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6 General Introduction 

1.1 THE NAVIGATIONAL SYSTEM OF HOMING PIGEONS 

The migratory movements of animals and birds in particular, have always aroused 

fascination and scientific interest. Within the animal kingdom, birds are unrivalled at covering 

large distances quickly and passing over geographic barriers during their migratory journeys. 

Migratory commuters movements make the birds optimal experimental models used in the 

study of the mechanisms underlying navigation. Besides, birds are able to move towards 

specific sites where they can find suitable ecological conditions for feeding, roosting, mating 

and nesting. This extraordinary spatial ability requires birds to rely on navigational 

mechanisms allowing localization of even small targets. The ability of an animal to come 

back to its home range or foraging areas can be considered a special case of navigation and it 

is often called “homing” (Papi, 1992b). In the literature it is called “true navigation” the 

ability of an animal to return to its original location after displacement to a site in unfamiliar 

territory, without access to familiar landmarks, goal emanating cues, or information about the 

displacement route (Able, 2001; Schone, 1984). In migratory birds this particular ability is 

developed and shaped by experience, as juveniles at their first migration are unable to perform 

true navigation (Perdeck, 1958; Thorup et al., 2007). In fact, young birds at their first 

migration seem to perform a “vector navigation”, that is the ability of the birds to maintain a 

particular orientation for a specified time or distance (Bingman and Cheng, 2005). By 

contrast, some displacement experiments during fall migration have demonstrated that adults 

navigate, as they fly in the direction that will take them to their normal wintering grounds. 

One of the key issues in the study of navigation is to understand the nature of the cues 

used by animals to establish their position relative to the goal and the nature of the cues used 

to determine and maintain a specific direction during their movement. These two distinct 

phases have been called by Kramer “map step” and “compass step”, respectively (Kramer, 

1961). As regards the compass step, it‟s known that birds posses at least two compass 

mechanisms, based on the geomagnetic information (Merkel and Wiltschko, 1965) or based 

on the sun information (Kramer, 1953) (see chapter 1.3). 

Before to investigate further aspects of birds‟ orientation, it is appropriate to make a 

brief overview on the development of knowledge about the subject of this study, the homing 

pigeon (Columba livia), in order to understand why the knowledge of navigational 

mechanisms used by these animals can be useful for understanding the mechanisms of 

homing in birds. 



 

 

 

7 General Introduction 

1.2 HOMING PIGEON LIKE A MODEL  

Homing pigeons are a domesticated breed of the wild species Columba livia (Gmelin 

1789), which probably started to be selected by humans around 3000 A.C. following the first 

crops of graminaceous plants in the eastern Mediterranean, on the basis of their homing 

ability. The importance of this breed in the study of navigation is testified by the fact that the 

present knowledge about the mechanisms used by the birds to find their way home from 

remote areas is largely due to experiments conducted mainly with homing pigeons. There are 

many reasons that have elected the homing pigeons as experimental model. Hundreds of 

pigeons can be easily kept in lofts and used throughout the whole year. Their motivation to 

return to their loft is not limited to the breeding season. Their size is neither too small nor too 

large: on one hand, they are large enough to be observed with binoculars over approximately 

2 Km and to carry the weight of a small data logger to record their flight paths; on the other 

hand they are small enough to be easily handled and transported. At first glance, it might 

appear inappropriate to use a non migratory bird, selected by humans, as model for the study 

of wild birds‟ navigation. However, closely related species (e.g. Columba palumbus) do 

migrate, and Berthold et al. (1990) have shown that offspring of partially migratory birds of a 

given species can be genetically transformed, within only few generations, by means of 

selective breeding to either full migrants or non-migrants. Although the rock pigeon is usually 

a sedentary pigeons, the navigation mechanism detected in homing pigeons might indicate 

mechanisms used by other birds during migration. In fact, it seems extremely unlikely that, 

during the domestication of the rock pigeon (Columba livia, Gmelin), a completely new 

navigational mechanism that did not exist before in the genus Columba, has been implanted 

into the strains of homing pigeons.  

 

 1.3 THE COMPASS MECHANISMS 

The compass mechanism refers to the ability of an animal to orientate in a particular 

compass direction, without relying on landmarks. Birds make use of compasses during 

migration and homing. The compass systems used by homing pigeons are the sun compass 

and the magnetic compass, which is particularly needed to orient in overcast conditions. 

 

 



 

 

 

8 General Introduction 

1.3.1 The sun compass 

In the 1953 Kramer observed that starlings (Sturnus vulgaris) housed in a cage 

showed directed migratory restless, using the sun to obtain directional information (Kramer, 

1953). To use the sun as a compass for direction determination, an animal must know the 

current sun‟s azimuth and the corresponding time of the day. This process is regulated by an 

endogenous rhythm or biological clock. Therefore the use of the sun as compass reference is 

based on the birds‟ ability to compensate for the azimuth change during the day by varying 

their angle of orientation with the sun. The best evidence that an animal relies on a sun 

compass is obtained by subjecting it to a shifted light-dark cycle and observing a predictable 

deviation in orientation. Schmidt-Koenig (1958; 1961) found that the initial bearings of 

pigeons, that have been living for several days in a light-dark cycle shifted by 6 h either 

forward or backward, deviated from those of non-shifted controls in a predictable way (by 

roughly 90° counterclockwise or clockwise, respectively). In fact, the phase-shift treatment 

induce a deflection of the initial orientation of the birds approximately corresponding to the 

difference between the sun azimuths at the real and the subjective time (Fig. 1). However, in 

some experiments, the initial orientation of pigeons subjected to a clock-shift treatment 

showed a deviation lower than expected. This result may be due to some orienting factors 

inducing a correction of the directional error. In the next chapters we will discuss about the 

nature of the information that might affect the size of deflection in orientation following clock 

shift.  
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Fig. 1. The clock-shifted birds (open circle) were releases, alternately with unshifted controls (filled circles), at 

two sites about 30 Km North and South of home. Left-hand diagrams show the theoretically expected flight 

directions on the assumption of use of a sun-azimuth compass. If the birds, at time T (here 10:00 A.M.), select an 

angle αT relative to the sun ST , they fly in the direction toward home H. At the time T, the shifted clock of the 

birds subjected to the shift treatment, shows T+6h. At that time (4:00 P.M.) the sun would be at position ST+6; 

H would be reached by selecting an angle αT+6 . By keeping this angle relative to the actually visible sun ST, 

the birds would achieve the course H‟. Under the given conditions, H‟ is approximately 120° left from H. Right-

hand diagrams show actually observed vanishing bearings with their mean vectors. The experimental pigeons 

were as well oriented towards H‟ as the controls were towards H (Wallraff, 1988a).  

 

 

1.3.2 The magnetic compass 

Even though the use of visual cues help to determine a compass direction, what 

happens if the sun is not visible, for example, under an overcast sky? Even under these 

conditions, pigeons can navigate without problems, which indicate that pigeons must be able 

to use an additional compass based on geomagnetic information (Keeton, 1969).  

It is well known that the Earth is a huge magnetic dipole with its poles located near the 

rotational poles (Fig. 2). The axis of the magnetic field is tipped with respect to the rotation 

axis of the Earth. Thus, true North (defined by the direction to the North rotational pole) does 

not coincide with magnetic North (defined by the direction to the North magnetic pole); as a 

consequence, the compass directions must be corrected by fixed amounts at given points on 

the surface of the Earth to yield true directions. The field lines defining the structure of the 

magnetic field are similar to those of a simple bar magnet, leave the Earth's surface from the 

magnetic South pole, curve around the Earth's surface before falling to the magnetic North 

pole. The inclination angle at which the magnetic field lines intersect the Earth‟s field varies 



 

 

 

10 General Introduction 

predictably with latitude. The magnetic field is a vector field characterized by a vector 

function of the observation point and time, indicated as “total intensity of the field”. 

The intensity of the geomagnetic field is maximum at the magnetic poles where the 

lines are oriented vertically with respect to the Earth‟s surface (~63000 nT) and minimum 

near the magnetic equator (~23000 nT), where the field lines are parallel to the Earth's 

surface. So there is a gradient ranging from the magnetic poles to the equator in both 

hemispheres of the Earth.  

 

 

 

 

 

 

 

 

 

 

The angle on the horizontal plane, between the direction of the geographical North and 

the magnetic North is called magnetic declination, and it is just a measure of the error that 

performs our compass  pointing the magnetic North compared to the geographical North.  

The angle between the magnetic vector and the horizontal plane is the so called magnetic 

inclination, which is negative in the northern magnetic hemisphere and positive in the 

southern magnetic hemisphere. If we consider the vector direction, in the northern hemisphere 

it will point down (the slope is negative); vice versa in the southern hemisphere the vector 

pointing upward until it becomes vertical to the southern magnetic pole. Therefore each point 

of the earth's magnetic field is represented by a vector, whose angle and length (intensity) 

varies in different parts of the Earth's surface. This field can be locally altered by some 

materials forming the Earth's crust, creating local areas of magnetic anomaly with increases or 

Fig. 2. Representation of the Earth‟s magnetic field. 
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decreases of the magnetic intensity, although it was suggested that these variations are 

insignificant when compared to the regularities of the field. 

According to some authors, the information of magnetic origins can constitute 

parameters characterized by such reliability to have allowed the evolution of magnetic 

navigation systems in different organisms (Papi et al., 1971). It has been proposed that the 

directional information from the Earth's magnetic field could be used by pigeons both in the 

compass step than during the orientation and navigation in the map step (Wiltschko and 

Wiltschko, 2006; Walcott et al., 1988).  

In pigeons, the existence of a magnetic compass has been first demonstrated by 

Keeton in 1971 by attacking on the pigeons backs a bar magnet (Keeton, 1971). This 

treatment affected the pigeon‟s initial orientation only under overcast sky, and not under 

sunny conditions. Overall, several experiments have been conducted by releasing pigeons in 

overcast sky with permanent magnets attached to their wings, heads and/or beaks (Ioalè, 

1984; 2000; Wallraff, 1986; Moore, 1988). Taken together these experiments “seem to 

provide evidence that under certain conditions the magnets can confuse homing pigeons” 

(Keeton, 1971). At the same experimental circumstances but in sunny conditions, the effect of 

the bar magnets on the initial orientation of the pigeons was not reported. This has been 

interpreted as an evidence that pigeons preferentially use the sun compass to establish the 

home direction, but that they possess a second compass system based on the geomagnetic 

information, used when the sun information are not available (Kramer and Riese, 1952; 

Schmidt-Koenig, 1991). 

During experiments conducted in laboratory, it has been demonstrated that the birds‟ 

magnetic compass is an „inclination compass‟ (Wiltschko and Wiltschko, 1972; Wiltschko, 

1968). A group of European robins (Erithacus rubecula) were subjected to the rotation of the 

magnetic North through a system of Helmholtz coils; as a consequence birds modified their 

migratory direction orienting with respect to the “new” magnetic North (Wiltschko, 1968). 

The robins were therefore not able to distinguish between the magnetic North and magnetic 

South, but between direction “toward the pole” and direction “toward the equator”. 

It has been suggested that in contrast to the sun compass, which is learned, the 

magnetic compass is innate and does not depend on experience and learning (Wiltschko and 

Guinner, 1974).  

 In the 2001 it has been hypothesized that the two compass systems are active 

simultaneously during homing (Wiltschko and Wiltschko, 2001c). Therefore, in the 

Wiltschko hypothesis (1994a; 2001b) the contemporary use of the sun and magnetic compass 
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would be responsible of the reduction of deviation observed in clock-shift experiments from 

familiar locations. This hypothesis is supported by the results obtained in a clock-shift 

experiment during which shifted pigeons magnetically treated, showed larger deflection with 

respect to shifted pigeons without additional manipulation. The authors interpreted these 

results as a demonstration that the pigeons use simultaneously both compass mechanisms. 

Gagliardo and colleagues confirmed these results with a GPS study (Gagliardo et al., 2009c).  

 A candidate magnetoreceptor involved in the magnetic compass mechanism is the 

retina. According to the radical pair model the reception mechanism involves photosensitive 

proteins that form radical pairs when excited by light. This reaction is modulated by the 

magnetic field and would differentially occur in different parts of the retina (Ritz et al., 2000). 

This process would lead to perceive the magnetic field as a visual pattern and would mediate 

the magnetic compass mechanism (Ritz et al., 2000; Wang et al., 2006). The cryptochromes 

contained in the retinic ganglionar cells are the photosensitive proteins presumably involved 

in this process and the Cluster N, a region of the visual system partly coincident with the 

Wulst, has been suggested as the brain portion processing the magnetic stimuli (Heyers et al., 

2007). The experimental evidences yielded so far show an increased expression of the 

cryptochromes at night in a migratory passerine displaying an oriented locomotory activity on 

the basis of magnetic cues; such increase was not observed in a non migratory species 

(Mouritsen et al., 2004). 

 

1.4 THE NAVIGATIONAL MAP MECHANISMS 

The compass direction systems alone cannot provide the information about the 

position of an animal in relation to its goal. Therefore a second mechanism is needed: the 

navigational map.  

The position finding mechanism of an animal with respect to the goal is based on 

information collected from local environmental cues. On the basis of the fundamental 

differences in the information upon which they might be based and their mode of operation, it 

is possible to distinguish between two kind of maps: the mosaic map and the gradient map 

(Wallraff, 1988b) (Fig. 3). The mosaic map model assumes that the area, in which the map is 

functional, is fragmented into a number of zones. The spatial relationships are learned by the 

animal during direct explorations or exploiting other source of information (see olfactory map 

hypothesis below) (Wiltschko and Wiltschko, 1978; Wallraff et al., 1994). A gradient or grid 
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map (Able, 2001; Wallraff, 2005b) assumes instead the presence on at least two gradients of 

any physical substrate, relatively stable over time and space, which vary systematically over 

sufficiently large regions. Assuming that these gradients extend monotonically beyond the 

familiar area, a displaced bird could obtain an estimate of its position relative to home by 

comparing the remembered values of the variables at home, with the values at the release site. 

In theory, the range of such a map is unlimited, in practice its range and accuracy would 

depend on the spatial extent of the gradient fields and their uniformity.  

 

 

 

Fig. 3. A mosaic of landmarks, symbolized by letters, surrounding a bird‟s home site (central dot). B. The 

corresponding mosaic map (topographical map), which is limited in extent by the bird‟s range of experience. C. 

Isolines (arbitrary units) of a fictitious gradient field. The line representing the scalar value observed at home is 

definite as 0, higher values are indicated by solid and lower values by broken lines. D. The bird‟s corresponding 

gradient map as established by extrapolation of home-area conditions. Note that in C and D, for simplicity, 

gradients of only one variable are shown. For complete site localization, at least two gradient fields are required 

intersecting at sufficiently large angles. The sections shown are thought to be of different size; side of the square 

in A and B may be at most few hundred kilometres, those in C and D 1.000 Km or more. (Wallraff, 2005a)     

 

 

 



 

 

 

14 General Introduction 

1.4.1 Navigation over unfamiliar areas 

When displaced at an unfamiliar release site distant from home, pigeons do not have 

visual contact with the home area and therefore must rely on a navigation map mechanism to 

determine the home direction. While there is a general agreement on the nature of the cues 

used by birds to take a direction in space, the nature of the information used by birds to 

determine their position with respect to the goal after a displacement to unfamiliar locations is 

one of the most debated issues in animal navigation. Nowadays, two competing hypotheses 

are subjects of a lively scientific debate: the existence of a map based on olfactory stimuli 

(Papi et al., 1972; Wallraff, 2005a) or the use of a map based on geomagnetic information 

(Walcott, 1982; Wiltschko and Wiltschko, 1995; 1998). 

 

1.4.1.1 The Olfactory navigational map 

Papi and colleagues discovered the importance of olfactory cues for bird navigation in 

1971 (Papi et al., 1971). This research group conducted an experiment during which pigeons 

with the olfactory nerves sectioned and false-operated pigeons were released from an 

unfamiliar location. The authors observed that the birds subjected to the section of the 

olfactory nerves were disoriented and impaired in homing in comparison to the control false-

operated birds. Nevertheless, these results could be ascribed to a non-specific effect of the 

surgery. In a second study, Papi and collaborators (1972) subjected the pigeons to two 

treatments: unilateral nerve section and occlusion of the ipsi- and/or contralateral nostril. The 

nostril plug was placed ipsilateral to the lesion for the control pigeons and contralaterally for 

the experimental birds. In this way, only the control pigeons had access to the odour 

information, but both groups had the same disturbance. Pigeons which could smell with one 

nostril (unilateral sensory deprivation), performed significantly better than the birds 

completely deprived of olfactory cues (bilateral sensory deprivation). These findings showed 

that the poor navigation performance in the first experiments was effectively caused by 

olfactory deprivation and not by the invasiveness of the surgery (Papi et al., 1972). 

On the basis of these results, Papi formulated the olfactory navigation hypothesis. 

According to this hypothesis, pigeons during their first months of life learn the associations 

between the environmental odours carried by the winds and the direction from which the 

winds blow. Once at the unfamiliar distant release site, the pigeons recognize the local odour 

profile, compare it to the wind direction associated with that odour profile experienced at the 
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loft and thus determine the direction of displacement (Papi et al., 1971; 1972; 1973; Ioalè et 

al., 1990). The olfactory navigation hypothesis provides therefore evidence that the pigeons 

build up a mental representation of the environmental odours distribution of the surroundings. 

The olfactory navigation hypothesis has been experimentally examined with two 

different kinds of manipulation: i) manipulation of the olfactory apparatus; ii) manipulation of 

the olfactory information at the home loft, during the transportation or at the release site (Papi, 

1991; Wallraff, 2005a; 2004).  

A systematic and specific impairment of the homing performance in both naïve and 

experienced pigeons released from unfamiliar locations has been observed in many 

experiments of manipulation of the olfactory system. Among these, there are experiments of 

olfactory deprivation achieved with different methods: section of the olfactory nerves (Papi et 

al., 1971), occlusion of the nostrils, insertion of small tubes of silicone from the nostrils to the 

choanae to prevent the contact between the olfactory mucosa and the inspired air (Keeton et 

al., 1977), anaesthesia of the olfactory epithelium (Schmidt-Koenig and Phillips, 1978), 

washing the olfactory mucosa with zinc sulphate which induce necrosis of the olfactory 

epithelium (Benvenuti et al., 1992). Olfactory deprivation experiments have been conducted 

in different countries of the world producing the same results, that anosmic pigeons are 

impaired in navigation (Benvenuti et al., 1998; Wallraff, 2005a). In addition to the olfactory 

mucosa manipulations, experiments of lesions to brain regions involved in the elaboration of 

olfactory stimuli were also conducted. Bilateral lesions of the piriform cortex, which receive 

the main projections from the olfactory bulbs and it is thought to process the olfactory 

information in birds (Reiner and Karten, 1985; Bingman et al., 1994), also produce dramatic 

navigational deficit in the pigeons (Papi and Casini, 1990; Gagliardo et al., 1997). 

The manipulation of olfactory information at the home loft can be done, either 

manipulating the direction of the winds carrying natural environmental odours, or providing 

artificial wind born odours. In the first case, three main types of wind manipulations have 

been employed: (1) shielding the natural winds; (2) deflecting the winds clockwise or counter-

clockwise; (3) reversing the wind directions (Papi, 1990; Wallraff, 2005a). In experiments 

conducted with birds raised in screened aviaries, pigeons could see the surrounding landscape, 

but were not able to associate the odours carried by the winds with the wind directions, 

because the air entered from the roof of the aviary. The navigational performances of these 

pigeons were impaired, while the pigeons confined in aviaries open to winds were homeward 

oriented, with homing performances better than the experimental groups (Wallraff, 1966; 

1979; Gagliardo et al., 2001a; Odetti et al., 2003). Following the deflection of the winds, 
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pigeons released at unfamiliar sites displayed a corresponding deflection of their initial 

orientation, indicating that the navigational map had been rotated. In an elegant experiment 

pigeons were confined in aisle-shaped aviaries. The longest sides were screened to the wind 

and the shorter sides were equipped with large ventilators. For the experimental groups, the 

ventilators were turned on when the wind blew from the opposite direction, resulting in a 

reversal of the dominants winds‟ direction. Once released, the experimental pigeons showed a 

reversed orientation with respect to that displayed by the control pigeons exposed to air fluxes 

with direction coherent with the natural winds (Baldaccini et al., 1975; Ioalè et al., 1978). 

These results confirmed the key role played by the winds for the development of the 

navigational map. Interestingly birds raised confined in screened aviaries could not develop a 

navigational map ex novo in adulthood even after months of exposition to the natural winds, 

suggesting a sensitive learning period during the first 2-4 months after fledging (Gagliardo et 

al., 2001a). However if the birds are allowed to perform spontaneous flights around the loft in 

adulthood, are able to improve their navigational performances (Odetti et al., 2003).  

The specific role of environmental odours in pigeon navigation is supported by 

experiments in which the birds were exposed to air currents carrying artificial odours. These 

pigeons were then exposed to the same odours at the release site. Regardless the home 

direction, they oriented in the direction opposite to that of the odour air current they were 

exposed to in the aviary. (Ioalè et al., 1990).  

During a creative experiment Papi and colleagues (1974) confined two groups of 

pigeons in an aviary fenced with plastic and bamboo material. Each group were subjected to 

artificial odours: one of the two groups was subjected to an odours wind of olive oils from 

South and an odours wind of a solvents mixture from North, the other group underwent the 

opposite treatment. Each of the two groups of pigeons occupied half of the aviary and each 

had its own corridor. The direction taken by the birds after displacement was consistent with 

the direction of the odours perceived by pigeons in the aviary, showing that the treatments 

with odours air currents influence the initial orientation in a predictable way. The birds 

showed the tendency to fly in a direction opposite to that from which they were accustomed to 

perceiving the same odour when subjected to wind treatments in the aviary (Papi et al., 1974). 

With another kind of protocol the pigeons can be fooled about the olfactory 

information gathered at the release site. Pigeons transported in pure air, were exposed to 

olfactory information of a false release site and then released, after anaesthesia of the 

olfactory mucosa, at a release site located in the opposite direction with respect to home. The 

control birds were exposed to the olfactory information of the true release site. The initial 
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orientation of the birds was consistent with the direction of the false release site, where the 

pigeons perceived the local olfactory information. (Benvenuti and Wallraff, 1985; 

Kiepenheuer, 1985; Dall'Antonia et al., 1999). To determine the direction of displacement 

pigeons rely also on the information perceived during transportation. This has been 

demonstrated by experiments of displacement with divergent pathways (detour experiments). 

In these studies, pigeons transported at the release site through two different ways showed, 

upon release, a tendency to orient in the opposite direction with respect to the initial tract of 

the journey towards the release site (Papi et al., 1978; 1984).  

As concerning the inner structure of the olfactory map, two non-mutually exclusive 

models have been proposed. According to the hypothesis of a mosaic map proposed by Papi 

and collaborators, chemical compounds would provide site-specific information patching the 

territory into sub-regions characterized by specific scents (Papi et al., 1972). According to a 

gradient map proposed by Wallraff, gradients of chemical compounds in the atmosphere 

provide positional information useful for the pigeons to determine their position with respect 

to home (Wallraff, 2000). In fact, sampling the air in large areas of Germany, Wallraff 

showed that hydrocarbons of artificial origin have a distribution sufficiently stable in space 

and time, to form the basis of a navigational map (Wallraff and Andreae, 2000). However it is 

still unclear what are the substances involved in the map mechanism of pigeons, and as 

regarding the hypothesized models, both could allow the pigeons to determine the direction of 

displacement rather than the exact location of the release site.  

Since the olfactory navigation hypothesis predicts that environmental odours 

perceived at the release site provide information only about the direction of displacement, it 

has been hypothesised that once within the home area, pigeons would rely on familiar visual 

information to localize the loft. This final step of the homing process is called local 

navigation (Bingman and Able, 2002) (Fig. 4). 

Despite the large body of evidence supporting olfactory navigation, some researchers 

attribute to magnetic cues a key role in navigation. The proposed magnetic map would be 

based on variations of geomagnetic intensities (Wiltschko et al., 2005; Walker, 1999). 
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Fig. 4. Scheme showing orientational efficiency of two homing mechanisms as a function of distance from 

home. Range of pilotage may be different depending on the range of individual spatial experience (P1 e P2). 

Distances given and shapes of curves are merely indicative. In the zone of overlap, total efficiency may either 

correspond to the higher of the two curves or it may be even higher, depending on whether there is some 

cumulative effect or not.  (Wallraff, 1974b). 

 

1.4.1.2 The Magnetic map 

The geomagnetic field represents a relatively reliable and omnipresent source of 

information. At any point on the Earth‟s surface, the magnetic field can be described as a 

vector in three-dimensional space pointing to magnetic North. The field is derived from 

sources in the core and crust of the Earth. The magnetic vector provides the birds with 

directional information (as described before the birds perceived the direction of the magnetic 

field), and the spatial distribution of factors such as total intensity and inclination may provide 

information about position. 

Because a pigeon is so small relative to the scale of variations in the Earth‟s magnetic 

field it can be treated as a point detector capable of detecting the direction and intensity of the 

magnetic field vector at any point in space. Since these two variables can be used in a bi-

coordinates navigation system, it has been suggested that pigeons use the direction of steepest 

slope in total intensity of the Earth‟s magnetic field, as vector coordinates for determining 

position. The suggestion is that pigeons learn the direction of the magnetic gradient of the 

surroundings while flying around the loft and in the nearby areas during spontaneous and 

training flights. By comparing differences in the field between the release point and the home 

loft the pigeons might be able to determine their position relative to home. It has been then 

hypothesised that if the pigeons use such a scheme, any small artificial change in the magnetic 

field might be expected to produce errors in their homeward orientation (Walker, 1997; 1998; 

Walker et al., 2002). 

The first results suggesting a role of magnetic stimuli in a position finding mechanism in 

homing pigeons come from experiments conducted with birds released from locations 

characterized by strong magnetic anomalies. At these sites an impairment in initial orientation 
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has been observed, although not consistently. A positive correlation between the extent of 

magnetic variations at different sites and the degree of scattering of the tested groups has been 

reported by Walcott (1982). It has been suggested that the pigeons orientation errors were due 

to the anomaly in the local magnetic parameters, which would not be predictive of the relative 

site position with respect to home. Nevertheless, the results of experiments conducted in areas 

of magnetic anomaly produced controversial findings. Other results suggesting a role of 

geomagnetic field in navigation come from experiments in which the birds were exposed to 

an intense magnetic field of short duration (magnetic-pulse). It has been observed that the 

magnetic-pulse treatment affected the orientation of pigeons (Beason et al., 1995; 1997) and it 

has been proposed that the treatment involved only the map mechanism (Munro et al., 1997). 

Although there are indications that many animal species rely on geomagnetic 

information to orient and navigate, little is known about the neural and biophysics 

mechanisms underlying the magnetic perception. Therefore the question about how the 

pigeons sense the geomagnetic information is still subject of debate. Before reporting the 

experimental work we have done to test the hypothesis of a role of the geomagnetic field in 

pigeon‟s navigation, a brief overview of the hypothesized mechanisms underlying 

magnetoreception is given below.  

 

Magnetoreceptors  

The lack of knowledge about the morphology and the location of magnetoreceptors 

come partially from the nature of stimulus that they have to sense, as the magnetic stimulus 

easily penetrate living tissues. For these characteristics of the stimulus the magnetoreceptors 

do not need to be in contact with the external environment and do not need accessory 

structures (such as lenses for the visual sensory system). Therefore the magnetoreceptors may 

be small or dispersed within the body. Among the theoretical models for magnetoreception 

that have been proposed, the use of photoreceptor-based mechanisms involving 

cryptochromes in the retina and magnetite particles as magnetoreceptors are currently debated 

(Ritz et al., 2000; Kirschvink and Gould, 1981).  

 

Radical Pair Model 

As every chemical reaction is influenced by the magnetic field in which it takes place,  

it has been proposed the chemical magnetoreception hypothesis. Several ingenious 

mechanisms have been proposed and debated (Grissom, 1995; Lednev, 1991), but the only 
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hypothesis that has so far gained widespread acceptance as physically plausible is one that 

relies on chemical reactions involving pairs of radicals (Leask, 1977). In 2000 Ritz presented 

a theoretical framework for a vision-based magnetoreception mechanism that connects the 

molecular and quantum properties of radical-pair processes with the behavioural responses of 

a bird. According to this model magnetoreception would occur in the retinal photoreceptors, 

involving chemical reactions influenced by the geomagnetic field (Ritz, 2000). Behavioural 

and electrophysiological studies have shown evidence that a light dependent mechanism 

provides directional information, which are therefore used in the compass mechanism (Semm 

and Demaine, 1986; Wiltschko and Wiltschko, 1995). A simple radical-pair reaction scheme, 

which can act as a chemical magnetoreceptor mechanism as suggested originally by Schulten 

and Windemuth (1986), is depicted in Fig. 5. The reaction scheme begins with an excited 

donor molecule D* who transfers an electron to an acceptor molecule A
-
, resulting in a radical 

pair D
+
 + A

-
. This leaves each molecule with an unpaired electron, the spins of which are 

either opposite (singlet state) or parallel (triplet state). Such a spin-correlated radical pair can 

be generated, for example, by photoinduced electron transfer. These two states are inter-

convertible and chemically different. The alignment of macromolecules in the magnetic field 

affects the singlet and triplet state by shifting the balance between the two states. 

 

 

Fig. 5. Reaction scheme for a radical pair reaction with magnetic field-dependent reaction products. The radical 

pair is generated by an electron transfer from a donor molecule D
*
 to an acceptor molecule A

-
. An external 

magnetic field affects interconversion between singlet and triplet states of the radical pair. 

 

Therefore in summary, magnetic fields can lead to several different concentrations of 

singlet or triplet state. The presence of two types of products, whose mutual relationships 

change depending on the magnetic field, may indicate an animal's ability to evaluate the 
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difference between the two products and then determine the intensity of the magnetic field 

that induced this different concentration.  

However, since one of the main arguments developed in my PhD project is the 

involvement of the ophthalmic branch of the trigeminal nerve in the perception of changes in 

the magnetic field intensity, I will discuss below in more detail, the other mechanism that is 

thought to be involved in magnetoreception, in particular in the detection of the geomagnetic 

field intensity.  

 

Magnetoreception through ferromagnetic material  

The magnetite (Fe3O4) is a material of biogenic origin detected in honeybees, birds, 

salmon, sea turtles and a number of other animals that are known to be affected by the Earth‟s 

magnetic field (Kirschvink, 1985). In the birds, the magnetite particles were found in the 

ethmoid region of the upper beak area of the head (Williams and Wild, 2001; Fleissner et al., 

2003; Beason and Nichols, 1984; Walcott et al., 1979). Most magnetite isolated from animals 

has the form of single-domain magnetite crystals (SD), or superparamagnetic (SP) crystals 

(Fig. 6). On the basis of the shape and size of particles of magnetite, different models 

explaining the magnetoreception have been proposed. The transduction of magnetic 

information through the single-domain magnetite crystals to the nervous system, may occur 

through a mechanical stimulus produced by the particles aligned with the magnetic field at the 

receptor level (Kirschvink et al., 2001; Presti and Pettigrew, 1980; Kirschvink and Gould, 

1981). The superparamagnetic particles, however, have no permanent magnetic moment and 

do not change their position based on changes of the magnetic stimulus. These particles, 

developing a magnetic moment when subjected to magnetic stimulation, can generate a quite 

strong field likely to attract or repel the neighbouring crystals (Winklhofer, 2001; Davila et 

al., 2005). This interaction might deform the matrix structure in which the crystals are 

included, providing information about the direction and/or the intensity of the magnetic field 

to the nervous system. 

In birds, crystals of a trivalent iron compound thought, to be magnetite, have been 

detected in an area of the upper beak (Fleissner et al., 2003; Beason and Brennan, 1986). In 

pigeons, ultrastructural analyses of this anatomical region have revealed clusters of these 

crystals inside nerve terminals and arranged along the cell membrane (Fleissner et al., 2003). 

However, in contrast to the single-domain magnetite detected in fish, the magnetite crystals in 

the beak of the pigeon are superparamagnetic (Winklhofer, 2001; Hanzlik and et al, 2000). An 

interesting similarity between fish and birds is that, in both cases, the anatomical site that 
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contains the magnetite seems to be innervated by the ophthalmic branch of the trigeminal 

nerve (V branch brain) (Fleissner et al., 2003; 2007; Walker, 1997) (Fig. 7-8). It has been 

suggested the involvement of this nerve in the magnetic perception.  

 

 

Fig. 6.  The different magnetic properties of single-domain and superparamagnetic crystals. a | Single-domain 

(SD) and superparamagnetic (SP) magnetite crystals have different magnetic properties. Single-domain crystals 

have permanent magnetic moments (indicated by red arrows) even in the absence of an external magnetic field 

(B = 0). If an external field is present (black arrow) and the crystals are free to rotate, they will align with the 

external field. By contrast, superparamagnetic crystals have no magnetic moment in the absence of an external 

field. If an external field is present, however, the crystals develop a magnetic moment that tracks it, even though 

the crystal itself does not rotate. b | A hypothetical transduction mechanism based on interacting clusters of 

superparamagnetic crystals located in the membranes of neurons. Depending on the orientation of the external 

field, the clusters will either attract or repel each other, deforming the membrane and possibly opening or closing 

ion channels. For example, when the external field is parallel to the cell membrane, the fields in each crystal (red 

arrows) align in such a way that adjacent clusters attract each other like a row of bar magnets aligned end to end 

(middle panel). The membrane might, therefore, be slightly compressed. By contrast, a 90-degree changes in the 

orientation of the external field (bottom panel) results in different interactions between clusters, because adjacent 

clusters now behave like a row of bar magnets aligned side by side. The resulting interactions might stretch the 

membrane and open ion channels. (Johnsen and Lohmann, 2005). 
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Fig. 7. Spatial distribution and quantity of iron minerals within the putative magnetoreceptor system. A X-ray 

image of the upper beak showing its six iron-containing areas and the prevailing orientation of their dendritic 

fields (arrows: c caudal, d dorsal, f frontal, l lateral, m median, r rostral, v ventral) (Fleissner et al., 2007). 

 

 

 

 

 

 

 

 

  

 

Electrophysiological recordings in migratory birds indicate that specific neurons in the 

trigeminal ganglion, to which the ophthalmic branch of the trigeminal nerve projects, respond 

to changes in vertical field intensity as small as about 0.5% of the Earth‟s field. These cells 

have been proposed to detect changes in magnetic field intensity useful for a navigational map 

mechanism (Semm and Beason, 1990).  

The use of magnetic field intensity for a position finding mechanism was suggested on 

the basis of results produced by pulse magnetization experiments. It has been observed that a 

strong magnetic field of brief duration can be used to alter the direction of magnetization in 

single-domain magnetite particles (Kalmijn and Blakemore, 1978). It has been reported that 

magnetic pulse treatments, that are supposed to alter magnetite-based magnetoreceptors, 

affect birds‟ orientation. It has also been observed that the anaesthesia of the ophthalmic 

 

R.o.medialis R.ophtalmicus 

N.trigeminus 
Magnetite particles 

Fig. 8. Schematic representation of the magnetite particle located in the upper beak of pigeons and supposedly 

innervated by the ophthalmic branch of the trigeminal nerve (V branch brain).   
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branch of the trigeminal nerve in migratory birds suppresses the deviation in orientation due 

to the pulse magnetization treatment (Beason and Semm, 1996; Wiltschko et al., 1994b). 

Other studies conducted by Mora and collaborators (2004), showed the involvement of 

the ophthalmic branch of the trigeminal nerve in a discriminating magnetic task in pigeons. 

Four pigeons had to choose which platform to go up depending on the absence or presence of 

a strong magnetic anomaly to obtain a food reward. Once undergoing to a nasal anaesthesia, 

the pigeons were no longer able to discriminate between the absence and the presence of the 

magnetic anomaly. Subsequently, the authors subjected two pigeons to a bilateral section of 

the trigeminal nerve and two pigeons to a bilateral section of the olfactory nerves. The 

pigeons operated to the trigeminal nerve, were no longer able to discriminate the presence 

from the absence of the magnetic anomaly, while the anosmic pigeons were still able to 

perform a magnetic discrimination. This experiment supports the role of the ophthalmic 

branch of the trigeminal nerve in the magnetoreception.  

Gagliardo and colleagues (2006) directly compared the roles of the olfactory nerve and 

of the ophthalmic branch of trigeminal nerve in homing. From two sites located in opposite 

directions with respect to home, they released three different groups of inexperienced homing 

pigeons subjected to: (1) a sham operation, (2) bilateral section of the olfactory nerve, or (3) 

bilateral section of the ophthalmic branch of the trigeminal nerve. The experiment showed a 

dramatic impairment in the homing performance only for the pigeons with the olfactory nerve 

sectioned. In contrast, neither the sham operation nor resection of trigeminal nerve affected 

the capability of pigeons to return to their home loft. On the basis of these results Gagliardo 

and collaborators concluded that a trigeminally mediated magnetic sense, thought to be 

transduced using magnetite in the upper beak (Fleissner et al., 2003; Mora et al., 2004; 

Williams and Wild, 2001), is neither necessary nor sufficient for untrained pigeons to find 

their way home from unfamiliar sites. The same results were obtained by extensively training 

adult pigeons, and then surgically depriving them of either olfactory or trigeminally mediated 

magnetic information, prior to testing their navigational abilities (Gagliardo et al., 2009b). 

The birds deprived of trigeminally mediated magnetic information displayed similar 

navigational abilities as intact control pigeons, whereas the olfactory-deprived pigeons were 

dramatically impaired in homing. Once again, these authors showed that even in trained adult 

pigeons, olfactory cues are needed for homing from unfamiliar locations and that the lack of 

magnetic information does not affect navigational abilities of experienced adult homing 

pigeons. The function of the putative magnetoreceptor in ecologically relevant behaviours 

thus remains mysterious. 
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1.4.2 Navigation over familiar area 

During training flights and exploratory free flights around the loft, pigeons can learn a 

map of the environment (Gagliardo et al., 2007a) which consists of a mental representation of 

the spatial distribution of familiar landmarks (Bingman and Mench, 1990). Theoretically this 

map can be based on the spatial distribution of various kinds of sensory cues (visual, 

magnetic, acoustic and olfactory). Although the visual information could be intuitively 

considered important in the orientation from familiar locations, the role of “visual familiar 

landmarks” has been subject of debate. Some authors claimed that visual feature of the 

landscape do not constitute orienting stimuli for homing (Schmidt-Koenig, 1991; 1979; 

Wiltschko and Wiltschko, 1998; Wiltschko, 1991; Keeton, 1974) for the following reasons: a) 

pigeons are able to orient also if released from unfamiliar locations; b) pigeons when 

subjected to a clock-shift treatment showed a deviation from home consistent with the phase 

shift if released from both unfamiliar and familiar release sites (Keeton, 1974; Wiltschko and 

Wiltschko, 1998); c) pigeons equipped with opaque lenses and released from familiar 

locations were homeward oriented (Schmidt-Koenig and Schlichte, 1972; Benvenuti and 

Fiaschi, 1983). In particular as regarding the deflection in initial orientation of clock-shifted 

birds released at familiar sites R. and W. Wiltschko stated “This means that there are no 

indications for a general change in navigational strategy when pigeons become familiar with a 

release site: their headings are not controlled by landmarks and landscape features, but 

continue to be determined as a compass course and located with a compass” (Wiltschko et al., 

2005).  

Actually clear evidences of a critical role of visual landmarks in pigeon navigation 

have been accumulated. 

Anosmic homing pigeons, unable to navigate from unfamiliar locations, are 

unimpaired when released at familiar sites (Papi et al., 1973; Papi, 1982) and display good 

homing performances even when released at unfamiliar sites located within a familiar area 

(Wallraff and Neumann, 1989; Wallraff et al., 1989). Braithwhite and Guilford provided the 

first direct evidence that the view of the familiar release site affects pigeon performances. By 

using clear or opaque sided release boxes, the authors experimentally showed that pigeons 

allowed to observe their surroundings before release from a familiar site, could on average 

home faster than pigeons that were denied the same visual experience. Their results suggested 

an important role for the use of vision, possibly in the recognition of landmarks during the 

homing process (Braithwaite and Guilford, 1991). Experiments testing the orientation of 
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pigeons in a circular arena before their take off (Mazzotto et al., 1999; Gagliardo et al., 

2001b) showed that unmanipulated and anosmic pigeons were homeward oriented if they 

were allowed to view the release site landscape features (Gagliardo et al., 2001b). If the view 

of the surroundings was prevented, the control smelling pigeons still displayed a homeward 

orientation, while the anosmic pigeons were disoriented. These results indicate that in familiar 

areas pigeons can use both visual and olfactory information and that the visual cues play a 

major role for site recognition when the olfactory information are not available (Wallraff and 

Neumann, 1989; Wallraff et al., 1993; 1999; Gagliardo et al., 2001b; 2005a). 

The role of familiar visual landmarks in shaping the flight path beyond the release site 

area has been demonstrated by experiments with GPS data loggers. Biro and colleagues 

(2004) intensively trained birds from two distinct release sites. Once birds had completed all 

releases from the training site, they were released once from four novel („„offroute‟‟) release 

sites. The locations of these release sites were chosen individually for each bird such that they  

lay ~1–1,5 Km (perpendicular distance) from a corridor defined by the birds‟ final three 

tracks recorded during the training phase. The results showed that after extensive experience, 

pigeons assume stereotyped routes home, even when released from novel sites off-route. 

These routes were surprisingly inefficient and were neither the most direct paths home nor 

similar across subjects. Thus, the recapitulated route clearly attracted birds from a distance 

and from novel directions and then controlled subsequent flight behaviour. The authors 

proposed that, after extensive experience with a particular location, pigeons build a 

representation of the homeward route in the form of a „„route map,‟‟ i.e., a series of 

memorized visual landmarks or „„waypoints”. This precise route loyalty demonstrates, again, 

a clear reliance of the pigeons on familiar landmarks (Biro et al., 2004).  

The visual information of the familiar area can be used by the birds within two different 

navigational strategies, the existence of which can explain inconsistencies in results of clock-

shift experiments conducted with pigeons released from familiar locations. The two strategies 

are described below and their relative contribution to the pigeons behavioural output can be 

highlighted by clock-shift experiments in which the compass information is set in conflict 

with the topographical information. 

i) The “site-specific compass orientation” strategy. Pigeons adopting this strategy recall the 

familiar site features in association with the compass direction leading them home 

(Wallraff, 1974; Gagliardo et al., 1999; Holland, 2003). In this case, the birds use the local 

familiar landmarks only to recall a compass direction. In this case the navigational process 

follows the typical “map and compass” steps. 
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ii) The  “piloting” strategy (Baker, 1984; Papi, 1992a). Pigeons adopting this strategy rely on 

the spatial relationships among the familiar landmarks (Holland, 2003). These 

relationships are memorized to constitute a topographical map that, without the aid of 

compass, allows the animal to find its way home. This topographic map could be 

interpreted as cognitive map (Bingman and Able, 2002; O'Keefe and Nadel, 1978). 

As concerning the role of familiar visual landmarks in correcting the navigational 

error following clock shift treatments, several studies have shown a large degree of variability 

in the observed deviations in the pigeons‟ initial orientation. In some experiments, the pigeons 

showed a deviation consistent with the expected (Graue, 1963; Luschi and Dall'Antonia, 

1993; Keeton, 1969), while in other experiments the observed deviation was lower or null 

with respect to the expected values (Bingman and Ioalè, 1989; Wallraff, 1994; Gagliardo et 

al., 1999; 2002; 2005a; Wiltschko and Wiltschko, 2001a). It is worth noting that the greater 

degree of deviation observed with respect to the expected deviation, has been observed in 

pigeons released under anosmia and therefore forced to rely on familiar visual landmarks for 

navigation. During experiments aiming at investigating which factors are involved in the 

reduction of the deviation due to the clock-shift treatment, Gagliardo and colleagues (2005a) 

performed a series of releases with intact and anosmic pigeons from familiar sites in un-

shifted and clock-shifted conditions. It has been shown that the two groups differed in the 

extent of their deviations from the home direction. The deviations observed for the anosmic 

pigeons were significantly lower than those observed for the untreated control birds. 

Gagliardo and colleagues interpreted the reduction of the deviations observed in theirs 

pigeons as mainly due to the use of topographical information within a piloting strategy. Also 

the smelling birds released from familiar sites displayed a reduced deflection in their initial 

orientation, although to a lesser extent if compared to the anosmic birds. This was due to the 

familiarity with the release sites, as suggested by the greater deflection of birds released for 

the first time at the same sites. In conclusion, at familiar sites the anosmic birds seem to rely 

preferentially on a piloting strategy, while the smelling pigeons seem to prefer a “site specific 

compass orientation” strategy, probably also using information provided by the olfactory map 

mechanism. From the data in the literature emerged that the pigeons tend to preferentially rely 

to the site specific-compass orientation strategy (Gagliardo et al., 1996; Chappell and 

Guilford, 1995). However it has been shown that pigeons can make a compromise between 

the two strategies and that there are factors making them shifting to the piloting strategy. In 

experiments conducted with route recorders on clock-shifted pigeons released from familiar 
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sites (Bonadonna et al., 2000; Holland et al., 2000) it was shown that some pigeons flew 

directly towards home, while other birds made wide detours due to the wrong information 

provided by the sun compass. This suggests that there is an individual variability in the 

preferred strategy. Furthermore, the preference for one or the other strategy may also depend 

on the characteristics of the release site and the over-flown area (Bonadonna et al., 2000; 

Gagliardo et al., 2005a). Biro and colleagues (2007) examined how homing pigeons‟ reliance 

on sun-compass information changes with the level of familiarity with the area. Two groups 

of homing pigeons with different level of familiarity, one subjected to intensive training and 

one with a limited experience have been tested after clock shift. It has been observed that 

birds with a higher level of experience tend to follow the same route memorised during the 

training flights, while the less experienced birds display a lower level of route fidelity. 

Therefore, given sufficient experience, homing pigeons develop individually distinct, 

stereotyped routes home, which they accurately recapitulate on each subsequent journey. 

These findings indicate that memorized visual landmarks can directly provide onward 

guidance along the entire route home and not just site recognition cues at release. However, 

when birds are less familiar with the environment, the site specific compass orientation 

becomes dominant, suggesting that previous experience establish which mechanism is used.  

An important role in birds spatial behaviour is played by the hippocampal formation 

(HF), similarly to what happens in mammals (O'Keefe and Nadel, 1978; Bingman et al., 

2006).  

The first study on the effects of hippocampal lesions, in homing pigeons performance, 

was performed by Bingman and colleagues in 1984. This and subsequent studies showed that 

lesioned pigeons released from unfamiliar locations exhibited a good initial orientation but 

slower homing performances, likely due to difficulties in the localization of the loft within the 

home area (Bingman et al., 1984; 1988; Bingman and Mench, 1990; Strasser et al., 1998). 

The fact that the lesioned pigeons, exhibit an initial orientation towards home when released 

even from distant unfamiliar places, indicates that the hippocampus is not involved in a 

position finding system, once the navigational map is learned. The lower efficiency of the 

hippocampal ablated pigeons in localising the loft suggests an involvement of the 

hippocampal formation in landmark based navigation, which is requested in the last phase of 

the homing process (Gagliardo et al., 2007c; Bingman and Mench, 1990; Bingman et al., 

1990).  It was observed that hippocampal lesioned pigeons are unable to reorient on the basis 

of the familiar landmarks array (piloting strategy) (Gagliardo et al., 1999). Pigeons with 

hippocampal lesions were trained in groups from two places located in opposite directions 
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from home. Before the experimental tests the pigeons were made anosmic in order to prevent 

them from using the olfactory navigational map. The pigeons were also subjected to a phase 

shift treatment. Therefore, the only information available for re-orientation was given by the 

familiar topography. While the intact anosmic pigeons displayed a tendency to orient 

homeward, therefore relying on the spatial relationships among landmarks memorized during 

the previous homing flights, the lesioned pigeons displayed a deviation from the home 

direction as expected on the basis of the use of a site specific compass orientation strategy. 

These results were confirmed by a GPS study (Gagliardo et al., 2009a). During this 

experiments it has been highlighted the important role of the sea as a landscape boundary in 

re-orientation. The fact that HF-lesioned pigeons (no control) spent a considerable amount of 

time flying over the sea on their way from a release site located close to the coast, suggested 

that rather than point source landmarks, coarse landscape features and the ease with which 

different landscape features may be segmented from other landscape features, play an 

important role in re-orientation. Moreover, the behaviour of the HF-lesioned pigeons 

suggests, as already shown in previously experiments, that they are specifically diminished in 

their capacity to use such landscape features for navigation. 

The involvement of the hippocampal formation in a landmark based navigation during 

homing has been also recently highlighted in a study in which it has been investigates the 

expression of the immediate early gene ZENK in birds unilaterally occluded or not and 

released at unfamiliar site or transported to the site without being released. The results 

revealed that the hippocampus is activated in both flying groups, but not in those just kept at 

the release site. These results are consistent with hippocampal recruitment in the local 

navigation and memorization of topographical cues during homing (Patzke et al., 2010). 

 

1.5 THE OLFACTORY SISTEM OF BIRDS 

1.5.1 Neural basis of olfactory navigation 

For a long time, the olfactory sense of smell in birds‟ biology was considered 

unimportant or not even functional. The small size of the olfactory bulbs (Obs) in relation to 

the rest of the brain in many species of birds was interpreted as a hint for a rather 

underdeveloped sensory system (Roper, 1999). However, comparative anatomical studies 

revealed a high degree of similarity between the avian olfactory system and those of 

amphibians, reptiles and mammals both on the macroscopic and microscopic level (Roper, 
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1999). Recently it was also demonstrated that the majority of avian olfactory receptor genes 

are potentially functional (Steiger et al., 2008) and that they are not, as previously believed, 

non-functional pseudogenes.  

 The olfactory receptor cells located in the olfactory chamber constitute the olfactory 

mucosa. The olfactory epithelium includes several distinct cell types: the olfactory receptor 

neuron, basal cells and supporting cells. The olfactory receptor cells are bipolar neurons 

provided with cilia which protrude from the olfactory receptor cell's dendrite into the mucus 

covering the surface of the olfactory epithelium. These cells differentiate continuously from 

the basal cells located above the olfactory mucosa. When the primary olfactory neurons 

degenerate new cells differentiate from the basal cells. By consequence a turnover of 

olfactory neurons is guaranteed by the differentiation and the replication of basal cells. The 

olfactory receptor cells are connected with a pair of olfactory nerves with the olfactory bulbs, 

which are located at the rostral end of the brain (Rieke and Wenzel, 1978). The OBs project at 

various brain areas as follows. They project bilaterally to the prepiriform cortex (CPP), 

nucleus taeniae of the amygdala (TnA), CPi, dorsolateral corticoid area (CDL), and 

ipsilaterally to the medial striatum (SM). The piriform cortex that is supposed to be involved 

in processing olfactory information is connected to other main telencephalic areas: the CPP, 

the OBs, the dorsal acropallium (AD), the hyperpallium densocellulare (HD), the 

hyperpallium laterale (HL), and the frontolateral nidopallium (NFL) (Fig. 9) (Patzke et al., 

2011; Reiner and Karten, 1985; Bingman et al., 1984).  

 

 

Fig. 9 Schematic representation of the main telencephalic olfactory projections. The OB project bilaterally to the 

CPP, TnA, CPi, CDL, and ipsilaterally to the SM. In addition to that, CPi receives bilateral input from CPP and 

ipsilateral input from AD, HD, HL, and NFL. From (Patzke et al., 2011).  
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 As previously mentioned the involvement of the olfactory sense in navigation was 

discovered by Papi and colleagues in the 1972, by observing a dramatic impairment of 

pigeons‟ navigational abilities as consequence of anosmia (Papi et al., 1972). Subsequent 

studies have shown that besides the section of the olfactory nerves, and the disruption of the 

olfactory mucosa, also lesions to brain areas processing olfactory information, as the piriform 

cortex (CPi) disrupt pigeons homing abilities. However, bilateral ablations of the CPi impair 

pigeons‟ homing ability only from unfamiliar sites, but not from familiar site, suggesting a 

specific role of this brain region in true navigation. Accordingly, lesions of the Cpi in young 

birds prevent the development of the olfactory map even when the pigeons are allowed to 

perform spontaneous flight around the loft (Gagliardo et al., 1997). 

 Besides the role of olfactory cue in navigation, in the last thirty years many behavioural 

studies have provided a large body of evidence about the involvement of the sense of smell in 

birds‟ biology. Scents play a role in food location in kiwis and vultures (Balthazart and 

Taziaux, 2009) but also in recognition of familiar places like the nest in domestic fowl chicks 

(Porter et al., 1999), petrels (Hagelin and Jones, 2007), in courtship in ducks (Balthazart and 

Taziaux, 2009), in finding burrow and partner-odour recognition in Procellariiform seabirds 

(Bonadonna and Nevitt, 2004), and in natal nest recognition (Caspers and Krazuse, 2010). 

Moreover, chemical signals have been shown to play a major role in sex recognition 

(Bonadonna, 2009) and in specific partner‟s recognition (Bonadonna et al., 2007). 

   

1.5.2 Functional lateralization of the olfactory system 

The functional and structural lateralization of the left and right hemisphere is not only 

a feature of the human brain but is common in the entire animal kingdom from the fruit fly to 

mammals (Vallortigara et al., 1999; Vallortigara and Rogers, 2005). Having a lateralized 

brain is considered to enhance the efficiency and neuronal capacity of the brain, by reducing 

the interhemispheric conflict. In birds, one of the most extensively studied lateralized systems, 

is the visual system, which reveals functional and anatomical lateralization (Manns and 

Güntürkün, 2009). However, while the visual lateralization in birds is a well studied 

phenomenon, the olfactory lateralization is poorly understood. In fact only recently the 

question of a possible functional asymmetry in the olfactory system was addressed in birds. 

The first evidence of a functional lateralization in the olfactory system of birds was 

provided by Giorgio Vallortigara and Richard Andrew in chicks exposed to olfactory stimuli 

during imprinting. Their study showed that chicks performed better in a discrimination task 
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between an olfactory familiar and unfamiliar rearing object, when they could smell with the 

right nostril (Vallortigara and Andrew, 1994). In 1996, Benvenuti and Gagliardo provided a 

report addressing a possible olfactory lateralization in pigeons with previous homing 

experience. In this experiment birds with extensive homing experience subjected to unilateral 

anosmia (zinc-sulphate treatment) and unilateral nostril occlusion, were released from 

unfamiliar locations. The experiment aimed at testing possible non specific effects of the  

zinc-sulphate treatment. Therefore for the anosmic birds the plugged nostril was contralateral 

to the zinc-sulphate treatment, while for the controls the plugged nostril was ipsilateral to the 

zinc-sulphate treated side. Consistently with previous results, bilateral anosmia disrupted the 

navigational performances of the birds. As regarding lateralization, no difference in terms of 

initial orientation and homing rates between the left-side and the right-side treated birds was 

highlighted. Therefore the authors concluded that there was no evidence for olfactory 

lateralization in homing pigeons (Benvenuti and Gagliardo, 1996).  

In the following decade, Gagliardo and collaborators conducted other experiments 

aimed at investigating olfactory lateralization in pigeon navigation tasks. Since it was known 

that an intact Cpi is required to navigate from an unfamiliar locations (Papi and Casini, 1990), 

Gagliardo in 2005 examined the effects of unilateral lesions of the CPi in adult inexperienced 

birds (Gagliardo et al., 2005). Pigeons with an intact left Cpi showed an unimpaired initial 

orientation compared to the control birds, while pigeons with an intact right Cpi were 

randomly scattered. This suggested that there is a functional dominance of the left Cpi in 

processing olfactory cues for the determination of the direction of displacement. However, as 

the ablation induces comparable homing performances in both treated groups, it was 

hypothesized that the right Cpi might provide an important contribution in the navigation 

process en route. However this hypothesis still needs to be tested.  

A subsequent study was carried out with naïve pigeons made anosmic by means of a 

unilateral nostril occlusion (Gagliardo et al., 2007c). Adult inexperienced birds were divided 

in three experimental groups: left nostril plugged pigeons (LNP), right nostril plugged 

pigeons (RNP) and unmanipulated pigeons (C). The unilaterally plugged birds which had 

returned from the first release were tested from a second and more distant site after switching 

the side of the plug, together with the unmanipulated control group. The birds with the left 

nostril occluded showed unimpaired initial orientation performances. By contrast, the pigeons 

smelling with the left nostril (right nostril occluded) were impaired in their initial orientation. 

These two studies highlighted a functional asymmetry in favour of the right nostril/left CPi 

(Gagliardo et al., 2005b; 2007b), suggesting a possible involvement of the contralateral OB-
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CPi projections. It is worth-noting that different physiological studies have shown that the 

major projections from the OB to the CPi are ipsilateral rather than contralateral (Rieke and 

Wenzel, 1975; 1978; Reiner and Karten, 1985; Bingman et al., 1994; Patzke et al., 2011). 

Moreover, Patzke and colleagues observed that both contralateral projections from the OB to 

higher brain areas are symmetrically organised and therefore the functional asymmetry 

observed at behavioural level cannot explained at a neuroanatomical level (Patzke et al., 

2011). Another investigation (Patzke et al., 2010) of the same issue has involved the 

expression of the immediate early gene ZENK in birds released at unfamiliar site or 

transported to the site without being released. To evaluate the differential contribution of the 

left and ⁄ or right olfactory input, the nostrils of the pigeons were either occluded unilaterally 

or not. The results showed for the unplugged birds released from unfamiliar sites a 

comparable activation between the two hemispheres of the OB and the CPi. However, both 

Cpis seem to contribute differently to the navigation process. Only occlusion of the right OB 

resulted in a decreased ZENK cell expression in the Cpi, whereas occlusion of the left nostril 

had no effect. This study reveals for the first time a neuronal activation patterns in the 

olfactory system during homing with a stronger connectivity between the OB and the CPi in 

the left rather than in the right hemisphere. 

 

1.6  INVESTIGATION OF HOMING PIGEONS: CLASSICAL APPROACH 

AND NEW TECHNOLOGIES. 

In the experiments discussed in this research project, have been applied two different 

methods of investigation: classical investigation methodologies and innovative methods. 

1.6.1 Classical methods 

When we talk about classical methods of investigation, we refer to experimental 

protocols that provide direct observation of the orientation of the pigeon at the release site and 

the timing of return to the aviary.  

A traditional release experiment on homing pigeon is conducted as follows. A number 

of pigeons, individually labelled by numbered rings and selected according to age, homing 

experience, group membership, etc., are caught in their home loft and confined in baskets or 

crates. The pigeons are transported to the release site, where they are released individually. 

Each bird is tossed into the air and observed with binoculars until it vanishes from sight. Then 



 

 

 

34 General Introduction 

direction and time of vanishing is recorded. At this time a pigeon is approximately  

1.6 - 2.2 Km distant from the starting point (Wallraff, 2005a). During the experiment, another 

observer records the individual bird‟s time of arrival at the loft, so it is possible to calculate 

the homing performances, i.e. homing duration and homing rate. 

However, although the observation of vanishing bearings represent an important 

method, which becomes highly reliable and meaningful in those cases in which the initial 

orientation data can be interpreted considering also the homing performance of the released 

birds, the development of satellite technology has made possible many advances in the study 

of the birds‟ behaviour. 

1.6.2 GPS data-logger 

The GPS loggers are miniature high-precision instruments equipped with an antenna, 

receiving signals from 25 satellites placed into orbit by the U.S. Department of Defence. The 

location data (longitude, latitude, altitude, time and date) are stored in a logger with 8 Mb of 

memory. GPS was originally intended for military applications, but in the 1980s, the 

government made the system available for civilian use. The GPS satellites circle the Earth 

twice a day in a very precise orbit and transmit signal information to earth. The GPS receivers 

keep this information and use a triangulation‟s method to calculate the user's exact location 

and are supposed to work in any weather conditions, anywhere in the world, 24 hours a day. 

Essentially, the GPS receiver compares the time at which a signal was transmitted by a 

satellite with the time at which it was received. The time difference tells the GPS receiver 

how far away the satellite is. With distance measurements from a few more satellites, the 

receiver can determine the user's position and display it on the unit's electronic map. A GPS 

receiver must be locked on to the signal of at least three satellites to calculate a 2D position 

(latitude and longitude); with four or more satellites in view, the receiver can determine the 

user's 3D position (latitude, longitude and altitude). Once the user's position has been 

determined, the GPS unit can calculate other information, such as speed, bearing, track, trip 

distance, distance to destination and more. The accuracy of the recorded position is about 5m, 

and depends on the number of satellites received from the GPS. The recorded data may be 

acquired by the computer in different formats (Binary, Text, NMEA) using dedicated 

software. All the GPS tracks were visualized with Google Earth (Google Inc, US). 
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Application on homing pigeons  

The GPS data logger used for studies involving animals of small size, as in this case, are 

lightweight tracking system with a weight of about 20g (55x33x11mm), including battery and  

casing. The homing pigeons fly carrying these weights without any stress as they are 

accustomed to bring in their crop the food picked up as reserves. Nevertheless, to accustom 

the pigeons to fly with a load on its back it is necessary to equip them with PVC dummies 

having the same size and weight as the loggers (Fig. 10). The dummy is attached to the 

pigeons‟ back by means of a Velcro strip glued on the feathers, which must be previously 

trim.  Before the releases, the dummy is replaced with a miniature GPS data logger in order to 

record the bird‟s flight path (Fig.11).  

 

 

 

The GPS data logger allows to record the precise homing track of the birds and 

therefore can provide information on the behaviour of the birds well beyond the release site. 

  

Fig.10. Application of 

PVC dummies on 

pigeon‟s back. 

 1.Preparation of the 

pigeon. 2. Shortening 

of the feathers. 

3.Application of the 

glue and Velcro strip. 

4.Positioning of the 

dummies. 

Fig.11. a. and b. Pigeons 

with GPS applied on the 

back. c. Example of 

miniature GPS data loggers.  
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1.7 PURPOSE OF THE PRESENT STUDY 

The present GPS studies aim at investigating some aspects of pigeon navigation that 

cannot be addressed by performing traditional experiments. 

 

First study: Olfactory lateralization in pigeon navigation.  

Due to the relevance of the odour cues in pigeons‟ navigation, homing pigeon 

represent a unique animal model to study brain asymmetries in the olfactory system in natural 

tasks. We have analysed the tracks of birds released with the left or the right nostril occluded 

and we have highlighted an important functional asymmetry in favour of the right nostril. In 

fact the birds processing the environmental olfactory information with the left nostril only, 

displayed a higher level of tortuosity in their flight path and stopped more frequently than 

both the unmanipulated controls and the birds using the right nostril. 

 

 

Second study: Role of environmental odours on the navigational map.  

It has been shown that the integrity of the olfactory system is necessary for pigeon‟s 

homing. However the role of environmental odours in the position finding mechanism of 

homing pigeons is subject of a lively scientific debate. The olfactory navigation hypothesis 

proposes that environmental odours are a specific component of the navigational map, while 

the olfactory activation hypothesis explain the behavioural impairment of the anosmic birds, 

arguing that the olfactory sensation is needed to activate a navigational mechanism based on 

non olfactory cues. We have analysed the GPS tracks of three groups of pigeons subjected to 

different olfactory conditions during transportation and at the release site and subjected to 

nasal anaesthesia prior release: controls birds exposed to environmental odours, birds 

transported in pure air and pigeons transported in pure air but stimulated with artificial odour 

of plant origin, before the release. The analysis of the tracks revealed that the birds exposed to 

the artificial odours displayed significantly poorer navigational performances than controls, 

suggesting a specific role of environmental olfactory information in pigeon navigation.  
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Third study: Role of geomagnetic information in a position finding mechanism in homing 

pigeons. 

Anatomical studies and conditioning experiments provided evidence that pigeons 

detect geomagnetic field intensity through the ophthalmic branch of the trigeminal nerve. 

Despite the fact that magnetic treatments and trigeminal nerve section do not disrupt the 

abilities of pigeons to home back to the colony, it has been proposed that pigeons tend to fly 

parallel or perpendicular to the steepest magnetic slope. We have analysed tracks of both 

intact and trigeminal sectioned pigeons in order to test if the pattern of the local magnetic 

gradient affect the birds‟ flight paths. The analysis did not reveal a consistent effect of the 

local geomagnetic field in the birds‟ homing trajectories.  

 

Fourth study: Role of the topography in the landmark based navigation over familiar areas. 

It is known that pigeons are able to memorise landscape features of the over-flown 

areas. These features can be associated to a specific compass direction leading the bird home 

(site specific compass orientation). Alternatively the bird can learn the spatial relationships 

among the single landmarks so to build a familiar landmark based map used in a piloting 

strategy. The two different strategies can be put in conflict by shifting the birds‟ internal 

clock, in order to asses which of the two strategies is preferentially adopted by the subject. 

This protocol has been used to assess which factors are determining the strategy preferentially 

used by an individual pigeon and the kind of landscape feature which are likely to be 

memorised as landmarks during piloting. The analysis of the tracks suggested that the 

characteristic features of the release site affect the level of reorientation after clock shift, and, 

in particular, the vicinity of the sea seems to determine a preference for the piloting strategy. 
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2.1 OLFACTORY LATERALIZATION IN HOMING PIGEONS: A GPS 

STUDY ON BIRDS RELEASED WITH UNILATERAL OLFACTORY INPUTS 

ABSTRACT   

A large body of evidence has shown that pigeons rely on an olfactory-based 

navigational map when homing from unfamiliar locations. Previous studies on pigeons 

released with one nostril occluded highlighted an asymmetry in favors of the right nostril, 

particularly concerning the initial orientation performance of naïve birds. Nevertheless, all 

pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of 

the side of the occluded nostril. So far this phenomenon has been documented only by 

observing the birds‟ vanishing bearings. In the present work we recorded the flight tracks of 

pigeons with previous homing experience equipped with a GPS data logger and released from 

an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks 

revealed that the flight path of the birds with the right nostril occluded was more tortuous than 

that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril 

interrupted their journey significantly more frequently and displayed more exploratory 

activity than the control birds, e.g. during flights around a stopover site. These data suggest a 

more important involvement of the right olfactory system in processing the olfactory 

information needed for the operation of the navigational map. 

 

INTRODUCTION 

Since the olfactory navigation hypothesis was first proposed by Floriano Papi (Papi et 

al., 1971), a large body of evidence supporting the crucial role of olfactory cues in navigation  

has accumulated (Wallraff, 2005). This hypothesis predicts that pigeons learn the association 

between the environmental odours carried by the winds with the direction from which they 

blow (Ioalè et al., 1990), so individuals can build up a map of the region around the home area 

on the basis of the distribution of olfactory cues (Wallraff and Andreae, 2000). When birds 

are displaced, the identification of the prevalent local odours provides the pigeons with 

information about the direction of displacement. Therefore, the released birds are able to 

orient towards home using a compass mechanism (Keeton, 1971; Schmidt-Koenig, 1961). 

The strongest evidence in favour of the olfactory navigation hypothesis comes from two main 

kinds of experimental protocols: (1) the manipulation of the olfactory system in order to 

prevent odour perception prior to release (Gagliardo et al., 2009; Papi, 1982; Wallraff et al., 
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1989) and (2) the manipulation of olfactory information, either in terms of odour quality or 

wind direction at the home loft, aimed at preventing or manipulating map learning (Ioalè et 

al., 1978, 1990; Odetti et al., 2003; Papi et al., 1974; Papi, 1986; Wallraff, 1979). The latter, 

applied on birds with an intact olfactory system, provided results supporting a specific role of 

olfactory cues in navigation and contradicting the olfactory activation hypothesis, which 

attributes to the olfactory stimuli a role in priming a non-olfactory navigational mechanism 

(Jorge et al., 2009).  

Because of the relevance of olfactory stimuli in spatial behaviour on a large scale, 

homing pigeons represent an excellent animal model for investigating functional asymmetry 

in the avian olfactory system, although this issue was taken into consideration only recently. 

The first evidence of functional lateralization in the avian olfactory system was provided in 

chicks exposed to olfactory stimuli during imprinting (Vallortigara and Andrew, 1994). This 

study revealed that chicks performed better in a discrimination task between olfactory familiar 

and unfamiliar rearing objects when the olfactory input was conveyed through the right 

nostril. An advantage of the right nostril was also reported in relation to the head shaking 

response, following the presentation of a high concentration of eugenol (Rogers et al., 1998). 

The first comparison of initial orientation and homing performance from unfamiliar sites in 

pigeons receiving unilateral olfactory inputs (Benvenuti and Gagliardo, 1996) was done on 

birds with previous extensive homing experience and it did not highlight any functional 

asymmetry. A more recent study on naïve pigeons showed a clear advantage in favour of the 

right nostril (Gagliardo et al., 2007), with regard to their initial orientation. The homing 

success of the birds with unilateral nostril occlusion was, however, lower than controls, 

regardless of the side of the treatment. 

In order to investigate the behaviour en route of birds receiving a unilateral olfactory 

input, we performed a homing experiment from an unfamiliar location using birds equipped 

with GPS data loggers and released with one nostril occluded. So far the effect of unilateral 

occlusion of the nostrils on orientation has been documented by recording the vanishing 

bearings of naïve birds (Gagliardo et al., 2007), whereas in the present work we used pigeons 

with previous homing experience. In this way we increased the probability of all birds 

returning with their loggers, although we did not expect any difference between the groups 

with right and left nostril occlusion (Benvenuti and Gagliardo, 1996). 
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MATERIALS AND METHODS 

General procedure 

Thirty-one pigeons, about 12-18 months of age and hatched at the Arnino field station 

(latitude 43° 39‟ 26‟‟ N; longitude 10° 18‟ 14‟‟ E), Pisa, Italy, were used in the study. The 

pigeons were raised as free flyers and were kept and manipulated according to Italian law on 

animal welfare. Individuals had a single homing experience as they had been released once 

from 40 km North or South from home one year before the experiment. The experiments took 

place in July 2008. The pigeons were divided into three experimental groups: C 

unmanipulated control pigeons (n= 9), RNP pigeons released with the right nostril plugged 

(n= 9), LNP pigeons released with the left nostril plugged (n= 10). Twenty days prior to the 

experimental releases all the birds were equipped with a PVC dummy weight, similar in 

dimension and weight to the GPS data logger they would be carrying, in order to accustom 

them to flying with a load. The dummy was attached to the pigeons‟ back by means of a 

Velcro strip glued on the feathers, which had been previously trimmed. 

 

GPS data logger 

We used miniature GPS data loggers (www.technosmart.eu) for recording the 

positional data of flying birds with an accuracy of about 4 m (Steiner et al., 2000; Lipp et al., 

2004). For the current study, the GPS data loggers stored one position fix every 10 seconds. 

However, in one case (LNP pigeon #520) a device was, for a short period, unable to receive a 

satellite signal. During such a recording gap, a straight flight path between interrupted fix 

points is visualised in the track and that portion was not included in the analysis. The 

positional fixes stored by a GPS data logger include latitude, longitude, and time of recording. 

The devices also provide information about altitude, but with insufficient precision to allow a 

reliable analysis. The tracks for each pigeon for each recorded release were visualised with 

MapInfo. 

 

Test releases 

The evening before the experimental releases one nostril of the RNP and LNP pigeons 

was plugged. The plugs were made with a small amount of paste (Xantopren ) which turns 

into a solid rubbery plug after insertion into the nostril. The plugs were removed once the 

pigeons homed. If during the night some pigeons had lost the plug, it was replaced in the 
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morning before the displacement to the release site. From our preliminary observations the 

pigeons are able to expel the plug within a few days. Therefore we assume pigeons which did 

not return to their home loft eventually lost their plug. 

All birds were released from Cigoli (latitude 43° 40‟ 34‟‟ N; longitude 10° 49‟ 19‟‟ E; 

home direction 267°, home distance 41.6 km). Just prior to release, the dummy on the back of 

each pigeon was replaced with a GPS data logger. Each pigeon was released singly, with at 

least 30 minutes between releases. All the experimental releases took place under sunny 

conditions, with no or light wind. 

 

Quantitative analyses and statistical procedures 

All tracks shorter than 15 km were excluded from the analysis. For each pigeon we 

considered in the analysis the following aspects of the flight path: the track length, the stops 

and the tortuosity of the path. Moreover we analysed the virtual vanishing bearing at 2 km 

from the release site. 

 

Efficiency index. To compare the length of the homing journey we considered the 

efficiency index, which we calculated as the ratio between the track length and the beeline 

distance between the release site and home. When the tracks were not complete we added the 

linear distance from the end of the track to the loft. The efficiency indices of the experimental 

groups were compared with the Kruskall-Wallis test. The Dunn‟s test was used for multiple 

comparisons. 

 

Behaviour at the stop sites. We considered as “stop site” a location where a bird 

interrupted its flight. A stop site was identified by visually inspecting the track at a high 

magnification and we considered that a pigeon left a stop site when it departed for more than 

500 meters without coming back. In the analysis we compared the number of stops relative to 

the recorded track length with the Kruskall-Wallis test. The Dunn‟s test was used for multiple 

comparisons. 

As at a stop site the birds, besides sitting, also flew over the same area without 

progressing their journey, we assumed that a bird was performing exploratory flights when 

the recorded speed was greater or equal to 20 km/h. For each stop performed by each bird the 

length of the path flown at a speed of at least 20 km/h was calculated. When such a path 

exceeded 500 meters then we assumed that a bird in that particular stop had performed an 

exploratory behaviour and we considered that stop as an exploratory stop. It should be noticed 
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that a movement at a speed of at least 20 km/h was always preceded and followed by 

movements at a lower speed (18-10 km/h) before landing and after taking off. For the 

analysis, we assigned a score to each bird depending on the number of the exploratory stops 

performed; the scores of the groups were compared with the Kruskall-Wallis test. The Dunn‟s 

test was used for multiple comparisons. 

The percentage of time spent by the three groups of birds at the stop sites relative to 

the duration of the recorded flight was compared with the Kruskall-Wallis test and the Dunn‟s 

test was used for multiple comparisons. 

 

Tortuosity. To perform this analysis we drew concentric circles, around the release 

site, having a radius increasing by one km. The analysis was performed from the ring ranging 

from 1 to 2 km up to the ring ranging from 29 to 30 km. We considered separately the 

portions of the tracks included in the ring delimited by two consecutive circles as reported in 

Fig. 1. For each portion we considered the direction taken by the bird moving from one point 

to the next and therefore we calculated the mean vector. The mean vector length is a suitable 

parameter for indicating a directional stability, because it tends to be small when the birds 

frequently change their direction and tends to be near to 1 when they maintain a stable 

direction. Therefore, we applied a two way repeated measure ANOVA on the mean vector 

lengths relative to portions of the tracks recorded at increasing distances in order to compare 

the tortuosity in the flight path of the three experimental groups. The Student-Neuman-Kewls 

method was applied for multiple comparisons. This analysis was made after having excluded 

the portions of the tracks recorded at the stop sites. 

 

Virtual vanishing bearings and virtual vanishing and homing times. We recorded 

the direction of the birds at both 1 and 2 km from the release site, the latter corresponding to 

the virtual vanishing bearing. The circular distributions were tested for randomness by means 

of both the Rayleigh and V test and compared with the Mardia-Watson-Wheeler test 

(Batschelet, 1981). In addition we have compared the virtual vanishing times (the time taken 

by the bird to get 2 km away from the release site), and the homing times of the three 

experimental groups by using the Kruskall-Wallis test. 
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Fig.1. Example of how a track was divided into portions for the analysis of tortuosity. Each portion included the 

tracts of the path falling within the ring delimited between two successive circles of 1km increasing radius (left 

panel). The analysis was performed from the ring ranging from 1 to 2km up to the ring ranging from 29 to 30km. 

In the right panel, a section of the track falling within the first ring is represented. The arrows represent the 

directions taken by the bird flying from one fix to the next, which have been used to calculate a mean vector. 

 

RESULTS 

One C pigeon returned without GPS and one RNP and one LNP never homed. Four 

tracks (one C and three LNP) were shorter than 15 km and were excluded from the analysis. 

Therefore we obtained 7 tracks for C, 6 tracks for LNP and 8 tracks for RNP groups, 

respectively (see Fig. 2A-F).  

Stops. The number of stops for each pigeon and the locations of the stops can be 

observed in Fig. 2A-F. In the same figure a magnification of a track at a stop site is reported 

as an example. The median number of stops/km was as follows: C 0.03; RNP 0.10; LNP 0.06. 

The Kruskall-Wallis test applied on the number of stops relative to the recorded track length 

revealed a statistically significant difference (p<0.05). In particular the RNP stopped 

significantly more often than the C-birds (Dunn‟s test: RNP vs. C p<0.05). No difference 

emerged between the LNP and the other two groups. 

As regards the exploratory behaviour at the stop sites, the median scores were as 

follows: RNP 3, LNP 1.5, and C 0. The Kruskall-Wallis revealed a significant difference 

between groups (p = 0.031). In particular the RNP pigeons were significantly different from C 
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(Dunn‟s test p<0.05), but not from the LNP pigeons. No difference emerged between the LNP 

and C groups. 

According to the Kruskall-Wallis test the groups differed in the percentage of time 

spent at the stop sites relative to the duration of the recorded flight (p= 0.041). The Dunn‟s 

test revealed that this value was significantly higher for the RNP birds than for the C group 

(p<0.05), but not compared to the LNP pigeons. No difference emerged between the LNP and 

RNP groups (median percentage of time as follows: C 34.6%, LNP 59.5%, and RNP 76.9%). 

 

Tortuosity. The analysis of the tortuosity applied on sectors of the tracks at increasing 

distances from the release site showed a significant difference between the three experimental 

groups (Two way RM ANOVA F2,18= 5.753 p= 0.012). As shown in Fig. 3, the RNP showed 

a smaller vector length than both C (Student-Neuman-Kewls method p=0.010) and LNP 

(Student-Neuman-Kewls method p=0.027). The analysis revealed a statistically significant 

difference among the different distances from the release site (two way RM ANOVA F28,496 = 

2.478, p<0.001). In fact, all the pigeons, regardless of the experimental group, consistently 

showed a more tortuous path soon after having left the release site (portion of the tracks 

included in the 3-4 km sector) than at greater distances (Student-Neuman-Kewls method 

p<0.05). There was no significant interaction between treatment and distance from the release 

site (Two way RM ANOVA F56,496 = 0.678, p= 0.964). 

 

Efficiency index. The RNP pigeons tended to display longer tracks, and therefore a 

lower efficiency index, than the other two groups although the Kruskall-Wallis test did not 

reveal a significant difference between the efficiency index of the whole tracks of the three 

groups of birds (the median efficiency indices are 0.680, 0.480 and 0.435 for C, LNP and 

RNP respectively). 
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Fig.3. Mean vector lengths relative to the portion(s) of the track falling within each ring as shown in Fig.1, and 

calculated on the directions taken by the birds moving from one fix to the next. The mean vector length is taken 

as a measure of the tortuosity of the path. 

 

 

Virtual vanishing bearings and virtual vanishing and homing times. The three 

groups of pigeons were significantly oriented at both 1 (Rayleigh test: C p<0.001; LNP 

p<0.005; RNP p<0.02) and 2 km (Rayleigh test C, p<0.002; LNP, p<0.02; RNP p<0.01) from 

the release site. The mean vector length and direction, and the homeward component are the 

following for each group of birds: 1 km from the release site C, 0.95 265° +0.95; LNP 0.85 

247° +0.80; RNP, 0.71 243° +0.65; 2 km from the release site C, 0.93 262° +0.92; LNP 0.84 

243° +0.77; RNP, 0.77 243° +0.70. The Mardia-Watson-Wheeler test did not reveal any 

significant difference in orientation between the groups (p>0.5) at both 1 and 2 km from the 

release site. 

The virtual vanishing times (relative to 2 km distance) of the three groups were not 

significantly different according to the Kruskall-Wallis test (p>0.1; median vanishing times: C 

2‟24‟‟; LNP 3‟52‟‟; RNP 2‟55‟‟). 

The three experimental groups did not differ in their homing times according to the 

Kruskall Wallis test (p>0.05) although the RNP group tended to take longer time to home 

(median homing times: C 3
h
 12‟; LNP 4

h
 02‟; RNP 7

h
 40‟). 
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DISCUSSION 

The analysis of the homing flight path of experienced pigeons receiving a unilateral 

olfactory input highlighted some of the effects of the right nostril occlusion, which remained 

undetected when observing only the initial orientation of the birds at vanishing. 

Consistent with a previous report on the orientation performance of experienced 

unilaterally anosmic pigeons (Benvenuti and Gagliardo, 1996), no functional asymmetry 

emerged in the virtual vanishing bearing, i.e. the direction of the birds at 2km from the release 

site. 

In contrast, the analysis of the tracks revealed that the occlusion of the right nostril 

apparently affected the behaviour of the birds en route. The birds receiving the olfactory input 

only from the left nostril interrupted their journey more often than both those receiving input 

from the right olfactory mucosa only and those receiving bilateral olfactory inputs. Therefore, 

the delayed movement behaviour of the RNP pigeons cannot be explained with an effect of 

the nasal plug per se, but is instead consistent with the interpretation that the treatment 

specifically affects the right olfactory system. An inspection of the behaviour of the birds at 

their stop sites revealed that the pigeons did not simply interrupt their homing flight for 

resting, but also performed some flight activity around the stop site, which might represent an 

exploratory behaviour for sampling navigational cues. This hypothesis should be testable in 

the future using data loggers recording even higher-definition GPS data, allowing for a test of 

directional bias within flights around a stop site. Interestingly, the RNP pigeons exhibited 

such exploring activity more often compared with the control pigeons, which might suggest 

that birds have difficulty gathering and processing olfactory cues received with the left 

olfactory mucosa. Nevertheless, the main behavioural difference between the LNP and RNP 

birds emerged in the tortuosity of the flight path. In fact, the group released after occlusion of 

the right nostril displayed a more tortuous flight path than both the un-manipulated control 

pigeons and the birds smelling with the right nostril. On the whole, the behaviour of the RNP 

pigeons suggested a specific role of the right nostril in processing olfactory information useful 

for the operation phase of the navigational map. This might be due to an advantage of the 

right nostril/olfactory bulb in perceiving and/or discriminating the local environmental 

odours, although this functional dominance is not accompanied by a higher immediate-early 

gene ZENK expression in the right olfactory bulb in comparison with the left one (Patzke et 

al., 2010). 

Our findings are consistent with the reported asymmetry in favour of the right nostril 

observed in chicks discriminating between familiar and unfamiliar olfactory rearing objects 
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(Vallortigara and Andrew, 1994) or responding with head shaking to a high concentration of 

eugenol (Rogers et al., 1998). Interestingly, a lateralization in favour of the right nostril has 

also been demonstrated in humans, particularly in evaluating odour intensity (Thuerauf et al., 

2008) and in olfactory detection and discrimination (Kobal et al., 2000; Zatorre and Jones-

Gotman, 1990). According to anatomical studies on homing pigeons, the olfactory bulbs 

project mainly to the piriform cortex through both ipsilateral and contralateral fibres, although 

the latter are less numerous (Bingman et al., 1994; Reiner and Karten, 1985). A specific role 

of the piriform cortex in pigeon navigation is supported by lesion experiments, which have 

shown a navigational impairment in the piriform-cortex-ablated pigeons (Papi and Casini, 

1990). The same was observed in ZENK activation experiments, which showed an activation 

of the piriform cortex following displacement to an unfamiliar location (Patzke et al., 2010). 

Release experiments on pigeons subjected to unilateral piriform cortex ablation showed that 

both the left and right portions of the piriform cortex are involved in the homing process from 

unfamiliar sites, but that the left piriform cortex plays a dominant role. In fact, although the 

birds with ablation to the left piriform cortex were randomly scattered after release, the 

pigeons with lesion to the right piriform cortex displayed an unimpaired initial orientation 

(Gagliardo et al., 2005a). It is worth noting that the pattern of the scattering is reversed when 

occluding one nostril. In fact, a similar impairment in initial orientation occurs in birds 

released either after ablation of the left piriform cortex or after occlusion of the right nostril 

(Gagliardo et al., 2007). Despite the fact that the contralateral contribution of projections from 

the receptor to the central processing areas (as the piriform cortex) in the olfactory system of 

birds is low, whereas in the visual system all fibres of the optic nerve cross over completely 

(Güntürkün, 1997), interestingly, we observed a similar pattern of functional asymmetry, i.e. 

an advantage of the right receptor and a dominance of the left hemisphere in processing the 

sensory inputs (Gagliardo et al., 2001; Gagliardo et al., 2005b; Prior, 2006). This suggests a 

possible involvement of other brain structures and neural connections in olfactory-guided 

navigation other than the (mainly) ipsilateral projection between the olfactory bulb and the 

piriform cortex.  
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2.2  HOMING PIGEONS ONLY NAVIGATE IN AIR WITH INTACT 

ENVIRONMENTAL ODOURS: A TEST OF THE OLFACTORY 

ACTIVATION HYPOTHESIS WITH GPS DATA LOGGERS 

ABSTRACT 

A large body of evidence has shown that anosmic pigeons are impaired in their 

navigation. However, the role of odours in navigation is still subject to debate. While 

according to the olfactory navigation hypothesis homing pigeons possess a navigational map 

based on the distribution of environmental odours, the olfactory activation hypothesis 

proposes that odour perception is only needed to activate a navigational mechanism based on 

cues of another nature. Here we tested experimentally whether the perception of artificial 

odours is sufficient to allow pigeons to navigate, as expected from the olfactory activation 

hypothesis. We transported three groups of pigeons in air-tight containers to release sites 53 

and 61 km from home in three different olfactory conditions. The Control group received 

natural environmental air; both the Pure Air and the Artificial Odour groups received pure air 

filtered through an active charcoal filter. Only the Artificial Odour group received additional 

puffs of artificial odours until release. We then released pigeons by recording their tracks with 

1Hz GPS data loggers. We also followed non-homing pigeons using an aerial data readout to 

a Cessna plane, allowing, for the first time, the tracking of non-homing homing pigeons. 

Within the first hour after release, the pigeons in both the Artificial Odour and the Pure Air 

group (receiving no environmental odours) showed impaired navigational performances at 

each release site. Our data provide evidence against an activation role of odours in navigation, 

and document that pigeons only navigate well when they perceive environmental odours. 

 

INTRODUCTION 

Almost four decades ago, Papi and colleagues showed that homing pigeons without 

the ability to smell have dramatically reduced their navigational abilities (Papi et al., 1971). 

Since then, a large body of evidence has been collected showing that lesions to the olfactory 

system consistently produce a disruption of the birds‟ homing abilities (see for ref. (Wallraff, 

2005b; Gagliardo et al., 2006; 2008; 2009a). This phenomenon has been explained by Papi 

with the olfactory navigation hypothesis (Papi et al., 1972), which predicts that pigeons are 

able to build up an odour-based navigational map by associating the wind-borne 
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environmental odours with the directions from which they blow at the home area. Once 

displaced, the pigeons are able to recognise the local prevalent odours characterising the 

release location, thus determining the direction of displacement. Once the birds know where 

they are relative to home, they can orient by using a sun or a magnetic compass. Thus in its 

most general form, the olfactory navigation hypothesis proposes that in pigeons 

environmental odours are integrated to build up a mental representation of wide geographical 

areas around the home loft. 

However, the olfactory navigation hypothesis is not uncontested (Wiltschko, 1996). 

Recently, Jorge and colleagues (Jorge et al., 2009b; 2009a) suggested that impaired 

navigation of anosmic pigeons is due to the fact that olfactory stimuli prime the navigational 

capabilities of birds. Under this hypothesis, environmental odours are solely needed to 

activate a navigational system that in turn is based on non-olfactory cues (Jorge et al., 2009b; 

2009a). In support of this hypothesis the authors reported that pigeons transported in charcoal-

filtered air and released after anaesthesia of the olfactory mucosa displayed scattered initial 

orientation. In contrast, pigeons transported in pure air, but stimulated with artificial non-

sense odours, were not different from control pigeons, irrespective of the fact that the nasal 

anaesthesia before release prevented them from smelling environmental odours. 

However, it is difficult to reconcile the above findings (Jorge et al., 2009b; 2009a) 

with a large body of previous evidence against a priming role of odours on a non-olfactory 

navigational system. In particular, experiments testing intact pigeons after manipulations of 

their housing conditions during map learning contradict the odour-priming hypothesis. 

Pigeons were unable to develop navigational abilities if raised in aviaries provided with 

screens preventing the birds from detecting wind directions (Wallraff, 1966; Gagliardo et al., 

2001; Odetti et al., 2003b); in contrast, pigeons exposed to the natural winds were able to 

orient, even if the view of the surroundings was obstructed (Wallraff, 1970). When the 

directions of the winds at the home loft were deflected (Baldaccini et al., 1975; Waldvogel et 

al., 1978; Baldaccini et al., 1978) or inverted (Ioalè et al., 1978), a correspondent deflection or 

inversion of the birds‟ initial orientation was observed. Other important evidence that odours 

provide spatial information useful for navigation comes from experiments in which pigeons 

exposed to artificial odour currents during map learning displayed the expected orientation on 

the basis of the odour stimuli provided at the release site (Papi et al., 1974; Ioalè et al., 1990). 

It is worth noting that artificial odour stimuli at the release site determined the expected 

orientation only if they had been associated by the birds with the artificial wind direction 

during map learning (Papi et al., 1974; Ioalè et al., 1990), while they acted as disturbing 
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factors if they just represented non-sense odours (Benvenuti et al., 1973; 1977). Other 

important evidence, supporting a specific role of environmental odour cues in navigation 

comes from an experiment in which pigeons, transported in air-tight containers ventilated 

with pure air, were exposed at the release site to air sampled either from an open field or from 

a thick vegetation area (maize field or forest) before being released after nasal anaesthesia 

(Wallraff et al., 1992). This experiment showed that the birds exposed to air of the release site 

sampled from the thick vegetation area were poorer in homeward orientation than the birds 

allowed to smell the release site air collected in an open field, probably more representative of 

the specific odour profile of the release site. All these findings are not explained by assuming 

a priming role of odours in pigeon navigation, but only by accepting a specific role of 

environmental smells in the proposed navigational map. 

So far, the conflicting evidence supporting either a specific role or a priming role of 

olfactory stimuli in pigeon navigation has come from experiments reporting only the initial 

orientation data achieved by recording vanishing bearings. With the present experiment we 

achieve a major advance in our understanding of the role of olfactory stimuli in pigeon 

navigation by being able to additionally study homing pigeons‟ tracks even when the birds do 

not home. We used newly developed 1Hz-GPS data loggers that allow for a remote readout of 

the stored data via a 900 MHz data link (Holland et al., 2009), sending data for up to 18 km 

from the surface to a small Cessna plane in the air. 

To conduct this experiment we transported the pigeons, and kept them at the release 

site, in air-tight containers where they were exposed to three different odour stimuli 

conditions. Birds were then released after anaesthesia of their olfactory mucosa. One group of 

birds was allowed to breath environmental air, one group was exposed only to pure air and a 

third group was exposed to pure air, but stimulated with artificial non-sense odours. From 

these treatments we derive two exclusive predictions: i) the olfactory navigation hypothesis is 

rejected, the olfactory priming hypothesis is accepted: under this scenario both control 

pigeons and those exposed to „priming‟ odours will navigate equally well. We thus predict 

unimpaired navigational performances in both of these groups, but not the group that lacks 

exposure to any environmental odours during transport and before release. Alternatively, ii) 

the olfactory navigation hypothesis is accepted and the olfactory priming hypothesis is 

rejected: here we predict that only the control birds show unimpaired navigational abilities 

while both other groups that are deprived of environmental odours are impaired. Our data 

support the latter scenario and thus provide evidence for the olfactory navigation hypothesis. 
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MATERIALS AND METHODS 

 

General procedure 

Thirty-six inexperienced pigeons, about 15-18 months of age and hatched at the 

Arnino field station (latitude 43° 39‟ 26‟‟ N; longitude 10° 18‟ 14‟‟ E), Pisa, Italy, were used 

in the study. The pigeons were raised as free flyers and were kept and manipulated according 

to Italian law on animal welfare.  

Twenty days prior to the experimental releases all the birds were equipped with a PVC 

dummy weight, similar in dimension and weight to the GPS data logger they would be 

carrying, in order to accustom them to flying with a load. A few days before the experimental 

tests, the pigeons had been released in a group from different directions up to 7 km from 

Arnino. 

For the test releases we transported three groups of pigeons and kept them at the 

release site in air tight containers ventilated by aspirators. The Control (C) group container 

was ventilated by environmental air; both the Pure Air (PA) group and the Artificial Odour 

(AO) group containers were ventilated by pure air filtered through an active charcoal filter; in 

addition the Artificial Odour group received different puffs of odours of plant origin 

(eucalyptus, orange, jasmine, rose, lavender) both during transportation and at the release site 

about each 20 minutes for the duration of the whole experiment. The administration of the 

odour puffs was given injecting a 50 ml volume of air saturated with one odour, in the flux of 

air coming from the charcoal filter to the air tight container. The release experiment started 

two hours after we had arrived at the release site. 

 

GPS data loggers 

We used two different kinds of miniature GPS data loggers storing one position fix 

every second: for twenty of the tests on C birds we used the loggers by Technosmart 

(www.technosmart.eu, Rome, Italy); for the other release tests we used loggers by E-obs 

(www.e-obs.de, Munich, Germany), which also feature remote UHF data download 

capabilities. The latter device thus allowed aerial data downloads (from a small Cessna 

airplane, the „Spirit of MaxCine‟) of pigeons that did not home. The positional fixes stored by 

a GPS data logger include latitude, longitude, and time of recording. The tracks for each 

pigeon were uploaded, automatically checked for potential GPS-errors and duplicates, and 

then stored and made publicly accessible in Movebank (Wikelski, 2010) 

http://www.technosmart.eu/
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(www.movebank.org) for each recorded release. Data were then exported from Movebank 

and were visualised with Google Earth (Google Inc, US). 

 

Test releases 

Eleven C, 8 PA pigeons and 8 AO birds were released from Bolgheri (Long. 10° 34‟ 

35‟‟ Lat. 43° 13‟ 07‟‟; home direction 337°, home distance 53 km). Eleven C pigeons, 7 PA 

birds and 7 AO pigeons were released at Montespertoli (Long. 11° 03‟ 59‟‟ Lat. 43° 39‟ 

09‟‟; home direction 270°, home distance 61 km). Before the release each pigeon was 

subjected to anaesthesia of the olfactory mucosa with a single dose of Xylocaine® sprayed 

through the choanae and then equipped with a GPS data logger. Each pigeon was released 

singly. The releases took place under sunny conditions, with no or light wind. The homing 

time on the day of the release was recorded by an observer at the home loft. 

 

Quantitative analyses and statistical procedures 

Because the effect of the local anaesthesia of the olfactory mucosa decreases over time 

(Wallraff, 1988), we analysed separately the sections of the tracks from take-off until one, two 

and three hours after release, respectively. For the analysis we considered the directions taken 

by the bird while moving from one point to the next at a speed higher than 5 km/h. We thus 

calculated the individual mean vector and the relative homeward component. The mean vector 

distributions relative to the section of the tracks recorded in the first hour, in the first two 

hours and three hours of each experimental group at both sites were tested for randomness 

with the one sample Hotelling test (Batschelet, 1981). We also calculated the homeward 

component (hc) of the second order mean vectors.  

Focusing on the first hour after release, we performed a statistical analysis by pooling 

the data from the two release sites. We considered all tracks of the birds released once, plus 

the first track suitable for the analysis of the birds released twice. We assessed the 

performances of the three experimental groups by considering the following parameters, 

which have been compared with the Kruskall Wallis test: the tortuosity of the track expressed 

by the individual mean vector length, the orientation of the track expressed by the homeward 

component of the mean vector, and the efficiency index of the flight. The efficiency index for 

each pigeon is defined as the beeline between the release site and the point where the bird was 

after 1 hour from release, divided by the length of the flight path.  

http://www.movebank.org/
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Furthermore, to enable comparisons with previously published data, we recorded the 

virtual vanishing bearings, defined as the directions with respect to the release site of the birds 

at a distance of 2 km from it. If a pigeon did nothing but circle around the release site at a 

distance closer than 2 km, it was excluded from the analysis. The circular distributions were 

tested for randomness by means of both the Rayleigh and V test and compared with the 

Mardia-Watson-Wheeler test (Batschelet, 1981). 

As the birds sometimes stopped (i.e., either landed or moved at a speed lower than 5 

km/h) during their homing journey, we calculated the percentage of time the bird was flying 

in the track recorded in the first hour after release. In addition, we calculated how far the birds 

were from home at the end of their first hour track section and we recorded the birds homing 

performances. We compared the percentage of time in flight, the distances at which the birds 

were after 1 hour and the homing performance of the three groups with the Kruskall-Wallis 

test. All pigeons we released were included in the analysis of the homing performances. The 

Dunn‟s test was used for multiple comparisons. 

 

RESULTS 

Some of the Technosmart GPS data loggers used on control pigeons did not record or 

only started to record a few hours after release and were therefore excluded from the analysis 

on orientation. For this reason we had to include some additional birds in the control group. 

Thus the number of pigeons belonging to the C groups was higher, but we obtained a lower 

number of tracks suitable for analysis. 

Details on the performances of Control, PA and AO pigeons obtained in both the 

release from Bolgheri (North) and Montespertoli (east) are reported in Table 1, 2 and 3, 

respectively. Examples of tracks of Controls, PA and AO are visualised in Figs. 1-6, which 

show the portion of the route flown during the first (yellow), the second (red), the third 

(green), and following hours (blue). All the tracks can be inspected in Movebank 

(www.movebank.org).  

http://www.movebank.org/
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Fig. 1 Examples of tracks: the code of the track and the experimental group is reported on each figure. The red 

circle and white square represent home and release sites (Bolgheri South and Montespertoli East from home), 

respectively. The yellow, red, green and blue lines: paths flown during the first, second, third and subsequent 

hours from release. Triangles indicate that the bird stopped for an entire hour. The colour of the triangle indicates 

the time range in which the bird stopped. 

  

 

 

 

 

 

 

 

 

 

 

 

       

 

  Fig. 2 Examples of tracks. Other explanations as in Fig. 1. 
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Fig. 3  Examples of tracks. Other explanations as in Fig. 1 
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Fig. 5 Examples of tracks. Other explanations as in Fig. 1. 

Fig. 4 Examples of tracks. Other explanations as in Fig. 1. 
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Fig. 6 Examples of tracks. Other explanations as in Fig. 1. 
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Considering the portions of the tracks recorded within the first three hours after release  

(Fig. 7) we observed that the individual mean vector distributions were significantly different 

from random at both release sites for both C (Hotelling test, Bolgheri: p<0.05, T(2,5)= 

26.45435; Montespertoli: p<0.05 T(2,3)= 72.19185) and PA (Hotelling test, Bolgheri: p<0.001, 

T(2,6)=98.762; Montespertoli: p<0.05 T(2,5)= 15.9391). The AO pigeons‟ mean vector 

distribution is randomly scattered at Bolgheri (Hotelling test, p>0.05 T(2,6)=3.58884) and 

significantly different from uniform at Montespertoli (p<0.05 T(2,5)= 27.68512). If we restrict  

the analysis to the portions of the tracks recorded within the first two hours after release (Fig. 

8) the pigeons‟ distributions of both C (Hotelling test, Bolgheri: p<0.01, T(2,5)= 33.22055; 

Montespertoli: p<0.05 T(2,3)= 55.34831) and PA (Hotelling test, Bolgheri: p<0.05, 

T(2,6)=24.73326; Montespertoli: p<0.05 T(2,5)= 30.00647) are still significantly oriented at both 

sites. By contrast, the AO birds‟ mean vector distributions are not significantly different from 

random at both sites (Hotelling test, Bolgheri: p>0.05 T(2,6)=3.268577; Montespertoli: p>0.05 

T(2,5)= 9.930811). The observation of the behaviour of the birds within the first hour after 

release (Fig. 9) revealed that the C birds displayed mean vector distributions different from 

random at both sites (Hotelling test, Bolgheri: p<0.01, T(2,5)= 71.43776; Montespertoli: 

p<0.05 T(2,3)= 68.66537), the PA birds were randomly scattered at both sites (Hotelling test, 

Bolgheri: p>0.05, T(2,6)=8.58531; Montespertoli: p>0.05 T(2,5)= 10.38986), and the AO 

pigeons turned out to be randomly scattered at Bolgheri (Hotelling test, p>0.05 

T(2,6)=0.4150136); and significantly oriented at Montespertoli (Hotelling test, p<0.05 T(2,5)= 

14.82878). However, the AO birds, although significantly oriented, showed a very small 

homeward component (see Fig. 9 for details). 

As the nasal anaesthesia decreases over time, a detailed analysis of the section of the 

tracks recorded in the first hour after release is reported below. 
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Fig. 7 Mean vector distributions relative to the sections of the tracks recorded in the first three hours after release 

from Bolgheri (home direction 336°) and Montespertoli (home direction 270°), respectively. Outer arrows: home 

direction. Inner arrows: individual mean vectors (see Material and methods for further explanations). The open 

triangles at the periphery of the circle represent the directions of the individual mean vectors. Confidence ellipses 

of the distributions are reported. The second order mean vector lengths and directions are reported inside the 

circles. Asterisks indicate the significance level of the one sample Hotelling test: * p<0.05; ** p<0.01; *** 

p<0.001 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Mean vector distributions relative to the sections of the tracks recorded in the first two hours after release. 

Further explanations as in Fig. 7. 
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Fig. 9 Mean vector distributions relative to the sections of the tracks recorded in the first hour after release. 

Further explanations as in Fig. 7. 

 

 

Efficiency index. 

The statistical analysis of the pooled efficiency indexes relative to the data from both 

sites (Fig. 10) resulted in a significant difference between groups (Kruskall-Wallis test, 

p<0.05). In particular, the control group displayed an efficiency index significantly higher 

with respect to the AO birds (Dunn‟s test, C vs. AO p<0.01). No differences emerged 

between the PA pigeons and both the other two experimental groups. 

 

Tortuosity and homeward component 

The statistical analysis of tortuosity (Fig 11) and homeward component (Fig. 12), done 

on the pooled data from both sites, revealed a significant difference between the groups 

(Kruskall-Wallis test: tortuosity p<0.01; homeward component p<0.05). In particular the AO 

pigeons displayed a more tortuous path (Dunn‟s test p<0.01, median= 0.24) and a lower 

homeward component (p<0.05, median = +0.08) than the C pigeons (median tortuosity = 

0.69, median hc =. +0.48). The PA birds were not significantly different from the other two 

groups both in tortuosity (median = 0.46) and homeward component (median = +0.42). 

 

Flight time  

The statistical analysis on the percentage of time the birds spent flying during the first 

hour from release did not highlight any difference between groups (Kruskall-Wallis test, 
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Bolgheri p=0.054; Montespertoli p>0.05) although the AO pigeons tended to stop longer 

(median percentage of time in flight: Bolgheri C 80%, PA 48%, AO 29%; Montespertoli C 

65%, PA 52%, AO 18%).  

 

 

 

Fig. 10. Pooled efficiency index of 

the section of the track recorded in 

the first hour after release. The filled 

and open symbols represent the data 

included and not included in the 

pooled analysis respectively. The 

median values of the data included 

in the pooled analysis are indicated 

by the unbroken lines. The dotted 

lines indicate the median values of 

the whole data set. 

 

 

 

 

 

 

Fig. 11. Tortuosity of the sections of 

the tracks recorded in the first hour 

after release, expressed by the mean 

vector lengths (see Materials and 

methods for further explanations).  

Other explanations as in Fig. 10. 

 

 

 

 

 

 

Fig. 12. Homeward component of 

the sections of the tracks recorded in 

the first hour after release. Other 

explanations as in Fig. 10. 
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Virtual vanishing bearings 

The virtual vanishing bearing distributions are shown in Fig. 13. At Bolgheri the 

virtual vanishing bearings distribution of the C pigeons (mean vector length and direction: n= 

7 r = 0.79  = 295° hc = +0.59) was significantly different from random both according to the 

Rayleigh (p<0.01) and V test (p<0.05). The PA group displayed a virtual vanishing bearing 

distribution (n = 8 r = 0.70  = 276° hc=+0.34) different from random according to the 

Rayleigh test (p<0.02), but not according to the V test (p>0.05), which takes into account the 

orientation towards the expected direction. The AO pigeons displayed an impaired initial 

orientation performance (n = 7 r = 0.61  = 268° hc=+0.22) as their virtual vanishing 

distribution was not different from random according to both the Rayleigh and V test 

(p>0.05). At Montespertoli the C pigeons‟ virtual vanishing bearing distribution (n= 5 r = 

0.74  = 320° hc = +0.48) was not significantly different from random both according to the 

Rayleigh (p= 0.054) and V test (p>0.05). At this release site both PA (n= 7 r = 0.78  = 316° 

hc = +0.55) and AO pigeons (n= 6 r = 0.76  = 321° hc = +0.50) displayed significantly 

oriented virtual vanishing bearing distributions (Rayleigh test: p<0.01, V test: p<0.05). 

 

Homing performance 

  Considering the last position of the birds recorded within the first hour (Fig. 14), the 

Kruskall Wallis test revealed a significant difference in the distance from home between the 

groups (p=0.012) in the release from Bolgheri (home distance 53 km). In particular the C 

birds were significantly closer to home than the AO pigeons (Dunn‟s test p<0.01; median 

distance from home in km: C 29.9; PA 43.8, AO 53.5). In the release from Montespertoli the 

GPS of the C bird #cgr stopped recording after 20 minutes from release. Therefore we 

considered in the analysis the last recorded position in the calculation of the distance from 

home. The distance from home in the first hour from release did not differ significantly 

(Kruskall Wallis p=0.187) among the birds released at Montespertoli (home distance 61 km), 

although the same trend in the values of the median distance from home occurred (C 55.9; PA 

55,5; AO 61). Looking at the individual performances, it is worth noting that the AO birds 

were consistently in the vicinity of the release site for both release experiments one hour after 

release. The three groups of pigeons were significantly different in their homing performances 

when released at Bolgheri (Kruskall-Wallis test, p<0.005). In fact, the C pigeons (median 

homing speed 7.97 km/h) were significantly faster at homing than both PA (half of the PA 

birds homed later than the day of release; Dunn‟s test: C vs. PA p<0.01) and AO (more than 
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half of the AO birds homed the day after the test; Dunn‟s test C vs. AO p<0.05). In contrast, 

no statistical difference between groups emerged at Montespertoli (more than half of both the 

C and PA birds homed within the next day of the test; more than half of the AO birds did not 

home or homed later than the day after the test). 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Virtual vanishing bearings. Triangles inside the diagram represent the orientation of each bird at 2 km 

from the release site. Outer arrows: home direction. Inner arrows: mean vector of the distribution. Mean vector 

length and direction, and homeward component are reported (see Results for further explanations). 

 

 

Fig. 14 Distance from home. Distance of the birds from home recorded 1 hour after release. Broken line: 

distance of the release site from home. The arrows indicate the median value of the group. 
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The use of the GPS logger that allowed for remote downloading from a plane avoided 

the selection of the best performing subjects to be included in the analysis and gave us 

information about the behaviour of non-homed birds. In the case of the three lost control 

pigeons we were able to document at least the initial track of one of them (#cgr) and the 

position of another subject which was localised near the home area (#cm) after a few hours 

from release. The lost PA pigeon (#vbcb) oriented towards North in the first two hours after 

release, while in the third hour corrected its orientation towards the home direction. All the 

lost AO birds (#mv, #mr, #rgcg) remained near the release site even in the third hour after 

release. 

 

DISCUSSION 

The olfactory navigation hypothesis attributes a specific role of olfactory 

environmental cues in pigeons‟ navigation. On the contrary, the olfactory activation 

hypothesis explains the impaired performances of anosmic pigeons largely documented by 

experiments conducted over forty years (see Wallraff, 2005a) by assuming that odour 

perception is needed to activate a navigational mechanism based on non-olfactory cues. 

According to the olfactory activation hypothesis, pigeons prevented from smelling 

environmental odours during transportation, and released under nasal anaesthesia should 

display unimpaired navigational performances, provided that they had been stimulated by 

artificial odours before release. The data reported in this experiment are consistent with the 

olfactory navigation hypothesis and contradict the olfactory activation hypothesis. 

As the effect of nasal anaesthesia decreases over time, the analysis of movement 

behaviour restricted to the first hour after release is the most informative about the effects of 

the olfactory experience prior to release. Considering the sections of the tracks recorded 

during the first hour of flight, it emerges that the pigeons exposed to artificial odours before 

being subjected to nasal anaesthesia and then released, displayed tortuous flight paths with 

poor homeward orientation. This was similar to what we observed for the birds transported in 

pure air without additional olfactory stimulation. The behaviour of both the PA and, more 

importantly, the AO groups clearly differs from that of the control pigeons, which were 

exposed to environmental olfactory information during transportation and at the release site 

before receiving nasal anaesthesia. In fact, the C birds displayed significantly oriented mean 

vector distributions at both sites, with a second order mean vector direction close to the home 

direction; the PA pigeons‟ mean vector distributions were not different from random at both 
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sites and the AO pigeons displayed a scattered mean vector distribution at Bolgheri, and a 

significantly oriented distribution at Montespertoli, but with a small homeward component. In 

addition, the birds stimulated with artificial odours turned out to circle in the release site area 

without gaining distance from it. In fact, their efficiency index, calculated on the section of 

the track recorded on the first hour after release, was significantly lower in comparison to that 

of the control pigeons. Also this aspect of their behaviour contradicts the expectations 

predicted by the olfactory activation hypothesis. 

On the whole, the PA pigeons tended to show performances intermediate between 

those of the control birds and the birds stimulated with artificial odours for all the parameters 

considered. A visual inspection of the tracks revealed that some of the PA pigeons displayed 

homeward orientation already within the first hour after release. Moreover, if we consider the 

first two and the first three hours after release, the tendency of the PA pigeons to recover their 

navigational abilities over time becomes evident. In contrast, the performance of the AO 

pigeons turned out to be impaired also after including in the analysis the portions of the tracks 

recorded after the effect of anaesthesia had probably ceased. In fact, the mean vector 

distributions of the AO pigeons were not significantly different from random, even when 

considering the portions of the tracks recorded in the first two (both at Bolgheri and 

Montespertoli) or in the first three hours (at Bolgheri) after release. Therefore the exposition 

to the artificial odours seemed to have an even more dramatic effect on the abilities of the 

birds to head home than just the permanence in pure air. To explain this fact it is well worth 

discussing the efficacy of nasal anaesthesia on the olfactory sense. It was shown previously 

using cardiac acceleration recording in response to odour stimuli that nasal anaesthesia 

delivered both through the nostrils (Wallraff, 1988) or the choanae (Schmidt-Koenig and 

Phillips, 1978) largely abolished the pigeons‟ sensitivity to smells. However, the effect 

decreases over time starting from 15 minutes after the treatment, and it is quite variable across 

individuals also because it proved difficult to standardise the administration of the spray 

(Wallraff, 1988). In particular, the treatment through choanae, as in the present paper, seems 

to abolish the olfactory sensitivity for about one hour. The variable and temporal efficacy of 

the anaesthesia of the mucosae is consistent with the pattern observed in the PA pigeons, and 

this might explain the good performances of some of the PA birds even in the first hour of 

flight. It is worth noting that the homing experiments in which birds were made anosmic with 

nasal anaesthesia have produced variable results, while it has been consistently demonstrated 

that pigeons made anosmic with long lasting methods (zinc-sulphate treatment of the 

olfactory mucosae or olfactory nerve section) consistently produced a dramatic navigational 
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impairment (Wallraff, 2005b). Differently from the PA, the AO pigeons seemed to be 

consistently impaired and confused for a longer time than that expected on the basis of the 

duration of the anaesthesia. One possibility is that when the anaesthesia had ceased the AO 

pigeons started to smell the artificial odours that were likely to be impregnated in their 

feathers during their permanence in the air-tight containers. Therefore the perception of the 

artificial odours might have prevented the perception and/or the recognition of the 

environmental odours. Another possible explanation is that the stimulation with artificial 

odours during transportation and at the test site before the release might have induced the 

birds to look for the same kind of stimuli in the environment once the olfactory perception 

was recovered. A third explanation is that the olfactory receptors intensively stimulated with 

concentrations of odours much higher than the natural environmental smells are not able to 

detect very diluted odours, such as those contained in the environment, for sometime. 

Whatever the explanation might be, our data are consistent with observations by Benvenuti et 

al. (Benvenuti et al., 1977; Wallraff et al., 1992), that the stimulation with artificial non-sense 

odours at the release site acted as a disturbing factor and induced an impairment in pigeons‟ 

initial orientation and homing times. The AO birds therefore received a double manipulation: 

the lack of exposition to environmental air during transportation and at the release site, and 

exposition to artificial odours masking and confounding the perception of the natural odours. 

This can plausibly explain the consistently poor navigational performances of the AO group. 

The specific role of environmental odours in pigeon navigation has been demonstrated 

in a variety of experiments on intact birds when wind-born odours were manipulated at the 

home loft (Wallraff, 2005a). All these data are consistent with the olfactory navigation 

hypothesis, but contradict the olfactory activation hypothesis. Along this line of argument it is 

worthwhile discussing the overall plausibility of the olfactory activation hypothesis. Among 

all the sensory manipulations (Wallraff, 2005a) applied on homing pigeons released at 

unfamiliar locations, only olfactory manipulations consistently produced a homing 

impairment in the treated birds. To accept the olfactory activation hypothesis one should 

therefore admit that pigeons are never impaired at homing after a direct manipulation of their 

navigational mechanism, but only after the manipulation of the system (the olfactory system) 

activating it. We consider this implausible and in open contrast to the principle of parsimony. 

Both our current GPS tracking data including non-homing homing pigeons for the first 

time, as well as the vast amount of historical initial orientation evidence on the effect of 

olfactory manipulation in pigeons (Wallraff, 1966; 1970; Gagliardo et al., 2001; Odetti et al., 

2003a; Baldaccini et al., 1975; 1978; Waldvogel et al., 1978; Papi et al., 1974; Benvenuti et 
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al., 1973; 1977), contradict the interpretation of the data reported by Jorge et al (Jorge et al., 

2009b; 2009a). We could not detect an activational role of olfactory information in pigeon 

navigation. The inconsistencies of Jorge et al.‟s studies with previous data might partly be 

explained by variability in the effect of the nasal anaesthesia, and partly by the noise inherent 

in the vanishing bearings data. Interestingly, in our experiment the analysis of the virtual 

vanishing bearings distribution did not fully correspond with the pigeons‟ behaviour “en 

route”. Specifically, the virtual vanishing bearing results were consistent with what we 

observed from the tracks in the release at Bolgheri, but not at Montespertoli. Nevertheless we 

are convinced that the observation of vanishing bearings is an important method, which 

becomes highly reliable and meaningful in those cases in which the initial orientation data can 

be interpreted considering also the homing performance of the released birds. This condition 

is encountered when the effect of a long lasting manipulation is tested, which is not the case 

when applying nasal anaesthesia. Therefore GPS tracking of both homing and non-homing 

individuals can be critically important for resolving controversial aspects on birds navigation 

(Gagliardo et al., 2009b; 2011), or for highlighting phenomena not detectable by observing 

the birds‟ initial orientation (Gagliardo et al., 2011). 

In conclusion, consistently to what was reported in previous studies, the results of our 

experiment constitute further evidence against the activational role of odours in birds‟ 

navigation. Instead, our data provide a new piece of evidence for a specific role of olfactory 

information in the navigational map mechanism in homing pigeons. 
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TABLES. 

RS Track Date r (1)  (1) r (2)  (2) r (3)  (3) ht at 

B
o
lg

h
er

i 
 3

3
6
° 

5
3
 k

m
 

#bb
1
 02/07/10 0.56 321° 0.51 334° 0.66 351° 7

h
 55‟ A, P 

#bc
2
 02/07/10 0.79 331° 0.31 350° 0.28 351° day after A, P 

#bv
3
 02/07/10 0.83 332° 0.83 336° 0.83 336° 2

h
 15‟ A, P 

#bgbg
4
 05/07/10 - - - - - - day after NR 

#brgr
5
 05/07/10 - - - - - - 6

h
 25‟ I 

#br
6
 05/07/10 - - - - - - 8

h
 45‟ I 

#rmb
7
 10/07/10 0.42 333° 0.68 331° 0.69 332° 2

h
 42‟ A 

#rcb
8
 10/07/10 0.25 303° 0.17 300° 0.11 297° 6

h
 02‟ A 

#rcc
9
 10/07/10 0.71 347° 0.70 347° 0.55 351° 6

h
 39‟ A 

#rvc
10

 10/07/10 - - - - - - day after I 

#rvgr
11

 10/07/10 0.69 336° 0.48 346° 0.45 346° 4
h
 35‟ A 

M
o
n
te

sp
er

to
li

  
2
7
0
° 

6
1
 k

m
 

#cgr
12

 07/07/10 0.75 325° 0.75 325° 0.75 325° lost A, P 

#cb
8
 07/07/10 0.40 231° 0.19 284° 0.23 305° later A, P 

#crbr
13

 07/07/10 0.64 299° 0.61 305° 0.48 305° 4
h
 45‟ A 

#cc
9
 07/07/10 0.63 187° 0.44 287° 0.40 288° day after A, P 

#cm
14

 07/07/10 - - - - - - lost I 

#cr
6
 07/07/10 - - - - - - day after NR 

#cbcb
15

 07/07/10 - - - - - - lost NR 

#nbb
1
 21/07/10 - - - - - - 9

h
 16‟ I 

#nrg
16

 21/07/10 - - - - - - 6
h
 00‟ NR 

#nrgng1

7 

21/07/10 - - - - - - day after NR 

#nbv
3
 21/07/10 0.80 314° 0.76 321° 0.67 321° day after A 

 

Table 1 Control Pigeons - RS: release site, home direction and distance; Track: track code and individual pigeon 

code number are reported; Date: date of release; r and : mean vector length and directions relative to the 

sections of tracks recorded in the first (1), the two first (2) and the three first (3) hours after release (see Material 

and methods for further explanations); ht: homing time expressed in hours and minutes; “day after”, the pigeon 

homed the day after the release, “later”, the bird homed in the subsequent days, “lost” the bird never homed; at, 

analysis of the tracks: A, track used in the single release statistical analysis and P used also in the pooled 

analysis; I, incomplete track which could not be used in the statistical analysis; NR the track was not recorded by 

the logger. Release from Bolgheri: five out of 11 C pigeons tested at Bolgheri had previously tested at 

Montespertoli (two former C, two former PA and one former AO). Release from Montespertoli: Six out of 11 C 

pigeons tested at Montespertoli had been previously released at Bolgheri (3 former C and 3 former AO). 
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RS Track Date r (1)  (1) r (2)  (2) r (3)  (3) ht at 
B

o
lg

h
er

i 
 3

3
6
° 

5
3
 k

m
 

#ggbg
18

 02/07/2010 0.44 334° 0.44 329° 0.46 331° 9
h
 00‟ A, P 

#ggr
19

 02/07/2010 0.12 213° 0.08 307° 0.14 212° Later A, P 

#gm
20

 02/07/2010 0.42 347° 0.52 337° 0.54 335° 4
h
 50‟ A, P 

#gr
16

 02/07/2010 0.16 309° 0.15 311° 0.15 309° Later A, P 

#grgr
21

 02/07/2010 0.64 322° 0.60 353° 0.13 305° Later A, P 

#gb
22

 05/07/2010 0.66 116° 0.12 316° 0.11 314° Later A, P 

#gv
23

 05/07/2010 0.53 331° 0.56 330° 0.22 332° day after A, P 

#gc
24

 05/07/2010 0.78 328° 0.74 335° 0.72 335° day after A, P 

M
o
n
te

sp
er

to
li

  
2
7
0
° 

6
1
 k

m
 #vv

25
 07/07/2010 0.48 278° 0.47 277° 0.47 277° day after A, P 

#vrgr
5
 07/07/2010 0.14 136° 0.18 236° 0.18 236° day after A, P 

#vr
26

 07/07/2010 0.78 266° 0.77 266° 0.77 266° 8
h
 35‟ A, P 

#vm
20

 07/07/2010 0.52 317° 0.38 301° 0.31 301° 7
h
 05‟ A 

#vgr
11

 07/07/2010 0.74 312° 0.64 310° 0.64 310° day after A, P 

#vc
10

 07/07/2010 0.16 280° 0.37 348° 0.04 347° day after A, P 

#vbcb
27

 07/07/2010 0.27 332° 0.51 330° 0.66 303° Lost A, P 

 

Table 2 Pure Air Pigeons. Explanations as in Table 1. Two out of 7 PA pigeons tested at Montespertoli had been 

released at Bolgheri (1 former C and 1 former PA). 
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RS Track Date r (1)  (1) r (2)  (2) r (3)  (3) ht at 

B
o
lg

h
er

i 
 3

3
6
° 

5
3
 k

m
 

#rgrg
28

 02/07/2010 0.21 275° 0.38 357° 0.38 357° day after A, P 

#rrnr
29

 02/07/2010 0.07 275° 0.07 275° 0.07 275° later A, P 

#rrbr
13

 02/07/2010 0.20 324° 0.15 337° 0.15 337° day after A, P 

#rgng
17

 02/07/2010 0.27 316° 0.31 319° 0.37 321° day after A, P 

#rgcg
30

 02/07/2010 0.59 070° 0.58 073° 0.29 115° lost A, P 

#rc
31

 05/07/2010 0.26 193° 0.14 190° 0.14 190° later A, P 

#rb
32

 05/07/2010 0.06 191° 0.27 332° 0.26 334° day after A, P 

#rrnr2
33

 05/07/2010 0.04 113° 0.22 236° 0.38 326° day after A, P 

M
o
n
te

sp
er

to
li

  
2
7
0
° 

6
1
 k

m
  #mv

34
 07/07/2010 0.34 302° 0.48 323° 0.43 299° lost A, P 

#mgr
19

 07/07/2010 0.25 351° 0.06 046° 0.26 217° day after A 

#mgbg
4
 07/07/2010 0.75 340° 0.48 284° 0.48 284° 5

h
 00‟ A, P 

#mc
2
 07/07/2010 0.44 352° 0.07 328° 0.59 336° later A, P 

#mbcb
35

 07/07/2010 0.34 242° 0.26 249° 0.26 249° day after A, P 

#mb
7
 07/07/2010 0.03 162° 0.13 306° 0.12 307° later A, P 

#mr
36

 07/07/2010 0.23 301° 0.45 333° 0.42 333° lost A, P 

 

Table 3 Artificial Odour Pigeons - Explanations as in Table 1. Three out of 7 AO pigeons tested at Montespertoli 

had been previously used at Bolgheri (2 former C and 1 former PA). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

86 Experiments - Test of the olfactory activation hypothesis  

REFERENCE LIST 

Baldaccini,N.E., Benvenuti,S., Fiaschi,V., Ioalè,P., Papi,F., 1978. Investigation of pigeon 

homing by means of 'deflector cages'. In: Schmidt-Koenig,K., Keeton,W.T. (Eds.), 

Animal migration, navigation and homing, Springer, Berlin, pp. 65-77. 

Baldaccini,N.E., Benvenuti,S., Fiaschi,V., Papi,F., 1975. Pigeon navigation: effects of wind 

deflection at home cage on homing behaviour. J. Comp. Physiol. 99, 177-186. 

Batschelet,E., 1981. Circular statistics in biology, Academic Press, New York. 

Benvenuti,S., Fiaschi,V., Fiore,L., Papi,F., 1973. Disturbances of homing behaviour in 

pigeons experimentally induced by olfactory stimuli. Monit. Zool. Ital. (N. S. ) 7, 117-

128. 

Benvenuti,S., Fiaschi,V., Foà,A., 1977. Homing behaviour of pigeons disturbed by 

application of an olfactory stimulus. J. Comp. Physiol. [A] 120, 173-179. 

Gagliardo,A., Filannino,C., Ioalè,P., Pecchia,T., Wikelski,M., Vallortigara,G., 2011. 

Olfactory lateralization in homing pigeons: a GPS study on birds released with 

unilateral olfactory inputs. J. Exp. Biol. 214, 593-598. 

Gagliardo,A., Ioalè,P., Odetti,F., Bingman,V.P., 2001. The ontogeny of the homing 

navigational map: evidence for a sensitive learning period. Proc. R. Soc. Lond. B Biol. 

Sci. 268, 197-202. 

Gagliardo,A., Ioalè,P., Savini,M., Wild,J.M., 2006. Having the nerve to home: trigeminal 

magnetoreceptor versus olfactory mediation of homing in pigeons. J. Exp. Biol. 209, 

2888-2892. 

Gagliardo,A., Ioalè,P., Savini,M., Wild,J.M., 2008. Navigational abilities of homing pigeons 

deprived of olfactory or trigeminally mediated magnetic information when young. J. 

Exp. Biol. 211, 2046-2051. 

Gagliardo,A., Ioalè,P., Savini,M., Wild,J.M., 2009a. Navigational abilities of adult and 

experienced homing pigeons deprived of olfactory or trigeminally mediated magnetic 

information. J. Exp. Biol. 212, 3119-3124. 

Gagliardo,A., Savini,M., De Santis,A., Dell'Omo,G., Ioalè,P., 2009b. Re-orientation in clock-

shifted homing pigeons subjected to a magnetic disturbance: a study with GPS data 

loggers. Behav. Ecol. Sociobiol. 64, 289-296. 

Holland,R.A., Wikelski,M., Kummeth,F., Bosque,C., 2009. The secret life of oilbirds: new 

insights into the movement ecology of a unique avian frugivore. PlosOne 4. 

Ioalè,P., Nozzolini,M., Papi,F., 1990. Homing pigeons do extract directional information from 

olfactory stimuli. Behav. Ecol. Sociobiol. 26, 301-305. 

Ioalè,P., Papi,F., Fiaschi,V., Baldaccini,N.E., 1978. Pigeon navigation: effects upon homing 

behaviour by reversing wind direction at the loft. J. Comp. Physiol. 128, 285-295. 



 

 

 

87 Experiments - Test of the olfactory activation hypothesis  

Jorge,P., Marques,P.A.M., Phillips,J.B., 2009a. Activational effects of odours on avian 

navigation. Proceedings of the Royal Society B 10.1098/rspb.1521.2009. 

Jorge,P.E., Marques,A.E., Phillips,J.B., 2009b. Activational rather than navigational effects of 

odors on homing of young pigeons. Current Biology 19, 650-654. 

Odetti,F., Ioalè,P., Gagliardo,A., 2003a. Development of the navigational map in homing 

pigeons: effects of flight experience on orientation performance. Anim. Behav. 66, 

1093-1099. 

Papi,F., Fiore,L., Fiaschi,V., Benvenuti,S., 1971. The influence of olfactory nerve section on 

the homing capacity of carrier pigeons. Monit. Zool. Ital. (N. S. ) 5, 265-267. 

Papi,F., Fiore,L., Fiaschi,V., Benvenuti,S., 1972. Olfaction and homing in pigeons. Monit. 

Zool. Ital. 6, 85-95. 

Papi,F., Ioalè,P., Fiaschi,V., Benvenuti,S., Baldaccini,N.E., 1974. Olfactory navigation of 

pigeons: the effect of treatment with odourous air currents. J. Comp. Physiol. [A] 94, 

187-193. 

Schmidt-Koenig,K., Phillips,J.B., 1978. Local anesthesia of the olfactory membrane and 

homing in pigeon. In: K.Schmidt-Koenig,W.T.K., Keeton,W.T. (Eds.), Animal 

Migration, Navigation, and Homing, Springer Verlag, Berlin, pp. 119-124. 

Waldvogel,J.A., Benvenuti,S., Keeton,W.T., Papi,F., 1978. Homing pigeon orientation 

influenced by deflected winds at home loft. J. Comp. Physiol. 128, 297-301. 

Wallraff,H.G., 1966. Über die Heimfindeleistung von Brieftauben nach Haltung in 

verschiedenartig abgeschirmten Volieren. Z. Vgl. Physiol. 52, 215-259. 

Wallraff,H.G., 1970. Weitere Volierenversuche mit Brieftauben: wahrscheinlicher Einfluss 

dynamischer Faktorender Atmosphare auf die Orientierung. Z. Vgl. Physiol. 68, 182-

201. 

Wallraff,H.G., 1988. Olfactory deprivation in pigeons: examination of methods applied in 

homing experiments. Comp. Biochem. Physiol. 89A, 621-629. 

Wallraff,H.G., 2005a. Avian Navigation: pigeon homing as a paradigm, Springer Verlag, 

Berlin. 

Wallraff,H.G., Kiepenheuer,J., Neumann,M.F., Sinsch,U., 1992. Microclimatic origin of 

inhaled air effects olfactory navigation of homing pigeons. Cellular and Molecular 

Life Sciences (CMLS) 48, 1158. 

Wikelski, M. Movebank: archive, analysis and sharing of animal movement data. World Wide 

Web electronic publication.  2010.  

Wiltschko,R., 1996. The function of olfactory input in pigeon orientation: does it provide 

navigational information or play another role. J. Exp. Biol. 199, 113-199. 

 



 

 

88 Experiments - Orientation of GPS tracks with respect to the magnetic slope  

2.3 ORIENTATION OF GPS TRACKS WITH RESPECT TO THE MAGNETIC 

SLOPE: A COMPARISON BETWEEN INTACT AND TRIGEMINAL 

SECTIONED PIGEONS 

ABSTRACT 

Conditioning studies have shown that the ophthalmic branch of the trigeminal nerve, which is 

thought to innervate magnetite particles in the bird‟s upper beak, is functionally involved in 

the perception of the intensity of the geomagnetic field. However, homing experiments have 

demonstrated that trigeminal mediation of magnetoreception is neither necessary nor 

sufficient for pigeon navigation from unfamiliar distant locations. Nevertheless, some authors 

claim that pigeons‟ orientation at the release site is dominated by their tendency to fly either 

parallel or perpendicular to the magnetic isolines. Thus, a scattering of pigeons released over 

magnetic anomalies has been observed, which is reduced by anaesthesia of the upper beak. 

Furthermore, it has been suggested that pigeons‟ whole flight paths are shaped by 

geomagnetic intensity variations. To test the hypothesis that pigeons‟ flight paths are affected 

by the pattern of magnetic isolines, we have analysed GPS-tracks of two groups of pigeons: 

intact birds and birds with section of the ophthalmic branch of the trigeminal nerve. We have 

undertaken a statistical analysis of the deviation of the tracks from both the direction of the 

local geomagnetic gradient and the home direction at both the release sites and “en route”. If 

the local geomagnetic intensity affects the orientation of birds, a difference between 

trigeminal sectioned and intact pigeons in both the initial orientation and the orientation of 

their whole flight path should be detectable. As concerning the initial orientation of the 

pigeons, we report that only the trigeminal sectioned pigeons seemed to be significantly 

oriented towards the magnetic steepest slope (but not towards the magnetic isolines). As 

concerning the homing flight paths analysis, no difference between the trigeminal sectioned 

pigeons and control pigeons was found. The tendency of both intact and trigeminal sectioned 

pigeons to orient parallel to the magnetic isolines, or alternatively to the magnetic slope, 

seemed to be determined by how much the home direction coincided with the direction of 

either the magnetic slope or the magnetic contours in the sampled fixes. 
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INTRODUCTION 

One of the most debated questions in bird navigation is the nature of the cues used for 

a position finding mechanism - the so called “navigational map” of Kramer‟s “map and 

compass” concept (Kramer, 1953). Forty years of research on homing pigeons have shown 

that, while a long lasting olfactory deprivation consistently produces a homing impairment of 

pigeons released from unfamiliar locations (Papi et al., 1972; Wallraff, 2005; Gagliardo et al., 

2009b), no magnetic manipulation is able to consistently affect their homing success, 

although variable effects on initial orientation following application of either oscillating 

magnetic fields or magnetic pulses have been reported (Walcott et al., 1988; Beason et al., 

1997; Wallraff, 1980; Wiltschko and Wiltschko, 1978; Papi et al., 1983). Conditioning 

experiments have suggested that pigeons perceive the changes in magnetic intensity through 

magnetite formations located in the upper beak and innervated by the ophthalmic branch of 

the trigeminal nerve (Williams and Wild, 2001; Fleissner et al., 2003b; 2003a). These results 

strengthened the idea that birds might use these upper beaks magnetic formations to gain 

geomagnetic information useful for a position finding mechanism (see (Cadiou and 

McNaughton, 2010) for a review). However, no navigational impairment following trigeminal 

section (Gagliardo et al., 2006; 2008a; 2009a) or extirpation of the lagena has been observed 

(Wallraff, 1972), questioning the involvement in navigation of the putative magnetoreceptive 

systems proposed so far, i.e., the magnetite particles innervated by the ophthalmic branch of 

the trigeminal nerve in the beak (Williams and Wild, 2001; Fleissner et al., 2003b; 2003a) and 

the lagena (Wu and Dickman, 2011). 

Despite the fact that nerve section experiments contradict the hypothesis that pigeons 

rely on geomagnetic intensity for homing (Walker, 1998; 1999) (see also (Wallraff, 1999)), it 

has been reported that pigeons at the release site tend to orient parallel either to the steepest 

magnetic slope or to the magnetic isolines (Mora and Walker, 2009; Dennis et al., 2007). This 

tendency would also produce systematic and predictable errors in homeward orientation 

depending on the direction of the local magnetic gradient (Walker, 1998; 1999). It has been 

recently reported in a GPS study that pigeons released in magnetic anomaly take longer time 

to orient homeward and have more difficulties in determining the home direction than pigeons 

released in magnetically quite terrain (Schiffner et al., 2011). The involvement of the putative 

trigeminal receptor in the upper beak in disorientation occurring at magnetic anomalies 

release sites has been suggested, as pigeons subjected to local anaesthesia of the upper beak 

displayed vanishing bearing distribution better homeward oriented than un-manipulated birds 
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(Wiltschko et al., 2010). The authors claimed that pigeons normally rely on trigeminal 

receptor mediated geomagnetic information for establishing their position with respect to 

home and therefore are confused by the magnetic anomaly; rendered unable to sense the local 

geomagnetic intensity, the pigeons use other navigational cues to orient homeward and home. 

Therefore, according to this view, the putative magnetoreceptor in the upper beak, although 

not necessary for navigation, would in some way be involved in the navigational process 

within a multi-factorial system. 

It is well known that pigeons display a homeward orientation already a few minutes 

after release (Wallraff, 2005) and even before takeoff (Chelazzi and Pardi, 1972; Mazzotto et 

al., 1999). This implies that they use the map mechanism soon after release in order to decide 

in which direction to fly. Although the use of geomagnetic intensity information is supposedly 

used at the release site, it has been recently suggested that geomagnetic field parameters affect 

the whole flight path of pigeons, well beyond their decision point (Schiffner and Wiltschko, 

2011). 

In order to test the role of geomagnetic field intensity in initial orientation at the 

release site and in shaping the flight path during the homeward journey, we compared tracks 

of both trigeminal sectioned pigeons and intact/sham operated birds, specifically by 

measuring the birds‟ orientation with respect to the direction of the steepest magnetic field 

intensity gradient. If magnetic field intensity is a critical component of the navigational map 

we should be able to observe a difference of intact and trigeminal sectioned pigeons in 

response to the direction of the steepest magnetic slope at the release site. In particular, we 

would expect the intact birds to tend to orient either perpendicular or parallel to the direction 

of the steepest magnetic slope soon after release (Mora and Walker, 2009; Dennis et al., 

2007). If the pattern of geomagnetic field intensity affects navigational decisions en route, 

even if pigeons do not exclusively rely on this kind of information in a position finding 

mechanism (Schiffner and Wiltschko, 2011), we should be able to observe a systematic 

tendency of the birds to orient either perpendicular or parallel to the magnetic isolines in the 

intact pigeons, but not in the trigeminal sectioned group. 

 

MATERIALS AND METHODS 

All the birds used in the experiments were adult homing pigeons that had been bred 

and hatched at the Arnino field station near Pisa (latitude 43°39‟26‟‟N, longitude 10°18‟14‟‟ 

E). The birds were kept according to the Italian laws on animal welfare and were allowed to 
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perform spontaneous flights around the loft. Before being released the birds were equipped 

with GPS data loggers. The birds subjected to section of the ophthalmic branch of the 

trigeminal nerve (Tr) had been used previously in experiments reported in previous papers, 

where the surgical procedure is described (Gagliardo et al., 2006; 2009b). Birds receiving 

trigeminal section were examined post mortem under a high-powered surgical microscope for 

signs of nerve re-growth. GPS tracks from those birds in which there was such evidence, 

which consisted of highly abnormal sprouting from the proximal stump on one or both sides, 

were discarded from the analysis. The control birds (C) were either unmanipulated or 

subjected to sham surgery (see below). 

 

Experiment 1 Orientation at the release site area. The analysis of the initial 

orientation of the birds with respect to the Earth‟s magnetic field was performed on tracks 

from various sources: (a) tracks of unmanipulated pigeons published in previous papers 

[28,29,30], (b) on the tracks of sham operated control and sectioned pigeons reported in 

Experiment 2, (c) on additional unpublished tracks of intact birds released from Bolgheri. All 

the birds were unfamiliar with the release sites. The tracks considered in the analysis were 

homing routes of birds released at the following sites: Marinella, latitude 44° 03‟ 38‟‟ N, 

longitude 09° 59‟ 49‟‟ E; home direction 154°, distance 57.4 km (8 Tr and 5 C birds); 

Bolgheri, latitude 43° 13‟ 04‟‟ N, longitude 10° 34‟ 18‟‟ E; home direction 336°, distance 

54.8 km (5 Tr and 17 C); Empoli, latitude 43° 42‟ 46‟‟ N, longitude 10° 55‟ 08‟‟ E; home 

direction 262°, distance 50.0 km (7 Tr and 7 C); Massaciuccoli, latitude 43° 49‟ 09‟‟ N, 

longitude 10° 20‟ 49‟‟ E; home direction 186°, distance 19,7 km (13 C) ; Cigoli, latitude 43° 

33‟ 38‟‟ N, longitude 10° 39‟ 48‟‟E; home direction 267°, distance 41,6 km (7 C); Fucecchio, 

latitude 43° 42‟ 26‟‟ N, longitude 10° 43‟ 16‟‟ E; home direction 260°, distance 34.0 km  

(7 C). 

 

Experiment 2 Orientation along route. All the pigeons had been previously used in 

other experiments (Gagliardo et al., 2006; 2008; 2009) in which, after a surgical treatment, 

each bird was released only once, either from south or north with respect to home. In 

particular, all the birds released from Bolgheri had been previously tested from Marinella, and 

all the birds released from Marinella had been previously tested from Bolgheri. All the birds 

released at Empoli had a homing experience from both Marinella and Bolgheri. The surgical 

treatment consisted of a bilateral section of the ophthalmic branch of the trigeminal nerve or 

sham surgery (see for details on the surgery (Gagliardo et al., 2006; 2008; 2009). 
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Before being released singly, the pigeons were equipped with a GPS data logger 

(www.technosmart.it) in order to record their flight path. All the experimental releases took 

place in sunny conditions, with no or light wind. The experiments were conducted from three 

release sites: Empoli, Bolgheri and Marinella located East, South and North-West of home, 

respectively. 

 

Analysis of the tracks. The miniature GPS data loggers allow the recording of the 

flight path with an accuracy of about 4 m (Steiner et al., 2000; Lipp et al., 2004). Every 

second the GPS data loggers recorded latitude, longitude, speed, and time of recording and 

altitude. Altitude data were not reliable and therefore not considered in the analysis. 

The individual tracks were visualised with MAPINFO software (One Global View, Troy, 

NY 12180) and drawn on a map of the magnetic anomaly of Italy (Chiappini et al., 2000), 

scanned and loaded in MAPINFO. The tracks analysed in this paper can be inspected in 

Movebank (www.movebank.org). 

The area under investigation was converted into a regular grid from longitude 9.58° to 

11.18° E at steps of 0.04° (about 3 km) and from latitude 42.76° to 44.26° N at steps of 0.03° 

(about 3.3 km). Then, the direction of the magnetic gradient (θ) was calculated at each 

intersection of this grid (Fig. 3) from the observed magnetic field. It is known that the 

magnetic field gradient is determined by the rate of change of the strength of the field over 

distance. A greater change in a fixed distance corresponds to a steeper slope. Here the 

geomagnetic field gradient was estimated taking into account that the typical magnetic 

declination is less than 2° in the investigated area (Maus et al., 2000), so the gradient can be 

simply estimated on the basis of the geomagnetic anomaly field (Chiappini et al., 2000). 

Taking the gradients for each x (East) and y (North) direction as fx and fy, the total gradient f 

and the clockwise direction  (with respect to North) of the magnetic slope are given by: 

x yf f f ;       atan  x

y

f

f
, respectively. 

The smallest angular distance between the home direction and θ, or θ+180, or θ+/-90° for 

each release site is as follows: Marinella 14°, Massaciuccoli 13°, Fucecchio 40°, Cigoli 36°, 

Bolgheri 10°, Empoli 33°. 

For the analysis we have considered only the active flight of the birds by excluding all 

the fixes recorded when the speed was lower than or equal to 5 km per hour. For each track 
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we calculated the moving average of ten consecutive latitude and longitude values, in order to 

reduce the noise of the flight itself and to obtain the main orientation kept by the birds in 

about 10 seconds. For the analysis of the initial orientation (Experiment 1) we considered the 

portion of the tracks between 1 and 3 km from the release site. Afterwards, we considered the 

orientation of each bird while moving from one average fix to the next, and we calculated the 

mean direction and its deviation from the direction of both home and the magnetic slope. In 

addition we performed the Hotelling test on the so calculated mean vectors to test for 

randomness both C and Tr birds‟ initial orientation distribution. In the analysis of the whole 

tracks (Experiment 2), we considered the portions of the tracks less than 1.5 km distant from 

each intersection of the grid, providing that they were more than 1 km distant from the release 

site and more than 10 km from home. The latter criterion aimed at excluding from the analysis 

an area which was likely to be familiar to the birds. Afterwards, we considered the orientation 

of the birds while moving from one average fix to the next and calculated its deviation from 

both the home direction and the local magnetic slope direction. For both Experiment 1 and 2 

the deviations in absolute values were grouped, as in the analysis performed by Mora and 

Walker, in 6 categories (see Figure 2 in Mora and Walker, 2009) ranging as follows: category 

1, 0°-15° or 166°-180°; category 2, 16°-30° or 151°-165°; category 3, 31°-45° or 136°-150°; 

category 4, 46°-60° or 121°-135°; category 5, 61°-75° or 106°-120°; category 6, 76°-90° or 

91°-105°. According to the hypothesis that pigeons orient by following either the 

geomagnetic gradient or isolines, the frequency distribution of the deviations should be U 

shaped, i.e., most of the deviations should fall in categories 1 and 2 and 5 and 6. According to 

the expected frequency distribution expressing the best orientation towards the home 

direction, the frequency of deviations should be greater in categories 1 and 2, while if the 

birds oriented preferentially parallel to the magnetic isolines most of the deviations should fall 

in categories 5 and 6. The observed frequency distributions of deviations were compared to 

the expected distributions by means of the Spearman correlation test (Spearman, 1904). 

The procedure is as follows. We considered the distribution of the observed  

deviations from the direction of the magnetic gradient in six categories, according to Mora 

and Walker (2009). We then attributed a rank to each category, with the highest rank given to 

the category including the greatest number of samples. When we tested a U shaped expected 

distribution (according to Mora and Walker (2009)), the ranks will be as follows: category 1 

and 6, rank 5.5; category 2 and 5, rank 3.5; category 3 and 4, rank 1.5. When we tested if the 

birds preferentially maintain the magnetic gradient direction or the home direction the ranks 
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will be as follows: categories 1 and 2, ranks 5.5, categories 3, 4,5,6, ranks 2.5. The following 

formula is used to calculate the Spearman correlation coefficient r (Spearman, 1904) between 

the observed and the expected frequency distributions: 

 

              

2

2

6

1
( 1)

i i

i

A B

r
n n

 

where Ai is the rank of each category from i to n for the observed distribution and Bi the rank 

of each category from i to n for the expected distribution; n is the number of categories. In the 

case of the analysis relative to the deviations from the direction of the magnetic gradient, we 

assumed the ranks for the categories of the expected distribution as follows: category 1, rank 

6; category 2, rank 5, category 3, rank 4; category 4, rank 3; category 5, rank 2; category 6, 

rank 1. In the case of the analysis relative to the deviation from the magnetic isolines we 

assumed the ranks for the categories of the expected distribution as follows: category 1, rank 

1; category 2, rank 2, category 3, rank 3; category 4, rank 4; category 5, rank 5; category 6, 

rank 6. In the case of the analysis relative to the deviation from the home direction we 

assumed the ranks for the expected distribution as follows: category 1 and 2, rank 5.5; 

category 2, 3, 4, 5 and 6, rank 2.5. 

In Experiment 1 the Spearman correlation test was applied to the deviations from the 

magnetic gradient direction and from the home direction displayed in the release site area. 

In Experiment 2 the Spearman correlation test was applied to the deviations from the 

geomagnetic gradient and isolines direction and from the home direction displayed by each 

single bird along the route. In order to determine whether the coincidence between the home 

direction and the direction of either the magnetic gradient or the magnetic isolines increased 

the probability that the birds significantly oriented along these directions, we correlated the 

percentage of sampled fixes in which the home direction deviated less than or equal to 30° 

from the direction of either the magnetic gradient or the magnetic isolines with the percentage 

of deviations falling in both category 1 (0-15°) and 2 (16-30°). 

 

 

RESULTS 

Experiment 1. Orientation at the release site area 

The sections of the tracks in the vicinity of the release site are shown in Fig. 1 for both 

intact and trigeminal sectioned pigeons (see Table 1 for details). Both groups‟ mean vector 
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distributions calculated on the section of the track in the release site area turned out to be 

significantly different from random (second order mean vectors C: r=0.41 =001° Hotelling 

test p<0.001; Tr r=0.28 =355°, p<0.05). The frequency distribution of the deviations from 

the home direction are significantly correlated to the expected distribution predicting an 

homeward orientation in both groups (Spearman test, C n= 56 r = 0.842, p<0.05; Tr n= 20 r = 

0.900, p<0.025). The Spearman correlation test showed that the deviations (see Figure 2) 

from the direction of the magnetic gradient are not significantly correlated with the expected 

U-shaped frequency distribution for either intact or trigeminal sectioned pigeons (Spearman 

test, C r = -0.300; Tr, r = 0.085). While the intact pigeons do not display a tendency to orient 

parallel to the magnetic slope direction (Spearman test, C r = 0.500), the trigeminal sectioned 

birds turned out to significantly prefer the magnetic gradient direction (Tr r = 0.885, p<0.05). 

According to the Spearman test both experimental groups did not show a preferential 

orientation towards the magnetic isolines direction (C r= -0.528, Tr r= -0.428). 

 

 

Fig. 1 Experiment 1. Each square reports the initial orientation of the tracks; the superscript numbers indicate the 

same set of data for which the tracks are represented separately. Each coloured line represents the track of one 

pigeon. The portion of the tracks included in the analysis is delimited by the two circles of 1 and 3 km radius, 

respectively. C and Tr indicate the treatments, control and trigeminal sectioned pigeons, respectively. Release 

sites (rs) numbered from 1 to 6 are in the order as follows: Bolgheri, Massaciuccoli, Empoli, Fucecchio, 

Marinella, Cigoli. The broken arrow and the continuous arrow represent the home direction (h) and the magnetic 

upward gradient direction (θ), respectively. The magnetic gradient direction used in the analysis is that relative to 

the intersection of the grid closest to the release site. 
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Fig. 2. Experiment 1. Frequency distribution of the deviations from both the magnetic gradient (Δ ) and the 

home (Δh) directions recorded in the vicinity of the release site. The six categories indicated in the diagram 

include the deviations ranging between the angles as follows. 1: 0°-15° or 166°-180°; 2: 16°-30° or 151°-165°; 

3: 31°-45° or 136°-150°; 4: 46°-60° or 121°-135°; 5: 61°-75° or 106°-120°; 6: 76°-90° or 91°-105°. See 

Materials and methods for further explanations. 

 

Experiment 2. Orientation along route 

The tracks of both C and Tr from Bolgheri, Marinella and Empoli plotted over the 

magnetic anomaly map are reported in Fig. 3. The frequency distribution of the deviations 

from the direction of the magnetic gradient is never significantly correlated with the expected 

U-shaped frequency distribution (Spearman test, see Table 2 for details).  

However, when we assumed an expected frequency distribution predicting a 

preferential orientation towards the magnetic slope direction the Spearman correlation test 

gave significant results for 3 out of 9 C and 4 out of 13 Tr birds in the test from East 

(Empoli), and 1 out of 6 C and 8 out of 11 Tr pigeons released from North-West (Marinella). 

A significant tendency to fly parallel to the magnetic isolines was highlighted only at Bolgheri 

and for all released pigeons belonging to both experimental groups. According to the χ
2
 test 

the two experimental groups behaved similarly in their tendency to follow either the magnetic 

gradient or the magnetic isolines (C vs Tr, p>0.05 in all comparisons) (see Table 3 for 

details). Considering the deviations of the birds from the home direction at the sampled fixes, 

the frequency distribution was not significantly correlated to the expected distribution in a 

minority of cases: 1 out of 13 Tr birds released from Empoli, 4 out of 13 C and 2 Tr out of 6 

birds released from Bolgheri, and 3 out of 6 C pigeons and 1 Tr out of 11 pigeons from 

Marinella (χ
2
 test C vs Tr, p>0.05 in all comparisons) (Table 2). 
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Figure 3 Experiment 2. Tracks of C and Tr birds 

plotted over the magnetic anomaly chart of Toscany. 

Each coloured line represents the track of one pigeon. 

The different colours in the chart indicate different 

magnetic field intensities as reported in the scale (nT). 

Release sites are numbered as in Figure 1. The red 

circle and the yellow square represent the release site 

and home, respectively. The white arrows represent 

the local direction of the magnetic gradient at each 

intersection of the grid. The thick black line running 

North-South represents the western coast of Italy. 
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The coincidence (+/- 15°) between the home direction and the direction of either the 

magnetic isolines or the magnetic gradient seemed to affect the results of the Spearman 

correlation test. In fact (see Fig. 4) the percentage of deviations falling in categories 1 (0-15°) 

and 2 (16-30°) is significantly correlated with the percentage of fixes at which the direction of 

the magnetic gradient (Linear correlation r= 0.649, p<0.001) or the direction of the magnetic 

isolines (Linear correlation r= 0.892, p<0.001) are roughly parallel (maximal deviation 30°) 

with the home direction. 

 

 

Fig. 4. Experiment 2. Correlation between the percentage of sampled fixes (n%) in which the home direction is 

coincident (+/- 30°) with the direction of either the magnetic gradient or the magnetic isolines and the percentage 

of deviations falling in categories 1 and 2. r: linear correlation coefficient. The number of tracks considered is 

59. 
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DISCUSSION 

Our GPS data confirm what has been observed with tests performed with traditional 

methods, that is, trigeminal sectioned pigeons are unimpaired in homing (Gagliardo et al., 

2006; 2008; 2009). However, the main aim of the present work was to provide a detailed 

analysis of the birds‟ orientation with respect to the direction of the magnetic gradient, either 

restricted to the release site area or along the whole route. 

The analysis of the initial orientation of the birds failed to highlight a pattern similar to 

that reported by Mora and Walker on the basis of the results of a meta-analysis (Mora and 

Walker, 2009). These authors observed that either first- or second-order mean vector 

directions, derived from numerous experiments conducted at different release sites in 

Germany, are mostly oriented either parallel or perpendicular to the magnetic slope. From this 

observation they concluded that pigeons have the tendency to fly either parallel or 

perpendicular to the magnetic slope. It should be noted, however, that the result shown by 

Mora and Walker can be achieved even if no single bird flew parallel or perpendicular to the 

isolines, as both a first-order and a second-order mean vector direction can originate from a 

distribution in which none of the pigeons orient either parallel or perpendicular to the 

magnetic slope. A further problem with the analysis of Mora and Walker (2009) is their use of 

vanishing bearings. These do not indicate the actual direction of the bird‟s movement but 

simply indicate the bird‟s direction with respect to the release site at a certain distance from it 

(typically when the bird vanishes from the observer‟s view). Clearly, it is critically important 

to assess the bird‟s movement in order to determine whether the bird is flying along a 

magnetic isoline or along a magnetic gradient.  

However our analysis has shown that the trigeminal sectioned pigeons, but not the 

control pigeons, significantly preferred to orient parallel to the direction of the magnetic 

steepest slope in the release site area. This finding is in contrast to what observed in previous 

studies (Wiltschko et al., 2010), that initial orientation of pigeons subjected to anaesthesia of 

the upper beak trigeminal nerve endings was not affected by the presence of a magnetic 

anomaly at the release site, while the control pigeons turned out to be scattered. 

As trigeminal nerve section does not impair homing ability of homing pigeons 

(Gagliardo et al., 2006, 2008a, 2009a), and present paper], it is clear that the putative 

magnetic receptor in the upper beak is not involved in the navigational map mechanism 

purportedly used to home from unfamiliar sites. However, the perception of the magnetic field 

intensity might affect the directional choices of the birds (Wiltschko et al., 2010; Schiffner 
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and Wiltschko, 2011) either at the release site and/or “en route”, similarly to what happens for 

the visual features of over-flown areas (Lipp et al., 2004; Lau et al., 2006; Bonadonna et al., 

1997). In this case we would expect a different behaviour between the control and trigeminal 

sectioned pigeons. According to our data, pigeons seem not to be affected by the local 

magnetic landscape. In this case we would expect a different behaviour between the control 

and trigeminal sectioned pigeons. By contrast both groups displayed the same behaviour in 

relation to the magnetic isoline pattern of the over-flown areas. In fact, we could not observe 

any difference in the directional choices of birds perceiving or not perceiving magnetic 

intensity information through the putative trigeminal magnetoreceptor. 

 From the analysis of the whole tracks it emerged that, “en route”, all the pigeons 

belonging to both groups released from Bolgheri flew orienting significantly parallel to the 

magnetic isolines. This tendency was never observed at Marinella and Empoli. In fact from 

these sites the birds (especially the trigeminal sectioned pigeons) tended to orient parallel to 

the magnetic slope direction. The birds heading home from Bolgheri cross a wide area in 

which the magnetic isolines direction coincides with the home direction, while the birds 

heading home from either Marinella and Empoli fly over terrain in which the magnetic slope 

direction is coincident with the home direction. This implies that birds heading home with a 

non magnetic mechanism have a high probability to orient towards the magnetic isolines or 

toward the magnetic steepest slope. If the magnetic contours would directly and specifically 

affect the directional choices of the birds we should have observed a number of pigeons 

oriented along the magnetic isolines also at Empoli and Marinella. In the same way, is the 

birds would be specifically affected by the direction of the steepest magnetic slope, birds 

oriented parallel to the direction of the magnetic gradient should have been observed also at 

Bolgheri. In addition, occasional alignment of the tracks parallel or perpendicular to the 

magnetic slope is likely to be produced by chance when local topographic features, as the 

coastline or valleys and hills, actually shape the birds‟ local orientation. 

 In conclusion we were unable to observe an effect of the local magnetic intensity on 

the orientation of the intact control pigeons in the initial phase of the homing journey, that is, 

in the vicinity of the release site where, according to the map and compass concept (Kramer, 

1953), the birds are able to establish their new position with respect to the goal and orient 

towards it. It is worth noting that the trigeminal sectioned birds‟ orientation seemed to be 

influence by the direction of the magnetic gradient and that for these birds the detection of 

magnetic field intensity was presumably unavailable. 
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 Release site biases in birds orientation have been often attributed to irregularities of 

the magnetic field intensity variation, and therefore directly caused by local magnetic 

anomalies (Walker, 1998). In our case the trigeminal sectioned birds‟ orientation considered 

in the initial orientation analysis turned out to preferentially orient towards the direction of the 

magnetic slope. However these birds were also homeward oriented, as well as the intact 

controls pigeons. Looking at the behaviour of the pigeons along route, it emerged that both 

for Marinella and Empoli data set, the birds displaying some uncertainty in their homeward 

orientation (see Table 2) did not seem to be influenced by the geomagnetic field irregularities. 

At Bolgheri, both birds maintaining a homeward orientation during the whole route and the 

birds heading away from home flying south along the coast in some parts of their journey, 

significantly oriented parallel to the magnetic contours. As reported in the literature (Wallraff 

2005), the pigeon orientation is often affected by previous homing experience and this might 

explain the orientation toward south of some birds tested at Bolgheri, South from home, that 

had their first homing experience from Marinella, North from home. Similarly some birds 

released at Marinella (and previously release at Bolgheri) followed the coast in a direction 

opposite from home, as if they were at Bolgheri. 

In conclusion, we have been unable to observe a consistent and specific effect of the 

geomagnetic field variation on the orientation of the intact control pigeons, which was not 

present in the supposedly magnetically deprived pigeons and which was not correlated to the 

coincidence between the home direction and the direction of either the magnetic slope or the 

direction of the magnetic isolines. 
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TABLES 
 

RS T Track α Δm Δh RS T Track α Δm Δh 
M

ar
in

el
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1

5
4

° 
5

7
.4

 K
m

; 
θ
 3

2
0
° 

C 

GGrGc1 147° 173° -5° 

B
o

lg
h

er
i 
 

3
3

6
° 

5
4

.8
 K

m
; 

θ
 0

7
6
° 

C 

GBGc2 297° -139° -39° 

GCFc1 139° -179 -13° GGrGc2 288° -148° -48° 

362c 265° -55° 113° RMRc2 300° -136° -36° 

BCBc 167° -153° 15° Blib 209° 133° -127° 

Vc 134° 174° -18° Glib 142° 66° -166° 

Tr 

BGBtr1 126° 166° -26° RVRlib 329° -107° -7° 

CGrCt1 123° 163° -29° NVNlv 299° -137° -37° 

CNCt1 211° -109° 59° VGrVl 272° -164° -64° 

CRCtr1 116° 156° -36° VNVlv 310° -126° -26° 

GNGtr1 175° -145° 23° NGNlv 329° -107° -7° 

RBRtr1 123° 163° -29° VCVlv 25° -51° 49° 

RCRtr1 151° -169° -1° 269c 168° 92° -168° 

RGrRtr1 166° -154° 14° Grc 60° -16° -84° 

M
as

sa
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u
cc

o
li

 
1
8
6
° 

1
9
.7

 K
m

; 
θ
 0

1
9
° 

 

C 

gcglib 174° 155° -12° Mc 311° -125° -25° 

grg1li 173° 154° -13° NGNc 287° -147° -49° 

grg1lib 175° 156° -11° RVRc 283° -153° -53° 

rcrlib 182° 163° -4° VNVc 284° -152° -52° 

rbrlib 185° 166° -1° 

Tr 

BCBtr2 304° -132° -32° 

bcon 190° 171° 4° BMBtr2 313° -123° -23° 

cbccon 276° -103° 90° BNBtr2 162° 86° -174° 

ccong 194° 175° 8° CMCtr2 332° -104° -4° 

g-g 236° -143° 50° CNCtr2 312° -124° -24° 

rcong 284° -95° 98° 

E
m

p
o
li

 
2

6
2
° 

5
0
 K

m
; 

θ
 2

9
5

° 

C 

GBGc1 264° -31° 2° 

766lv 156° 137° -30° GRGc1 303° 8° 41° 

856lv 202° 177° 16° Nc1 254° -41° -8° 

867lv 188° 169° 2° RMRc2 275° -20° 13° 

F
u
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cc
h
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2

6
0

° 
3
4
 K

m
; 

θ
 3

0
0

° 

C 

c180 293° -7° 33° Cc 261° -34° -1° 

c513 278° -22° 18° GNGc 231° -64° -31° 

c595 266° -34° 6° RBRc 223° -72° -39° 

c743 258° -42° -2° 

Tr 

BGrBtr2 221° -74° -41° 

c056 233° -67° -27° NBNtr2 309° 14° 47° 

c 150 301° 1° 41° BVBtr2 252° -43° -10° 

c 170 263° -37° 3° CBCtr2 305° 10° 43° 

C
ig

o
li

 
2

6
7

° 
4

1
.6

 K
m

;θ
 3

0
3
° 

C 

c181 258° -45° -9° RGRtr1 308° 13° 46° 

c551 269° -34° 2° RNRtr1 313° 18° 51° 

c757 183° -120° -84° GGrGtr 260° -35° -2° 

c787 343° 40° 76°         

c798 304° 1° 37°         

c812 267° -36° 0°         

c872 254° -49° -13°         
 

Table 1. Initial orientation of the tracks. RS: Release site parameters; home direction, distance from home and 

direction of the magnetic gradient (θ). T: treatments; C, intact control pigeons, Tr, pigeons subjected to section 

of the ophthalmic branch of the trigeminal nerve. Track: individual pigeon code; the tracks can be inspected in 

Movebank (www.movebank.org). : mean direction of the track recorded between 1 and 3 km from release. Δm: 

deviation from the direction of the magnetic gradient. Δh deviation from the home direction.  
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RS  C Tr 

E
m

p
o
li

 
Track r (θ) r (h) n Track r (θ) r (h) n 

GBGc1 0.042 0.842* 1198 BGBtr1 0.271 0.842* 745 

GGrGc1 -0.642 0.842* 484 BGrBtr2 0.614 0.842* 357 

GRGc1 0.157 0.842* 246 NBNtr2 -0.757 0.842* 842 

Nc1 -0.871 0.842* 691 BVBtr2 0.271 0.842* 599 

RMRc2 0.385 0.842* 835 CBCtr2 0.5 0.842* 866 

BCBc -0.871 0.857* 1558 CMCtr2 -0.185 0.842* 624 

Cc -0.757 0.900* 392 CNCtr1 -0.071 0.842* 774 

GNGc -0.3 0.857* 2036 CRCtr2 0.157 0.857* 220 

RBRc -0.871 0.985** 1386 GNGtr1 0.042 0.671 464 

     RCRtr1 -0.871 0.842* 551 

     RGRtr1 -0.628 0.842* 789 

     RNRtr1 0 0.842* 697 

     GGrGtr -0.185 0.842* 79 

B
o
lg

h
er

i 

GBGc2 0.157 0.900* 290 BCBtr2 0.457 0.842* 1378 

GGrGc2 0.042 0.842* 465 BMBtr2 0.114 0.842* 608 

RMRc2 0.042 0.857* 881 BNBtr2 0.157 0.157 1362 

269c 0.728 -0.014 1825 CMCtr2 0.271 0.842* 423 

Cc 0.042 0.857* 2307 CNCtr2 0.157 0.671 1578 

Grc 0.042 0.671 4243 CRCtr2 0.042 0.842* 880 

Mc 0.042 0.985** 167      

NGNc 0.042 0.842* 560     

RBRc 0.042 0.842* 494      

RVRc 0.157 0.671 1983      

VNVc 0.042 0.842* 2884      

Gc 0.042 0.671 2727      

GNG 0.042 0.842* 1425      

M
ar

in
el

la
 

GGrGc1 0.385 0.500 1730 CGrCtr1 0.157 0.857* 496 

GCGc1 -0.185 0.842* 961 BGBtr1 0.042 0.842* 936 

BCBc -0.071 0.857* 405 CNCtr1 -0.185 0.842* 615 

Vc -0.3 0.842* 2418 CRCtr1 0.157 0.842* 713 

269c 0.614 -0.014 1647 GNGtr1 -0.871 0.842* 460 

RVRc -0.414 0.671 2898 RBRtr1 0.157 0.857* 766 

     RCRtr1 0.157 0.842* 933 

     RGrRtr1 0.385 0.842* 1091 

     GGrtr 0.042 0.857* 2002 

     NGrNtr -0.071 0.900* 674 

     Mtr 0.742 -0.014 2580 
 

Table 2. Spearman correlation test results on track orientation. RS: release site. Track: individual code of the 

track; the tracks can be inspected in Movebank (www.movebank.org). C: intact control pigeons; Tr: pigeon 

subjected to the section of the ophthalmic branch of the trigeminal nerve. r ( ): Spearman correlation coefficient 

relative to the frequency distribution of the deviations from the direction of both the magnetic gradient and 

magnetic isolines. r(h): Spearman correlation coefficient relative to the frequency distribution of the deviations 

from the home direction. *, **,*** indicate the significance levels of the test p<0.05, p<0.01, p<0.0025, 

respectively. n: number of sampled angles. 
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RS  C Tr 

E
m

p
o
li

 
Track r ( ) r ( ) n Track r ( ) r ( ) N 

GBGc1 0.842* -0.528 1198 BGBtr1 0.842* -0.185 745 

GGrGc1 0.328 -0.528 484 BGrBtr2 0.500 0.500 357 

GRGc1 0.842* -0.357 246 NBNtr2 -0.357 0.157 842 

Nc1 -0.357 -0.014 691 BVBtr2 0.842* -0.185 599 

RMRc2 0.842* -0.185 835 CBCtr2 0.157 0.328 866 

BCBc -0.185 -0.185 1558 CMCtr2 -0.014 -0.357 624 

Cc -0.085 -0.257 392 CNCtr1 0.671 -0.528 774 

GNGc 0.500 -0.528 2036 CRCtr2 0.842* -0.357 220 

RBRc -0.185 -0.185 1386 GNGtr1 -0.357 0.671 464 

      RCRtr1 -0.014 -0.357 551 

      RGRtr1 0.000 -0.342 789 

      RNRtr1 0.857* -0.514 697 

      GGrGtr -0.014 -0.014 79 

B
o
lg

h
er

i 

GBGc2 -0.357 0.842* 290 BCBtr2 -0.528 0.842* 1378 

GGrGc2 -0.528 0.842* 465 BMBtr2 -0.514 0.857* 608 

RMRc2 -0.528 0.842* 881 BNBtr2 -0.528 0.842* 1362 

269c 0.157 0.842* 1825 CMCtr2 -0.528 0.842* 423 

Cc -0.528 0.842* 2307 CNCtr2 -0.528 0.842* 1578 

Grc -0.528 0.842* 4243 CRCtr2 -0.528 0.842* 880 

Mc -0.528 0.842* 167      

NGNc -0.528 0.842* 560      

RBRc -0.528 0.842* 494      

RVRc -0.528 0.842* 1983      

VNVc -0.528 0.842* 2884      

Gc -0.528 0.842* 2727      

GNG -0.528 0.842* 1425      

M
ar

in
el

la
 

GGrGc1 0.500 -0.657 1730 CGrCtr1 0.842* -0.357 496 

GCGc1 0.671 -0.771 961 BGBtr1 0.842* -0.528 936 

BCBc 0.842* -0.528 405 CNCtr1 0.671 -0.357 615 

Vc 0.500 -0.528 2418 CRCtr1 0.842* -0.357 713 

269c 0.1671 -0.157 1647 GNGtr1 -0.014 -0.357 460 

RVRc 0.500 -0.528 2898 RBRtr1 0.842* -0.357 766 

     RCRtr1 0.842* -0.528 933 

     RGrRtr1 0.842* -0.357 1091 

     GGrtr 0.842* -0.528 2002 

     NGrNtr 0.842* -0.528 674 

     Mtr 0.0428 0.257 2580 

 

Table 3. Spearman correlation test results on track orientation. RS: release site. Track: individual code of the 

track; the tracks can be inspected in Movebank (www.movebank.org). C: intact control pigeons; Tr: pigeon 

subjected to the section of the ophthalmic branch of the trigeminal nerve. r( ): Spearman correlation coefficient 

relative to the frequency distribution of the deviations from the direction of the magnetic gradient. r  ( ) Spearman 

correlation coefficient relative to the frequency distribution of the deviations from the direction of the magnetic 

isolines. *, **,*** indicate the significance levels of the test p<0.05, p<0.01, p<0.0025, respectively. n: number 

of sampled angles. 
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2.4 ROLE OF THE FAMILIAR RELEASE SITE FEATURES IN  

RE-ORIENTATION AFTER CLOCK-SHIFT : A STUDY WITH GPS DATA 

LOGGERS. 

ABSTRACT 

It is known that pigeons are able to memorise the landscape features of both the 

release site and the over-flown areas. These might be used by the birds in association with the 

home direction from those locations (site specific compass orientation strategy). Alternatively 

pigeons might use the spatial relationships among single landmarks to head home (piloting 

strategy), without relying on the compass mechanism. In order to highlight which release site 

specific factors may favour the preferential use of one strategy, we put in conflict the 

topographical information with the compass information by shifting the internal clock of 

homing pigeons released from three different familiar sites. The analysis of the GPS tracks 

suggested that the characteristic features of the release site affect the level of reorientation 

after clock shift. In particular, the vicinity of the sea seems to determine a preference for the 

piloting strategy and by consequence a more efficient re-orientation. 

 

INTRODUCTION 

As concerning familiar landmarks based navigation, we have previously discussed in 

the introductory chapters that the birds can use visual information within two different 

navigational strategies: the “site specific compass orientation” strategy (Wallraff, 1974; 

Holland, 2003), according to which the birds are able to recall the familiar site features in 

association with specific compass direction; or/and the “piloting” strategy (Holland, 2003), 

whereby the spatial relationships between the familiar landmarks are memorized by the birds 

to constitute a topographical representation of the familiar area.  

By manipulating the bird‟s internal clock during clock-shift experiments, it is possible 

to investigate which of the two strategies the subject preferentially adopts, by observing the 

deviation in the birds‟ orientation: this deflection induced by the phase-shift manipulation is a 

consequence of an error in the estimation of time, which produces an error in the estimation of 

the sun azimuth. A preferential use of the piloting strategy will produce a marked reduction in 

the extent of the deflection in orientation, while a use of a site specific compass orientation 

strategy will be highlighted by a deviation comparable to that expected.  
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Several authors have investigated which factors might affect the size of deflection in 

orientation following clock shift. However the discrepant results in terms of the extent of the 

deviation in the initial orientation of the birds (Gagliardo et al., 2004), has not yet allowed to 

make any assumption “a priori” about the mechanism preferentially used by the birds. (Foà 

and Albonetti, 1980; Wiltschko and Wiltschko, 2001; Gagliardo et al., 2005b). Among the 

factors affecting the initial orientation of phase-shifted pigeons, it has been reported that the 

familiarity with the release site area strongly reduced the size of the deviation following clock 

shift (Bingman and Ioalè, 1989; Papi et al., 1991; Gagliardo et al., 1999; 2002; 2005b; 

Bonadonna et al., 2000; Holland et al., 2000; Biro et al., 2007). Another factor affecting re-

orientation in clock shifted pigeons is the contemporary use of the olfactory map. In fact it has 

been observed that clock-shifted anosmic pigeons released at familiar sites shown a smaller 

deviation than their smelling companions‟ (Bingman and Ioalè, 1989; Gagliardo et al., 1999). 

A third factor playing a role in pigeons‟ re-orientation after clock-shift seems to depend on 

intrinsic features of the release site (Bonadonna et al., 2000; Gagliardo et al., 2005b).  

By using GPS tracking, we have investigated which specific release sites feature 

might determine a more efficient re-orientation in clock shifted pigeons. To do so we trained a 

group of pigeons from three familiar sites located in three different directions with respect to 

home, we released them after clock shift and we observed the behaviour of each pigeon at 

each of the three sites.  

 

MATERIALS AND METHODS 

General procedure 

Thirty-two pigeons (Columba livia, Gmelin 1789) hatched and kept at the Arnino 

field station (43°39′26″N, 10°18′14″E; Pisa, Italy) were used in the experiment. The 

experiment took place in three years (the number of pigeons used were 7, 5, and 20 in the 

2009, 2010 and 2011, respectively). All the experimental releases took place under sunny 

conditions, with no or light wind. The pigeons were allowed to perform spontaneous flights 

around the loft and were kept and manipulated according to Italian law on animal welfare. 

About one month before the beginning of the experiments, the birds were equipped with 

PVC dummies, replaced with a miniature GPS data logger before the release. The miniature 

GPS data loggers allow the recording of the flight path with an accuracy of about 4 m 

(Steiner et al., 2000; Lipp et al., 2004). The position stored every second by the GPS data 
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logger included latitude, longitude, speed and time of recording. The tracks recorded were 

visualized with Google Earth (Google Inc, US).  

The pigeons were subjected to seven training releases in groups from each of the three 

sites chosen for the experimental tests (Arnaccio, home direction and distance 271°, 13.5 km; 

Livorno 341°, 12 km; La Sterpaia 194°, 9.5 km), plus an additional individual release from 

each release site. During the last training release the homing tracks were recorded with a GPS. 

The training phase is necessary to allow the pigeons to become familiar with the release sites 

and learning the topography of the over-flown area.  

After the training releases, the pigeons were subjected to a fast clock shift treatment, 

keeping them for 6 days in a room with a light-dark cycle 6 hrs shifted with respect to the 

natural one. The light-tight room was ventilated by an aspirator, and it was provided with 

perches, food and water. The clock-shifted pigeons were then released singly from each of the 

three release sites, with at least 10 min between releases (to avoid pairs during the journey). 

For the whole period of the test releases, the birds were kept in clock-shift condition: the birds 

once homed were caught and put in the clock-shift room.  

 

Quantitative analyses and statistical procedures 

For the statistical analysis we have considered the tracks recorded during the eighth 

training release and the tracks recorded during the test release after clock-shift. We considered 

in this study only the birds for which the tracks from each of the three release sites were 

suitable for the analysis, by excluding the tracks of birds which joined during the homing 

flight and incomplete tracks.   

For all the tracks we have considered in the analysis the position of the pigeons every 

500 m at increasing distance from the release site.  

With the assistance of a database available online (Astronomical Application 

Department of the U.S. naval Observatory), we downloaded the sun azimuth for each point of 

the track recorded at the clock-shifted release and we calculated the sun azimuth at the 

subjective time. On the basis of the sun azimuth at the time of release of each single bird, we 

calculated the expected deviation (i.e. the difference between the real and the subjective sun 

azimuth). Then we analysed separately the deviation from the home direction and that from 

the eighth training release track, both expressed as percentage of the expected deviation. 

Then, we attributed to each pigeon a score equal to the distance from the release site at which 

the bird turned out to be re-oriented, by assuming as re-orientation criterion a deviation lower 
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than 25% of the expected. The differences among the reorientation distance displayed by the 

birds at the three release sites were compared with the Repeated Measure Analysis of 

Variance on Ranks (RM ANOVA on Ranks). 

For each track we calculated the distance between the eighth training track and the 

track of the test release every 500 meters from the release site. The distance values were 

compared with the Two way repeated measures ANOVA. 

We have considered the individual tendency of each pigeon to adopt one particular 

strategy on the basis of the individual score which is the sum of the distances at which re-

orientation occurred at the three release sites, taking as reference the eighth training track. We 

considered that pigeons were applying a piloting strategy if the sum of scores was lower than 

12. When the total score ranged between 12 and 24, we considered a plastic behaviour, while 

when the total score was greater than 24 it has been assumed that the birds are following a site 

specific compass orientation strategy.  

 

RESULTS 

Two out of seven, two out of five and fourteen out of twenty pigeons‟ tracks recorded 

in the 2009, 2010 and 2011, respectively, were used for the analysis. Some of the GPS data 

loggers (n=4) did not record or produce incomplete tracks and were therefore excluded from 

the analysis. Seven pigeons were excluded from the analysis because joined during the 

homing flight and three pigeons were lost. 

Assuming as re-orientations‟ criterion a deviation lower than 25%, we have attributed 

to each pigeons a score equal to the distance from the release site at which the re-orientation 

occurred, as shown in the Table 1.  

Considering the deviation from the home direction (expressed in percentage with 

respect to the expected), the comparison between the reorientation score revealed that the 

birds re-oriented at different distances at the three release sites (RM ANOVA on Ranks,  

P ≤ 0.001). The distance at which the re-orientation occurred was significantly greater at the 

site from East (Arnaccio) with respect to the other two sites (Turkey test P < 0.05, for both 

comparisons). If we consider the deviation from the eighth training release tracks, the results 

of the re-orientation distances‟ analysis were the same of what has just been described for the 

deviation from the home directions (RM ANOVA on Ranks, P ≤ 0.001; Turkey test P < 0.05, 

for both comparisons). 
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Subject 
Release sites  

Subject 
Release sites 

Arnaccio Livorno La Sterpaia  Arnaccio Livorno La Sterpaia 

# 067 10 10 10  # 067 9 10 10 

# 949 10 2 2  # 949 10 2 4 

# 136 7 1 3  # 136 1 1 1 

# 588 10 6 7  # 588 10 7 3 

# 899 10 7 4  # 899 10 7 1 

# 108 2 6 2  # 108 10 6 6 

# 140 7 5 5  # 140 7 5 1 

# 181 10 6 1  # 181 1 6 1 

# 548 7 1 2  # 548 1 1 2 

# 812 10 10 10  # 812 10 10 10 

# 953 10 6 1  # 953 10 6 1 

# 955 10 10 10  # 955 10 10 10 

# 766 10 4 10  # 766 10 5 10 

# 992 10 6 10  # 992 10 6 10 

# c813 10 1 5  # c813 10 3 4 

# cNCN 10 5 5  # cNCN 10 1 2 

# cV 10 4 3  # cV 10 3 2 

# c723 10 10 2  # c723 10 10 2 

 

Table 1. Individual score. Distance at which the birds re-oriented at the three different release sites. A. Deviation 

from the home direction. B. Deviation from the eighth training release Subject: individual pigeon code number is 

reported; Release sites, located at East, South and North, respectively, with respect to the home loft.   

 

Individual behaviour  

From the analysis of the scores at individual level (taking as reference the eighth 

training track) (Fig. 1) emerged that for five pigeons the sum of the scores was greater than 24 

and therefore we can assume that these pigeons consistently displayed a tendency to rely on a 

site specific compass strategy. For three pigeons the sum of the score was smaller than 12, we 

can therefore assume that they preferentially relied on a piloting strategy. All the other birds 

(n=10, sum score ranging from 12-24) displayed a more plastic behaviour as their changed 

orientation strategy depending on the release site (see Fig. 2 for examples). 

 

 

Fig. 1. Individuals total score in the analysis of the deviations with respect to the eighth training release. 

Explanation as in Fig. 1. 
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Distances between the eighth training track and the track of the test release. 

The analysis about the distances between the eighth training tracks and the tracks after 

the clock-shift treatment at increasing distances from the release sites (every 500m, Fig. 3), 

revealed that there is a statistically significant difference between the three release site (Two 

way repeated measures ANOVA, P<0.05). In particular, the distances between the pigeons‟ 

tracks were significantly greater at Arnaccio with respect to the other two sites (Turkey test  

P < 0.05, for both comparisons).  

The graphical representation of the mean distances between the pre and post clock-

shift tracks, for the three different release sites, highlight three different trends. The birds 

released from Livorno have shown the tendency to follow the route followed during the last 

training flight after four-five kilometres from the release sites, while the birds released from 

La Sterpaia recapitulated their last training track soon after release. A different behaviour 

emerged at Arnaccio. When released at this site the birds soon diverged from the tracks 

recorded during the eighth training release, reorienting only further than 9 km from the release 

site. 
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Fig. 3. Distances between the eighth training release tracks and the tracks of the test release at different distances 

for the three release sites (Two way RM ANOVA p<0.05). Standard error is represented.       

 

Through the use of Google Earth (Google Inc, US), it is possible to visualize the 

single tracks of the pigeons and to observe the topography or the area at which the re-

orientation occurred (Fig. 4). When released from Livorno the birds re-oriented when arriving 

near the sea (4-5 km distance from the release site). In fact, 8 out of 18 pigeons oriented 

westwards towards the coast soon after release and then following the coast line towards 

North, headed home. Six pigeons recapitulated their training track soon after release, while 

the other four pigeons (#067, #812, #955, #c723) displayed a tortuous flight path with an 

orientation highly variable, especially in the first part of the flight. For example the pigeons 

#067 and #c723 were first oriented, with a very tortuous flight path, towards South following 

the coastline up to 10 km from the release site. Then, heading in the opposite direction and 

always following the coastline, returned to home. A very curious route is that followed by the 

bird #812, which headed home soon after release. However, once at about 1.5 km from 

Arnino, instead of reaching the loft, flew towards La Sterpaia and Arnaccio before homing 

back. The bird #955 has flown for 6 Km over the sea to reach a rock-cliff at the Meloria 

Shoals and then deflected back towards the coast orienting therefore towards home (Fig.4).  

At La Sterpaia, the analysis of the distances between the tracks before and after clock-

shift, revealed that thirteen birds tended to re-orient toward home soon after the release, 

retracing the same route followed during the eighth training flight. These birds seem to be 

affected in their flight path by the presence of a paved road that runs along a wooded area and 

by the presence of agricultural areas. In this case a strong chromatic contrast appears to lead 
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the pigeons back home. Differently from these birds, five pigeons showed a tendency to 

deviate toward east of about 90 degrees (with respect to the home direction), before heading 

back home with a circular detour.  

When released from Arnaccio, only 1 out of 18 pigeon (#548) effectively retraced the 

last training route. The other birds progressively drifted away from the route followed during 

the eighth training release. 

 

 

 

Fig. 4. Pigeon‟s tracks relative to the test release from Livorno. The code of the track is reported on each figure.  
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DISCUSSION 

This work aimed at investigating which factors might facilitate familiar landmarks-

based re-orientation in homing pigeons after clock-shift. The analysis of the deviation from 

both the home direction and the eighth training release, revealed that the birds re-oriented at 

different distances from the release point depending on which site they had been released. 

These results are consistent with previous findings, which reported that the extent of the 

deviation at familiar location is site-dependent (Gagliardo et al., 2005a). In particular, the 

distance at which the re-orientation occurred was significantly greater at Arnaccio in 

comparison with the two other familiar release sites. Therefore from Arnaccio the birds 

seemed to have more difficulties in using a landmarks-based re-orientation strategy, and relied 

preferentially on a site specific compass strategy. 

The analysis of the total scores at individual level highlighted a strong individual 

variability. All the pigeons are able to recognise the release site, but not everyone is able to 

learn and use the spatial relationships between landmarks to orient toward home. Three birds 

seemed to be able to re-orient from all the three release sites soon after release, and therefore 

showed to be able to use the spatial relationships among landmarks, learned during their 

previous homing training flights. Five birds showed poor landmark-based re-orientation 

abilities and showed a stereotyped behaviour relying on a site-specific compass orientation 

strategy. All the other pigeons exhibited a plastic behaviour, as they changed their orientation 

strategy depending on the release site.  

In our experiment Arnaccio turned out to be the place where the use of a piloting 

strategy seemed to be less probable. We can explain this variability with the fact that these 

pigeons might be unable to re-orient on the basis of the topographical features leading the 

birds home where this task is more difficult. Looking at the topographic features of the three 

release sites, an important difference is the distance from the sea. In fact, both Livorno and La 

Sterpaia are quite near the sea (4.2 km and 4.5 km respectively), while at Arnaccio there is not 

a close view of the sea (the distance is about 14 km). The birds released from Livorno, which 

according to the phase shift treatment were expected to orient westward, re-oriented exactly 

when arriving in correspondence at the coast. In this case the coastline seemed to represent a 

sort of topographical barrier informing the birds about their erroneous direction. Interestingly, 

these results are the same obtained during an experiment conducted by training intact and HF-

lesioned pigeons subjected to a phase-shift treatment (Gagliardo et al., 2009). During this 

experiment, the phase-shifted control birds released from Livorno recognised the sea as a 
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salient landscape boundary: the majority of the control birds that reached the coast 

subsequently re-oriented northwards towards home. Therefore, the flight path of the pigeons 

seemed to be influenced by landscape features such as variations in the distribution of colours 

associated with landscape boundaries. On the contrary the HF-lesioned pigeons were 

diminished in their capacity to use such landscape features for navigation, in fact spent a 

considerable amount of time flying over the sea. These birds behaved as the birds which in 

our experiment do not seem able to rely on topographical features to re-orient after clock-

shift, but displayed an individual and consistent preference for a site-specific compass 

strategy. 

Interestingly, at La Sterpaia the birds displayed the best landmark-based re-orientation 

performances, although the expected direction after clock-shift was East, that is in the 

opposite direction with respect to the sea. This means that at La Sterpaia, a site where the 

coastline does not represent a topographical barrier because the clock-shifted birds do not tend 

to fly towards it, there are some features that favour an immediate re-orientation and a loyalty 

in retracing the route followed during the eighth training release. By looking at the tracks 

followed by the birds we can advance two hypotheses to explain this behaviour. The birds‟ 

flight paths at this site might be influenced by the presence of square-shaped dark green 

wooded areas interspersed with cultivated yellow fields. This hypothesis is supported by the 

tendency of some pigeons to fly along the boundaries between the two visually distinctive 

kinds of patches. The second hypothesis is that that the pigeons are influenced by the close 

view of the sea that becomes visible for a bird flying at an altitude of about 10 m. 

It is worth noting that at Livorno the sea is as close as at La Sterpaia, but the behaviour 

of the pigeons is not identical. From the diagram (Fig.3) reporting the median deviation at the 

three release site, a tendency of the birds to rely on a site specific compass orientation for the 

first 4-5 km from the release point at Livorno, while at La Sterpaia the birds re-oriented soon 

after release. A possible explanation for this different behaviour might be due to the brain 

hemisphere engaged in processing spatially relevant visual features during the training flight. 

When released from La Sterpaia, the birds oriented southward during their homing flight and 

therefore the sea was seen with the right eye. As the fibres of the avian optic nerve cross over 

completely, the visual input through the right eye is mainly processed by the left brain 

hemisphere (Güntürkün, 1997). Therefore, it might be possible that the critical visual cues 

(such as the sea) might contribute more efficiently in re-orientation from a certain release site, 

when learned and processed by the left hemisphere. Previous studied have shown the critical 

involvement of the hippocampal formation in landmarks based orientation after clock-shift 
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(Gagliardo et al., 1999; 1996). However homing experiments performed on pigeons subjected 

to unilateral lesions of the hippocampal formation did not highlight any functional asymmetry 

in relation to the spatial use of topographical features (Gagliardo et al., 2002), as unilateral 

lesions turned out to impair the use of a pilotage strategy. Nevertheless, electrophysiological 

studies performed in freely moving pigeons in mazes have discovered peculiar proprieties of 

some neurons of the left hippocampus. In fact, while in both sides of the hippocampal 

formations there are cells sensitive to relevant and specific locations in the maze (the so called 

“location cells”), neurons that increase their firing activity when the bird is moving between 

two relevant locations inside the maze have been found only in the left hippocampus (the so 

called “path cells”). It has been proposed that the path cells may be more sensitive to the 

spatial relationship of the local visual cues with the overall spatial properties of a test 

environment. 

As regarding the poorer ability of the pigeons to re-orient at Arnaccio, it might be due 

to the absence of large chromatic contrasts, as this site is a largely cultivated area, lacking of 

wooded patches. However, it is interestingly to note that during the training flights the 

pigeons seemed to be affected in their flight path by the presence of small linear landmarks as 

Arnaccio River, roads and short corridors delimited by aligned trees (see the birds #588 in 

Fig. 3). Anyway, these linear features did not seem to be sufficient to determine re-orientation 

in clock-shifted pigeons. In fact, all the pigeons except one, when released at Arnaccio, 

progressively drifted away from the route followed during the eighth training release. 

However, it should be noted that in previous studies it has been shown that pigeons tend to 

follow linear landmarks even when flying over non familiar areas. Therefore this tendency 

does not necessarily imply a use of linear landmarks in an allocentric spatial frame.  

By concluding, these results seem to support the hypothesis that the sea might 

represents an important and critical topographical feature, probably due to its strong 

chromatic component, enhancing the ability of the birds to re-orient after a phase shift 

treatment. However, further and ad-hoc analysis are still required in order to better understand 

the role of familiar landmarks in re-orientation.   
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The novel approach of this research project consisted in the investigation of old open 

questions by means of the use of the satellite technology. While the classical methods of 

investigation consisted in recording the initial orientation of birds at the release site and their 

homing time and success, the use of GPS loggers enabled the collection of detailed 

information on the behaviour of the pigeon during the entire homing journey. The analysis of 

the whole homing flight of birds subjected to experimental manipulations has highlighted 

behaviours and phenomena otherwise undetectable with traditional experiments.  

As regarding the analysis of the homing flight path of experienced pigeons receiving a 

unilateral olfactory input, the use of GPS-technique has allowed to highlight some of the 

effects of the right nostril occlusion, which remained undetected when observing only the 

initial orientation of the birds at vanishing. In fact, while no functional asymmetry emerged in 

the analysis of the virtual vanishing bearings, the analysis of the whole tracks revealed that 

the occlusion of the right nostril affected the behaviour of the birds “en route”. Therefore a 

functional asymmetry in favour of the right nostril emerged in birds performing an olfactory 

based navigational task.  

By analyzing the influence of the geomagnetic field on pigeons‟ orientation, the use of 

GPS-loggers has allowed the comparisons of flight paths of intact controls and trigeminal 

sectioned pigeons studied in relation to both the geomagnetic isolines pattern and the 

topography of the overflown areas. The analysis of the tracks highlighted that topographical 

features seem to primarily affect the birds „routes, rather than the geomagnetic pattern, as also 

birds deprived of trigeminally mediated geomagnetic information, turned out to display an 

orientation similar to that of controls over the same terrain. In fact, the analysis revealed that 

the flight paths of these birds were actually shaped by the local topography in many track 

sections in which their orientation was also parallel or perpendicular to the magnetic slope. 

Therefore, it is actually more likely that the direction of the homing tracks is shaped by local 

topographic features, with occasional alignment of the tracks parallel or perpendicular to the 

magnetic slope being produced by chance. 

A further progress in the analysis of the birds navigational capabilities from unfamiliar 

places has been possible thanks to a newly developed GPS data loggers, that allows for a 

remote readout of the stored data, enabling therefore the acquisition of data of birds that do 

not home. With this specific technology we achieved a major advance in the understanding of 

the role of olfactory stimuli in pigeon navigation as we could test the performances of birds 

made anosmic by nasal anaesthesia. By using this kind of GPS we could test the olfactory 

activation hypothesis that predicts that olfactory stimuli prime the navigational capabilities of 
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birds, and that the environmental odours are solely needed to activate a navigational system 

that, in turn, is based on non-olfactory cues. This hypothesis challenges the olfactory 

navigation hypothesis, which predicts that environmental odours constitute a specific 

component of the navigational map in homing pigeons. Therefore, we tested experimentally 

whether the perception of non-sense artificial odours is sufficient to allow unimpaired 

navigational performances in pigeons. The analysis of the GPS tracks showed that only the 

birds exposed to environmental odour information displayed unimpaired navigational 

abilities, therefore rejecting the olfactory activation hypothesis and providing a further 

support to the olfactory navigation hypothesis. The use of GPS technology represented 

therefore a major advance in studying the navigational abilities of birds made anosmic by 

nasal anaesthesia, as we could observe their behaviour well beyond the vanishing bearings. In 

fact the observation of this parameter alone would not have highlighted the actual impairment 

of the birds prevented from smelling environmental odours. 

As regards the investigation on the role of landmarks described in the chapter 2.4, the 

registration of the routes followed by the pigeons has made it possible to further investigate 

some aspect of pigeon‟s orientation from familiar location, already described with the 

vanishing bearing distribution‟s analysis. The analysis of the trend of the GPS tracks of each 

single pigeons in relationship to the characteristic features of the overflown areas, allow us to 

investigate which factors might facilitate familiar landmarks-based re-orientation in homing 

pigeons after clock-shift treatment. In fact the analysis of the tracks suggested that the sea 

might represent an important topographical feature, probably due to its strong chromatic 

component, that facilitates the ability of the birds to re-orient after a phase shift treatment. 

Moreover, the analysis revealed that the birds released from North, orients towards home also 

if the coastline does not represent a topographical barrier. In this case, other familiar release 

site features, as variations in the distribution of colours associated with landscape boundaries, 

facilitate an immediate re-orientation and a bird‟s loyalty to retrace the route followed during 

the training release.  
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