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Singular Spectrum Analysis and Adaptive Filtering:  

a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments 

 

Abstract 

Functional Magnetic Resonance Imaging (fMRI) is used to investigate brain functional connectivity 
at rest after filtering out non-neuronal components related to cardiac and respiratory processes 
and to the instrumental noise of MRI scanner. These components are generally removed at their 
fundamental frequencies through band-pass filtering of the Blood-Oxygen-Level-Dependent 
(BOLD) signal (low-frequency band – LFB: 0.01–0.10 Hz) while General Linear Model (GLM) is 
usually employed to suppress slow variations of physiological noise in the LFB, using a signal 
template derived from non-neuronal  regions (e.g. brain ventricles). However, these sources of 
noise exhibit a non-stationary nature due to the intrinsic time variability of physiological activities 
or to the nonlinear characteristics of MRI scanner drifts: at present, the standard procedure (band-
pass filtering and GLM) does not take into account these noise properties in the processing of 
BOLD signal.  

This thesis proposes the joint usage of two methods (Singular Spectrum Analysis – SSA – and 
adaptive filtering) that takes advantage of their statistical and time flexibility features, respectively. 
Indeed SSA is a nonparametric technique capable of extracting amplitude and phase modulated 
components against a null hypothesis of autocorrelated noise, while the adaptive filter removes the 
noise correlated to a reference signal, exploiting its non-stationary properties. 

The novel procedure (SSA and adaptive filtering) was applied to eight resting state recordings and 
compared to the standard procedure. The functional connectivity between homologous 
contralateral regions was then estimated in the LFB using a multivariate correlation index (the RV 
coefficient) and assessed on preselected grey (GM) and white matter (WM) regions of interest 
(ROIs). A corrected version of the RV coefficient for the number of voxels was developed and used 
to compare the functional connectivity estimates obtained by the standard procedure (using all 
available voxels) and from the novel procedure based on the voxel time courses with significant 
SSA components in the LFB (active voxels). 

The adaptive filtering showed a greater reduction of noise compared to GLM (average signal 
variance decrease in all ROIs: −43.9% vs. −10.1%), using a non-stationary noise template 
obtained from brain ventricles signals in the LFB. The functional connectivity quantified by the RV 
coefficient and estimated on the active voxels identified by SSA showed a higher contrast between 
GM and WM regions with respect to the standard procedure (35% vs. 28%).  

These results suggest that SSA and adaptive filtering may be a feasible procedure for properly 
removing the physiological noise in the LFB of BOLD signal and for highlighting resting state 
functional networks. 

 

 

Keywords: Adaptive filtering, Autocorrelated Noise, BOLD signal, Functional Connectivity, 
Nonstationarity Test, Principal Component Analysis, Resting State, RV Coefficient, Singular 
Spectrum Analysis. 
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1. INTRODUCTION  

Functional Magnetic Resonance Imaging (fMRI) is commonly used to describe the dynamics 

of brain activity during task-activation experiments [1, 2], resting wakefulness [3-5] and sleep [6]. 

Resting state fMRI studies have demonstrated that the neuronal activity is indirectly reflected in 

amplitude changes of the Blood Oxygen Level-Dependent (BOLD) signal, which are prominent in 

the low-frequency band (LFB, f <0.1 Hz) [3, 7] and show temporal synchronizations between 

spatially remote brain areas, including homologous areas (the so-called functional connectivity [8]). 

The study of the coherence of these slow spontaneous fluctuations of BOLD signal led to the 

identification of several resting state networks such as the motor [3], the visual [9], the auditory and 

the attentional networks [10-12], as well as the default mode network [13] which comprise brain 

regions showing high correlation at rest and decreased activity during operative tasks [14-16]. 

Two main strategies are usually employed to obtain functional connectivity maps [17]: the 

seed voxel approach [3-5] and the Independent Component Analysis (ICA) modified for fMRI data 

[18, 19]. The former method consists in choosing a small Region of Interest (ROI) from which a 

reference signal is extracted (typically by averaging the time courses of the voxels within the ROI) 

and assessing its temporal correlation with the signals belonging to other ROIs. Differently, ICA is 

a data driven technique that separates noise from the signal of interest, taking advantage of the 

statistical independence of the noise sources from the BOLD neuronal correlates. Both approaches 

have demonstrated their efficacy in several experimental protocols [10, 14, 16, 20, 21], nevertheless 

they also show some limitations. The seed voxel analysis is highly dependent from the specific seed 

ROI, while the ICA approach, although it doesn’t require a priori definition of ROIs, is limited by 

the number of components to retain in the final solution (e.g. a large number of components yields 

to the oversplitting of one brain network over many maps) and from introducing a-priori criteria to 

discriminate maps related to neuronal activity from those related to the noise components of BOLD 

signal.  
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Actually, BOLD signal contains several sources of noise whose power is often larger than the 

power of sources related to the neuronal activity: these nuisance components can be grouped in two 

classes, random and physiological noise. The former class is mainly related to the MRI scanner 

instability and to thermal noise, both having a wide-spread power spectrum biased towards low 

frequencies, while the latter is associated to physiological processes such as respiratory (~0.25 Hz) 

and cardiac (~1 Hz) rhythms. In order to remove these non-neuronal components from BOLD 

signal, various processing techniques have been proposed: some authors used a band-pass (0.01 Hz 

to 0.10 Hz) time filter [12, 14, 16, 22], others employed a parametric detrend with a low-pass 

filtering [4, 23, 24]. 

However, since the physiological noise slow variability and/or the slow components of the 

instrumental noise fall in the same frequency band of the BOLD neuronal correlates, none of the 

above mentioned methods is able to remove such noise. Indeed, besides the neuronal related ones, 

other sources of slow (<0.1 Hz) BOLD signal oscillations are associated to the heart rate variability 

[25, 26], to slow variations of respiratory rate [27] and to changes of arterial carbon dioxide level 

[28]. The issue of removing these slow noise components is classically approached with the 

Nuisance Variable Regression (NVR) method [29], which is based on estimating a General Linear 

Model (GLM) [30] including the nuisance regressors as covariates. In fact, this method removes the 

noise contribution within each BOLD signal using a reference signal derived from non-neuronal 

regions within the brain such as ventricles [12], or using a direct recording of the noise source (e.g. 

ECG, respirogram etc.) [27]. Despite its extensive usage, the NVR technique based on the GLM has 

a limitation in the fact that it does not take into account the nonstationarity of physiological noise 

(e.g. heart and respiratory rate variabilities [31]), therefore the noise is not properly removed from 

the BOLD signal. The impact of this limitation is negligible for traditional activation paradigms but 

it becomes crucial for the study of functional connectivity, both during tasks and in resting state [20, 

32].   
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In order to overcome the above mentioned limitations, this thesis proposes a new procedure 

for processing the BOLD signal that comprises the Singular Spectrum Analysis (SSA) [33] and the 

adaptive filtering [34]. SSA is a data driven technique for decomposing the BOLD signal in 

uncorrelated components while adaptive filtering is based on a time filter whose coefficients can 

vary as a function of a reference signal, tailored to remove the non-stationary noise in the LFB. 

Herein it’s shown that SSA allowed the identification of real oscillatory components compared to 

an autocorrelated model of noise, namely the SSA components whose signal power was 

significantly greater than that of the expected components in the null hypothesis of pure noise. It 

must be underlined that only a fraction of voxels contained genuine oscillations in the LFB that 

should correspond to the activities of physiological processes, both to the BOLD-related neuronal 

activity and to the hemodynamic/respiratory slow components of physiological noise: therefore 

these voxels were considered as active, without using any specific task paradigms but assessing the 

real presence of slow oscillations using a statistical test. The adaptive filtering then served to filter 

out the non-neuronal components from the time courses of active voxels, hence running the 

functional connectivity analysis on the neuronal components. In order to demonstrate its feasibility, 

the novel procedure (SSA & adaptive filtering) was compared to the standard approach (band-pass 

filtering & NVR) by applying both methodologies to the same dataset of real fMRI recordings and 

by evaluating the functional connectivity between homologous contralateral regions at rest. The 

temporal synchronization of these regions was quantified using a generalized, multivariate 

correlation index defined between matrices of signals (instead of the bivariate correlation between 

pair of voxels), named RV coefficient.  
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2. METHODS 

2.1  Singular Spectrum Analysis 

The Singular Spectrum Analysis (SSA) is a data analysis technique that decomposes a time 

series to obtain a set of distinct uncorrelated components - named Reconstructed Components (RCs) 

in SSA jargon – which consist in slow-varying trends and in oscillatory components, whose sum is 

equal to the original time series [33, 35]. SSA was originally proposed to study the meteorological 

variability, and it has been widely applied both in life sciences as well as in nonlinear physics and 

signal processing (see [36] and [33] for a complete list of SSA applications). SSA best deals with 

short and noisy time series where it performs a signal-to-noise ratio enhancement without using a 

priori  knowledge of the underlying process (e.g. the resting state condition). In particular, SSA is a 

nonparametric technique capable of detecting amplitude and phase modulated oscillations and 

nonlinear trends in the time series.  

The algorithm of SSA is based on the decomposition of the trajectory (or embedding) matrix: 

given a fixed time window whose length (W) is a priori defined, each row of the trajectory matrix is 

built with overlapping, one-sample-delayed portions of the time series using the sliding window. 

Thus, the first row of the trajectory matrix contains the first W samples of the time series within the 

time window, then the window is shifted by one sample and the second row of the matrix is filled in 

the same way, and so on until the end of the signal is reached. The Principal Component Analysis 

(PCA) [37] is then applied on the trajectory matrix in order to obtain a set of eigenvalues and 

associated eigenvectors (decomposition step of SSA). These eigenvectors – named Empirical 

Orthogonal Functions (EOFs) – represent the uncorrelated components of the trajectory matrix, 

whose signal variance is equal to the corresponding eigenvalue. Finally, from each EOF of the 

trajectory matrix, the corresponding RC is derived using a least-square algorithm (reconstruction 

step of SSA, see paragraph 2.1.1 for a detailed description of the entire algorithm).  
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Classically, the signal-to-noise separation is achieved by truncating the scree plot of magnitude 

ordered eigenvalues and by selecting only the elements with the greatest variance [38, 39]: from the 

EOFs associated to these elements, the significant RCs are then derived and summed for obtaining 

the extracted signal. However, this procedure is appropriate only in the case of additive white noise 

(i.e. whose power is independent from frequency) but it fails in the case of an autocorrelated, random 

noise [40]. Indeed, the BOLD signal is corrupted from several sources of autocorrelated noise such 

as ultra-low frequency drifts due to MRI scanner instabilities along with movements-related artifacts 

[29].  

The present application assumes a model of autocorrelated (red) noise and uses a modified 

version of SSA called Monte Carlo SSA [40] (see paragraph 2.1.1 - point F for details about 

modifications of the original algorithm). This includes an estimation of noise parameters from data 

(variance and lag-1 autocorrelation) and a statistical test for identifying the significant EOFs, thus it 

provides a criterion to discriminate the genuine oscillatory components from those compatible with a 

null hypothesis of pure noise. Since the power spectrum of red noise is biased towards low 

frequencies [41], this operation represents a stringent statistical test for the effective presence of 

oscillations in the LFB (<0.1 Hz).  

The application of SSA to BOLD signals allows identifying active voxels at rest as those 

whose time course contains at least one significant RC in the LFB, thus without using a task 

paradigm as in the case of task-activation fMRI experiments. In order to identify and retain only the 

slow-varying components, the dominant frequency of each significant RC was estimated by means 

of an autoregressive (AR) model, using the Maximum Entropy Method [42]. The dominant 

frequency was obtained by using a low-order AR model, exploiting the signal-to-noise enhancement 

provided by SSA [43]. Data analysis software for SSA algorithm was compiled in MATLAB 

(MathWorks, Natick, MA). 
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2.1.1  SSA algorithm 

The entire SSA algorithm operates in five steps (A-E). 

 

A. Embedding step 

A trajectory matrix D is derived from the BOLD signal S(t) of length N, centered on its mean, 

by using a time window of length W. The i th column of D contains the samples of S(t) - from S(i) to 

S(i+W−1). The choice of window length – that can be set from 2 to N/2 [43] - is a compromise 

between the number of signal portions and the frequency resolution. In the lack of a priori 

hypothesis, a rule of thumb indicates a value ranging from N/5 and N/3 in order to obtain a reliable 

estimate for oscillatory components [36]. The number of the columns of D is equal to M = N−W+1, 

hence D has a Hankel matrix structure of dimension W×M. 

From D, the lag-covariance matrix CV = η·DDT of dimension W×W is derived, where T 

indicates the matrix transpose operation and the normalization constant η is equal to 1/M. 

 

B.  Decomposition step 

The lag-covariance matrix CV obtained from the initial time series is diagonalized as: 

 

 
T

V V V VE C EΛ =   (1) 

 

where ΛV is the data eigenvalue matrix with elements λV along the main diagonal in decreasing 

order of magnitude, while EV is the matrix of associated data eigenvectors (EOFs, columns of EV). 

The dominant frequency of each EOF is estimated as that with the maximum spectral power in the 

frequency domain. 
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C.  Statistical test based on the null hypothesis of red noise 

 

The BOLD signal S(t) is assumed to be composed by oscillations with different frequencies 

embedded in a red noise background. For the latter, an AR(1) model was considered, which also 

inherits the case of uncorrelated white noise with a suitable choice of process parameters. The 

recursive equation that describes the red noise model is:  

 

 ( )0 1 0t t tu u u u zγ α−− = − +  (2) 

 

where u0 is the process mean, γ and α are the process parameters (i.e. the lag-1 autocorrelation and 

variance of red noise, respectively) and zt is a Gaussian white noise with unit variance. In the case 

of γ = 0 (no autocorrelation), the model downgrades to a white noise model. The estimation of the 

red noise parameters (γ and α) from S(t) is performed by a maximum likelihood algorithm using 

unbiased estimators [40].  

In a red noise context, the signal-to-noise separation is performed exploiting its 

autocorrelation properties of the red noise: to this aim, the analytic covariance matrix of red noise 

CN = c0T is derived using the estimated noise parameters, where c0 is the noise variance and 

elements of T ij  = γ|i-j|  (i and j are time-lag indexes) [41]. The theoretical EOFs of the red noise are 

then obtained by diagonalizing CN as: 

 

 
T

N N N NE C EΛ =  (3) 
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Due to the analytic structure of the noise covariance matrix, the dominant frequencies of EN 

are regularly spaced in the spectrum, separated by ~1/(W×Tc) where Tc is the sampling time. Also, 

the noise EOFs (columns of EN) show a sinusoidal behavior in time. 

 

 

Figure 1. Identification of significant SSA components in the BOLD time course of Figure 2. 

Left panel. Eigenspectrum based on noise eigenbasis. The dominant frequency of each theoretical noise 

EOF (EN, x-axis) is plotted against the diagonal elements of ΛVN (y-axis, see C1 step). Error bars for noise 

eigenvalues are derived using the χ2 distribution and expressed as mean with 95% confidence interval. 

Significant elements of ΛVN which showed a value greater than the 97.5th percentile of the corresponding 

noise eigenvalue λN (i.e. lying above the error bar) are highlighted and identified as significant trend (blue 

asterisks), LFB (red asterisks) and cardiac (violet asterisks) components, according to their dominant 

frequency. The LFB (0.04-0.10 Hz) is highlighted in yellow; nonsignificant elements are drawn as black 

asterisks. 

Right panel. Eigenspectrum based on data eigenbasis. The dominant frequency of each data EOF (EV, x-

axis) is plotted against the data eigenvalues λV (y-axis, see C2 step). Error bars for diagonal elements of 

ΛNV are derived using the χ2 distribution and expressed as mean with 95% confidence interval. Significant 
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data eigenvalue λV which showed a value greater than the 97.5th percentile of the corresponding diagonal 

elements of ΛNV (i.e. lying above the error bar) are highlighted and identified as significant trend (blue 

asterisks), LFB (red asterisks) and cardiac (violet asterisks) components, according to their dominant 

frequency. The LFB (0.04-0.10 Hz) is highlighted in yellow; nonsignificant elements are drawn as black 

asterisks. 

From each significant EOF of data eigenspectrum (right panel) whose dominant frequency was also 

found significant in the noise eigenspectrum (left panel), the corresponding RC was calculated. All RCs 

related to each band (trend, LFB and high frequencies) were summed for obtaining the extracted signals 

shown in Figure 3 (blue, red and violet lines, respectively). 

 

C1.  Projection on noise EOFs  

Under the assumptions of Gaussian noise distribution and sinusoidal EOFs, each diagonal 

element λN of ΛN has a χ2 distribution with υ = 3N/W degrees of freedom [40]. These assumptions 

are valid for AR(1) processes and lead to the following distribution for the noise eigenvalues: 

 

 ( )
2( )T

N N N NE C E
χ νλ

ν
≈  (4) 

 

From the 2.5th and 97.5th percentiles of these distributions, the 95% confidence interval can be 

derived for each λN. The data covariance matrix CV is then projected onto noise EOFs EN as: 

  

 
T

VN N V NE C EΛ =  (5) 

 

Assuming a null hypothesis of pure noise that have generated S(t), all diagonal elements λVN 

of ΛVN should lie within the noise confidence intervals of the related λN. Otherwise, the noise EOFs 
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associated to the λVN lying outside the corresponding confidence interval, are considered not 

compatible with the noise model and thus they indicate the presence of real oscillatory components 

at those frequency (see Figure 1, left panel).  
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C2.  Projection on data EOFs 

Since the noise EOFs EN are not directly related to the data EOFs EV, the analytic covariance 

matrix of red noise CN is also projected onto data EOFs as: 

 

 
T

NV V N VE C EΛ =  (6) 

 

Similarly to C1 step, confidence intervals of the diagonal elements λNV of ΛNV are derived 

using (4): accordingly, all data eigenvalues λV greater than the corresponding 97.5th percentile of 

λNV are considered statistically significant from noise (see Figure 1, right panel).  

 

C3.  Assessing the significance of data EOFs 

Each data EOF of EV that satisfied both these conditions: 

1) whose associated noise EOF of EN (i.e. with the same dominant frequency) had the 

corresponding λVN element greater than the 97.5th percentile of the distribution of the related 

noise eigenvalue λN (step C1); 

2) whose corresponding data eigenvalue λV was greater than the 97.5th percentile of the 

distribution of the corresponding λNV element (step C2); 

were considered globally significant and EV
* was the matrix with only the significant data EOFs as 

columns. 

 

D.  Reconstruction step 

The projection of original signal S(t) onto significant data EOFs (EV
* matrix) yields the 

corresponding Principal Components (PCs) matrix AV
*, as following: 
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* *

1

( ) ( 1) ( )
V

W

V
j

A t S t j E j
=

= + − ⋅∑  (7) 

 

For each significant EOF, the corresponding Reconstructed Component (RC) matrix RV
* is 

obtained by: 

 

 
* * *1
( ) ( 1) ( )

t

t

U

k k k
j Lt

R t A t j E j
M =

= − + ⋅∑  (8) 

where Mt, Lt and Ut are time index t dependent parameters [43], necessary to manage border effects 

due to the finite window length W.  

 

E.  Dominant frequency estimation 

 

The Maximum Entropy Method (MEM) was used to estimate the dominant frequency of each 

significant RC. MEM is a spectral analysis method that is based on approximating the time series 

with a linear autoregressive process of order M, i.e., AR(M) where M is the order of the AR model 

[42]. The RCs were approximately pure oscillations, thus a low-order all-pole model was used for a 

consistent estimation of the dominant frequency [43]. 

 

F.  Modifications of the original Monte Carlo SSA algorithm 

 

In the original procedure proposed by Allen and Smith [40], C2 step of SSA algorithm using 

the analytic covariance matrix of red noise CN was not clearly employed. Indeed the Monte Carlo 

approach was used for generating red noise surrogates with the same process parameters, in order to 

derive the confidence intervals used in the statistical tests and, also, for the correction of type-1 
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errors due to multiple tests with a great number of EOF (see paragraph 4.2 of Allen and Smith’s 

article). The significant data EOFs were then selected as those with the highest pairwise correlation 

with their respective noise EOFs (see paragraph 5.2), using the procedure of step C1.  

Since BOLD signals with a lower TR have greater number of samples and a longer time 

window is needed in order to extract slow-varying components, the Monte Carlo approach 

represents a heavy computation burden for the decomposition of all acquired time courses. In 

addition, a longer time window is associated to a greater number of SSA components, hence 

requires stringent corrections for type-1errors due to the large number of potentially significant 

EOFs. On the other hand, the approach of using joint information resulting from noise and data 

EOF projections, gave the same results of those obtained by the Monte Carlo procedure applied to 

artificial generated signals in a red noise background (results for artificial signals not shown). 

Therefore, the present procedure of selecting significant EOFs in the SSA context was proved to be 

reliable and computationally faster when analyzing BOLD signals for a great number of acquired 

voxels.  
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2.2  Adaptive filtering 

In the neuroimaging field, the adaptive filtering technique has been successfully applied to 

near infrared spectroscopy (NIR) for suppressing the global hemodynamic response, hence 

improving the contrast-to-noise ratio in NIR experiments 

employed for removing the non-neuronal

their bandwidth overlaps with those related to neuronal activity. These nuisance components are 

related to the variability of cardiac rate and of respiratory flow 

slow variability of physiological noise in the LFB. 

Similarly to the NVR approach which employs the GLM technique 

removes the noise component on the basis of a reference signal obtained from brain regions where 

no neuronal activity is expected. To this aim, the time courses of brain ventricles 

of cerebrospinal fluid is related to cardiovascular processes 

PCA. The first principal component (PC) 

selected as a reference signal for 

Adaptive filtering is generally used for system identification, signal prediction and noise 

cancellation. For the latter, the system block diagram is:
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In the neuroimaging field, the adaptive filtering technique has been successfully applied to 

near infrared spectroscopy (NIR) for suppressing the global hemodynamic response, hence 

noise ratio in NIR experiments [44]. Herein, adaptive filtering was 

neuronal components in the LFB of BOLD signal (<0.1 Hz), since 

their bandwidth overlaps with those related to neuronal activity. These nuisance components are 

related to the variability of cardiac rate and of respiratory flow [25-28, 45], so they represent the 

slow variability of physiological noise in the LFB.  

Similarly to the NVR approach which employs the GLM technique [29]

removes the noise component on the basis of a reference signal obtained from brain regions where 

no neuronal activity is expected. To this aim, the time courses of brain ventricles 

of cerebrospinal fluid is related to cardiovascular processes [46] – were selected and submitted to 

PCA. The first principal component (PC) – which accounts for the most part of data variance 

selected as a reference signal for non-neuronal noise and used as the input of the a

Adaptive filtering is generally used for system identification, signal prediction and noise 

or the latter, the system block diagram is: 
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In the neuroimaging field, the adaptive filtering technique has been successfully applied to 

near infrared spectroscopy (NIR) for suppressing the global hemodynamic response, hence 

. Herein, adaptive filtering was 

components in the LFB of BOLD signal (<0.1 Hz), since 

their bandwidth overlaps with those related to neuronal activity. These nuisance components are 

, so they represent the 

], the adaptive filter 

removes the noise component on the basis of a reference signal obtained from brain regions where 

no neuronal activity is expected. To this aim, the time courses of brain ventricles – where pulsatility 

were selected and submitted to 

which accounts for the most part of data variance – was 

noise and used as the input of the adapting filter. 

Adaptive filtering is generally used for system identification, signal prediction and noise 
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The aim of this procedure is to remove the noise n(k) from the information signal s(k). To 

achieve this goal, a noise reference signal n'(k) is fed as input to the adaptive filter in order to 

suppress its contribution from the desired signal d(k). The desired signal of the adaptive filter is the 

information signal s(k) plus the additive noise n(k), which is a correlated version of n’(k): the 

adaptive algorithm for filter coefficients relies on reducing the error between the output signal y(k) 

and the desired signal d(k) leading to e(k), a cleaned version of d(k), theoretically equal to s(k).  

The Least-Mean-Square (LMS) algorithm is the most used linear adaptive filtering procedure 

for estimating the optimal values of filter weights based on the error signal of the filter. This 

algorithm consists in two steps:  

1) after initializing the values of filter coefficients, the filtering process produces the output 

signal of the adaptive filter. The error signal e(k) is then derived comparing the output signal y(k) to 

the desired signal d(k);  

2) the adaptive algorithm is run for the automatic adjustment of filter coefficients, in 

accordance to the error signal e(k) obtained in the previous step.  

The adaptive filter used in the present application was a digital Finite Impulse Response (FIR) 

filter whose coefficients were adjusted over time as a function of time-varying characteristics of the 

input signal [47]. In order to avoid noise amplification issues, the the normalized LMS algorithm 

[34] was employed for the calculation of filter coefficients. The adaptation formula of the 

normalized LMS (nLMS) algorithm was: 

( ) ( ) ( )
( )

( )21
n k

w k w k e k
a n k

µ ∗
′

+ = +
′+

 

  where w(k+1) and w(k) were the future and the current vector of filter coefficients, 

respectively; n'(k) and e(k) the input and the error signals (respectively), µ was the adaptation step 
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size and a was a small positive constant to overcome potential numerical instability. In the 

normalized version of LMS algorithm – which uses a normalization term║n'(k)║2 equal to the 

squared Euclidean norm of the input signal to avoid noise amplification problems in case x(k) is 

large – the step size can range from 0 to 2 and it was set in order to guarantee the convergence of 

the solution in all processed signals. 
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2.3  RV coefficient 

The RV coefficient [48] provides a measure of similarity between two signal matrices with 

the same number of rows (i.e. same number of time points), and putative different number of 

columns (i.e. number of voxels in this application). It has been used in the fMRI context for testing 

brain functional connectivity mapping [49], for detecting common activations among subjects [50] 

and for classifying different experimental conditions within the same subject recording [51]. 

The RV coefficient is a multivariate generalization of Pearson product-moment correlation, 

behaving as a cosine between matrices thus taking positive values between 0 (when there is no 

correlation between each pair of columns in the matrices) and 1 (when there is a perfect 

correspondence between the two matrices). Being X the matrix of BOLD signals in a specific ROI 

and in a given hemisphere with n rows (corresponding to the time points of the acquisition) and p 

columns (corresponding to the number of acquired voxels in the ROI), and being Y the matrix 

related to the homologous contralateral ROI with the same number of rows but different number of 

columns, the RV coefficient is defined as:  

 
( )

( ) ( )
T T

T T

trace XX YY
RV

trace XX trace YY
=

⋅
 

where the trace operator is defined as the sum of elements on the main diagonal. 

In this work, the RV coefficient was employed as a measure of functional connectivity at rest 

between pairs of matrices of homologous brain regions in different hemispheres. Moreover, it was 

used for the comparison of the connectivity estimates related to different procedures of BOLD 

signal processing, applied to the same fMRI dataset. However, the RV coefficient depends on the 

number of columns in the two matrices, namely it increases with the number of voxels. Actually, in 

the case of data processed by SSA, the number of voxels within each ROI was smaller since SSA 

restricted the analysis only to the active voxels. In order to overcome this limitation, an algorithm 
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for correcting the value of RV coefficient (named corrected RV coefficient) was developed, 

resulting from the following resampling procedure.  

Given the data processed with the standard approach in a pair of contralateral ROIs with NL 

and NR the total number of voxels of whom NaL and NaR active voxels in left and right hemisphere, 

respectively, 10000 pairs of surrogate signal matrices were generated. The signals in each surrogate 

matrix were drawn from the complete matrix of all voxels by using a sampling-without-replacement 

algorithm, so each surrogate matrix contained NaL or NaR signals (according to the related 

hemisphere). The RV coefficient was then calculated for each pair of matrices in order to obtain the 

distribution of coefficients related to this surrogate dataset. The 2.5th and the 97.5th percentiles of 

this distribution were used as references for the comparison with the RV coefficient estimated from 

data processed by SSA & adaptive filtering. Finally, the corrected RV coefficient between 

homologous contralateral ROIs was taken as the mean value of the distribution.  
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3. PROCEDURES OF DATA ANALYSIS  

In this section, it’s shown how the previously described methods were employed in order to 

process BOLD signals acquired in resting state and to estimate the functional connectivity between 

preselected ROIs. The analyses have been performed following two parallel flows as shown in 

Figure 2: the standard procedure - including band-pass filtering & NVR - was compared to the 

novel procedure based on SSA & adaptive filtering. Both flows of processing aimed at focusing the 

connectivity analyses in the LFB after removing the non-neuronal slow components, estimated from 

the time courses of brain ventricles voxels. The functional connectivity between homologous 

regions was calculated by the RV coefficient after different filtering stages. 
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Figure 2. Flow diagram of different procedures for processing the BOLD signal in resting 

state conditions.  

After the same preprocessing stage, two distinct main lines 

signal with different techniques. Results after the filtering stage (adaptive filtering and GLM 

filtering) and functional connectivity estimates (using the ordinary and the corrected RV 

coefficient) were balanced between t

standard procedure (band-pass filtering & GLM) in order to highlight the method that removed 

the greatest amount of noise in the LFB and gave the highest contrast between WM and GM 

regions, according to the functional connectivity between homologous contralateral ROIs. The 

numbers within each box on the left side refer to the related subsections in the main text.
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3.1  Resting state data and ROIs definition 

Eight resting state fMRI recordings were acquired from healthy subjects (3 F, mean age ± SD 

= 24 ± 3 years) in order to validate the proposed procedure of BOLD signal analysis (SSA & 

adaptive filtering) with respect to the standard processing. For the method validation, high-

frequency data acquisitions were performed in order to avoid aliasing effects of cardiac (~1 Hz) and 

respiratory (0.15-0.40 Hz) components in the LFB (<0.1 Hz) [52]: therefore, fMRI data have been 

acquired with a sampling rate of TR = 300 ms instead of typical longer TRs of standard scans 

(approximately 2000 ms). However, the choice of such low TR limited the acquisition to four slices 

instead of the whole brain coverage. A 1.5 Tesla GE scanner (General Electric, Milwaukee, WI) 

was used to acquire data for about ten min (1970 time points) with a GR-EPI sequence (FOV = 24 

cm, TR/TE= 300/40 ms, FA = 90°, resolution = 64×64 pixels, voxel size 3.75×3.75×5 mm, REPS = 

2000).  

The four slices have been aligned to the anterior/posterior commissural line and selected so as 

to include Regions of Interest (ROIs) of grey matter involved in resting state functional networks 

according to the current literature [53]. Those included: Middle Prefrontal Cortex - MPFC - and 

insula (default mode network), Dorsolateral Prefrontal Cortex - DLPFC - (dorsal attentional 

network), Superior Temporal Sulcus - STS - and cuneus (ventral attentional network). Slices also 

included ROIs of white matter (anterior part of the semioval center) and lateral brain ventricles. In 

addition, for each subject a set of high resolution T1 weighted spoiled gradient recall images (1.2 

mm thick axial slices; TR = 12.1 ms, TE = 5.22 ms, FA = 20°, FOV = 24 cm, resolution = 256×256 

pixels) were acquired. 
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3.2 Image preprocessing 

Functional data were preprocessed using the Analysis of Functional Neuroimaging (AFNI) 

software package [54]. Two main preprocessing steps have been performed: 1) compensation of 

slice-dependent time shift for aligning separate slices to the same temporal origin; 2) data 

normalization to the stereotaxic coordinates of Talairach and Tournoux atlas [55] with resampling 

to 1-mm cubic voxels. Neither spatial smoothing nor motion correction tasks were performed 

because, for the latter, the maximum displacement of subject head during scan sessions was below 

0.7 mm.  

 

3.3 Removal of physiological and instrumental noises  

Herein, the SSA technique (paragraph 3.3.1) was used and compared to the gold standard 

band-pass filtering (paragraph 3.3.2). Both methodologies had the aim of removing noise 

components whose frequencies were outside the LFB, both at ultra-low (scanner drift related 

components) and high (respiratory and cardiac peaks) frequencies. Limits of the LFB were set at 

0.04 and 0.10 Hz, respectively: the lower limit was set according to the recording length while the 

upper limit was chosen according to evidence from the literature of the neurovascular coupling 

dynamics, both during resting and activation states [3, 7]. 

 

3.3.1  Singular Spectrum Analysis 

The SSA technique was employed to identify significant RCs in the LFB against the red noise 

null hypothesis. For the trajectory matrix size, the window length W was equal to 492 time points, 

nearly corresponding to ¼ of the time points in each recording. This length was chosen as a trade 

off between statistical confidence (number of columns of the trajectory matrix D) and frequency 
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resolution (related to the number of time points in each column of D, see paragraph 2.1.1). 

Furthermore, the window length W – which is also related to the lower bound for the LFB - was 

chosen as to include periodic oscillations with at least 5 periods within the time window. Since the 

frequency resolution was (W×TR)−1 
≈ 0.007 Hz, the lower limit of LFB was considered as 

5*(W×TR)−1 
≈ 0.04 Hz. 

The identification of slow-varying RCs in the LFB was based on their dominant frequency. 

Using a forth-order AR model, the dominant frequency of each significant RC was taken as the 

frequency of the pair of poles, explaining more than 95% of the AR model variance. Only RCs with 

dominant frequency in the band 0.04 – 0.10 Hz were selected and voxels containing at least one 

slow-varying RC were considered as active in the LFB. For each active voxel, the significant RCs 

were summed in order to obtain the band-pass filtered signal in the LFB (i.e. LFB signal), according 

to SSA algorithm. 

 

3.3.2  Band-pass time filtering 

BOLD signals were detrended and filtered with standard algorithms for removing cardiac and 

respiratory components at their dominant frequencies, along with ultra-low frequency drifts due to 

hardware instability. The detrending task consisted in fitting and subtracting polynomials up to 

eight-order while a band-pass Butterworth filter with cutoff frequencies of 0.04-0.10 Hz was 

employed to remove the high frequency components. The lower limit was set to 0.04 Hz, thus equal 

to that of SSA processing. The filter order was set to 10 and a zero-phase digital filtering was 

obtained by processing the time course in both forward and reverse directions. 
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3.4 Extraction of a reference signal for noise in the LFB 

Both SSA decomposition and band-pass filtering (steps 3.3.1 and 3.3.2, respectively) removed 

the cardiac and the respiratory components at their fundamental frequencies. However, other non-

neuronal contributions such as those related to the heart beat variability [26] and to breath-to-breath 

variations [27], could still have been present in the LFB of BOLD signals. Therefore the brain 

ventricle signals were used in order to identify a reference signal related to these nuisance 

components, standing on the fact that only non-neuronal activities are expected in these regions. To 

this aim, PCA [37] was applied to the filtered time courses of ventricle voxels (both by SSA and by 

band-pass filtering) and the first PC was taken as the reference signal (REF) for the non-neuronal 

noise in the LFB.  

The REF signal was then analyzed for non-stationary properties using a statistical test based 

on stationary time-frequency surrogates [56, 57]. This stationarity test compared the variability of 

the local amplitude of REF signal (i.e. the standard deviation of signal envelope) with those of its 

surrogates [58]. Namely, for each REF signal, the standard deviation (SD) of signal envelope 

(derived by Hilbert transform) was calculated and compared to the distribution of 10000 surrogates. 

Each surrogate was obtained from the REF signal by phase randomization in the Fourier domain. 

Since time-frequency surrogates were proved to be stationary signals [59], the 95th percentile of 

their SD distribution was used as a threshold to test for REF stationarity, i.e., if the SD of REF 

signal was greater than the 95th percentile of surrogates’ distribution, the REF signal was considered 

a non-stationary signal. 

 

  



Singular Spectrum Analysis and Adaptive Filtering:  

a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments 

25 

3.5 Removal of noise in the LFB 

Two different methodologies were employed and compared for removing the physiological 

noise in the LFB using REF signal: the standard GLM technique (3.5.1) and the novel approach 

based on adaptive filtering (3.5.2).  

 

3.5.1 Nuisance Variable Regression 

The former method was based on the NVR analysis [29] in which a GLM was estimated using 

the band-pass filtered signal as the dependent variable and the REF signal as the covariate in the 

model. The residual signal was then taken as the filtered signal in which the physiological noise was 

suppressed in the LFB by the GLM technique. 

 

3.5.2  Adaptive filtering  

The adaptive filter used REF signal as the reference signal for filtering the time courses of 

active voxels by SSA. The adaptive filter consisted of a 20-order FIR filter with a transversal 

structure and the nLMS adaptation algorithm (step size = 1) was employed for updating filter 

weights.  

 

3.6 Estimation of the functional connectivity  

For each subject, the functional connectivity [8] among brain regions was assessed using the 

processed BOLD signals belonging to grey matter (GM) and white matter (WM) regions, at the end 

of both novel and standard procedures. In particular, the functional connectivity was estimated 

between homologous contralateral ROIs since resting state networks were proved to have 
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symmetrical properties (e.g. left and right somatomotor [3], visual, auditory and sensorimotor 

cortices [7]). Pairs of ROI belonging to GM and WM regions were selected since higher values of 

correlation are expected between GM homologous regions due to the neuronal activity, whereas 

lower values are expected between WM regions where no functional connectivity should be present. 

Consequently, a higher connectivity in GM regions compared to WM regions has been considered 

as the outcome feature for comparing different procedures. Therefore, the contrast between GM and 

WM connectivity estimates was used in order to identify the procedure that provides the neatest 

functional connectivity maps. 

Two indices were employed for quantifying the connectivity strength between the 

contralateral ROIs: the standard seed voxel correlation and the RV coefficient. The former consisted 

in averaging the filtered signals in the left and right hemispheres and estimating the temporal 

correlation between the resulting mean signals. The correlation coefficient was then squared (R2) in 

order to quantify the proportion of shared variance between the time courses of homologous ROIs 

in different hemispheres. The RV coefficient was calculated with and without correction for the 

number of signals in the contralateral ROIs: indeed, SSA restricted the analysis only to active 

voxels whereas the standard procedure used all available voxels. 
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3.7 Statistical Analysis 

Performances of the processing methods were assessed both on the evaluation of noise 

filtering and of the quality of the functional connectivity. For the former, variance changes of the 

filtered signals (for the statistical testing, the variance values have been logarithmic transformed in 

order to correct the skewness of the distribution) were considered, whereas the corrected RV 

coefficients (calculated between contralateral ROIs) were compared between the procedures. In 

addition, in order to describe the application of SSA on BOLD data, the descriptive statistics of the 

estimated parameters (autocorrelation and variance of noise, number of significant components and 

variance of filtered signal by SSA) were also reported. 

The comparison of each feature as a function of ROI typology and processing method was 

performed by means of the analysis of variance (ANOVA) design, using subjects as a random factor 

in the model. Repeated measures ANOVA was employed to assess differences between processing 

methods among ROIs. For all features, preliminary tests were conducted using the Kolmogorov-

Smirnov and the Levene’s tests to check for data normality and homogeneity of variances, 

respectively. Post-hoc comparisons using the Bonferroni’s correction of significance were 

conducted for significant ANOVA results: after correction, only p-values smaller than 0.05 were 

considered statistically significant.  

Eta squared (η2) index was employed to quantify the effect size in the ANOVA model for the 

functional connectivity estimates in the study group of eight subjects, in particular for measuring 

the contrast between WM and GM regions. Eta squared was calculated as the proportion of variance 

in the connectivity estimates that was explained by the type of ROI (i.e. WM and GM regions). 

Data are presented as mean ± SEM (Standard Error of the Mean) or mean ± SD (Standard 

Deviation), as indicated.  
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4. RESULTS AND DISCUSSION 

4.1 SSA results  

SSA was applied to BOLD signals in order to identify significant components (RCs) in the 

LFB compared to a null-hypothesis of autocorrelated noise. Figure 3 shows the results of SSA 

decomposition on a representative BOLD signal of a cuneus voxel.  

 

 

Figure 3. SSA decomposition of the time course of a cuneus active voxel (subject #1). 

Original BOLD signal (black) is shown along with the extracted trend (blue), LFB signal (red), 

cardiac component (violet) and residual noise (black dotted line) obtained by SSA decomposition.  

Extracted trend, LFB signal and cardiac components were obtained by summing the related 

significant RCs and identified according to their dominant frequency (see also Figure 1).  
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On average in the eight fMRI recordings, SSA algorithm identified 23.6% (range: 13.7-

31.3%) of voxels as active, namely with at least one significant RC having the dominant frequency 

in the range 0.04−0.10 Hz. Among all ROIs, brain ventricles showed a significant greater 

proportion of active voxels than other regions (adj. p<0.01), while DLPFC and WM showed a slight 

lower ratio as compared to other GM regions (Table 1).  
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Table 1. Number of active voxels in the LFB (0.04−0.10 Hz) as detected by SSA algorithm 

applied to the BOLD signals of each subject. Data are expressed also as percentage of the 

number of voxels in the specific ROI and as a mean ± standard deviation (SD) over the entire 

study group. 

 WM Cuneus DLPFC Insula MPFC STS 
Brain 

ventricles 

Subject 

#1 

26 

(23.6%) 

42  

(27%) 

28 

(12.5%) 

35 

(17.5%) 

12 

(9.8%) 

33 

(14.5%) 

28  

(32.1%) 

Subject 

#2 

4  

(4.7%) 

48 

(29.6%) 

10  

(3.5%) 

27 

(23.2%) 

9  

(7.2%) 

33 

(18.3%) 

54  

(71.0%) 

Subject 

#3 

13 

(13.9%) 

5  

(2.6%) 

21  

(8.9%) 

17 

(10.3%) 

37 

(18.8%) 

23  

(9.5%) 

45  

(42.0%) 

Subject 

#4 

16 

(12.5%) 

59 

(50.4%) 

116 

(22.8%) 

47 

(31.1%) 

19 

(19.0%) 

39 

(24.6%) 

13  

(17.5%) 

Subject 

#5 

11 

(11.2%) 

41 

(18.5%) 

104 

(30.2%) 

49 

(33.1%) 

28 

(21.8%) 

57 

(27.1%) 

66  

(49.6%) 

Subject 

#6 

15 

(26.7%) 

115 

(35.9%) 

98 

(18.3%) 

46 

(28.7%) 

53 

(26.3%) 

81 

(39.9%) 

93  

(76.2%) 

Subject 

#7 

21 

(18.2%) 

89 

(33.5%) 

26  

(7.7%) 

46 

(18.1%) 

27 

(12.7%) 

53 

(19.5%) 

19  

(26.0%) 

Subject 

#8 

17 

(26.1%) 

83 

(32.8%) 

97 

(17.7%) 

130 

(42.0%) 

37 

(35.2%) 

79 

(43.8%) 

45  

(72.5%) 

Mean ± 

SD 

17.1 ± 

7.9% 

28.8 ± 

13.8% 

15.2 ± 

8.7% 

25.5 ± 

10.1% 

18.8 ± 

9.1% 

24.6 ± 

11.9% 

48.4 ± 

22.7% 
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The lag-1 autocorrelation parameter (γ) and the variance (α) of the noise model estimated by 

SSA algorithm showed also significant differences among ROIs. For the former parameter, WM, 

insula and STS regions showed significant lower values than other ROIs (adj. p<0.01) whereas the 

cuneus regions exhibited the highest mean value (mean ± SEM, 0.21 ± 0.02). However, the lag-1 

autocorrelation parameter γ - that corresponds to the characteristic time decay τ of the red noise 

autocorrelation function - gave an estimate equal to τ = −1/log(γ) = −1/log(0.21) ≈ 0.64 samples for 

the cuneus regions, thus indicating a time decay smaller than one time sample. Therefore it can be 

stated that noise autocorrelation properties did not differ among ROIs, even though estimated values 

resulted significantly different. On the other hand, the noise variance α of brain ventricle regions 

was significantly greater than all GM regions (23.89 ± 1.53, adj. p<0.01) while the WM regions 

showed on average the lowest value (10.79 ± 0.11, adj. p<0.01).  

Figure 4 shows the signal variance of LFB signal (i.e. the sum of all significant RCs obtained 

by SSA decomposition in the LFB), as well as the corresponding number of significant RCs 

identified in each active voxel. 
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Figure 4. Signal features of the time course of active voxels identified by SSA. 

The signal variance (black sqares, log10 values, left y-axis) and the number of significant RCs 

(white circles, right y-axis) of the time course of active voxels are plotted for each preselected 

ROI (x-axis) in the entire study group. Data are expressed as mean with 95% confidence interval. 

 

Similarly to what obtained for the noise variance α, brain ventricle regions showed the 

greatest signal power and number of significant RCs in the LFB (signal variance: 0.91 ± 0.07, 

number of significant RCs: 3.7 ± 0.12 adj. p<0.01). Moreover, all GM regions exhibited greater 

values of signal power and number of RCs than WM regions (−0.07 ± 0.05 and 2.2 ± 0.09, adj. 

p<0.05). These findings corroborate the hypothesis that changes in blood volume at the capillary 

level and in the cerebrospinal fluid due to cardiovascular processes cause widespread global 

fluctuations related to the cardiac cycle, which tend to be spatially localized near ventricles, sulci, 

and large vessels. Indeed, the pulsatility of blood vessels induces an influx of desatured blood into 

the slice of interest, resulting in BOLD signal variations that tend to hide those related to neuronal 
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activities in GM regions [60, 61]. As a result, cardiac related displacements of cerebrospinal fluid 

are likely to generate significant spurious changes in BOLD signals. In a recent study [45], large 

negative correlations were also observed at 7 T in focal regions near ventricles, confirming the non-

neuronal nature of these signal fluctuations due to hemodynamic changes and blood volume 

increase.  

All these results (the highest proportion of active voxels, the largest noise variance and signal 

power in the LFB) indicate brain ventricles as regions corrupted by random and physiological noise, 

thus suitable for extracting a template of noise in the LFB.  

 

4.2 Extraction of the noise template in the LFB 

For each subject, Principal Component Analysis (PCA) was applied to the time courses of 

brain ventricle voxels in order to extract a template for the physiological noise in the LFB. This 

analysis was carried out both in the case of the band-pass filtering, using all available voxels) and in 

the case of SSA where only the extracted signals belonging to active voxels underwent the PCA. In 

the former case, the first PC (i.e. the REF signal) explained a mean (± SD) 46.0 ± 18.7% of the 

variance of brain ventricle signals while in the latter the percentage of explained variance was 48.6 

± 11.7%, that statistically did not differ from the standard procedure result (p>0.05).  

The scree plot of PCs as well as the ventricle time courses and the first PC of Subject #5 are 

shown in Figure 5. 
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Figure 5. Results from PCA of brain ventricle signals (Subject #5). 

Upper  panel. Scree plot of PCA eigenvalues.  

Lower  panel. First 16 ventricle signals (out of 66) and the 1st PC (REF signal, black thick line). 
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In all subjects, the variability of the local amplitude of REF signal was greater than the 97.5th 

percentile of the distribution of its surrogates, proving that REF signal was a non-stationary signal 

(Table 2). For SSA processing, only in one case (subject #4) the REF signal was not significantly 

non-stationary: this may have been due to the small number of active voxels identified in the brain 

ventricle ROI of this subject (i.e., 13 voxels). The REF signal and its envelope, along with the 

distribution of surrogates’ SD are shown in Figure 6. 
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Figure 6. Results from the non-stationarity test of REF signal (Subject #5). 

Upper  panel. REF signal (black line) and its envelope obtained by Hilbert transform (red line).  

Lower  panel. Distribution of the standard deviation of surrogates’ envelope. The 95th percentile 

of surrogates distribution (blue vertical line) and the SD value of REF signal (red line) are also 

shown. 
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These results suggest that REF signal may represent a suitable template for noise in the LFB, 

accounting for almost half the signals variability in brain ventricles voxels. Besides, the non-

stationary nature of REF signal is compatible with the non-neuronal slow variations of 

physiological processes such as the heart rate variability, as well as the breath-to-breath respiratory 

changes. In fact, respiratory and cardiac processes are strictly related and both affect the blood flow 

and the CO2 levels in the brain, which in turn determine relevant BOLD signal changes. Moreover, 

subject breathing may be associated to bulk motion of the head along with modulation of the 

magnetic field as a result of abdominal and thoracic movements, which can also lead to a shifting of 

the brain image [62, 63]. This may explain the presence of greater signal variance in ventricle 

regions that are located close to the edge of brain [27]. 
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Table 2. Results of PCA applied to the time courses of brain ventricles, processed by SSA and by 

band-pass filtering (BPF). Results of the nonstationarity test based on time-frequency surrogates 

are also reported for the first PC (i.e. the REF signal). For SSA processing, the number of voxels 

used in the calculation refers only to active voxels in brain ventricle regions. (PC: Principal 

Component; SD: Standard Deviation) 

Subject 
Processing 

method 

N° of brain 

ventricle 

voxels 

Explained 

Variance 

by 1st PC (%) 

SD of 1st PC 

envelope 

97.5th percentile of 

surrogates SD 

distribution 

#1 BPF 87 31.0 11.72* 9.96 

 SSA 28 50.5 5.49* 4.75 

#2 BPF 76 60.0 64.39* 45.06 

 SSA 54 55.8 21.97* 15.67 

#3 BPF 107 39.8 22.94* 18.66 

 SSA 45 52.0 12.02* 10.56 

#4 BPF 74 23.9 15.83* 12.05 

 SSA 13 40.4 2.12 2.47 

#5 BPF 133 76.2 72.76* 55.11 

 SSA 66 55.7 24.81* 23.19 

#6 BPF 122 39.1 53.46* 44.99 

 SSA 93 42.2 20.14* 18.75 

#7 BPF 73 65.3 31.63* 29.29 

 SSA 19 65.4 13.43* 12.90 

#8 BPF 62 32.8 28.29* 17.23 

 SSA 45 27.2 11.47* 7.99 

*: SD of the envelope of 1st PC greater than that obtained from surrogates distribution (p<0.05) 
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4.3 Removal of physiological noise in the LFB 

The REF signal was employed in two ways: as the covariate for NVR analysis (standard procedure) 

and as the reference signal of adaptive filter (novel procedure). In both cases, the efficacy of 

filtering noise in the LFB was quantified by computing the reduction of signal variance (∆VAR%) 

before and after the filtering stage. The variance reduction was then normalized to the pre-filtering 

value and expressed as percentage. Figure 7 shows the reduction of signal variance (∆VAR%) after 

both methodologies of processing and by using the REF signal as a template for noise in the LFB. 

 

 

Figure 7. Performance of noise filtering by different procedures. 

Reductions of signal variance (expressed as percent of pre-filtering variance, y-axis) after SSA & 

adaptive filtering (green, only active voxels) and after standard time filtering & GLM (blue, all 

available voxels) in the time courses belonging to eight ROIs (x-axis), by using the REF signal as 

a template for noise in the LFB. Data are expressed as mean with 95% confidence interval. 
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As expected, with both methods brain ventricle regions exhibited the most significant 

reductions of signal variance (adj. p<0.01) since the REF signal was used for filtering the time 

courses from which it had been derived. Also, the amount of variance reduction was highly 

correlated to the explained variance of REF signal in the brain ventricle region (correlation 

coefficients for all processing methods ranging from 0.64 to 0.75, p<0.01). Thus, the greater was 

the signal variability in the brain ventricles where only non-neuronal activity was present, the 

greater was the amount of noise in the time courses of other voxels in the brain that has been 

suppressed with filtering.   The usage of SSA with adaptive filtering resulted in a significant greater 

variance reduction in every ROIs compared to the standard procedure based on the GLM of NVR 

analysis (overall, −43.9% vs. −10.1% respectively, p<0.01). This result suggests that adaptive 

filtering better removed the physiological noise from the time courses of other voxels, taking into 

account the time-frequency properties of REF signal. Indeed, it has been proved that adaptive 

methods exhibits good performance in suppressing cardiac and respiratory artifacts in the image 

domain [64] and to be specifically suited on identifying cardiac arrhythmias during real-time fMRI 

[65]. Furthermore, the greater reduction of noise performed by adaptive filtering could be even 

more useful in experiments with higher field strength (3 T or 7 T) since the physiological noise 

contribution was proved to increases accordingly [66]. Unlike NVR, these results demonstrate the 

high capability of adaptive filtering in following the non-stationary characteristics of physiological 

processes, thus make it suitable for properly removing the cardio-respiratory noise in the LFB of 

BOLD signal. 

4.4 Functional connectivity 

The functional connectivity of homologous contralateral ROIs was quantified by the seed-

voxel correlation and by the RV coefficient. The functional connectivity estimates were calculated 

in two conditions: after SSA & adaptive filtering and after the standard time filtering & GLM 

(Figure 8).  
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Figure 8. Functional connectivity estimates between homologous contralateral ROIs.  

In each graph, the grey area identify GM regions, lower black dotted lines represent the mean 

connectivity of WM regions; upper grey dotted lines identify the average connectivity in GM 

regions. Data are presented as mean values ± SEM in the group of eight subjects. 

Upper  panels. R2 coefficients (y-axis) between mean signals of homologous ROIs (x-axis) after 

SSA & adaptive filtering (using only active voxels, green circles, left panel) and  after band-pass 

time filtering & GLM (considering all available voxels, blue squares, right panel).  

Lower  panels. RV coefficients (y-axis) between homologous ROIs (x-axis) after SSA & adaptive 

filtering (using only active voxels, green circles, left panel) and corrected RV coefficients (y-axis) 

between homologous ROIs (x-axis) after band-pass filtering & GLM (same number of active 

voxels as in the SSA case, blue squares, right panel).  
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As a result of the seed voxel method (Figure 8, upper panels), the novel procedure based on 

active voxels showed a better separation between GM and WM than the standard processing (η
2 = 

32% vs. η2 = 26%, respectively). However, the seed voxel correlation gives an overall estimate of 

the connectivity due to signals averaging, thus it did not consider the different number of time 

courses of the two procedures, as well as the specific voxels which contributed to the resulting R2 

values. Therefore, the RV coefficient was also employed as an index of functional connectivity, 

taking into account each single time course belonging to the contralateral ROIs. 

On average, SSA & adaptive filtering showed significant lower RV coefficients than the 

standard time filtering & GLM (adj. p<0.01, results not shown). However, lower RV coefficients in 

the case of SSA could have been related to the smaller number of voxels used in the computation 

(i.e. only the active voxels), hence the proposed Monte Carlo resampling method was applied to the 

signals processed with the standard procedure, using the same number of active voxels identified by 

SSA. The corrected RV coefficients were computed for each subject and type of ROI and compared 

to those obtained by SSA processing. As a result, the mean corrected RV coefficients of standard 

processing were significantly lower than the corresponding RV coefficients by SSA, considering 

the same number of active voxels (adj. p<0.05 for all ROI pairs). Furthermore, RV coefficients in 

the case of the novel procedure provided a higher contrast among ROIs (η2 = 35%) than the 

standard procedure using the corrected RV coefficient (η2 = 28%) (Figure 8, lower panels). In 

particular, the mean RV coefficient of WM regions in the case of SSA processing was significantly 

lower than those related to the GM regions (adj. p<0.01), thus corroborating the hypothesis of small 

(or even absent) coupling in WM regions where no neuronal activity is expected. These results also 

indicate that SSA identified only the voxels in the GM regions that contributed to the neural 

coupling between homologous ROIs, resulting in higher RV coefficients than those obtained using 

the standard procedure on all available voxels. It might be speculated that in case of longer TRs and 

a greater number of acquired voxels, the application of SSA could also give better results in terms 
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of thresholding the functional connectivity maps. Indeed, by restricting the statistical analyses only 

to a small fraction of acquired voxels (active voxels), the threshold value for the test statistic could 

lead to a smaller number of false positives, using the same significance level. Therefore SSA could 

be a useful method for improving the determination of thresholds for a statistical map, along with 

the false discovery rate [67] or the random field approach [24].  

Nevertheless, the relative high values of RV coefficients of brain ventricles indicated a residual 

coupling between these non-neuronal regions, probably due to the incomplete removal of the 

physiological noise. This hypothesis is supported by the fact that REF signal explained only half the 

variability of brain ventricles signals (on average, 48.6%), thus not all the noise was removed by the 

adaptive filtering. One possible approach to overcome this issue could be performing sequential 

stages of adaptive filtering using the first two or three PCs of brain ventricle time courses, in order 

to achieve a better suppression of the physiological noise in the LFB. 
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5. CONCLUSIONS 

The application of SSA to the BOLD signal in resting state condition led to the identification 

of active voxels in the LFB (<0.1 Hz) by extracting slow-varying components, which showed 

significant higher signal power against a null hypothesis of autocorrelated noise. The adaptive 

filtering took into account the non-stationary characteristics of physiological noise in the LFB, 

allowing a better filtering of the signals belonging to GM and WM regions. Furthermore, a 

corrected version for the RV coefficient was employed in order to assess the functional connectivity 

between homologous regions and to balance results of the standard procedure (which considered all 

available voxels) with those of the novel procedure, based only on active voxels. 

As a result, SSA & adaptive filtering achieved a greater reduction of noise in all regions 

(−43.9% vs. −10.1%) and led to a higher contrast between GM and WM functional connectivity 

(35% vs. 28%) than the standard procedure (band-pass time filtering & GLM). These results 

suggest that the combination of SSA and adaptive filtering is a reasonable and convenient approach 

for removing the low-frequency fluctuations of BOLD signal due to physiological noise, and to 

emphasize the functional networks in resting state. Further studies should be carried out to explore 

the feasibility of the proposed method on datasets with higher TRs, with a higher number of 

subjects and on higher magnetic fields.  
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