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Preface 

In the last few years Homeland Security (HS) has gained a considerable interest in the 

research community. From a scientific point of view, it is a difficult task to provide a 

definition of this research area and to exactly draw up its boundaries. In fact, when we talk 

about the security and the surveillance, several problems and aspects must be considered. In 

particular, the following factors play a crucial role and define the complexity level of the 

considered application field: the number of potential threats can be high and uncertain; the 

threat detection and identification can be made more complicated by the use of 

camouflaging techniques; the monitored area is typically wide and it requires a large and 

heterogeneous sensor network; the surveillance operation is strongly related to the 

operational scenario, so that it is not possible to define a unique approach to solve the 

problem [1]. 

Information Technology (IT) can provide an important support to HS in preventing, 

detecting and early warning of threats. Even though the link between IT and HS is 

relatively recent, sensor integration and collaboration is a widely applied technique aimed 

to aggregate data from multiple sources, to yield timely information on potential threats and 

to improve the accuracy in monitoring events [2]. A large number of sensors have already 

been developed to support surveillance operations. Parallel to this technological effort in 

developing new powerful and dedicated sensors, interest in integrating a set of stand-alone 

sensors into an integrated multi-sensor system has been increasing. In fact, rather than to 

develop new sensors to achieve more accurate tracking and surveillance systems, it is more 

useful to integrate existing stand-alone sensors into a single system in order to obtain 

performance improvements 

In this dissertation, a notional integrated multi-sensor system acting in a maritime 

border control scenario for HS is considered. In general, a border surveillance system is 

composed of multiple land based and moving platforms carrying different types of sensors 

[1]. In a typical scenario, described in [1], the integrated system is composed of a land 

based platform, located on the coast, and an airborne platform moving in front of the coast 

line. In this dissertation, we handle two different fundamental aspects.  

In Part I, we focus on a single sensor in the system, i.e. the airborne radar. We analyze 

the tracking performance of such a kind of sensor in the presence of two different 
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atmospheric problems: the turbulence (in Chapter 1) and the tropospheric refraction (in 

Chapter 2).  In particular, in Chapter 1, the losses in tracking accuracy of a turbulence-

ignorant tracking filter (i.e. a filter that does not take into account the effects of the 

atmospheric turbulences) acting in a turbulent scenario, is quantified. In Chapter 2, we 

focus our attention on the tropospheric propagation effects on the radar electromagnetic 

(em) signals and their correction for airborne radar tracking. It is well known that the 

troposphere is characterized by a refractive index that varies with the altitude and with the 

local weather. This variability of the refractive index causes an error in the radar 

measurements. First, a mathematical model to describe and calculate the em radar signal 

ray path in the troposphere is discussed. Using this mathematical model, the errors due to 

the tropospheric propagation are evaluated and the corrupted radar measurements are then 

numerically generated. Second, a tracking algorithm, based on the Kalman Filter,  that is 

able to mitigate the tropospheric errors during the tracking procedure, is proposed.  

In Part II, we consider the integrated system in its wholeness to investigate a 

fundamental prerequisite of any data fusion process: the sensor registration process. The 

problem of sensor registration (also termed, for naval system, the grid-locking problem) 

arises when a set of data coming from two or more sensors must be combined. This 

problem involves a coordinate transformation and the reciprocal alignment among the 

various sensors: streams of data from different sensors must be converted into a common 

coordinate system (or frame) and aligned before they could be used in a tracking or 

surveillance system. If not corrected, registration errors can seriously degrade the global 

system performance by increasing tracking errors and even introducing ghost tracks. A first 

basic distinction is usually made between relative grid-locking and absolute grid-locking. 

The relative grid-locking process aligns remote data to local data under the assumption that 

the local data are bias free and that all biases reside with the remote sensor. The problem is 

that, actually, also the local sensor is affected by bias. Chapter 3 of this dissertation is 

dedicated to the solution of the relative grid-locking problem. Two different estimation 

algorithms are proposed: a linear Least Squares (LS) algorithm and an Expectation-

Maximization-based (EM) algorithm. The linear LS algorithm is a simple and fast 

algorithm, but numerical results have shown that the LS estimator is not efficient for most 

of the registration bias errors. Such non-efficiency could be caused by the linearization 

implied by the linear LS algorithm. Then, in order to obtain a more efficient estimation 
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algorithm, an Expectation-Maximization algorithm is derived. In Chapter 4 we generalize 

our findings to the absolute grid-locking problem.  

Part III of this dissertation is devoted to a more theoretical aspect of fundamental 

importance in a lot of practical applications: the estimate of the disturbance covariance 

matrix. Due to its relevance, in literature it can be found a huge quantity of works on this 

topic. Recently, a new geometrical concept has been applied to this estimation problem: the 

Riemann (or intrinsic) geometry. In Chapter 5, we give an overview on the state of the art 

of the application of the Riemann geometry for the covariance matrix estimation in radar 

problems. Particular attention is given for the detection problem in additive clutter. Some 

covariance matrix estimators and a new decision rule based on the Riemann geometry are 

analyzed and their performance are compared with the classical ones.  

 

[1] Sofia Giompapa, “Analysis, modeling, and simulation of an integrated multi-sensor 

system for maritime border control”, PhD dissertation, University of Pisa, April 

2008. 

[2] H. Chen, F. Y. Wang, and D. Zeng, “Intelligence and security informatics for 

Homeland Security: information, communication and transportation,” Intelligent 

Transportation Systems, IEEE Transactions on, vol. 5, no. 4, pp. 329-341, 

December 2004. 
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Chapter 1: Tracking in the presence of 

atmospheric turbulences 

 

 

 

1.1 Introduction 

In the last few years, the technology for identification, border security and controlled 

access to critical infrastructures has become a very important concern to prevent 

unexpected attacks. As pointed out in [1], [2], [3], and [4], a key sensor in an integrated 

control system is the airborne radar due to its capacity to cover a wide area. One of the 

problems for airborne radars is the atmospheric turbulence. The atmosphere is driven into 

intricate motion by Earth rotation and solar heating, and these phenomena give rise to a 

variety of complex thermodynamic, chemical and electromagnetic processes. The 

phenomenon of turbulence has been widely addressed in the aerospace literature, see e.g. 

[5], [6], [7]. In the aerospace field, the study of the turbulence effects is of fundamental 

importance in a lot of different aspects [5]: improvements the aerodynamic and structural 

analysis, prediction of the expected behaviour of an aircraft under various levels of 

turbulence, evaluation of the stability of onboard sensing equipment, and so on. Due to the 

extreme complexity of the turbulence phenomena and due to the huge variety of 

applications, there is not a unique full-comprehensive model for the atmospheric 

turbulence, but there exist a wide variety of different and simplified models. In [6], 

numerous turbulence models are enumerated and described. However, the most commonly 

adopted model to study the impact of the turbulent wind gust on the aircraft is the Dryden 

model ([5], [6], [7], [8]). According to this model, the atmospheric turbulence is modelled 

as a random velocity process added to the aircraft velocity vector described in a body-fixed 

Cartesian coordinate system. The turbulence velocity processes are assumed to be 

correlated, zero-mean, Gaussian-distributed random processes whose Power Spectral 
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Densities (PSDs) have been empirically found by fitting measured data. The Dryden model 

assumes that the turbulent gusts are homogeneous and isotropic. The assumption of 

homogeneity implies that the statistical properties of the turbulence are the same for each 

point of the air mass. The assumption of isotropy means that the statistical properties of the 

air mass do not depend upon the spatial orientation of the air mass itself. There is, however, 

a dependence upon the orientation of the aircraft because of its motion through the gust 

field [7]. Even if the turbulence problem is a well studied problem in the aerospace field, its 

application to the radar signal processing is still a challenging issue.  

The aim of this Chapter is to quantify the losses in tracking accuracy of a turbulence-

ignorant tracking filter (i.e. a filter that does not take into account the effects of the 

atmospheric turbulences) in a turbulent simulated scenario. First, we analytically derive 

both continuous-time and discrete-time target state model and the terms due to the Dryden 

disturbances are discussed and statistically characterized. Second, the problem of the 

generation of the data vector in the presence of atmospheric turbulence is addressed in 

order to simulate a turbulent scenario. Finally, a turbulent-ignorant tracking algorithm, 

based on the Kalman Filter (KF), is implemented in order to evaluate the loss in tracking 

accuracy with respect to the ideal case (absence of atmospheric turbulence). To this end, the 

error standard deviation for the estimate of each component of the target state vector is 

compared to the Posterior Cramér-Rao Lower Bound (PCRLB), evaluated for the ideal 

case. It is important to note that the possibility to correct the effects of the turbulences on 

the aircraft flight using some navigation devices (such as compass or GPS) is not taken into 

account here.  

The airborne radar is assumed to be part of a multisensor system ([1]-[4]) for maritime 

and border surveillance. For this reason, the chosen racetrack course is a quasi-ellipsoidal 

trajectory near the surveillance area. The rest of the Chapter is organized as follows. In 

Section 1.2, a suitable scenario, based on [1], [2], [3], [4], and [9], is chosen as an example. 

The geometrical parameters of the aircraft course are given and the characteristics of both 

radar and target are described. Section 1.3 provides the analytical characterization of the 

Dryden model; the complete continuous-time and discrete-time target state models are 

derived in Section 1.4. The tracking filter is described in Section 1.5, where the derivation 

of the PCRLB for the ideal case is also addressed. In Section 1.6, the procedure to generate 
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the turbulence data is described. Some simulation results are presented in Section 1.7. 

Finally, our conclusions are reported in Section 1.8. 

 

1.2 Geometry of the scenario 

To derive a geometrical and kinematical description of both the airborne platform and 

target motion, we have to introduce two different reference systems. Assuming a flat Earth 

model, an inertial Cartesian reference system  , ,x y z  is used to describe the kinematic 

equations of the aircraft and target. Since the airborne radar acquires the measurements in 

its local reference system, to describe the target motion in a suitable way to derive the target 

state model, we need a relative, aircraft-centred Cartesian coordinate system, named 

 , ,x y z   . The inertial and the relative aircraft-centred coordinate systems are always 

parallel during the aircraft flight. Here, we consider a 3D Airborne Early Warning Radar 

(AEWR) [10] which measures the range, azimuth and elevation with the accuracy given by 

σρ, σθ and σε, respectively, a scan time of T seconds and a flight altitude h. The numerical 

values of all these parameters are given in Section VII. Without loss of generality, the 

chosen aircraft course is a quasi-ellipsoidal racetrack. In the following, taking into account 

fig. 1.1, the main geometrical parameters of the scenario are enumerated: 

  , , ,, ,a a x a y a zO O OO : centre of the aircraft racetrack course, then ,a zO h ; 

 d: length of the straight segment of the racetrack; 

 R: radius of the circular segment of the racetrack; 

  , ,2, ,a x a yO d O R h  A ,  , ,2, ,a x a yO d O R h  B , 

 , ,2, ,a x a yO d O R h  C ,  , ,2, ,a x a yO d O R h  D ; 

 ( )tr : target position vector defined in the inertial reference system; 

 ( )tr : target position vector defined in the relative aircraft-centred reference 

system; 

 ( )O tr : aircraft position vector defined in the inertial reference system. 
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From this geometrical setting, it is easy to get the kinematic description of the aircraft 

motion in the inertial reference system. The aircraft position vector can be expressed 

as: 
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 (1.1) 

where mod( ,2( ))l ct t T T   , pv  is the aircraft speed and Tl and Tc are the time intervals 

needed to cover the straight and circular segments of the racetrack course respectively. The 

aircraft angular speed   can be expressed as c pT v R   . The aircraft instantaneous 

velocity ( )O tv  and acceleration ( )O ta  can be obtained straightforwardly by differentiation 

of eq. (1.1): 

     ,O Ot tv r  (1.2) 

    .O Ot ta r  (1.3) 

As concerning the target kinematic model, for the ease of mathematical formulation of the 

problem involving the atmospheric turbulences, the target motion is assumed rectilinear and 

uniform. Then, the target position vector in the inertial reference system can be described 

by the following linear equation: 

    0 ,tt t r r v  (1.4) 
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where (0)r  is the starting point of the track and vt is the constant velocity vector of the 

target. 

 

Figure 1.1 - Geometry of the scenario. Axes z  and z  are orthogonal to the aircraft race plane. 

 

1.3 The Dryden model 

The Dryden model is one of the most useful and tractable models for the atmospheric 

turbulence. To define it, we need a body-fixed reference frame attached to the aircraft 

centre of gravity which moves with the aircraft. The x axis is positioned in the direction of 

motion, the y axis is positioned along the wings and the z axis is perpendicular to the 

aircraft plane. Then, the turbulence is modelled by adding some random components to the 

aircraft velocity defined in this body-fixed coordinate system. Such random terms are 

indicated by vu(t), vv(t), and vo(t) and represent the velocity components along the x, y, and z 

axes, respectively, of the body-fixed reference frame. In the Dryden model such 

continuous-time random processes are modelled as zero-mean, Gaussian-distributed 

processes whose PSDs have the analytic form shown in eqs. (1.5)-(1.7) ([5], [7]): 
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where V0 is the gust wind speed in the aircraft reference system, the parameters 
2

u , 

2

v  and 
2

o  depend on the level of turbulence to be simulated and are selected accordingly 

[6], [8]. Parameters Lu, Lv and Lo are the scale lengths for the PSDs and depend on the flight 

altitude [6], [8]. Fig. 1.2 shows the PSDs of (1.5)-(1.7) for 1m/su v o     , 

533.54 mu v oL L L   and V0 = 96 m/s. To reflect higher level of turbulence, the curves 

would be multiplied by the desired values of 
2

u , 
2

v  and 
2

o . 

Before the target state model analysis, some clarification about the body-fixed 

reference system has to be done. When the aircraft covers the straight segment of the 

racetrack course, such body-fixed Cartesian reference frame coincides (except for a 

negligible change of orientation) with the ( , , )x y z    defined in the previous section. When 

the aircraft manoeuvres to cover the circular segment of its course, the reference frame 

( , , )x y z    and the body-fixed one are no longer the same. The body-fixed frame is not an 

inertial reference frame and then the Dryden velocities are modified by the centrifugal and 

Coriolis accelerations [7]. In order to make the analytical characterization of the problem 

tractable, these effects will be neglected in this paper. Under this assumption, the 

turbulence velocity terms can be defined directly in the ( , , )x y z    reference frame. Thus, 

the previous assumption can be summarized in the following way: 

       ,x O x uv t v t v t   (1.8) 

       ,y O y vv t v t v t   (1.9) 
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       ,z O z ov t v t v t   (1.10) 

where vx(t), vy(t), and vz(t), are the components of the aircraft velocity vector in the inertial 

reference system. From eqs. (1.8)-(1.10), it is clear that the atmospheric turbulences tends 

to take the aircraft off its nominal racetrack course.  
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Figure 1.2 - PSD of the Dryden velocity processes. 

 

1.3.1 Statistical characterization of the Dryden acceleration 

process 

To the best of authors’ knowledge, in the open literature there is no explicit statistical 

characterization of the random acceleration vector derived from the Dryden velocity vector. 

Since, as discussed in the next Section, knowledge of the statistics of the Dryden 

acceleration vector is needed to formulate a comprehensive signal model, in the following a 

complete characterization of this random vector is provided. 

As usual, the Dryden acceleration vector can be defined as the first derivative of the 

Dryden velocity vector. Since the derivative is a linear operator, then the Dryden 

acceleration vector is itself a zero-mean, Gaussian-distributed random vector and then it is 
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fully characterized by its first and second order statistics.  Using linear filter theory, it can 

be proved that the Autocorrelation Function (ACF) of the each component of the 

acceleration vector can be derived from the ACF of the corresponding component of the 

Dryden velocity vector as: 

           ,a v vr r r             (1.11) 

where ( )   is the first derivative of a Dirac delta function [11] and     . The ACFs of 

the Dryden velocity processes can be obtained as the inverse Fourier transform of the PSDs 

in eqs. (1.5)-(1.7) [7]: 

   ,
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vr Ae
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where: 
2 2uA   , 

2 2vB   , 
0 ua V L  and 

0 vb V L . Through double 

differentiation of (1.12) and (1.13) we can obtain: 
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1.4 Target State Model 

The aim of this Section is to include the effects of the atmospheric turbulences in the 

signal model. This analysis is in general necessary to formulate both the filter model, i.e. 

the model that the tracking filter assumes for the signal, and the simulation model, i.e. the 

simulated signal. Although the optimal tracking performance can only be expected when 

the filter and the simulation model are one and the same model, in certain cases it is 

unfeasible to employ the simulation model in the filter. In such cases, a simplified model is 

assumed by the filter and this mismatch between the filter model and the simulated model 

leads to a loss in the tracking performances. As discussed ahead, this is exactly our case. In 
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fact, the analytical complexity makes the formulation of a turbulence-aware filter model 

intractable. 

 

1.4.1 Continuous-Time Target State Model 

In the following, we define as ( )tr , ( )tv  and ( )ta  the target position, velocity, and 

acceleration vectors in the relative reference system. Since the inertial and the relative 

reference systems are considered always parallel during the flight, the coordinate 

transformation between them is linear. It is easy to show that the target position vector in 

the aircraft reference system is given by: 

       ,Ot t t  r r r  (1.16) 

where r(t) is the target position vector with respect to the inertial reference system, while 

rO(t) is defined in eq. (1.1). The relative velocity and acceleration vectors can be obtained 

by derivation, i.e. ( ) ( )t t v r  and ( ) ( )t t a r . Defining the Dryden velocity vector as 

( ) ( ( ) ( ) ( ))T

a u v ot v t v t v tv , the target velocity vector in the aircraft reference system can 

be obtained as: 

         ,t O at t t t    v r v v v  (1.17) 

where vt is the constant velocity vector of the target. The differential system associated to 

eq. (1.16) and eq. (1.17) is: 

 
   

     
,

O a

t t

t t t

  

   

r v

v a a
 (1.18) 

where the acceleration vector ( ) ( ( ) ( ) ( ))T

a u v ot a t a t a ta  is the Dryden acceleration 

vector and, as discussed before, it is defined as the first derivative of the Dryden velocity 

vector ( )a tv , i.e. ( ) ( )a at ta v . The system in (1.18) can be rewritten in matrix form as 

follows:  

        ,O at tt t   x Fx Pa Pa  (1.19) 

where: 
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 ( ) ( ( ) ( ) )T T Tt t t  x r v  is the state vector composed by both relative position and 

velocity vector of the target; 

 3 3 3 3

3 3 3 3

 

 

 
  
 

0 I
F

0 0
 is the state update matrix; 

 P is a block matrix defined as 3 3

3 3





 
  
 

0
P

I
. 

Now we can introduce in the target state model the so-called process noise vector [12], 

[13]. Process noise stands for any unforeseen disturbance in the target motion model, e.g. 

small accelerations that could cause deviations of the target from the straight line trajectory. 

Usually, such noise is modelled by a zero-mean, white, Gaussian random vector 

( ) ( ( ) ( ) ( ))T

x y zt w t w t w tw  with PSD for each component equal to N0,x, N0,y, and N0,z, 

respectively. Finally, the complete continuous-time signal model can be expressed in matrix 

form as: 

          O at tt t t    x Fx Pa Pa Pw . (1.20) 

 

1.4.2 Discrete-Time Target State Model 

To make the model suitable for digital signal processing, we discretize eq. (1.20) with 

a “sampling interval”, i.e. the radar scan time, equal to T. Following [12], [14], the general 

solution of the differential system in eq. (1.20) can be expressed as: 

              ,
t T t TT

O a
t

t T e t e d


   
  

     
FF

x x P w a a  (1.21) 

and then, substituting kT into t, eq. (1.21) becomes 

               
 1 1 .1

Tk TT k

O a
kT

T e kT e dk


   
      

FF
x x P w a a  (1.22) 

It is easy to verify that the two exponential matrices can be evaluated as [14]: 

 3 3 3 3

3 3 3 3

,T
T

e
 

 

 
   

 

F
I I

T
0 I

 (1.23) 
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      1 3 3 3 3

3 3 3 3

1
.

Tk Tk
e

   

 

 
  
 

F I I

0 I
 (1.24) 

Finally, the discrete time signal model can be written as: 

          1 ,d a wk k k k k     x Tx g g g  (1.25) 

where: 

       
 1 1

,
k T k T

d O
kT

k e d


 
  

 
F

g Pa  (1.26) 

       
 1 1

,
k T k T

a a
kT

k e d


 
  

 
F

g Pa  (1.27) 

       
 1 1

.
k T k T

w
kT

k e d


 
  

 
F

g Pw  (1.28) 

The term gd[k] is a deterministic vector and can be calculated either analytically or 

through numerical integration. As discussed before, this term is due to the particular 

racetrack course, in fact it depends on the deterministic acceleration vector aO(t), that is the 

acceleration vector of the platform that carries the radar. Such acceleration vector is a priori 

known, since it can be directly derived from the nominal aircraft racetrack course. The term 

gw[k] is a discrete random vector derived from the process noise w(t). Since the functional 

in (1.28) is linear, gw[k] is still Gaussian-distributed with the following mean value and 

temporal autocorrelation, respectively: 

    6 1,wE k g 0  (1.29) 

      , ,T

w w w k mE k m g g Q  (1.30) 

where δk,m is the Kronecker delta function. Through some mathematical manipulation, it 

can be shown ([12], [13]) that the covariance matrix Qw is the following block matrix: 

 
11 12

21 22
,w w

w

w w

 
   
 

Q Q
Q

Q Q
 (1.31) 

 
3 2

11 12 22, , ,
3 2

w w w

T T
T  Q N Q N Q N  (1.32) 

where 0, 0, 0,diag( , , )x y zN N NN . 
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Now consider the vector ga[k], i.e. the term due to the atmospheric turbulences that 

causes the random deviations of the aircraft from its nominal racetrack course. Also this 

discrete random vector is Gaussian distributed since both the derivative operator (needed to 

obtain the continuous-time Dryden acceleration processes in eq. (1.18)) and the functional 

in eq. (1.27) (needed to obtain ga[k]) are linear. Therefore, it is fully characterized by its 

first and second order statistics. By taking the expectation of the functional in eq. (1.27), it 

is easy to show that the mean value of ga[k] is a zero vector, i.e. E{ga[k]}=0. The 

autocorrelation matrix can be evaluated as: 

 

      
   

         1 1 1 1

,

,

T

a a a

Tk T m T k T m TT T

a a
kT mT

k m E k m

e E e d d
 

   
     

 

  
F F

Q g g

P a a P

 (1.33) 

where 

     
( ) 0 0

0 ( ) 0

0 0 ( )

u

v

o

a

T

a a a

a

r

E r

r

 

   

 

 
 

  
 
  

a a , (1.34) 

and ( )
uar  , ( )

var  , ( )
oar   are the three autocorrelation functions (ACFs) of the continuous-

time Dryden acceleration processes given in eqs. (1.14) and (1.15). Unfortunately, the 

closed-form evaluation of the integral in eq. (1.33) is very hard to obtain due to its 

analytical complexity
1
, but it is easy to show that the vector random process ga[k] is not a 

white process since Qa[k,m]≠Qa[k]δk,m. It is important to note that the non-linear kinematic 

equation of the air platform does not lead to any non-linear transformation of random 

processes. Moreover, such “non-linearity” is entirely handled by the deterministic vector 

gd[k] that is added to the discrete-time state vector as shown in eq. (1.25). For clarity, in the 

rest of the paper, the non-linearity of the kinematic equation of the air platform is indicated 

as manoeuvrability. 

1.5 Filter model 
                                                 
1
 In particular, it can be noted the eq. (4.3.1-8) in [12, p.188] cannot be applied to evaluate the integral in eq. 

(1.33) since the autocorrelation functions of the Dryden acceleration processes are not of the form 

( ) ( ) ( )ar t V t t      (see (4.2.3-1) of [12, pp. 183]). For the same reason, the algorithm proposed in [16] to 

evaluate integrals involving the matrix exponential cannot be applied directly here. 
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The goal of a tracking filter is to estimate the target state [ ]kx  from the radar 

measurements. In the following, when it is possible, we write the discrete time index k as a 

subscript to simplify the notation (i.e. [ ] kk x x ). The radar measurements are modelled 

as: 

   ,k k k
 z h x n  (1.35) 

where h(·) is the Cartesian-to-spherical coordinates transformation and nk is the zero-mean, 

white, Gaussian-distributed measurement noise (independent from the process noise terms) 

with covariance matrix Rn. 

As discussed in the previous Section, the dynamic state model, given in eq. (1.25), is 

not a Markov sequence since the discrete random vector due to turbulences, i.e. ga,k, is a 

vector of correlated random variables. To apply the standard Kalman Filter [15], one has to 

reformulate the problem into one with a state that is a Markov sequence. As discussed in 

[12, Ch. 8, pp. 320-324], this can be accomplished by the state augmentation procedure. 

First, the prewhitening system has to be obtained for the correlated process noise term, and 

then the additional state variables have to be added to the augmented target state in order to 

obtain a Markov sequence. However, the application  of the augmentation procedure to our 

study case (target state estimation in presence of atmospheric turbulences) falls beyond the 

scope of this paper. The main feature of this Chapter is, in fact, a quantification of the 

performance loss suffered if a standard KF is used in a turbulent scenario. For this reason, 

the tracking filter we consider here is based on the turbulence-ignorant target state model, 

while the radar measurements are generated taking into accounts also the atmospheric 

turbulences. This mismatch between the turbulence-ignorant filter model and the simulation 

model allows us to evaluate the losses in terms of tracking performance due to the fact that 

the turbulences are not considered into the filter model. Finally, to summarize the previous 

considerations on the filter model, we assume: 

 A turbulent-ignorant target state equation derived from eq. (1.25) by cutting off 

the term ga,k: 

 1 , ,k k d k w k
   x Tx g g , (1.36) 

 A measurement equation given by eq. (1.35). 
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1.5.1 Performance bound for the ideal case 

In this Section we provide a performance bound for the ideal case, i.e. for a scenario 

without turbulences. By comparing the error standard deviation of the turbulence-ignorant 

tracking filter in a turbulent scenario with the performance bound evaluated in the ideal 

case, it is possible to quantify the losses in tracking accuracy due to the atmospheric 

turbulences. Such bound is the well-known Posterior Cramér-Rao Lower Bound [17], [18, 

Ch. 4]. Consider the filtering problem defined by eqs. (1.35) and (1.36), repeated here for 

convenience: 

 
1 , ,k k d k w k

   x Tx g g , 

  k k k
 z h x n . 

Let ˆ
k k
x  be an unbiased estimator of the state vector 

k
x , based on the measurement 

sequence 
1{ , , }k kZ  z z . The error covariance matrix of ˆ

k k
x , denoted as 

k k
P , has a 

lower bound (referred to as the PCRLB) expressed as follows [18, Ch. 4]: 

     1ˆ ˆ ,
T

k k kk k k k k k
E      P x x x x I  (1.37) 

where Ik is the Fisher Information Matrix (FIM). There exists a wide literature on the 

PCRLB (see, for example, the references in [18, Ch. 4]), and then here we report only the 

principal equations that allow us to evaluate the PCRLB for the filtering problem given in 

eqs. (1.35) and (1.36). As shown in [17], the FIM Ik can be recursively computed as: 

  
1

22 21 11 12

1 , 0k k k k k k k


    I D D I D D  (1.38) 

where, for the filtering problem in eqs. (1.35) and (1.36), the matrices 
11

kD , 
12

kD , 
21

kD  and 

22

kD  can be evaluated as: 

 
11 1 ,T

k w

D T Q T  (1.39) 

  12 21 1,
T

T

k k w

  D D T Q  (1.40) 
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  22 1 1

1 1 ,T

k w k n kE 

  D Q H R H  (1.41) 

where 
1kH  is the Jacobian of h(·) evaluated at the true value of 

1k
x , i.e. 

1 1( ( ))k k 
H J h x . The recursive equation (1.38) can be initialized using the same initial 

error covariance matrix needed to initialize the Kalman filter: 

    0 0 0 0 0 0
ˆ ˆ

T
E   I x x x x P . (1.42) 

 

1.6 Simulation model and data generation 

As discussed before, in order to assess the losses in tracking accuracy, the effect of the 

atmospheric turbulences has to be taken into account in the simulation data model. More 

precisely, we have to generate the random vector ,[ ]a a kkg g  defined by (1.27) [19]. The 

generation of this term can be accomplished in two steps. First, it must be noted that the 

integral in (1.27) could be evaluated numerically as function of Dryden velocity processes 

as: 

 

      
     

 

 

   
 

 
 

 
 

    
   

1 11

11

1

1

1 1 2
,

1

k T k Tk T a

a a
kT kT

a

k Tk T

a a a akt kT

k T
a a

a kt

k T
k e d d

k T d T k k

k k

  
  



   



  





      
 
 

      
         

 

 



F a
g Pa

a

v a v v

v vv

 (1.43) 

where the term  
 1k T

a
kT

d  


 a  is evaluated, using the integration by parts rule as:  

 
 

 
 

 
 

 

          

1 11

1 1 1 2,

k T k Tk T

a a aktkT kT

a a a a

d d

k T k kT k T k k

      
 

 

     

 a v v

v v v v
 (1.44) 

where, in the last equality, we have used the trapezoidal integration rule. At this point, we 

have to generate the velocity vector va[k]. To do this, we follow the procedure proposed in 

[5]. The basic idea behind this method is that the turbulence velocities can be readily 

generated by passing a white Gaussian signals through appropriate linear filters with 
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Laplacian transfer functions obtained from the Dryden PSDs given in eqs. (1.5)-(1.7). The 

derivation of the relative discrete-time filters is addressed in [5]. 

 

1.7 Simulation results 

In order to deal with the non-linear coordinate transformation in the measurements 

equation (1.35), we apply the Converted Measurements Kalman Filter (CMKF) ([20], 

[21]). Our simulations have been performed using a turbulence-ignorant filter model with a 

target dynamic model given in eq. (1.36) and two different simulation models: (i) tracking 

in the presence of atmospheric turbulences, and (ii) tracking in an ideal environment of 

absence of turbulence. In the first case, the turbulence has been generated following the 

procedure discussed in Section 1.6. 

Two different study cases have been investigated in the simulations: (i) the medium 

range target scenario, where the initial radar-target distance is of about 90 km and (ii) the 

short range target scenario where the initial radar-target distance is of about 12 km. The 

radar parameters used in the simulations are: σρ = 2.4 m, σθ = σε = 0.25°, T = 1 s, the flight 

altitude h is of about 1000 m and the platform speed is vp = 90 m/s. The detection and false 

alarm probabilities are assumed to be 1 and 0, respectively. The sea surface target is 

modelled as a high speed dinghy [1] with a velocity vector defined as vt = (7.63 6.76 0) m/s 

and a power spectral density for each component of the continuous-time acceleration vector 

w(t) equal to N0,x = N0,y = N0,z = 0.01 m
2
/s

3
. The geometrical parameters of the aircraft 

racetrack course are: d = 60 km and R = 10 km. The time intervals needed to cover the 

straight and circular stretch of the racetrack are Tl = 667 s and Tc = 350 s , respectively; the 

racetrack course period is of about 2000 s. The first measurement was collected when the 

aircraft begins to cover the first straight segment (at the point “A” in fig. 1.1). To define the 

Dryden PSDs, we used a set of parameters that characterize a standard turbulence level for 

a flight altitude of 1000 m. According to [5] and [7], we have: V0 = 96 m/s and Lu = Lv = Lo 

= 533.54 m. We also simulated two levels of turbulence power [6], [8]: the maximum value 

for a “standard” turbulence that correspond to σu = σv = σo = 2.1 m/s and a value that 

characterizes the storm turbulences that correspond to σu = σv = σo = 6.4 m/s. 
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For both the medium range and the short range target scenarios, a comparison between 

position and velocity estimates, in the ideal case (absence of turbulences) and in the 

presence of turbulences is performed in terms of mean value and standard deviation (s. d.) 

of the estimation error for each component of the state vector. By defining the estimation 

error for the ith component of the state vector as 
, , ,

ˆ
i k i k i ke x x  , the error mean value and 

the error s. d. are 
, ,{ }

i ke i kE e   and 
, ,

2 1 2

,{( ) }
i k i ke i k eE e   , respectively. Moreover, the 

error standard deviation (std) is compared with the PCRLB for the ideal case. 

The curves of the error mean value relative to the simulations with atmospheric 

turbulences present a larger variability around the zero level with respect to those relative to 

the ideal case. This is an expected behaviour that does not carry much information on the 

loss of tracking accuracy. The most useful index to quantify such losses is the error 

standard deviation, and for this reason, the curves of the error mean value are not reported 

here. All performance curves have been obtained by averaging over 500 independent Monte 

Carlo runs. For sake of brevity, we show only the results relative to the x and y components 

of the position and velocity vectors. In Figs. 1.3-1.10, we plot four different curves: 1) the 

ideal case, 2) the case with a standard level of turbulences (σu = σv = σo = 2.1 m/s), and 3) 

the case with a stormy level of turbulences (σu = σv = σo = 6.4 m/s) and 4) the PCRLB for 

the ideal case. In figs. 1.3-1.6, the simulation results relative to the medium range target 

scenario are shown. As we can see from figs. 1.3 and 1.4, the loss in accuracy in the 

position estimate is almost negligible (of the order of meters) for both the standard 

turbulence and storm turbulence. This result holds for all the three components, x, y, and z. 

Figs. 1.5 and 1.6 show the error standard deviation for the estimate of the components of 

the velocity vector. It can be observed that the loss in accuracy with respect to the ideal 

case is of about 0.4 m/s for the case of standard turbulence, while for the case of storm 

turbulence is of about 2 m/s for all the three components.  

Finally, some consideration on the effects of the manoeuvrability of the aircraft on the 

tracking performance has to be done. The quasi-ellipsoidal racetrack course causes the 

periodic-like behaviour of the error std that presents a dip (for the estimate of the x 

component) or a peak (for the estimate of the y and z components) around the time interval 

in which the aircraft covers the circular segment of its racetrack course. This means that the 

air platform manoeuvrability improves the estimate of the x component of position and 
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velocity vector. On the other hand, for the estimate of the y and z components, a better 

estimate is reached when the aircraft moves along the straight segment of the racetrack 

course.  

In Figs. 1.7-1.10, the simulation results relative to the short range target scenario are 

shown. Decreasing the distance between radar and target, the tracking errors decrease too, 

but the effects of the manoeuvrability of the air platform becomes more evident. Also the 

PCRLB presents a periodic-like behaviour in the short range scenario. The impact of the 

turbulence in the position estimate is negligible for the standard turbulence while it is 

slightly higher for the storm turbulences. The loss in accuracy for the velocity estimate is 

quite similar to the ones relative to the middle range target scenarios, i.e. of the order of 0.5 

m/s for the standard turbulences and 2 m/s for the storm turbulence.  
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Figure 1.3 – Error std and PCRLB square root for the x component of position vector for the medium range target 

scenario. 

 



20 
 

0

20

40

60

80

100

0 500 1000 1500 2000

Ideal case

 = 2.1 m/s

 = 6.4 m/s

PCRLB

E
rr

o
r 

s
ta

n
d
a

rd
 d

e
v
ia

ti
o

n
: 

y
 [
m

]

Discrete time k
 

Figure 1.4 – Error std and PCRLB square root for the y component of position vector for the medium range target 

scenario. 
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Figure 1.5 – Error std and PCRLB square root for the x component of velocity vector for the medium range target 

scenario. 
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Figure 1.6 – Error std and PCRLB square root for the y component of velocity vector for the medium range target 

scenario. 
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Figure 1.7 – Error std and PCRLB square root for the x component of position vector for the short range target 

scenario. 
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Figure 1.8 – Error std and PCRLB square root for the y component of position vector for the short range target 

scenario. 
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Figure 1.9 – Error std and PCRLB square root for the x component of velocity vector for the short range target 

scenario. 
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Figure 1.10 – Error std and PCRLB square root for the y component of velocity vector for the short range target 

scenario. 

 

1.8 Summary 

In this Chapter, we investigated the impact of the atmospheric turbulences on a 

turbulence-ignorant tracking algorithm for airborne radar. The flight disturbances have been 

modelled according to the Dryden model. The discrete-time target state model has been 

obtained in presence of such turbulence and the relative noise term has been discussed and 

statistically characterized. Due to the high computational complexity, the turbulence model 

has not been employed in the filter model, but a simplified, turbulence-ignorant filter has 

been assumed. The performance of this filter has been assessed in a simulated turbulent 

scenario and also compared with the PCRLB evaluated for the ideal case of absence of 

turbulence in the data model. Moreover, a typical racetrack course for the surveillance 

mission has been chosen for the air platform that carries the radar. The simulations show 

that the atmospheric turbulences cause a degradation of the tracking performance for the 

estimate of the target velocity vector, while the losses in the estimate of the target position 

vector are almost negligible. Moreover, the simulation results show that the air platform 

manoeuvrability improves the estimate of the x component of position and velocity vector, 



24 
 

while, for the estimate of the y and z components, a better estimate is reached when the 

aircraft moves along the straight segment of the racetrack course. 

 

References 

[1] S. Giompapa, A. Farina, F. Gini, A. Graziano, R. Di Stefano, “Computer Simulation 

of an Integrated Multi-Sensor System for Maritime Border Control,” IEEE Radar 

Conference, 2007, pp.308-313, 17-20 April 2007. 

[2] S. Giompapa, F. Gini, A. Farina, A. Graziano, R. Di Stefano, “Maritime border 

control computer simulation,” IEEE Aerospace and Electronic Systems Magazine, 

vol. 23, no. 11, pp. 39-45, November 2008. 

[3] S. Giompapa, F. Gini, A. Farina, A. Graziano, R. Croci, R. Di Stefano, “Maritime 

border control multisensor system,” IEEE Aerospace and Electronic Systems 

Magazine, vol. 24, no. 8, pp. 9-15, August 2009. 

[4] S. Giompapa, A. Farina, F. Gini, A. Graziano, R. Croci, and R. Di Stefano, “Naval 

Target Classification by Fusion of Multiple Imaging Sensors Based on the 

Confusion Matrix,” International Journal of Navigation and Observation, 15 pages, 

vol. 2009. 

[5] T. R. Beal, “Digital Simulation of Atmospheric Turbulence for Dryden and von 

Karman Models,” Journal of Guidance, Control, and dynamics, vol. 16, no. 1, pp. 

132-138, Jan.-Feb. 1993. 

[6] B. Etkin, “The Turbulent Wind and Its Effect on Flight,” AIAA Wright Brothers 

Lecture, 1980. 

[7] E. F. Hogge, “B-737 Linear Autoland Simulink Model”, Technical Report 

NASA/CR-2004-213021, May 2004. 

 Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.541. 

[8] “Flying Qualities of Piloted Airplanes,” MIL-F-8785C, Nov. 5, 1980. 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.541


25 
 

[9] S. Fortunati, M. Greco, F. Gini, A. Farina, A. Graziano, “Impact of Flight 

Disturbances on Tracking Airborne Radar,” IRS 2009, Hamburg, Germany, 09-11 

September 2009, pp. 407-411. 

[10] W. C. Morchin, Airborne Early Warning Radar, Artech House Publishers, Boston, 

1990. 

[11] A. H. Zemanian, Distribution Theory and Transform analysis: an Introduction to 

Generalized Function with Applications, New York: Dover, 1987. 

[12] Y. Bar-Shalom, X. R. Li, T. Kirubarajan, Estimation with Applications to Tracking 

and Navigation: Theory, Algorithms, and Software, New York: Wiley, 2001. 

[13] X. R. Li, V. P. Jilkov, "Survey of maneuvering target tracking. Part I. Dynamic 

models," Aerospace and Electronic Systems, IEEE Transactions on , vol.39, no.4, 

pp. 1333- 1364, Oct. 2003. 

[14] R. A. Singer, “Estimating Optimal Tracking Filter Performance for Manned 

Manoeuvring Targets,” Aerospace and Electronic Systems, IEEE Transactions on, 

vol. 6, no.4, pp.473-483, July 1970. 

[15] R. E. Kalman, “A new approach to linear filtering and prediction problems”, 

Transactions of the ASME – Journal of Basic Engineering, no. 82 (Series D), pp. 35-

45, 1960. 

[16] C. F. Van Loan, “Computing integrals involving the matrix exponential,” Automatic 

Control, IEEE Transactions on, vol. 23, no.3, pp.395-404, June 1978. 

[17] P. Tichavsky, C. H. Muravchik, A. Nehorai, “Posterior Cramer-Rao bounds for 

discrete-time nonlinear filtering,” Signal Processing, IEEE Transactions on , vol.46, 

no.5, pp.1386-1396, May 1998. 

[18] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters 

for Tracking Applications, Artech House Publishers, London, 2004. 

[19] C. W. Therrien, Discrete Random Signals and Statistical Signal Processing, 

Englewood Cliffs, NJ: Prentice-Hall, 1992. 

[20] D. Lerro, and Y. Bar-Shalom, “Tracking With Debiased Consistent Converted 

Measurements Versus EKF”, Aerospace and Electronic Systems, IEEE Transactions 

on, vol. 29, no. 3, pp 1015-1022, July 1993. 



26 
 

[21] M. Longbin, S. Xiaoquan, Z. Yiyu, S. Z. Kang, and Y. Bar-Shalom, “Unbiased 

converted measurements for tracking”, Aerospace and Electronic Systems, IEEE 

Transactions on, vol. 34, no. 3, pp. 1023-1027, July 1998. 

 

  



27 
 

Chapter 2: Correction of the troposheric 

refraction effects 

 

 

 

2.1 Introduction 

In this Chapter, we focus our attention on the atmospheric propagation effect on the 

radar EM signals and their correction for airborne radar tracking. Such atmospheric effects 

are often neglected when the tracking performance of the airborne radar is evaluated. 

However, for modern long-range and high-resolution radar systems such errors start to be 

relevant and they should not be neglected [1]. The atmospheric layer that mostly influences 

the EM propagation is the first layer, called troposphere, extending from the Earth’s surface 

to about 8 km. The troposphere is characterized by a refractive index that varies with the 

altitude and with the local weather condition, i.e. local pressure, temperature and humidity. 

This variability of the refractive index causes an error in the radar measurements (range, 

azimuth, and elevation). In an ideal environment, i.e. without refractive effects, the radar 

measurement of the target range is determined as the speed of the light in the vacuum 

multiplied by the time needed by the EM signal to cover the one-way distance between 

radar and target, while the radar measurement of the target azimuth and elevation are 

determined by the direction of arrival (DOA) of the scattered EM signal. In a material 

medium with a varying refractive index, as the troposphere is, two effects cause an error in 

the range and elevation measurements [2, Ch. 3]. First, the radar EM signal travels at a 

speed lower than the speed of light in the vacuum and this induces an overestimate of the 

target range. Second, due to the variation of the refractive index as function of the height, a 

ray bending (associated with the refractive index gradient) occurs with a result that the 

direction of arrival of the scattered EM signal is different from the straight ray path 

producing an error (or bias) in the elevation measurement. Moreover, the geometrical 
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distortion of the ray path causes also an error (or bias) in the measurement of the target 

range. The magnitude of these errors depend on both the gradient and the absolute value of 

the refractive index along the signal path [2, Ch. 3], [3]. There is also an azimuth 

measurement error due to the fluctuations of the refractive index value [4, App. D]. The 

azimuth error is smaller than the elevation error and, under the simplified hypotheses made 

in this paper on the refractive index model (see Section III), it can be neglected. For these 

reasons, in the rest of the paper, we consider only the range and the elevation bias errors, 

while the azimuth bias is assumed negligible.  

In addition to the above mentioned effects, an EM signal passing through the 

troposphere can experience a wide range of anomalous propagation effects [2, Ch. 3], [3] 

[4, App. D]. The most important are the “ducting” effect and the small-scale fluctuations of 

the refractive index. Tropospheric ducting occurs when the refractive index decreases with 

the height at a rate more negative than the standard rate. More precisely, the standard 

decrease of refractive index with height is at a rate of about -39 N units per kilometer 

(N/km)
2
. Two different anomalous situations can occur: the so called subrefraction and 

superrefraction. Subrefraction implies that the gradient of the refractive index is less 

negative than the standard value of -39 N/km while superrefraction occurs when the 

gradient is more negative than the standard value of -39 N/km, but less negative than -157 

N/km. Tropospheric ducting, instead, occurs when the refractive index decreases with the 

height at a rate that is more negative than -157 N/km [2, Ch. 3], [3]. These effects are 

generally caused by a temperature inversion, and frequently occur in coastal regions. The 

main consequence of the phenomenon of ducting for an air-to-air or surface-to-air ray path 

is the creation of a gap or hole in the radar coverage. On the other hand, the radar located 

within a duct will realize increased detection range for target that is also located in the duct. 

The small-scale fluctuations of the refractive index are mostly caused by atmospheric 

turbulence, clouds and small scale meteorological phenomena [4, App. D], [5, Part II], [6], 

[7]. Effects of this type are highly unpredictable and must be regarded as random processes 

and analysed by statistical methods. 

In this Chapter, we propose a tracking algorithm that is able to mitigate the 

tropospheric range and elevation errors from the estimated position and velocity vectors [8]. 

                                                 
2 The unit of measurement N is referred to a scaled version of the refractive index (sometimes called radio 

refractive index or scaled EM refractivity index) that will be explicitly defined in Section IV.B. 
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First, a mathematical model to describe and calculate the EM radar signal ray path, under 

simplified assumptions on the refractive index, is discussed. Using this mathematical 

model, the range and elevation errors are evaluated and the radar corrupted measurements 

are then numerically generated. Second, an estimate of the tropospheric errors is obtained 

from the (simulated) corrupted radar measurements. To obtain these estimates, we use two 

algorithms, one for the elevation error estimate [1], [9] and one for the range error estimate 

[10]. The theoretical values of the errors and the estimated values are compared and the 

effects of certain levels of inaccuracy on the evaluation of the model parameters are 

analysed. Finally, we propose a tracking algorithm based on the Kalman filter (KF) that, 

using the estimated values of the range and elevation errors, is able to mitigate the 

tropospheric errors during the tracking procedure. The performance of the proposed 

algorithm is evaluated for a medium range scenario, where the radar-target distance varies 

in a range of 70-100 km. 

The rest of the Chapter is organized as follows. In Section 2.2, the geometry for the 

scenario is described. The choice of this scenario, as discussed previously in Section 1.2, 

has been performed to provide an example of a typical border surveillance mission in which 

airborne radars are widely used and it does not represent a limitation to the applicability of 

the proposed algorithm. In Section 2.3, a mathematical model to describe the EM 

tropospheric propagation is derived and used to generate the synthetic corrupted radar 

measurements. Two algorithms for the estimate of the tropospheric range and elevation 

errors are discussed in Section 2.4. In Section 2.5, the proposed KF-based algorithm is 

described. Simulation results concerning the performance of the proposed algorithm are 

presented in Section 2.6. Our conclusions are collected in Section 2.7. 

 

2.2 GEOMETRY OF THE SCENARIO 

The considered scenario is exactly the same described in Section 1.2; we recall it here 

for clarity. An inertial Cartesian reference system ( , , )x y z  is used to describe the motion of 

both aircraft and target. Since the airborne radar acquires the radar measurements in its 

local reference system, to describe the EM ray path in a suitable way to derive the a 

mathematical model for the tropospheric propagation, we define a relative, aircraft-centred 
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Cartesian coordinate system, named ( , , )x y z   . The inertial and the relative aircraft-centred 

coordinate systems are parallel during the aircraft flight.  

In our study we refer to a 3D Airborne Early Warning Radar (AEWR) with a range, 

azimuth and elevation accuracy given by σρ, σθ and σε respectively, a scan time of T seconds 

and a flight height h. The numerical values of all these parameters are given in Section 2.6. 

Without loss of generality, the chosen aircraft race is a quasi-ellipsoidal racetrack [11]. This 

racetrack is adopted in a border security and surveillance mission where the airborne radar 

must be able to cover a wide area. Its kinematical equations are non-linear and must be 

accounted for in the design of the tracking algorithm performance. In the following, with 

reference to Fig. 1.1, the main geometrical parameters of the scenario are: 

  , , ,, ,a a x a y a zO O OO : centre of the aircraft race, then ,a zO h ; 

 d: length of the straight stretch of the racetrack; 

 R: radius of the circular stretch of the racetrack; 

 ( )tr : target position vector defined in the inertial reference system; 

 ( )tr : target position vector defined in the relative aircraft-centred reference 

system; 

 ( )O tr : aircraft position vector defined in the inertial reference system. 

For the ease of mathematical formulation of the problem, the target motion is supposed 

rectilinear and uniform. 

 

2.3 MATHEMATICAL MODEL FOR TROPOSPHERIC 

PROPAGATION 

As already pointed out in the Introduction, the variation of the refractive index, as 

function of the altitude, gives rise to a geometrical distortion of the EM radar signal that 

modifies range and elevation measurements (see Fig. 2.1). Moreover, the knowledge of the 

refractive index is needed to quantify the slowing of the EM signal that is another cause of 
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the range error. To derive a model for the EM propagation, we need a mathematical model 

that characterizes the refractive index n(x,y,z) for all the points of the considered 

tropospheric region. As discussed before, the wide range of tropospheric phenomena make 

the formulation of a rigorous and exhaustive mathematical model for the refractive index 

very difficult to obtain. Here, we adopt two simplified assumptions: (i) the tropospheric 

temperature and humidity vary only with the altitude; (ii) a spherical model, with radius r0 

for the Earth’s geoid is assumed. Assumption (i) implies that, for a given height h , the 

tropospheric parameters (temperature, pressure, humidity) remain constant in all the 

considered region. This is not a realistic assumption because of the presence of the spatial 

inhomogeneities and of the turbulent processes in the troposphere [4, App. D], [5, Part II]. 

On the other hand, without assuming these simplified hypotheses, the derivation in close 

form of the refracted ray path becomes extremely hard.  

As shown in Fig. 2.1, the corrupted radar measurement vector 
k
z  can be defined in 

spherical coordinates as: 

 ,k k k
  z z μ  (2.1) 

where k is the discrete time index and  0
T

k k k   μ  is the vector of the range and 

elevation tropospheric errors, 
k  and 

k  respectively. The vector 
kz  represents the 

noisy radar measurements, defined as: 

   ,
T

k k k k k   z n  (2.2) 

where 
k , 

k  and 
k  represent the true range, azimuth and elevation of the target defined 

in the aircraft reference system and 
kn  is the measurement noise vector, modelled as a 

discrete, zero-mean, Gaussian distributed random vector with diagonal covariance matrix 

given by  2 2 2diag , ,n     C . In the rest of the paper, we define as corrupted the 

position vector affected by the only tropospheric errors (not considering the measurement 

noise) and as noisy measurement the radar measures affected by both tropospheric errors 

and measurement noise, as shown in eq. (2.1).  
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Figure 2.1 - Curvature of EM radar signal. 

 

2.3.1 Generation of the refracted ray path 

In geometrical optics, the well known Fermat’s principle states that the path taken 

between two points in a three dimensional space by an EM signal is the path that can be 

traversed in the least time. The EM signal speed in the troposphere is given by: 

  
 

,
c

v s
n s

  (2.3) 

where n(s) is the tropospheric refractive index and c is the speed of light in the vacuum. We 

can define a two dimensional vector space S such that the aircraft, the target and the Earth’s 

centre belong to S. Such vector space is unique and it is well defined for all radar-target 

configurations. We can define an orthogonal coordinate system (u,v) on S centred in the 

Earth’s centre (Fig. 2.1). Since both ideal path and refracted path belong to S, the following 

equations are defined on S, and then the final result will be converted in the usual spherical 

coordinate system.  

The time necessary to the EM signal to cover the path between s0 and s1 is given by the 

following path integral: 
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For ease of notation, we define       
2

1, , ,F nwu w w u wu . Our aim is to 

calculate the path     ,s u u w u  that is the solution of the following functional 

minimum problem: 

 
  

 

   

1
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,
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1
., ,

w C u u
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u
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 (2.5) 

From a fundamental theorem of the calculus of variation [12], the function w(u) that 

minimizes the problem in eq. (2.5) is the solution of the following differential equation, 

called Euler-Lagrange formula
4
: 

    ., , , ,
d

F Fu w w u w w
du w w

  
 

  
 (2.6) 

To solve the equation in (2.6) we need to specify a refractive index profile defined on 

S, i.e. n(u,v). The most widely used model is the exponential model [2, Ch. 3], [3] that can 

be expressed as: 

 
2 2 2 2

0 0( ) ( )6

0 0( , ) 1 ( 1) 1 10 ,
b u w r b u w r

n u w n e N e
           (2.7) 

where n0 is the sea-level refractive index, 
6

0 010 ( 1)N n   is a constant introduced only to 

deal with the small value of the refractive index and it will be better defined in Section 

2.4.2, r0 is the Earth's radius and b is a physical constant parameter named scale height. 

Both n0 and b depend on the physical local tropospheric characteristics, e. g. temperature, 

                                                 
3 The change of variable in the path integral in (2.4) can be easily explained as follows: 

    
222 2 1 1 .ds du dw dw du du w u du       

4 The Euler-Lagrange differential equation is a fundamental equation of the calculus of variations [15]. It states 

that if J is a functional, defined by an integral of the form       , ,J x f t x t x t dt  , then x  is a stationary 

value for J if it is solution of the following (Euler-Lagrange) differential equation: 

         , , , ,
d

f t x t x t f t x t x t
dt x x

  
 

  
. 
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pressure and humidity, and vary with the seasons and with the particular geographical area, 

then they must be chosen accordingly with on-site measurements. Moreover, the value of 

the sea-level refractive index over many Earth locations and for every season could be 

obtained by using the radiosonde data (available to general public) collected in the 

radiosonde archive IGRA (Integrated Global Radiosonde Archive) [13]. 

The solution of (2.6), with the exponential model of (2.7) yields the following 

Dirichlet’s problem for differential equations (for the proof, see Appendix A): 

 

 

 

 
    

 

 

2

2 2

0 0 0

1 11

1
1,

,

.

w w wu
w n u wb

n u w u w

w u w

w wu

  
   











 (2.8) 

In Fig. 2.2, a comparison between the ideal (straight) ray path and the refracted ray path 

obtained by solving numerically the Dirichlet’s problem in eq. (2.8) is shown for a radar-

target distance of 90 km. 

 

Figure 2.2 - Comparison between the refracted ray path and the ideal ray path for a radar-target distance of 90 km. 

 

2.3.2 Generation of range and elevation errors 

To generate the troposheric range error, we have to solve the path integral in eq. (2.4). 

From the solution of the Dirichlet’s problem in eq. (2.8), we know the EM ray path 

coordinate w and its first derivative w , then the integral in eq. (2.4) can be evaluated via 
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numerical integration. From Fig. 2.1, we have that the corrupted range and the true range 

can be expressed as: 

     
1

0

2
1 ,

x

x
n duw u wu   , (2.9) 

    
2 2

1 0 1 0 .u u w w      (2.10) 

Then, the range error is: 

 .      (2.11) 

Now, we have to generate the tropospheric elevation error. The corrupted elevation 

angle (see Fig. 2) is given by: 

   0' 2 atan ,w u    (2.12) 

while the true elevation angle can be obtained as: 

 
1 0

1 0

2 atan
w w

u u
 

 
   

 
. (2.13) 

Then, the tropospheric elevation error is given by: 

      . (2.14) 

 

2.4 EVALUATION OF THE TROPOSPHERIC ERRORS 

2.4.1 Evaluation of tropospheric elevation error 

The correction of the elevation error is a very important task in airborne tracking radar. 

In order to evaluate such error, we use the procedure shown in [5] and [13], where an 

estimation of k  is obtained by assuming the exponential tropospheric model shown in 

eq. (2.7). The ray curvature is a function of the derivative of refractive index n(h), where h 

is the height from which the EM ray path starts (in our case, h is the radar platform height), 

and it can be expressed as [1], [9]: 
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where rC is the radius of curvature and 1/ rC is the curvature. By evaluating the derivative 

term, eq. (2.15) becomes: 
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 (2.16) 

where k   is the corrupted elevation measure at time k. From geometrical considerations 

(the proof can be found in [1] and [9]), the elevation error is given by: 

  
6

0

6

0

101
ˆ cos ,

2 1 10

bh

k k kbh

N be

N e
  

 

 


  
 

 (2.17) 

where 
k  is the corrupted range measure at time k. It is important to note that such 

measures, 
k  and 

k  , are considered free from the measurement noise, then, before using 

eq. (2.17) to evaluate the tropospheric elevation error, we have to filter (e.g. with a Kalman 

filter) the radar measurements. 

 

2.4.2 Evaluation of tropospheric range error 

We now derive an estimator of the tropospheric range error from the corrupted radar 

measures (without measurement noise). As pointed out in [10], the tropospheric range error 

can be evaluated using the following path integral: 

     
1 1

0 0

ˆ 1 ,
s s

s s
n ds n dss s        (2.18) 

where n(s) is the refractive index and ds is the infinitesimal element of the straight ray path 

between radar and target. Actually, the integral in eq. (2.18) is not equivalent to the one in 

eq. (2.9) because the integral in eq. (2.18) is a path integral along the straight line between 

radar and target, while it should be performed along the curved path as in eq. (2.9). In other 

words, evaluating the range error as shown in eq. (2.18) implies that the contribution to the 

range error due to the ray bending is neglected, and only the contribution due to the slowing 

down of the EM signal is taken into account. However, in Section VI, using a simulated 
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scenario, we show that such approximation yields a very small error . As pointed out 

before, due to the small value of n, a scaled EM refractivity index can be defined as [10]: 

      61 10 .N s n s   (2.19) 

Through a change of variable (see Fig. 2.3 and Appendix B), the integral in (2.18) can be 

expressed as: 

  
2,

1

6

2 2 2

1

ˆ 10 ,
cos

kr

k
r

k

rdr
N r

r r




 


  (2.20) 

where r1=r0+h is the distance from the Earth’s centre to the radar (r0 is the Earth’s radius and 

h is the radar altitude, as pointed out before), εk is the true target elevation angle at time k, r2,k 

is the distance between the Earth’s centre and the target at time k, and N(r) is the EM 

refractivity index as function of r. The term r1 is a priori known, since both Earth's radius 

and radar altitude are known. To evaluate the term r2,k, we use the Carnot’s theorem: 

 
2 2

2, 1 12 sin ,k k kr r r       (2.21) 

where 
k  is the corrupted range measure while 

k  is the true target elevation value. This 

means that, before evaluating the terms in (2.20) and (2.21), we must perform the elevation 

error correction using eq. (2.17).  

 

Figure 2.3 - Geometry for the change of variable. 
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To describe how the refractive index, or equivalently the scaled EM refractivity index 

defined in (2.19), varies with the altitude, we do not use the exponential model as 

previously, but the Hopfield model [14]. This model is a polynomial model and, for this 

reason, it is possible to perform a closed form solution of the integral in eq. (2.20) [10], 

whereas it would not be possible using the exponential model. Following [14], N(r)is given 

by: 

       
4

2
0

0 0

1

1 ,i i

i i

r r
N r N u r r u r r H

H

 
         

 
  (2.22) 

where N1 and N2 are the surface dry component and the surface wet component of the 

refractive index respectively, and they are linked to the sea-level refractive index, involved 

in the exponential model, through the following linear relation [15]:  

 
0 1 2.N N N   (2.23) 

Moreover, N1 and N2 can be evaluated, as functions of the surface pressure p0 (in mbar), of 

the surface temperature T0 (in Kelvin) and of the partial pressure of water vapour e0 (in 

mbar), through the classical Smith and Weintraub formulas [2, Ch. 3], [15]: 

 0

1

0

77.6 ,
p

N
T

  (2.24) 

 
5 0

2 2

0

3.73 10 ,
e

N
T

   (2.25) 

where the numerical coefficients in eqs. (2.24) and (2.25) are empirically determined. The 

parameters H1 and H2 are physical parameters, named dry and wet characteristic heights of 

the troposphere, and depend on the seasons and on the particular geographical area and they 

must be chosen accordingly with on-site measurements. An example of how to determine 

H1 and H2 from the on-site meteorological measurements can be found in [16] where it is 

proposed to use a linear regression method. The function u(r) is the classical unit step 

function. By substituting eq. (2.22) in the integral in eq. (2.20), we obtain an estimate of the 

range error ˆ
k . It is important to remark that we have used two different models for the 

refractive index for the refraction error estimate: the exponential model for the estimate of 

the elevation error and the Hopfield model for the estimate of the range error. The 

exponential model is a 2-term model, i. e. it is fully defined by the parameters N0 and b, 
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while the Hopfield model is a 4-term model, it is characterized by four parameters: N1, N2, 

H1 and H2. As discussed previously, there exists a linear relation, given in eq. (2.23), 

between the surface refractivity parameters of the two models. Unfortunately, in the open 

literature, it is not possible to find a mathematical relation that links the scale height b of 

the exponential model with the characteristic heights H1 and H2 of the Hopfield model. 

However, although the exponential and the Hopfield models are not fully inter-changeable 

due to the lack of a relation among b, H1 and H2, this discrepancy yields negligible 

difference between the exponential and Hopfield refractive index profile. As empirical 

proof of this assumption, a comparison between the exponential and the Hopfield 

refractivity index curves is given in Section 2.4.  

In [10], a closed form solution for the integral in eq. (2.20) is derived, but the geometry 

is quite different. We derive a general solution, independent of the particular geometry that 

can be used for all radar-target configurations. In Appendix B all the mathematical details 

are given, here we report only the main facts: 

1. If the target altitude is greater than the radar platform altitude (this is the geometry 

considered in [14]), then the term by term integration of eq. (2.20) leads to: 

    
2

6

2, 1

1

ˆ 10 ,kk i i i

i

rN I I r 



      (2.26) 

where the function I(·) is defined in [10] (see Appendix B). 

2. If the target altitude is smaller than the radar platform altitude, we must consider 

two cases. By defining 
2 2 2

2, 1

2,2

k k

k

k k

r r
J

r





 


, we have: 

 If Jk<0, then the term by term integration of eq. (2.20) leads to: 
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       (2.27) 

 Otherwise, if 0kJ  , then the term by term integration of eq. (2.20) leads to: 
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It is important to note that eqs. (2.26), (2.27) and (2.28) depend on the corrupted range 

k  but on the real elevation angle 
k  as well. This means that, before estimating the range 

error, we have to correct the elevation measure by subtracting the estimated elevation error 

in eq. (2.17) to the corrupted elevation value 
k  . 

 

2.5. MODIFIED KF FOR TROPOSPHERIC ERROR 

CORRECTION 

In the previous section we have discussed a way to estimate, from the corrupted radar 

measurements, the tropospheric range and elevation errors, ˆ
k  and ˆ

k , respectively. 

Now, we propose a tracking algorithm that mitigates the tropospheric errors from the 

estimated state vector, i.e. position and velocity vector of the target. The proposed 

algorithm is a modified version of the extended Kalman filter (EKF) and it is composed of 

two blocks (see Fig. 2.4): in the first block it estimates the corrupted position vector, “free” 

from the measurement noise (as the classical KF), while in the second block it corrects the 

tropospheric range and elevation errors.  

In the first block we apply the KF with converted measurement (CMKF) [17], [18]. 

This approach is shown to be more accurate in terms of accuracy of the position and 

velocity vector estimation than the EKF. At the output of this first block, we obtain an 

estimate of the corrupted position vector, then we are able to evaluate the range and 

elevation errors from this vector using (2.17) and (2.20). Finally, a new state update 

equation for the state vector estimation is proposed in order to correct the tropospheric 

errors. 
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2.5.1 The discrete-time model for target motion and the 

measurement model 

We define here the signal and the measurement models for the tracking filter. As 

discussed also in Section 1.2, the target state vector 
kx  evolves according to the following 

discrete-time stochastic model [19], [20], [21]: 

 
1 1 ,k k k k   x Tx g w  (2.29) 

where: 

 
kx  is the target state vector defined as  

T
T T

k k kx s v  where 
ks  and 

kv  are the 

target position and velocity vectors in Cartesian coordinates, 

 
3 3 3 3

3 3 3 3

T 

 

 
  
 

I I
T

0 0
 is the state update matrix, 

 gk is a deterministic known vector due to the non-linearity of the platform motion. 

The mathematical derivation of this term is discussed in Section 1.2 [21]. Here, for 

brevity, we report only the analytical expression: 
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 (2.30) 

where aa(t) is the known, continuous-time, aircraft acceleration vector, 

 wk is a discrete zero-mean Gaussian random process that stands for any unforeseen 

disturbances in the target motion model, commonly named process noise. The 

covariance matrix of this process is [19], [20]: 

 
11 12

21 22
,w w

w

w w

 
   
 

Q Q
Q

Q Q
 (2.31) 

 
3 2

11 12 22, , ,
3 2

w w w

T T
T  Q N Q N Q N  (2.32) 

where 0, 0, 0,diag( , , )x y zN N NN , and 0,xN , 0, yN  and 0,zN  are the power spectral 

densities of the continuous-time process noise components. 
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The radar measurements, without tropospheric errors, defined in (2.2), are related to 

the target state via the measurement equation: 

  1 ,k k k

 z h Hx n  (2.33) 

where h(·) is the spherical-to-Cartesian coordinates transformation and H is a matrix 

defined as  3 3 3 3 H I 0 . The measurement noise process nk is assumed to be 

independent of the process noise wk. To introduce the tropospheric errors in the 

measurement model, they must be added to the radar measures in eq. (2.33) as shown 

explicitly in eq. (2.1).  

 

2.5.2 Modified Kalman Filter for tropospheric error correction 

In the following, the proposed tracking algorithm is described step-by-step. Before 

that, some mathematical details about the coordinate transformations of the corrupted 

position vector have to be explained. For ease of notation, in the following equations the 

dependence by k will be omitted. Let s and s' be the true and the corrupted target position 

vectors defined in Cartesian coordinates as: 
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s  (2.34) 

and 
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s  (2.35) 

Through some algebra, it can be shown that the corrupted position vector s' can be 

expressed as function of the true target position s as: 

  cos ,   s s b  (2.36) 

where b is the vector 
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b  (2.37) 

The input of the CMKF at time k is the vector of the converted measurements defined 

as [21]: 
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s h z  (2.38) 

where 
2 21 e 


   and 

2 21 e 


   are two coefficients that correct the bias errors 

produced by the non-linear transformation of the measurement noise.  

Now, we describe the proposed filtering algorithm. 

1. Initialization: both corrupted and the error free target state vectors and the error 

covariance matrix are initialized following the approach in [22] as: 

  1|1 1|1 ,1 3 1
ˆ ˆ ,

T
u T T

m 
  x x s 0  (2.39) 

 and 

 
3 3

11

3 3

,
 



 
  
 

s
C 0

P
0 V

 (2.40) 

where the matrix sC  represents the covariance matrix of the unbiased 

measurement vector defined in [18], and the matrix 

 2 2 2

max max maxdiag 3, 3, 3x y zv v vV  is a diagonal matrix where maxxv , maxyv  and 

maxzv  are the maximum possible speed of a target, thus represent a sort of a priori 

information (
2

max 3v  is the values of the variance of a uniformly distributed 

random variable defined in  max max,v v ). 

2. For each k, the corrupted target state vector and the Kalman gain matrix Kk are 

estimated through the CMKF: 

   , 1
ˆ ˆ, CMKF , .u

k m kk k k k
   
 

x K s x  (2.41) 
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The purpose of the next steps is to remove the atmospheric errors from ˆ
k k
x : 

3. Coordinate transformation from Cartesian-to-spherical: 

    1ˆˆ ˆ ˆ .
T

k k k k k k k k
       h Hx  (2.42) 

4. The elevation error is evaluated through eq. (2.17) and corrected: 

 ˆ ˆ ˆ .
k k k k k k
     (2.43) 

5. The range error ˆ
k k

  is evaluated through eq. (2.20). 

At this point we have both range and elevation errors at time k. In order to obtain the 

unbiased target state vector, we have to apply a suitable measure update equation.  

Then, the remaining two steps are: 

6. Prediction of the unbiased target state vector according with the dynamic model in 

eq. (2.29): 

 11 1 1
ˆ ˆ .kk k k k   

 x Tx g  (2.44) 

7. Taking into account eq. (2.36), a suitable measure update equation can be 

formulated as follows : 

    ,1 1
ˆˆˆ ˆ ˆcos ,u

k m kk k k k k k k k k k


 
    x x K s Hx b  (2.45) 

where Kk is the Kalman gain matrix evaluated at step 2. 

 

Figure 2.4 - Algorithm for the tropospheric correction: the input is the converted measurement vector, while the 

output is the estimated state vector. 
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2.6 SIMULATION RESULTS 

 The physical tropospheric parameters, surface pressure, temperature and partial 

pressure of water vapour, used in the simulations have chosen according to the International 

Standard Atmosphere (ISA) specifications [23], as follows: p0=1013.25 mbar, T0=288.15 K 

and e0=15 mbar. From eqs. (2.24) and (2.25), it is possible to obtain the values of the 

surface dry and wet refractivity component as N1=273 and N2=67.17, then the surface 

refractivity component can be obtained from eq. (2.23) as N0=340.17. For the scale height b 

of the exponential model, we have chosen the standard value of b=1/7000=1.4286·10
-4

 m
-1

. 

Finally, the characteristic heights H1 and H2 for the Hopfield model have to be determined 

from the on-site measurements or from the data stored in the IGRA [16], as discussed in 

Section IV.B. In our simulations, we have assumed two reasonable values for H1 and H2 

[10]: H1=42819 m and H2=12000 m. As concerning the parameters that characterize the 

radar system and the target, all the simulations have been performed using the following 

radar parameters: σρ = 2.4 m, σθ = σε = 0.25°, T=1 s, the flight height h is 1000 m and the 

platform speed is vp = 90 m/s. The detection and false alarm probabilities are assumed to be 

1 and 0, respectively. The target is modeled as a high speed dinghy [11] with a velocity 

vector defined as vt = (7.63 6.76 0) m/s and a standard deviation for each component of the 

continuous-time process noise vector equal to N0,x = N0,y = N0,z = 0.01 m
2
/s

3
. The 

geometrical parameters of the aircraft racetrack are (see Fig. 1.1): d = 60 km and R = 10 

km. The time intervals needed to cover the straight and circular segment of the racetrack 

are Tl=667 s and Tc=350 s respectively, then the racetrack period is of about 2000 s. First, 

we want to validate the two assumptions made in Section 2.4.B: the inter-changeability 

between the exponential and the Hopfield model and the “straight line” integration in eq. 

(2.18). In Fig. 2.5, a comparison between the exponential and the Hopfield refractivity 

index profile, using the tropospheric parameters introduced before, is shown. Although the 

two models are not fully inter-changeable for the reasons discussed in Section 2.4.2, it can 

be noted that the differences are negligible at the considered quote (about 1000 m). The 

second assumption is the “straight line” approximation used to derive the estimate of the 

range error. Using the tropospheric parameters introduced before, a comparison between 

the theoretical value of the range error, given by eq. (2.9) through integration along the 

curved ray path, and the estimated value, given by eq. (2.18) through straight line 

integration, is shown in Fig. 2.6 as function of the radar-target distance. As we can see, the 
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differences between the theoretical and the estimated values become relevant beyond 300 

km. Since our simulations are performed with a radar-target distance of about 70-100 km, 

then the straight line approximations is valid.  
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Figure 2.5 Comparison between the exponential and the Hopfield refractivity profiles for the tropospheric 

parameters given in Section 2.6. 
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range as function of the radar-target distance in km. 
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 Now, we can start to describe the procedure that we have used to assess the 

performance of the proposed tracking filter in a refractive scenario. The geometry of the 

scenario is described in Section 2.2 and a visual representation is given in Fig. 1.1. All the 

simulations are referred to a medium range scenario, where the radar-target distance varies 

in a range of 70-100 km. It is important to note that a small radar-target distance involves 

low incident elevation angle of the ray path and this leads to the ducting effect discussed in 

the Introduction. A relation to evaluate the critical elevation angle, as function of the radar 

height and of the refractivity index, is given in [6, Ch. 3]. The choice of the medium range 

scenario allows us to avoid the ducting effect that is not addressed by the mathematical 

propagation model assumed in this paper. On the other hand, at the considered radar height 

of about 1 km, a radar-target distance greater than 110 km would involve over-the-horizon 

path propagation and neither this phenomenon is tackled in our propagation model. As 

discussed in the previous Sections, all the fundamental physical tropospheric parameters, 

i.e. temperature, humidity, partial pressure of water vapour and so on, have to be evaluated 

by means of on-site measurements or of stored data in IGRA. Both these procedures will 

introduce an uncertainty on the evaluation of the dry and wet refractivity index, of the scale 

height b and of the characteristic heights H1 and H2. In order to take into account this model 

uncertainty, we define 0N  and b  as two Gaussian random variables with mean value and 

standard deviation such that 
2

0 0( , )NN N   and 
2( , )bb b  , where N0=N1+N2. 

During the data generation, we have considered the exponential refractivity index in eq. 

(2.7) as a parametric random process with random parameters given by 0N  and b . In the 

filtering phase, to implement the two estimators for the range and elevation errors we have 

used the nominal values of the refractivity index N0 and of the scale height b, i. e. the mean 

values of the random variables 0N  and b . This introduces a model mismatch that allows 

us to evaluate the effect of the uncertainty introduced in the evaluation of the physical 

tropospheric parameters. For the standard deviation of 0N  and b , i.e. N  and b  

respectively, we have chosen three different values of 2%, 5% and 10% of the respective 

nominal values. In Fig. 8 and Fig. 9, we show the standard deviation of the estimation error 

for range and elevation errors, 
,ke 




 and 
,ke 




respectively, defined as: ,
ˆ

k k ke        

and ,
ˆ

k k ke       , where k  and k  are the theoretical values defined in eqs. (2.11), 
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(2.14), obtained by solving the Dirichlet’s problem in eq. (2.18) using a refractive index 

with random parameters; while ˆ
k  and ˆ

k  are the estimated values obtained by the 

estimator in eqs. (2.17) and (2.20) where we have used the nominal value of the parameters 

to define the relative refractive index. The standard deviation (std) of the estimation errors 

is evaluated using 100 independent Monte Carlo runs. The periodic-like behavior of both 

elevation and range errors is due to the quasi-elliptical aircraft racetrack (see Fig. 1.1). As 

we can see, the std of the estimation error for the range error, i.e. 
,ke 




, is about 4 m (Fig. 

2.7) while for the elevation error, i.e. 
,ke 




, is about 0.025° (Fig. 2.8) in the worst case, i.e. 

when σN=0.1N0 and σb=0.1b. Obviously, by decreasing the model mismatch, i.e. by 

decreasing the variances 
2

N  and 
2

b , the std of the estimation error decreases, too. For 

σN=0.05N0 and σb=0.05b, we have that 
,ke 




 is lower than 2 m and 
,ke 




 is lower than 

0.015°, while for σN=0.02N0 and σb=0.02b, 
,ke 




 is lower than 1 m and 
,ke 




 is lower than 

0.01°. Further simulations, not included here for lack of space, show that the 80% -90% of 

the error std of the range error is due to a mismatch in the value of the refractivity index N0, 

while the mismatch in the scale height causes a negligible effect. On the other hand, for the 

elevation error, the contribution to the error std of the mismatch in the refractivity value and 

in scale height are almost equivalent. 
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Figure 2.7 - Standard deviation of the estimated range error. 
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Figure 2.8 - Standard deviation of the estimated elevation error. 

 

Finally, in Figs 2.9-2.16, the performance of the proposed modified KF-based 

algorithm are analyzed in terms of mean value and std of the estimation error for each 

component of the state vector. By defining the estimation error for the ith component of the 

state vector as , , ,
ˆ

i k i k i ke x x  , the error mean value and the error std are defined as follow: 

, ,{ }
i ke i kE e   and 

, ,

2 1 2

,{( ) }
i k i ke i k eE e   , respectively. All performance curves have 

been obtained by averaging over 100 independent Monte Carlo runs. For brevity, here we 

only show the results relative to the x and z components of both position and velocity 

vectors, since the results for the y component are similar to the x ones. Moreover, the most 

important coordinate to check the proposed algorithm is the z component, because it is the 

one more heavily affected by tropospheric errors. In fact, it is affected by both range and 

elevation errors, whereas the x and y components are affected only by the range error. In the 

following figures, we show three different curves: (1) the ideal case, i.e. the radar 

measurements have no tropospheric errors; (2) the case in which the measurements are 

affected by tropospheric errors and the correction of such errors is performed using the 

proposed KF-based algorithm; (3) the case in which the measurements are corrupted but no 

correction is made. For the position estimate, the bias error due to the tropospheric error, in 

the worst case is, of about -70 m (Fig. 2.9) and 310 m (Fig. 2.11) for the x and z 

components of position vector respectively. It can be noted that, the proposed algorithm is 
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able to mitigate the impact of the troposheric errors in the bias of the estimates, in fact, the 

curves relative to the KF-based correction algorithm are pretty close to the ones relative to 

the ideal case. In Figs. 2.10 and 2.12, the error std relative to the x and z components of the 

position vector are shown. As we can see, for the x component, the three curves (ideal case, 

without correction and with correction) are all close to each other. This means that the 

random model mismatch, introduced in the data generation, does not affect significantly the 

filter performance in the estimate of the x component of the position vector. In Fig. 2.12, 

the error std relative to the z component of position is shown. In this case, in a time interval 

between 500 and 1000 sec (that correspond to the turn of the platform that carries the 

radar), the two curves relative to the cases with correction and without correction differ 

from the ideal case of about 20 m. This performance degradation is due to the model 

mismatch and the proposed algorithm is not able to correct such effect, in fact the curve 

relative to the case “with correction” is equal to the case “without correction”. For the 

velocity vector estimate, the bias error for the x and y components is negligible, while for 

the z component is of about   0.5 m/s in the worst case (Figs. 2.13 and 2.15). Also in this 

case, the proposed algorithm seems to be able to reject the bias of the estimate produced by 

the refraction errors. The curves of the error std in the three cases (ideal case, without 

correction and with correction) are close to each other (see Figs. 2.14 and 2.16). As before, 

this means that the model mismatch does not affect the performance of the components of 

the velocity vector. Finally, it can be noted that, as pointed out before, the difference in the 

magnitude of the bias error of both position and velocity vector estimate between the x and 

y components and the z component is due to the fact that the z component is affected by 

both elevation and range errors, while the bias error in x and y components is only due to 

the range error. A comment has to be made about the particular progress of the error mean 

value and std curves: this periodic-like behavior is caused by the non-linear relative motion 

between the radar and the target that is composed of the periodic racetrack of the platform 

that carries the radar and of the straight line motion of the target. From this simulation 

results, we can assert that the proposed KF-based algorithm is able to mitigate the effects of 

the tropospheric range and elevation errors on the bias of the estimate of both position and 

velocity vector. Moreover, it seems to be a robust algorithm with respect to the model 

mismatch introduced in the simulated data. Of course, a deeper investigation on the 

behavior of the proposed algorithm with more realistic models for the tropospheric 

refractive index is needed. 
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Figure 2.9 - Error mean value for the x component of the position vector. 

 

0

20

40

60

80

100

0 500 1000 1500 2000

With correction
Without correction
Ideal case

S
d

 o
f 

th
e
 e

rr
o

r 
fo

r 
x
 [

m
]

Discrete time k  

Figure 2.10 - Error std for the x component of the position vector. 
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Figure 2.11 - Error mean value for the z component of the position vector. 
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Figure 2.12 - Error mean value for the z component of the position vector. 
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Figure 2.13 - Error mean value for the x component of the velocity vector. 
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Figure 2.14 - Error std for the x component of the velocity vector. 
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Figure 2.15 - Error mean value for the z component of the velocity vector. 
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Figure 2.16 - Error std for the z component of the velocity vector. 

 

2.7 Summary 

In this Chapter, we propose a tracking algorithm, based on the KF, with the aim to 

mitigate the effects of the tropospheric errors. A simplified mathematical model of the 
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tropospheric propagation of the EM radar signal has been introduced. The assumed model 

does not take into account anomalous propagation effects (e.g. ducting effect or small 

fluctuation of the refractive index) and the error in the azimuth measure is assumed to be 

negligible. According to this simplified model, two algorithms for the estimate of such 

errors from the corrupted radar measurements were derived and their performance 

investigated. Such estimators assume two different models for the tropospheric refractive 

index: the exponential model for the estimate of the elevation error and the Hopfield model 

for the estimate of the range error. Although these two models are not fully inter-

changeable, we have shown that such discrepancy leads to a negligible error. Finally, a 

modification of the classical KF has also been proposed to remove the tropospheric errors 

from the state vector estimate. The performance of the proposed algorithm has been 

investigated for a medium range scenario in the presence of a random mismatch between 

the model used for the data generation and the one used in the tropospheric error 

estimations. The choice of the medium range scenario is motivated by observing that for 

small radar-target distance, it implies a low elevation angle, the propagation of the radar 

signal could experience the ducting affect that, as said before, it is not considered in our ray 

tracing model. On the other hand, it must be noted that the proposed algorithm could 

present a performance degradation for a very long range scenarios (such as e.g. satellite 

geometries), due to the straight line assumption used to derive the estimator for the range 

error. 

Simulation results show the effectiveness of the proposed algorithm and its ability to 

mitigate the effects of the tropospheric errors on the estimated target state vector. 

Moreover, it seems to be robust with respect to model mismatch. However, it must be 

remarked that, in our simulations, we have used a simplified model to describe the 

refractive index that is not able to fully characterize its variability. For this reasons a deeper 

investigation of the effects of the anomalous propagation effects and of the tropospheric 

random fluctuations is needed and it will be the subject of future research. 
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Appendix A 

Here, the mathematical manipulations that allow us to solve the Euler-Lagrange 

equation in eq. (2.6) and obtain the Dirichlet’s problem in eq. (2.8) are discussed. Rewrite 

the Euler-Lagrange equation: 

    , , , ,
d

F Fu w w u w w
du w w

  
 

  
 (A1) 

where 

       
2

1, , ,F nwu w w u wu  (A2) 

and, according with the notation used before, ( ) ( )w u dw u du . 

In the following, for ease of notation, we write the partial first or second order 

derivatives of the function F as: ( , , ) ( , , )wF u w w F u w w
w




 or, for example, 

2

( , , ) ( , , )wwF u w w F u w w
w w



 
. Moreover, we can define a vector function 

( ) ( ( ) ( ))Tu u w u w ug , then the function ( , , )F u w w  can be rewritten as ( ( ))F ug . 

Using this notation, the Euler-Lagrange equation can be rewritten as: 

       w w

d
F u F u

du
g g  (A3) 

Now, we can apply the chain rule of derivation to the first term of eq. (A3): 

          ,w w

d
F u F u u

du
  g g g  (A4) 

where ( ( )) ( ( ( )) ( ( )) ( ( )))w wu ww wwF u F u F u F u g g g g  is the gradient of ( ( ))wF ug  with 

respect to ( )ug  and ( ) (1 ( ) ( ))Tu w u w ug . So, by performing the classical matrix 

product, we get: 

                 w wu ww ww

d
F u F u w F u w F uu u

du
  g g g g  (A5) 
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and, by substituting eq. (A5) in eq. (A3), we obtain the differential equation of the path 

w(u). Finally, by using the exponential atmospheric model in eq. (2.7) and by imposing the 

boundary value conditions, we obtain the Dirichlet’s problem in eq. (2.8). 

 

Appendix B 

In this Appendix, we give all the mathematical details to evaluate the integral in eq. 

(2.20). The geometry of the problem is shown in Fig. 3. In the following, we give the proof 

of the change of variable to pass from the integral in eq. (2.18) to the one in eq. (2.20). 

First, from the geometry shown in Fig. 3, it can be noted that: 

 2 2cos sin   (B1) 

Since the mathematical formulation becomes more easy if we consider the angle β 

instead of the angle ε, we can formulate all the equations as a function of the angle β and 

finally, using the equality in eq. (B1), they can be rewritten as function of ε. From the 

Carnot’s theorem (or law of cosines), we have: 

 2 2 2

1 12 cosr r s r s     (B2) 

and, by differentiation of both terms in eq. (B2), we get: 

 
12 2 2 cosrdr sds r ds   (B3) 

that implies: 

 
1 cos

r
ds dr

s r 



 (B4) 

From eq. (B2), through some algebraic manipulations and by using the trigonometry 

equality 2 2sin 1 cos   , we get: 

  
22 2 2

1 1sin cosr r s r     (B5) 

that implies: 

 
2 2 2

1 1cos sins r r r      (B6) 
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By substituting eq. (B6) in eq. (B4), we get the desired change of variable: 

 
2 2 2

1 sin

r
ds dr

r r 
 


 (B7) 

Finally, using the equality in (B1), we can rewrite this change of variable as a function 

of the elevation angle ε: 

 
2 2 2

1 cos

r
ds dr

r r 
 


 (B8) 

To perform the integral in eq. (2.20), we must distinguish three different cases to 

assure the monotonicity of the change of variable on the integration domain. Here we list 

all the possible cases: 

1. If 
2


  , the integral in eq. (2.20) is: 

  
2

1

6

2 2 2

1

ˆ 10
cos

r

r

rdr
N r

r r




 


  (B9) 

 in fact the variable r increases monotonically from r1 to r2. 

2. If 
2


  , we have two different cases: 

 If 
2


  , that implies, from the Carnot’s theorem, that 

2 2 2

2 1

2

0
2

r s r

sr

 
 , 

the integral in eq. (2.20) becomes: 

  
2

1

6

2 2 2

1

ˆ 10
cos

r

r

rdr
N r

r r




  


  (B10) 

in fact the variable r decreases monotonically from r1 to r2. 

 If 
2


  , that implies, from the Carnot’s theorem, that 

2 2 2

2 1

2

0
2

r s r

sr

 
  , 

the integral in eq. (2.20) becomes: 
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1 2

1 1

sin
6 6

sin2 2 2 2 2 2

1 1

ˆ 10 10
cos cos

r r

r r

rdr rdr
N r N r

r r r r






 

    
 

   (B11) 

in fact the variable r decreases monotonically from 
1r  to 

1 sinr  , then 

increases monotonically from 
1 sinr   to 

2r . It can be noted that 

1 1sin cosr r  . 

Now, following [14], we give a closed form expression for the primitive function for 

the integral in eq. (B9) (and then for all other integrals in eqs. (B10) and (B11)). We define 

the primitive function I(r) as: 

    
2 2 2

1 cos
i i

rdr
N r I r C

r r 
 


  (B12) 

where C is a real constant. Substituting one term of the sum in eq. (2.22) into eq. (B12), 

expanding the quadratic term and performing term by term integration, we obtain the 

expression of the primitive [14]: 

 

   

 

2 2 2 2

2 2 2 4
2 4

2 4

2 2

2
2 3

3 1 4 8
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3
ln ,

2 8

i i

i i

i i

i i
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 (B13) 

where:  

1 cosA r  , 2 3 41 4 6 4i i i i ia x x x x     ,  2 34
1 3 3i i i i

i

b x x x
H

     , 

 2

2

6
1 2i i i

i

c x x
H

   ,  
3

3
1i i

i

d x
H

   , 
4

1
i

i

e
H

 , and 0

i

i

r
x

H
 . 
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Chapter 3: The relative grid-locking problem 

 

 

 

3.1 Introduction 

Interest in integrating a set of stand-alone sensors into an integrated multisensor system 

has been increasing in the last few years. Rather than to develop new sensors to achieve 

more accurate tracking and surveillance systems, it is more useful to integrate existing 

stand-alone sensors into a single system in order to obtain performance improvements [1], 

[2]. However, an important prerequisite for successful multisensor integration is the sensor 

registration process. The problem of sensor registration arises when a set of data coming 

from two or more sensors must be combined. This problem involves the coordinate 

transformation and the reciprocal alignment among the various sensors: streams of data 

from different sensors must be converted into a common coordinate system (or frame) and 

aligned before they could be used in a tracking or surveillance system. If not corrected, the 

registration errors can seriously degrade the global system performance by increasing 

tracking errors and even introducing ghost tracks. In naval system, the process of automatic 

registration is often referred as “grid-locking” process. For brevity, in the following we use 

such term to define a general registration process regardless of the particular application.  

A first basic distinction is usually made between relative grid-locking and absolute 

grid-locking. The relative grid-locking process aligns remote data to local data under the 

assumption that the local data are bias free and that all biases reside with the remote sensor. 

The problem is that, actually, also the local sensor is affected by biases that cannot be 

corrected by means of this approach. The absolute grid-locking process assumes that all the 

sensors in the scenario are affected by errors that must be corrected. One source of 

registration errors is represented by the sensor calibration (or offset) errors, also called 

measurement errors. Although the sensors are usually initially calibrated, the calibration 

may deteriorate over time. There are three measurement errors, one for each component of 
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the measurement vector, i.e. range, azimuth, and elevation. Another kind of registration 

errors are the attitude or orientation errors. Attitude errors can be caused by biases in the 

gyros of the inertial measurement unit (IMU) of the sensor. There are three possible attitude 

errors, one for each body-fixed rotation axis. The last source of registration errors is 

represented by the location (or position) errors caused by bias errors in the navigation 

system associated with the sensors.  

Various algorithms for sensor bias estimation have been proposed in the literature, both 

for relative and absolute grid-locking process. These algorithms fall into two main classes. 

A first class formulates the grid-locking problem as a track association problem. Two 

examples of this class of algorithms can be found in [3] and [4]. In [3] a registration 

algorithm for two radars is proposed, whereas in [4] a similar procedure is applied to a 

scenario composed by an active sensor and a passive sensor. The scenario with two active 

sensors is not investigated in [4]. A second class of algorithms does not use a track-level 

data, but simply a plot-level data. To estimate the registration errors, such algorithms need 

only a set of common detections (i.e. each radars in the system must detect the same target 

at the same time). Since the algorithm derived in this work falls into this second class, in 

the following a detailed summary of the existing algorithms for this class is provided.   

In [5] a 2-D scenario with two radars is investigated. Both sensors are assumed to be 

biased, but only the measurement errors in range and azimuth are taken into account, 

whereas the elevation error is neglected. The measurement model is linearized and the 

measurement range and azimuth errors are estimated using a maximum likelihood estimator 

(MLE). The Cramér-Rao lower bound (CRLB) is then evaluated for the linearized data 

model. A similar scenario (two 2D radars both affected by the range and azimuth 

measurement errors) is considered in [6] and [7, vol. 2, Ch. 5]. A linearized form of the 

congruence or alignment equation
5
 is derived where the unknowns are the range and 

azimuth measurements errors of the two radars. The CRLB is not provided there. In [8] a 

relative grid-locking problem is addressed for a two radar system in a 2-D scenario. Only 

an attitude bias error (the north angle error) and two location bias errors are taken into 

account. A least squares (LS) algorithm with covariance weighting is derived, but the 

CRLB is not provided. In [2], the relative grid-locking problem is addressed for two 3-D 

                                                 
5 The alignment equation is obtained by expressing the condition for the alignment between the measurements 

taken by the two considered radars looking at the same target in the same time instant, as detailed in Sect. II. 
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radars. Both measurement and attitude errors are considered, and the relative location of the 

two radars is assumed perfectly known, i.e. location errors are not present. The estimation 

algorithm is a Kalman Filter (KF) built from a linearized alignment model. A strong 

limitation to the applicability of this algorithm is that the maximum separation distance 

between the two radars must be 100m. The CRLB is not provided. The possibility to use a 

KF-based algorithm to estimate the registration errors is investigated also in [9]. The 

absolute grid-locking problem is addressed in [10] and [11]. All radars in the scenario are 

considered biased and both the flat model and the ellipsoidal model for the Earth are 

investigated. However, only the measurement bias errors are taken into account. This limits 

quite a lot the usefulness of the proposed algorithm. The estimation strategy for the 

registration errors is based on MLE approach. In [11], the CRLB is evaluated under a 

linearized measurement model for three different target trajectories. This analysis shows 

that the estimation performance is strongly dependent on the target trajectory chosen in the 

simulations. Finally, in a recent works, the use of the Expectation-Maximization (EM) [12] 

algorithm is proposed to solve the sensor registration problem [13], [14], [15] and [16]. In 

[13], the authors apply the EM algorithm to estimate the target state vector when the 

measurement model is not completely known. Moreover, they apply the same algorithm to 

an absolute grid-locking problem considering only a subset of all the possible registration 

error, more precisely only the measurement bias errors. In [14], the authors deal with a data 

fusion problem; they track a cooperative vehicle using the measurements coming from 

dissimilar sensors (Differential GPS, Inertial Navigation System, radar and camera). Then, 

in order to have an unbiased parameter estimate, the EM algorithm is incorporated within 

the Kalman filter to give simultaneous state and registration parameters estimate. Finally, in 

[15] and in [16], the same approach was applied to a radar network system but, also in this 

case, only the measurement bias errors were considered. 

This Chapter concerns with the relative grid-locking problem. Unlike previous works, 

all the registration errors (i.e. measurement, attitude, and location errors) are taken into 

account in the data model. We propose two different estimation algorithm: a linear Least 

Squares (LS) algorithm and an Expectation-Maximization-based algorithm. To derive the 

linear LS algorithm [17], an alignment equation that involves all the errors is established to 

transform and align the data coming from the biased radar (radar #2) to the reference frame 

of the unbiased radar (radar #1). Afterwards, in order to obtain a linearized data model, a 
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first order Taylor expansion of the alignment equation is derived. Numerical results have 

shown that the LS estimator is not an efficient estimator for most of the registration biases. 

Such non-efficiency could be caused by the (strong) linearization implied by the linear LS 

algorithm. Then, in order to obtain a more efficient estimation algorithm, an Expectation-

Maximization (EM) algorithm [12] is derived. There are various motivations for the 

application of the EM algorithm to solve this problem. First of all, the EM algorithm is able 

to deal with estimation problems that involve an incomplete data set (as in our case). 

Second, the iteration of such algorithm converges to the maximum likelihood (ML) 

estimate under some regularity assumptions [18]. This means that the EM algorithm is, at 

least asymptotically, an efficient estimator. Third, by using the EM algorithm we can obtain 

at the same time the estimate of the registration bias errors and the estimate of the target 

state vector. Fourth, the EM algorithm can be extended to solve the absolute grid-locking 

problem.  

The two estimation algorithms are derived under the following assumptions: (1) one of 

the two radars is assumed unbiased, i.e. free of registration errors (relative grid-locking 

process); (2) the registration biases are time-invariant during the observation interval; (3) K 

synchronous pairs of measures coming from a common target are available; (4) the Earth 

model is the flat model.  

The performance of the proposed algorithms is compared with the so-called hybrid 

Cramér-Rao Lower bound (HCRLB) [19], [20], [21]. The need to use this performance 

bound instead of the conventional CRLB arises from the prohibitive analytical complexity 

in the derivation of the conventional one. Unlike [5] and [11], in the calculation of the 

HCRLB, no hypothesis of linearity of the model is made and all possible bias errors are 

taken into account. 

The last part of this Chapter deals with the identifiability problem [22], [23], [24] and 

its particular application to the estimate of the grid-locking errors. The identifiability 

problem concerns with the possibility of drawing inferences from observed data to an 

underlying theoretical structure. This is equivalent to saying that different structures may 

generate different probability distributions of the observable data in order to make the 

structures “observable”. First, the general identifiability problem is discussed and 

rigorously defined starting from fundamental works on this topic ([22],[23],[23]). Our 

attention is focused on the parametric models, i.e. such models in which every structure can 
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be represented by a vector in m . The parametric models are a wide class of models and, 

for sure, it is the most useful class in practical applications (see e.g. [25] and [26, Ch. 6]). 

However, in many practical applications, the data model is affected by additional random 

parameters whose estimation is not strictly required, the so-called nuisance parameters 

[27], [28]. In these cases, the classical definition of identifiability, which requires 

calculation of the Fisher Information Matrix (FIM) and of its rank, is often difficult or 

impossible to do. Instead, the Modified Fisher Information Matrix (MFIM) [20], [29], [30] 

can be computed.  

Here, we generalize the main results on the identifiability problem to take the presence 

of random nuisance parameters into account. We provide an alternative definition of 

identifiability, that can be always applied but that is weaker than the classical definition, 

and we investigate the relationships between the identifiability condition and the MFIM. 

Finally, we apply the obtained results on the identifiability in presence of nuisance 

parameters to the relative grid-locking problem. 

The rest of the Chapter is organized as follows. Section 3.2 provides a geometrical 

description of the scenario and introduces all the parameters involved in the relative grid-

locking process. The measurement models of both unbiased (radar #1) and biased (radar 

#2) sensors and the target state model are described in Sections 3.3 and 3.4, respectively. 

The LS estimator of the sensor registration errors is derived in Section 3.5 while the EM-

based algorithm is derived in Section 3.6. In Section 3.7, the HCRLB is evaluated. 

Numerical analysis of the accuracy of the two proposed estimators and the comparison with 

the HCRLB is reported in Section 3.8. In Section 3.9, the EM algorithm is generalized to 

the case of a multi-target scenario and the performance improvements with respect to the 

single target scenario are discussed. In Section 3.10, the general identifiability problem is 

analyzed. Moreover, this general framework is used to validate some intuitive result on the 

indentifiability of the grid-locking errors. 
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3.2 The relative grid-locking problem 

The geometry of the scenario for the relative grid-locking problem is shown in Fig. 1 

[17]. The main parameters are: 

 
1 1 1

( , , )S S Sx y z : radar #1 reference system. Radar #1 is assumed to be ideal, then its 

reference system coincides with the absolute system. 

 
2 2 2

( , , )S S Sx y z : radar #2 reference system. 

 rk: true target position vector in the absolute reference system. 

 tt: true position vector of radar #2 in the absolute reference system. 

 qk: true target position vector in radar #2 reference system. 

 

Figure 3.1 - Geometry of the relative grid-locking problem. 

 

From the geometry of the problem (Fig. 3.1), the following relation holds: 

 ( , , ) ,k k t   r R q t  (3.1) 

where R is 3x3 the rotation matrix of angles χ, ψ and ξ that aligns the radar #2 reference 

frame to the radar #1 reference frame. Matrix R is given by: 
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cos cos cos sin sin sin cos cos sin cos sin sin

, , sin cos sin sin sin cos cos sin sin cos cos sin .

sin cos sin cos cos

           

              

    

   
 

     
  

R

  (3.2) 

The angles χ, ψ and ξ are named roll, pitch and yaw, and represent the rotation angles 

around x, y and z axes, respectively.  

As pointed out before, there are three different types of biases: attitude, measurement, 

and location biases. In the rest of the paper, we use the following notation: 

1.  Attitude biases: [ ]T

t t t t  Θ ,  
T

m m m m  Θ , and 

[ ]Td d d d  Θ  denote the true attitude angles vector, the measured attitude 

angles vector and the attitude bias errors vector, respectively. 

2.  Measurement biases: [ ]k k k k T

t t t t  v , [ ]k k k k T

m m m m  v , and 

[ ]Td d d d  v  denote the true target position vector, the measured target 

position, and the measurement bias errors vector, respectively. These vectors are 

defined in a spherical coordinate reference system. 

3.  Location biases: , , ,[ ]T

t x t y t z tt t tt , , , ,[ ]T

m x m y m z mt t tt , and 

[ ]T

x y zd dt dt dtt  denote the true relative position vector, the measured relative 

position vector and the location bias errors vector. These vectors are defined in 

Cartesian coordinate reference system. 

The convention adopted here is that the biases must be added to the measured value to 

obtain the true value of the specific parameter. According to this, we get the following 

equations for attitude angles (3.3), relative location vector (3.4), and measurement model 

(3.5): 

 ,t m d Θ Θ Θ  (3.3) 

 ,t m d t t t  (3.4) 

 ,k k k

m t d  v v v n  (3.5) 
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where n
k
 is the measurement noise modelled by Gaussian random vector with zero-mean 

and diagonal covariance matrix Cn.  

It must be noted that if the rotation around z axis is applied first, the azimuth 

measurement bias dθ and the yaw attitude bias dξ cannot be distinguished and have to be 

merged into a single bias. This point will be extensively discussed in Section 3.10 in the 

general framework of the identifiability problem. Because of this geometrical coupling, we 

can define a single bias error as dζ=dθ+dξ. To take this into account, we define the new 

vectors [ ]Td d d d  Θ  and [ 0 ]Td d d v . The 8x1 unknown parameter 

vector is therefore given by: 

 .
T

x y zd d d d d dt dt dt       Φ  (3.6) 

It is worth stressing, that in this work vector r refers to the position vector in Cartesian 

coordinates, while v refers to the position in spherical coordinates. The geometrical 

convention for the Cartesian coordinates system is that y axis is aligned with the North, x 

axis with the East, and z points upwards. For the spherical coordinates we have that the 

azimuth θ is positive clockwise from the North (y axis) and the elevation   is positive 

counter-clockwise from the x-y plane. The spherical-to-Cartesian transformation is denoted 

by h(·) and its inverse transformation, i.e. Cartesian-to-spherical, by h
-1

(·). Thus, we can 

rewrite eq. (3.1) as follows: 

      1, 2,
,k k

t tt t
  h R Θ h tv v  (3.7) 

where 1,

k

tv  and 2,

k

tv  are the true target position vector, in spherical coordinates, defined in 

radar #1 and radar #2 reference systems, respectively. Equation (3.7) is the fundamental 

alignment equation, which allows us to align the data coming from radar #2 to radar #1, 

that is assumed to be unbiased. By making use of (3.3), (3.4), and (3.5), equation (3.7) can 

be rewritten as: 

        1, 1 2, 2
,k k k k

m mm m
d dd      h R Θ Θ h t tv n v v n  (3.8) 

where the registration errors appears explicitly.  

Equations (3.7) and (3.8) refer to a single observation. The goal here is to estimate 

vector parameter Φ, defined by (3.6), based on K observations of the two sensor 
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measurements,  1, 2,
1

,
K

k k

m m
k

v v . The number K observations is the number of target 

detections we use for sensor registration. 

 

3.3 The measurements model 

The true target position in the absolute reference frame and the true target position in 

radar #2 reference system associated to the kth observation are denoted by rk and qk, 

respectively. Since radar #1 is assumed to be unbiased, its reference system can be assumed 

as the absolute reference frame. Under this assumption, which characterizes the relative grid-

locking problem, the radar #1 measurement model is: 

  1

1, 1 ,k k

m k

 v h r n  (3.9) 

where the measurement noise vector n1
k
 is a zero-mean Gaussian distributed vector with 

covariance matrix 
2 2 2

1 ,1 ,1 ,1diag( , , )    C . To derive the radar #2 measurement model, 

recast equation (3.1) as a function of the bias errors as follows: 

    .k m k md d   r R Θ Θ q t t  (3.10) 

Solving (3.10) for qk yields: 

     ,T

k m k md d     q R Θ Θ r t t  (3.11) 

where we used the fact that R is a rotation matrix, so R
-1

=R
T
. Then, by applying the inverse 

coordinate transformation and by adding the measurement bias errors and the measurement 

noise, we get [17]: 

 
    

 

1

2, 2

2; ,

k T k

m m k m

k

k

d d d        



v h R Θ Θ r t t v n

μ r Φ n
 (3.12) 

where we used eq. (5), 2, 2, 2

k k k

m t d  v v v n , and the fact that 
1

2, ( )k

t k

v h q . The 

measurement noise n2
k
 is a zero-mean Gaussian distributed vector with covariance matrix 

2 2 2

2 ,2 ,2 ,2diag( , , )    C . The definition of ( ; )kμ r Φ  immediately derives from (3.12). 
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Summarizing, the pdf of the measurements coming from the two radars, conditioned to the 

unobservable target position, are given by: 

   1

1, 1
,,

k

m k k

v r h r C  (3.13) 

   2, 2, , .k

m k kv r μ r Φ C  (3.14) 

 

3.4 Target kinematic model 

 In literature, different models can be found to describe the target kinematic model 

via a state vector: in [15], for example, a multiple model, composed of the constant velocity 

model, the constant acceleration model and the coordinate turn model, is assumed. A 

different scenario was considered in [17], where it was assumed that independent detections 

coming from multiple targets were available for solving the grid-locking problem. Hence, 

the target position vector was assumed to be uniformly distributed in a given surveillance 

volume. Here, we choose for the target trajectory a simple constant velocity model [31]. 

Under this assumption, the discrete target state vector is defined as [ ]T T T

k k ks r v , where 

[ ]T

k k k kx y zr  and , , ,[ ]T

k x k y k z kv v vv  are the target position vector and the target 

velocity vector defined in a 3-dimensional Cartesian coordinate system. The stochastic 

discrete state model is: 

 
1 ,k k k  s Fs w  (3.15) 

where F is a block matrix defined as: 

 ,
T 

  
 

I I
F

0 I
 (3.16) 

where I is the 3x3 identity matrix and T is the sensor sampling interval. The process noise 

term wk represents the random acceleration vector, which is assumed to be a white 

Gaussian noise process with zero mean and covariance matrix given by: 

 
1 2

2 3

,w q
 

  
 

Γ Γ
Q

Γ Γ
 (3.17) 
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where q is a noise parameter and 
1Γ , 

2Γ  and 
3Γ  are three matrices defined as 3

1 3TΓ I , 

2

2 2TΓ I , 
3 TΓ I  respectively. 

 

3.5 The linear least squares (LS) algorithm 

In order to handle the nonlinear transformation of the measurement noise n, we adopt 

here the unbiased conversion function from spherical-to-Cartesian coordinates derived in 

[32]: 

  

1 1

1 1

1

cos sin

, , ,cos cos

sin

m m m

m m m m m m

m m

 

 



    

       

  

 

 



 
 

  
 
 

h  (3.18) 

where 
2 21 e 


   and 

2 21 e 


   and 2

 , 2

  are the variances of the measurement 

noise components for azimuth and elevation measurements. From (3.8), and taking into 

account the unbiased property of coordinate transformation (3.18), we have that: 

         1, 2,
0.k k

m mm m
E d dd     h R Θ Θ h t tv v v  (3.19) 

Therefore, (3.8) can be expressed as: 

        1, 2,
,k k

m mm m
d dd     h R Θ Θ h t tv v v   (3.20) 

where ε represents the un-modelled zero-mean error. The nonlinear least squares (NLLS) 

estimate of the unknown parameter vector Φ can be obtained by minimizing the objective 

function: 

        
2

1, 2,
2

( ) ,k k

m mm m
J d dd     Φ h R Θ Θ h t tv v v  (3.21) 

with respect to Φ, i.e. w.r.t. the dΘ, dv and dt. Due to the heavy computational complexity 

of the nonlinear minimization search, which makes the estimator hard to implement in real 

time in a radar system, we resort here to a linear least squares (LS) estimator. To this 

purpose, we need to linearize the alignment equation (3.20). 
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A first-order approximation is obtained by performing the first-order Taylor expansion 

around the unknown parameters vectors. It must be noted that, because of the geometrical 

coupling between the azimuth measurement bias and the yaw attitude bias, the Taylor 

expansion has to be taken around the vectors dΘ , dv , and dt . Each entry of the rotation 

matrix ( )m dR Θ Θ  can be linearized as [17]: 

       ,m m mij ijij

d d           
R Θ Θ R Θ R Θ Θ  (3.22) 

where the term [ ( )]m ij R Θ  is the gradient of the entry with indices i, j of the matrix R, 

evaluated at the measured attitude angles vector Θm. Through some matrix manipulation, 

the second term of the sum in (3.22), can be rewritten in a matrix form as: 

  
     

, 1,2,3
,

m m m

m i j
d d d d d  

  

   
            

R Θ R Θ R Θ
R R Θ Θ  (3.23) 

dR is a 3 3  matrix where  R ,  R  and  R  are the 3 3  matrices of the 

partial derivatives of R with respect to the roll, pitch and yaw angles evaluated at Θm. 

The second nonlinear term in (3.20) is the spherical-to-Cartesian coordinate 

transformation 2,( )k

m dh v v . As pointed out before, the second component of the 

measurement bias vectors dv, i.e. dθ, is merged with the yaw bias error dξ because of their 

geometrical coupling, then the linearization has to be made around dρ and dε, or, in vector 

notation, around dv . The first-order Taylor expansion for the coordinate transformation 

can be expressed as [17]: 

      2, 2, 2, ,k k k

m m m
i i i

d d       
     
h v v h v h v v  (3.24) 

where 2,[ ( )]k

m i h v  is the gradient of the ith component of the spherical-to-Cartesian 

unbiased coordinate transformation. The second term in the sum in (3.24) can be rewritten 

as: 
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2, 2,

2 2,

2, 2,

3 1 ,

k k

m mk k

m
i

k k

m m

d d d d

d

 
 

 


  
      
    

 

  
 
  
 

h v h v
r h v v

h v h v
0 v

 (3.25) 

where 1,2,3i  , 2,( )k

m  h v  and 2,( )k

m  h v  are 3 1  column vectors of partial 

derivatives of 2,( )k

mh v  with respect to the range ρ and the elevation ε, evaluated at the 

measured values 2,

k

m  and 2,

k

m . The term 
2

kdr  is then a 3 1  column vector. By inserting 

(3.22) and (3.24) in (3.20), we obtain the linearized alignment equation: 

          2, 21,
.k kk

m m mm
d d d      h R Θ R h v r t tv   (3.26) 

Then, through some algebra and neglecting the second-order term
6
, we get: 

          2, 2 2,1,
.k k kk

m m m m mm
d d d     h R Θ h v t R Θ r Rh v tv   (3.27) 

Eq. (3.27) can now be recast in a compact form, useful for the direct application of the 

linear LS algorithm. The first three terms of (3.27) can be combined to define the “new” 

measurement vector zk as: 

      2,1,
.kk

k m m mm
 z h R Θ h v tv  (3.28) 

Note that zk is a function of all the available measurements. Eq. (3.28) basically 

represents the alignment equation between the two radars that we would obtained by 

neglecting the bias errors correction. If we now apply the distributive property of matrix 

multiplication, the term 2,( )k

mdRh v  can be rewritten as: 

                                                 
6 It can be noted here that the direct linearization of the product between the rotation matrix and spherical-to-

Cartesian coordinate transformation, R(·)h(·), with respect to the corresponding registration biases as a whole 

yields the same result obtained with the linearization procedure shown in eqs. (3.22), (3.24), and (3.27). 
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2, 2,

2, 2, 2,

2, 2, 2,

2, 2, 2,, , , ,

m m mk k

m m

m m mk k k

m m m

m m mk k k

m m m

k k k

m m m m m m

d d d d

d d d

d

d  

  
  

  
  

  

   
       

   
       

   
      



R Θ R Θ R Θ
Rh v h v

R Θ R Θ R Θ
h v h v h v

R Θ R Θ R Θ
h v h v h v Θ

l Θ v l Θ v l Θ v Θ

 (3.29) 

where , , 2,( , )k

m m  l Θ v  are three 3 1  column vectors. Moreover, using eqs. (3.25) and 

(3.29), the last three terms of (3.27) can be rewritten in a compact matrix form as: 

    2 2, ,k k

m m kd d d R Θ r Rh v t H Φ  (3.30) 

where Φ is the parameter vector to be estimated, defined by (6), and matrix Hk is defined 

as: 

 

 
 

 
 

     
2, 2,

2, 2, 2, 3, , , ,

k k

m m k k k

k m m m m m m m m  
 

  
 
  
 

h v h v
H R Θ R Θ l Θ v l Θ v l Θ v I

  (3.31) 

where I3 is the 3x3 identity matrix. Finally, using (3.28) and (3.30), the linearized 

alignment equation of (3.27) can be expressed in a compact matrix form as: 

 , for 1, , .k k k K  z H Φ   (3.32) 

If we assume that K measurements are available, the LS problem can be recast in the 

following well-known form [17]: 

  
2

2
1

,
K

L k k

k

J


  z H ΦΦ  (3.33) 

where  LJ Φ  is the linearized objective function. The LS estimate ˆ
LSΦ  is obtained by 

minimizing  LJ Φ , where d
 ΦΦ  and dim( ) 8d  

Φ
Φ . By defining the vector z  and 

the matrix H  as: 

 
1 ,

T
T T T

k K
   z z z z  (3.34) 
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1 ,

T
T T T

k K
   H H H H  (3.35) 

we can express the LS estimate of ΦLS as: 

 
1 #ˆ ( ) ,T T

LS

 Φ H H H z H z  (3.36) 

where #
H  is the pseudo-inverse matrix of H . We assume here that H  is a full rank 

matrix.  

 

3.6 The Expectation-Maximization (EM) algorithm 

In this Section, we develop an algorithm based on the EM approach to solve the 

relative grid-locking problem. The algorithm jointly estimates all the registration errors 

(measurement, attitude and position errors) and is more efficient than the previously 

derived linear LS estimate. As discussed in the Introduction of this Chapter, to the authors’ 

knowledge, no other works on this topic provide a non-linear estimator (as the EM 

algorithm) for the solution of the general grid-locking problem. 

 

3.6.1 The Expectation-Maximization algorithm: a brief outline 

The EM algorithm is an iterative procedure to compute the ML estimate in presence of 

“incomplete data” [12], [18]. Let  and X be a sample space and a set of observed data 

sampled from . It is possible to define a family of probability density functions (pdf) on 

the observed data set X parameterized by a parameter vector Φ  as 

 { ; : }Xp X Φ Φ . The ML estimate of the parameter vector Φ is the vector ˆ
ML Φ  

that maximizes the so-called log-likelihood function (LLF) ( ) ln ( ; )X XL p XΦ Φ .  

In some practical estimation problems, we have not at our disposal the complete data 

set X for estimating the parameter vector, but we have only an “incomplete” observed data 

set. The term “incomplete data” in its general form implies the existence of two sample 

spaces  and  and a surjective map f from  to . The observed data set Y is a 

realization from . The corresponding set X in  is not observed directly, but only 
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indirectly through Y. More specifically, it is assumed there exists a mapping 

: ( )f X Y f X  and that X is known only to lie in ( )Y , the subset of  is 

determined by the intrinsic equation  ( )Y f X , where Y is the observed data set and X is 

the complete data set. By taking into account the family of pdf on the complete data X, we 

can derive the general expression of the pdf of the incomplete observed data Y 

parameterized by the parameter vector Φ  as 

    
 

; ;Y X
Y

p Y p X dX Φ Φ , (3.37) 

where ( ) { : ( ) }Y X f X Y  . Finally, an estimate of the parameter vector can be 

obtained by applying the ML algorithm to the pdf of the incomplete data ( ; )Yp Y Φ . 

However, this quantity is often intractable due to the mathematical difficulties involved in 

the closed-form evaluation of the integral on ( ; )Xp X Φ .  

The EM algorithm is useful in such cases when the pdf (parameterized by Φ) of the 

incomplete data set ( ; )Yp Y Φ  is not available in closed form while the closed-form 

expression of the pdf (parameterized by Φ) of the complete data set, i.e. ( ; )Xp X Φ , is 

known. Then, the basic idea behind the EM algorithm is: 

1. Estimate the LLF of the (unobservable) complete data set ( ) ln ( ; )X XL p XΦ Φ , 

given the observed data set Y and the current estimate of the parameter vector ˆ n
Φ : 

     ˆln ; , .n

X XL E p X YΦ Φ Φ  (3.38) 

2. Maximize the estimated LLF of the unobservable complete data set with respect to 

Φ in order to obtain a new estimate of the parameter vector: 

   1ˆ ˆarg max ;n n

xL




Φ

Φ Φ Φ . (3.39) 

The previous two steps can be reformulated in the form of a constrained optimization 

problem: 

1. E-step: compute the objective function: 

     ˆ ˆ; ln ; ,n n

XQ E p X YΦ Φ Φ Φ . (3.40) 
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2. M-step: choose 1ˆ n
Φ  to be any value in   that maximizes ˆ( ; )nQ Φ Φ , i.e.: 

   1ˆ ˆarg max ;
n nQ




Φ

Φ Φ Φ . (3.41) 

It can be proved (see e.g. [12], [18]) that, under some regularity assumptions, the 

iterations of the EM algorithm produce an estimate of Φ that converges to the value that 

maximizes the LLF of the incomplete data, i.e. ( ) ln ( ; )Y YL p YΦ Φ . 

 

3.6.2 Application of the EM algorithm to the relative grid-

locking problem 

To apply the EM algorithm to the estimate of the parameter vector Φ, first we have to 

define the set of complete data X and the set of incomplete data Y. To this purpose, let us 

define three sets of K elements: 1 1, 1{ }k K

m kV  v , 2 2, 1{ }k K

m kV  v , and 
1{ }K

k kS  s . The 

complete data set X is composed by all the measurements coming from radars #1 and #2 

and all the target state vectors, i.e. 
1 2{ }X V V S . The incomplete data set Y is 

composed only by the measurements coming from radars #1 and #2, i.e. 1 2{ }Y V V . In 

fact, the target state vector S is not directly observable, but it can be estimated through the 

radar measurements. 

The EM algorithm consists on iterating the E-step and the M-step until convergence. 

To perform the E-step, we have to evaluate the objective function ˆ( ; )nQ Φ Φ  defined in eq. 

(3.40). This requires first the evaluation of the pdf of the complete data X, ( ; )Xp X Φ . 

Starting from eqs. (3.9), (3.12) and (3.15), we have: 

 

   

     

     

1 2

2 1

,

1 2

2 1

; , ;

; ;

; ,

X S Y

SV S V S

SV S V S

p X p S Y

p V S p V S p S

p V S p V S p S







Φ Φ

Φ Φ

Φ

 (3.42) 

where the 2nd equality derives from the fact that the measurement vectors are independent 

conditionally to the state vector S. The last equality follows from the fact that the 
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measurements of the radar #1 do not depend on the parameter vector Φ to be estimated, 

since they have been assumed unbiased.  

 To evaluate the term pS(S) we have from eq. (3.15) that the joint pdf of the K target 

state vectors is given by the product: 

      
1 1

1 1

2

,
k k

K

S k k

k

p S p p






 s s s
s s s  (3.43) 

where 
1 0( , )ws μ Q  and 1 1( , )k k k w s s Fs Q . From eq. (3.13), 

1
1( )

V S
p V S  can be 

rewritten as: 

    
1 1,

1 1,

1

,k
m k

K
k

m kV S
k

p V S p


 v s
v s  (3.44) 

where 1
1, 1( ( ), )k

m k k


v s h s C  and 
1( ) h  is the Cartesian-to-spherical coordinate 

transformation of the first three components of the target state vector sk, i.e. 

1 1( ) ( )k k

 h s h r  [17]. Finally, from eq. (3.14), the term 
2

2( ; )
V S

p V S Φ  can be evaluated 

as: 

    
2 2,

2 2,

1

; ; ,k
m k

K
k

m kV S
k

p V S p


 v s
Φ v s Φ  (3.45) 

where 2, 2( ( , ), )k

m k kv s μ s Φ C  and ( , ) ( , )k kμ s Φ μ r Φ . Through eqs. (3.43), (3.44), and 

(3.45), the logarithm of the pdf of the complete data X can be evaluated, ignoring constants, 

as ([14], [12], [16]): 

 

       

   

   

   

2 1
2 1

1

2, 2 2,

1

1 1 1

1, 1 1,

1

1

1 1

2

ln ; ln ; ln ln

1
, ,

2

1

2

1
.

2

X SV S V S

K
T

k k

m k m k

k

K
T

k k

m k m k

k

K
T

k k w k k

k

p X p V S p V S p S

const





  





 



  

         

        

   







Φ Φ

v μ s Φ C v μ s Φ

v h s C v h s

s Fs Q s Fs

 (3.46) 

It can be noted that only the first term in eq. (3.46) depends on Φ. Hence, for this reason all 

the other terms can be neglected. Using the property of the trace operator and by defining 

αk as: 
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  2, , ,k

k m k α v μ s Φ  (3.47) 

eq. (3.46) can be rewritten as: 

   1

2

1

1
ln ; tr .

2

K
T

X k k

k

p X const



 
   

 
Φ C α α  (3.48) 

We can now perform the E-step of the EM algorithm by evaluating the objective function 

ˆ( ; )nQ Φ Φ , i.e. the conditional expectation of the LLF of the complete data, ln ( ; )Xp X Φ , 

given the incomplete data set Y and the current estimate of the parameter vector ˆ n
Φ : 

    1

2 1 2

1

1ˆ ˆ; tr , ; .
2

K
n T n

k k

k

Q E V V



 
   

 
Φ Φ C α α Φ  (3.49) 

First, we define, using the classical notation, the conditional mean (CM) and the conditional 

error covariance matrix as: 

  1 2
ˆˆ , ; ,n n

kk K
E V Vs s Φ  (3.50) 

  1 2
ˆˆ ˆ( )( ) , ; .n n n T n

k kk K k K k K
E V V  P s s s s Φ  (3.51) 

A recursive procedure to evaluate terms ˆn

k K
s  and 

n

k K
P  is provided in [33]. To evaluate 

explicitly the term T

k kα α , we assume that the function ( , )kμ s Φ  is a differentiable function 

with respect to ks . Then, it can be approximated by the first-order Taylor series expansion 

as follows:  

       ˆ ˆ,, ,
n T n

k Kk k k k K
  s Φμ s Φ μ Μ Φ s s  (3.52) 

where 
ˆ

( ) ( , ) n
k k K

k k k 
  

s s
M Φ μ s Φ s . Analytical calculation of matrix ( )kM Φ  is 

addressed in Appendix C. It can be noted that a similar approach was used in [14], [15], and 

[16]. Using the linearized expression in eq. (3.52), the term T

k kα α  can be explicitly 

evaluated as: 
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2, 2,

2,

2,

, ,

ˆ ˆ,

ˆ ˆ,

ˆ ˆ ,

T
T k k

k k m k m k

nk T n

k Km k k k K

T
nk T n

k Km k k k K

T
T T n n

k k k k k k kk K k K

  

    

   

     

α α v μ s Φ v μ s Φ

s Φv μ Μ Φ s s

s Φv μ Μ Φ s s

W Φ V Φ V Φ Μ Φ s s s s Μ Φ

 (3.53) 

where: 

        2, 2,
ˆ ˆ, , ,

T
n nk k

k K k Kk m m s Φ s ΦW Φ v μ v μ  (3.54) 

        2,
ˆ ˆ, .

T
nk k n

k Kk m kk K
 s ΦV Φ v μ s s Μ Φ  (3.55) 

 The conditional expectation 
1 2

ˆ{ ( ) , ; }T n

k kE V Vα α Φ  can be evaluated as: 

        1 2
ˆ( ) , ; ,T n T n

k k k k kk K
E V V  α α Φ W Φ Μ Φ P Μ Φ  (3.56) 

where we used the fact that 
1 2

ˆ{ ( ) , ; } 0n

kE V V V Φ Φ . Finally, collecting previous results, 

we get: 

        1

2

1

1ˆ; tr .
2

K
n T n

k k kk K
k

Q const



 
    

 
Φ Φ C W Φ Μ Φ P Μ Φ  (3.57) 

 For sake of clarity, we explicitly rewrite ˆ( ; )nQ Φ Φ  as: 

 

       

   

1

2 2, 2,

1

1

2

1

1ˆ ˆ ˆ, ,; tr
2

1
tr ,

2

K T
n nn k k

k K k Km m

k

K
T n

k kk K
k

Q 







 
    

 

 
  

 





s Φ s ΦΦ Φ C v μ v μ

C Μ Φ P Μ Φ

 (3.58) 

where ˆn

k K
s  and 

n

k K
P  are the smoothed state vector estimate and the smoothed error 

covariance matrix of eqs. (3.50) and (3.51), respectively.  

The M-step can be now performed as: 

   1ˆ ˆarg max .;
n nQ




Φ

Φ Φ Φ  (3.59) 
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A closed-form solution of the optimization problem in (3.59) is infeasible due to the 

analytical complexity of the objective function ˆ( ; )nQ Φ Φ . The problem is solved 

numerically by resorting to a gradient-based algorithm. More specifically, the Sequential 

Quadratic Programming (SQP) method [34] [35] was used. It requires that the objective 

and constraint functions are both continuous and have continuous first derivatives. It is easy 

to shown that ˆ( ; )nQ Φ Φ  satisfies both these conditions. The steps of the estimator of the 

parameter vector Φ based on the EM algorithm are outlined in Table 3.1 and in Fig. 3.2. 
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Estimator of the parameter vector Φ based on the EM algorithm  

1) Initialization 

The EM algorithm is initialized using the linear Least Squares Estimator (LSE): 

  0

1 2
ˆ LSE , .V VΦ  

2) Iterative algorithm 

while 
1ˆ ˆ| ( ) ( ) |n nQ Q   Φ Φ , where  is the tolerance, 

            E-Step: 

 for k = 1 to K  (where K is the maximum number of available observations) 

 estimate the k
th

 smoothed target state vector and the relative smoothed 

error covariance matrix using the K measurements coming from both 

radars #1 and #2, V1 and V2 and the current estimate of the vector 

parameters ˆ n
Φ : 

    1 2 1 2
ˆ ˆˆ ˆ ˆ, ; , ( )( ) , ; .n k n n n n T n

k kk K k K k K k K
E V V E V V   s s Φ P s s s s Φ  

 end for 

            M-Step 

            Calculate numerically the maximum of ˆ( ; )nQ Φ Φ  defined in eq. (3.58): 

   1ˆ ˆarg max .;
n nQ




Φ

Φ Φ Φ  

end while 

Table 3.1 – Summary of the proposed EM algorithm. 
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Figure 3.2 - Flow chart of the proposed EM algorithm for grid-locking in a netted radar system. 

 

3.7 Performance bound 

It is well-known that the Cramér-Rao lower bound (CRLB) provides a lower bound on the 

accuracy achievable by any unbiased estimator of the signal parameter vector Φ using a set 

of measurements z [28]. However, calculation of the CRLB can be infeasible in some cases 

where the vector Ψ of unknown parameters is composed of a deterministic vector Φ and of 

a random vector w of nuisance parameters, because of the difficulty of calculating the 

marginal pdf ( ; )p
z

z Φ , where dependency on w has been averaged out. In these cases, the 

hybrid CRLB (HCRLB) may be useful, even if it is generally less tight than the CRLB [19], 

[20], [21]. The HCRLB is obtained by using the joint pdf , ( , ; )p
z w

z w Φ . The hybrid FIM 

(HFIM) is defined as: 

      
2

,, ln ,, ;H ij
i j

pE
  

   
   

z wz w
I z w ΦΦ  (3.60) 
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where [ ]T T TΨ Φ w  is the hybrid parameter vector. The HCRLB is defined as the 

inverse of the HFIM, i.e. 1HCRLB( ) [ ( )]i H ii

  I Φ  and inequality  2 1ˆ( ) ( )HE  Ψ Ψ I Φ  

holds true for any wide-sense unbiased estimator Ψ̂ .
7
  

 The relative grid-locking problem can be seen as an hybrid estimation problem 

where the observations are the measurements from radar #1 and radar #2, V1 and V2, 

respectively; while the hybrid parameter vector is 
1[ ]T T T T

KΨ Φ s s , where Φ is the 

deterministic parameter vector of the relative grid-locking errors and 
1{ , , }T T

Ks s  are the 

random target state vectors for the K observations. The HFIM for this estimation problem 

can be expressed as: 

 

 
 

      

1 2

1 2

2

1 2

, ,

2

1 2

, ,

ln , , ;

ln ;
.

H V V Sij
i j

V V S

i j

p V V S
E

p V S p V S p S
E

  
         

  
   

   

Φ
I Φ

Φ
 (3.61) 

From eq. (3.44), the logarithm of the conditional pdf of the measurements of radar #1 

can be expressed as: 

    1 1,

1

ln ln ,
K

k

m k

k

p V S p


 v s  (3.62) 

where 1

1, 1( ( ), )k

m k k


v s h s C . Similarly, from eq. (3.45), the logarithm of the 

conditional pdf of the measurements of radar #2 is: 

    2 2,

1

ln ; ln ; ,
K

k

m k

k

p V S p


Φ v s Φ  (3.63) 

where 2, 2( ( , ), )k

m k kv s μ s Φ C . Finally, from eq. (3.43), the logarithm of the joint pdf of 

all the target state vectors is: 

                                                 
7 A wide-sense unbiased estimator Ψ̂  of the hybrid parameter vector [ ]T T TΨ Φ w , where w is the random 

vector of nuisance parameters, must satisfy  ,
ˆE  z w Ψ Ψ 0 . A strict-sense unbiased estimator Ψ̂  must satisfy 

 ˆ( )E  z Ψ Ψ w 0  for any realization of w. 
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      1 1

2

ln ln ln ,
K

k k

k

p S p p 



 s s s  (3.64) 

where 
1 0( , )ws μ Q  and 1 1( , )k k k w s s Fs Q .  

 It can be noted that the logarithm of the joint pdf of the target state vectors can 

always be calculated with the assumed model of eq. (3), but it is not always possible in 

general. More precisely, lnp(S) cannot be evaluated for all the joint pdfs that are compact 

support distributions. For example, in [17], where a uniform distribution in the volume 

under search was adopted for the target position vectors, lnp(S) could not be obtained and a 

different approach was adopted to derive a performance bound.  

 Using the eqs. (3.62), (3.63), and (3.64), the HFIM can be rewritten as: 

     ,H S H Sij
E  I Φ I Ψ  (3.65) 

where the conditional HFIM is defined as: 

 

 
 

     

1 2

2

1 2

,

1 1

ln , , ;

; ,

H S V V S
ij

i j

K K

ij k ij k ij k

k k

p V V S
E

l g u
 

            

   

Φ
I Ψ

s s Φ s

 (3.66) 

where: 

  
 

1,

2

1,ln
,k

m k

k

m k

ij k

i j

p
l E

  
  

   
v s

v s
s  (3.67) 

  
 

2,

2

2,ln ;
; ,k

m k

k

m k

ij k

i j

p
g E

  
  

   
v s

v s Φ
s Φ  (3.68) 

  
   22

11

2

lnln
.

K
k k

ij k

ki j i j

pp
u






 

   


s ss
s  (3.69) 

It is possible to show through direct calculation of eq. (3.69) that the function ( )ij ku s  

represents the entries of a block matrix U that can be expressed as: 
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6 6

1

6 6

,

d d d d

T

T

d d w

 





 

 
 
 
 
 
 
 
 

Φ Φ Φ Φ

Φ Φ

0 0

Ω Λ 0

U Λ Ω

Λ

0 0 Λ Q

 (3.70) 

where: 

 1,T

w

 Λ F Q  (3.71) 

 1 1 .T

w w

  Ω Q F Q F  (3.72) 

 The term ( )ij kl s  and ( ; )ij kg s Φ  can be evaluated as [28]: 

  
   11

1

1 ,

T

kk

ij k

ji

l




   

         

h sh s
s C  (3.73) 

  
   1

2

,,
; .

T

kk

ij k

ji

g 
  

        

μ s Φμ s Φ
s Φ C  (3.74) 

The details of the calculation of these terms are reported in Appendix D. Matrix 

[ ( )] ( )k ij ij klL s s  can be rewritten in a block matrix form as: 

  

6 6

6

6 6 6

d d d d

d

k

k

d

  



 

 
 
 

  
 
 
 

Φ Φ Φ Φ

Φ

Φ

0 0 0

0
L s

N

0 0

 (3.75) 

where the matrix Nk is given by: 

      , , , , 6 .6 5k ij ij kl i j d d kk   Φ Φ
N s  (3.76) 

Similarly, matrix [ ( ; )] ( ; )k ij ij kgG s Φ s Φ  can be expressed as: 

  

   

 

     

6 61

6 1

6 6 6

; ,

k d k dk K k

dk

k T

k k

dK k K k K k

  



   

 
 
 

  
 
 
 

Φ Φ

Φ

Φ

F 0 B 0

0
G s Φ

B M

0 0

 (3.77) 
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where matrices Fk, Bk and Mk are given by: 

    ; , , 1, , ,k ij ij kg i j d 
Φ

F s Φ  (3.78) 

      ; , 1, , ; , , 6 ,6 5k ij ij kg i d j d d kk    Φ Φ Φ
B s Φ  (3.79) 

      ; , , , , 6 .6 5k ij ij kg i j d d kk   Φ Φ
M s Φ  (3.80) 

 By collecting the previous results, the conditional HFIM of eq. (3.66) can be 

expressed in block matrix form as: 

  

1 2

1

1 1 6 6

2 2

6 6

,

K

k K

k

T

T TH S

T T

K







 
 
 
 

  
 
 
  
 

F B B B

B Π Λ 0
I Ψ

B Λ Π

Λ

B 0 Λ Ξ

 (3.81) 

where: 

 , 1,2, , 1,k k k i K    Π N M Ω  (3.82) 

 1.K K w

  Ξ N M Q  (3.83) 

The mean value with respect to S in eq. (3.65) is evaluated through independent Monte 

Carlo trials. In particular, in our numerical analysis we use 100 Monte Carlo trials.  

 

3.8 Numerical analysis 

In this Section, we evaluate the performance of the proposed EM and LS algorithms 

for a single target scenario. The multi-target scenario is analyzed in the next Section. The 

comparison is carried out in terms of root mean square error (RMSE) as function of the 

standard deviation (std) of the measurement noise of radars #1 and #2, and of the number of 

observations K. Moreover, the RMSE is compared to the HCRLB to assess the efficiency of 

the proposed algorithm. Tracking performance are assessed by comparing the std of the 

smoothing filter output to the HCRLB. Radar #1 is located in the centre of the absolute 

reference system, while radar #2 is located in tt=(2,2,2)·10
3
 m, so the distance between the 
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two radars is about 6.4641 km (see Fig. 2). The target is supposed to follow the discrete 

target state model in eq. (3.15) with an initial target state vector given by s0=[r0
T
 v0

T
]

T
 

where the initial position vector is chosen to be r0=[1000 1000 0]
T
 m while the initial 

velocity vector is v0=[7.63 0 0]
T 

m/s. The power spectral density (PSD) for the three 

components of the noise vector is equal to N0,x=N0,y=N0,z=q=0.01 m
2
/s

3
, where q is a 

introduced in eq. (3.17). In all the simulations the following parameters have been used: 

 The actual bias errors values are: i) measurement biases: dρ=-10m, dθ=dε=-

0.0573°; ii) attitude biases: dχ=dψ=-0.0573° and dξ=-0.1146°; iii) position biases: 

dtx=dty=dtz=-30 m. 

 Scan time of both radars: T=1 sec. 

 The tolerance is δ=10
-6

, i.e. absolute value of the difference between the objective 

function evaluated at the current estimate of the parameter vector and the objective 

function evaluated at the previous estimate, 
1ˆ ˆ| ( ) ( ) |n nQ Q   Φ Φ . 

 The number of independent Monte Carlo trials is: #MC=50. 

 Searching volume Ω for the optimization algorithm, i.e. the region of dΦ  which 

the solution belongs to. We describe this volume whit the following set of 

inequalities:   a Φ a ,where.a=(-100m, -5.7296°, -5.7296°,-5.7296°,-5.7296°, -

100m, -100m, -100m). 

The scenario under investigation is shown in Fig. 3.3 where the target track is a 

realization of the discrete state model in eq. (3.15).  

In Figs. 3.4-3.11 the RMSE of the proposed EM algorithm and of the LS algorithm is 

plotted as a function of the radar measurements accuracy. More precisely, by defining with 

σρ,i, σθ,i and σε,i, i=1,2 the accuracies of the radars #1 and #2, we assume that: i) σρ,1=σρ,2=σρ 

and ii) σθ,i=σε,i=σθ, i=1,2. The values of σρ and σθ are supposed to vary between 1 m and 100 

m and between 0.05° and 0.55°, respectively. The number of observations is K = 200. The 

HCRLB is also plotted to evaluate the efficiency of the proposed estimator.  

 Figs. 3.12-3.27 show the Error mean value and RMSE of the EM algorithm and of 

the LS algorithm, and the HCRLB as a function of the discrete time k, with 1 k K  , K 

being the number of measurements of radars #1 and #2. In these simulations, radars #1 and 

#2 are characterized by the following accuracies: i) σρ,1=σρ,2=50 m; ii) σθ,i=σε,i=0.3°, i=1,2. 
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The number of available observations varies from 200 to 400. Such range has been chosen 

in order to avoid the so-called “catastrophic errors”, due to the threshold effect (see e.g. [p. 

170, 28]). The catastrophic errors occur for all the non-linear estimators and depend on both 

the number of observations and the level of the noise power (or equivalently on the signal-

to-noise power ratio). In our case, if the radar accuracy is too low or if K is too small, the 

estimates of ˆn

k K
s  and n

k K
P  (needed to calculate the objective function in eq. (3.58)) could 

not be sufficiently accurate. Such low estimation accuracy could cause a wrong progress of 

the objective function and consequently a wrong localization of the maximum.  

In Figs. 3.28 and 3.29 the accuracy on the estimate of the x component of the target 

position and velocity vectors is shown for radar accuracies σρ=50 m, σθ=σε=0.3° and for 

K=400. The estimate of the target state is carried out by using the smoothing algorithm 

described in [33].  

From the numerical results we derived, most of which are not reported here for brevity, 

the following considerations can be drawn: 

 The EM algorithm generally outperforms the LS algorithm, mainly for low radar 

accuracy. For the estimate of some parameters, e.g. the pitch error and the x 

component of the location error (see Figs. 3.7 and 3.9), the two algorithms have 

pretty close performance.  

 Comparing the RMSE of the EM and LS algorithms as a function of the number K 

of observations, it can be noted that, generally, the EM algorithm outperforms the 

LS, even if for some set of parameter values (all the attitude errors and the x and y 

components of the location error) their performance is pretty close.  

 To avoid catastrophic errors the EM algorithm requires an enough large number of 

observations. Through simulations, it is possible to infer that the minimum number 

is about K=200 observations (for radar accuracies of σρ=50 m, σθ=σε=0.3°) . 

 The error mean value of the EM estimates decreases by increasing the number of 

iterations. 

 The non-linear EM estimate of the deterministic parameter vector Φ is generally 

not tight to the HCRLB, whereas, the EM estimate of the random target state 
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vector is generally tight to the HCRLB. However, it must be noted that, in general, 

also the HCRLB for the deterministic parameter vector estimate is not tight [19]. 

 

 

Figure 3.3 – Geometry of the single target scenario. 
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Figure 3.4 – RMSE for the estimate of the range error as function of the noise std. 
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Figure 3.5 – RMSE for the estimate of the elevation error as function of the noise std. 
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Figure 3.6 – RMSE of the roll bias error as function of the noise std. 
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Figure 3.7 – RMSE of the pitch error as function of the noise std. 
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Figure 3.8 – RMSE of the yaw + azimuth error as function of the noise std. 
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Figure 3.9 – RMSE for the estimate of the x component of the position bias error as function of the noise std. 
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Figure 3.10 – RMSE for the estimate of the x component of the position bias error as function of the noise std. 
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Figure 3.11 – RMSE for the estimate of the x component of the position bias error as function of the noise std. 
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Figure 3.12 – Error mean value for the estimate of the range error. 
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Figure 3.13 – RMSE for the estimate of the range error. 
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Figure 3.14 – Error mean value for the estimate of the elevation error. 
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Figure 3.15 – RMSE for the estimate of the elevation error. 
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Figure 3.16 – Error mean value of the roll bias error. 
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Figure 3.17 – RMSE of the roll bias error. 
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Figure 3.18 – Error mean value of the pitch error. 
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Figure 3.19 – RMSE of the pitch error. 
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Figure 3.20 – Error mean value of the yaw+azimuth error. 
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Figure 3.21 – RMSE of the yaw+azimuth error. 
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Figure 3.22 – Error mean value for the estimate of the x component of the position bias error. 
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Figure 3.23 – RMSE for the estimate of the x component of the position bias error. 
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Figure 3.24 – Error mean value for the estimate of the x component of the position bias error. 
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Figure 3.25 – RMSE for the estimate of the x component of the position bias error. 
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Figure 3.26 – Error mean value for the estimate of the x component of the position bias error. 

 



105 
 

0

50

100

150

200 250 300 350 400

LS

EM (1 iteration)

EM (5 iterations)

EM (10 iterations)

HCRLB

R
M

S
E

 f
o
r 

d
t z 

[m
]

Discrete time k
 

Figure 3.27 – RMSE for the estimate of the x component of the position bias error. 
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Figure 3.28 – Smoothing performance for the estimate of the x component of the target position vector: error std. 
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Figure 3.29 – Smoothing performance for the estimate of the x component of the target velocity vector: error std. 

 

3.9 Generalization to the multi-target scenario 

In this section, we generalize the proposed EM algorithm to a multi-target scenario. In 

the following, we assume to have Nt
 
targets in the considered surveillance area [36]. 

Moreover, we assume that the data association process has been done without errors, i.e. we 

are able to associate exactly each radar measurement to the corresponding target. Under 

these assumptions, the set of complete data X  and the set of incomplete data Y  can be 

defined as: 

    1 2 1 2, ,X V V S Y V V   (3.84) 

where: 

      1 1 2 21 1 1
, , ,

t t tN N N
l l l

l l l
V V V V S S

  
    (3.85) 

and 

      , ,

1 1, 2 2,1 1 1
, , ,

K K K
l k l l k l l l

m m kk k k
V V S

  
  v v s  (3.86) 
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This means that, for every scan time kT, k=1,...,K, we have at our disposal Nt measurements 

coming from radar #1 and radar #2, generated by Nt different targets. Each target is 

assumed to follow the linear stochastic model given in eq. (3.15): 

 
1 ,l l l

k k k  s Fs w  (3.87) 

where, as before, the index l defines the particular target. It is important to note that the 

discrete process noise vector wk
l
 as function of the index l is an independent, zero-mean, 

Gaussian distributed, random vector. To apply the EM algorithm to this multi-target 

scenario, first we have to calculate the joint pdf of the complete data X ,  ;p X Φ . 

Following the procedure described in Section 5, we have: 

 
   

     2 1

; , ;

; .

p X p S Y

p V S p V S p S





Φ Φ

Φ
 (3.88) 

 In the following, we evaluate the terms ( )
S

p S , 
1

1( )
V S

p V S  and 
2

2( ; )
V S

p V S Φ . 

We start with ( )
S

p S : 

        
1 1

1 1

1 1 2

,
t t

l l l l
k k

N N K
l l l l

k kS
l l k

p S p S p p




  

   s s s
s s s  (3.89) 

where: 

  1 0 , ,l l l

ws μ Q  (3.90) 

  1 1, .l l l l

k k k w s s Fs Q  (3.91) 

The term 
1

1( )
V S

p V S  can be evaluated as follows: 

      ,
1 1,

,

1 1 1,

1 1 1

,
t t

l l k l l
km

N N K
l l k l l

m kV S
l l k

p V S p V S p
  

   v s
v s  (3.92) 

where: 

   , 1

1, 1
.,k l l l

m k k

v s h s C  (3.93) 

 Finally, the term  2 ;p V S Φ  can be evaluated as: 
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      ,
2 2,

,

2 2 2,

1 1 1

; ; ; ,
t t

l l k l l
km

N N K
l l k l l

m kV S
l l k

p V S p V S p
  

   v s
Φ Φ v s Φ  (3.94) 

where: 

   ,

2, 2 .,,
k l l l

m k k
v s μ Cs Φ  (3.95) 

 Hence, the logarithm of the pdf of the complete data X  can be expressed, ignoring 

constant terms, as: 

      , 1 ,

2, 2 2,

1 1

1
ln ; ., ,

2

tN K
T

k l k ll l
m mk kX

l k

p X const

 

          Φ v μ C v μs Φ s Φ  (3.96) 

 Now, by defining the vector  ,

2, ,
l k l l
k m k
 α v μ s Φ , the objective function 

ˆ( ; )nQ Φ Φ , i.e. the conditional expectation of ln ( ; )
X

p X Φ  (neglecting constant terms w.r.t 

Φ), given the incomplete data set Y and the current estimate of the parameters vector ˆ n
Φ , 

can be evaluated as: 

      1

2 1 2

1 1 1

1ˆ ˆ ˆ; tr ( ) , ; ; ,
2

t tN NK
n l l T l l n l n

k k

l k l

Q E V V Q

  

 
   

 
  Φ Φ C α α Φ Φ Φ  (3.97) 

where ˆ( ; ), 1, ,l n

tQ l NΦ Φ , are the objective functions for each target that can be 

evaluated exactly as described in Section 5. Eq. (3.97) shows that the objective function 

obtained by applying the EM algorithm to the multi-target scenario is simply the sum of the 

objective functions obtained for the single targets. 

 

3.9.1 Performance bound for the multi-target scenario 

In this section, we generalize the HCRLB, described in Section 3.7, to the multi-target 

scenario. The hybrid parameter vector is: 

 1 1

1 1, ( ) , , ( ) , , ( ) , , ( ) .t t
T

N NT T T T T

K K
   Ψ Φ s s s s  (3.98) 

Then, following the same procedure described in Section 6, the HFIM for this hybrid 

parameter estimation problem can be expressed as: 
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1 2

1 2

2

1 2

, ,

2

1 2

, ,

ln , , ;

ln ;
,

H V V S
ij

i j

V V S

i j

p V V S
E

p V S p V S p S
E

            

 
 

   
  

 

Φ
I Ψ

Φ
 (3.99) 

From eq. (3.92), the logarithm of the conditional pdf of the measurements coming from 

radar#1 can be expressed as: 

    ,
1,

,

1 1,

1 1

ln ln ,
t

k l l
km

N K
k l l

m k

l k

p V S p
 

 v s
v s  (3.100) 

where , 1

1, 1( ( ), )k l l l

m k k


v s h s C . Similarly, from eq. (3.94), the logarithm of the 

conditional pdf of the measurements of radar #2 is: 

    ,
2,

,

2 2,

1 1

ln ; ln ; ,
t

k l l
km

N K
k l l

m k

l k

p V S p
 

 v s
Φ v s Φ  (3.101) 

where ,

2, 2( ( , ), )k l l l

m k kv s μ s Φ C . Finally, from eq. (3.89), the logarithm of the joint pdf of 

all the target state vectors is given by: 

      
1

1 1

1 1 2

ln ln ln ,
t t

l l
k k

N N K
l l l

k k

l l k

p S p p




  

   s s
s s s  (3.102) 

where 
1 0( , )l l l

ws μ Q  and 
1 1( , )l l l l

k k k w s s Fs Q . As before, the HFIM can be rewritten 

as: 

     ,H S H Sij
E  I Φ I Ψ  (3.103) 

where the conditional HFIM is defined as: 

 

 
 

     

1 2

2

1 2
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1 1 1
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H S V V S
ij i j

N K K
l l l l l l

ij k ij k ij k

l k k

p V V S
E

l g u
  

             

 
   

 
  

Φ
I Ψ

s s Φ s

 (3.104) 

and 
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It can be noted that eqs. (3.105), (3.106), and (3.107) are exactly the same as eqs. 

(3.67), (3.68), and (3.69). Therefore, they can be evaluated as described in Section 3.7 and 

in Appendix D. In the following, we give the block-matrix form of the conditional HFIM 

defined in eq. (3.104): 
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where: 

  1 ,l l l
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and 

 1 1( ) , , ( ) .l T l l l l l l l l l

w k k k K K w

        Λ F Q Π N M Ω Ξ N M Q  (3.111) 

Finally, it must be noted that matrices l

kF , l

kN , l

kM , l

kB  and l
Ω  are defined, for a 

given l, in Section 3.7 and the explicit calculation can be found in Appendix D. Also in this 

case, the mean value w.r.t. S in eq. (3.103) is evaluated through independent Monte Carlo 
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trials. As we can see from the expression of the conditional HFIM in eq. (3.108), by 

increasing the number of targets, the information relative to the grid-locking parameters 

increases, too (provided that the association of the new detections to the plots has been 

done correctly!). The first top-left block matrix in fact represents the amount of information 

relative to the deterministic vector parameter Φ and it increases linearly with the number of 

the available target. 

 

3.9.2 Simulation results 

In this section, we show a comparison between the performance of the proposed EM 

algorithm and the LS algorithm for a multi-target scenario. The comparison is carried out in 

terms of root mean square error (RMSE) as function of the number of observations. For the 

sake of brevity, only the results relative to three bias errors (range bias, roll bias and the x 

component of the position bias) are reported here. Radar #1 is in the centre of the absolute 

reference system, while the position vector of radar #2 is tt=(2,2,2)∙10
3
 m (see Fig. 2). 

There are three targets which are supposed to follow the discrete target state model 

introduced in eq. (3.87) with an initial target state vector given by s0
l
=[(r0

l
)

T
 (u0

l
)

T
]

T
, l=1,2,3 

where: 

 Target #1: r0
1
=[1000 1000 0]

T 
, u0

1
=[7.63 0 0]

T
, 

 Target #2: r0
2
=[-1000 2000 0]

T 
, u0

2
=[3 7.63 0]

T
, 

 Target #3: r0
3
=[2000 -1500 0]

T 
, u0

3
=[8 2 0]

T
, 

The power spectral density (PSD) for each component of the continuous-time process 

noise vector is equal to N0,x=N0,y=N0,z=q
l
=0.01m

2
/s

3
, for l=1,2,3. The actual bias error values 

have been set as: i) measurement biases: dρ=-10m, dθ=dε=-0.0573°; ii) attitude biases: 

dχ=dψ=-0.0573° and dξ=-0.1146°; iii) position biases: dtx=dty=dtz=-30 m. Radars #1 and #2 

are characterized by the following accuracies: i) σρ,1=σρ,2=50 m; ii) σθ,i=σε,i=0.3°, i=1,2. 

Moreover, the probability of detection and false alarm are assumed to be PD=1 and PFA=0, 

respectively. The scan time of both radars is assumed equal to 1 sec. The target tracks 

plotted in Fig. 3.30 are three realizations of the discrete state model in eq. (3.87). The 

number of available observations varies from 200 to 400. 
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Figure 3.30 – Geometry of the multi-target scenario. 

 

Figs 3.31-3.33, show the RMSE of the LS algorithm and of the EM algorithm and the 

HCRLB as a function of the number of observations, i.e. the number K of the 

measurements from radars #1 and #2. As starting point of the EM algorithm we chose the 

LS estimate of the parameter vector Φ and the recursion is stopped after 10 iterations. The 

RMSE is evaluated using 200 independent Monte Carlo trials.  

As we can see from Figs 3.31-3.33, it can be noted that, the EM algorithm outperforms 

the LS algorithm. In Figs. 3.34–3.36, a comparison between the RMSE on the estimate of 

the registration errors for the single target scenario analyzed in [8] and for the multi-target 

scenario is shown. This comparison allows us to evaluate the performance improvement 

due to the increase of the number of the available targets. From Figs. 6-8 we get that an 

increase of the number of the available targets correspond to an estimation performance 

improvement. This behaviour is explained by taking into account the expression of the 

conditional HFIM in eq. (3.108): the amount of information about the parameter vector Φ 

grows linearly with the number of available targets. Finally, we observe that the EM 

estimator is not efficient (w.r.t. the HCRLB). However, the HCRLB for the deterministic 

parameter vector estimate is not always (asymptotically) tight [19].  
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Figure 3.31 – Comparison between the RMSE for the LS and EM estimate of the range error. 
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Figure 3.32 - Comparison between the RMSE for the LS and EM estimate for the estimate of the roll error. 
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Figure 3.33 - Comparison between the RMSE for the LS and EM estimate for the estimate of dtx. 
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Figure 3.34 – Comparison between the RMSE of the EM estimate of the range error in a single and in a multi-

target scenario. 
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Figure 3.35 - Comparison between the RMSE of the EM estimate of the roll error in a single and in a multi-target 

scenario. 
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Figure 3.36 - Comparison between the RMSE of the EM estimate of dtx in a single and in a multi-target scenario. 
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3.10 The identifiability problem 

As discussed in the Introduction, the last Section of this Chapter is dedicated to the 

identifiability problem. First, we provide a general description of the identifiability problem 

in its classical formulation. Then, we generalize the previous results to take into account the 

presence of random nuisance parameters. A different definition of identifiability is provided 

and its relationship with the classical one is investigated. Finally, we show that this general 

framework can be directly used to validate the intuitive result on the impossibility to 

estimate separately the azimuth and the yaw bias errors. 

 

3.10.1 General formulation of the identifiability problem 

3.10.1.A Some preliminary definitions 

 Let nx  be a n-dimensional random vector, representing the outcome of some 

random experiment, whose probability density function (pdf) is known to belong to a 

family . A structure T is a set of hypotheses which implies a unique pdf in  for x. 

Such pdf is indicated with ( ; )p T x
 
[22], [24]. The set of all the a priori possible 

structures is called a model and is denoted by . By definition, there exist a unique pdf 

associated with each structure in .  

Definition 1: Two structures T0 and T1 in  are said to be observationally equivalent if 

they imply the same pdf for the observable random vector x. The structure T0 is otherwise 

said to be identifiable if there is no other structure in  which is observationally 

equivalent. 

We assume that the pdf of the random vector x has a parametric representation , i.e. we 

assume that every structure T is described by an m-dimensional vector Φ and that the model 

is described by a set 
m . It is possible to associate with each Φ in Ω a continuous pdf 

 ;p x Φ  which is perfectly known except for the values of the parameter vector Φ. 

Definition 2: Two parameter vectors Φ0 and Φ1 (relative to two structures T0 and T1) are 

said to be observationally equivalent if    0 1; ;p px Φ x Φ  for all nx . Φ0 is 
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otherwise said to be identifiable if there is no other Φ in Ω which is observationally 

equivalent. 

Since the set of the structures is a subset of m  then it is possible to endow it with the 

same topological structure of m . This allows us to consider the concept of local 

identification: 

Definition 3: A parameter vector Φ0 is said to be locally identifiable is there exists an open 

neighborhood of Φ0 containing no other Φ in Ω which is observationally equivalent. 

To highlight the difference between the Definitions 2 and 3, in the following we 

indicate as global the identifiability in Definition 2 and as local the identifiability in 

Definition 3.  

Before providing a general identifiability criterion, in the following we enumerate 

some necessary assumptions [1]: 

Assumption 1: The structural parameter space Ω is an open subset of 
m . 

Assumption 2: The function ( ; )p x Φ  is a proper pdf for every Φ . In particular, 

( ; )p x Φ  is nonnegative, and the equation ( ; ) 1p d  x Φ x  holds for all Φ . 

Assumption 3: The set  of x values for which ( ; )p x Φ  is strictly positive is the same for 

all Φ . The set  is the sample space of the random vector x. 

Assumption 4: The function ( ; )p x Φ  is smooth in Φ . Specifically, we assume that, for 

all Φ in a convex set containing Ω and for all x in the sample space , the functions 

( ; )p x Φ  and ln ( ; )p x Φ  are continuously differentiable with respect to Φ. 

 

3.10.1.B A general identifiability criterion 

In [23], a general criterion, based on the Kullback-Liebler divergence, for the 

identifiability of parameter vectors is proposed. Here we report only the main facts, all the 

proofs can be found in [23]. First of all, we recall the definition of the Kullback-Liebler 

divergence [37]: 
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Definition 4: Let ( ; )p x Φ  and 
0( ; )p x Φ  be two parametric pdfs for all Φ . The scalar 

function of the vector variable Φ, 
0( ; )H Φ Φ , defined as: 

  
 

 

 

 
 0 0

0 0

; ;
; ln ln ;

; ;

p p
H E p d

p p

  
 

  


x Φ x Φ
Φ Φ x Φ x

x Φ x Φ
 (3.112) 

is called Kullback-Liebler divergence between ( ; )p x Φ
 
with Φ  and 

0( ; )p x Φ . 

One of the most important theorems on the Kullback-Liebler divergence is (the proof 

can be found in Lemma 1, Ch. 8 of [38]): 

Theorem 1: Let ( ; )p x Φ  and 
0( ; )p x Φ  be two parametric pdfs. If    0; ;p px Φ x Φ  for 

all nx , then 0( ; ) 0H Φ Φ . Otherwise, if 0( ; )H Φ Φ  is finite, 0( ; ) 0H Φ Φ . 

In view of the Definitions 2, 3 and 4, the link between the Kullback-Liebler divergence 

and the identifiability of a parameter vector is given by the following Corollary: 

Corollary 1: Let ( ; )p x Φ  and 
0( ; )p x Φ  be two parametric pdfs for all Φ . Then the 

parameter vector Φ0 is globally identifiable if and only if the equation 0( ; ) 0H Φ Φ  has 

as solution in Ω only Φ = Φ0. It is locally identifiable if and only if Φ = Φ0 is the only 

solution in some open neighborhood of Φ0. 

 It can be noted also that the identifiability condition is closely related to the 

maximum of the 
0( ; )H Φ Φ . In fact, from Theorem 1 it follows that: if the maximum of 

0( ; )H Φ Φ  is global and attained at Φ = Φ0,  then Φ0 is globally identifiable, whereas, if 

there exists an open neighborhood of Φ0 with a local maximum in Φ0, then Φ0 is locally 

identifiable. Such consideration suggests another general identification criterion that we 

provide in the following Corollary (the proof can be found in [23]).  

Corollary 2: Let ( ; )p x Φ  and 
0( ; )p x Φ  be two parametric pdfs for all Φ . Then the 

parameter vector Φ0 is locally identifiable if and only if the Hessian Matrix H of 

0( ; )H Φ Φ  evaluated at Φ0, i.e. 0( )( )HH Φ ,is a negative definite matrix. Moreover, it can 

be shown that: 
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where I(Φ0) is the Fisher Information Matrix (FIM).  

 Taking into account eq. (3.113), the following Corollary can be finally derived 

[23]: 

Corollary 3: Let 
0( ; )p x Φ  be a parametric pdf. Then the parameter vector Φ0 is locally 

identifiable if and only if the Fisher Information Matrix I(Φ0) is a positive definite full rank 

matrix. 

 

3.10.2 Identifiability in presence of random nuisance parameters 

 In practical applications, a wide class of estimation problem involves the so-called 

nuisance parameters, i.e. random parameters that affect the data model whose estimation is 

not strictly required and that are known only through their statistical distribution. The aim 

of this section is to generalize previous results on the identifiability to take the nuisance 

parameters into account.  

As before, let nx  be a n-dimensional random vector, representing the outcome 

of some random experiment, let 
la  be the l-dimensional random vector of nuisance 

parameters and let 0( , ; )p x a Φ  the joint pdf of the random vectors x and a parameterized 

by the deterministic vector Φ0 to be estimated. Such pdf is assumed perfectly known. In the 

rest of the paper, we assume verified, as well as the Assumptions 1-4, the following: 

Assumption 5: The pdf of the nuisance parameters ( )p a  does not depend on the parameter 

vector Φ0. Then, the joint pdf 0( , ; )p x a Φ  can be always factorized as: 

0 0( , ; ) ( ; ) ( )p p px a Φ x a Φ a . 

To apply Theorem 1 and Corollary 3 to this estimation problem, we have to 

evaluate the marginal pdf of the data x: 
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    0 0; , ; .p p d x Φ x a Φ a  (3.114) 

Unfortunately, in many practical applications, the closed form of the integral in eq. 

(3.114) is extremely difficult (or impossible) to calculate and this has motivated the search 

for a more general identifiability criterion. When the marginal pdf of the data 
0( ; )p x Φ  is 

unavailable, we can use the joint pdf 
0( , ; )p x a Φ  to define a new identifiability criterion. 

To this purpose, Definition 2 can be modified as described in the following Definitions: 

Definition 5: Two parameter vectors Φ0 and Φ1 (relative to two structures T0 and T1) are 

said to be observationally equivalent if    0 1, ; , ;p px a Φ x a Φ  for all nx  and for all 

la . Φ0 is otherwise said to be identifiable if there is no other Φ in Ω which is 

observationally equivalent. 

At this point, some considerations on the differences between Definitions 2 and 5 need 

to be made. According to these two definitions, a parameter vector Φ0 is non-identifiable if 

at least another Φ1 exists such that: 

i. Definition 2:    0 1; ;p px Φ x Φ  n x  where    ; , ;i ip p d x Φ x a Φ a , 

for i=0,1. 

ii. Definition 5:    0 1, ; , ;p px a Φ x a Φ  n x , 
l a . 

Roughly speaking, Definition 5 requires that the parameter vector Φ  is identifiable for 

any realization of a under the implicit assumption that x and a are jointly directly observed. 

This is not true in reality, since the random nuisance parameter vector a is not directly 

observed, but only indirectly through the measurement vector x. In Definition 2, x is 

observed and a is unknown, but it is averaged out in the pdf, so we do not require it to be 

observed (known).  

In the following we derive an operative procedure to verify if, in presence of random 

nuisance parameters, a parameter vector Φ0 is identifiable or not under Definitions 5. To do 

this, we go through the same steps described in the previous section relative to the 

Definition 2. 
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3.10.2.A Identifiability condition under Definition 5 

The aim of this section is to provide a condition to verify if the parameter vector Φ0 is 

identifiable under Definition 5. We want to prove that there is no other parameter vector 

Φ , or at least in an open neighborhood of Φ0 (local identifiability), such that 

0( , ; ) ( , ; )p px a Φ x a Φ . First of all, we have to generalize the definition of the KL 

divergence under the Definition 5. This can be easily done by defining a scalar function of 

Φ, 
0( ; )MH Φ Φ , as:  

  
 

 

 

 
 0 , 0

0 0

, ; , ;
; ln ln , ; .

, ; , ;
M

p p
H E p d d

p p

     
       

     
x a

x a Φ x a Φ
Φ Φ x a Φ x a

x a Φ x a Φ
 (3.115) 

Now, we have to show that the Theorem 1 hold true under the Definition 5 with the 

generalized definition of KL divergence given in eq. (3.115). Under Definition 5, the 

Theorem 1 can be recast as follows: 

Theorem 2: Let ( , ; )p x a Φ  and 
0( , ; )p x a Φ  be two parametric pdfs where a is the vector of 

the random nuisance parameters. If 
0( , ; ) ( , ; )p px a Φ x a Φ  for all nx  and for all 

la , then 
0( ; ) 0MH Φ Φ . Otherwise, if 

0( ; )MH Φ Φ  is finite, 
0( ; ) 0MH Φ Φ .  

Proof: The Theorem 2 can be easily proved using the Jensen inequality:  
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 (3.116) 

This conclude the proof. 

At this point, following the same procedure used in the Section 2.2, it is possible to 

assert that Φ0 is globally, or at least locally, identifiable if and only if it is a global, or at 

least a local, maximum for the KL divergence 0( ; )MH Φ Φ  given in eq. (3.115). Then we 

have to show that the gradient of 0( ; )MH Φ Φ , evaluated at Φ0, i.e. 0( )( )MH
Φ

Φ , is equal 

to zero and that the Hessian matrix, also evaluated at Φ0, i.e. 
0[ ( )]( )MHH Φ , is a negative 
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definite full rank matrix. As proved in Appendix E, it can be shown that the gradient is 

actually zero and that the Hessian matrix can be expressed as: 
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where 
0( )MI Φ  is the so-called Modified Fisher Information Matrix (MFIM) [20], [29]. 

Starting from eq. (3.117), Corollary 3 can be generalized to take the random 

nuisance parameters into account. 

Corollary 4: Let 
0( , ; )p x a Φ  be a parametric pdf where x is the data vector and a is the 

vector of nuisance parameters and let IM(Φ0) be the MFIM. Then, the parameter vector Φ0 

is locally identifiable if and only if IM(Φ0) is a positive definite full rank matrix. 

 

3.10.3 Relationship among the identifiability conditions in 

presence of random nuisance parameters 

 The results obtained in the previous sections can be summarized in the following 

theorem: 

Theorem 3: Let 
0( , ; )p x a Φ  be a parametric pdf where x is the data random vector and a is 

the random vector of the nuisance parameters, let 
2 5, m  be the sets of the 

parameter vectors globally observationally equivalent under Definitions 2 and 5, 

respectively, and let 2 5, m  be two open neighborhoods of 0Φ  that contain the 

parameter vectors locally observationally equivalent to 0Φ  under Definitions 2 and 5, 

respectively. Then, the following relations hold: 

 5 2 , (3.118) 
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5 2 . (3.119) 

Proof: The proof of Theorem 3 can be divided in two different parts: the first part, relative 

to the global identifiability, provides a proof of the relation (3.118), whereas the second 

part, relative to the local identifiability, provides a proof of the relation (3.119). To prove 

the first part, it is enough to investigate the relations between the Definitions 2 and 5. It is 

easy to show that Definition 5 implies Definitions 2. In fact, we have: 

        0 0 1 1; , ; , ; ; ,p p d p d p    x Φ x a Φ a x a Φ a x Φ x  (3.120) 

that proves that Definition 5 implies Definition 2. On the other hand, to prove that 

Definition 2 does not imply Definitions 5, it is enough to show that there exist two different 

joint pdfs that have the same marginal pdfs of the data vector x. This concludes the proof of 

the relation (3.118) in Theorem 3. 

The proof of the second part of Theorem 3 is straightforward if we take into 

account the results obtained in [20] and [29] about the relationships among the FIM and the 

MFIM. In fact, it can be proved that the following inequality holds: 

    0 0MI Φ I Φ  (3.121) 

where A B  means that the matrix B A  is a positive semi-definite matrix. The 

inequality given in eq. (3.121) has been proven in [29]. This concludes the proof of 

Theorem 3. 

 Theorem 3 states that the more restrictive identifiability condition is the Definition 

2, as espected. This means that, if we use the Definitions 5 to test the identifiability of a 

deterministic parameter vector, it might be possible that we classify as identifiable a 

parameter that in reality it is not. However, in a lot of practical estimation problems that 

involve random nuisance parameters, it is impossible to apply the Definition 2 due to the 

analytical difficulties in the evaluation of the integral in eq. (3.114). In all these cases, when 

the classical FIM is impossible to obtain but the MFIM it is easy to evaluate, we can apply 

the Definition 5. Finally, by means of Theorem 3, it is possible to assert that if a parameter 

vector is not identifiable under Definition 5,then it is not identifiable under Definition 2 as 

well. 
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3.10.4 Identifiability in the relative grid-locking problem 

In this last Section, we apply the theoretical framework on the identifiability, 

developed in the previous Section, to the relative grid-locking problem. In particular we 

show that the complete unknown parameter vector  

 
T

x y zd d d d d d dt dt dt        Φ  (3.122) 

is not identifiable, and only a linear combination of the azimuth error dθ and of the yaw 

error dξ can be estimated. In Section 3.2 we discuss this point starting from geometrical 

considerations, here we show that the same conclusion can be drawn using the 

identifiability framework. Since the grid-locking estimation problem involves some 

nuisance parameters (i.e. the target trajectory), we could make use of the Theorem 3 

introduced in Section 3.10.3. To proof that the vector in (3.122) is not (locally) identifiable, 

we have to show that the MFIM is rank deficient. Neglecting all the mathematical details 

on the evaluation of the MFIM (see Section 3.7) it can be show that the MFIM is actually 

rank deficient and this is caused by the coupling between dθ and dξ and the vector in 

(3.122) is not identifiable. As discussed in Section 3.2, to overcome this problem, we 

defined a new unknown parameter vector as: 

 
T

x y zd d d d d dt dt dt        Φ , (3.123) 

where dζ=dθ+dξ. It can be shown using exactly the same procedure as before that Φ  is 

locally identifiable under Theorem 3. 

 

3.11 Summary 

In this Chapter we derive two algorithms for the joint estimate of all the relative gird-

locking errors: a linear LS algorithm and an EM-based algorithm. The performance of the 

proposed algorithms is compared in terms of error mean value and RMSE. Moreover, their 

efficiency is investigated by comparing their RMSE with the hybrid Cramér-Rao lower 

bound. We used two different scenarios to assess the performance of the proposed 

algorithm: a single target scenario and a multi-target scenario. The numerical results show 

that the EM algorithm generally outperforms the LS algorithm, even if it is not tight to the 
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HCRLB. Finally, we provide a general framework to investigate the identifiability of a 

unknown parameters vector in all the estimation problems that involve random nuisance 

parameters and we use it to draw some additional consideration about the identifiability of 

the unknown parameter vector of the relative grid-locking errors. 
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Chapter 4: The absolute grid-locking problem 

 

 

 

4.1 Introduction 

The aim of this Chapter is to extend the EM algorithm, derived in Chapter 3 for the 

relative grid-locking problem, to the absolute grid-locking problem. For clarity, we recall 

here the main difference between relative and absolute grid-locking problem. The relative 

grid-locking process aligns remote data to local data under the assumption that the local 

data are bias free and that all biases reside with the remote sensor. The problem is that, 

actually, also the local sensor is affected by biases that cannot be corrected by means of this 

approach. The absolute grid-locking process assumes that all the sensors in the scenario are 

affected by errors that must be corrected. First, we start to analyze a simple system 

composed of two biased radar and a single target. We derive the EM algorithm [1], [2] for 

the joint estimate of the bias error vector of the two radars and the unknown target state 

vectors. Then we pass to the general case of absolute grid-locking problem in a scenario 

with M sensors and Nt targets. In particular, we extend the EM algorithm to obtain the joint 

estimate of the bias error vector of all M sensors in the system and of the state vectors for 

all the Nt targets. The Hybrid Cramèr-Rao Lower Bound (HCRLB) [3], [4] [5] is evaluated 

in order to assess the efficiency of the proposed algorithm. Finally, some preliminary 

simulation result is provided. 

 

4.2 Absolute grid-locking problem 

The geometry of the absolute grid-locking problem for two sensors is shown in Fig. 

4.1. 
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Figure 4.1 – Geometry for the absolute grid-locking problem. 

 

Following the results obtained in Section 3.2, the measurement model of the measures 

coming from radars #1 and #2 can be expressed as: 
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where 1 1 1 1( )T T T Td d dΦ v Θ t and 2 2 2 2( )T T T Td d dΦ v Θ t . As discussed in Section 

3.2, if the rotation around z axis is applied first, the azimuth measurement bias dθ and the 

yaw attitude bias dξ for both radars cannot be distinguished and have to be merged into a 

single bias. In order to take this into account, we have defined the vectors 

T

i i i i
d d d d     Θ  and  0

T

i i id d d v  with i=1,2. In the rest of this 

Chapter, the unknown parameter vector for the absolute grid-locking problem is assumed to 

be 
1 2[ ]T T T

Φ Φ Φ . For the target state model, we choose the simple constant velocity 

model described in Section 3.4. 

The joint probability density function of the complete data can be rewritten as: 

 
       

     
1 2

, 1 2 1 2

1 1 2 2

; , ; , ; ,

; ; ,

X S Y SY S

SV S V S

p X p S Y p Y S p S

p V S p V S p S

  



Φ Φ Φ Φ Φ

Φ Φ
 (4.3) 



131 
 

The term pS(S) is given in eq. (3.43). From eq. (4.1), the term 
1

1 1( ; )
V S

p V S Φ  can be 

rewritten as: 
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1 1 1, 1
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; ; ,k
m k

K
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m kV S
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p V S p


 v s
Φ v s Φ  (4.4) 

where 1, 1 1( ( , ), )k

m k kv s μ s Φ C . Finally, form eq. (4.2), the term 
2

2 2( ; )
V S

p V S Φ  can be 

evaluated as: 
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where 2, 2 2( ( , ), )k

m k kv s μ s Φ C  and, as before, ( , ) ( , ), 1,2k i k i i μ s Φ μ r Φ .  

The logarithm of the pdf of the complete data X can be evaluated, ignoring constants, as 

([6],[7], [8], [9]): 
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It can be noted that only the first two term of the sum in eq. (4.6) depend on Φ, then, for 

this reason, the last term can be neglected.  

Using the property of the trace operator and by defining the column vector i

kα  as 

  , , , 1,2,i k

k i m k i i  α v μ s Φ  (4.7) 

eq. (4.6) can be rewritten as: 
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ln ; tr ( ) .
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 Φ C α α  (4.8) 

At this point, we are able to perform the E-step of the EM algorithm. As discussed in 

Section 3.6.1, the E-step consists in evaluating the objective function ˆ( ; )nQ Φ Φ , i.e. the 
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conditional expectation of the logarithm of the pdf of the complete data, ln ( ; )Xp X Φ , 

given the incomplete data set Y and the current estimate of the parameters vector ˆ n
Φ : 
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We define, using the classical notation, the conditional mean and the conditional error 

covariance matrix as: 

  1 2
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where 1 1, 1{ }j K

m jV  v  and 2 2, 1{ }j K

m jV  v . To evaluate explicitly the terms ( )i i T

k kα α , we 

follow exactly the same procedure as in Section 3.6.2. First, we take the first-order Taylor 

series expansion of the function ( , )k iμ s Φ  i.e.  
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M Φ μ s Φ s . Now, through direct calculation, it is easy to show 

that the conditional expectation 
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k kE V Vα α Φ  can be evaluated as: 
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Finally, collecting the previous results, we get: 
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where ˆn

k K
s  and n

k K
P  are the smoothed state vector estimate and the smoothed error 

covariance matrix [10]. At this point, the M-step can be performed as: 

   1ˆ ˆarg max .;
n nQ




Φ

Φ Φ Φ  (4.15) 

A close-form solution for the optimization problem in eq. (4.15) is unfeasible due to the 

analytical complexity of the objective function ˆ( ; )nQ Φ Φ  then we use a numerical 

minimization algorithm. In particular we have used the SQP method [11], [12]. The 

solution of the optimization problem in eq. (4.15) belongs to a subspace of a 16-

dimentional Euclidean space. However, it is possible to reduce the 16-dimensional problem 

in eq. (4.15) in two 8-dimensional problems. By denoting with 
1 2

[ ]   
Φ Φ Φ  the 

gradient operator vector, it is easy to show that: 
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since 
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Then, the two 8-dimensional sub-problem are exactly: 

   1ˆ ˆarg max , 1,2,;
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and, finally, the estimated absolute parameter vector is given by: 

    1 1 1

1 2
ˆ ˆ ˆ

T
T T

n n n   

  

Φ Φ Φ . (4.19) 

 

4.2.1 Linear Least Squares estimator for the absolute grid-

locking problem 

In this section, we provide a generalization of the linear Least Squares (LS) estimator 

derived in Section 3.5 to the case of the absolute grid-locking problem. The estimate of the 

unknown parameter vector given by the linear LS algorithm could be used as starting point 
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for the iterations of the EM algorithm. The fundamental alignment equation for the relative 

grid-locking problem can be easily extended to the case of absolute grid-locking problem 

as: 
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Therefore, eq. (4.20) can be expressed as: 
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where ε represents the un-modelled zero mean error. The non-linear (NLLS) estimate of the 

absolute unknown parameter vector Φ can be obtained by minimizing the objective 

function: 
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with respect to Φ. Since we are interesting only to obtain a starting point for the EM 

iterations, we resort here to a linear least squares algorithm. To this purpose, we need to 

linearize the alignment equation in (4.21). Using the same procedure of [13], we get: 
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where k

idr  and 
idR  for 1,2i   are defined in [13]. 

Eq. (4.23) can now be recast in a compact form, useful for the direct application of the 

linear LS algorithm. We can define a “new” measurement vector z
k
, that is a function of all 

available measurements, as: 

        1, 1, 1, 2, 2, 2, .k k k

m m m m m m  z R Θ h v t R Θ h v t  (4.24) 

 Unfortunately, it is clear from eqs. (4.23) and (4.24) that the two position error 

vectors, dt1 and dt2, cannot be estimated separately but only their linear combination can be 
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obtained by means of this linearized approach. For this reason, we define a reduced 

unknown parameter vector as 1 2[ ]T T T
Φ Φ Φ  where ( )T T T

i i id dΦ v Θ  for i=1,2. 

The others terms in eq. (4.23) can be rewritten in matrix form as H
k
Φ where H

k
 is a 

block matrix expressed as 
1 2[ ]k k k H H H : 
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and i=1,2. If we assume that K measurements coming from both radars #1 and #2 are 

available, the LS problem can be cast in the following well-known form: 
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J


  z H ΦΦ  (4.26) 

where ( )LJ Φ  is the linearized objective function. The LS estimate 
ˆ
Φ  is obtained by 

minimizing ( )LJ Φ . By defining the vector z  and the matrix H  as: 
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T

T T T
k K 

  
z z z z  (4.27) 
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T
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k K 
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we can express the LS estimate of Φ  as: 

 #ˆ
,Φ H z  (4.29) 

where #
H  is the pseudo-inverse matrix of H .  
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4.3 The absolute grid-locking problem in the multi-

sensor-multi-target scenario 

In this section, we provide the solution for the general case of the absolute grid-locking 

problem in a multi-sensor-multi-target scenario. In the following, we suppose to have Mr 

radars and Nt targets. As before, each one of the Nt targets is supposed to follow the linear 

stochastic model given in eq. (3.87): 

 
1 , 1, , ,l l l

k k k tl N   s Fs w  

where the index l define the particular target. It’s important to note that the discrete process 

noise vector wk
l
 as function of the index l is an independent, zero-mean, Gaussian 

distributed, random vector. Starting from the previous discussion about the absolute grid-

locking for two radars, it easy to show that the measurement model for each considered 

sensor can be expressed as: 
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Under these assumptions, the set of complete data X  and the set of incomplete data Y  can 

be defined as: 

    1 1, ,
r rM MX V V S Y V V   (4.31) 

where: 
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and 
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The unknown parameter vector is defined as 1[ ]
r

T T T

MΦ Φ Φ . To apply the EM 

algorithm to this multi-sensor-multi-target scenario, first we have to calculate the joint pdf 

of the complete data X , ( ; )
X

p X Φ . Following the procedure described in Section 3.9, we 

have: 
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The terms ( )
S

p S  and ( ; )
i

i iV S
p V S Φ  can be evaluated exactly as shown in Section 3.9, 

then the logarithm of the pdf of the complete data X  can be expressed as: 
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Now, by defining the vector  ,

, , ,
i k l l
k l i m k i
 α v μ s Φ , the objective function ˆ( ; )nQ Φ Φ , i.e. 

the conditional expectation of ln ( ; )
X

p X Φ  (neglecting constant terms w.r.t Φ), given the 

incomplete data set Y and the current estimate of the parameters vector ˆ n
Φ , can be 

evaluated as: 
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where ˆ( ; )l n

iQ Φ Φ  is the objective function for a given target and for a given sensor defined 

as: 
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where, as before, the first-order Taylor series expansion of the function ( , )k iμ s Φ  is used. 

 The M-step can be performed as: 

   1ˆ ˆarg max .;
n nQ




Φ

Φ Φ Φ  (4.38) 

Also in this case, the optimization problem is solved using the SQP numerical minimization 

algorithm. The solution of the optimization problem in eq. (4.38) belongs to a subspace of a 

8Mr-dimentional Euclidean space. However, it is possible to reduce the 8M r-dimensional 
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problem in Mr 8-dimensional problems. By denoting with 
1

[ ]
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Φ Φ Φ

 the 

gradient operator vector, it is easy to show that: 
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since 

  
1

ˆ , .;
t

i

N l n
il

Q i j


  Φ
0Φ Φ  (4.40) 

Then, the Mr 8-dimensional sub-problem are given by: 
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1
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t

i
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Q i M




 
Φ

Φ Φ Φ  (4.41) 

and, finally, the estimated absolute parameter vector is given by: 

    1 1 1

1
ˆ ˆ ˆ .

r

T
T T

n n n

M

   

  

Φ Φ Φ  (4.42) 

 

4.4 Performance bound for multi-sensor-multi-target 

scenario 

In this section, we evaluate the HCRLB [3], [4], [5] for the general case of multi-sensor-

multi-target scenario. First of all, we have to define a new hybrid parameter vector as: 

 1 1

1 1 1, , , ( ) , , ( ) , , ( ) , , ( ) ,t t

r

T
N NT T T T T T

M K K
   Ψ Φ Φ s s s s  (4.43) 

then, following the same procedure described in Section 3, the HFIM for this hybrid 

parameter estimation problem can be expressed as: 
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The logarithm of the conditional pdf of the measurements coming from a given sensor i is: 

    ,
,

,

,

1 1

ln ; ln ; ,
t

k l l
i m k

N K
k l l

i i i m k i

l k

p V S p
 

 v s
Φ v s Φ  (4.45) 

where ,

, ( ( , ), )k l l l

i m k k i iv s μ s Φ C  while, as shown in eq. (3.102), the logarithm of the joint 

pdf of all the target state vector is given by: 

      
1

1 1

1 1 2

ln ln ln ,
t t

l l
k k

N N K
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p S p p




  

   s s
s s s  (4.46) 

where 
1 0( , )l l l

ws μ Q  and 
1 1( , )l l l l

k k k w s s Fs Q . As before, the Hybrid FIM can be 

rewritten as: 

     ,H S H Sij
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where the conditional Hybrid FIM can be calculated as: 

 

 
 

   

1

2

1

, , ,

,

1 1 1

ln , , , ;

; ,

r

Mr

t r

M

V V SH S
ij i j

N M K
v l l l l

ij k ij k

l v k

p V V S
E

g u
  

             

 
  

 
 

Φ
I Ψ

s Φ s

 (4.48) 

where: 
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 It can be noted that the eqs. (4.49) and (4.50) are exactly the same of the eqs. 

(3.68) and (3.69), then they can be evaluated as described in Section 3.7 and in Appendix 

D. The block-matrix form of the conditional HFIM defined in eq. (4.48) is: 
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where 
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and  

 1 1
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1 1

( ) , , ( ) .
r rM M

l T l l i l l i l

w k k l K l w

i i

 

 

      Λ F Q Π M Ω Ξ M Q  (4.55) 

It must be noted that all the matrices ,

i

k lF , ,

i

k lM , ,

i

k lB  and l
Ω  are defined, for a given l 

and for a given i, in Section 3.7 and the explicit calculation can be found in Appendix D. 

Also in this case, the mean value w.r.t. S in eq. (4.47) is evaluated through independent 

Monte Carlo trials.  

Finally, some consideration about the identifiability problem in the absolute grid-

locking problem can be provided. In particular, the Theorem 2 given in Section 3.10.3 can 

be directly applied to the Hybrid FIM of eq. (4.47). With the same procedure used for the 

relative grid-locking problem and described in Section 3.10.4, it can be proved that the 

unknown parameter vector 1[ ]
r

T T T

MΦ Φ Φ  is identifiable. 
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4.5 Simulation results 

In this section, some preliminary simulation results are reported. Before introducing 

the simulation scenario, some comment on the initialization of the EM algorithm need to be 

done. As in the case of relative grid-locking problem, we use the linear LS estimate of the 

unknown parameter vector, given in eq. (4.29), as starting point for the EM algorithm. 

Nevertheless, the LS algorithm, described in Section 4.2.1, are not able to estimate the 

relative position errors vectors dti. For this reason in our simulations we consider, for the i
th

 

biased radar, only the measurement error vector dvi and the attitude error vector dΘi. The 

generalization of the initialization procedure to the case of a full bias error vector that 

includes also the relative position error vector is left to future investigation. 

In our simulation, we assume a scenario with three biased radars and five targets (see 

Fig. 4.2). Two of these five targets are cooperative targets, i.e. targets whose trajectory are 

perfectly know. In the following, we give all the geometrical details of the assumed 

scenario. 

 The position vector of the radar #1 is tt,1 = (-2,4,1)·10
3
 m. 

 The position vector of the radar #2 is tt,1 = (2,2,2)·10
3
 m. 

 The position vector of the radar #2 is tt,1 = (-2,-4,-2)·10
3
 m. 

In all the simulations, the following parameters have been used: 

 The actual bias errors values for both radar #1 and radar #2 are: i) 

measurement biases: i) measurement biases: dρ=-10m, dθ=dε=-0.0573°; ii) 

attitude biases: dχ=dψ=-0.0573° and dξ=-0.1146°.  

 Radars #1, #2 and #3 are characterized by the following accuracies: i) 

σρ,1=σρ,2=50 m; ii) σθ,i=σε,i=0.3°, i=1,2,3. 

 Scan time of the radars: 1 sec. 

 The tolerance ε, i. e. absolute value of the difference between the 

objectivefunction evaluated at the current estimate of the parameter vector 

and the objective function evaluated at the previous estimate: 

1ˆ ˆ| ( ) ( ) |n nQ Q   Φ Φ : ε=10
-6

. 
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 The number of independent Monte Carlo trials: MC=100. 

 Searching volume Ω for the optimization algorithm, i. e. the region of 

dΦ  which the solution is supposed to belong to. We describe this 

volume whit the following set of inequality   a Φ a : where a=(-

100m, -5.7296°, -5.7296°,-5.7296°,-5.7296°). 

 The maximum number of iteration of the EM algorithm: 10. 

We assume to have five targets that move according to the stochastic discrete random 

model in eq. (3.87) with the following parameters: 

 Target #1: 

1) Initial position and velocity vectors: r0
1
=[0 2000 0]

T 
, v0

1
=[7.63 -5 1]

T
 

2) The PSD of the three components of the continuous-time process noise 

vector is 
1 1 1 2 3

0, 0, 0, 1 0.01m /sx y zN N N q     

 Target #2: 

1) Initial position vector: r0
2
=[-6000 0 0]

T 
, v0

2
=[-4.63 7 -1]

T
 

2) The PSD of the three components of the continuous-time process noise 

vector is equal to 
2 2 2 2 3

0, 0, 0, 2 0.01m /sx y zN N N q    . 

 Target #3: 

1) Initial position vector: r0
3
=[2000 -1500 0]

T 
, v0

3
=[8 5 0.5]

T
 

2) The PSD of the three components of the continuous-time process noise 

vector is equal to 
3 3 3 15 2 3

0, 0, 0, 3 10 m /sx y zN N N q     . 

 Target #4: 

1) Initial position vector: r0
4
=[-4000 -4000 0]

T 
, v0

4
=[-6 3 2]

T
 

2) The PSD of the three components of the continuous-time process noise 

vector is equal to 
4 4 4 15 2 3

0, 0, 0, 4 10 m /sx y zN N N q     . 

 Target #5: 

1) Initial position vector: r0
5
=[6000 6000 0]

T 
, v0

5
=[-6 4 -2.5]

T
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2) The PSD of the three components of the continuous-time process noise 

vector is equal to 
5 5 5 2 3

0, 0, 0, 5 0.01m /sx y zN N N q    . 

It can be noted that the two cooperative targets are Target #3 and Target #4, since their 

process noise variance is almost 0.  

 

Figure 4.2 – Geometry of the assumed scenario. 

 

As in the previous Chapters, the performance of the EM algorithm is evaluated in 

terms of error mean value e standard deviation (std) of the estimation error for each 

parameter to be estimated (see figs. 4.3-4.12). From the numerical results that we derived, 

some general consideration can be drawn: 

 Except for the estimate of the joint (yaw+azimuth) error (see fig. 4.11), all the 

other estimates result to be biased. This can be due to the low number of iterations 

allowed to the EM algorithm. However, a larger number of iterations tends to 

increase dramatically the computational time making the use of the EM algorithm 

unfeasible. 

 Since most of the estimate are biased, nothing can be said about efficiency of the 

proposed EM algorithm. Also the strange progress of the std curves could be due 

to a low number of iteration. 
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Figure 4.3 – Error mean value for the estimate of the range error. 
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Figure 4.4 – Std for the estimate of the range error. 
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Figure 4.5 – Error mean value for the estimate of the elevation error. 

 

0

0,05

0,1

0,15

0,2

0,25

200 250 300 350 400

Std - radar #1

Std - radar #2

Std - radar #3
HCRLB - radar #1

HCRLB - radar #2

HCRLB - radar #3

S
td

 f
o

r 
d


[d
e

g
]

Discrete time [k]  

Figure 4.6 – RMSE for the estimate of the elevation error. 
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Figure 4.7 – Error mean value of the roll bias error. 
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Figure 4.8 – Std of the roll bias error. 
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Figure 4.9 – Error mean value of the pitch error. 
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Figure 4.10 – RMSE of the pitch error. 
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Figure 4.11 – Error mean value of the yaw+azimuth error. 
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Figure 4.12 – RMSE of the yaw+azimuth error. 
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4.6 Summary 

In this Chapter we generalize the EM algorithm, derived in Chapter 3 for the relative 

grid-locking problem, to the absolute grid-locking problem. In particular, we solve the 

general problem of the absolute grid-locking with M biased radars and Nt targets. 

Moreover, we evaluate the HCRLB for such general case. However, a certain number of 

problem is still open. The first problem is the initialization of the EM algorithm. As 

discussed in Section 4.2.1, the linear LS algorithm is not able to estimate the relative 

position error vector, then it cannot be used to initialize the EM algorithm if we want to 

estimate jointly all the registration bias errors (i.e. measurement errors, attitude errors and 

relative position errors). The second problem are the not satisfactory performance of the 

EM algorithm. In fact, as shown in Section 4.5, most of the estimates of the bias errors are 

biased. Finally, a fundamental problem seems to be the computational time. To make the 

application of the EM algorithm in real environments feasible, its computational time need 

to be drastically reduced. All these problems will be addressed in future works. 
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Appendix C 

Evaluation of the matrix ( )kM Φ  

In this Appendix, we evaluate the entries of the matrix ( )kM Φ  defined as: 

  
 

ˆ,

,
,

k n
k K

j k

k
ij

k is






     s s

s Φ
M Φ  (C.1) 

where the vector function ( ; )k
μ s Φ  is given by: 

         1; ; .T

k k m k md d d      μ s Φ μ r Φ h R Θ Θ r t t v  (C.2) 

It is easy to show that the matrix ( )kM Φ  can be expressed as a block matrix: 

  
 

3 3

,k

k



 
  
 

B Φ
M Φ

0
 (C.3) 

where the first 3 3  block matrix ( )kB Φ  is defined as: 

  
 

ˆ,

,
.

n
k k K

j k

k
ij

k ir






     r r

r Φ
B Φ  (C.4) 

To evaluate each entry of the matrix in eq. (C.4), we use the chain rule of derivation. 

The derivative of each entry of the three-dimensional vector function in (C.2) can be 

expressed as: 

 
 

 
 1

, ,

; ;
, , 1,2,3,

j k k

j

k i k i

h i j
r r




 
   

 

r Φ u r Φ
u  (C.5) 

where, 
1

jh  is the gradient of the jth entries of the vector function h
-1

. The vector function 

( ; )ku r Φ  is defined, from (C.2), as: 

      ; .T

k m k md d      u r Φ R Θ Θ r t t  (C.6) 

The entries of the 3d vector function   ,;k k ir u r Φ , for i=1,2,3, can be evaluated as: 
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Finally, ( )kB Φ  can be rewritten in a compact matrix form as: 

       1

ˆ
( ; ) ,n

k k K

T

T

k k m d



 
  
  r r

B Φ J h u r Φ R Θ Θ  (C.8) 

where J(·) is the Jacobian matrix whose entries are given by: 
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 (C.9) 

where, for ease of notation, the dependence on rk and Φ of the vector function ( ; )ku r Φ  is 

omitted. 

 

Appendix D 

Evaluation of the matrices  kL s  and  ;kG s Φ  for the HCRLB. 

Calculation of  kL s . 

Here we evaluate the entries of the matrix L(sk) defined in eq. (3.73) as: 

  
   11

1

1 ,

T

kk

ij k

ji

l




   

         

h sh s
s C  (D.1) 

where the vector function 
1( )k


h s  is the Cartesian-to-spherical transformation, defined as: 
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atan .

atan
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h s  (D.2) 

Here we have to calculate the derivative terms of the vector function  1

k i

 h s  where 

1[ ]T T T T

KΨ Φ s s  is the vector of the hybrid parameters with dimension 

6d d K 
Φ

 where 8d 
Φ

. We need to calculate the derivative terms with respect to 

 , , , 66 5i i d d kk   Φ Φ
 can be evaluated as follows: 
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3 3

, , 66 5
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k
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d d kk
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h s
J h s 0  (D.3) 

where 
1( ( ))k


J h s  is the Jacobian matrix of 

1( ) h  evaluated at ks . For all the others 

indices different from the previous ones, the derivative vector is a zero-vector. For this 

reason, the matrix L(sk) can be rewritten in the block matrix form given in eq. (3.75), where 

the matrix Nk is the following block matrix: 

 
     1 1 1

1 3 3

3 3 3 3

.

T

k k

k

  



 

 
 
 
 

J h s C J h s 0
N

0 0
 (D.4) 

Calculation of  ;kG s Φ . 

Here we evaluate the entries of the matrix ( ; )kG s Φ  defined in eq. (3.74) as: 

  
   1

2

,,
; ,

T

kk

ij k

ji
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μ s Φμ s Φ
s Φ C  (D.5) 

where the vector function ( , )kμ s Φ  is defined in eq. (C.2). The first two derivative terms 

with respect to the range bias error dρ (i.e. Ψ1) and to the elevation bias error dε (i.e. Ψ2) are 

given by: 

 
   

1 2

1 0
; ;

0 , 0 .

0 1

k k

   
    

   
    
      

μ s Φ μ s Φ
 (D.6) 
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Then, as before, we use the chain rule of derivation to evaluate all other terms: 
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Φ
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where the vector function ( ; )ku s Φ  is defined in eq. (C.6). The entries of the vector 

function ( ; )k i u s Φ , for 3, , 8i d 
Φ

, can be evaluated as: 
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6,7,8
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.

k T

m d


  


u s Φ
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Now, using the same procedure as before, the derivative terms of ( ; )kμ s Φ with respect to 

 , , , 66 5i i d d kk   Φ Φ
 can be evaluated as follows: 
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, , 66 5

;
; ,

k T

k m

d d kk
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Φ Φ

μ s Φ
J μ s Φ R Θ Θ 0  (D.12) 

where ( ( ; ))kJ μ s Φ  is the Jacobian matrix of ( ; )μ Φ  evaluated at sk. For all the others 

indices different from the previous ones, the derivative vector is a zero-vector. For this 

reason, the matrix ( ; )kG s Φ  can be rewritten in the block matrix form given in eq. (3.77), 

where the matrix Mk is the following block matrix: 

 
         1

2 3 3

3 3 3 3

; ;
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T T

m k k m
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d d



 

  
 
 
 

R Θ Θ J μ s Φ C J μ s Φ R Θ Θ 0
M

0 0
 (D.13) 
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Appendix E 

Evaluation of the gradient and of the Hessian matrix of 0( ; )MH Φ Φ  

The aim this Appendix is to show that the gradient of 0( ; )MH Φ Φ  is equal to zero and that 

the Hessian matrix is exactly the Modified FIM given in eq. (3.117). We recall here for 

clarity the definition of the Kullback-Leibler divergence 0( ; )MH Φ Φ  under Definition 5: 
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x a Φ
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x a Φ

 (E.1) 

where we used the fact that      0 0, ; ;p p px a Φ x a Φ a  (Assumption 5).  

To start, we need the following lemma: 

Lemma 1: Let ( ; )p x Φ  be the pdf of the random vector nx  parameterized by the 

deterministic vector Φ . By assuming that the usual regularity conditions on ( ; )p x Φ  

are verified and that  ; 1,p d    x Φ x Φ , then the following relations hold: 

1.    ; 0, 1, ,dim
i

p d i


  


x Φ x Φ , 

2.    ; 0, , 1, ,dim
i j

p d i j


  
  x Φ x Φ . 

Proof: The first statement of Lemma 1 can be easily proven as follows: 

      ; ; 1 0, 1, ,dim
i i i

p d p d i
  

    
   x Φ x x Φ x Φ  (E.2) 

where the order change is justified by the regularity assumptions made on ( ; )p x Φ . The 

second statement can be proven exactly in the same way: 
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      ; ; 1 0, , 1, ,dim
i j i j i j

p d p d i j
  

    
      x Φ x x Φ x Φ .(E.3) 

This conclude the proof of the Lemma 1. 

Now we return to the main problem. First we evaluate the derivative terms of 

0( ; )MH Φ Φ  as: 
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 (E.4) 

Eq. (E.4) shows that the vector parameter Φ0 is a stationary point for 0( ; )H Φ Φ , 

as function of Φ. Now, we pass to evaluate the entries of the Hessian matrix. The second-

order derivative terms can be evaluated as: 
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(E.5) 

 , 1, ,dimi j  Φ , where the last equality is obtained by using the second relation given 

in Lemma 1. Then, we get that each entry of the Hessian matrix evaluated at Φ0, i.e.

0[ ( )] ( )M ijHH Φ , is: 
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where 
0( )MI Φ  is the MFIM. This concludes the proof. 
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Part III: Intrinsic covariance matrix 

estimation and its application to the radar 

target detection 
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Chapter 5: Intrinsic estimation in the manifold 

of the symmetric positive-definite matrices and 

its applications to the radar target detection 

 

 

 

5.1 Introduction 

The goal of this Chapter is to describe a new approach to the radar target detection and 

clutter suppression problem. This new approach, introduced and discussed for the first time 

in [1], [2], [3], is based on a non-Euclidean description of the geometry of the set of the 

covariance matrices that is the set of the symmetric (Hermitian) positive-definite matrices. 

The non-Euclidean nature of this set is a well known topic and there is a lot of 

mathematical works on it, e. g. [4]-[10], but the application of these geometrical concepts to 

the radar signal processing is still an open problem.  

First, we give a very short explanation of the main concepts of the differential 

geometry on a generic differentiable manifold. After this brief introduction, we define the 

geometrical structure, given by the Riemann metric and by the geodesic equation on the 

manifold of the symmetric positive-definite matrices ([4], [5] and [11]). Starting from the 

obtained results, we show the intrinsic distance between two generic symmetric positive-

definite matrices [11]. This distance is of fundamental importance to define the concept of 

“intrinsic mean”, or Karcher-Fréchet mean or Riemann barycentre. We show a matrix 

formula that characterizes the Karcher-Fréchet mean on the manifold of the symmetric 

positive definite matrices [5], but such mean cannot be evaluated in closed form. Then, we 

describe a gradient descent algorithm in order to evaluate recursively the mean value [1], 

[10].  
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After this first general part, the detection problem in radar system is addressed. The 

two fundamental aspects of a radar detection algorithm are the decision rule and the clutter 

covariance matrix estimation. There is a huge radar literature on these two topics, some of 

the fundamental works are: L. E. Brennan and L. S. Reed [12] and of E. J. Kelly [13] for 

the decision rule and the paper of I. S. Reed, J. D. Mallet and L. E. Brennan [14] for the 

clutter covariance matrix estimation. 

The differential geometry provides a new method for both the decision rule and for the 

clutter covariance matrix estimation. In this work, we try to show a theoretical comparison 

between the classical and the new decision rule based on the Riemann geometry. Then, we 

pay attention on the clutter covariance matrix estimation algorithms. A comparison among 

various estimators is performed in terms of error mean value and Root Mean Squares Errors 

(RMSE) compared with the Flat and the Intrinsic CRLB evaluated in [11]. Finally, we give 

the overall performance of the detection algorithm in terms of ROC (Receiver Operating 

Characteristics) for different matrix mean estimators. 

 

5.2 Preliminaries: the exponential mapping  

It can be defined an “exponential” (bijective) mapping between the tangent space 

and the manifold M as follows: 

 
 

exp : ,

exp : .

T M MA A

A
Ω Ω A

 (5.1) 

 

Figure 5.1. A manifold M, its tangent space and the exponential map. 

 

Intuitively, the exponential map expA equates points on the manifold with point in the 

tangent space TAP at A. The inverse mapping is the logarithmic map defied as: 
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1log exp : ,

log : .

M T M 
A A A

A
A A Ω

 (5.2) 

If M is a matrix Lie group, then the exponential map coincides with the matrix 

exponential and is given by the series expansion: 

  
0

1
exp .

!

k

k k





A
Ω Ω  (5.3) 

The logarithm of a matrix A is the solution of the matrix equation exp(Ω)=A. When matrix 

A does not possess any negative eigenvalues, there exists its unique real logarithm, termed 

“principal logarithm”. Furthermore, if, for any given matrix norm  , it holds that 

1 I A , then: 

  
 

1

log .

k

k k






 

I A
A  (5.4) 

In practise, matrix exponential and logarithm may be computed efficiently by making use 

of the spectral decomposition or by various approximate methods. In the case of symmetric 

n n  matrices A, for example, matrix exponential can be computed by using the spectral 

decomposition: 

 ,TA VΣV  (5.5) 

where  O nV  is the column vector matrix of eigenvectors and Σ is the diagonal matrix 

of eigenvalues. Thus, the exponential matrix exp(A) is given by: 

 
   

    1

exp exp

diag exp , ,exp .

T

T

n 

 



A V Σ V

V V
 (5.6) 

Similarly, the matrix logarithm, for a symmetric n n  matrices A can be computed as: 

 
   

    1

log log

diag log , , log .

T

T

n 

 



A V Σ V

V V
 (5.7) 

Proposition 1: The exponential function    exp : S n P n  given by  

    exp exp TA V Σ V  (5.8) 
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is a bijection. In particular, a symmetric matrix is positive-definite if and only if it is the 

exponential of a symmetric matrix [7].  

Preposition 1 allows us to defined the tangent space of the manifold P as the vector space of 

the symmetric real matrices: 

  , .T P S n P 
A

A  (5.9) 

In the rest of this work we assume that all the consideration and theorems stated for the on 

the real field, can be directly extended to the complex field. 

 

5.3 Geometrical characterization of a Riemann manifolds 

To define the geometrical properties of a manifold we need two fundamental 

structures: the Riemann metric g and an affine connection   (this is not a gradient 

operator) [11].  

A Riemann metric g is defined as an inner (or scalar) product on the manifold tangent 

space, i. e.: 

 : .g T M T M 
A A

 (5.10) 

If Ω is a tangent vector, then the squared length of Ω is given by: 

  
2

, , .g
AA

Ω Ω Ω Ω Ω  (5.11) 

Note that this inner product depends on the location of the tangent space.  

The affine connection  , intuitively, allows one to “connect” different tangent space 

and compare objects defined separately at each point. In other words [4], an affine 

connection is a continuous collection of scalar products on the tangent space at each point 

of the manifold. Thus, if we consider a curve on the manifold, we can compute at each 

point its instantaneous velocity vector and its norm, the instantaneous speed. To compute 

the length of the curve, we can proceed as usual by integrating this value along the curve. 

Each affine connection   has an associated Christoffel operator defined as  ,    [11].  
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The distance between two points of a connected Riemann manifold is the minimum 

length curve among the curves joining these points. The curve realizing this minimum for 

any two points of the manifold are called geodesics. The mathematical definition of 

geodesic is: 
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: 0,1 ,

0 ; 1 ; 0 ,

, min min , .
t t

P

P P T P

d t dt t t dt
  



  

  



     

  

A
A B Ω

A B

 (5.12) 

The calculus of variations shows that geodesics are the solution of a second order 

differential equation depending on the Riemann metric [11]: 

 

        

 

 

, 0

0 ,

0

t
t t t


  





   







A

Ω

 (5.13) 

where  . ,    denotes the Christoffel operator [11]. In a flat vector space, the solution of 

the Cauchy problem in eq. (5.13) is trivial, since the Christoffel operator is identically zero, 

than we have: 
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A A Ω

Ω

 (5.14) 

The eq. in eq. (5.14) can be easily rewritten as function on the point B by setting: 

  1 .      B A Ω Ω B A  (5.15) 

 

Figure 5.2. Geodetic curve in a flat Euclidean space. 
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5.4 Manifold of the symmetric positive-definite matrices  

The manifold of the positive-definite symmetric matrices, P, can be defined in two 

different ways [11], but both of them yields the same Riemann structure defined as the 

scalar product in the tangent space at any point A. We can define P as: 

1. Quotient space of the General Linear group with respect to the Orthogonal group:  

      / .P n GL n O n  (5.16) 

2. Invariance under coordinate transformations. Formally we can defined P as the 

set of the equivalence class under the transitive action of GL(n) defined as: 

 
 

,

.

T

GL n

   



A A A R A RAR

R
 (5.17) 

It can be proved that, the scalar product at a point A between two vectors 

, T P
A

Ω Θ  is given by: 

    1 1 1 2 1 1 2, tr tr .     
A

Ω Θ ΩA ΘA A ΩA ΘA  (5.18) 

The equation of the geodetic in the manifold P can be obtain as solution of the Cauchy 

problem in eq. (5.13) with a Christoffel symbol given by [11]: 

    1 11
, .

2

    
A
Ω Θ ΩA Θ ΘA Ω  (5.19) 

Finally, the closed form of the geodetic equation on P is: 

 
   

   1 2 1 2 1 2 1 2

0 ; 0 ,

exp .

P T P

t t

 

  

   



A
A Ω

A A ΩA A
 (5.20) 

As before, the geodetic can be expressed as function of the ending point B, by setting: 

    1 2 1 2 1 2 1 21 exp ,   B A A ΩA A  (5.21) 

and then, through some algebra, we get: 

  1 2 1 2 1 2 1 2log , Ω A A BA A  (5.22) 

and finally, by substituting eq. (5.22) in eq. (5.20), we obtain: 
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     1 2 1 2 1 2 1 2exp log .t t   A A BA A  (5.23) 

 

Figure 5.3. Gedetic on the manifold P. 

 

5.5 Distance between two points on P 

Using the eq. (5.12) and the scalar product in eq. (5.18), we can define the distance 

between two points A and B. Noticing that  t T P 
A , we have: 

    
 

   
 

1
1 1

2

0 0
, , ,

t t
d t dt t t dt

 
    A B  (5.24) 

where    
 

,
t

t t


   is defined in eq. (5.18). From eq. (5.20), ( )t  can be calculated as: 

       1 2 1 2 1 2 1 2 1exp log ,t t t     ΩA A BA A ΩA  (5.25) 

then  
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 (5.26) 

By substituting eq. (5.26) in eq. (5.24), we get: 

      
21 2 1 2

1

, log log ,
n

i
F

i

d  



  A B A BA  (5.27) 
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where λi are the eigenvalues of the generalized problem A-λB or B-λA or equivalently the 

eigenvalues of the matrix A
-1/2

BA
-1/2

. 

 It can be noted that the integral in eq. (5.24) can be rewritten in terms of the 

infinitesimal arc length of ds as: 

  , ,d ds 
B

A
A B  (5.28) 

where the infinitesimal arc length can be obtained as: 

    
 

           2 2
2 2 1 1 2, tr tr ,

t
ds t t dt t t t d t dt


          (5.29) 

that is called Siegel metric [1], [2], [3].  

 

5.6 Characterization of two intrinsic mean operators 

5.6.1 The Karcher-Fréchet (KF) mean 

Given a Riemann manifold M and a distance d(·,·) on M, the KF mean is characterized 

by the variational property [5], [6]: it minimizes the sum of the squared distances to the 

given points mk: 

  2

1

arg min , .
n

k
M k

d
 

 
m

m m m  (5.30) 

Proposition 2: The Riemann barycentre of n points m1,…,mn of a manifold M with non 

positive sectional curvature always exists and it’s unique [5] [6]. 

In our case the manifold is P and the distance is defined in eq. (5.27), then: 

 

   

  

2
2 1 2 1 2

1 1

2 1 2 1 2

1

arg min , arg min log

arg min log .

n n

k k
FP Pk k

n

k
P k

d  

  

 

 

  



 



A A

A

A A B A B A

tr A B A

 (5.31) 

In the following, we try to get a closed form solution for the minimum problem in eq. 

(5.31). First, we start to define the gradient of a function defined on a manifold M. 
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For a real valued function f(A) defined on a Riemann manifold M (in our case P), the 

gradient f  at point MA  is the unique tangent vector defined implicitly as: 

    0, ,t

d
f f t

dt
  

A
Ω  (5.32) 

where ( )t  is a geodetic emanating from A in the direction of Ω, and , 
A

 denotes the 

Riemann inner product on the tangent space (in our case, it is given in eq. (5.18)). 

Now, we can define an objective function as: 

     2 1 2 1 2

1

log .
n

k

k

f  



A tr A B A  (5.33) 

In order to find out the minimum of eq. (5.31), we have to minimize the function 

f(A) defined in (5.33), then we have to set to zero its gradient: 

   .f 


A 0
A A

 (5.34) 

It can be proofed ([5], [10]) that, in our case, the gradient at a point A is given by: 

    1 2 1 2 1 2 1 2

1

log ,
n

k

k

f  



  A A A B A A  (5.35) 

then, forcing eq. (5.35) to zero, we get:  

    1 2 1 2

1

log .
n

k

k

f  



   


A 0 A B A 0
A A

 (5.36) 

The solution of the non linear matrix equation cannot be given explicitly except for 

the case with n=2. In such a case, the Riemann barycentre between two symmetric positive-

definite matrices is given by any of the six equivalent expressions [5] [10]: 

 
       

   

1 2 1 2 1 2 1 2
1 1 1 1

1 1 2 2 2 1 2 1 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 1 1 2 2 1 2 2 .

   

   

    

 

A B B B B B B B B B B B B

B B B B B B B B B B
 (5.37) 

In the case of n>2, an iterative gradient descent algorithm can be used to evaluate the KF 

mean. Let f(A) the objective function to minimize (in our case it is eq. (5.33)), and let 
tA  

be the current estimation of the minimum point A  and  f A  the gradient at point A . 
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The principle of a first order gradient descent algorithm is to go toward the steepest 

descent, in the direction opposite to the gradient for a short time-step ε, and iterate the 

process. However, the standard operator, given by: 

  1t t tf   A A A  (5.38) 

is only valid for very short time steps in the flat Euclidean matrix space, and we could 

easily go out of the cone of symmetric positive definite matrices. A much more interesting 

numerical operator is given by following the geodesic backward starting at 
tA  with tangent 

vector  tf A  during a time  . This intrinsic gradient descent ensures that we cannot 

leave the manifold P. The recursive formula can be easily expressed using the exponential 

map as [1]: 

 

    

 

1 2 1 2 1 2 1 2

1

1 2 1 2 1 2 1 2

1

exp

exp log .

t t t t t t

n

t t k t t

k

f  



 



 



    

 
  

 


A A A A A A

A A B A A
 (5.39) 

It can be proofed that the manifold of symmetric positive definite matrices P has a 

non positive curvature, so that there is one and only one mean value A  (Prop. 2). 

 

5.6.1.A The KF mean as ML estimator for the mean value of a set of i.i.d. 

Gaussian distributed matrices 

The Gaussian probability density function (pdf) on P is defined as [4] [22]: 

    21
exp ,

2
f h 

 
  

 
A Ω

A A  (5.40) 

where h is a normalization constant and the quadratic form 2
Ω

 can be expressed as: 

    2 1vec[ ] vec ,H 
Ω MA MA

A Ω C Ω  (5.41) 

and 

  1 2 1 2 1 2 1 2log   
MA

M M AM M  (5.42) 

is the tangent vector at the mean value M to a point A on P. 
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The symbol “vec” defines the operator that arranges in an unique column vector the 

columns of a matrix and C is the covariance matrix. 

Now we proof that the Karcher mean defined in eq. (5.36) represent the ML estimator 

for the mean value M. 

Theorem 1: Let 
1{ }K

k kA  be a set of K Hermitian positive definite matrices sampled from a 

Gaussian pdf defined on P, with mean value M and covariance matrix  C M M . Then 

the ML estimator ˆ
MLM  of the mean value M, is the Karcher mean of the set 

1{ }K

k kA . 

Proof. 

First, we define a set of K independent samples from the Gaussian pdf in eq. (5.40), i. e. 

1{ }K

k kA . The joint pdf of this set of sample is the product of the marginal pdf: 

      2 2

1

11

1 1
, exp exp .

2 2

K K
K

K k k

kk

f A A h h 


  
      

   
 Ω Ω

A A  (5.43) 

Through some matrix manipulation and with the particular choice of the covariance matrix 

C such that  C M M , eq. (5.43) can be rewritten as: 

     2
1 2 1 2

1

1

1
, exp tr log .

2

K
K

K k

k

f A A h  



 
  

 
 M A M  (5.44) 

From the joint pdf in eq. (5.44), the log-likelihood function of the mean value M is 

(ignoring constants): 

     2
1 2 1 2

1

1
tr log .

2

K

k

k

l  



  M M A M  (5.45) 

The ML estimator of the mean value M can be found by setting to zero the derivative of the 

log-likelihood function with respect to M: 

   ˆ .
ML

l


 
M M

M 0  (5.46) 

This problem is formally identical to the one expressed in eq. (5.34) that defines the 

Karcher mean. In fact, the log-likelihood function defined in eq. (5.45) and the matrix 

function defined in eq. (5.33) are equal. Then, we can write: 
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    1 2 1 2

ˆ

1

ˆ ˆlog .
ML

n

ML k ML

k

l  




   M M
M 0 M A M 0  (5.47) 

          ■ 

This concludes the proof. 

Other work is needed to generalize this Theorem to Gaussian matrices with arbitrary 

covariance matrix C. 

 

5.6.2 The Log-Euclidean (LE) mean 

In this section we introduce another algorithm to compute the mean on P. To derive the 

recursive formula in eq. (5.39), we have used the geometrical property of the manifold P. 

The problem of finding the mean of a set of symmetric positive-definite (spd) matrices 

could be solved using, instead of the geometrical structure, the Lie Group structure of P [8], 

[9], [15]. This approach leads us to a closed form for the mean expression that is slightly 

different from the optimal solution in eq. (5.39) but that can be computed approximately 20 

times faster [8]. The basic idea is to give to the group of the symmetric positive-definite 

(spd) matrices a vector space structure. Of course, this doesn’t mean that the space of the 

sdp matrices is a vector subspace of the vector space of the squared matrices. The idea is to 

use the logarithm function as an isomorphism between P and the vector subspace of the 

symmetric matrices as shown in the Preliminaries. The question of whether or not the sdp 

matrix space is a vector space depends on the vector space structure we are considering, 

and not on the space itself.  

A vector space can be defined as ( , , )V   where V is a set,   is an inner operator, 

i.e. given 1 2,v v V  then 1 2v v V  , and  is the scalar multiplication, i. e. ,v V 

, then v V  . An example is given by the classical vector space in n  as ( , , )n    

where + is the classical addition between two vector and λ is the classical multiplication 

between a scalar and a vector. Now, we want to define a vector space on P. We can endow 

P with a vector space structure ( , , )P   by defining a inner operator as [8]: 

     , , exp log log .P  A B A B A B  (5.48) 
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With this definition of “addition” we have that the neutral element is the usual identity 

matrix and the inverse is the inverse in the matrix sense. Moreover, whenever two sdp 

matrices commute in the matrix sense, the sum defined in eq. (5.48) is equal to their matrix 

product. Finally, such addition is commutative. 

 The scalar multiplication can be defined as: 

   , , exp log .P       A A A A  (5.49) 

Now we can define the Log-Euclidean mean. It is well known that, in a vector space 

structure, the mean can be evaluated as: 

 
1

1
.

N

i

i

v v
N 

   (5.50) 

Since we have endowed the set of the sdp matrices with a vector space structure, we can 

use the Euclidean mean to compute the mean on P. Then, we have: 

  
1

1
exp log .

N

i

iN 

 
  

 
A A  (5.51) 

 

Figure 5.4: Log-Euclidean mean. 
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5.6.3 Comparison between the KF and the LE means 

In this section, we give a brief explanation about the difference between the KF mean 

in eq. (5.39) and the Log-Euclidean mean in eq. (5.51). The main difference is that the KF 

mean is affine invariant, i. e. for all invertible matrix C, we have: 

 ,T T

i Riemanni CB C CA C  (5.52) 

that means that if we make a change of coordinates for all the matrices Bi to be averaged, 

then the resulting KF mean will be affected by the same change of coordinates.  

It can be proofed ([8],[9]) that the Log-Euclidean mean is not full affine invariant, but 

is only invariant to rotations and scaling, i. e. if we indicate with R a rotation matrix and 

with α>0 a scaling factor, we have: 

         .
T T

i Log Euclidean   R B R R A R  (5.53) 

Finally, we give a criterion for the equality of the two means: 

Preposition 3: Let 
1{ }N

i iB  be N sdp matrices, and let L  be the Euclidean mean of their 

logarithms, i.e.  
1

1 log
N

ii
N


 L B , if L  commutes with all log( )iB , then the Log-

Euclidean and the KF means are identical [8].  

 

5.7 Radar target detection in the presence of additive 

clutter 

Here, we give a short explanation of a possible application of the theoretical concepts 

discussed in this Chapter. In particular, we try to apply this new geometric concept to the 

radar detection in additive clutter. First, we briefly recall this well-known detection 

problem. 

The problem of detecting a target signal in additive clutter can be stated in terms of the 

following binary hypotheses test for kth cell as:  
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where z
k
, s and c

k
 are N-dimensional complex vectors that represent the temporal samples 

from the kth cell. The desired signal s can be modelled as s=αp where p is the target 

steering vector and α is a random parameter accounting for the channel propagation effect 

and the target radar cross section. From (5.54) we can calculate the covariance matrix of the 

temporal sample vector z
k
 for each cell as: 
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 (5.56) 

 

Figure 5.5. Scenario’s geometry 

 

There are two key points in all the radar detection algorithms: 

1. The decision rule, 

2. The estimation of the clutter covariance matrix. 

The classical approach to the radar detection problem is based on two fundamental 

papers  [12], [14]. In the first paper, the authors show the optimal detection rule (i. e. a rule 

that maximizes the probability of detection given a certain value of the false alarm 

probability) under the hypothesis of Gaussian clutter. They show that the optimum filter is 

composed of two cascaded operations: the (linear) transformation of the disturbance 

correlated component (clutter) into white noise; the result of this operation is then 

multiplied by the steering vector to enhance the useful signal (matched filter), if present. 

The second fundamental paper describe how to estimate the clutter covariance matrix from 

the received data, necessary to decorrelate the disturbance. 
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Using the theoretical concepts discussed in the previous sections, in [1], [2] and [3] a 

new approach both for the decision rule and for the clutter covariance matrix estimation is 

introduced. In the next Section, a comparison between the classical decision rule and a new 

rule based on the Riemann geometry is made in the ideal case i. e. when the clutter 

covariance matrix is assumed known. Then, we discuss various estimation algorithms for 

the clutter covariance matrix. 

 

5.7.1 Comparison between the classical decision criterion and the 

Riemann distance based criterion 

 In this section, we provide a comparison between the classical decision rule, based 

on the maximization of the signal to noise (SNR) ratio, and the new criterion based on the 

structure of the covariance matrix set. Using the notation introduced in the previous section, 

we define with Nz , N s p  and Nc  the N-dimensional complex vectors that 

represent the received data, the signal  and the interference noise (clutter). For ease of 

notation, in the following discussion, the index of the cell under test is neglected.  

 

A. Classical decision rule 

  In the classical decision theory, the decision rule is defined as follows: 

 
0

1

,
H

H

y   (5.57) 

where the statistic y is the output of a linear filter given by [12]: 
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  w z  (5.58) 

The mean value and the variance of y, given H1 or H0, can be expressed as: 
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 (5.59) 

  var .Hy  w Mw  (5.60) 
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The optimum decision criterion for detecting the signal s in presence of clutter c is the 

likelihood ratio test: 

 
 
 

0

1

1

0

,
H

H

f y H

f y H
  (5.61) 

where 1( )f y H  and 0( )f y H  are the probability density functions (pdfs) of the statistic y 

given the hypotheses H1 or H0 respectively. It can be proved [12] that, if the clutter is zero-

mean, Gaussian-distributed complex random vector, the likelihood ratio test in eq. (5.61) is 

equivalent to maximize the output signal to noise ratio given by [12]: 

 

2

.

H

out H
SNR 

w s

w Mw
 (5.62) 

It can be shown [12] that the maximum of the outSNR  is obtained for a weight vector 

 1 1 .q q  w M s M p  (5.63) 

where q is a complex constant not equal to zero and p is the steering vector. In the 

following, q is supposed to have unit value. By substituting the weight vector in eq. (5.62) 

and by assuming known the clutter covariance matrix M, we get the maximum of the 

output signal to noise ratio as: 

  
2 1max H

outSNR  
w

p M p  (5.64) 

By using the weight vector in eq. (5.63), we can write the expression of the statistic y as: 
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 (5.65) 

In [12], it is shown that the linear filter in eq. (5.58) with a weight vector given by eq. 

(5.63), is the filter that gives the maximum probability of detection PD for a prescribed 

probability of false alarm PFA. The probability of detection can be written in closed form as 

function of the PFA (for a Swerling 1 target model) as [16]: 
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p M p  (5.66) 
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where Q(·) is the Marcum function and σα
2
 is the variance of the parameter α. 

 

B. Riemann distance-based decision rule 

As proposed in [1], [2] and [3], the decision rule based on the Riemann distance is: 

  
0

1

ˆ, ,
H

k

H

d M R  (5.67) 

where d(·,·) is defined in eq. (5.27). Now, we want to evaluate the statistic under the two 

hypotheses 0H  and 1H . By assuming known the clutter covariance matrix M, we have: 

 Hypothesis H0. In this case, the average clutter covariance matrix evaluated on the 

cells neighbouring to the one under test and the clutter covariance matrix for the 

cell under test are equal: k M R M . Then the decision rule becomes: 

    , , 0.kd d M R M M  (5.68) 

 Hypothesis H1. In this case we have that the average covariance matrix is equal to 

the nominal one, M M , but, according to eq. (5.56), the covariance matrix for 

the cell under test is 
2k H

 R pp M . Then the decision rule becomes: 
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 Finally, the previous result can be summarized as follows: 
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In order to compare the two algorithms, we can define an output signal plus noise-to-noise 

ratio as: 
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that gives us an idea about how much ‘larger’ is the decision statistic when a target occurs 

with respect to the case in which only the noise is present. In the classical case we have: 
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We cannot calculate this statistic for the Riemann-distance-based algorithm because of the 

value of statistic, in the ideal case, doesn’t depend on the clutter data. Keeping in mind that 

the two expectation operators in eq. (5.72) represent the power of the decision’s statistic, 

we can link the Riemann distance with these two quantities: 

    1 1 0 0

22

, .H H H HE y d E y d  (5.73) 

If we use the (monotonic) exponential function to link the quantities in eq. (5.73), 

we achieve following result. So, we have: 
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 (5.74) 

As we can see, using the exponential (then monotonic) transformation, the two algorithms 

have the same performance in terms of output signal plus noise–to-noise ratio. This means 

that, instead of the decision rule in eq. (5.67), we must use the equivalent decision rule: 

   
0

1

ˆexp ,
H

k

H

d M R . (5.75) 
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5.8 Comparison among covariance matrix estimation 

algorithms 

In this Section, five different algorithms for the estimate of the clutter covariance matrix are 

discussed. The first is the classical one, the Sample Covariance Matrix (SCM) estimators, 

then three other estimator, based on a different definition of matrix mean, are introduced. 

Finally, an estimator based on the MEM algorithm is discussed. Moreover, an explicit 

formula of the Implicit (i. e. based on the intrinsic geometrical characteristics of the 

manifold of the Hermitian positive-definite matrices) Cramér-Rao Lower Bound (CRLB) 

and the flat (i. e. based on the assumption of that the manifold of the Hermitian positive-

definite matrices is an Euclidean space) CRLB is given. Finally, all the estimators are 

compared with these two bounds.  

 

5.8.1. Sample Covariance Matrix (SCM) 

 The SCM method is the most used method to estimate the covariance matrix of a 

set of data and, in our specific case, of clutter data. This algorithm assumes implicitly the 

stationarity of the clutter, i. e. the clutter covariance matrix is the same for the all the data. 

In formula, the SCM estimator can be expressed as: 

 
1

1ˆ
( ) ,

K
k k H

SCM

kK 

 M z z  (5.76) 

where z
k
 is the kth data vector coming from the kth cell (see fig. 5.6). In order to assure that 

the estimated covariance matrix is positive-definite the number of data used for the 

estimation must be greater than the dimension of the data vector, then according to the 

notation introduced before, K N . However, as show in [14], the condition K N  

doesn’t assure a good output SNR. The loss in output SNR due to the use of the SCM 

instead of the true clutter covariance matrix, expressed in decibels, is: 

    10loss 10log 2 1 .K N K        (5.77) 

If one wishes to maintain an average loss less than  3 db, by eq. (5.77) the number of data 

must be 2 3 2K N N   . 
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5.8.2 Matrix Means 

 The next three estimators are based on the idea of averaging the clutter covariance 

matrix relative to each cell of the secondary data, i. e. 
1,

ˆ{ }k K

k k k 
M  where k  is the index of 

the cell under test. The following three estimators differ for the particular definition of 

matrix mean: the first estimator is based on the classical Euclidean definition of matrix 

mean while the others are based on a non-Euclidean definition. Before applying these three 

algorithms, we need an estimation of the clutter covariance matrix for each cell. In the next 

subsection we discuss a method to get such estimation, then the three algorithms to 

compute the matrix mean are described. 

 

5.8.2.1 Estimation of the covariance matrix for each cell through MEM 

algorithm. 

 For each cell, we have at disposal N complex samples, collected in the vector z
k
. 

The idea is to estimate the Power Spectral Density (and then, the autocorrelation function) 

of the clutter in a given cell k from the data vector z
k
. In [17], the Maximum Entropy 

Method (MEM) is used to estimate the clutter’s PSD. In this paper, the authors suggest to 

use the Burg’s algorithm for the clutter spectrum estimation in order to design the optimum 

filter for clutter cancellation. It can be shown [17] that, applying the MEM algorithm to 

estimate the PSD of a process whose only N samples, i. e. 
1{ }k N

n nz 
, are known, is formally 

equivalent to assume an autoregressive (AR) model of order O for the discrete random 

process k

nz  and then to estimate the set of coefficients 1{ }O

p pc   and the order O from the 

process known samples 
1{ }k N

n nz 
. In formula, the AR model can be expressed as: 

 
1

,
O

k k

n p n p n

p

z c z e



   (5.78) 

where en is a discrete, zero-mean, white Gaussian-distributed random process with variance 

2

e . As discussed in [17], an estimate of the set of coefficients 1{ }O

p pc   and of the noise 

variance 2

e  can be obtained through the recursive Burg’s algorithm [18]. Particular 

attention has to be paid on the choice of the order O of the autoregressive model in eq. 
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(5.78). An often used criterion for the selection of O is due to Akaike [18], [19] and is 

known as the Final Prediction Error (FPE). It can be shown that the FPE relative to N 

samples of an AR model of order O is: 

    21
ˆ ,

1
e

N P
FPE O O

N P


 


 
 (5.79) 

where 2ˆ ( )e O  is the estimated noise variance for a given model order O. The choice of O 

can be made by applying the Burg algorithm repeatedly to the same group of N samples 

increasing the model order O up to N/2 (in order not to use overlapping data) and selecting 

the value that minimizes the FPE, i. e. 

   ˆ arg min .
O

O FPE O  (5.80) 

However, in literature are present a lot of possible improvement for the Akaike criterion. 

As an example we refer to [23], [24] and [25]. 

 Now, we can return to the main problem: the estimation of the clutter covariance 

matrix. It is possible to show that the inverse of the clutter covariance matrix ˆ k
M  can be 

directly calculated from the estimated coefficients 
ˆ

1
ˆ{ }O

p pc 
 and from the estimated noise 

variance 
2 ˆˆ ( )e O  through the Gohberg-Semencul formula [20], [21]. Such formula can be 

expressed as: 

    
1

2

1 1 2 2
ˆ ,k H H

e


 M A A A A  (5.81) 

where A1 and A2 are two triangular N N  Toeplitz matrices given by: 
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 The processing chain for the estimation of the covariance matrix based on the 

matrix means is shown in fig. 5.6. 

 

Figure 5.6 Processing chain for the estimation of the covariance matrix based on the matrix means. 

 

 

 

5.8.2.2 Euclidean Mean. 

The Euclidean mean (EM)-based estimator is the first of three different covariance 

matrix estimator based on three different definitions of “mean” for a set of covariance 

matrices. The Euclidean mean-based algorithm assumes an Euclidean (flat) space for the 

covariance matrices, then the resulting definition of mean is the classical one: 

 
1

1ˆ ˆ ,
K

k

E

kK 

 M M  (5.84) 

where ˆ k
M  is the estimated covariance matrix of the kth cell obtained as described in 

subsection B.1.  
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5.8.2.3 Log-Euclidean Mean. 

 The Log-Euclidean Mean algorithm is based on the Lie Group structure of the set 

of the positive-definite Hermitian matrices. The entire procedure to evaluate such mean is 

addressed in Section 5.6.2. The closed form of the Log-Euclidean Mean is: 

  
1

1ˆ ˆexp log ,
K

k

LE

kK 

 
  

 
M M  (5.85) 

where ˆ k
M  is the estimated covariance matrix of the kth cell. Such estimate can be obtained 

through the procedure discussed in subsection B.1. 

 

5.8.2.4 Karcher–Fréchet (KF) Mean. 

The KF mean algorithm exploits the geometrical structure of the set of the positive-definite 

Hermitian matrices to get a recursive formula for the evaluation of the average clutter 

covariance matrices. Such formula can be expressed as follow: 

  1 2 1 2 1 2 1 2

1

1

ˆ ˆ ˆ ˆ ˆˆexp log ,
K

k
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k

  





 
  

 
M M M M M M  (5.86) 

where, as before ˆ k
M  is the estimated covariance matrix of the kth cell. In the following, 

we describe how the gradient descent algorithm in eq. (5.86) is implemented. 

 Input data 

1. Set of estimated covariance matrices 1
ˆ{ }k K

kM , 

2. Step size ε, 

3. Maximum number of iterations N_max, 

4. Stop condition δ. 

 Initialization:  

In [5], it is shown that a close form solution for the eq. (5.36) can be obtained in the 

case of K = 2 (eq. (5.37)). Then, as starting point, we choose the Riemann barycentre 

of two estimated matrices, e. g. 
1 1 1 2 1 2

0
ˆ ˆ ˆ(( ) )M M M M . 
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5.8.3 Burg-based estimator 

 Another covariance matrix estimator can be easily obtained by applying to all the 

secondary data the procedure used to estimate the clutter covariance matrix for each cell. In 

fact, under the assumption of clutter homogeneity, we can set up all the secondary data in a 

unique vector as: 

  1( ) ( ) ( ) ,
T

T k T K T z z z z  (5.87) 

and then apply exactly the same procedure as described in Section B.1. In this case we have 

at disposal N K  complex samples, unlike the previous case where we have only N 

complex samples. First, we apply the Burg algorithm on the N K  complex samples to get 

an estimate of the AR coefficients. The order of the model is selected according to the 

Akaike information method as before. Finally, through the Gohberg-Semencul formula, we 

get the estimate of the clutter covariance matrix.  

 

 

5.8.4 Intrinsic and Flat Cramér-Rao Lower Bounds 

 In [11], the Intrinsic and the Flat Cramér-Rao Lower Bounds for the covariance 

matrix estimation is evaluated. Here we recall only the main theorems, for all the 

mathematical details we refer the fundamental paper [11]. 

 Let  1 2, , , KZ c c c  be an N K  matrix whose columns are independent and 

identically distributed (iid) zero-mean complex Gaussian random vector with covariance 

matrix M. The pdf of Z is: 

    1tr1
.

H

KNK
f e






ZZ M
Z M

M
 (5.88) 

The log-likelihood of this function is (ignoring constants): 

    tr ln ,HL K  Z R ZZ M  (5.89) 

and the SCM, i. e. 1ˆ HK M ZZ , is the maximum likelihood estimate of M. 
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 The following theorems show the CRLB in both flat and Riemann metric on the 

estimate of the covariance matrix from a set of complex data vector Z. 

Theorem 2 [11, Theo 5]: The CRLB on the flat distance (i. e. the Frobenius distance) 

between any unbiased covariance matrix estimator M̂  of M is: 

 
     

1
2 22

,
ii ii jji i j

F
K




 
 
 
 

 M M M
 (5.90) 

where K is the number of secondary data and  
2

ˆ
F

F
E  M M . 

Theorem 3 [11, Theo 4]: The CRLB on the Riemann distance given in (5.27) between M 

and any unbiased covariance matrix estimator M̂  of M is: 

 ,I

N

K
   (5.91) 

where N is the dimension of the data vector, K is the number of secondary data and 

2ˆ{ ( , ) }I E d  M M  is the root mean squared error in Riemann distance. 

 

5.8.5 Comparison among the covariance matrix estimators 

performance 

 The following figures show the comparison among the five estimation algorithms. 

The comparison is performed in terms of error mean value and RMSE evaluated in both flat 

and Riemann distances. The numerical values used in the simulations are: 

 Dimension of the data vector N = 16; 

 Numbers of independent Monte Carlo runs is equal to 100. 

 The clutter model is an autoregressive model of order 1. The autocorrelation 

function of such clutter is: 

   2 m

cr m    (5.92) 
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where the clutter power 2

c  is assumed to be equal to 1 and 2 1000.98 j PRFe   . 

The considered PRF is 1000 Hz. 
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Figure 5.7 Clutter Power Spectral Density. 
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Figure 5.8 Error mean value of the five estimators in flat distance. 
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Figure5.9 RMSE and flat CRLB  of the five estimators in flat distance. 

 

 Figures 5.8 and 5.9 show the error mean value and the RMSE of all covariance 

matrix estimators evaluated with the flat (Euclidean) metric. As we can see, the SCM is 

(asymptotically) unbiased and efficient estimator with respect to the flat metric. This is an 

expected result, in fact the SCM is a Maximum Likelihood estimator. The other estimators 

(Euclidean mean, Log-Euclidean mean, KF mean and the Burg’s algorithm based) are 

biased and not efficient.  
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Figure 5.10 Error mean value of the five estimators in Riemann distance. 
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Figure 5.11 RMSE and Intrinsic CRLB  of the five estimators in Riemann distance. 

 

Figures 5.10 and 5.11 show the error mean value and the RMSE of all covariance 

matrix estimators evaluated in Riemann metric. In this case, as discussed in [11], the SCM 

is neither unbiased nor efficient estimator with respect to the Riemann metric. The 

fundamental difference between the flat distance and the Riemann distance becomes clear 
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by comparing figs. 5.8 with 5.10 and fig. 5.9 with 5.11. Since the covariance matrix to be 

estimated has dimension equal to 16 16 , if we use a number of sample less than 16 in the 

SCM estimation, the resulting matrix will be singular. In fact, if we consider the error mean 

value in Riemann distance (fig. 5.10), for a number of secondary data less than 16, it is very 

high (theoretically it must be equal to infinity). On the other hands, if we evaluate the error 

mean value in flat distance (fig. 5.8), there is no discontinuity with respect to the number of 

secondary data: the error decreases monotonically and in a continuous way. However, the 

RMSE curves in fig 5.11, except for the one of the SCM estimator, present a strange 

behaviour: they are under the root of the Intrinsic CRLB. 

 

 

5.9 Detection performance 

In this Section, we compare the performance in terms of ROC curves for four 

covariance matrix estimation algorithms described in Section 5.8: the classical SCM, the 

Euclidean matrix mean, the Log-Euclidean matrix mean and the KF mean. As decision test, 

we use the Kelly’s GLRT [13]. The simulated clutter is modelled as an autoregressive 

process of order 1 as described in Section 5.8.5. 

The hypotheses testing model is: 

 0

1

:
, 1, , ,

:

k k k

k k k

H
k K

H

  


  

z c n

z s c n
 (5.93) 

where: 

 c
k
 is the clutter process. To model the complex clutter, we use an autoregressive 

model of order 1. The autocorrelation function is 
2[ ]

m

cr m    with 2 0.8c   and 

2 1000.98 j PRFe   . The considered PRF is 1000 Hz, 

 n
k
 is the thermal noise, modelled as a white Gaussian discrete random process, 

independent from c
k
 with variance (for each component) of 2 0.2n  , 

 Size of the data vector: N = 16, 



189 
 

 Numbers of independent Monte Carlo runs is equal to 10
3
. 

Since the clutter and the thermal noise processes are independent, the total noise power is 

equal to 1. To make the model in eq. (5.93) more realistic, we have to take into account the 

effects of another disturbance: the radio frequency interference (RFI). The RFIs, also called 

outliers, can be modelled as: 

  ,

k k k

d ofo p , (5.94) 

where k  is a Gaussian random variable, with zero mean and variance equal to 
2

 , 

,( )k

d ofp  is the steering vector defined for a normalized Doppler frequency ,

k

d of  generated as 

a random variable uniformly distributed in the interval [-0.5;0.5]. In our simulation, we 

added 4 outliers with a power five times bigger than the clutter power. The specific range 

cells in which the outliers are located, are chosen randomly. For a fixed signal-to-noise 

ratio (in our simulation, we set SNR = 10dB), we evaluate the ROC curves for 2N (figs. 

5.12 and 5.13) and N (figs. 5.14 and 5.15) secondary data, where N is the dimension of the 

snapshot for each range cell. The simulations show that: 

1. The ROC curves relative to the matrix mean-based estimators (Euclidean mean, 

Log-Euclidean mean and KF mean) are always higher than the ROC curves 

relative to the SCM. This means that, given a value of PFA, using a matrix mean 

based covariance matrix estimation algorithm, it is possible to reach a higher value 

of PD. 

2. The matrix mean-based estimators are robust with respect to the number of 

secondary data used to estimate the clutter covariance matrix. Figs 5.14 and 5.15 

show that the gap is very high when the number of secondary data is lower than 

the one prescribed by the “RMB condition” discussed in [14].  

3. The ROC curves relative to the Log-Euclidean mean and to the KF mean are 

almost identical. 

4. The Log-Euclidean mean and the KF mean are more robust with respect to the 

presence of outliers than the Euclidean mean. This is an expected result, because 

both the Log-Euclidean mean and the KF mean can be interpreted as a sort of 

geometric mean for a matrix space. 
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Figure 5.12 Comparison among different covariance matrix estimation algorithms without outliers with 2K 

secondary data with SNR=10dB. 
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Figure 5.13 Comparison among different covariance matrix estimation algorithms in presence of outliers with 2K 

secondary data with SNR=10dB. 
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Figure 5.14 Comparison among different covariance matrix estimation algorithms without outliers with K 

secondary data with SNR=10dB. 
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Figure 5.15 Comparison among different covariance matrix estimation algorithms in presence of outliers with 2K 

secondary data with SNR=10dB. 
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5.10 Summary 

In this Chapter, a new approach to the radar target detection and clutter suppression 

problem is described. This new approach is based on a non-Euclidean description of the 

geometry of the of covariance matrices. First, we proved that the KF mean is a Maximum 

Likelihood estimator for a set of i. i. d. Gaussian distributed random matrices. Then, five 

different covariance matrix estimators are described and compared with both the Flat and 

Intrinsic Cramér-Rao Lower Bounds. Finally, the performance in terms of ROC curves for 

such covariance matrix estimators are evaluated using the Kelly’s GLRT as decision rule. 

However, the present work is only a preliminary study on the geometrical approach to 

target detection and a lot of work has to be done. In particular, it will be very important to 

understand the behaviour of the RMSE curves with respect the Intrinsic CRLB. 
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Concluding remarks 

In this dissertation, a notional multi-sensor system acting in a maritime border control 

scenario for Homeland Security (HS) has been considered and two important aspects 

investigated. In the first part of the work, we focused on a particular sensor in the system, 

i.e. the airborne radar. The tracking performance of this sensor has been investigated in the 

presence of the atmospheric turbulence and the losses in tracking accuracy has been 

evaluated. The simulations have shown that the atmospheric turbulences cause a 

degradation of the tracking performance for the estimate of the target velocity vector, while 

the losses in the estimate of the target position vector are almost negligible.  A modification 

of the classical Kalman Filter (KF) equations is then provided in order to mitigate the 

effects of propagation errors due to tropospheric refraction. Simulation results have shown 

the effectiveness of the proposed algorithm and its ability to mitigate the effects of the 

tropospheric errors on the estimated target state vector. In addition, it seems to be robust 

with respect to the random variations of the tropospheric refractive index. In the second part 

of the work, the fundamental problem of sensor registration, or grid-locking problem, has 

been investigated. First, the relative grid-locking problem has been accurately analyzed and 

two different estimation algorithms have been provided, a linear least squares (LS) 

algorithm and an Expectation-Maximization (EM) algorithm. Moreover, a performance 

bound, the Hybrid Cramér-Rao lower bound (HCRLB) has been evaluated in order to 

assess the efficiency of the proposed algorithm. Both a single target scenario and a multi-

target scenario are analyzed. The numerical results have shown that the EM algorithm 

generally outperforms the linear LS algorithm, even if it is not always tight to the HCRLB. 

Also the identifiability problem for the sensor registration has been considered and some 

new results derived. Then, a generalization to the absolute grid-locking problem of both the 

algorithms has been provided. However, such generalization is not so straightforward and 

some additional work is needed in order to definitely solve the absolute grid-locking 

problem. Finally, a theoretical fundamental problem for a huge quantity of practical 

applications has been taken into account in this dissertation, i.e. the problem of adaptively 

estimating the disturbance covariance matrix. Recently, a new geometrical concept has 

been applied to this particular estimation problem, the Riemann geometry. An overview on 

the state of the art of the application of the Riemann geometry for the covariance matrix 

estimation has been described and compared with both the Flat and the Intrinsic Cramér-
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Rao Lower Bounds. Finally, the performance in terms of Receiver Operating 

Characteristics (ROC) curves for such covariance matrix estimators are evaluated using the 

Kelly’s GLRT as decision rule. However, there is a lot of work left to do on this topic and 

many aspects (for example, the behaviour of the Mean Square Error of the covariance 

matrix estimators with respect to the Flat and the Intrinsic CRLB) is still not clear and need 

to be further investigated. 

 


