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Abstract

Functional Magnetic Resonance Imaging (fMRI) isduseinvestigate brain functional connectivity
at rest after filtering out non-neuronal componergkated to cardiac and respiratory processes
and to the instrumental noise of MRI scanner. Tleseponents are generally removed at their
fundamental frequencies through band-pass filteahthe Blood-Oxygen-Level-Dependent
(BOLD) signal (low-frequency band — LFB: 0.01-0H£) while General Linear Model (GLM) is
usually employed to suppress slow variations osjhygical noise in the LFB, using a signal
template derived from non-neuronal regions (ergirbventricles). However, these sources of
noise exhibit a non-stationary nature due to thensic time variability of physiological activitse

or to the nonlinear characteristics of MRI scanulgifts: at present, the standard procedure (band-
pass filtering and GLM) does not take into accahese noise properties in the processing of
BOLD signal.

This thesis proposes the joint usage of two metfidgular Spectrum Analysis — SSA — and
adaptive filtering) that takes advantage of theatistical and time flexibility features, respeeétiy.
Indeed SSA is a nonparametric technique capabdxtodicting amplitude and phase modulated
components against a null hypothesis of autocoteelaoise, while the adaptive filter removes the
noise correlated to a reference signal, exploititsghon-stationary properties.

The novel procedure (SSA and adaptive filterings eaplied to eight resting state recordings and
compared to the standard procedure. The functiocnahectivity between homologous
contralateral regions was then estimated in the WaBhg a multivariate correlation index (the RV
coefficient) and assessed on preselected grey @slwhite matter (WM) regions of interest
(ROIs). A corrected version of the RV coefficientie number of voxels was developed and used
to compare the functional connectivity estimatetaioled by the standard procedure (using all
available voxels) and from the novel procedure Hasethe voxel time courses with significant
SSA components in the LFB (active voxels).

The adaptive filtering showed a greater reductiomaise compared to GLM (average signal
variance decrease in all ROIs: -43.9% vs. —10.1%8ing a non-stationary noise template
obtained from brain ventricles signals in the LABe functional connectivity quantified by the RV
coefficient and estimated on the active voxelstified by SSA showed a higher contrast between
GM and WM regions with respect to the standard pdure (35% vs. 28%).

These results suggest that SSA and adaptiveriidtenay be a feasible procedure for properly
removing the physiological noise in the LFB of BGdignal and for highlighting resting state
functional networks.

Keywords: Adaptive filtering, Autocorrelated Noise, BOLD sanFunctional Connectivity,
Nonstationarity Test, Principal Component AnalyBissting State, RV Coefficient, Singular
Spectrum Analysis.
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1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is coonly used to describe the dynamics
of brain activity during task-activation experimeit, 2], resting wakefulness [3-5] and sleep [6].
Resting state fMRI studies have demonstrated kieahéuronal activity is indirectly reflected in
amplitude changes of the Blood Oxygen Level-Depeh(OLD) signal, which are prominent in
the low-frequency band (LFB<0.1 Hz) [3, 7] and show temporal synchronizatibesveen
spatially remote brain areas, including homologangsas (the so-callddnctional connectivity3]).
The study of the coherence of these slow spontaniaetuations of BOLD signal led to the
identification of several resting state networkstsas the motor [3], the visual [9], the auditonga
the attentional networks [10-12], as well asdéault modenetwork [13] which comprise brain

regions showing high correlation at rest and desgr@activity during operative tasks [14-16].

Two main strategies are usually employed to olftaictional connectivity maps [17]: the
seed voxedpproach [3-5] and the Independent Component Aig(yCA) modified for fMRI data
[18, 19]. The former method consists in choosisgnall Region of Interest (ROI) from which a
reference signal is extracted (typically by avemgghe time courses of the voxels within the ROI)
and assessing its temporal correlation with theagbelonging to other ROIs. Differently, ICA is
a data driven technique that separates noise fnersignal of interest, taking advantage of the
statistical independence of the noise sources thenBOLD neuronal correlates. Both approaches
have demonstrated their efficacy in several expemtal protocols [10, 14, 16, 20, 21], nevertheless
they also show some limitations. The seed voxdlyarsais highly dependent from the specific seed
ROI, while the ICA approach, although it doesnijugea priori definition of ROIs, is limited by
the number of components to retain in the finalisoh (e.g. a large number of components yields
to the oversplitting of one brain network over mamgps) and from introducirgpriori criteria to
discriminate maps related to neuronal activity friiose related to the noise components of BOLD

signal.
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Actually, BOLD signal contains several sources @fta whose power is often larger than the
power of sources related to the neuronal actititgse nuisance components can be grouped in two
classestandomandphysiologicalnoise. The former class is mainly related to tHelgcanner
instability and to thermal noise, both having aevgbread power spectrum biased towards low
frequencies, while the latter is associated to jathygical processes such as respiratory (~0.25 Hz)
and cardiac (~1 Hz) rhythms. In order to remove¢h@on-neuronal components from BOLD
signal, various processing techniques have begopea: some authors used a band-pass (0.01 Hz
to 0.10 Hz) time filter [12, 14, 16, 22], others@oyed a parametric detrend with a low-pass

filtering [4, 23, 24].

However, since the physiological noise slow vatigband/or the slow components of the
instrumental noise fall in the same frequency baintie BOLD neuronal correlates, none of the
above mentioned methods is able to remove sucle.noideed, besides the neuronal related ones,
other sources of slow (<0.1 Hz) BOLD signal ostitlas are associated to the heart rate variability
[25, 26], to slow variations of respiratory rat§]2and to changes of arterial carbon dioxide level
[28]. The issue of removing these slow noise coneptais classically approached with the
Nuisance Variable Regression (NVR) method [29],olhis based on estimating a General Linear
Model (GLM) [30] including the nuisance regressasscovariates. In fact, this method removes the
noise contribution within each BOLD signal usingeéerence signal derived from non-neuronal
regions within the brain such as ventricles [12]using a direct recording of the noise source. (e.g
ECG, respirogram etc.) [27]. Despite its extensisage, the NVR technique based on the GLM has
a limitation in the fact that it does not take iatcount the nonstationarity of physiological noise
(e.g. heart and respiratory rate variabilities ) 3ftjerefore the noise is not properly removed from
the BOLD signal. The impact of this limitation isgligible for traditional activation paradigms but
it becomes crucial for the study of functional ceativity, both during tasks and in resting stat@, [2
32].
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In order to overcome the above mentioned limitatjdhis thesis proposes a new procedure
for processing the BOLD signal that comprises timgdar Spectrum Analysis (SSA) [33] and the
adaptive filtering [34]. SSA is a data driven tecjue for decomposing the BOLD signal in
uncorrelated components while adaptive filteringased on a time filter whose coefficients can
vary as a function of a reference signal, taildeecemove the non-stationary noise in the LFB.
Herein it's shown that SSA allowed the identificatiof real oscillatory components compared to
an autocorrelated model of noise, namely the SSApoments whose signal power was
significantly greater than that of the expected ponents in the null hypothesis of pure noise. It
must be underlined that only a fraction of voxelatained genuine oscillations in the LFB that
should correspond to the activities of physiologpracesses, both to the BOLD-related neuronal
activity and to the hemodynamic/respiratory slownponents of physiological noise: therefore
these voxels were consideredsative,without using any specific task paradigms but sssg the
real presence of slow oscillations using a staittest. The adaptive filtering then served tiefil
out the non-neuronal components from the time @suodactivevoxels, hence running the
functional connectivity analysis on the neuronahponents. In order to demonstrate its feasibility,
the novel procedure (SSA & adaptive filtering) veasnpared to the standard approach (band-pass
filtering & NVR) by applying both methodologies tioe same dataset of real fMRI recordings and
by evaluating the functional connectivity betwe@miologous contralateral regions at rest. The
temporal synchronization of these regions was gfieshiusing a generalized, multivariate
correlation index defined between matrices of dgfiastead of the bivariate correlation between

pair of voxels), named RV coefficient.
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2. METHODS

2.1  Singular Spectrum Analysis

The Singular Spectrum Analysis (SSA) is a datayamatechnique that decomposes a time
series to obtain a set of distinct uncorrelatedmaments - named Reconstructed Components (RCs)
in SSA jargon — which consist in slow-varying trerahd in oscillatory components, whose sum is
equal to the original time series [33, 35]. SSA waginally proposed to study the meteorological
variability, and it has been widely applied botHiie sciences as well as in nonlinear physics and
signal processing (see [36] and [33] for a compistef SSA applications). SSA best deals with
short and noisy time series where it performs aaitp-noise ratio enhancement without usang
priori knowledge of the underlying process (e.g. thengstate condition). In particular, SSA is a
nonparametric technique capable of detecting ang@iaind phase modulated oscillations and
nonlinear trends in the time series.

The algorithm of SSA is based on the decomposidfdhetrajectory (or embeddingmatrix:
given a fixed time window whose lengtW)is a priori defined, each row of the trajectory matrix is
built with overlapping, one-sample-delayed portiohthe time series using the sliding window.
Thus, the first row of the trajectory matrix comtathe firstW samples of the time series within the
time window, then the window is shifted by one skrgnd the second row of the matrix is filled in
the same way, and so on until the end of the sigrralached. The Principal Component Analysis
(PCA) [37] is then applied on the trajectory matrixorder to obtain a set of eigenvalues and
associated eigenvectodetompositiorstep of SSA). These eigenvectors — named Empirical
Orthogonal Functions (EOFs) — represent the unieded: components of the trajectory matrix,
whose signal variance is equal to the corresporeiggnvalue. Finally, from each EOF of the
trajectory matrix, the corresponding RC is deriusthg a least-square algorithne¢onstruction

step of SSA, see paragraph 2.1.1 for a detailectigéen of the entire algorithm).
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Classically, the signal-to-noise separation isead by truncating thecreeplot of magnitude
ordered eigenvalues and by selecting only the alesweith the greatest variance [38, 39]: from the
EOFs associated to these elements, the signifR@atare then derived and summed for obtaining
the extracted signal. However, this procedure s@miate only in the case of additive white noise
(i.e. whose power is independent from frequency)tifails in the case of an autocorrelated, random
noise [40]. Indeed, the BOLD signal is corruptemtirseveral sources of autocorrelated noise such
as ultra-low frequency drifts due to MRI scannetailities along with movements-related artifacts
[29].

The present application assumes a model of autdated (red) noise and uses a modified
version of SSA called Monte Carlo SSA [40] (seeagaaiph 2.1.1 - point F for details about
modifications of the original algorithm). This imcles an estimation of noise parameters from data
(variance and lag-1 autocorrelation) and a stediktest for identifying the significant EOFs, thtus
provides a criterion to discriminate tgenuineoscillatory components from those compatible \&ith
null hypothesis of pure noise. Since the powertspetof red noise is biased towards low
frequencies [41], this operation represents aggnhstatistical test for the effective presence of
oscillations in the LFB (<0.1 Hz).

The application of SSA to BOLD signals allows idBmhg activevoxels at rest as those
whose time course contains at least one signifie&hin the LFB, thus without using a task
paradigm as in the case of task-activation fMRIegkpents. In order to identify and retain only the
slow-varying components, the dominant frequenogawh significant RC was estimated by means
of an autoregressive (AR) model, using the Maxinttmropy Method [42]. The dominant
frequency was obtained by using a low-order AR rhageloiting the signal-to-noise enhancement
provided by SSA [43]. Data analysis software foASf#gorithm was compiled in MATLAB

(MathWorks, Natick, MA).
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2.1.1 SSA algorithm

The entire SSA algorithm operates in five stepE(jA-

A. Embedding step

A trajectory matrixD is derived from the BOLD sign8(t) of length N, centered on its mean,
by using a time window of length W. T column ofD contains the samples 8ft) - from S() to
S(@+W-1). The choice of window length — that can be set fidto N/2 [43] - is a compromise
between the number of signal portions and the frqy resolution. In the lack of a priori
hypothesis, a rule of thumb indicates a value rapgiom N/5 and N/3 in order to obtain a reliable
estimate for oscillatory components [36]. The nunddehe columns oD is equal to M = N-W+1,
henceD has a Hankel matrix structure of dimension WxM.

From D, the lag-covariance matri€y = »-DD' of dimension WxW is derived, where

indicates the matrix transpose operation and tihenalization constani is equal to 1/M.

B. Decomposition step

The lag-covariance matri@y obtained from the initial time series is diagoradl as:

A, =E;C/E, (1)

where Ay is the data eigenvalue matrix with elemehgsalong the main diagonal in decreasing
order of magnitude, whilgy is the matrix of associated data eigenvectors &O&lumns oty).
The dominant frequency of each EOF is estimatetthatswith the maximum spectral power in the

frequency domain.

Singular Spectrum Analysis and Adaptive Filtering:
a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments



C. Statistical test based on the null hypothekred noise

The BOLD signalS(t) is assumed to be composed by oscillations witferdiht frequencies
embedded in a red noise background. For the lateAR(1) model was considered, which also
inherits the case of uncorrelated white noise waitBuitable choice of process parameters. The

recursive equation that describes the red noiseemsid

U U =y(u,-w)+az @

whereu is the process meapanda are the process parameters (i.e. the lag-1 autdaton and
variance of red noise, respectively) ands a Gaussian white noise with unit variance.hie tase
of y = 0 (no autocorrelation), the model downgradea white noise model. The estimation of the
red noise parameterg &nda) from S() is performed by a maximum likelihood algorithm nggi
unbiased estimators [40].

In a red noise context, the signal-to-noise separats performed exploiting its
autocorrelation properties of the red noise: ts #im, the analytic covariance matrix of red noise
Cn = coT is derived using the estimated noise parametehgrenc, is the noise variance and
elements ofl; =yl (i and] are time-lag indexes) [41The theoretical EOFs of the red noise are

then obtained by diagonalizirgy as:

A, =E;C\Ey 3)
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Due to the analytic structure of the noise covamamatrix, thedominant frequencies &y
are regularly spaced in the spectrum, separatedlfyVxT;) whereT, is the sampling time. Also,

the noise EOFs (columns Bf) show a sinusoidal behavior in time.
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Figure 1. Identification of significant SSA componats in the BOLD time course of Figure 2.

Left panel. Eigenspectrum based on noise eigenbasis. The damirirequency of each theoretical noise
EOF (Ey, x-axis) is plotted against the diagonal elemenfsiy (y-axis, see C1 step). Error bars for noise
eigenvalues are derived using thé distribution and expressed as mean with 95% coefide interval.
Significant elements oftyy which showed a value greater than the 97 percentile of the corresponding
noise eigenvaluéy (i.e. lying above the error bar) are highlightedhd identified as significant trend (blue
asterisks), LFB (red asterisks) and cardiac (violasterisks) components, according to their dominant
frequency. The LFB (0.04-0.10 Hz) is highlighted yellow; nonsignificant elements are drawn as black

asterisks.

Right panel.Eigenspectrum based on data eigenbasis. The domifi'equency of each data EOF (g x-
axis) is plotted against the data eigenvaluks(y-axis, see C2 step). Error bars for diagonal relents of

Ayy are derived using thg? distribution and expressed as mean with 95% cosfide interval. Significant
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data eigenvaluel, which showed a value greater than the 97 percentile of the corresponding diagonal
elements of1yy (i.e. lying above the error bar) are highlightechd identified as significant trend (blue
asterisks), LFB (red asterisks) and cardiac (violasterisks) components, according to their dominant
frequency. The LFB (0.04-0.10 Hz) is highlighted yellow; nonsignificant elements are drawn as black

asterisks.

From each significant EOF of data eigenspectrum dtit panel) whose dominant frequency was also
found significant in the noise eigenspectrum (lgfanel), the corresponding RC was calculated. All RC
related to each band (trend, LFB and high frequeers) were summed for obtaining the extracted signals

shown in Figure 3 (blue, red and violet lines, resgively).

Cl. Projection on noise EOFs
Under the assumptions of Gaussian noise distribugiod sinusoidal EOFs, each diagonal
elementiy of Ay has g distribution witho = 3N/W degrees of freedom [40]. These assumptions

are valid for AR(1) processes and lead to the valg distribution for the noise eigenvalues:
2
— (T X (V)
A ~(ENCN EN) 4)

From the 2.5 and 97.8 percentiles of these distributions, the 95% canfitk interval can be

derived for eachy. The data covariance mati, is then projected onto noise ECEg as:

A = ELCV Ey (5)

Assuming a null hypothesis of pure noise that hgemerateds(t), all diagonal elements,y

of Ayn should lie within the noise confidence intervalglod relatedy. Otherwise, the noise EOFs
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associated to theyy lying outside the corresponding confidence intenaae considered not
compatible with the noise model and thus they iaidiche presence of real oscillatory components

at those frequency (see Figure 1, left panel).

Singular Spectrum Analysis and Adaptive Filtering:
a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments
10



C2. Projection on data EOFs

Since the noise EOHSy are not directly related to the data E@s the analytic covariance

matrix of red nois€y, is also projected onto data EOFs as:

Nw = E\T/CNEV (6)

Similarly to C1 step, confidence intervals of the diagonal eles&gy of Ayy are derived
using (4): accordinglyall data eigenvalues, greater than the corresponding €9“7gﬁercentile of

Anv are considered statistically significant from mofsee Figure 1, right panel).

C3. Assessing the significance of data EOFs
Each data EOF d&y that satisfied both these conditions:

1) whose associated noise EOF IBf (i.e. with the same dominant frequency) had the
corresponding.yn element greater than the 97 Bercentile of the distribution of the related
noise eigenvalugy (stepCl);

2) whose corresponding data eigenvalue was greater than the 9%.5ercentile of the
distribution of the correspondirig,y element (stef2);

were considered globally significant aBd” was the matrix with only the significant data EGiSs

columns.

D. Reconstruction step

The projection of original signab(t) onto significant data EOFE( matrix) yields the

corresponding Principal Components (PCs) makijx as following:
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A () =2 S(t+ =1)E () ™

For each significant EOF, the corresponding Recoastd Component (RC) matriRy” is

obtained by:

R0 =2 A(t- +DE() ®)

t j=Lt
where M, L;and U are time index dependent parameters [43], necessary to manaderbaffects

due to the finite window length W.
E. Dominant frequency estimation

The Maximum Entropy Method (MEM) was used to estarthe dominant frequency of each
significant RC. MEM is a spectral analysis methbdttis based on approximating the time series
with a linear autoregressive process of oider.e., ARM) whereM is the order of the AR model
[42]. The RCs were approximately pure oscillatidhsis a low-order all-pole model was used for a

consistent estimation of the dominant frequency.[43
F. Modifications of the original Monte Carlo SSK@rithm

In the original procedure proposed by Allen and t8f10], C2 step of SSA algorithm using
the analytic covariance matrix of red nofSg was not clearly employed. Indeed the Monte Carlo
approach was used for generating red noise sugegath the same process parameters, in order to

derive the confidence intervals used in the ste#istests and, also, for the correction of type-1
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errors due to multiple tests with a great numbeEOF (see paragraph 4.2 of Allen and Smith’s
article). The significant data EOFs were then delbas those with the highest pairwise correlation
with their respective noise EOFs (see paragraph @sihg the procedure of stéq.

Since BOLD signals with a lower TR have greater hemof samples and a longer time
window is needed in order to extract slow-varyingmponents, the Monte Carlo approach
represents a heavy computation burden for the deosition of all acquired time courses. In
addition, a longer time window is associated toreater number of SSA components, hence
requires stringent corrections for type-lerrors tlmeghe large number of potentially significant
EOFs. On the other hand, the approach of using joformation resulting from noise and data
EOF projections, gave the same results of thosaireat by the Monte Carlo procedure applied to
artificial generated signals in a red noise backgd (results for artificial signals not shown).
Therefore, the present procedure of selecting fsogimt EOFs in the SSA context was proved to be
reliable and computationally faster when analyZB@LD signals for a great number of acquired

voxels.
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2.2 Adaptive filtering

In the neuroimaging field, the adaptive filterimghnique has been successfully applie
near infrared spectroscopy (NIR) for suppressimgglobal hemodynamic response, he
improving the contrast-taeise ratio in NIR experimen[44]. Herein, adaptive filtering we
employed for removing the nameurone components in the LFB of BOLD signal (<0.1 Hz),csd
their bandwidth overlaps with those related to neat activity. These nuisance components
related to the variability of cardiac rate andegpiratory flow[25-28, 45] so they represent tl

slow variability of physiological noise in the LF

Similarly to the NVR approach which employs the Gké&dhnique[29], the adaptive filter
removes the noise component on the basis of arefersignal obtained from brain regions wt
no neuronal activity is expected. To this aim,tihee courses of brain ventricl— where pulsatility
of cerebrospinal fluid is related to cardiovascyleocesse[46] —were selected and submittec
PCA. The first principal component (P—which accounts for the most part of data varie— was

selected as a reference signalnon-neuronahoise and used as the input of tidapting filter.

Adaptive filtering is generally used for systemritiication, signal prediction and noi

cancellation. Br the latter, the system block diagran

S(k) + n(k)

' (k)

— W ET N S
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The aim of this procedure is to remove the nai&g from the information signa(k). To
achieve this goal, a noise reference sigri&) is fed as input to the adaptive filter in order to
suppress its contribution from the desired sigiii). The desired signal of the adaptive filter is the
information signak(k) plus the additive noisa(k), which is a correlated version w{k): the
adaptive algorithm for filter coefficients reliea ceducing the error between the output sigile)

and the desired signd(k) leading toe(k), a cleaned version dfi(k), theoretically equal te(k).

The Least-Mean-Square (LMS) algorithm is the mastdlinear adaptive filtering procedure
for estimating the optimal values of filter weigl@sed on the error signal of the filter. This

algorithm consists in two steps:

1) after initializing the values of filter coeffemts, the filtering process produces the output
signal of the adaptive filter. The error sigeg)is then derived comparing the output sigy(&) to

the desired signal(k);

2) the adaptive algorithm is run for the automatigustment of filter coefficients, in

accordance to the error sigregk) obtained in the previous step.

The adaptive filter used in the present applicatias a digital Finite Impulse Response (FIR)
filter whose coefficients were adjusted over tilmeadunction of time-varying characteristics of the
input signal [47]. In order to avoid noise ampkfion issues, the theormalizedLMS algorithm
[34] was employed for the calculation of filter ¢lb@ents. The adaptation formula of the

normalizedLMS (nLMS) algorithm was:

w(k+1) = w(K+ —TK) ey

a+||n( k)H2

wherew(k+1) andw(k) were the future and the current vector of filteeficients,
respectivelyn'(k) ande(k)the input and the error signals (respectivelyas the adaptation step
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size anda was a small positive constant to overcome potiemtiaerical instability. In the
normalizedversion of LMS algorithm — which uses a normalaaterm|| n'(k)||* equal to the
squared Euclidean norm of the input signal to avaide amplification problems in casg) is

large — the step size can range from O to 2 awdstset in order to guarantee the convergence of

the solution in all processed signals.
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2.3 RV coefficient

The RV coefficient [48] provides a measure of samily between two signal matrices with
the same number of rows (i.e. same number of tioet$), and putative different number of
columns (i.e. number of voxels in this applicatidhjhas been used in the fMRI context for testing
brain functional connectivity mapping [49], for deting common activations among subjects [50]

and for classifying different experimental condigowithin the same subject recording [51].

The RV coefficient is a multivariate generalizatiminPearson product-moment correlation,
behaving as a cosine between matrices thus tgkisigivevalues between 0 (when there is no
correlation between each pair of columns in theiced) and 1 (when there is a perfect
correspondence between the two matrices). BXitige matrix of BOLD signals in a specific ROI
and in a given hemisphere witltrows (corresponding to the time points of the &itjan) andp
columns (corresponding to the number of acquirecigin the ROI), and beingthe matrix
related to the homologous contralateral ROI wigthnghme number of rows but differenimber of

columns, the RV coefficient is defined as:

trace( XX YY)

RV =
\/trace( XX') Ctracg YY)

where thdrace operator is defined as the sum of elements omtia diagonal.

In this work, the RV coefficient was employed am@asure of functional connectivity at rest
between pairs of matrices of homologous brain regia different hemispheres. Moreover, it was
used for the comparison of the connectivity estenatlated to different procedures of BOLD
signal processing, applied to the same fMRI dat&$&wever, the RV coefficient depends on the
number of columns in the two matrices, namelyctéases with the number of voxels. Actually, in
the case of data processed by SSA, the numbemxets/within each ROI was smaller since SSA

restricted the analysis only to thetivevoxels. In order to overcome this limitation, dgosithm
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for correcting the value of RV coefficient (namamtrectedRV coefficient) was developed,

resulting from the following resampling procedure.

Given the data processed with the standard appiioacpair of contralateral ROIs with N
and N the total number of voxels of whomyNand Nr activevoxels in left and right hemisphere,
respectively, 10000 pairs of surrogate signal ro@sriwere generated. The signals in each surrogate
matrix were drawn from the complete matrix of alkels by using a sampling-without-replacement
algorithm, so each surrogate matrix containgdd¥ Nyrsignals (according to the related
hemisphere). The RV coefficient was then calculfde@ach pair of matrices in order to obtain the
distribution of coefficients related to this surabg dataset. The 2'@nd the 978 percentiles of
this distribution were used as references for tregarison with the RV coefficient estimated from
data processed by SSA & adaptive filtering. FinalgcorrectedRV coefficient between

homologous contralateral ROIs was taken as the wadae of the distribution.
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3. PROCEDURES OF DATA ANALYSIS

In this section, it's shown how the previously ddsed methods were employed in order to
process BOLD signals acquired in resting statetarastimate the functional connectivity between
preselected ROIs. The analyses have been perfdoti@ding two parallel flows as shown in
Figure 2: thestandard procedure including band-pass filtering & NVR - was comedito the
novel procedurdased on SSA & adaptive filtering. Both flows obgessing aimed at focusing the
connectivity analyses in the LFB after removing tie@-neuronal slow components, estimated from
the time courses of brain ventricles voxels. Thecfional connectivity between homologous

regions was calculated by the RV coefficient afliffierent filtering stages.
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Figure 2. Flow diagram of different procedures for processig the BOLD signal in resting

state conditions.

After the same preprocessing stage, two distincinrlanes were followed for processing BOL

signal with different techniques. Results after tHdtering stage (adaptive filtering and GLN

filtering) and functional connectivity estimates éing the ordinary and the corrected R

coefficient) were balanced betweehe novel procedure (SSA & adaptive filtering) antiet

standard procedure (bang@ass filtering & GLM) in order to highlight the métod that remove

the greatest amount of noise in the LFB and gaveethighest contrast between WM and C

regions, according tahe functional connectivity between homologous catateral ROIs. The

numbers within each box on the left side refer teetrelated subsections in the main te
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3.1 Resting state data and ROIs definition

Eight resting state fMRI recordings were acquinenf healthy subjects (3 F, mean age + SD
=24 + 3 years) in order to validate the proposed@dure of BOLD signal analysis (SSA &
adaptive filtering) with respect to the standardgesssing. For the method validation, high-
frequency data acquisitions were performed in otd@void aliasing effects of cardiac (~1 Hz) and
respiratory (0.15-0.40 Hz) components in the LFB.{<Hz) [52]: therefore, fMRI data have been
acquired with a sampling rate of TR = 300 ms irsteftypical longer TRs of standard scans
(approximately 2000 ms). However, the choice ohdogv TR limited the acquisition to four slices
instead of the whole brain coverage. A 1.5 TeslasGdfiner (General Electric, Milwaukee, WI)
was used to acquire data for about ten min (1976 points) with a GR-EPI sequence (FOV = 24
cm, TR/TE= 300/40 ms, FA = 90°, resolution = 64xb<els, voxel size 3.75x3.75x5 mm, REPS =

2000).

The four slices have been aligned to the antestgyior commissural line and selected so as
to include Regions of Interest (ROIs) of grey maitt@olved in resting state functional networks
according to the current literature [53]. Thosduded: Middle Prefrontal Cortex - MPFC - and
insula (default mode network), Dorsolateral Prefab@ortex - DLPFC - (dorsal attentional
network), Superior Temporal Sulcus - STS - and garfeentral attentional network). Slices also
included ROIs of white matter (anterior part of ggmioval center) and lateral brain ventricles. In
addition, for each subject a set of high resolufidrweighted spoiled gradient recall images (1.2
mm thick axial slices; TR =12.1 ms, TE =5.22 f&,= 20°, FOV = 24 cm, resolution = 256x256

pixels) were acquired.

Singular Spectrum Analysis and Adaptive Filtering:
a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments
21



3.2 Image preprocessing

Functional data were preprocessed using the Arsabfdrunctional Neuroimaging (AFNI)
software package [54]. Two main preprocessing dtepe been performed: 1) compensation of
slice-dependent time shift for aligning separaiteslto the same temporal origin; 2) data
normalization to the stereotaxic coordinates ofifath and Tournoux atlas [55] with resampling
to 1-mm cubic voxels. Neither spatial smoothing mation correction tasks were performed
because, for the latter, the maximum displacemistilgject head during scan sessions was below

0.7 mm.

3.3 Removal of physiological and instrumental n@ise

Herein, the SSA technique (paragraph 3.3.1) wad asd compared to tlgold standard
band-pass filtering (paragraph 3.3.2). Both methagles had the aim of removing noise
components whose frequencies were outside the h&, at ultra-low (scanner drift related
components) and high (respiratory and cardiac pdedguencies. Limits of the LFB were set at
0.04 and 0.10 Hz, respectively: the lower limit vga$ according to the recording length while the
upper limit was chosen according to evidence froenliterature of the neurovascular coupling

dynamics, both during resting and activation stf{8e3].

3.3.1 Singular Spectrum Analysis

The SSA technigue was employed to identify sigaificRCs in the LFB against the red noise
null hypothesis. For the trajectory matrix sizes indow length Wivas equal to 492 time points,
nearly corresponding to ¥ of the time points inhe@zording. This length was chosen as a trade

off between statistical confidence (number of catsrof the trajectory matri®) and frequency

Singular Spectrum Analysis and Adaptive Filtering:
a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments
22



resolution (related to the number of time pointeach column ob, see paragraph 2.1.1).
Furthermore, the window length W — which is alsatesd to the lower bound for the LFB - was
chosen as to include periodic oscillations witkeast 5 periods within the time window. Since the
frequency resolution was (WxTR) 0.007 Hz, the lower limit of LFB was considered as

5%(WxTR) '~ 0.04 Hz.

The identification of slow-varying RCs in the LFBEag/based on their dominant frequency.
Using a forth-order AR model, the dominant frequeoteach significant RC was taken as the
frequency of the pair of poles, explaining morentB&% of the AR model variance. Only RCs with
dominant frequency in the band 0.04 — 0.10 Hz selected and voxels containing at least one
slow-varying RC were consideredadivein the LFB. For eachctivevoxel, the significant RCs
were summed in order to obtain the band-passditsrgnal in the LFB (i.e. LFB signal), according

to SSA algorithm.

3.3.2 Band-pass time filtering

BOLD signals were detrended and filtered with staddalgorithms for removing cardiac and
respiratory components at their dominant frequen@kng with ultra-low frequency drifts due to
hardware instability. The detrending task consigtefitting and subtracting polynomials up to
eight-order while a band-pass Butterworth filtethag¢utoff frequencies of 0.04-0.10 Hz was
employed to remove the high frequency componeitts.ldwer limit was set to 0.04 Hz, thus equal
to that of SSA processing. The filter order wastgdtO and a zero-phase digital filtering was

obtained by processing the time course in bothdodvand reverse directions.
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3.4  Extraction of a reference signal for noisehe tFB

Both SSA decomposition and band-pass filteringps® 3.1 and 3.3.2, respectively) removed
the cardiac and the respiratory components at thettamental frequencies. However, other non-
neuronal contributions such as those related thdlaet beat variability [26] and to breath-to-bheat
variations [27], could still have been presenthi@ LFB of BOLD signals. Therefore the brain
ventricle signals were used in order to identifgfrence signal related to these nuisance
components, standing on the fact that only nonemalractivities are expected in these regions. To
this aim, PCA [37] was applied to the filtered ticaurses of ventricle voxels (both by SSA and by
band-pass filtering) and the first PC was takethageference signal (REF) for the non-neuronal

noise in the LFB.

The REFsignal was then analyzed for non-stationary progerising a statistical test based
on stationary time-frequency surrogates [56, 5W]s Btationarity test compared the variability of
the local amplitude of REF signal (i.e. the stadddeviation of signal envelope) with those of its
surrogates [58]. Namely, for each REF signal, thadard deviation (SD) of signal envelope
(derived by Hilbert transform) was calculated anthpared to the distribution of 10000 surrogates.
Each surrogate was obtained from the REF signahlage randomization in the Fourier domain.
Since time-frequency surrogates were proved tddt®sary signals [59], the §5ercentile of
their SD distribution was used as a thresholdsofte REF stationarity, i.e., if the SD of REF
signal was greater than the"98ercentile of surrogates’ distribution, the REgnsil was considered

a non-stationary signal.
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35 Removal of noise in the LFB

Two different methodologies were employed and caegbéor removing the physiological
noise in the LFB using REF signal: the standard Gebhnique (3.5.1) and the novel approach

based on adaptive filtering (3.5.2).

3.5.1 Nuisance Variable Regression

The former method was based on the NVR analysisifi2@hich a GLM was estimated using
the band-pass filtered signal as the dependerdhtarand the REF signal as the covariate in the
model. The residual signal was then taken as ligedd signal in which the physiological noise was

suppressed in the LFB by the GLM technique.

3.5.2 Adaptive filtering

The adaptive filter used REF signal as the referesngnal for filtering the time courses of
activevoxels by SSA. The adaptive filter consisted @Daorder FIR filter with a transversal
structure and the nLMS adaptation algorithm (step s 1) was employed for updating filter

weights.

3.6 Estimation of the functional connectivity

For each subject, the functional connectivity [Bjang brain regions was assessed using the
processed BOLD signals belonging to grey matter Y@ml white matter (WM) regions, at the end
of both novel and standard procedures. In partictha functional connectivity was estimated

between homologous contralateral ROIs since restiaig networks were proved to have
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symmetrical properties (e.g. left and right somaiton([3], visual, auditory and sensorimotor
cortices [7]). Pairs of ROl belonging to GM and W&gions were selected since higher values of
correlation are expected between GM homologou®nsgilue to the neuronal activity, whereas
lower values are expected between WM regions wherfenctional connectivity should be present.
Consequently, a higher connectivity in GM regioompared to WM regions has been considered
as the outcome feature for comparing different doices. Therefore, the contrast between GM and
WM connectivity estimates was used in order to idigthe procedure that provides the neatest

functional connectivity maps.

Two indices were employed for quantifying the castivity strength between the
contralateral ROIs: the standard seed voxel cdioeland the RV coefficient. The former consisted
in averaging the filtered signals in the left airght hemispheres and estimating the temporal
correlation between the resulting mean signals.cBmeelation coefficient was then squared)(iR
order to quantify the proportion of shared variabeaveen the time courses of homologous ROIs
in different hemispheres. The RV coefficient wakalated with and without correction for the
number of signals in the contralateral ROIs: ind&fHlA restricted the analysis onlyactive

voxels whereas the standard procedure used albbleavoxels.
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3.7 Statistical Analysis

Performances of the processing methods were agdestieon the evaluation of noise
filtering and of the quality of the functional cautivity. For the former, variance changes of the
filtered signals (for the statistical testing, tfeiance values have been logarithmic transformed i
order to correct the skewness of the distributiwaje considered, whereas the corrected RV
coefficients (calculated between contralateral R@sre compared between the procedures. In
addition, in order to describe the application 8/ASn BOLD data, the descriptive statistics of the
estimated parameters (autocorrelation and variahoeise, number of significant components and

variance of filtered signal by SSA) were also reépar

The comparison of each feature as a function of fig@logy and processing method was
performed by means of the analysis of variance (MW{Ddesign, using subjects as a random factor
in the model. Repeated measures ANOVA was empltyadsess differences between processing
methods among ROIs. For all features, preliminasystwere conducted using the Kolmogorov-
Smirnov and the Levene’s tests to check for datenatity and homogeneity of variances,
respectivelyPost-hoccomparisons using the Bonferroni’'s correctionighgicance were
conducted for significant ANOVA results: after caetion, onlyp-values smaller than 0.05 were

considered statistically significant.

Eta squared;f) index was employed to quantify the effect sizéhimn ANOVA model for the
functional connectivity estimates in the study grad eight subjects, in particular for measuring
the contrast between WM and GM regions. Eta squaesdcalculated as the proportion of variance
in the connectivity estimates that was explainedhieytype of ROI (i.e. WM and GM regions).

Data are presented as mean + SEM (Standard Ertbe dflean) or mean + SD (Standard

Deviation), as indicated.
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4. RESULTS AND DISCUSSION

4.1 SSA results

SSA was applied to BOLD signals in order to idgngiignificant components (RCs) in the
LFB compared to a null-hypothesis of autocorrelateide. Figure 3 shows the results of SSA

decomposition on a representative BOLD signal airgeus voxel.
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Figure 3. SSA decomposition of the time course of@ineus active voxel (subject #1).

Original BOLD signal (black) is shown along with #hextracted trend (blue), LFB signal (red),

cardiac component (violet) and residual noise (tadotted line) obtained by SSA decomposition.

Extracted trend, LFB signal and cardiac componentgere obtained by summing the related

significant RCs and identified according to theiodhinant frequency (see also Figure 1).
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On average in the eight fMRI recordings, SSA altoni identified 23.6% (range: 13.7-
31.3%) of voxels aactive namely with at least one significant RC having dominant frequency
in the range 0.04-0.10 Hz. Among all ROIs, braintrieles showed a significant greater
proportion ofactivevoxels than other regions (agg0.01), while DLPFC and WM showed a slight

lower ratio as compared to other GM regions (Tadble
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Table 1. Number of active voxels in the LFB (06210 Hz) as detected by SSA algorithm
applied to the BOLD signals of each subject. Datee eexpressed also as percentage of the

number of voxels in the specific ROl and as a mearstandard deviation (SD) over the entire

study group
Brain
WM Cuneus DLPFC Insula MPFC STS
ventricles
Subject 26 42 28 35 12 33 28
#1 (23.6%) (27%)  (12.5%) (17.5%) (9.8%) (14.5%)  (32.1%)
Subject 4 48 10 27 9 33 54
#2 (4.7%)  (29.6%) (3.5%) (23.2%) (7.2%) (18.3%)  (71.0%)
Subject 13 5 21 17 37 23 45
#3 (13.9%) (2.6%)  (8.9%)  (10.3%) (18.8%)  (9.5%) (42.0%)
Subject 16 59 116 47 19 39 13
#4 (12.5%) (50.4%) (22.8%) (31.1%) (19.0%) (24.6%)  (17.5%)
Subject 11 41 104 49 28 57 66
#5 (11.2%) (18.5%) (30.2%) (33.1%) (21.8%) (27.1%)  (49.6%)
Subject 15 115 98 46 53 81 93
#6 (26.7%) (35.9%) (18.3%) (28.7%) (26.3%) (39.9%)  (76.2%)
Subject 21 89 26 46 27 53 19
#7 (18.2%) (33.5%) (7.7%)  (18.1%) (12.7%) (19.5%)  (26.0%)
Subject 17 83 97 130 37 79 45
#8 (26.1%) (32.8%) (17.7%) (42.0%) (35.2%) (43.8%)  (72.5%)
Mean+ | 17.1% 28.8 15.2 + 255+ 18.8 + 24.6 + 48.4
SD 7.9% 13.8% 8.7% 10.1% 9.1% 11.9% 22.7%
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The lag-1 autocorrelation parametgr &nd the variancen of the noise model estimated by
SSA algorithm showed also significant differencesag ROIs. For the former parameter, WM,
insula and STS regions showed significant loweneslthan other ROIs (ag<0.01) whereas the
cuneus regions exhibited the highest mean valuarfmeSEM, 0.21 + 0.02). However, the lag-1
autocorrelation parameter that corresponds to the characteristic time ylecd the red noise
autocorrelation function - gave an estimate equakt —141og(y) = —110g(0.21)~ 0.64 samples for
the cuneus regions, thus indicating a time decaaflenthan one time sample. Therefore it can be
stated that noise autocorrelation properties diddifter among ROIs, even though estimated values
resulted significantly different. On the other hatieé noise variance of brain ventricle regions
was significantly greater than all GM regions (28181.53, adjp<0.01) while the WM regions

showed on average the lowest value (10.79 = 0dj1p<«0.01).

Figure 4 shows the signal variance of LFB signal the sum of all significant RCs obtained
by SSA decomposition in the LFB), as well as theesponding number of significant RCs

identified in eaclactivevoxel.
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Figure 4. Signal features of the time course of age voxels identified by SSA.

The signal variance (black sqares, lggvalues, left y-axis) and the number of significaRICs
(white circles, right y-axis) of the time course attive voxels are plotted for each preselected

ROI (x-axis) in the entire study group. Data are @ressed as mean with 95% confidence interval.

Similarly to what obtained for the noise variangédrain ventricle regions showed the
greatest signal power and number of significant RGke LFB (signal variance: 0.91 + 0.07,
number of significant RCs: 3.7 £ 0.12 go0.01). Moreover, all GM regions exhibited greater
values of signal power and number of RCs than Wiibres (-0.07 + 0.05 and 2.2 + 0.09, ad|.
p<0.05). These findings corroborate the hypothdwss ¢hanges in blood volume at the capillary
level and in the cerebrospinal fluid due to cardexular processes cause widespread global
fluctuations related to the cardiac cycle, whialdtéo be spatially localized near ventricles, sulci
and large vessels. Indeed, the pulsatility of bleeskels induces an influx of desatured blood into

the slice of interest, resulting in BOLD signaliaions that tend to hide those related to neuronal
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activities in GM regions [60, 61]. As a result, diac related displacements of cerebrospinal fluid
are likely to generate significant spurious changd3OLD signals. In a recent study [45], large
negative correlations were also observed at 7fddal regions near ventricles, confirming the non-
neuronal nature of these signal fluctuations dugetnodynamic changes and blood volume

increase.

All these results (the highest proportionagativevoxels, the largest noise variance and signal
power in the LFB) indicate brain ventricles as oagi corrupted by random and physiological noise,

thus suitable for extracting a template of noisthanLFB.

4.2 Extraction of the noise template in the LFB

For each subject, Principal Component Analysis (P@as applied to the time courses of
brain ventricle voxels in order to extract a tengli@mr the physiological noise in the LFB. This
analysis was carried out both in the case of timel{pass filtering, using all available voxels) amd
the case of SSA where only the extracted signdésgang toactivevoxels underwent the PCA. In
the former case, the first PC (i.e. REF signa) explained a mean (x SD) 46.0 £+ 18.7% of the
variance of brain ventricle signals while in thédathe percentage of explained variance was 48.6

+ 11.7%, that statistically did not differ from teendard procedure resytt0.05).

Thescreeplot of PCs as well as the ventricle time couesas the first PC of Subject #5 are

shown in Figure 5.
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Figure 5. Results from PCA of brain ventricle signé (Subject #5).
Upper_panel Scree plot of PCA eigenvalues.
Lower panel First 16 ventricle signals (out of 66) and thé' PC (REF signal, black thick line).
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In all subjects, the variability of the local antptie of REF signal was greater than the 97,5
percentile of the distribution of its surrogate\ying that REF signal was a non-stationary signal
(Table 2). For SSA processing, only in one casbjésti#4) the REF signal was not significantly
non-stationary: this may have been due to the smiatiber ofactivevoxels identified in the brain
ventricle ROI of this subject (i.e., 13 voxels).eTREF signal and its envelope, along with the

distribution of surrogates’ SD are shown in Figére
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Figure 6. Results from the non-stationarity test o0REF signal (Subject #5).
Upper_panel REF signal (black line) and its envelope obtainbg Hilbert transform (red line).

Lower panel Distribution of the standard deviation of surrogees’ envelope. The 95percentile
of surrogates distribution (blue vertical line) anithe SD value of REF signal (red line) are also
shown.

Singular Spectrum Analysis and Adaptive Filtering:

a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments
36



These results suggest that REF signal may reprasa&rntable template for noise in the LFB,
accounting for almost half the signals variabilityorain ventricles voxels. Besides, the non-
stationary nature of REF signal is compatible whih non-neuronal slow variations of
physiological processes such as the heart ratabibty, as well as the breath-to-breath respinator
changes. In fact, respiratory and cardiac procemsestrictly related and both affect the blooavflo
and the CQlevels in the brain, which in turn determine relevyBOLD signal changes. Moreover,
subject breathing may be associated to bulk matiadhe head along with modulation of the
magnetic field as a result of abdominal and th@razdbvements, which can also lead to a shifting of
the brain image [62, 63]. This may explain the preg of greater signal variance in ventricle

regions that are located close to the edge of h2aih
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Table 2. Results of PCA applied to the time coursébrain ventricles, processed by SSA and by
band-pass filtering (BPF). Results of the nonstatiarity test based on time-frequency surrogates
are also reported for the first PC (i.e. the REFRgsial). For SSA processing, the number of voxels
used in the calculation refers only to active vogeh brain ventricle regions. (PC: Principal

Component; SD: Standard Deviation)

N° of brain Explained 97.58" percentile of
Processing SD of F'PC
Subject ventricle Variance surrogates SD
method envelope
voxels by I PC (%) distribution
#1 BPF 87 31.0 11.72 9.96
SSA 28 50.5 5.49 4.75
#2 BPF 76 60.0 64.39 45.06
SSA 54 55.8 21.97 15.67
#3 BPF 107 39.8 22.94 18.66
SSA 45 52.0 12.02 10.56
#4 BPF 74 23.9 15.83 12.05
SSA 13 40.4 2.12 2.47
#5 BPF 133 76.2 72.76 55.11
SSA 66 55.7 24.81 23.19
#6 BPF 122 39.1 53.46 44.99
SSA 93 42.2 20.14 18.75
#7 BPF 73 65.3 31.63 29.29
SSA 19 65.4 13.43 12.90
#3 BPF 62 32.8 28.29 17.23
SSA 45 27.2 11.47 7.99

: SD of the envelope of'PC greater than that obtained from surrogatesriistion (p<0.05)
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4.3 Removal of physiological noise in the LFB

The REF signal was employed in two ways: as thegate for NVR analysis (standard procedure)
and as the reference signal of adaptive filter @h@vocedure). In both cases, the efficacy of
filtering noise in the LFB was quantified by comimgtthe reduction of signal varianc&AR%)
before and after the filtering stage. The variamckiction was then normalized to the pre-filtering
value and expressed as percentage. Figure 7 shewsduction of signal varianc&\(AR%) after

both methodologies of processing and by using tBE Blgnal as a template for noise in the LFB.

i rrrr’

[ISSA & adaptive filtering
-50- Bl Band-pass filtering & GLM

Signal variance reduction (%)
)
L

o 1 1 L \ 1 L
40 WM Cuneus DLPFC Insula MPFC STS Brain ventricles

Regions of Interest
Figure 7. Performance of noise filtering by differat procedures.

Reductions of signal variance (expressed as pera#rire-filtering variance, y-axis) after SSA &

adaptive filtering (green, only active voxels) aafter standard time filtering & GLM (blue, all

available voxels) in the time courses belongingeight ROIs (x-axis), by using the REF signal as

a template for noise in the LFB. Data are expressesimean with 95% confidence interval.
Singular Spectrum Analysis and Adaptive Filtering:

a Novel Approach for Assessing the Functional Connectivity in fMRI Resting State Experiments
39



As expected, with both methods brain ventricle oagi exhibited the most significant
reductions of signal variance (ag<0.01) since the REF signal was used for filterihg time
courses from which it had been derived. Also, th@owant of variance reduction was highly
correlated to the explained variance of REF signakthe brain ventricle region (correlation
coefficients for all processing methods rangingrrf.64 to 0.75p<0.01). Thus, the greater was
the signal variability in the brain ventricles wheonly non-neuronal activity was present, the
greater was the amount of noise in the time couo$esther voxels in the brain that has been
suppressed with filtering. The usage of SSA wihptive filtering resulted in a significant greate
variance reduction in every ROIs compared to thedsdrd procedure based on the GLM of NVR
analysis (overall, —-43.9% vs. -10.1% respectivg@y0.01). This result suggests that adaptive
filtering better removed the physiological noisenfr the time courses of other voxels, taking into
account the time-frequency properties of REF sighaleed, it has been proved that adaptive
methods exhibits good performance in suppressingiazaand respiratory artifacts in the image
domain [64] and to be specifically suited on idiymig cardiac arrhythmias during real-time fMRI
[65]. Furthermore, the greater reduction of noisefggmed by adaptive filtering could be even
more useful in experiments with higher field st#gn¢3 T or 7 T) since the physiological noise
contribution was proved to increases accordingB).[@&nlike NVR, these results demonstrate the
high capability of adaptive filtering in followinthe non-stationary characteristics of physiological
processes, thus make it suitable for properly rengpthe cardio-respiratory noise in the LFB of

BOLD signal.

4.4  Functional connectivity

The functional connectivity of homologous contratat ROIs was quantified by the seed-
voxel correlation and by the RV coefficient. Thadtional connectivity estimates were calculated
in two conditions: after SSA & adaptive filteringdhafter the standard time filtering & GLM

(Figure 8).
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Figure 8. Functional connectivity estimates betweenomologous contralateral ROIs.

In each graph, the grey area identify GM regionswer black dotted lines represent the mean
connectivity of WM regions; upper grey dotted liniggentify the average connectivity in GM

regions. Data are presented as mean values + SENhmgroup of eight subjects.

Upper_panelsR? coefficients (y-axis) between mean signals of hdogmus ROIs (x-axis) after
SSA & adaptive filtering (using only active voxelgieen circles, left panel) and after band-pass

time filtering & GLM (considering all available voals, blue squares, right panel).

Lower panelsRV coefficients (y-axis) between homologous RQ{saxis) after SSA & adaptive
filtering (using only active voxels, green circlelgft panel) and corrected RV coefficients (y-axis)
between homologous ROIs (x-axis) after band-paseifing & GLM (same number of active

voxels as in the SSA case, blue squares, right pane
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As a result of the seed voxel method (Figure 8eujpanels), the novel procedure based on
activevoxels showed a better separation between GM akdtvein the standard processimg €
32% vsn? = 26%, respectively). However, the seed voxeladation gives an overall estimate of
the connectivity due to signals averaging, thusdtnot consider the different number of time
courses of the two procedures, as well as the fapgokels which contributed to the resulting R
values. Therefore, the RV coefficient was also @ygdl as an index of functional connectivity,

taking into account each single time course belupgp the contralateral ROIs.

On average, SSA & adaptive filtering showed sigaifit lower RV coefficients than the
standardime filtering & GLM (adj. p<0.01, results not shown). However, lower RV caaéints in
the case of SSA could have been related to thdenmaimber of voxels used in the computation
(i.e. only theactivevoxels), hence the proposed Monte Carlo resamptiethod was applied to the
signals processed with the standard procedureg tissnsame number attivevoxels identified by
SSA. ThecorrectedRV coefficients were computed for each subjecttgpd of ROI and compared
to those obtained by SSA processing. As a resdtirtearcorrectedRV coefficients of standard
processing were significantly lower than the cquoeling RV coefficients by SSA, considering
the same number aictivevoxels (adjp<0.05 for all ROI pairs). Furthermore, RV coeffitig in
the case of the novel procedure provided a higbeirast among ROIs|t = 35%) than the
standard procedure using tt@rrectedRV coefficient §* = 28%) (Figure 8, lower panels). In
particular, the mean RV coefficient of WM regionglhe case of SSA processing was significantly
lower than those related to the GM regions (pd).01), thus corroborating the hypothesis of small
(or even absent) coupling in WM regions where naroeal activity is expected. These results also
indicate that SSA identified only the voxels in tBM regions that contributed to the neural
coupling between homologous ROIs, resulting in &igRV coefficients than those obtained using
the standard procedure on all available voxelsidiht be speculated that in case of longer TRs and

a greater number of acquired voxels, the applinatfdcSSA could also give better results in terms
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of thresholding the functional connectivity mapsléed, by restricting the statistical analyses only
to a small fraction of acquired voxeblc(ivevoxels), the threshold value for the test statistiuld
lead to a smaller number of false positives, usirgsame significance level. Therefore SSA could
be a useful method for improving the determinatbthresholds for a statistical map, along with

the false discovery rate [67] or the random figdgra@ach [24].

Nevertheless, the relative high values of RV caeedfits of brain ventricles indicated a residual
coupling between these non-neuronal regions, pigliate to the incomplete removal of the
physiological noise. This hypothesis is supportedhle fact that REF signal explained only half the
variability of brain ventricles signals (on averad8.6%), thus not all the noise was removed by the
adaptive filtering. One possible approach to overedhis issue could be performing sequential
stages of adaptive filtering using the first twalmee PCs of brain ventricle time courses, in orde

to achieve a better suppression of the physiolbgioize in the LFB.
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5. CONCLUSIONS

The application of SSA to the BOLD signal in regtstate condition led to the identification
of activevoxels in the LFB (<0.1 Hz) by extracting slow-y@g components, which showed
significant higher signal power against a null hyy@sis of autocorrelated noise. The adaptive
filtering took into account the non-stationary @weristics of physiological noise in the LFB,
allowing a better filtering of the signals belongjito GM and WM regions. Furthermore, a
corrected version for the RV coefficient was emplibyn order to assess the functional connectivity
between homologous regions and to balance redult® standard procedure (which considered all

available voxels) with those of the novel procedbigsed only oactivevoxels.

As a result, SSA & adaptive filtering achieved aajer reduction of noise in all regions
(-43.9% vs. —10.1%) and led to a higher contrast/éen GM and WM functional connectivity
(35% vs. 28%) than the standard procedure (bansltpas filtering & GLM). These results
suggest that the combination of SSA and adaptitexifig is a reasonable and convenient approach
for removing the low-frequency fluctuations of BOIsignal due to physiological noise, and to
emphasize the functional networks in resting statether studies should be carried out to explore
the feasibility of the proposed method on dataséts higher TRs, with a higher number of

subjects and on higher magnetic fields.
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