ −0.109 0.497 −0.053 0.212 −0.053 0.049

γ −0.011 0.153 −0.005 0.067 −0.002 0.032

Bernoulli β0 −0.049 0.417 −0.049 0.284 −0.023 0.097

β1 −0.043 0.445 −0.035 0.200 −0.009 0.071

β2 −0.007 0.004 −0.004 0.002 −0.001 0.001

α −0.029 0.210 −0.027 0.119 −0.007 0.029

σ −0.065 0.471 −0.047 0.132 −0.010 0.043

γ −0.017 0.212 −0.002 0.006 −0.001 0.002

Table 10 reveals an acceptable bias and MSE for all parameters and cases, except for
the parameter σ for which a high bias and MSE was encountered for the small sample
size. The bias and MSE decrease when the sample size is increased, suggesting that the
parameter estimators are consistent. Finally, the bias and MSE decreases when the cure
rate is decreased, which also is expected because for a lower cure rate, we expect more
failure times observed in the sample, i.e., more precise information.

6. Final discussion

The Pareto IV power series cure rate model has been shown to outperform an analogous
competing Birnbaum Saunders model for modeling a cutaneous melanoma data set. A
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simulation study confirms that, with reasonable sample sizes, accurate parameter esti-
mation is feasible within this model. An EM algorithm approach to obtaining maximum
likelihood estimates can be recommended for these models. It is interesting to note that
the rarely used logarithmic distribution turns out to be the distribution of choice among
the four power series models considered.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions of Automatic Con-
trol, 19, 716–723.

Arnold, B.C. (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-89974-
012-X.

Arnold, B.C. (2015). Pareto Distributions, 2nd edn. Series: Chapman &Hall/CRCMonographs on Statistics
& Applied Probability.

Berkson, J. and Gage, R. (1952). Survival curve for cancer patients following treatment. Journal of the
American Statistical Association, 47, 501–515.

Cancho, V.G., Louzada, F. and Ortega, E.M. (2013a). The power series cure rate model: an application to
a cutaneous melanoma data. Communications in Statistics - Simulation and Computation, 42, 586–
602.

Cancho, V.G., Louzada, F. and Barriga, G.D.C. (2013b). The Geometric Birnbaum-Saunders regression
model with cure rate. Journal of Statistical Planning and Inference, 142, 993–1000.

Cordeiro, G.M., Cancho, V.G., Ortega, E.M.M. and Barriga, G.D.C. (2016). A model with long-term sur-
vivors: Negative binomial Birnbaum-Saunders. Communication in Statistics - Theory and Methods,
45, 1370–1387.

Gallardo, D.I., Bolfarine, H. and Pedroso-de-Lima, A.C. (2016a). An EM algorithm for estimating the de-
structive weighted Poisson cure rate model. Journal of Statistical Computation and Simulation, 86,
1497–1515.

Gallardo, D.I. and Bolfarine, H. (2016b). Two efficient estimation procedures for the negative binomial
cure rate model with a latent activation scheme. Statistics and Operations Research Transactions,
40, 31–54.

Gallardo, D.I., Romeo, J.S. and Meyer, R. (2016c). A simplified estimation procedure based on the EM
algorithm for the power series cure rate model. Communication in Statistics - Simulation and Com-
putation. DOI: 10.1080/03610918.2016.1202276.
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