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Hierarchical models with normal and conjugate
random effects: a review

Geert Molenberghs1,2,∗, Geert Verbeke2,1 and Clarice G.B. Demétrio3

Abstract

Molenberghs, Verbeke, and Demétrio (2007) and Molenberghs et al. (2010) proposed a general
framework to model hierarchical data subject to within-unit correlation and/or overdispersion. The
framework extends classical overdispersion models as well as generalized linear mixed models.
Subsequent work has examined various aspects that lead to the formulation of several extensions.
A unified treatment of the model framework and key extensions is provided. Particular extensions
discussed are: explicit calculation of correlation and other moment-based functions, joint mod-
elling of several hierarchical sequences, versions with direct marginally interpretable parameters,
zero-inflation in the count case, and influence diagnostics. The basic models and several exten-
sions are illustrated using a set of key examples, one per data type (count, binary, multinomial,
ordinal, and time-to-event).
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1. Introduction

Parametric or semi-parametric modelling of univariate non-Gaussian outcomes is often
done within the generalized linear model (GLM) framework (Nelder and Wedderburn,
1972; McCullagh and Nelder, 1989; Agresti, 2002), which rests on the exponential
family. Commonly encountered outcome types include categorical (binary, binomial,
ordinal, etc.), count, and time-to-event outcomes, for which modelling typically, though
not always, rests upon the Bernoulli, Poisson, and exponential/Weibull distributions,
respectively. A key feature of exponential family distributions is the so-called mean-
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3 ESALQ, Universidade de Saõ Paulo, Piracicaba, Brazil.
Received: May 2017.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/147042436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


192 Hierarchical models with normal and conjugate random effects: a review

variance relationship, i.e., the fact that the variance is a deterministic function of the
mean. For example, for Bernoulli outcomes with success probability μ = π, the vari-
ance is v(μ) = π(1− π), for counts using Poisson assumptions v(μ) = μ and for the
exponential model v(μ) = μ2. However, for many outcome types, empirically observed
data can contradict this relationship, in the sense that the observed variance may be
higher or lower than what follows from the model formulation; these are referred to as
overdispersion and underdispersion, respectively. The two phenomena combined are
sometimes referred to as extra-model-dispersion. Especially in the somewhat older lit-
erature, more attention was given to overdispersion than to underdispersion. Hinde and
Demétrio (1998ab) provide early overviews of (semi-)parametric approaches for deal-
ing with overdispersion. Well-known models include the beta-binomial (Skellam, 1948;
Kleinman, 1973) for binary and binomial data, and the negative binomial model (Bres-
low, 1984; Lawless, 1987) for counts. These models can be generated by assuming
the so-called natural parameter to follow a carefully chosen distribution. For example,
the beta-binomial models follow from assuming the outcomes follow a binomial dis-
tribution with parameter drawn from a beta distribution; the negative binomial model
follows from a Poisson model with gamma distributed parameter. The resulting mod-
els have elegant parametric expressions and are relatively easy to interpret, because the
outcome and random-effects distributions are conjugate, a precise definition of which is
given in Section 4.2. Other solutions to accommodating overdispersion include mixture
modelling and specific models for zero-inflated Poisson models (Ridout, Demétrio and
Hinde, 1998; Böhning, 2000; McLachlan and Peel, 2000).
Nowadays, it is very common to encounter aforementioned data types in a hierar-

chical context, such as resulting from multivariate, longitudinal, spatial, and clustered
designs. We will generically refer to these settings as repeated measures. The data hier-
archies induce association among the repeated measures, which can be captured, among
others, by random effects. Especially the generalized linear mixed model (GLMM; En-
gel and Keen, 1994; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993) has
beÃ§come a popular and widespread tool, routinely implemented in a suite of stan-
dard software packages. Reviews are given in Verbeke and Molenberghs (2000) and
Molenberghs and Verbeke (2005). A key ingredient is a linear predictor that also incor-
porates normally distributed random effects. These random effects engender not only
correlation among the repeated measures, but also some overdispersion. However, the
empirical correlation and overdispersion present in the data may be hard to model with
only a limited number of normal random effects. This is why Molenberghs et al. (2007;
henceforth referred to as MVD) and Molenberghs et al. (2010; henceforth referred to
as MVDV) have proposed a model family, the so-called combined model (CM) that
combines conjugate and normal random effects, leading to highly increased flexibility
for the triple of functions made up of the mean, variance, and correlation functions.
Note that, for time-to-event data, not only GLMM but also the so-called frailty models
(Duchateau and Janssen, 2007) have been used. These start from gamma rather than
normally distributed random effects, which are conjugate to the exponential distribu-
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tion, and lead to elegant expressions when combined with the Weibull distribution as
well (see Section 7).
After introducing a set of key examples (Section 2) and reviewing several key in-

gredients in Section 3, the CM is introduced in Section 4. Sections 5-7 are devoted to
the count, categorical, and time-to-event cases, respectively. In the count case, specific
attention is given to the occurrence of extra-model zeroes, i.e., zero-inflated versions of
the model. In the categorical case, we further distinguish between binary, binomial, and
ordinal data. Of note is the rather different algebraic nature of the model with logit and
that with probit link. In the time-to-event case, we also allow for censoring, and discuss
some issues with the moment functions of the so-called Weibull-gamma-normal model
and its sub-models. In Section 8 we describe maximum likelihood and some related
estimation strategies.
In Section 9, we show how the CM and its sub-models can be used, in most cases, to

derive explicit expressions for so-called manifest correlations, whereas often, for con-
venience, the latent correlation is considered. Usually, though, the manifest correlation
is considerably smaller than its latent counterpart; hence, using the latter may lead to
overly optimistic conclusions.
A typical problem arising with the GLMM, in contrast to the GLM, the linear mixed

model (LMM) for Gaussian outcomes, and models with conjugate random effects is
that deriving marginal expressions is not so straightforward and, related to this, that the
model parameters have a hierarchical (i.e., conditional on the random effects) but not
a marginal (i.e., averaged over a suitable population) interpretation. The CM evidently
inherits this problem. While some progress is made for the specific cases discussed in
Sections 5-7, it is still useful to take a different route: that of a so-called marginalized
multilevel model, based on work of Heagerty (1999) and Heagerty and Zeger (2000). It
will be referred to as the combined marginalized multilevel model, or COMMM.
Evidently, in line with a lot of contemporary work, it is perfectly possible to observe,

for example, several longitudinal sequences simultaneously. The resulting designs are
referred to as multivariate longitudinal or, more generically, joint modelling. The use of
the CM in this context is reviewed in Section 11. Finally, Section 12 describes diagnostic
measures based on local influence.
The review in this paper is based on work by MVD and MVDV, which is also based

on Booth et al. (2003), and various extensions of all of these. Evidently, also different
strands of research exist that extend the GLMM and increase its flexibility. In particular,
we refer to Lee and Nelder (1996, 2001ab, 2003), Lee, Nelder, and Pawitan (2006), who
proposed so-called hierarchical generalized linear models, accommodating many out-
come and random-effects distributions, while being efficient in computational terms. In
the particular case of count data, our model relates to theirs by considering log-gamma
and log-normal random effects together. Regarding estimation, we focus primarily on
marginal maximum likelihood estimation and Bayesian estimation, whereas Lee and
Nelder employ so-called h-likelihood. In particular, we analytically integrate over the
conjugate random effects and use numerical integration for the normal random effects.
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Skrondal and Rabe-Hesketh (2004) brought together in a single model framework, mul-
tilevel modelling, structural equations modelling, latent variables, latent classes, and
random-effects models for hierarchical data.

2. Case studies

We will describe five case studies. The outcomes are of a count, binary, binomial,
ordinal, and time-to-event nature, respectively.

2.1. A clinical trial in epileptic patients

The data considered here are obtained from a randomized, double-blind, parallel group
multicentre study for the comparison of placebo with a new anti-epileptic drug (AED),
in combination with one or two other AEDs. The study is described in full detail in
Faught et al. (1996). The randomization of epilepsy patients took place after a 12-
week baseline period that served as a stabilization period for the use of AEDs, and
during which the number of seizures were counted. After that period, 45 patients were
assigned to the placebo group, 44 to the active (new) treatment group. Patients were
then measured weekly. Patients were followed (double-blind) during 16 weeks, after
which they were entered into a long-term open-extension study. Some patients were
followed for up to 27 weeks. The outcome of interest is the number of epileptic seizures
experienced during the most recent week. The research question is whether or not the
additional new treatment reduces the number of epileptic seizures.

2.2. A clinical trial in onychomycosis

These data come from a randomized, double-blind, parallel group, multicentre study
for the comparison of two oral treatments (coded as A and B) for toenail dermatophyte
onychomycosis (TDO), described in full detail by De Backer et al. (1996). TDO is a
common toenail infection, difficult to treat, affecting more than 2 out of 100 persons
(Roberts, 1992). Anti-fungal compounds, classically used for treatment of TDO, need
to be taken until the whole nail has grown out healthy. The development of new such
compounds, however, has reduced the treatment duration to 3 months. The aim of the
present study was to compare the efficacy and safety of 12 weeks of continuous ther-
apy with treatment A or with treatment B. In total, 2× 189 patients, distributed over
36 centres, were randomized. Subjects were followed during 12 weeks (3 months) of
treatment and followed further, up to a total of 48 weeks (12 months). Measurements
were taken at baseline, every month during treatment, and every 3 months afterwards,
resulting in a maximum of 7 measurements per subject. At the first occasion, the treat-
ing physician indicates one of the affected toenails as the target nail, the nail which will
be followed over time. We will restrict our analyses to only those patients for which
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the target nail was one of the two big toenails (146 and 148 subjects, in group A and
group B, respectively). One of the responses of interest was the unaffected nail length,
measured from the nail bed to the infected part of the nail, which is always at the free
end of the nail, expressed in mm. This outcome has been studied extensively in Verbeke
and Molenberghs (2000). Another important outcome in this study was the severity of
the infection, coded as 0 (not severe) or 1 (severe). The question of interest was whether
the percentage of severe infections decreased over time, and whether that evolution was
different for the two treatment groups.

2.3. Iron-deficient diets in rats

These data result from an experiment where female rats were put on iron-deficient diets
(Shepard, Mackler, and Finch, 1980). This dataset has been analysed by Liang and
McCullagh (1993) and Moore and Tsiatis (1991). In Agresti (2002), the data were used
to estimate several logit models. Experimental rats were divided into 4 groups, one of
which is a control group. The number of female rats per group (total number of fetuses
per group) are: 31 (327) for placebo, 12 (118) for low dose, 5 (58) for medium dose,
and 10 (104) for high dose. Weekly injections of iron supplement were to bring the rats’
iron intake to normal levels. Rats in the placebo group were given placebo injection, the
others got three different doses of the iron supplements. Rats were made pregnant and
sacrificed 3 weeks later and the total number of fetuses and the number of dead fetuses
in each litter were counted. Hemoglobin levels of the mothers were also measured.

2.4. Diabetes study

In Belgium, the diabetes project was conducted from January 2005 until December
2006, with the aim to study the effect of implementing a structured model for chronic
diabetes care on the patients’ clinical outcomes. General practitioners (GPs) were of-
fered assistance and could redirect patients to the diabetes care team, consisting of a
nurse educator, a dietician, an ophthalmologist, and an internal medicine doctor. For
the project, two programs were implemented and GPs were randomized to one of two
groups: UQIP: Usual Quality Improvement Program and AQIP: Advanced Quality Im-
provement Program. A total of 120 GPs took part in the study, 53 in the UQIP group
and 67 in the AQIP group, including 918 and 1577 patients, respectively.
During the project, several outcomes useful to evaluate how well diabetes is con-

trolled were measured, at the moment the program was initiated (time T0) and one
year later (T1). The most important outcomes were HbA1c (glycosylated hemoglobin),
LDL-cholesterol (low-density lipoprotein cholesterol) and SBD (systolic blood pres-
sure). Furthermore, experts specified cut off values defining a so-called clinical target
for each outcome: HBA1C<7%, LDL-cholesterol< 100mg/dl and SBD≤ 130mmHg.
As a result, for a particular time point, every patient could reach between 0 and 3 clinical
targets. This number was reflected in the variable number of clinical targets. If at least
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one measurement per patient was missing, the value for the number of clinical targets
was set to missing as well. The data are discussed in Borgermans et al. (2009).

2.5. Recurrent asthma attacks in children

These data have been studied in Duchateau and Janssen (2007). Asthma is occurring
more and more frequently in very young children (between 6 and 24months). Therefore,
a new application of an existing anti-allergic drug is administered to children who are
at higher risk to develop asthma in order to prevent it. A prevention trial is set up with
such children randomized to placebo or drug, and the asthma events that developed over
time are recorded in a diary. Typically, a patient has more than one asthma event. The
different events are thus clustered within a patient and ordered in time. This ordering
can be taken into account in the model. The data are presented in calendar time format,
where the time at risk for a particular event is the time from the end of the previous
event (asthma attack) to the start of the next event (start of the next asthma attack). A
particular patient has different periods at risk during the total observation period which
are separated either by an asthmatic event that lasts one or more days or by a period in
which the patient was not under observation. The start and end of each such risk period
is required, together with the status indicator to denote whether the end of the risk period
corresponds to an asthma attack or not.

3. Some background

We briefly review some background on the exponential family and generalized linear
models (Section 3.1), overdispersion (Section 3.2), and models with normal random
effects (Section 3.3).

3.1. Generalized linear models

A random variable Y follows an exponential family distribution if the density is of the
form

f (y)≡ f (y|η,φ) = exp
{
φ−1[yη−ψ(η)]+ c(y,φ)

}
, (1)

for a specific set of unknown parameters η (‘natural parameter’ or ‘canonical param-
eter’) and φ (‘dispersion parameter’), and for known functions ψ(·) and c(·, ·). It fol-
lows that E(Y ) = μ = ψ′(η) and Var(Y ) = σ2 = φψ′′(η), with ensuing mean-variance
relationship σ2 = φψ′′[ψ

′−1(μ)] = φv(μ), with v(·) the variance function. Commonly
encountered examples and their model elements are presented in Table 1. Note that,
in the normal case, there is no mean-variance relationship. In the binary case, also the
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probit link is commonly encountered, whence η =Φ−1(π) andΦ(·) is the standard nor-
mal cumulative distribution function. As explained in Section 6.1, the probit link has
appealing properties when normal random effects are introduced into the model.
In the Weibull and exponential model, the decomposition ϕ = λeμ is often used, al-

lowing μ to be written as a function of covariates. Note that μ is a component of the
mean function, not the mean itself. The Weibull model does not belong to the exponen-
tial family in a conventional sense, unless when y is replaced by yρ. In Table 1, Γ(·)
represents the gamma function.
When not the full joint distribution but, say, the first and second moments only are

specified, a semi-parametric version of the model results, for which quasi-likelihood
estimation has been devised (McCullagh and Nelder, 1989; Molenberghs and Verbeke,
2005).
The generalized linear model (GLM) follows from the exponential family by as-

suming that a set of independent replicates Yi with p-dimensional covariate vectors
xxxi (i = 1, . . . ,N), follow exponential-family densities f (yi|ηi,φ). Specification of the
GLM is completed by modelling the means μi as functions of the covariate values:
μi = h(ηi) = h(xxxT

i ξξξ), for a known function h(·), and with ξξξ a vector of p fixed, unknown
regression coefficients. Here, h−1(·) is called the link function. In most applications, the
so-called natural link function is used, i.e., h(·) = ψ′(·), which is equivalent to assum-
ing ηi = xxxT

i ξξξ. In other words, it is assumed that the natural parameter satisfies a linear
regression model.

3.2. Overdispersion

As stated in the introduction, and as is clear from Table 1, many standard exponential
family models enforce a mean-variance relationship that may be contradicted by the
data, especially for count, binomial, and time-to-event data. For binary data, such a
violation can only occur when the outcomes are correlated (see Section 6).
As reviewed byHinde andDemétrio (1998ab), an obviousway to incorporate overdis-

persion is by allowing φ �= 1, so that the variance becomes Var(Y ) = φv(μ). An el-
egant way forward is through a two-stage approach. For binary data, one would as-
sume that Yi|πi ∼ Bernoulli(πi) and further that πi is a random variable with E(πi) = μi
and Var(πi) = σ2i . Using iterated expectations, it follows that E(Yi) = μi and var(Yi) =
μi(1−μi), underscoring that purely Bernoulli data are unable to exhibit overdispersion.
The situation is different for counts. In the Poisson case, we assume that Yi|ζi ∼ Poi(ζi)
and then that ζi is a random variable with E(ζi) = μi and Var(ζi) = σ2i . Then, it follows
that E(Yi) = μi and var(Yi) = μi+σ

2
i . We have not assumed a particular distributional

form for the random effects πi and ζi, respectively. Hence, this gives rise to a semi-
parametric specification. In case it is considered advantageous to make full distribu-
tional assumptions about the random effects, common choices are the beta distribution
for πi and the gamma distribution for ζi; of course, these are not the only ones.
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The two-stage approach is made up of considering a distribution for the outcome
variable, given a random effect f (yi|θi) which, combined with a model for the random
effect, f (θi), produces the marginal model:

f (yi) =
∫
f (yi|θi) f (θi)dθi. (2)

It is easy to extend this model to the case of repeated measurements by assuming a hi-
erarchical data structure, where now Yi j denotes the jth outcome measured for cluster
(subject) i, i = 1, . . . ,N, j = 1, . . . ,ni and YYY i is the ni-dimensional vector of all mea-
surements available for cluster i. In the repeated-measures case, the scalar ζi becomes a
vector ζζζ i= (ζi1, . . . ,ζini)

T, with E(ζζζ i) =μμμi and var(ζζζ i) =ΣΣΣi. For example, for the Poisson
case, similar logic as in the univariate case produces E(YYY i) =μμμi and var(YYY i) =Mi+ΣΣΣi,
where Mi is a diagonal matrix with the vector μμμi along the diagonal. Note that a diag-
onal structure of Mi reflects the conditional independence assumption: all dependence
between measurements on the same unit stems from the random effects. Generally, a
versatile class of models results. For example, assuming that the components of ζζζ i are
independent, a pure overdispersion model follows, without correlation between the re-
peated measures. On the other hand, assuming ζi j = ζi, i.e., that all components are
equal, then var(YYY i) =Mi+σ2i Jni , where Jni is an ni× ni dimensional matrix of ones.
Such a structure can be seen as a general version of compound symmetry.
Alternatively, this repeated version of the overdispersion model can be combined

with normal random effects in the linear predictor. This very specific choice was also
proposed by Thall and Vail (1990) and Dean (1991) for the count case.
Marginalization (2) is general and elegant, but one has to reflect on which parame-

ter to become random, in particular when full distributional assumptions are requested.
As always, this is easy for the linear mixed model, by combining a normal hierarchical
model with a normal random effect, and provided θi is used to express the conditional
mean as a linear function of covariates. It forms the basis of the two strands of random-
effects models that are potentially brought together in the combinedmodels of Section 4:
on the one hand, normal random effects can be considered with non-normal outcomes,
producing the GLMM; on the other hand, gamma random effects for the Poisson model,
beta random effects with binomial data, and gamma random effects for the Weibull
model can be considered. This is, seemingly, a disparate collection. However, they are
unified through so-called conjugacy, in the sense of Cox and Hinkley (1974, p. 370) and
Lee et al. (2006, p. 178). The topic is also discussed by Agresti (2002). Informally,
conjugacy refers to the fact that the hierarchical and random-effects densities have simi-
lar algebraic forms. Conjugate distributions produce a general and closed-form solution
for the corresponding marginal distribution.
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We will first define standard conjugacy, i.e., in models without the normal random
effects and then, in Section 4, introduce a further property, strong conjugacy, necessary
for situations where both normal and conventional conjugate random effects are present.
To simplify notation, we will provide the definition at a general distribution level, with
neither subject- nor measurement-specific subscripts, so that it can be applied to both
univariate and longitudinal data. The hierarchical and random-effects densities are said
to be conjugate if and only if they can be written in the generic forms:

f (y|θ) = exp{φ−1[yh(θ)−g(θ)]+ c(y,φ)
}
, (3)

f (θ) = exp{γ[ψh(θ)−g(θ)]+ c∗(γ,ψ)} , (4)

where g(θ) and h(θ) are functions, φ, γ, and ψ are parameters, and the additional func-
tions c(y,φ) and c∗(γ,ψ) are so-called normalizing constants. It can then be shown,
upon constructing the joint distribution and then integrating over the random effect, that
the marginal model resulting from (3) and (4) equals:

f (y) = exp

[
c(y,φ)+ c∗(γ,ψ)− c∗

(
φ−1+γ,

φ−1y+γψ
φ−1+γ

)]
. (5)

Table 1 gives model elements, such as density or probability mass functions, conditional
on random effects and marginalized over these, as well as the random effects distribu-
tions. For all models considered, the constants and functions featuring in (3)–(4) are
listed, and finally marginal means and variances are provided. For some models, these
are well known (Hinde and Demétrio, 1998ab) and/or easy to derive.
In the case of binary data, the model in Table 1 is the familiar beta-binomial model.

Note that the variance still obeys the usual Bernoulli variance structure. This is entirely
natural, given that we still focus on a single binary outcome, in contrast to the more
conventional binomial basis model, where data of the format ‘zi successes out ni trials’
are considered. We do not consider this situation in this section, but rather leave it to
Section 6. In such a case, the variance structure becomes πi(1− πi)[1+ ρi(ni− 1)],
where ρi is a measure for correlation. All parameters, pi and ρi, can be expressed in
terms of αi and βi, ‘cluster-specific’ versions of the beta parameters.
For count data, the familiar negative-binomial model results. Unlike in the binary

case, univariate counts are able to violate the mean-variance relationship inherent in the
Poisson distribution, hence the great popularity of this and other types of models for
overdispersion. The same applies to the exponential distribution. Of course, already the
Weibull model, with its extra parameter ρ, alleviates the constraint.
The normal distribution case is a special one. Not only is it self-conjugate, also

the model is not identified, unlike all others. This is because both random terms, seen
from writing Yi = μi+bi+ εi, are in direct, linear relationship. In the generalized linear
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context, the various random terms have no direct linear alliance. The normal case will
continue to be ‘the odd one out’ in models to come (Sections 3.3 and 5-7).
The parameters α and β in the beta and gamma distributions are not always jointly

identified. It is therefore customary to impose restrictions, such as setting one of them
equal to a fixed value, e.g., α = 1, or constraining their mean or variance, etc. Such
constraints operate differently, depending on other elements present in the models. For
example, the presence of additional random effects in a model for repeated measures,
such as in Section 4, alters the meaning and restrictiveness of such constraints.

3.3. Models with normal random effects

The generalized linear mixed model (GLMM; Engel and Keen, 1994; Breslow and Clay-
ton, 1993; Wolfinger and O’Connell, 1993) is a straightforward extension of the linear
mixed model (Verbeke and Molenberghs, 2000) to non-Gaussian hierarchical data. It is
implemented in many standard software tools.
Let Yi j be the jth outcome measured for cluster (subject) i = 1, . . . ,N, j = 1, . . . ,ni

and group the ni measurements into a vector YYY i. Assume that, in analogy with Sec-
tion 3.1, conditionally upon q-dimensional random effects bbbi ∼ N(000,D), the outcomes
Yi j are independent with densities:

fi(yi j|bbbi, ξξξ,φ) = exp
{
φ−1[yi jλi j−ψ(λi j)]+ c(yi j,φ)

}
, (6)

where

η[ψ′(λi j)] = η(μi j) = η[E(Yi j|bbbi, ξξξ)] = xxx T

i j ξξξ+zzz
T

i j bbbi (7)

for a known link function η(·), with xxx T
i j and zzzi j p-dimensional and q-dimensional vectors

of known covariate values, with ξξξ a p-dimensional vector of unknown fixed regression
coefficients, and with φ a scale (overdispersion) parameter. Finally, let f (bbbi|D) be the
density of the N(000,D) distribution for the random effects bbbi. These models closely
follow the ones formulated in the top part of Table 1, with key differences that now: (a)
data hierarchies are allowed for; (b) the natural parameter is written as a linear predictor,
a function of both fixed and random effects.

4. Models combining conjugate and normal random effects

4.1. General model formulation

Combining overdispersion (Section 3.2) and normal random effects (Section 3.3) into
the generalized linear model framework, produces the following general family:
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fi(yi j|bbbi, ξξξ,θi j,φ) = exp
{
φ−1[yi jλi j−ψ(λi j)]+ c(yi j,φ)

}
, (8)

The conditional mean follows as the product:

E (Yi j|bi, ξξξ,θi j) = μci j = ψ′(λi j) = θi jκi j, (9)

where the random variable

θi j ∼Θi j
(
υi j,σ

2
i j

)
, (10)

with mean υi j, variance σ2i j, and the mean component

g(κi j) = xxx T

i j ξξξ+zzz
T

i j bi (11)

depends on an ni × p fixed-effects design XXXi and a ni × q random-effects design ZZZi
through a link function g(·); ξξξ and bi ∼ N(0,D) are fixed and random effects, respec-
tively. The relationship between mean and natural parameter is

λi j = h(μci j) = h(θi jκi j). (12)

The mean satisfies:

E(Yi j) = E(θi j)E(κi j) = E[h
−1(λi j)]. (13)

Depending of the type of outcome under investigation, the distribution of θi j can be
chosen appropriately.
It is computationally convenient, but not strictly necessary, to assume that the sets

of random effects, θθθi and bbbi, are independent. Kalema and Molenberghs (2015) and
Kalema, Iddi, and Molenberghs (2016) relaxed this assumption. Regarding the compo-
nents θi j of θθθi, three special cases are: (1) independence; (2) correlated, implying that
the univariate distributions Gi j(ϑi j,σ

2
i j) must be replaced with a multivariate one; and

(3) equal (useful in applications with exchangeable outcomes Yi j).

4.2. Strong conjugacy

It is of interest to explore under what conditions Model (8) still allows for conjugacy,
now that normal random effects have been introduced into the linear predictor, leading
to the multiplicative factor κi j in the mean structure. To this end, MVDV considered
conjugacy conditional upon the normally-distributed random effect bbbi. Write in simpli-
fied notation:
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f (y|κθ) = exp{φ−1[yh(κθ)−g(κθ)]+ c(y,φ)
}
, (14)

generalizing (3), and retain (4). Applying the transformation theorem to (4) leads to

f (θ|γ,ψ) = κ · f (κθ|γ̃, ψ̃),

where γ̃ and ψ̃ are appropriate parameters. Next, we request that the parametric form
(4) be maintained:

f (κθ) = exp{γ∗[ψ∗h(κθ)−g(κθ)]+ c∗∗(γ∗,ψ∗)} , (15)

where the parameters γ∗ and ψ∗ follow from γ̃ and ψ̃ upon absorption of κ. Then, the
marginal model, in analogy with (5), equals:

f (y|κ) = exp
{
c(y,φ)+ c∗∗(γ∗,ψ∗)+ c∗∗

(
φ−1+γ∗,

φ−1y+γ∗ψ∗

φ−1+γ∗

)}
. (16)

Not every model satisfying conjugacy in the sense of Section 3.2 allows for this form
of conjugacy, referred to as strong conjugacy. Examples include the normal, Poisson,
and Weibull (and hence exponential) models with normal, gamma, and gamma random
effects, respectively. A counterexample is provided by the Bernoulli, and hence also
binomial, model. Because the probit model does not allow for conjugacy, it is out of the
picture here, too. The latter does not preclude the existence of closed forms in the probit
case, as was shown by MVDV. These authors noted that strong conjugacy stems from
the random-effects distribution, not from the data model. For example, they showed, for
a gamma random effect:

1
κ
f (θ|α,β) = f (κβ|α,κβ), (17)

and hence a scaled version of a gamma random effect is still a gamma random effect,
with invariant α and re-scaled β.
Strong conjugacy facilitates the use of standard software, which does not imply that

such software cannot be used once strong conjugacy does not hold. Arguably, the deriva-
tion of analytic quantities, such as moments, and hence means, variances, and covari-
ances, is simplified when the property holds.
All CM can be formulated using the same general principles. One simply has to

combine the models formulated in Table 1 with the GLMM (6) and corresponding linear
predictor (7). The effect θ is then replaced by θi jκi j, where κi j is defined by setting
η = ηi j equal to the linear predictor whence κi j is expressed, for the respective models,
as μ, π, λ, and φ.
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5. Count data

The model elements in this case are:

Yi j ∼ Poi(θi jκi j), (18)

κi j = exp
(
xxx T

i jξξξ+ z
T

i j bbbi
)
, (19)

bbbi ∼ N(000,D), (20)

E(θθθi) = E[(θi1, . . . ,θini)
T] =ϑϑϑi, (21)

var(θθθi) =ΣΣΣi. (22)

This model has the same structure as the one by Booth et al. (2003). In the spirit of
Table 1, the θi j can be assumed to follow a gamma model, producing, what we could
term, a Poisson-gamma-normal model (PGN). Recall that bbbi accommodates correlation
and some overdispersion, while residual overdispersion is captured by the components
θi j of θθθi. Should these components be assumed dependent, then both sets of random
effects capture some correlation as well as some overdispersion. In the correlated case,
a multivariate extension of the gamma distribution would be needed (see, for example,
Gentle, 2003).
This model enjoys strong conjugacy, as shown by MVDV. Continuing on the work

of Zeger, Liang, and Albert (1988), and using expressions for the standard Poisson
moments (Johnson, Kemp, and Kotz, 2005, p. 162), MVD derived the moments; condi-
tional upon the random effects are:

E(Y ki j) =
k∑
�=0

S(k, �)(θi jκi j)
�, (23)

where S(k, �) is the so-called Stirling number of the second kind. Integrating (23) over
the random effects produces:

E(Y ki j) =
k∑
�=0

S(k, �)
β�Γ(α+ �)

Γ(α)
exp
[
�xxx T

i jξξξ+
1
2�
2 z T

i jDzi j
]
. (24)

The mean components are:

μi j = φi j exp
(
xxx T

i j ξξξ+
1
2z

T

i jDzi j
)
, (25)

with the variance-covariance matrix

var(Yi) =Mi+Mi (Pi−Jni)Mi, (26)
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where Mi is a diagonal matrix with the μi j along the main diagonal, and the ( j,k)th

element of Pi equals

pi, jk = exp
(
1
2z

T

i jDzik
) · σi, jk+φi jφik

φi jφik
· exp( 12z T

ikDzi j
)
. (27)

MVD also derived a series-based expression for the marginal joint distribution:

P(YYY i = yyyi) =
∑
ttt

[
ni

∏
j=1

(
yi j+ t j
yi j

)
·
(
α j+ yi j+ t j−1

α j−1
)
· (−1)t j ·βyi j+t jj

]

× exp
⎛⎝ ni∑

j=1

(yi j+ t j)xxx
T

i j ξξξ

⎞⎠

× exp
⎛⎝1
2

⎡⎣ ni∑
j=1

(yi j+ t j)z
T

i j

⎤⎦D
⎡⎣ ni∑

j=1

(yi j+ t j)zi j

⎤⎦⎞⎠ . (28)

In the above equation, the vector-valued index ttt = (t1, . . . , tni)
T ranges over all non-

negative integer vectors.
In Section 9, the benefit of having closed-form expressions will show when deriving

quantities such as marginal correlations.
Kalema andMolenberghs (2015) and Kalema, Iddi, andMolenberghs (2016) showed

how the combined model formulation can be used to generate correlated count data.
Neyens, Faes, andMolenberghs (2012) adapted the framework to accommodate overdis-
persion in counts that arise in a spatial context.

5.1. A clinical trial in epileptic patients

We will analyse the epilepsy data, introduced in Section 2.1. Let Yi j represent the num-
ber of epileptic seizures patient i experiences during week j of the follow-up period.
Also, let ti j be the time-point at which Yi j has been measured, ti j = 1,2, . . . until at most
27. Consider the combined model (18)–(22), with specific choices

ln(κi j) =

{
(ξ00+bi)+ ξ01ti j if placebo

(ξ10+bi)+ ξ11ti j if treated,
(29)

where the random intercept bi is assumed to be zero-mean normally distributed with
variance d. We consider special cases (a) the ordinary Poisson model (P--), (b) the
negative-binomial model (PG-), (c) the Poisson-normal model (P-N), together with (d)
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Table 2: Epilepsy study. Parameter estimates (standard error) in (1) Poisson model (P--), (2) negative-
binomial model (PG-), (3) Poisson-normal model P-N), and (4) combined model (PGN), as well as their
zero-inflated counterparts ZI(P--), ZI(PG-), ZI(P-N), ZI(PGN).

Combined models Negative-binomial models

Effect Par. ZI(PGN) (PGN) ZI(PG-) (PG-)

Interc. plac. ξ00 0.947(0.167) 0.911(0.176) 1.236(0.110) 1.259(0.0.112)

Slope plac. ξ01 −0.016(0.008) −0.025(0.008) −0.007(0.011) −0.013(0.011)
Interc. treatm. ξ10 0.836(0.172) 0.656(0.178) 1.397(0.110) 1.475(0.109)

Slope treatm. ξ11 −0.006(0.007) −0.012(0.008) −0.022(0.011) −0.035(0.010)
Neg.-bin. par. α1 0.245(0.025) 2.464(0.211) 1.787(0.100) 0.527(0.026)

SD non-zero part RE
√
d1 0.997(0.085) 1.063(0.087) − −

Infl. Interc. γ0 −4.581(0.641) − −7.106(1.334) −
Infl. slope γ1 0.092(0.034) − 0.292(0.066) −
SD zero part RE

√
d2 2.533(0.440) - − −

Corr. RE ρ −0.096(0.153) − − −
Pred. prob. zeros 0.352 0.321 0.185 0.158

−2log-likelihood 5317.9 5417.0 6318.9 6326.1

Poisson-normal models Poisson models

Effect Par. ZI(P-N) (P-N) ZI(P--) (P--)

Interc. plac. ξ00 0.903(0.155) 0.818(0.168) 1.485(0.043) 1.266(0.0.042)

Slope plac. ξ01 −0.004(0.005) −0.014(0.004) −0.007(0.005) −0.0.013(0.004)
Interc. treatm. ξ10 0.908(0.159) 0.648(0.170) 1.806(0.040) 1.453(0.038)

Slope treatm. ξ11 −0.007(0.005) −0.012(0.004) −0.025(0.014) −0.033(0.004)
SD non-zero part RE

√
d1 0.971(0.082) 1.076(0.086) − −

Infl. Interc. γ0 −3.712(0.500) − −0.659(4.699) −
Infl. slope γ1 0.095(0.025) − −3.291(4.444) −
SD zero part RE

√
d2 2.222(0.343) − − −

Corr. RE ρ −0.154(0.157) − − −
Pred. prob. zeros 0.338 0.263 0.014 0.046

−2log-likelihood 5845.1 6271.9 10912 11590

the combined model (PGN). Estimates (standard errors) are presented in Table 2. The
table also contains zero-inflated versions, that will be discussed in Section 5.2. Clearly,
both the negative-binomial model and the Poisson-normal model are important improve-
ments, in terms of the likelihood, relative to the ordinary Poisson model. This should
come as no surprise since the latter unrealistically assumes there is neither overdisper-
sion nor correlation within the outcomes, while clearly both are present. In addition,
when considering the combined model, there is a very strong improvement in fit when
gamma and normal random effects are simultaneously allowed for. This strongly affects
the point and precision estimates of such key parameters as the slope difference and the
slope ratio. There is also an impact on hypothesis testing. The Poisson model leads to
unequivocal significance for both the difference (p = 0.0008) and ratio (p = 0.0038),
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whereas for the Poisson normal this is not the case for the difference of the slopes
(p= 0.7115), while some significance is maintained for the ratio (p= 0.0376). Because
the Poisson-normal is commonly used, it is likely that in practice one would decide in fa-
vor of a treatment effect when considering the slope ratio. This is no longer true with the
negative-binomial model, where the p-values change to p = 0.01310 and p = 0.2815,
respectively. Of course, one must not forget that, while the negative-binomial model ac-
commodates overdispersion, the θi j random effects are assumed independent, implying
independence between repeated measures. Again, this is not realistic and therefore the
combined model is a more viable candidate, corroborated further by the aforementioned
likelihood comparison. This model produces non-significant p-values of p = 0.2260
and p= 0.1591, respectively.
Thus, in conclusion, whereas the conventionally used and broadly implemented

Poisson-normal model would suggest a significant effect of treatment, our combined
model issues a message of caution, because there is no evidence whatsoever regarding a
treatment difference.
Molenberghs and Verbeke (2005, Ch. 19), considered a (P-N) model with random

intercepts as well as random slopes in time. It is interesting to note that, when allowing
for such an extension in our models, the random slopes improve the fit of the (P-N)
model with random intercept, but not of the combined one with random intercept (details
not shown). As a consequence, the combined model with random intercept is the best
fitting one. At the same time, note that fitting such a model establishes that the presence
of a conjugate random effect does not preclude the consideration of normal random
effects beyond random intercepts. The data were analysed by Booth et al. (2003), too.
Let us now turn to the correlation functions. Given that the gamma random effects

are assumed independent, we only need to consider the Poisson-normal and combined
cases; the versions with and without random slopes are considered. Because the fixed-
effects structure is not constant but rather depends on time, MVD formulated a correla-
tion function. In the (P-N) case with random intercepts only, and for the placebo group,
based on the parameter estimates in Table 2, they obtained:

Corr(Y (t),Y (s)) =
35.58 ·0.99t+s√

(4.04 ·0.99t+35.58 ·0.97t) · (4.04 ·0.99s+35.58 ·0.97s) ,

where Y (t) represents the outcome for an arbitrary subject at time t. Calculations in all
other cases are similar. The smallest and largest values for the correlation functions,
for both arms, for both the Poisson-normal and combined models, and for both choices
of the random-effects structure are given in Table 3. When only random intercepts are
considered, the correlations range over a narrow interval; they are rather high and there
is little difference between the Poisson-normal and combined models. However, turning
to the models with random intercepts and random slopes, several differences become
apparent. First, the values exhibit a much broader range between their smallest and
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largest values. Second, the range is somewhat over-estimated by the Poisson-normal
model, which then narrows when we switch to the combined model, thereby incorpo-
rating overdispersion effects, random intercepts, and random slopes. Thus, the random
slope allows for the correlation to range over a considerable interval, while the overdis-
persion effect prevents the range from becoming overly wide.

Table 3: Epilepsy study. Observed smallest and largest values for the correlation function, for the Poisson-
normal and combined models, and for both treatment arms. The time pair for which the values are observed
is shown too. (RI: random intercept; RS: random slope.)

Smallest value Largest value

Model Arm ρ time pair ρ time pair

Poisson-normal, RI placebo 0.8577 26 & 27 0.8960 1 & 2
Poisson-normal, RI treatment 0.8438 26 & 27 0.8794 1 & 2

Combined, RI placebo 0.8259 26 & 27 0.8981 1 & 2
Combined, RI treatment 0.8383 26 & 27 0.8744 1 & 2

Poisson-normal, RI+RS placebo 0.2966 1 & 27 0.9512 26 & 27
Poisson-normal, RI+RS treatment 0.2936 1 & 27 0.9530 26 & 27

Combined, RI+RS placebo 0.4268 1 & 27 0.9281 26 & 27
Combined, RI+RS treatment 0.4225 1 & 27 0.9329 26 & 27

Within each model, there is relatively little difference between the placebo and
treated groups, although the difference is a bit more pronounced in the combined model.
Further, the correlation range within every group is relatively narrow. The most note-
worthy feature, unquestionably, is the large discrepancy between both models. This
is because the (P-N) model forces the correlation and overdispersion effects to stem
from a single additional parameter, the random-intercept variance d. Thus, considerable
overdispersion also forces the correlation to increase, arguably beyondwhat is consistent
with the data. In the combined model, in contrast, there are two additional parameters,
giving proper justice to both correlation and overdispersion effects. It was already clear
from the above discussion and that in MVD that the combined model is an important
improvement. This now clearly manifests itself in the correlation function, too.
The above underscores the need for the combined model. Some indication came,

for example, from the correlation functions in the epilepsy case. It is useful to perform
formal comparison of all nestedmodels, usingWald statistics, for each of the three cases.
A summary is given in Table 4. Note that, owing to the familiar boundary problem that
occurs when testing for variance components, mixtures of a χ20 and χ

2
1 were used, instead

of the conventional χ21 (Molenberghs and Verbeke, 2007).
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Table 4: Epilepsy, onychomycosis, and asthma studies. Wald test results for comparison of nested models.

Null model Alternative model Z-value p-value

Epilepsy study

Poisson Negative-binomial 20.68 <0.0001
Poisson Poisson-normal 6.27 <0.0001
Negative-binomial Combined 6.10 <0.0001
Poisson-normal Combined 11.66 <0.0001

Onychomycosis study

Logistic Beta-binomial 17.91 <0.0001
Logistic Logistic-normal 10.53 <0.0001
Beta-binomial Combined 4.28 <0.0001
Logistic-normal Combined 8.01 <0.0001

Asthma study

Exponential Exponential-gamma 8.54 <0.0001
Exponential Exponential-normal 10.63 <0.0001
Exponential-gamma Combined 8.54 <0.0001
Exponential-normal Combined 3.99 <0.0001

For our case study, it is clear that: (a) independence is strongly rejected in favour
of both a model with normal random effects or a model with conjugate random effects;
(b) on top of one set of random effects, there is a clear need for the other set as well,
hence providing very strong evidence for the proposed combined model. The evidence
is extremely convincing. The table also contains results for two more case studies that
will be discussed in detail in subsequent sections.
These findings, taken together, imply that the data exhibit, at the same time, within-

subject correlation and overdispersion, in such a way that a single model feature cannot
capture both simultaneously.

5.2. Additional zeroes

It is not uncommon when count data are collected to observe more zeroes than pre-
dicted by the model assumed, whether of a simple Poisson nature, or more elaborate,
such as the combined model considered here. This feature, often referred to as zero
inflation, then needs to be accommodated, in addition to correlation and/or overdisper-
sion. Such data are often fitted by using either hurdle (Mullahy, 1986; Greene, 1994) or
zero-inflated models (ZI; Lambert, 1992). In the context of the CM, additional zeroes
were studied by Kassahun et al. (2014a) and Iddi and Molenberghs (2013).
We will first describe the hurdle (H) and zero-inflation (ZI) approaches for univariate

data, and then turn to hierarchical versions. The hurdle model is a two-part model,
whereby the first part is a binary model for the count value to be either zero or positive.
Given that the value is positive, a count distribution, say fi, is truncated at zero and fitted
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to the second part. SupposeYi is a univariate count outcome, and πi is the probability of
the ith observation to be in the zero state. The hurdle model then takes the form:

p(Yi = yi) =

{
πi if yi = 0,

(1−πi) fi(yi|λi)
1− fi(0|λi) if yi > 0.

(30)

An alternative approach is a zero-inflated model, which assumes zeros to come from
two processes. The first process generates only zeros with probability πi for observation
i, say, while the second process generates counts with probability 1−πi. The ZI model
is:

p(Yi = yi) =

{
πi+(1−πi) fi(0|λi) if yi = 0,

(1−πi) fi(yi|λi) if yi > 0.
(31)

Here, πi and λi are functions of covariates. Link functions, such as the logit or probit,
can be used for πi, with the log link commonly used for λi.
Kassahun et al. (2014a) extended the combined model to take zero-inflation into

account. The ZI version of the CM (ZICOM) is given by

p(Yi j = yi j|bbb1i, ξξξ,θi j,πi j) =
{
πi j+(1−πi j) fi(0|bbb1i, ξξξ,θi j) if yi j = 0,

(1−πi j) fi(yi j|bbb1i, ξξξ,θi j) if yi j > 0.
(32)

The ZI component πi j = π(xxx T
2i jγγγ + zzz T

2i j bbb2i) is modelled using a Bernouilli model: in
the simplest case with only an intercept, but potentially containing known regressors
xxx2i j and zzz2i j, a vector of zero-inflation coefficients γγγ to be estimated, as well as random
effects bbb2i. Common link functions, such as the logit or probit, can be used. Note that
xxxi j, zzzi j, and bbbi in Section 4 are now replaced by xxx1i j, zzz1i j, and bbb1i j, respectively, for
the non-zero count part. The regressors in the count and zero-inflation component can
either be overlapping, a subset of the regressors can be used for the zero-inflation, or
entirely different regressors for the two parts can be used. In many cases, but of course
not always, a simple random-intercept model is adequate, where bbb1i = b1i, bbb2i = b2i, and
zzz1i j = zzz2i j = 1. The variance-covariancematrix of the random effects, assumed normally
distributed, is denoted by D, as before. The model is denoted as ZI(PGN), as an obvious
extension with earlier notational conventions. Three obvious special cases are ZI(P-N),
ZI(PG-), and ZI(P--). Also, all four models without zero inflation are special cases as
well. The conditional mean and variance of the ZI(PGN) are:

E(Yi j|bbb1i, ξξξ,θi j) = θi jκi j(1−πi j), (33)

Var(Yi j|bbb1i, ξξξ,θi j) = θi jκi j(1−πi j)[1+ θi jκi j(πi j+1/α)]. (34)
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It can be seen that the conditional variance is inflated as a result of either overdispersion
in the data (parameter α), or as a result of ZI (parameter πi j), or both.
Further model developments that allow for extra zeroes are reported in Sections 10

and 11.

5.3. A clinical trial in epileptic patients

We re-analyse the epilepsy data, introduced in Section 2.1 and analysed before in Sec-
tion 5.1. Let Yi j represent the number of epileptic seizures that patient i experiences
during week j of the follow-up period. Also, let ti j be the time-point at which Yi j has
been recorded. Consider parameterization (29), but now accounting for zero inflation,
assuming that counts are generated from a (P-N) process with λi j as in (29), or from a
(PGN) process with mean λi j = θi jκi j, and now κi j specified as in (29). The ZI prob-
ability (πi j) is modelled as logit(πi j) = γ0+ b2i + γ1ti j. The data are analysed with
the ZI(PGN), ZI(PG-), ZI(P-N), ZI(P--). One can compare the results with the non-ZI
counterpart. Parameter estimates and predicted probabilities of zeros are presented in
Table 2, alongside the non-ZI counterparts. Clearly, in terms of likelihood comparison,
the zero-inflated versions performed much better, resulting in a substantial improvement
in fit.
The ZI(PG-) is an important improvement relative to the ZI(P--), while much more

improvement is gained in the case of the ZI(P-N). Moreover, the ZI(PGN) leads to a
substantially improved fit. Further, we observe that, omitting either the overdispersion or
the correlation underestimates the predicted probability of zeros, which becomes worse
when both are omitted at the same time. The ZI(PGN), fitted without random effects in
the zero-inflation part, results in -2log-likelihood of 5386.8, and predicted probability of
zeros equal to 0.3271. This implies that inclusion of random effects in the zero-inflation
part tends to have little impact on the predicted probability of zeros. However, based on
likelihood comparison, model fit improves considerably. This same phenomenon is also
evident in the ZI(P-N) fitted with random effects included only in the non-zero count
part (-2log-likelihood is 5971.9, and predicted probability of zeros 0.3112).
None of the zero-inflated models suggests evidence of significance in slope differ-

ence and slope ratio, except for the ZI(P--), where significance is maintained for the
slope difference (p = 0.004). However, the latter, unrealistically, omits correlation and
overdispersion. The zero-inflation regression coefficients can be interpreted as model
coefficients for the proportion of extra zeros, and are statistically significant in all ex-
cept the ZI(P--). Evidently, models can be extended further. For example, one could
consider a version with where the ZI component is specific to treatment arm.
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6. Categorical data

Categorical data come in various forms, and we usefully distinguish between them.
Building on MVDV, Molenberghs et al. (2012) laid out the combined-model framework
and various ramifications for the binary and binomial cases. An overview will be given
in Sections 6.1 and 6.2 for the binary cases with logit and probit links, respectively,
and in Section 6.3 for binomial data. The iron deficiency case study is analysed in
Section 6.4. An application of the binary version of the model to the Jimma Infant study
was reported in Kassahun et al. (2012). A binomial application is described in Del Fava
et al. (2014). Ivanova, Molenberghs, and Verbeke (2014) developed a version of the
combined model to handle ordinal data, which is the basis for Section 6.5.

6.1. Bernoulli-type models for binary data with logit link

Similar to the Poisson case in Section 5, a natural binary-data counterpart to (18)–(19)
is

Yi j ∼ Bernoulli(πi j = θi jκi j), (35)

κi j =
exp
(
xxx T
i jξξξ+ z

T
i j bbbi
)

1+ exp
(
xxx T
i jξξξ+ z

T
i j bbbi
) , (36)

completing the specification with (20)–(22). Unlike in the Poisson case, closed forms
for neither the mean nor the variance follow when normal random effects are present.
When only overdispersion random effects are included, especially when they are as-
sumed to follow a beta distribution, as in Table 1, conjugacy applies. However, the beta
distribution does not allow for the multiplicative invariance as (17), precluding strong
conjugacy.
When the overdispersion random effects are assumed to be equal: θi j = θi, then the

beta-binomial model follows if no normal random effects are present.
Explicitly considering θi j ∼ Beta(α,β), then φi j = E(θi j) = α/(α+β), and

σ2i j = var(θi j) = σi, j j =
αβ

(α+β)2(α+β+1)
,

σi, jk = cov(θi j,θik) = ρi jk
αβ

(α+β)2(α+β+1)
.

Observe that there are two correlations: ρi jk, which described the correlation between
draws from the beta distribution and (α+ β+ 1)−1. It is of course possible to let α
and β vary with i and/or j. In such cases, the above and below expressions will change
somewhat, but computations are straightforward.
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Using the general expressions, the above results can be used to derive approximate
expressions for means and variance-covariance elements. For the special case of no
normal random effects, but maintaining the fixed effects in (36), i.e.,

κi j =
exp
(
xxx T
i j ξξξ
)

1+ exp
(
xxx T
i j ξξξ
) , (37)

we obtain

E(Yi j) =
α

α+β
κi j, (38)

Var(Yi j) =
α

α+β
κi j−

(
α

α+β

)2
κ2i j,

Cov(Yi j,Yik) = ρi jk
αβ

(α+β)2(α+β+1)
κi jκik.

If we further make exchangeability assumptions, i.e., κi j = κik ≡ κi and ρi jk = ρi, further
simplification follows. Finally, setting κi = 1, the conventional beta-binomial follows.
It is then easy to derive the resulting binomial version by defining:

Zi =
ni∑
i=1

Yi j. (39)

Simple algebra then shows:

E(Zi) = ni
α

α+β
= niπi,

Var(Zi) = ni
αβ

(α+β)2

{
1+(ni−1) 1

α+β+1

}
= niπi(1−πi){1+(ni−1)ρ̃i} ,

with ρ̃i the beta-binomial correlation. Hence, the conventional beta-binomial model
follows.
While the logit link defeats closed-form expressionswhen normal random effects are

introduced, this is different with the probit link. The random-effects probit model has
received some attention in earlier decades (Schall, 1991; Guilkey and Murphy, 1993;
Hedeker and Gibbons, 1994; McCulloch, 1994; Gibbons and Hedeker, 1997; Renard,
Molenberghs, and Geys 2004).
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6.2. Bernoulli-type models for binary data with probit link

Introducing the probit version of the model, while at the same time assuming that the
overdispersion parameters are beta distributed, comes down to:

κi j =Φ1(xxx
T

i j ξξξ+ z
T

i j bbbi), (40)

θi j ∼ Beta(α,β). (41)

Like before, α and β could be allowed to vary with i and/or j.
It now follows that the joint distribution can be written as (see MVDV):

fni(yyyi = 1) =
(

α

α+β

)ni

·Φni(Xiξξξ;L
−1
ni ), (42)

with

Lni = Ini −Zi
(
D−1+ZT

iZi
)−1
ZT

i. (43)

Note that (42) is the joint probability only for the outcome (1, . . . ,1)T, a so-called success
probability. However, given that the dimension ni is arbitrary, all other probabilities can
be derived by appropriate contrasts of success probabilities. Precisely,

fni [yyyi =mmmi = (mi1, . . . ,mini)
T] =

∑
sss⊃ι(mmmi)

sgn(sss)Φ#sss

(
X̃ (sss)
i ξξξ;L−1(sss)

)
·
(

α

α+β

)#sss
, (44)

with ι(mmmi) = λ(mi1, . . . ,mini) the set of places for which mi j = 1,

sgn(sss) =

{
1 if #sss−#ι(mmmi) is even,
0 otherwise,

X̃ (sss)
i contains the rows from Xi with row number in sss, and L(sss) is the #s-dimensional
matrix built from the appropriate sub-matrices of these used in (43). The above devel-
opments straightforwardly generalize when (41) is replaced with θi j ∼ Beta(α j,β j).
Next, the means, variances, and covariances can be derived from (42), by evaluating

it for the one- and two-dimensional cases. We find:

E(Yi j) =
α

α+β
·Φ1(xxx

T

i j ξξξ;L
−1
1 ) =

α

α+β
·Φ1(|I+Dzi j z T

i j|−1/2xxx T

i j ξξξ), (45)

Var(Yi j) =
α

α+β
·Φ1(xxx

T

i j ξξξ;L
−1
1 ) ·

[
1− α

α+β
.Φ1(xxx

T

i jξξξ;L
−1
1 )

]
, (46)
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Cov(Yi j,Yik) =

(
α

α+β

)2
·
{
Φ2

[(
xxx T
i j

xxx T
ik

)
ξξξ,L−12 jk

]
−Φ1(xxx

T

i j ξξξ;L
−1
1 j )Φ1(xxx

T

ikξξξ;L
−1
1k )

}
,

(47)

where

L2 jk = I2−
(
z T
i j

z T
ik

)[
D−1+

(
z T
i j

z T
ik

)
(zi j zik)

]−1
(zi j zik).

The rightmost density in (45) is the standard normal one. Evidently, (42) and (44) lead,
not only to the mean, variance, and covariance expressions, but also to the higher-order
moments.
MVDV noted that the existence of closed-form expressions for the probit case opens

a window of opportunity for the logit case. Indeed, the well-known approximation for-
mulae, linking the normal and logistic densities, prove useful here. As shown in Johnson
and Kotz (1970, p. 6) and used in Zeger et al. (1988):

ey

1+ ey
≈Φ1(cy), (48)

with c= (16
√
3)/(15π). Applied to (35)–(36), it follows that

πi j ∼ θi j
exp
(
xxx T
i jξξξ+ z

T
i j bbbi
)

1+ exp
(
xxx T
i jξξξ+ z

T
i j bbbi
) ≈ θi jΦ1[c(xxx

T

i jξξξ+ z
T

i j bbbi)]. (49)

Applying (49) to (42), yields

fni(yyyi = 1)≈
(

α

α+β

)ni
·Φni

(
cXiξξξ; L̃

−1
ni

)
, (50)

with

L̃ni = Ini − c2Zi
(
D−1+ZT

iZi
)−1
ZT

i.

For the expectation, we find, based on (49) and (45):

E(Yi j)≈ α

α+β
·Φ1

(
|I+ c2Dzi j z

T

i j|−1/2cxxx T

i j ξξξ
)
, (51)

with similar expressions for the variance and covariance terms. Upon estimating the pa-
rameters within the probit approximation paradigm, back-transformation to the original
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logit scale is possible, using expressions such as (49) and (51). This opens perspec-
tives for alternative estimation methods for the combined model with logit link, with the
important special case of the normal-logistic GLMM.
In the Bernoulli case, calculating the moments is extremely simple. Indeed, the

Bernoulli moments are all identical. The conditional moments are all E(Yki j|θi j,bbbi) =
θi jκi j (k = 1,2, . . . ). Hence, they all reduce to (38). In the probit case, they are equal to
(45).

6.2.1. A clinical trial in onychomycosis

We present the MVDV analysis of the binary onychomycosis data, introduced in Sec-
tion 2.2. For the logit, consider the model:

Yi j|(bi)∼ Bernoulli(πi j),
logit(πi j) = ξ1(1−Ti)+bi+ ξ2(1−Ti)ti j+ ξ3Ti+ ξ4Titi j, (52)

where Ti is the treatment indicator for subject i, ti j is the time-point at which the jth
measurement is taken for the ith subject, and bi ∼ N(0,d). Parameter estimates for the
logistic model, with and without the normal random effect on the one hand, and with and
without the beta-binomial component on the other hand, as described in Section 6.1, are
presented in Table 5. Observe that the model becomes hard to fit when the beta random

Table 5: Onychomycosis study. Parameter estimates (standard errors) for the regression coefficients in (1)
the logistic model, (2) the beta-binomial model, (3) the logistic-normal model, and (4) the combined model.
Estimation was done by maximum likelihood using numerical integration over the normal random effect, if
present.

Effect Par. Logistic Beta-binomial

Intercept treatment A ξ0 −0.5571 (0.1090) 17.9714 (1482.6)
Slope treatment A ξ1 −0.1769 (0.0246) 5.2454 (12970.0)
Intercept treatment B ξ2 −0.5335 (0.1122) 18.6744 (2077.13)
Slope treatment B ξ3 −0.2549 (0.0309) 4.7775 (12912.0)

Std. dev random effect
√
d — —

Ratio α/β — 3.6739 (0.2051)
−2log-likelihood 1812 1980

Effect Par. Logistic-normal Combined

Intercept treatment A ξ0 −1.6299 (0.4354) −1.6042 (4.0263)
Slope treatment A ξ1 −0.4042 (0.0460) −6.4783 (1.4386)
Intercept treatment B ξ2 −1.7486 (0.4478) −16.2079 (3.5830)
Slope treatment B ξ3 −0.5634 (0.0602) −8.0745 (1.5997)
Std. dev random effect

√
d 4.0150 (0.3812) 60.8835 (14.2237)

Ratio α/β — 0.2805 (0.0350)
−2log-likelihood 1248 1240
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effects are present, which is seen from estimates and standard errors in both the beta-
binomial model as well as the combined model. To understand this, we must observe
that the conjugate random effects in the Bernoulli case, unlike in the Poisson, bino-
mial, and Weibull cases, cannot add to the variability, only to the correlation structure.
This means that there is considerably less information available than in the other cases.
This does not mean that the beta random effects are unnecessary, but rather that they
challenge the stable estimation of other model parameters.

6.3. Models for binomial data with logit and probit link

Molenberghs et al. (2012) supplemented the study of the binary case with the binomial
one. Starting from the Bernoulli expressions (35) and (36) but now for three rather than
two levels, they got:

Yi jk ∼ Bernoulli(πi jk = θi jkκi jk), (53)

κi jk =
exp
(
xxx T
i jkξξξ+ z

T
i jk bbbi

)
1+ exp

(
xxx T

i jkξξξ+ z
T

i jk bbbi
) , (54)

where i stands for the independent block, as before, j for occasion, and k for the repeats
of the Bernoulli trials. It is natural to define Zi j =

∑mi j
k=1Yi jk. Also here, there are no

closed-form expressions for the moments when a logit link is used, but they do exist for
the probit case. The data consists of an array of successes zi = (zi1, . . . ,zini)

T out ofmmmi =
(mi1, . . . ,mini)

T trials. It is also convenient to provide for multi-indices ttt = (t1, . . . , tni)
T

and for vectors of the parameters ααα = (α1, . . . ,αni)
T and βββ = (β1, . . . ,βni)

T. The joint
distribution can then be written as:

f (zi|mmmi,ξξξ,D,ααα,βββ) =
mmmi−zi∑
ttt=0

[
ni

∏
j=1

(−1)t j
B(α j,β j)

(
mi j

zi j

)(
mi j− zi j

t j

)
B(zi j+α j+ t j,β j)

]
×

×Φ∑
j t j

[
(Xi(t)ξξξ;L(t)−1

]
. (55)

Here, Xi(t) is the design matrix, built from Xi, with row j in Xi replicated t j times. The
design matrix Xi is built similarly, and then, in analogy with (43),

L(t) = I∑
j t j
−Zi(t)

[
D−1+Zi(t)

TZi(t)
]−1
Zi(t)

T. (56)
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6.4. Iron-deficient diets in rats

We turn to the data in Section 2.3. Because the probability of a fetus dying varies from
litter to litter, the total variance of the proportions will be greater than that predicted by
a binomial model, even when covariates are accounted for. Hence, overdispersion and
correlation need to be accommodated.
Construct predictor function ηi = ξ0 + ξ2x2i + ξ3x3i + ξ4x4i with xgi = 1 if litter i

belongs to group g and 0 otherwise. The placebo group figures as a reference category.
Further, let Zi =

∑ni
j=1Yi j ∼ Binomial(ni,πi) be the number of dead fetuses out of ni

in litter i. Five models are considered: (a) the binomial model, logit(πi) = ηi; (b) the
GLMM: logit(πi) = ηi+bi, where bi∼N(0,d); (c) the beta-binomial model, logit(μi) =
ηi, where πi ∼ Beta(α,β), and μi = E(πi); (d) the beta-binomial model with normal
random effects: for bi ∼ N(0,d), logit(μi) = ηi, and πi and μi as in the beta-binomial;
(e) in the combined model: logit(κi) = ηi+ bi where πi = θiκi, θi ∼ Beta(α,β), and
bi ∼ N(0,d). The constraint αβ ≡ 1 is imposed in the latter case.
The results of the various models are presented in Table 6. We observe that the

two models that simultaneously account for overdispersion and correlation perform bet-
ter than the others. The classical beta-binomial model with normal random effects has
the same double negative log-likelihood as the combined model. This is the case only
for cross-sectional data; even though their hierarchical formulations are different, they
marginally coincide in this case. That said, the parameters have a different meaning, as
they are to be interpreted conditionally on the assumed random-effects structure. Dif-
ferences may be very noticeable when binomial measurements are collected repeatedly
over time or in an otherwise hierarchical fashion.
Between these two, the estimates’ precision is best in the combined model. Owing to

conjugacy, the mean model and overdispersion parameter estimators are less correlated,
leading to increased precision, even though the effect is modest.

Table 6: Iron-deficiency study. Parameter estimates (standard errors) for (1) the binomial model, (2) the
GLMM, (3) the beta-binomial model, (4) the conventional beta-binomial model with random effect in the
linear predictor, and (5) the combined model.

Effect Par. Binomial GLMM BB BB-normal Combined

Intercept ξ0 1.14(0.13) 1.80(0.36) 1.35(0.25) 1.79(0.38) 1.80(0.36)
Group2 ξ2 −3.32(0.33) −4.52(0.74) −3.11(0.50) −4.49(0.80) −4.51(0.74)
Group3 ξ3 −4.48(0.73) −5.86(1.19) −3.87(0.81) −5.81(1.30) −5.85(1.19)
Group4 ξ4 −4.13(0.48) −5.60(0.92) −3.93(0.67) −5.57(0.97) −5.59(0.92)
Std. dev. RE

√
d — 1.54(0.29) — 1.52(0.37) 1.53(0.29)

Overdispersion — — 0.24(0.06) 0.005(0.051) 0.0005(0.0018)
−2log-likelihood 244.9 183.9 186.9 183.8 183.8



Geert Molenberghs, Geert Verbeke and Clarice G.B. Demétrio 219

6.5. Ordinal data: a combined proportional odds-beta-normal model

The ordinal case was studied by Ivanova et al. (2014). Assume the ordinal outcome Yi j
can take values r = 1, . . . ,R, and replace it by a set of R dummies:

Zr,i j =

{
1 if Yr,i j = r,

0 otherwise,

for r = 1, . . . ,R. Evidently, there are redundant dummies, but any subset of R−1 com-
ponents is not. Group the dummies into vectorsZZZi j andZZZi for a specific subject i and oc-
casion j, and for a specific subject i, respectively. We assume a multinomial distribution
ZZZi j ∼ multinomial(πππi j), with πππi j = (π1,i j, . . . ,πr,i j, . . . ,πR,i j). The multinomial distribu-
tion at a given occasion is determined by the modelling choice for the ordinal outcome.
Under a proportional odds assumption, using normal random effects bbbi ∼ N(0,D) in the
linear predictor, and beta random effects θi j ∼ Beta(α j,β j) to capture further overdis-
persion, the probabilities can be written as:

πr,i j =

⎧⎪⎨⎪⎩
θi jκ1,i j if r = 1,

θi j(κr,i j−κr−1,i j) if 1< r < R,

1− θi jκR−1,i j if r = R.

(57)

where

κr,i j =
exp
(
ξ0r+xxx

T
i jξξξ+ z

T
i j bbbi
)

1+ exp
(
ξ0r+xxx

T
i jξξξ+ z

T
i j bbbi
) . (58)

Here, ξ01 ≤ ·· · ≤ ξ0,R−1 are intercepts, ξξξ are fixed regression coefficients, and xxxi j (zi j) is
the design vector for the fixed (random) effects at occasion j. Also here, some choices
in the above can be relaxed and/or altered. For example, like before, the α j and β j
parameters, describing the beta distribution, need not be dependent on j. To ensure
identifiability, a constraint needs to be applied to it, e.g., α jβ j = 1, but it is mathemati-
cally convenient to retain them as two separate parameters, with the understanding that
the constraint does apply. Finally, the θi j within a subject are assumed different from
each other and independent. One could allow them to be correlated, or even constant
across subjects. This will not be considered here.
As argued in MVDV, MVID, and Molenberghs et al. (2012), closed-form expres-

sions for marginal means, variances, covariances, and even the entire marginal distri-
bution, i.e., integrated over both sets of random effects, cannot be derived in the binary
case with logit link and normal random effects (regardless of the overdispersion random
effects). Evidently, the same will be true for the ordinal case. If necessary, numerical
integration or other Monte Carlo methods can be used to derive such marginal quantities.
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6.6. Diabetes study

We describe the analysis of the diabetes study (Section 2.4), reported in Ivanova et al.
(2014). Let Yi j = 0, . . . ,3 be the number of clinical targets patient i reached at occasion
j. Also, let ti j = 0,1 be the time point at which the jth measurement was taken. Consider
the combined proportional odds logistic regression model:

logit[P(Yi j ≤ r|ti j,Xi)] = ξ0r+bi+ ξ1ti j+ ξ2Xi,

(r= 0, . . . ,3), where the random intercept bi is assumed N(0,d) distributed, and Xi is an
indicator for group. The beta random effect is re-parameterized such that

ν =
eδ

1+ eδ
=

α

α+β
,

thus simultaneously avoiding identifiability and range violation issues. The parameter
δ is the one entered into the likelihood function. We consider (1) the ordinary propor-
tional odds model, (2) the proportional odds model with beta overdispersion effect, (3)
the proportional odds model with random normal effect, and (4) the combined model.
Estimates (standard errors) are presented in Table 7. Clearly, there is no significant im-

Table 7: Diabetes study. Parameter estimates (standard errors) from the regression coefficients in (1) the
ordinary proportional odds model, (2) the proportional odds model with beta overdispersion effect, (3) the
proportional odds model with random normal effect, together with (4) the combined model. Estimation was
done by maximum likelihood using numerical integration over the normal random effect, if present.

Effect Par. PO PO-Beta

Intercept 0 ξ00 −0.7130 (0.0662) −1.7129 (0.0662)
Intercept 1 ξ01 0.2668 (0.0560) 0.2667 (0.0560)
Intercept 2 ξ02 2.0279 (0.0648) 2.0277 (0.0650)
Slope time ξ1 −0.7614 (0.0575) −0.7610 (0.0575)
Slope group ξ2 −0.2053 (0.0587) −0.2053 (0.0587)
Std. dev. RE

√
d — —

Beta parameter δ — 13.1622 (390.44)

−2 log-likelihood 10588.18 10588.18

Effect Par. PO-Normal PO-Beta-Normal

Intercept 0 ξ00 −2.3201 (0.0100) −2.3201 (0.0999)
Intercept 1 ξ01 0.3336 (0.0818) 0.3335 (0.0818)
Intercept 2 ξ02 2.7727 (0.1035) 2.7728 (0.1035)
Slope time ξ1 −1.0268 (0.0659) −1.0268 (0.0659)
Slope group ξ2 −0.2605 (0.0912) −0.2605 (0.0912)
Std. dev. RE

√
d 1.5105 (0.0729) 1.5205 (0.0729)

Beta parameter δ — 15.4925 (246.55)

−2 log-likelihood 10320.39 10320.39
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provement, neither when we switch from model (1) to model (2), nor when we move
from (3) to (4). The estimate for the beta-parameter δ is large and has a very large
standard error. This indicates that there is probably no overdispersion in the data.

7. Time-to-event data

MVDV, using their general framework, also focused on time-to-event data, combining
the Weibull model with normal and gamma random effects. The model extends both the
GLMM and the gamma frailty model. Molenberghs et al. (2015) extended the approach
to allow for censoring. In what follows, we will give an overview of these developments.
Efendi andMolenberghs (2013) paid particular attention to various estimation strategies.
Abrams et al. (2017) integrated this framework in the modelling of current-status data,
in the context of infectious diseases modelling.
Molenberghs and Verbeke (2011a), using closed-form expressions for the model’s

moments, pointed to both probabilistic as well as data-analytic implications of using
(gamma) frailty models. We give a brief summary of these in Section 7.2.
The general Weibull model for repeated measures, with both gamma and normal

random effects can be expressed as

f (yyyi|θθθi,bbbi) =
ni

∏
j=1

λρθi jy
ρ−1
i j exxx

T
i jξξξ+z

T
i jbbbie−λy

ρ
i jθi je

xxx T
i j ξξξ+z

T
i j bbbi
, (59)

f (θθθi) =
ni

∏
j=1

1

β
α j
j Γ(α j)

θ
α j−1
i j e−θi j/β j , (60)

f (bbbi) =
1

(2π)q/2|D|1/2 e
− 1
2bbb

T
iD

−1bbbi . (61)

A few observations are in place. First, setting ρ = 1 leads to the special case of an ex-
ponential time-to-event distribution. Second, the classical gamma frailty model (i.e., no
normal random effects) and the Weibull-based GLMM (i.e., no gamma random effects)
follow as special cases. Third, strong conjugacy applies. This is definitely true for the
exponential model, but carries over to the Weibull model, using the transformation Y ρi j .
It is equally possible to derive this result by merely re-writing the factor φ= λκ. Fourth,
the above expressions are derived for a two-parameter gamma density. It is customary
in a gamma frailty context (Duchateau and Janssen, 2007) to set α jβ j = 1, for reasons
of identifiability. In this case, (60) is replaced by

f (θθθi) =
ni

∏
j=1

1(
1
α j

)α j
Γ(α j)

θ
α j−1
i j e−α jθi j , (62)
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Alternatively, assuming α j = 1 and β j = 1/δ j, one could write

f (θθθi) =
ni

∏
j=1

δ je
−δ jθi j , (63)

implying that the gamma density is reduced to an exponential one.
MVDV derived a multi-index series formulation of the marginal joint distribution:

f (yyyi) =
∑

(m1,...,mni )

ni

∏
j=1

(−1)mj

m j!

Γ(α j+mj+1)β
mj+1
j

Γ(α j)
λmj+1ρy

(mj+1)ρ−1
i j

× exp{(mj+1)
[
xxx T

i jξξξ+
1
2(mj+1) · z T

i jDzi j
]}
. (64)

In case censorship applies, it is easy to integrate (64) over the interval [Ci j,+∞[ or, in a
multivariate fashion, over the cube [0,CCCi]:

F(CCCi) =
∑

(m1,...,mni )

ni

∏
j=1

(−1)mj

(mj+1)!

Γ(α j+mj+1)β
mj+1
j

Γ(α j)
λmj+1C

(mj+1)ρ
i j

× exp{(mj+1)
[
xxx T

i j ξξξ+
1
2(mj+1) · z T

i jDzi j
]}
. (65)

Evidently, if censorship applies to some but not all of the times within the vector, then
the integration can be restricted to these, and the corresponding contribution will be an
amalgamation of components taken from (64) and (65).
MVDV also derived the following moment expression, with mean, variance, and

covariance expressions:

E(Y ki j) =
α jB(α j− k/ρ,k/ρ+1)

λk/ρβ
k/ρ
j

exp

(
−k
ρ
xxx T

i jξξξ+
k2

2ρ2
z T

i jDzi j

)
, (66)

E(Yi j) =
α jB(α j−1/ρ,1/ρ+1)

λ1/ρβ
1/ρ
j

exp

(
−1
ρ
xxx T

i j ξξξ+
1
2ρ2
z T

i jDzi j

)
, (67)

Var(Yi j) =
α j

λ2/ρβ2ρj
exp

(
−2
ρ
xxx T

i jξξξ+
1
ρ2
z T

i jDzi j

)

×
[
B(α j−2/ρ,2/ρ+1)exp

(
1
ρ2
z T

i jDzi j

)
−α jB

(
α j− 1

ρ
,
1
ρ
+1

)2]
, (68)
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Cov(Yi j,Yik) =
α jαk

λ2/ρβ
1/ρ
j β

1/ρ
k

exp

[
−1
ρ
(xxx T

i j ξξξ+xxx
T

ikξξξ)

]

×B

(
α j− 1

ρ
,
1
ρ
+1

)
B

(
αk− 1

ρ
,
1
ρ
+1

)

× exp
[
1
2ρ2

(z T

i jDzi j+ z
T

ikDzik)
][
exp

(
1
ρ2
z T

i jDzik

)
−1
]
. (69)

7.1. Recurrent asthma attacks in children

MVDV analysed the times-to-event, introduced in Section 2.5. They considered an
exponential model, i.e., a model of the form (59) with ρ= 1, and further a predictor of
the form:

κi j = ξ0+bi+ ξ1Ti,

where Ti is an indicator for treatment and bi ∼ N(0,d). Results from fitting all four
models (with/without normal random effect; with/without gamma random effect) can
be found in Table 8. A formal assessment of the treatment effect from all four models is
given in Table 9. The treatment effect ξ1 is stably identifiable in all four models. As can
be seen from Table 9, the treatment effects are similar in strengths, but including both
random effects reduces the evidence, relative to the exponential model. Needless to say
that too parsimonious an association structure might lead to liberal test behaviour.

Table 8: Asthma study. Parameter estimates (standard errors) for the regression coefficients in (1) the
exponential model, (2) the exponential-gamma model, (3) the exponential-normal model, and (4) the com-
bined model. Estimation was done by maximum likelihood using numerical integration over the normal
random effect, if present.

Effect Par. Exponential Exponential-gamma

Intercept ξ0 −3.3709(0.0772) −3.9782(15.354)
Treatment effect ξ1 −0.0726(0.0475) −0.0755(0.0605)
Shape parameter λ 0.8140(0.0149) 1.0490(16.106)

Std. dev. random effect
√
d — —

Gamma parameter γ — 3.3192(0.3885)
−2log-likelihood 18,693 18,715

Effect Par. Exponential-normal Combined

Intercept ξ0 −3.8095(0.1028) 3.9923(20.337)
Treatment effect ξ1 −0.0825(0.0731) −0.0887(0.0842)
Shape parameter λ 0.8882(0.0180) 0.8130(16.535)

Std. dev. random effect
√
d 0.4097(0.0386) 0.4720(0.0416)

Gamma parameter γ — 6.8414(1.7146)
−2log-likelihood 18,611 18,629
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Table 9: Asthma study. Wald test results for the assessment of treatment effect.

Model Z value p-value

Exponential −1.5283 0.1264

Exponential-gamma −1.1293 0.2588

Exponential-normal −1.2480 0.2120

Combined −1.0534 0.2921

7.2. Probabilistic and data-analytic issues with frailty models
and their combined-model extensions

Based on moment expression (66), Molenberghs and Verbeke (2011a) observed that
there can be a problem with models combining Weibull outcomes with gamma ran-
dom effects, as well as with several extensions and sub-models. In particular, they
established a connection with the so-called log-logistic distribution (Shoukri, Mian and
Tracy, 1988), a transformation of the logistic distribution to the half line with only a
finite number of finite moments.
To make their point, they started from a univariate Weibull distribution with gamma

random effects (adding the normal random effects to the linear predictor does not sub-
stantially change anything), for which all expressions are given in the last column of Ta-
ble 1. Like before, setting αβ = 1, and using formulation (62), the gamma and marginal
distributions are written as:

f (θ) =
1(

1
α

)α
Γ(α)

θα−1e−αθ, (70)

f (y) =
ϕρyρ−1αα+1

(α+ϕyρ)α+1
. (71)

Molenberghs and Verbeke (2011a) term this Case I. They also considered Case II, ob-
tained by setting α= 1 and β = 1/δ, line in (63), henceforth, Case II:

f (θ) = δe−δθ, (72)

f (y) =
ϕρyρ−1δ
(δ+ϕyρ)2

. (73)

Here, the gamma distribution has been replaced by its exponential special case and (73)
is the log-logistic distribution (Bennett, 1983; Collett, 2003).
The moments follow from (66). For the general case, with α and β free parameters,

for Case I, and for Case II, they are, respectively:
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General : E(Yk) =
αB(α− k/ρ,k/ρ+1)

(βϕ)k/ρ
, (74)

Case I : E(Yk) =

(
α

ϕ

)k/ρ k
ρ
B(α− k/ρ,k/ρ), (75)

Case II (log-logistic) : E(Yk) =
k
ρ

(
δ

ϕ

)kρ
·Γ(1− k/ρ) ·Γ(k/ρ). (76)

The moments (74) are finite if and only if k < αρ. Hence, if αρ is small, there is a risk
that even lower-order moments do not exist, which evidently is problematic. Molen-
berghs and Verbeke (2011a) gave an example, using data from Duchateau and Janssen
(2007). For certain methods of estimation in the context of the Weibull-Gamma frailty
model, this would imply that regularity conditions are not satisfied. For the log-logistic
case, this becomes k < ρ. The moments have been presented by Rinne (2009, p. 157) as
well, though without reference to the irregularity issue.

8. Estimation

MVD and MVDV showed that fitting the combined model is relatively easy, and that
standard software tools, such as the SAS procedure NLMIXED, can be used for maxi-
mum likelihood estimation in this case. More generically, any sufficiently flexible likeli-
hood maximization tool that allows for normally distributed random effects can be used
to this effect. This can typically be done with relatively little programming effort. Efendi
and Molenberghs (2013) expanded upon this for the specific case of time-to-event data,
and supplemented maximum likelihood with pairwise likelihood and Bayesian estima-
tion. Their simulations indicated that, while maximum likelihood can be faster than
pairwise likelihood, the latter has somewhat better convergence properties.
A priori, fitting a combined model of the type described in Section 4, proceeds by

integrating over the random effects. The likelihood contribution of subject i is

fi(yyyi|ϑϑϑ,D,ϑϑϑi,ΣΣΣi) =
∫ ni

∏
j=1

fi j(yi j|ϑϑϑ,bbbi,θθθi) f (bbbi|D) f (θθθi|ϑϑϑi,ΣΣΣi) dbbbi dθθθi. (77)

Here, ϑϑϑ groups all parameters in the conditional model for Y i. From (77) the likelihood
derives as:

L(ϑϑϑ,D,ϑϑϑ,ΣΣΣ) =
N

∏
i=1

fi(yyyi|ϑϑϑ,D,ϑϑϑi,ΣΣΣi)

=
N

∏
i=1

∫ ni

∏
j=1

fi j(yi j|ϑϑϑ,bbbi,θθθi) f (bbbi|D) f (θθθi|ϑϑϑi,ΣΣΣi) dbbbi dθθθi. (78)
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The key problem in maximizing (78) is the presence of N integrals over the random
effects bbbi and θθθ. It is widely claimed that the absence of a closed-form solution pre-
cludes an analytical-integration based solution (Molenberghs and Verbeke, 2005), ex-
plaining the popularity of Taylor-series expansion based methods, such as PQL and
MQL, Laplace approximation, and numerical-integration based methods. These have
been implemented in, for example, the SAS procedures GLIMMIX and NLMIXED.
Several of the series expansion methods tend to exhibit bias, an issue taken up in Bres-
low and Lin (1995), and suggesting the use of alternative methods.
However, thanks to our results in Section 4, further progress can be made. Closed-

form integration, apart from the normal case, is within reach for the Poisson, probit,
and Weibull cases. Now, some closed forms involve series expansions, and may be
either time consuming or cumbersome to implement. This notwithstanding, a variety of
alternative approaches are possible.
Let us turn to the Poisson case. While closed-form expressions can be used to imple-

ment maximum likelihood estimation, with numerical accuracy governed by the num-
ber of terms included in the series, one can also proceed by what we will term partial
marginalization. By this we refer to integrating (18)–(22) over the gamma random ef-
fects only, leaving the normal random effects untouched. The corresponding probability
is:

f (yi j|bbbi) =
(
α j+ yi j−1
α j−1

)
·
(

β j
1+κi jβ j

)yi j
·
(

1
1+κi jβ j

)α j

κ
yi j
i j , (79)

where κi j = exp[xxx
T
i jξξξ+ z

T
i j bbbi]. Note that, with this approach, we assume that the gamma

random effects are independent within a subject. This is fine, given the correlation is
induced by the normal random effects.
Similarly, for the Weibull case we obtain

f (yi j|bbbi) =
λκi jeμi jρy

ρ−1
i j α jβ j

(1+λκi jeμi jβ jy
ρ
i j)
α j+1

. (80)

Now, in the survival case it is evidently very likely that censoring occurs. Focusing
on right-censored data, it is then necessary to integrate the marginal density over the
survival time within the interval [0,Ci]. The corresponding cumulative distribution is
given in (65). In the spirit of (80), the partial marginalization of a censored component
takes the form:

f (Ci j|bbbi) =
∫ +∞

Ci j
f (yi j|bbbi)dyi j = 1

(1+λκi jeμi jC
ρ
i j)
α j
. (81)

The concept of partial integration always applies whenever strong conjugacy holds. In-
deed, an expression of the form (16) corresponds to integrating over the conjugate ran-
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dom effect θ, while leaving the normally distributed random effect embedded in the
predictor, κ in this notation. Recall that, while expressions of the type (16) appear to be
for the univariate case, they extend without problem to the longitudinal setting as well.
Because there is lack of strong conjugacy, the logit case defies the mere exploitation

of conjugacy, such as the negative binomial form (79) and the Weibull-gamma frailty
form (80). Nevertheless, it is easy to derive, for this case:

f (yi j|bbbi) = 1
α j+β j

· (κi jα j)
yi j · [(1−κi j)α j+β j]

1−yi j . (82)

For all of these, it is straightforward to obtain the fully marginalized probability by
numerically integrating the normal random effects out of (79), (80), and (82), using a
tool such as the SAS procedure NLMIXED that allows for normal random effects in
arbitrary, user-specified models.
For the specific case of the marginalized probit model, the computational chal-

lenge stems from the presence of a multivariate normal integral of the form (42), a
phenomenon also known from the fully marginally specified multivariate probit model
(Ashford and Sowden, 1970; Lesaffre and Molenberghs, 1991; Molenberghs and Ver-
beke, 2005). Specific to the context of the probit models with random effects, Zeger et
al. (1988) derived the marginal mean function, needed for their application of general-
ized estimating equations as a fitting algorithm for the marginalized probit model.
In the ordinal case, the partially marginalized density at occasion j for subject i takes

the form:

f (yi j|bbbi) = α j

α j+β j
· (κ1,i j)z1,i j ·

R−1
∏
r=2

(κr,i j−κr−1,i j)zr,i j ·
(
α j+β j
α j

−κR−1,i j
)zR,i j

.

From these, the likelihood can be constructed by assembling all contributions over sub-
jects and repeated measurements within subjects.
MVDV discussed a number of alternative estimation strategies. These include pseudo-

likelihood (or: pairwise likelihood; Aerts et al., 2002; Molenberghs and Verbeke, 2005),
Bayesian inferences, non-parametric maximum likelihood (Booth et al., 2003: Aitkin,
1999; Alfò and Aitkin, 2000). Also, hierarchical generalized linear models (Lee and
Nelder, 1996; Lee et al., 2006) can be used. They also referred to transformation-based
methods, whereby non-normal random effects are transformed to normal ones, or vice
versa (Liu and Yu, 2008; Nelson et al., 2006).
An important point is that not all parameters may be simultaneously identifiable.

For example, the gamma-distribution parameters in the Poisson case, α and β, are not
simultaneously identifiable when the linear-predictor part is also present, because there
is aliasing with the intercept term. Therefore, one can set, for example, β equal to a con-
stant, removing the identifiability problem. It is then clear that α, in the univariate case,
or the set of α j in the repeated-measures case, describe the additional overdispersion, in
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addition to what stems from the normal random effect(s). A similar phenomenon also
plays in the binary case, where both beta-distribution parameters are not simultaneously
estimable.
In addition, also Bayesian estimation and inference can be considered. Ghebretinsae

et al. (2013) considered a Bayesian version in the time-to-event case. Ghebretinsae et
al. (2012) presented a Bayesian joint CM. Efendi and Molenberghs (2013) juxtaposed
likelihood-based and Bayesian estimation. The performance of the Bayesian method for
the count case was assessed, using simulations, by Aregay, Shkedy, and Molenberghs
(2013) and Rizzato et al. (2016). Aregay, Shkedy, and Molenberghs (2015) compared
model versions with additive and multiplicative random effects. On a related note, Iddi
et al. (2014) examined empirical Bayes estimation for the combined model.

9. Implication for computation of correlation and derived quantities

As we have seen, the combined model allows for closed-form expressions for moments,
and hence for means and variances, for the normal, Poisson, probit, and Weibull cases,
with a combination of normal random effects on the one hand, supplemented on the
other hand with conjugate random effects, taking a normal, gamma, beta, and gamma
form, respectively. The obvious one missing from the list is the logit model, but then
the logit-probit connection, as discussed in Section 6.2, comes to the rescue.
These closed-form moments enable easy calculations of such derived quantities as

correlations. For the count case, this was done by Vangeneugden et al. (2011), while
Vangeneugden et al. (2014) focused on the binary setting.
For the count combined model, Vangeneugden et al. (2011) used the following

derivation. The mean vector μμμi = E(YYY i) has components:

μi j = φi j exp
(
xxx T

i j ξξξ+
1
2z

T

i jDzi j
)
, (83)

and the variance-covariance matrix is given by

var(YYY i) =Mi+Mi (Pi−Jni)Mi, (84)

where φφφi is the mean vector of the overdispersion random effects, with components φi j,
ΣΣΣi is the variance-covariance matrix of the overdispersion random effects, with compo-
nents σi j, andMi is a diagonal matrix with elements μi j. Further, the ( j,k)th element of
Pi equals
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pi, jk = exp
(
1
2z

T

i jDzik
) · σi, jk+φi jφik

φi jφik
· exp( 12z T

ikDzi j
)
. (85)

Evidently, from this variance-covariance structure, the correlations immediately follow.
For the binary combined model, with probit link, the means, variances, and covari-

ances were given in (45)–(47). When the logit link is used, no similar closed form exist.
One can proceed by approximating the logit function via the probit function, or by using
Taylor-series-based expressions. Details on these can be found in Vangeneugden et al.
(2014).
The availability of closed-form correlation and other moment-based functions is use-

ful in a number of contexts. For example, when studying psychometric reliability and
generalizability (Vangeneugden et al., 2008; 2010), the correlation function is the basic
building block. Correlation functions are also used in the context of surrogate marker
evaluation from clinical-trial data (Alonso et al., 2017). Milanzi et al. (2015) used
developments of this type to underscore the difference between manifest and latent cor-
relations, for example when reliability measures are calculated in item response theory.

10. Marginalized versions of the combined model

As is clear from Sections 4–7, for many though not all versions of the CM there are
explicit moment expressions and quantities derived there from. Nevertheless, they are
algebraically involved, chiefly due to the non-conjugate nature of the normal random
effects. To simplify the derivation of marginal quantities, such as effect measures, mean
functions, etc., it is sensible to turn to the methodology of Heagerty (1999) and Heagerty
and Zeger (2000), who modified the GLMM so that the first-order moments, i.e., the
mean functions, are directly marginally interpretable. They originally focused on the
logistic-normal model for binary longitudinal data, but they and others then extended
the framework to other data types and link functions. The method specifies, at first sight
contrary to intuition, a separate model for the marginal and conditional means. But this
works thanks to a connector function that depends on covariates, marginal parameters,
and the random-effects specification. Hence, both a marginal and conditional interpreta-
tion of the parameters can be maintained. The model, called the marginalized multilevel
model (MMM), also allows for the use of maximum likelihood and Bayesian inferences,
which is useful when data are incomplete.
To bring together the flexibility of the CM and the marginal interpretability of the

MMM, Iddi and Molenberghs (2012ab) developed the combined overdispersed and
marginalized multilevel model (COMMM). They focused on binary data and to some
extent on counts. Kassahun et al. (2014b) studied further the count data case. The time-
to-event case was studied by Efendi, Molenberghs, and Iddi (2014). Molenberghs et al.
(2013) and Kenward and Molenberghs (2016) established connections between various
ways of deriving marginally interpretable random-effects models, of which the MMM
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idea is one. Iddi and Molenberghs (2013) and Kassahun et al. (2014b) combined the
MMM idea, for counts, with the occurrence of zero-inflation.
The rest of this section is organized in the following way. In Section 10.1, the general

MMM and COMMM methodology is given. The analysis of the epilepsy, onychomy-
cosis, and asthma cases studies is presented in Sections 10.2–10.4. In Section 10.5, we
show how further zero inflation in the count case can be added.

10.1. Methodology

The general formulation of the CM was given in Section 4. The other building block
that we need is the general marginalized multilevel model (MMM), after which both
will be merged.
The general marginalized multilevel model due to Heagerty (1999) can be written

as:

g1(μ
m
i j) = xxx T

i j ξξξ
m, (86)

g2(μ
c
i j) = Δi j+zzz

T

i j bi, (87)

bi ∼ Fb (0,D) , (88)

Y ci j =Yi j|bi ∼ FYc
(
μci j,υ

)
. (89)

The two link functions g1 and g2 can be different, although frequently they will be
identical and then denoted by g. Further Fb is an arbitrary distribution. Here, υ is
a dispersion parameter, similar to the overdispersion parameter φ in the exponential
family. The marginal mean μmi j= E(Yi j) is made to depend on an ni× pmatrix of p linear
predictors XXXi through a link function g(·). Further, the conditional mean μci j = E(Yi j|bi)
relates to the random variable bi with distribution (88) and the function Δi j connects the
marginal and conditional means through the same link function; the latter aspect could
be relaxed if desired. The conditional response distribution is given by FYc . The function
Δi j is obtained from the solution to the integral equation

μmi j = g−1(xxx T

i j ξξξ
m) =

∫
b
g−1(Δi j+zzz

T

i j bi)dFb. (90)

For example, when the link function is logit and the distribution of the random effect is
normal, the expression of Δi j is obtained from:

expit(xxx T

i j ξξξ
m) =

∫
b
expit(Δi j+zzz

T

i j bi)ϕ(bi|0,D)dbi.

Here, expit(η) = eη/(1+ eη). Griswold and Zeger (2004) expanded the model by re-
laxing the common link function assumed for both the marginal and conditional model
specification. For example, using a logistic-probit-normal model:
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logit(μmi j) = xxx T

i j ξξξ
m,

Φ−1(μci j) = Δi j+zzz
T

i j bi,

bi ∼ Fb (0,D) ,

Y ci j|bi =Yi j ∼ FYc
(
μci j,υ

)
.

(90) becomes:

Δi j =
(√

1+zzz T
i jDzzzi j

)
·Φ−1{expit(xxx T

i j ξξξ
m)}. (91)

The logit-probit-normal is more attractive than the logit-logit normal version in the
sense that, for example, the marginal parameters will enjoy the odds ratio interpreta-
tion while at the same time retaining the computational advantage associated with the
probit-normal relationship. Of course, when both link functions are of probit form, (91)
becomes:

Δi j =
(√

1+zzz T
i jDzzzi j

)
·xxx T

i j ξξξ
m. (92)

For count data, a log-log-normal specification leads to

Δi j = xxx T

i j ξξξ
m−zzz T

i jDzzzi j/2. (93)

Note from this expression that, in particular for a random intercept model, i.e., one
where zzz T

i j bi = bi with bi ∼ N
(
0,τ 2

)
, then zzz T

i jDzzzi j =
√
1+ τ 2, which implies that only

fixed intercept parameters will be affected in the MMM model compared to their coun-
terparts in the conditional GLMM model. For a general random-effects design zzz T

i j bi,
this will not be the case. The expression for Δi j, in the case of probit-probit-normal,
log-log-gamma model and the logistic-logistic-Bridge MMM can be found in Griswold
and Zeger (2004).
Iddi and Molenberghs (2012), and Efendi et al. (2014) combined the MMMwith the

CM, by combining (9), (10), and (11) from the CM with (86), (88), and (89) from the
MMM in the following way:

g(μmi j) = xxx T

i j ξξξ
m

g(κi j) = Δi j+zzz
T

i j bi

μci j = θi jκi j

θi j ∼Θi j
(
τi j,σ

2
i j

)
bi ∼ Fb (0,D)

Y ci j = (Yi j|θi j,bi)∼ FYc
(
μci j,υ

)
.
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Note that the response distribution is now conditioned on two sets of random effects,
namely the overdispersion and longitudinal ones. This implies that the expression for Δi j
will change slightly. Because μci j = E(Yi j|θi j,bi), the function Δi j will then be obtained
from the integral equation

μmi j = g−1(xxx T

i j ξξξ
m) =

∫
b

∫
θ
θi jg

−1(Δi j+zzz
T

i j bi)dΘθdFb

=
∫
b
E(θi j)g

−1(Δi j+zzz
T

i j bi)dFb. (94)

These authors showed that for the logistic-probit-normal model with beta distribution
for the overdispersion parameter, i.e., θi j ∼ Beta(α1 j,β2 j), (94) becomes

Δi j =
(√

1+zzz T
i jDzzzi j

)
·Φ−1{(1+ c j) · expit(xxx T

i j ξξξ
m)},

where c j = β2 j/α1 j, which can serve as one of several possible constraints, given that
the model is now over-parameterized. For the log-log-normal MMM model with θi j ∼
Gamma(α1 j,α2 j),

Δi j =− log(α1 jα2 j)+xxx T

i j ξξξ
m−zzz T

i jDzzzi j/2.

The fully marginalized joint distribution can be obtained from integrating out the two
random effects. Less effort is needed here because the expressions for the marginal
distribution are similar to those found in Molenberghs et al. (2010), except for replacing
κi j with κi j = g−1(Δi j+zzz T

i j bi).
Efendi et al. (2014) showed that, in the particular case of the Weibull-gamma-normal

model, the integral equation leads to:

Δi j =− log(α jβ j)+xxx
T

i j ξξξ
m− z T

i jDzi j/2. (95)

Should there be no gamma random effects, then the first term on the right hand side of
(95) simply drops.
Parameter estimation conveniently proceeds by using the partially marginalized dis-

tribution method, explained in Section 8. Only here, the conditional distribution is partly
specified through the marginal mean function, which is passed on to the conditional
mean function via the connector function.

10.2. A clinical trial in epileptic patients

Building further on the models fitted in Sections 5.1 and 5.3, assume Yi j to follow a
Poisson distribution with marginal mean
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log(πmi j) =

{
β00+β01ti j if placebo,

β10+β11ti j if treatment.
(96)

Write the conditional model log(πci j) = Δi j + bi, with bi ∼ N(0,d) and Δi j the con-
nector. If also overdispersion is present, consider the COMMM version with then
πci j = θi jexp(Δi j+bi) where θi j ∼ Gamma(α1,α2) and impose constraint α2 = 1/α1.

Table 10: Epilepsy study. Comparison of the log-log-normal MMM with the combined gamma and log-
log-normal MMM.

CM MMM COMMM
Gamma and Log-Log- Gamma and

Effect Par. log-normal normal Log-Log normal

Interc. plac. β00 0.9112(0.1755) 1.3960 (0.1887) 1.4757 (0.1962)
Slope plac. β01 −0.0248(0.0077) −0.0143 (0.0044) −0.0248 (0.0077)
Interc. treatm. β10 0.6555(0.1782) 1.2256 (0.1901) 1.2200 (0.1970)
Slope treatm. β11 −0.0118(0.0075) −0.0120 (0.0043) −0.0118 (0.0075)
SD RE

√
d 1.0625(0.0871) 1.0755 (0.0857) 1.0625 (0.0871)

Neg.-bin. par. α1 2.4640(0.2113) — 2.4640 (0.2113)

Neg.-bin. par. α2 =
1
α1

0.4059(0.0348) — 0.4059 (0.0348)

−2 log-likelihood −7664 −6810 −7664

Parameter estimates and standard errors for the log-log-normalMMM and the gamma-
log-log-normal COMMM model are presented in Table 10. Observe that the parameter
estimates for the two models are very similar, with the same holding for the standard er-
rors. The log-log-normal model improves when the gamma random effect is introduced,
as seen from a likelihood ratio comparison. This crucially affects inferences about the
difference between the slopes as well as the ratio of the slopes. For the log-log-normal
model, the difference of the slopes β11−β01 was found not to be significantly different
form zero while the ratio of the slopes β11/β01 showed a significant difference from
one (p = 0.7111 and p = 0.0376, respectively). On the other hand both the slope dif-
ference (p = 0.2260) and ratio (p = 0.1591) showed non-significance in the combined
model. To understand this, two things need to be borne in mind. First, the above demon-
strates that, due to more careful modelling of the association and dispersion structures,
inferences about functions of the model parameters may be erroneous in the simpler
model, underscoring that care must be taken regarding conclusions based on the simpler
model. Indeed, it would lead to a significant treatment difference, whereas the more
general combined model showed no evidence for treatment difference. Similar obser-
vations were also made by MVD, where the combined Poisson-Gamma-normal showed
a strong improvement of the Poisson GLMM model, underscoring the importance of
introducing the gamma random effect. Second, and very important, one should not di-
rectly compare the estimates in the marginalized and the conditional version. Indeed, in
the MMM model, treatment effects, slopes, etc. have a marginal interpretation. In addi-
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tion, we can examine the results of fitting a combined beta and log-normal model, which
is purely conditionally specified. The interpretation of the latter should be considered at
the individual level, or at least for a change between two patients with different covariate
profile (e.g., treated versus non-treated), but with the same level of the random effect.
We note from these results that for a random intercept model, only the intercepts

parameters are affected but all other parameters remain the same compared to the com-
bined Gamma and log-log-normal model. These would, however, not be the same, for
example, for a random intercept and slope model. Given that the log link was used for
both marginal and conditional models, we see further that the log-likelihood remains the
same across both combined models.

10.3. A clinical trial in onychomycosis

Also here, both the conditional as well as the marginal mean are specified:

Yi j|bi ∼ Bernoulli(πci j),
Φ−1 (πci j)= Δi j+bi,

bi ∼ N(0,d),

logit(πmi j) = β0+β1Xi+β2ti j+β3Xiti j.

Recall that Xi is an indicator for the treatment applied to subject i, ti j is the time at which
the jth measurement is taken. For the COMMM model, the conditional mean model
is specified as πci j = θi jΦ(Δi j+bi) where θi j ∼ Beta(α1,α2) and Φ−1 is the probit link.
The constraint c= α2/α1 was imposed.
From the results presented in Table 11, it is again clear that introducing the beta

random effect improves significantly the model fit when comparing the log-likelihoods
(smaller AIC). Parameter estimates from both models are slightly different, but a much
more dramatic effect is seen in precision estimation. For many, but not all parameters,
the extended model yields a higher precision. Furthermore, we observed that whereas
the broader model encompassing both overdispersion and correlation concludes that
there is no effect of the evolution of treatment (β3) on the response with p-value of
p= 0.0790, the MMM model results in a significant treatment evolution (p = 0.0155).
Also presented in Table 11 are the results for a combined beta and probit-normal model
whose parameters have a conditional interpretation. The treatment evolution was found
to be significant with p= 0.0343. By comparing the two combined models, which both
account for overdispersion and correlation simultaneously but with different interpreta-
tion of parameters, we may conclude that, while there is a significant treatment evolution
given subjects, there is no evidence of population average treatment evolution.
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Table 11: A clinical trial in onychomycosis. Comparison of logistic-probit-normal MMM with the com-
bined Beta and logistic-probit-normal MMM.

CM MMM COMMM
Beta and logistic- Beta and logistic-

Effect Par. probit-normal probit-normal probit-normal

Interc. β0 −0.7285(0.8622) −0.6154 (0.1493) −0.4762 (0.0408)
Treatment β1 −0.7404(1.1816) −0.0382 (0.2120) −0.1858 (0.1240)
Time β2 −0.9109(0.2321) −0.1529 (0.0190) −0.1832 (0.0241)
Interaction β3 −0.3989(0.1876) −0.0702 (0.0288) −0.0691 (0.0392)
SD RE

√
d 8.6763(1.9535) 2.1061 (0.1904) 8.8901 (0.0152)

Beta-bin. par. α2/α1 0.2828(0.0372) — 0.2769 (0.0363)
−2 log-likelihood 1259.9 1265.2 1254.0

10.4. Recurrent asthma attacks in children

We now turn to the recurrent asthma data, described in Section 2.5. For each of the
226 patients, their treatment allocation and repeated time-to-event outcomes, the time
between the end of the previous to onset of the next attack, Yi j is recorded; the outcome
is subject to censoring. Also here, the combined model and its marginalized version are
presented next to each other. Regarding the normal random-effects structure, a random
intercept bi1 (with variance σ2i ) and a random slope bi2 (with variance σ

2
e ) is included.

While this could be relaxed, both random effects are assumed to be independently nor-
mally distributed. Model fitting is done using both full and pairwise likelihood. Param-
eter estimates (standard errors) are presented in Table 12.
Full likelihood estimates between the ordinary and marginalized models are similar.

Treatment effect is not significant. Because marginalization does not change the like-
lihood, the likelihood ratios are invariant to this operation (Griswold and Zeger, 2004).
Because we now include two normally distributed random effects, the connector func-
tion (95) uses a different vector zi j. This now implies that the treatment effect estimate
changes upon marginalization, although the change is minor.

Table 12: Asthma study. Original and marginalized combined model results. ‘WGN’ refers to the Weibull-
gamma-normal model, whilst ‘C’ and ‘CM’ means censored and censored-marginalized, respectively.

Effect Par WGN-C WGN-CM WGN-C WGN-CM

Full likelihood Pairwise likelihood

Estimate(s.e.) Estimate(s.e.) Estimate(s.e.) Estimate(s.e.)

Treatment ξ −0.113(0.106) −0.111(0.102) −0.127(0.105) −0.127(0.105)
Shape λ 0.014(0.001) 0.017(0.001) 0.025(0.002) 0.027(0.003)
Conj.RE α 3.566(0.632) 3.566(0.632) 4.583(0.708) 4.584(0.708)
s.d. norm. R.int. σi 0.560(0.068) 0.560(0.068) 0.445(0.039) 0.445(0.039)
s.d. norm. R.eff. σe 0.077(0.734) 0.077(0.741) 11E-4(11E-4) 20E-6(20E-6)

−2 log-likelihood 16649 16649
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Turning attention to results using pairwise likelihood estimation, it is found that the
estimates before and after marginalization are still similar. We also see that the estimate
of the random slope parameter is virtually zero in all cases, although more pronounced
in the pairwise-likelihood case. This does not contradict the results from full likelihood,
where this component was non-significant, although the numerical behaviour is quite
different.
In the four versions presented in the table, the conjugate random effect parameter

is statistically significant. This is important and underscores that neither the standard
GLMM nor the available marginalized model of Griswold and Zeger (2004) fit the data
adequately.

10.5. Adding zero inflation to the COMMM in the case of counts

In line with Kassahun et al. (2014b), the above construction can be combined with the
concepts of Section 5.2, where additional zeroes are allowed for in the CM for count
data.
We have to be careful regarding the correct logic. We first specify the model fully

hierarchically, derive its marginal mean function, model the former including connector
functions, and the latter in the usual parametric way.

10.5.1. Zero-inflation

Dropping indices to diminish notational clutter at this point, the conditional model spec-
ification is:

P(Y = y|θ,bbb) =
{
πc+(1−πc) f (0|λc) y= 0,

(1−πc) f (y|λc) y> 0,
(97)

πc =Φ(Δ1+ z
T

1bbb1), (98)

λc = θ exp(Δ2+ z
T

2bbb2), (99)

θ ∼ Gamma(α,β), (100)

bbb=

(
bbb1
bbb2

)
∼ N

[(
0
0

)
,

(
D11 D12
D21 D22

)]
. (101)

It now follows:

E(Y |θ,bbb) = [πc+(1−πc) f (0|λc)] ·0+
∞∑
y=1

y
e−λ

c
(λc)y

y!
= (1−πc)λc. (102)
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We then require that the marginal mean is of the form:

E(Y ) = (1−πm)λm. (103)

The fact that calculating the mean form (102) results in the form (103) does not imply
that the marginal model behind (97)–(101) is equal to (103). In fact, as stated before,
we know this is not true.
Focusing on the mean functions, as we should, leads to the requirement:

∫ ∫
(1−πc)λc f (θ) f (bbb)dθdbbb= (1−πm)λm. (104)

It looks like this is straightforward, but there is a caveat: πc and λc are connected through
correlated random effects. In the special but relevant case thatbbb1 andbbb2 are uncorrelated,
and hence that D12 = 0, we can solve the system:∫

πc f (bbb1)dbbb1 = πm, (105)∫ ∫
λc f (bbb2) f (θ)dbbb2 dθ = λm. (106)

Now, (105) is the classical binary connector function integral equation; (106) is the
counterpart for the Poisson case.
In case D12 �= 0, the integral equation takes the form:∫ ∫ ∫

(1−πc)λc f (θ) f (bbb1) f (bbb2|bbb1)dθdbbb1 dbbb2 = (1−πm)λm. (107)

Given that

bbb2|bbb1 ∼ N
(
D21D−1

11 bbb1, D= D22−D21D−1
11 D12

)
,

and with some straightforward algebra, we obtain the following intermediate step:

E(θ)eΔ2+
1
2zzz

T
2Dzzz2

∫
(1−πc)ezzzT2D21D−1

11 bbb1 f (bbb1)dbbb1 = (1−πm)λm.

This, in turn, leads to

E(θ)eΔ2+
1
2 zzz

T
2D22zzz2

∫
(1−πc) f (bbb1;μ= D12z2)dbbb1.
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Upon applying a final transformation (b̃bb1 = bbb1−D12z2 ∼ N(0,D11)), we find that the
Poisson connector remains the same, but for the binary connector, we need to solve:

πc =Φ(Δ1+ z
T

1 b̃bb1+ z
T

1D12z2).

Of course, this is equal to the standard binary connector problem, but merely with a shift
applied to Δ1.

10.5.2. Hurdle models

Using the same simplified notation as before, we now have:

P(Y = y|θ,bbb) =
{
πc y= 0,

(1−πc) f (y|λc)
1− f (0|λc) y> 0,

, (108)

with the rest of the model specified by (98)–(101). It now follows:

E(Y |θ,bbb) = πc ·0+ 1−πc
1− f (0|λc)

∞∑
y=1

f (y|λc) = 1−πc
1− f (0|λc) ·λ

c =
1−πc
1− e−λc

·λc. (109)

Also here, we require conditional mean (109) to take the same form marginally:

E(Y ) = (1−πm) · λm

1− e−λm
.

When bbb1 and bbb2 are independent, we find the classical connector integral equation for
the binary component:

∫
πc f (bbb1)dbbb1 = πm.

For the count connector function, we need to solve:

∫∫
λc

1− e−λc
f (θθθ) f (bbb2)dθdbbb2 =

λm

1− e−λm
.

More explicitly,

∫∫
θeΔ2+zzz

T
2bbb2

1− e
−
[
θeΔ2+zzz

T
2bbb2

] f (θθθ) f (bbb2)dθdbbb2 = exxx
T
2ξξξ

1− e−e
xxxT
2ξξξ
.
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Of course, also here, a further modification is needed when the two normal random
effects are correlated. In line with what we find in the zero-inflated case, we now have:

∫∫∫
Φ(Δ1+z

T

1bbb1) ·
θeΔ2+zzz

T
2bbb2

1− e
−
[
θeΔ2+zzz

T
2bbb2

] f (θθθ) f (bbb1) f (bbb2|bbb1)dθdbbb1dbbb2=Φ(xxxT

1γγγ) ·
exxx

T
2ξξξ

1− e−e
xxxT
2ξξξ
.

However now, the denominator under the integrand implies that simplification is less
straightforward, and hence a Newton-Raphson approach for the pair (Δ1,Δ2) is an ob-
vious way forward. Note that in the zero-inflated case, we were able to derive intuitive
expressions for Δ1 and Δ2, but these are not unique, given that there is one integral equa-
tion with two tuning parameters. Thus, at best, one can find an algebraic expression for
Δ1, because even in the uncorrelated random-effects case, there is no closed form for the
count connector. Therefore, we can simply set one of the two equal to zero, Δ1 ≡ 0, say,
and then solve the reduced integral equation for Δ2.

11. Joint modelling of several outcomes

The common recording of not one but several longitudinal sequences is common prac-
tice nowadays. The use of normal random effects in the combined model allows one to
simultaneously analyse several longitudinal sequences, which do not even need to be of
the same type.
Iddi and Molenberghs (2012a) made use of this possibility to jointly model a con-

tinuous and a binary longitudinal sequence. Kassahun et al. (2015) jointly modelled a
continuous and a zero-inflated count sequence. Njeru Njagu et al. (2016) considered the
case where repeated time-to-event outcomes are coupled with a longitudinal outcome of
various types (continuous, binary, count) as well as the joint modelling of a continuous
and binary outcome. Ivanova, Molenberghs, and Verbeke (2016) allow for ordinal out-
comes as well. Ghebretinsae et al. (2012) used CM joint modelling to analyse comet
assay data.
To give an example, let us consider Case 1 of Njeru Njagu et al. (2016), where

a linear mixed model for the continuous outcome is coupled with a Weibull-gamma-
normal model for the time-to-event outcome. The joint model, conditional on both the
normal and gamma random effects, takes the form:

f (ttti,yyyi|bbbi,ψψψi) =∏
k

λkρktik
ρk−1ψikeμik+dike−λktik

ρkψike
μik+dik

× 1

(2π)
ni
2 |ΣΣΣi| 12

e
−1
2 (yyyi−Xiξξξ−Zi bbbi)TΣΣΣ−1i (yyyi−Xiξξξ−Zi bbbi), (110)
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with ΣΣΣi an ni by ni diagonal covariance matrix with diagonal elements σ2. Also, ttti is the
set of pi survival times for cluster i, while yyyi is the vector of ni continuous outcomes.
Moreover, dik =www T

ik bbbi, where www
T
ik is a vector of scale factors. Here, the index k refers to

the kth survival time in cluster i. For the scale and shape parameters in the baseline haz-
ard, we consider a more general case, where both λ and ρ are allowed to vary between
members of a cluster. The continuous and survival processes are assumed independent,
conditional on the shared normal random effects. Note that the shared random effect in
the way considered here is generic. For example, one can choose zi j and wwwi j such that
some random effects are present in the normal-outcome linear predictors, with others in-
fluencing the Weibull predictor, and a third set influencing both. As such, our paradigm
encompasses both shared as well as correlated random effects.

12. Influence diagnostics

Because of the relative novelty of the CM and its extensions, development regarding
model assessment and diagnostic tools has been limited. Rakhmawati et al. (2017)
presented local influence diagnostic tools for the count-data CM. Rakhmawati et al.
(2016ab) extended this to allow for zero inflation and incomplete data, respectively.
Local influence was presented by Cook (1986). The impact of individuals and mea-

surements on the analysis is assessed by comparing standard maximum likelihood es-
timates with those resulting from slightly perturbing the contribution of an individual
or measurement. The method is to be contrasted with global influence (case deletion),
where impact is assessed by simply deleting an individual or measurement. While con-
ceptually a bit technical, it is easy and fast to use in practice and in several cases it leads
to interpretable components of influence. Lesaffre and Verbeke (1998) introduced influ-
ence assessment for the linear mixed model. Ouwens, Tan, and Berger (2001) applied
local influence to the Poisson-normal model. Rakhmawati et al. (2017) followed their
ideas, but with extensions in three directions. First, they provided closed-form expres-
sions, based on an analytical form for the marginal likelihood function, as well as based
on an integral form for the said likelihood. Second, they considered three important
cases: binary, count, and time-to-event. Third, they started from the combined model,
rather than merely from the GLMM.
The general theory behind so-called case-weighted likelihood is as follows. Let the

log-likelihood for the generalized linear mixed model or its combined extension take the
form

�(θθθ) =
N∑
i=1

�i(θθθ), (111)
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in which �i(θθθ) is the contribution of the ith individual to the log-likelihood. Let

�(θθθ|ωωω) =
N∑
i=1

ωi�i(θθθ), (112)

and denote the perturbed version of �(θθθ), depending on an N-dimensional vector ωωω of
weights, assumed to belong to an open subset Ω of RN . The original log-likelihood
(111) follows for ωωω = ωωω0 = (1,1, . . . ,1)T. Let θ̂θθ be the maximum likelihood estimator
for θθθ, obtained by maximizing �(θθθ), and let θ̂θθω denote the estimator for θθθ under �(θθθ|ωωω).
Cook (1986) proposed to measure the distance between θ̂θθω and θ̂θθ by the likelihood dis-

placement: LD(ωωω) = 2
(
�(θ̂̂θ̂θ)− �(θ̂ωθ̂ωθ̂ω)

)
. LD(ωωω) will be large if �(θθθ) is strongly curved

at θ̂θθ. A graph of LD(ωωω) versusωωω brings out information on the influence of case-weight
perturbations. The graph is the geometric surface formed by the values of the (N+ 1)-
dimensional vector

ξξξ(ωωω) =

(
ωωω

LD(ωωω)

)
asωωω varies throughoutΩ. Following Cook (1986) and Verbeke andMolenberghs (2000),
we will refer to ξξξ(ωωω) as an influence graph.
Cook (1986) derived a convenient computational scheme. LetΔΔΔi be the s-dimensional

vector of second-order derivatives of �(θθθ|ωωω), w.r.t. ωi and all components of θθθ, and eval-
uated at θθθ = θ̂θθ and ωωω = ωωω0. Also, write Δ for the s× r matrix with ΔΔΔi in the ith column.
Let L̈ denote the s× s matrix of second derivatives of �(θθθ), evaluated at θθθ = θ̂θθ. For any
unit vector hhh in Ω, it follows that:

Ch = 2
∣∣∣ hhhTΔΔΔTL̈−1ΔΔΔhhh

∣∣∣ . (113)

Various choices for hhh have received attention. First, as will be done here, one can focus
on subject i only, by choosing hhh = hihihi, the zero vector with a sole 1 in the ith position.
Local influence then is

Ci ≡ Chi = 2
∣∣∣ ΔΔΔT

i L̈
−1

ΔΔΔi
∣∣∣ . (114)

Second, hhh=hhhmax can be considered, the direction of maximal normal curvature (Verbeke
and Molenberghs 2000). Expressions can be derived when only a sub-vector of the
parameter vector is of interest as well. We refer to Rakhmawati et al. (2017) for details.
These authors derived interpretable expressions for several cases. For example, for

the probit-normal case they showed that
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||ΔΔΔi||2 =
⎛⎝ ni∑

j=1

ri j xxxi j

⎞⎠⎛⎝ ni∑
j=1

ri j xxxi j

⎞⎠T

+
∑
k,l

{
− 1
2(D

−1)kl+
1
2
(D−1D−1)klVar(bi)

}2
.

LetCi =C1i+C2i with:

C1i = 2||L̈−1|| ||rrrT

i xxxi||2 cos(ϕi), (115)

C2i = 1
2 ||L̈−1|| ||(D−1)kl− (D−1D−1)klVar(bi)||2 cos(ϕi), (116)

where rrrT
i xxxi =

∑ni
j=1 ri j xxxi j. Note thatC1i andC2i are the contributions of subject i to local

influenceCi from βββ and D, respectively. Now,C1i andC2i were shown to equal:

C1i = 2||L̈−1|| ||xxxixxxT

i|| ||rrri||2 cos(αi)cos(ϕi), (117)

C2i = 1
2 ||L̈−1||cos(ϕi)×

[
tr
{
(D−1)2kl

}− tr{2(D−1)kl(D−1D−1)klVar(bi)
}
)

+tr
{
(D−1D−1)2klVar(bi)

2}] , (118)

where cos(αi) is the angle between vec(xxxixxx
T
i) and vec(rrri rrr

T
i), and ϕi is the angle between

vec(−L̈−1) and vec(ΔΔΔiΔΔΔT
i). Hence, the interpretable components ofCi in the case of the

Poisson-normal model can be described using the ‘length of the fixed effect’ (||xxxixxxT
i||),

the ‘squared length of the residual’ (||ririri||2), and the ‘squared of random effect variabil-
ity’ (Var(bi)2).
Rakhmawati et al. (2017) derived similar expressions for the probit-normal, logit-

normal and Weibull-normal models.

12.1. A clinical trial in epileptic patients

We start from the Poisson-normal (P-N) and Poisson-gamma-normal (PGN) models
studied before:

ln(λi j) =

{
(ξ00+bi)+ ξ01t j if placebo

(ξ10+bi)+ ξ11t j if treated,
(119)

whereYi j represent the number of epileptic seizures patient i experienced during week j,
t j is the time point at which Yi j was measured, and with random intercept bi ∼ N(0,d).
Parameter estimates are given in Table 13. Index plots (versus patient ID) for various
local influence analyses are given in Figure 2. The top row of the plot represents the
total local influence, with subsequent rows representing influence for sub-vectors: fixed
effects, random-intercept variance d, and, for the (PGN), the overdispersion parameter
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Figure 1: Epilepsy data. Individual profiles.

Poisson-normal Poisson-gamma-normal
full dataset without #38, #49 and #62 full dataset without #38, #49 and #62

Total Local Influence (Ci)

Local Influence (ξ)

Local Influence (d)

Local Influence (α)

Figure 2: Epilepsy data. Local influence plots.
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Table 13: Local influence. Parameter estimates (standard errors) for the generalized linear mixed and
combined models.

Epilepsy Poisson-normal Poisson-gamma-normal

Effect Par. Full #(38,49,62) Full #(38,49,62)

Interc. plac. ξ00 0.818(0.168) 0.903(0.157) 0.911(0.176) 0.907(0.163)
Slope plac. ξ01 −0.014(0.004) −0.031(0.005) −0.025(0.008) −0.031(0.008)
Interc. treat. ξ10 0.648(0.170) 0.492(0.162) 0.656(0.178) 0.510(0.169)
Slope treat. ξ11 −0.012(0.004) −0.007(0.005) −0.012(0.007) −0.009(0.007)
Treat. eff. ξ11−ξ10 0.002(0.006) 0.024(0.007) 0.013(0.011) 0.022(0.011)
Treat. eff. ξ11/ξ10 0.840(0.398) 0.236(0.170) 0.475(0.335) 0.281(0.250)
Std. rand. int. σ 1.076(0.086) 0.982(0.081) 1.063(0.087) 0.969(0.082)
Overdisp. par. α 2.464(0.211) 3.109(0.329)

Onychomycosis Logit-normal Logit-beta-normal

Effect Par. Full #(6,30,53) Full #(6,30,53)

Interc. plac. ξ0 −1.630(0.435) −1.940(0.523) −1.604(4.026) −2.420(3.089)
Slope plac. ξ1 −0.404(0.046) −0.430(0.049) −6.478(1.439) −6.075(1.264)
Interc. treat. ξ2 −1.749(0.448) −1.604(0.536) −16.21(3.58) −15.21(3.02)
Slope treat. ξ3 −0.563(0.060) −0.872(0.100) −8.075(1.600) −8.755(1.437
Treat. eff. ξ11−ξ10 −0.159(0.072) −0.442(0.105) −1.596(0.858) −2.680(0.822)
Treat. eff. ξ11/ξ10 1.394(0.206) 2.028(0.302) 1.246(0.148) 1.441(0.171)
Std. rand. int. σ 4.015(0.381) 4.814(0.490) 60.88(14.22) 56.47(11.69)
Overdisp. par. α/β 0.281(0.035) 0.231(0.031)

α, respectively. Patients #38, #49, and #62 stand out with large total influenceCi when
compared to other patients. Importantly, influences show a major drop when switching
from (P-N) to (PGN). This is most prominently seen for #38. For an explanation, turn
to the right hand panel of Figure 1. Patient #38 (and to some extent also #62 on the left
hand side) alternates periodically between very high numbers of episodes and periods
virtually without. This implies that their mean, variance, and association structure are
rather different from the majority of subjects. The impact on the mean structure, by way
of the fixed effects, is evident in the second row. For the (P-N) it is less clear when
turning to d, but we gain a lot of insight from the (PGN) results. Overall influence and
influence on ξξξ reduce drastically, but there now is clear influence on d and α. What it
means is that with these subjects present, the overdispersion parameter helps capturing
their anomalous behaviour, which ‘deflates’ d. In other words, adding overdispersion
protects the inferentially crucial fixed-effects parameter vector. When removing these
subjects, and also #49, little or no influence is left.
Note that the (PGN) model fitted to the full dataset exhibits a smaller value for

α, which corresponds to more overdispersion (no overdispersion corresponds to α ap-
proaching +∞), while it does not vanish with removal of the three subjects. Thus, there
appears to be genuine overdispersion in the data, further inflated by the influential sub-
jects.
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Poisson-Normal Combined model
full dataset without #38, #49 and #62 full dataset without #38, #49 and #62

||xxxi xxxT
i ||

||rrri||2

Var(bbbi)2

Figure 3: Epilepsy data. Plots of interpretable components of local influence.

In agreement with MVD, MVDV, and our earlier analysis, Rakhmawati et al. (2017)
considered the treatment effect in additive (ξ11− ξ01) and multiplicative (ξ11/ξ01) form.
Important differences are seen on the additive scale. (P-N) shows no significance (p =
0.7106), which is sustained for (PGN), with p= 0.2225. Removing the influential sub-
jects leads to a highly significant result for (P-N), with p= 0.0009, which changes to the
still significant p = 0.0350 for (PGN). Hence, the influential subjects mask a treatment
effect. This is logical, because the influential subjects exhibit an oscillating behaviour,
introducing an important source of variability. At the multiplicative level, where the
null hypothesis is for the ratio to be 1, the story is nicely confirmed, with p = 0.6872
and p = 0.1166 for (P-N) and (PGN), respectively; the counterparts after deletion are
p< 0.0001 and p= 0.0040, respectively.
To get further insight as to why these subject have higher influence than others, plots

with interpretable components are given in Figure 3: ‘squared length of the fixed effects’
||xxxixxxT

i||, ‘squared length of the residual’ ||rrri||2, and ‘random-effect variability’ Var(bi)2.
It is hardly surprising that #38 stands out in terms of ||rrri||2. Influences on #49 and #62
are less pronounced.
Our analysis has provided insight not available from earlier analysis. The influential

subjects exhibit a cyclic behaviour not observed in the majority of patients, but at the
same time well documented. Based on these findings, a focused clinical discussion can
take place, to determine the course of action. Options include removal, retention, or
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Logit-normal Logit-beta-normal model
full dataset without #6, #30 and #53 full dataset without #6, #30 and #53

Total Local Influence (Ci)

Local Influence (ξ)

Local Influence (d)

Local Influence (α)

Figure 4: Onychomycosis data. Local influence plots.

even setting up a dedicated study to further scrutinize this sub-population. In this case, a
small group of patients with oscillating behaviour between two poles has been identified.

12.2. A clinical trial in onychomycosis

Before, we assumed Yi j|bi ∼ Bernoulli(πi j), where Yi j is severity of infection (1 for
severe, 0 for non-severe) for patient i at occasion j, Ti is the treatment indicator (1 for
experimental, 0 for standard) for subject, t j is the time point (months) at which the jth
measurement has been taken, and bi ∼ N(0,d). The conditional success probability is
expressed as:

logit(πi j) = ξ1(1−Ti)+ ξ2(1−Ti)ti j+ ξ3Ti+ ξ4Titi j+bi.
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Logit-Normal Combined model
full dataset without #6, #30 and #53 full dataset without #6, #30 and #53

||xxxi xxxT
i ||

Var(bbbi)2

Figure 5: Onychomycosis data. Plot of interpretable components of local influence.

Both the logit-normal (L-N) and logit-beta-normal (LBN) are fitted. Parameter esti-
mates (standard errors) are displayed in Table 13, with local influence plots in Figure 4.
Subjects #6, #30, and #53 are detected as influential, overall, and with respect to the
fixed effects, in the (L-N). Accommodating overdispersion, hence turning to the (LBN),
deflates the magnitude of influence. Likewise, influence is drastically diminished by
removing these three subjects. Thus, in case the influential subjects should remain in
the analysis, the (LBN) may be the most sensible route forward. Alternatively, in case
they are considered anomalous, one can remove them. To decide on which scenario is
preferred in this case, we note that all three subjects are unusual: they set out with a
sequence of non-severe ratings, but then switch to a severe rating (‘0000111’ for #6,
‘0000011’ for #30, and ‘0000001’ for #53). Arguably, there is no reason to remove
these subjects from analysis, partly also to safeguard randomization. However, it is un-
common to switch from non-severe to severe in this particular way, so these patients
must be further clinically scrutinized. Also for these data, the interpretable components
do not lead to further insight (Figure 5).
The (L-N) and (LBN) lead to borderline significance when applied to the full data

[p= 0.0268 additively and p= 0.0560 multiplicatively for (L-N); p= 0.0627 additively
and p = 0.0964 multiplicatively for (LBN)]. When influential subjects are removed,
these values all become highly significant [in the same order, p < 0.0001, p = 0.0007,
p = 0.0011, and p = 0.0099]. These findings are qualitatively similar to the epilepsy
cases.
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13. Concluding remarks

Based on work by MVD, MVDV, and subsequent references, we have reviewed a gen-
eral and flexible framework for such combinations, starting from arbitrary generalized
linear models and exponential family members. Specific emphasis is placed on normally
distributed, binary, binomial, count, and time-to-event outcomes. There are various rea-
sons to do so. First, non-Gaussian hierarchical data exhibit three important features:
(1) the mean structure; (2) the variance structure; and (3) the correlation structure. Our
proposed framework features: (a) a mean structure; (b) overdispersion, often conju-
gate random-effects; (c) normal random effects. It will be clear from our case studies
that model fit can be improved and hence model interpretation changed, by shifting to
the extended model. Second, especially in cases where the variance and/or correlation
structures are of interest (e.g., surrogate marker evaluation, psychometric evaluation,
etc.) such extensions are useful. Third, even when interest remains with more conven-
tional models, such as the GLMM, the extended model can serve as a goodness-of-fit
tool. Fourth, because we can derive closed-form expressions for both standard and ex-
tended models, the accuracy of parameter estimation and resulting inferences can be
improved, while obviating the need for tedious numerical integration techniques. Fifth,
the analysis of the case studies corroborates this need. While the model extends the clas-
sical GLMM, it is actually easy to fit when standard non-linear mixed-model software
is available, such as the SAS procedure NLMIXED.
Because for most of these combined models, and their GLMM sub-models, closed

formmoment expressions are available, derived quantities such as correlation are easy to
obtain. Furthermore, versions with mean parameters that are directly marginally inter-
pretable can be constructed. Also, the model lends itself naturally to the joint modelling
of several hierarchical sequences simultaneously. Diagnostics based on local influence
ideas have been developed as well.
While we have aimed to give an extensive overview of a modelling framework to

accommodate data hierarchies and overdispersion, inevitably a number of topics have
been left untouched. For example, Molenberghs and Verbeke (2011b), Pryseley et al.
(2011) examined the occurrence of negative variance components in hierarchical data,
which is also relevant for this context. Likewise, underdispersion has received some
treatment (Oliveira et al., 2016; 2017).
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