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“The important thing is not to stop questioning. Curiosity has its own reason for existing.  
One cannot help but be in awe when he/she contemplates the mysteries of 

eternity, of life, of the marvelous structure of reality.  
It is enough if one tries merely to comprehend a little of this mystery every day.  

Never lose a holy curiosity.” 
 

 
Albert Einstein 
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ABSTRACT 

 

Background. The initial presentation of thyroid carcinoma is through a nodule and the best 

way nowadays to evaluate it is by fine-needle aspiration (FNA). However many thyroid FNAs 

are not definitively benign or malignant, yielding an indeterminate or suspicious diagnosis 

which ranges from 10 to 25% of FNAs. The development of molecular initial diagnostic tests 

for evaluating a thyroid nodule is needed in order to define optimal surgical approach for 

patients with uncertain diagnosis pre- and intra-operatively.  

A large amount of information has been collected on the molecular tumorigenesis of thyroid 

cancer. A low expression of KIT gene has been reported during the transformation of normal 

thyroid epithelium to papillary carcinoma suggesting a possible role of the gene in the 

differentiation of thyroid tissue rather than in the proliferation. Moreover, several gene 

expression studies have shown differential gene expression signatures between malignant 

and benign thyroid tumors. 

The aim of the current study was to determine the diagnostic utility of a molecular assay 

based on the gene expression of a panel of molecular markers (KIT, SYNGR2, C21orf4, 

Hs.296031, DDI2, CDH1, LSM7, TC1, NATH) plus BRAF mutational status to distinguish benign 

from malignant thyroid neoplasm. 

Methods. The mRNA expression level of 9 genes (KIT, SYNGR2, C21orf4, Hs.296031, DDI2, 

CDH1, LSM7, TC1, NATH) was analyzed by quantitative Real-Time PCR (qPCR) in 93 FNA 

cytological samples. To evaluate the diagnostic utility of all the genes analyzed, we assessed 

the area under the curve (AUC) for each gene individually and in combination. BRAF exon 15 

status was determined by capillary sequencing. A gene expression computational model 

(Neural Network Bayesian Classifier) was built and a multiple-variable analysis was then 

performed to analyze the correlation between the markers.  

Results. While looking at KIT expression, we have found a highly preferential decrease rather 

than increase in transcript of KIT in malignant thyroid lesions compared to the benign ones. 

To explore the diagnostic utility of KIT expression in thyroid nodules, its expression values 

were divided in four arbitrarily defined classes, with class I characterized by the complete 
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silencing of the gene. Class I and IV represented the two most informative groups, with 100% 

of the samples found malignant or benign respectively. The molecular analysis was proven by 

ROC (receiver operating characteristic) analysis to be highly specific and sensitive improving 

the cytological diagnostic accuracy of 15%. 

The AUC for each significant marker was further assessed and ranged between 0.625 and 

0.900, thus all the significant markers, alone and in combination, can be used to distinguish 

between malignant and benign FNA samples. The classifier made up of KIT, CDH1, LSM7, 

C21orf4, DDI2, TC1, Hs.296031 and BRAF had a predictive power of 88.8%. It proved to be 

useful for risk stratification of the most critical cytological group of the indeterminate lesions 

for which there is the greatest need for accurate diagnostic markers. 

Conclusion. The genetic classification obtained with such a model is highly accurate and may 

provide a tool to overcome the difficulties in today’s pre-operative diagnosis of thyroid 

malignancies 

 
Keywords: thyroid cancer, Fine-needle aspiration (FNA), computational model, Receiver 

Operating Characteristic (ROC) analysis, Area Under the Curve (AUC), pre-operative diagnosis.  
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1. INTRODUCTION 

 

Thyroid cancer is the most common malignancy of endocrine organs. The vast majority of 

thyroid tumors arise from thyroid follicular epithelial cells, whereas 3-5% of cancers originate 

from parafollicular or C cells. The follicular cell-derived cancers are further subdivided into 

well-differentiated papillary carcinoma and follicular carcinoma, poorly differentiated 

carcinoma (also known as insular carcinoma) and anaplastic (undifferentiated) carcinoma (1, 

2). Follicular adenoma is a benign tumor that may serve as a precursor for some follicular 

carcinoma. Less-differentiated thyroid cancers, namely poorly differentiated carcinoma and 

anaplastic carcinoma, can develop de novo, although many of them arise through the process 

of step-wise dedifferentiation of papillary and follicular carcinoma (Fig. 1) (3). 

 

 

Figure 1. Scheme of step-wise dedifferentiation of follicular cell-derived thyroid cancer. From 
Expert Reviews of Molecular Diagnostics 8 (1), 83-89 (2008). 

 

The worldwide incidence of thyroid cancer has been steadily increasing and has almost tripled 

over the past 30 years in the US and in the industrialized countries (4-7). 

According to European Cancer Observatory data, age-standardized incidence rate was 3.1 

cases and 8.8 cases per 100 000 in men and women, respectively in Europe in 2008 and such 



 

 

11 

 

incidence rates have steadily increased over the recent decades (8, 9). More than 30 000 

cases are newly-diagnosed in the US population in the year 2004 (10).  

Most of the increase in thyroid cancer incidence has been attributed to the diagnosis of small 

(<2 cm), papillary thyroid cancer with no significant change in the less common variants of 

thyroid cancer (follicular, medullary and anaplastic) (7).  

The increase in thyroid cancer incidence is generally believed to result, to a considerable 

extent, from increased access to high-resolution imaging (particularly ultrasonography) and 

increased use of fine-needle aspiration (FNA) biopsy of small nodules, as well as progressively 

decreasing stringency of histopathologic criteria applied to the diagnosis of papillary cancer 

during the past 10-15 years. However, whether these factors can account entirely for this 

continuous trend, or whether other factors also contribute, remains unknown. Ionizing 

radiation is a well-known risk factor for thyroid cancer; therefore, concerns remain that the 

rising incidence might, in part, be due to the wider use of medical radiation and increased 

exposure to radiation as a result of nuclear power incidence such as that in Chernobyl. 

Also, the number of patients who have no diagnostic and indeterminate fine needle 

aspiration biopsy of a thyroid nodule is likely to encompass an even greater number of 

patients because of the increasing incidence of thyroid nodules that are detected incidentally 

(11). Although the overall prognosis of most patients with thyroid cancer of follicular cell 

origin (except for anaplastic thyroid cancer) is excellent, the optimal treatment strategy is 

controversial (the extent of thyroidectomy, need for prophylactic versus therapeutic lymph 

node dissection, and routine use and appropriate dose of radioiodine ablation). 

Thyroid cancers typically occur in thyroid nodules, which are common and can be 

detected by palpation and imaging in a large proportions of adults, particularly those of 

increased age (12-14). Most thyroid nodules are benign, and the clinical challenge is to 

accurately and rapidly identify those nodules that harbor cancer. Sampling of thyroid nodules 

using FNA biopsy with subsequent cytological examination of collected cells is the most 

accurate and widely used diagnostic tool at this time. It provides a definitive diagnosis of 

malignant or benign nodules in most cases. However, a conclusive diagnosis cannot be 

obtained by use of FNA cytology for about 25% of all nodules (13, 15-18), which hampers the 

clinical management of patients with these nodules. New diagnostic approaches for such 

nodules are needed. 
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The knowledge of genetic alterations occurring in thyroid cancer has rapidly expanded in 

the past decade. This improved knowledge has provided new insights into thyroid cancer 

etiology and has offered novel diagnostic tools and prognostic markers that enabled 

improved and personalized management of patients with thyroid nodules. 

 

1.1 Common alterations in thyroid cancer  

Similar to other cancer types, thyroid cancer initiation and progression occur through 

gradual accumulation of various genetic and epigenetic alterations, including activating and 

inactivating somatic mutations, alterations in gene expression patterns, microRNA (miRNA) 

deregulation and aberrant gene methylation. Among these alterations, most of the data that 

have accumulated relate to somatic mutations, many of which occur early in the 

transformation process and are essential for cancer development. Point mutation and 

chromosomal rearrangements are very frequent in thyroid cancer progression. The former is 

a result of single nucleotide change within the DNA chain, whereas the latter represents a 

large-scale genetic abnormality with breakage and fusion of parts of the same or different 

chromosomes. Importantly, a growing body of evidence suggests that these two distinct 

mutational mechanisms are associated with specific etiologic factors involved in thyroid 

carcinogenesis. 

 

1.2 Somatic mutations 

Most mutations in thyroid cancer involve the effectors of the MAPK pathway and the 

PI3K-AKT pathway (Fig. 2). MAPK activation is crucial for tumor initiation. The mutated genes 

that affect these pathways encode cell-membrane receptor tyrosine kinases RET and NTRK1 

and intracellular transducers BRAF and RAS.  
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Figure 2. The main signaling pathways involved in thyroid carcinogenesis are the MAPK and 
PI3K-AKT pathways (Nikiforov, Y.E. & Nikiforova, M. N., Nature Reviews, 2011) 

 
These typically mutually exclusive mutations occur approximately 70% of patients with 

papillary thyroid carcinomas and are associated with particular clinical, histopathological and 

biological tumor characteristics (Fig. 3) (19-22). 

 

 

Figure 3. Molecular alterations in papillary thyroid cancer and their average prevalence and 
association with clinical and histopathological features of tumors. From Expert Reviews of 
Molecular Diagnostics 8 (1), 83-89 (2008) 
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In follicular thyroid cancer, in addition to mutation of RAS, another common event is 

PAX8/PPARγ rearrangement. Thyroid cancer progression and dedifferentiation involves a 

number of additional mutations that affect the PI3K-AKT pathway and other cell signaling 

pathways. 

 

1.2.1 BRAF 

BRAF is a serine-threonine kinase that belongs to the family of RAF proteins, which are 

intracellular effectors of the MAPK signaling cascade. Upon activation triggered by RAS 

binding and protein recruitment to the cell membrane, these kinases phosphorylate and 

activate MEK, which in turn activates ERK and consequent effectors of the MAPK cascade. 

Point mutations of the BRAF gene are found in about 45% of thyroid papillary carcinomas (20, 

23). Virtually all point mutations involve nucleotide 1799 (generally T>A, Fig. 4) and result in a 

valine-to-glutamate substitution at residue 600 (V600E) (24, 25).  

 

 

Figure 4. BRAF 1799T>A point mutation. 
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BRAF V600E mutation leads to constitutive activation of BRAF kinase and the mechanisms 

of activation have been recently elucidated. In the dephosphorylated, wild type BRAF protein 

the hydrophobic interactions between the activation loop and the ATP binding site maintains 

the protein in an inactive conformation. The V600E substitution disrupts these interactions 

and allows the formation of new interactions that keep the protein in a catalytically 

competent conformation, resulting in continuous phosphorylation of MEK.  

BRAF mutations are highly prevalent in papillary carcinomas with classical histology and in the 

tall cell variant, but are rare in the follicular variant (19, 24). In many studies, the presence of 

BRAF mutation has been found to correlate with aggressive tumor characteristics such as 

extra thyroidal extension, advanced tumor stage at presentation, tumor recurrence, and 

lymph node or distant metastases (26-28). Importantly, BRAF V600E mutation has been found 

to be an independent predictor of tumor recurrence even in patients with stage I-II of the 

disease (29, 30). BRAF mutations have also been associated with the decreased ability of 

tumors to trap radioiodine and treatment failure of the recurrent disease, which may be due 

to the deregulation of function of the sodium iodide symporter (NIS) and other genes 

metabolizing iodide in thyroid follicular cells (29, 31). 

Other and rare mechanisms of BRAF activation in papillary thyroid cancer include K601E 

point mutation, small in-frame insertions or deletion surrounding codon 600 (32-34). In 

addition to papillary carcinomas, BRAF is found mutated in thyroid anaplastic and poorly 

differentiated carcinomas, typically in those tumors that also contain areas of well-

differentiated papillary carcinoma (27, 28, 35). In those tumors, BRAF mutation is detectable 

in both well-differentiated and poorly differentiated or anaplastic tumor areas, providing 

evidence that it occurs early in tumorigenesis. 

 

1.2.2 RET/PTC 

The RET proto-oncogene codes for a cell membrane receptor tyrosine kinase. In the 

thyroid gland, RET is highly expressed in parafollicular C-cells but not in follicular cells, where 

it can be activated by chromosomal rearrangement known as RET/PTC rearrangement (36, 

37). In RET/PTC, the 3’ portion of the RET gene is fused to the 5’ portion of various unrelated 
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genes. At least 11 types of RET/PTC have been reported to date, all formed by the RET fusion 

to different partners (38, 39). The two most common rearrangement types, RET/PTC1 and 

RET/PTC3 account for the vast majority of all rearrangements found in papillary carcinomas. 

Several studies suggest that the oncogenic effects of RET/PTC require signaling along the 

MAPK pathway and the presence of the functional BRAF kinase (40-42). Indeed, BRAF 

silencing in cultured thyroid cells reverses the RET/PTC-induced effects such as ERK 

phosphorylation, inhibition of thyroid specific gene expression, and increased cell 

proliferation (41, 42). RET/PTC is found on average in about 20% of adult sporadic papillary 

carcinomas, although its prevalence is highly variable between different observations (38, 39). 

In general RET/PTC incidence is higher in tumors from patients with a history of radiation 

exposure and in pediatric populations. The distribution of RET/PTC rearrangement within 

each tumor may vary from involving almost all neoplastic cells (clonal RET/PTC) to being 

detected only in a small fraction of tumor cells (non-clonal RET/PTC) (43, 44). The 

heterogeneity may be of potential problem for the RET receptor-targeted therapy, since 

tumors with non-clonal RET/PTC frequently have other genetic alterations and may not 

respond to RET inhibitors in the same way as tumors harboring the clonal rearrangement. 

 

1.2.3 RAS 

The RAS genes (HRAS, KRAS and NRAS) encode highly related G-proteins that are located 

at the inner surface of the cell membrane and play a central role in the intracellular 

transduction of signals arising from cell membrane receptors tyrosine kinase and G-protein-

coupled receptors. In its inactive state, RAS protein is bound to guanosine diphosphate (GDP). 

Upon activation, it releases GDP and binds guanosine triphospate (GTP), activating the MAPK 

and other signaling pathway, such as PI3K/AKT. Normally, the activated RAS-GTP protein 

becomes quickly inactive due to its intrinsic guanosine triphosphatase (GTPase) activity and 

the action of cytoplasmic GTPase-activating proteins, which catalyze the conversion of the 

active GTP form to the inactive GDP-bound form. In many human neoplasms, point mutations 

occur in the discrete domain of the RAS gene, which result in either an increased affinity for 

GTP (mutations in codons 12 and 13) or inactivation of the autocatalytic GTPase function 
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(mutations in codon 61). As a result, the mutant protein becomes permanently switched in 

the active position and constitutively activates its downstream signaling pathways. 

Point mutations of RAS occur with variable frequency in all types of papillary thyroid follicular 

cell-derived tumors. In papillary carcinomas, RAS mutations are relatively infrequent, as they 

occur in about 10% of tumors (45, 46). Papillary carcinomas with RAS mutations almost 

always have the follicular variant histology; this mutation also correlates with significantly less 

prominent nuclear features of papillary carcinoma, more frequent encapsulation, and low 

rate of lymph node metastases (19, 47). Some studies have reported the association between 

RAS mutations and more aggressive behavior of papillary carcinoma and with higher 

frequency of distant metastases (48). In follicular thyroid carcinomas, RAS mutations are 

found in 40-50% of tumors (49-51) and may also correlate with tumor dedifferentiation and 

less favorable prognosis (52, 53). RAS mutations may predispose to tumor dedifferentiation, 

as they are found with high prevalence in anaplastic (undifferentiated) thyroid carcinomas. 

This may be due to the effect of mutant RAS to promote chromosomal instability, which has 

been documented in the in vitro settings. RAS mutations, however, are not specific for thyroid 

malignancy and also occur in benign follicular adenomas (54). 

 

1.2.4 PAX8/PPARγ 

PAX8/PPARγ rearrangement results from the translocation t(2;3)(q13;p25) that leads to 

the fusion between the PAX8 gene, which encodes a paired domain transcription factor, and 

the peroxisome proliferator-ativated receptor (PPARγ) gene (55). PAX8-PPARγ occurs in about 

35% of conventional follicular carcinomas, and with lower prevalence in oncocytic (Hurtle cell) 

carcinomas (56-58). Tumors harboring PAX8-PPARγ rearrangement tend to present at a 

younger age, be smaller in size, and more frequently have vascular invasion. The 

rearrangement causes the over expression of the PPARγ protein which can be detected by 

immunohistochemistry (55, 59). 

The mechanisms of cell transformation induced by PAX8-PPARγ are not fully understood. 

Some evidence has been presented for inhibition of normal PPARγ function via a dominant-

negative effect of the PAX8-PPARγ protein on wild type PPARγ (55, 60). Other studies have 
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found the activation of known PPARγ target genes in tumors harboring PAX8-PPARγ, arguing 

against the dominant-negative effect (61). Other possible mechanisms include deregulation of 

PAX8 function, known to be critical for thyroid cell differentiation, and activation of a set of 

genes related to neither wild type PPARγ nor wild type PAX8 pathways (61, 62).  

PAX8-PPARγ rearrangements and RAS point mutations rarely overlap in the same tumor, 

suggesting that follicular carcinomas may develop via at least two distinct molecular 

pathways, initiated by either PAX8-PPARγ or RAS mutation (57). 

 

1.3 Other molecular events  

Distinct alterations in gene expression have been observed in papillary carcinomas and 

other types of thyroid cancers (22, 63-66). These alterations include down regulation of genes 

responsible for specialized thyroid function (such as thyroid hormone synthesis), up 

regulation of many genes involved in cell adhesion, motility and cell-cell interaction, and 

different patterns of deregulation of the expression of genes that encode cytokines and other 

proteins involved in inflammation and immune response.  

Among papillary carcinomas, different mRNA expression profiles have been observed in the 

classic papillary, follicular and tall-cell variants (64-68). Moreover significant correlations have 

been observed between BRAF, RAS, RET/PTC and TRK (tyrosine receptor kinases) mutations 

and specific patterns of gene expression. This information has shed light on the molecular 

basis for the distinct phenotypic and biological features associated with each mutation type 

(22, 63). Acquisition of more invasive tumor characteristics and dedifferentiation of BRAF-

mutated cancers seems to coincide with profound deregulation of the expression of genes 

that encode proteins involved in cell adhesion and the inter-cellular junction, which provides 

evidence for induction of an epithelial-mesenchimal transition along with increased cell 

motility and invasiveness (69, 70). 

Moreover, several miRNAs have been found to be deregulated in thyroid cancer (71-74). 

Generally miRNA expression profiles of papillary carcinoma are different from those of 

follicular carcinoma and other thyroid tumors (75). Several specific miRNAs, such as miR-
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146b, miR-221 and miR-222, are highly up regulated in papillary carcinomas and many have a 

pathogenic role in the development of these tumors (72, 74, 75).  

Alterations in gene expression owing to aberrant methylation of gene promoter regions or 

histone modification also occur in thyroid cancer. These epigenetic events can alter the 

function of tumor suppressor genes and thus contribute to activation of important signaling 

pathways, such as PI3K-AKT and MAPK cascade. Changes in epigenetic regulation might also 

result in down regulation of thyroid specific genes during tumor progression and 

dedifferentiation (76-78). Hypermethylation of the metalloproteinase inhibitor gene TIMP3 

and other tumor suppressor genes is frequently observed in thyroid cancers with the BRAF 

V600E substitution, which may contribute to the aggressive biological behavior of tumors 

carrying this mutation (79). 

 

1.4 Clinical management of thyroid nodules 

The current standard of care in the management of a patient with a thyroid nodule is FNA 

biopsy with subsequent cytological determination of the suspicion for malignancy. Although 

FNA biopsy of thyroid nodule is very sensitive in the detection of malignancy, it is 

indeterminate or suspicious in 20-30% of cases (80, 81). Because clinicians often cannot 

determine malignancy, either pre- or intra-operatively, patients with suspicious thyroid 

lesions cannot be optimally managed (82). This often results in two scenarios:  

- Patients who ultimately have a benign lesion on final histopathology may be subjected to 

unnecessary surgery;  

- Patients with a malignant thyroid nodule may need to undergo a second operation for 

completion thyroidectomy only after a diagnosis of cancer is rendered on permanent 

histological section. 

Therefore it is compelling to find further sources of information in order to define optimal 

surgical approach for patients with uncertain diagnoses pre- and intra-operatively. 
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1.4.1 Limitations of fine-needle aspiration cytology to distinguish benign from 

malignant thyroid neoplasm 

Since its introduction over three decades ago, FNA cytology has reduced the number of 

diagnostic thyroidectomies being performed for benign thyroid nodules and increased the 

number of patients receiving complete initial surgical treatment for malignant thyroid 

neoplasms (83). There are four general categories of FNA cytological findings: benign (70%) 

(Fig. 2), malignant (≤10%), indeterminate or suspicious (10-20%), and non diagnostic (≤10%) 

(84). 

Indeterminate results and non diagnostic yields are the main limitation of FNA cytology. 

Indeterminate FNA results occur because of the overlapping cytological features that are 

present in both benign and malignant thyroid nodules of follicular cell origin. Suspicious FNA 

results commonly occur because of focal nuclear atypia and insufficient sampling of enough 

follicular epithelium. In cases of follicular nuclear atypia, infrequent or sparse areas of nuclear 

enlargement, nuclear grooves, or intra nuclear inclusions are observed which are suggestive 

but not conclusive for papillary thyroid cancer. Although the diagnostic accuracy of FNA 

cytologies interpreted as benign or malignant is high, even in expert hands, interpretation of 

results can be inaccurate in up to 10% of cases (85, 86). Because clinicians have become 

reliant on FNA cytology, false negative FNA cytology results may delay treatment and 

adversely affect patient outcome (86). Moreover, several investigators have found significant 

discordance rates on secondary review of thyroid FNA cytology that affect the management 

of patients with thyroid neoplasm (85). Since FNA cytology cannot discriminate between 

malignant and benign thyroid nodules in up to 30% of cases, and because false negative and 

discordant FNA cytology result do occur, additional diagnostic tests that would improve the 

pre-operative accuracy of distinguishing benign from malignant thyroid neoplasm are 

necessary to improve patient outcome and reduce the cost of providing optimal care for 

patients with thyroid nodules. 
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1.4.2 Clinical utility of molecular markers 

Molecular markers hold great promise in improving the diagnosis of cancer in patients 

with thyroid nodules. Such improvement would particularly benefit patients with nodules that 

are classified as indeterminate for malignancy by FNA cytology. The inability to rule out 

cancer in these nodule leads to diagnostic lobectomy for most of these patients, although 60-

90% of the surgically removed thyroid nodules are found to be benign (87, 88). Those patients 

that are found to have cancer in their nodules after initial surgery are also treated sub 

optimally, as they have to undergo a second surgery to complete the thyroidectomy. Both the 

unnecessary surgeries and the two-step surgical management can be avoided with more 

accurate pre-operative diagnosis of cancer in thyroid nodules. 

Diagnostic use of mutational markers for the analysis of thyroid FNA samples has been 

explored for single genes and for a panel of mutations. Among single genes, the majority of 

studies have focused on BRAF mutations. However, despite high specificity for cancer, testing 

for BRAF mutation alone misses many thyroid cancers that are negative for this mutation. The 

performance of molecular testing can be improved by including other frequently occurring 

mutations in the analysis. Use of a panel of mutations including BRAF and RAS point 

mutations and RET/PTC and PAX8/PPARγ rearrangements, with the possible addition of the 

TRK rearrangement, for analysis of thyroid FNA samples has been explored (89-92). Studies 

that evaluated the use of this panel in a setting of the clinical diagnostic laboratory 

demonstrated that finding any mutation was a strong predictor of malignancy in thyroid 

nodules irrespective of the cytological diagnosis (89-91). On the basis of the high probability 

of cancer in nodules positive for mutations, these patients with the possible exception of 

patients with RAS-positive nodules can be treated by total thyroidectomy as the initial surgical 

approach (Fig. 5).  
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Figure 5. Potential clinical management of patients with thyroid nodules on the basis of a 
combination of cytological examination and molecular analysis. (Nikiforov, Y.E. & Nikiforova, 
M. N., Nature Reviews, 2011) 

 

Thus molecular testing can be particularly helpful for nodules with indeterminate cytology. 

Nodules positive for mutations indicate a high risk of cancer; therefore, patients with these 

nodules can be treated by total thyroidectomy. Patients with nodules that yield an 

indeterminate diagnosis on cytology but are negative for mutations might require a repeated 

FNA and diagnostic lobectomy, although consideration of following up some of these patients 

annually may be given, particularly for patients with the cytological diagnosis of atypia of 

undetermined significance/follicular lesion of undetermined significance. Molecular testing of 

nodules found to be negative for malignancy by cytology decreases the rate of false-negative 

cytological results, but its cost-effectiveness has not been assessed. Molecular testing of 

samples classified as malignant by cytology can identify BRAF-positive tumors, which may 

require more extensive surgery that BRAF-negative tumors, although specific 

recommendations for surgical management of thyroid cancer based on the mutational status 

have not been developed yet.   

In addition to gene mutations, gene expression profiling has also been explored for the 

diagnostic assessment of thyroid malignancy. 
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1.5 Gene expression profiling to distinguish benign from malignant thyroid neoplasm 

The recent advances in molecular biology techniques have allowed the use of high 

throughput approaches for biomarker discovery (93). One such approach that has been used 

in thyroid cancer research by several groups is microarray analysis because it allows for the 

correlation of genes expression profile with clinical variables, the classification or definition of 

different tumor types, and the identification of genes or network of genes involved in 

carcinogenesis. Microarray studies in thyroid cancer have identified anywhere from 47 to 627 

genes that are differentially expressed between benign and malignant thyroid neoplasms 

depending on the selection criteria and methods of data analysis (66, 94-96). Although some 

of the reported differentially expressed genes have an established role in thyroid 

tumorigenesis, the study design and data analysis of the microarray data have been different 

and thus have not resulted in a consistent group of candidate diagnostic gene markers. A few 

studies have validated the results of the microarray analysis by qPCR or 

immunohistochemistry (94, 97). This limitation is important given that some investigators 

have suggested that microarray analysis may incorrectly identify 30% of genes and gene 

expression levels (98). Another obstacle to the application of microarray analysis to 

distinguish benign from malignant thyroid neoplasms is the technical feasibility of using 

microarray analysis in FNA samples because of the limited amount of total RNA that can be 

extracted from FNA biopsy samples. Lubitz and associates (99) in 22 ex-vivo thyroid nodule 

FNA biopsy samples were able to demonstrate that microarray analysis is feasible by using a 

second complementary cDNA synthesis step and amplification method. They found that FNA 

biopsy samples clustered with the same tissue samples when using 25 differentially expressed 

genes identified from a training set. 

Although gene expression profiling studies have identified many possible biomarkers with 

high accuracy, the clinical application of this approach to FNA samples is unclear and remains 

limited to the use of post-surgery samples. 

Moreover, the expression of biomarkers, identified by microarray studies, needs to be 

validated by quantitative PCR (qPCR). 

Here we selected several genes (KIT, SYNGR2, C21orf4, Hs.296031, DDI2, CDH1, LSM7, TC1, 

NATH), whose expression is known from literature (66, 100-109) to be deregulated in thyroid 
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malignancy, in order to build a qPCR computational model able to pre-operatively 

differentiate benign from malignant thyroid lesions. 

The proto-oncogene KIT is a type III receptor tyrosine-kinase, cellular homologue of the 

viral oncogene of the feline sarcoma retrovirus HZ4-FeSV. It plays various roles in 

haematopoiesis, melanogenesis and spermatogenesis, and in the development of the 

interstitial cells of Cajal. Its ligand is the stem cell factor (SCF) (110, 111). The role of KIT in 

human neoplasia is not fully cleared yet. A number of tumor types are associated with 

activation of KIT through its over expression or through activating mutations (110, 112, 113), 

while in highly metastatic melanomas, breast cancer and thyroid carcinoma the progression 

into a malignant phenotype correlates mostly with loss of KIT expression (114, 115). Among 

the few papers studying KIT status in thyroid cancer, Natali et al. in 1995 (116) reported the 

loss of the receptor during the transformation of normal thyroid epithelium to papillary 

carcinoma. Similarly, in 2004 Mazzanti et al. (66), by using microarray assay, were able to 

identify out of thousand of genes, KIT as one of the most significant down expressed gene in 

PTC compared to benign lesions. Other laboratories confirmed this result by using qPCR (68, 

117). Moreover, multiple miRNAs, predicted to target KIT, have been reported to be up 

regulated in PTC (72, 118). These findings indicate that KIT receptor may be involved in the 

growth control of thyroid epithelium and that this function may be lost in malignant 

transformation. 

Besides KIT, we selected other 8 genes to study (SYNGR2, C21orf4, Hs.296031, DDI2, 

CDH1, LSM7, TC1, NATH). Among them, SYNGR2, C21orf4, Hs.296031, CDH1 and LSM7 were 

selected by microarray assay to have high diagnostic accuracy for distinguish thyroid nodules 

(66). TC1 and NATH were included in this study since their role in thyroid carcinogenesis has 

been shown in literature (100-102, 109). 

SYNGR2 has been characterized as an integral vesicle membrane protein (114) and the 

only data available indicate its up regulation in fetal mouse ovaries (103). LSM7 has been 

described in the family of Sm-like proteins, involved in pre-messenger RNA splicing and 

decapping (104). The interaction of LSM7 with the TACC1 complex may participate in breast 

cancer oncogenesis (105). C21orf4 encodes a predicted transmembrane protein (Tmem50b) 

and is one of few genes significantly over-expressed during cerebellar development in a Down 

syndrome mouse model (106). The role of SYNGR2, LSM7 and C21orf4 in thyroid 

carcinogenesis has not yet been explored. E-Cadherin (CDH1) expression is reduced in thyroid 
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carcinomas (107) and its promoter resulted to be hypermethylated in thyroid neoplasm (108). 

Hs.24183 (now Hs.145049) has been identified as part of the 3’UTR of DDI2 (DNA-damage 

inducible 1 homolog 2) gene in H. sapiens, but no data exists about its role in thyroid. For 

Hs.296031 the only information available is about gene sequence and mapping, but no gene 

and protein function are known. In contrast, the expression of the thyroid cancer-1 (TC1) gene 

resulted to be related to malignant transformation in thyroid and the potential use of TC1 

gene expression as a marker of malignancy in thyroid nodules is also shown in literature (109). 

NATH (N-acetyl transferase human) is involved in protein acetylation that represents an 

important post-translational modification regulating oncogenesis, apoptosis and cell cycle. 

NATH resulted to be over-expressed at the mRNA level in papillary thyroid carcinomas relative 

to non neoplastic thyroid tissue (100). 

 

1.6 Bayesian Neural Networks: clinical utility 

Several attempts to use Bayesian Neural Networks in the clinical setting are described in 

literature (119-121), more specifically Liu and colleagues (121) have shown the clinical utility 

of a Bayesian network for differentiating benign from malignant thyroid nodules using 

sonographic and demographic features.  

The procedure uses a Probabilistic Neural Network (PNN) to classify cases into malignant 

and benign categories, based on the input variables by implementing a nonparametric 

method for classifying observations into one of the output groups based on the observed 

variables. Rather than making any assumption about the nature of the distribution of the 

variables within each group, it constructs a nonparametric estimate of each group’s density 

function at a desired location based on neighbouring observations from that group. 

Observations are assigned to groups based on the product of three factors: 

- The estimated density function in the neighbourhood of the point 

- The prior probabilities of belonging to each group 

- The costs of misclassifying cases that belong to a given group 

The approach to classifying cases can be formulated as a neural network. The basic setup of 

the network consists of four layers: 
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- An input layer 

- A pattern layer 

- A summation layer  

- An output layer, also having one binary neuron for each output class that turns on or off 

depending on whether or not a case is assigned to the corresponding group 

Conceptually, the input layer provides the information from the predictor variables by 

feeding their values (standardized by subtracting the mean and dividing by the standard 

deviation) to the neurons in the pattern layer. The pattern layer passes the values through an 

activation function, which uses the input values to estimate the probability density function 

for each group at a given location. The density estimates are then passed to the summation 

layer, which combines the information from the training cases with prior probabilities and 

misclassification costs to derive a score for each group. The scores are then used to turn on 

the binary neuron in the output layer corresponding to the group with the largest score and 

turn off all other output neurons. 
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2. AIM 

 

The aim of the current study was to find a molecular approach able to pre-operatively 

diagnose benign and malignant thyroid tumors. Towards this goal, we evaluated KIT 

expression as a pre-operative diagnostic biomarker. We also assessed the expression profile 

of the following genes: KIT, SYNGR2, C21orf4, Hs.296031, Hs.24183, CDH1, LSM7, TC1 and 

NATH in order to build a qPCR-based computational model able to improve the pre-operative 

diagnostic accuracy along with assessing BRAF mutational status. 

Moreover, because of the lack of useful pre-operative diagnostic biomarkers, we sought to 

determine whether the expression profile of these genes on FNA cytological smears, including 

old archived samples, could be performed on a routine basis so as it improve the diagnostic 

sensitivity for malignancy in thyroid nodules read as indeterminate or suspicious without 

adding time and discomfort for the patient of the FNA procedure. 

 

As in other diseases, molecular pathology is playing a relevant role in diagnosis of thyroid 

cancer. Very recent papers of our laboratory have proposed a new simple method, named 

manual macrodissection, to perform molecular analysis on cells obtained by FNAC, and have 

demonstrated the usefulness of the association cytology-molecular biology for papillary 

thyroid carcinoma and micro-papillary thyroid carcinoma diagnosis. In this study we evaluated 

KIT expression in a morpho-molecular diagnostic approach to a series of thyroid FNAC, 

together with the study of BRAF gene mutational status. We further assessed the diagnostic 

role of KIT expression in thyroid FNAC. 

 

In the last years a new class of techniques known as Bayesian Neural Networks (BNN) 

have been proposed as a supplement or alternative to standard statistical techniques. For the 

purpose of predicting medical outcomes, a BNN can be considered a computer intensive 

classification method and, in addition, BNNs do not require explicit distributional assumption 

(such as normality). 

Here we used 87 FNA cytological samples to build several pre-operative computational 

models and 6 unknown samples to be tested in order to find the most discriminative one and 

to evaluate the diagnostic utility in the pre-operative management of thyroid nodules. 
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We then aimed to assess a potential correlation of the markers in order to investigate 

their biological importance and to find a link that could give us a better understanding of the 

molecular mechanisms underlying thyroid cancer development. 
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3. MATERIALS AND METHODS 

 

3.1 Thyroid specimens 

Pre-operative thyroid FNA slides of 93 patients (49 malignant, 38 benign, 6 unknown) 

collected over 10 years (2000 to 2010) were selected from archived materials in the Section of 

Cytopathology, Division of Surgical, Molecular and Ultrastructural Pathology. All patients had 

a thyroidectomy with histopathological examination based on clinical elements or of a 

cytological diagnosis of malignancy, suspected malignancy, or if indeterminate. For ethical 

reasons, we used only cases with two or more slides per patient, and the molecular analysis 

was performed on only one of the available smears. In all cases, the FNA was performed using 

ultrasonographic guidance.  

 

3.2 Ethical Board 

This study was approved by the Internal Review Board (IRB) of the University of Pisa. All 

patients gave their consent for the participation to the study. 

 

3.3 FNA slides and DNA extraction 

The slides were obtained from FNA samples and fixed in ethyl alcohol for Papanicolau 

staining. Smears were reviewed by a senior cytopathologist. All archival FNA slides were kept 

in xylene for 1 to 3 days, depending on the time of storage, to detach the slide coverslips. 

They were then hydrated in a graded series of ethanol, followed by a wash in dH2O for 1 

minute. The slides were finally air-dried. The processing of the slides was performed in a 

range of few days to a maximum of 10 years after FNA procedure.  

DNA extraction was performed using a commercial kit (Nucleospin; Macherey-Nagel, 

Düren, Germany) mainly following manufacturer’s instruction. A modification was added to 

the first step: 50% of the lysis solution with no Proteinase K was initially poured on the slides 

to scrape off the cytological stained sample using a single-edged razor blade. Any scraped 
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tissue was then collected in a microcentrifuge tube containing the other half of the lysis 

solution with the Proteinase K. The extracted DNA was kept at -20 °C until used. 

 

3.4 BRAF V600E detection 

BRAF exon 15 was analyzed by polymerase chain reaction (PCR) followed by direct 

sequencing. PCR was performed in a 30 µl final volume, containing 2 µl of DNA, 0.05 mM 

dNTP (Invitrogen, Carlsbad, CA), 2.5ng/µl of each primer (Invitrogen), 1.5 mM MgCl2, 1x PCR 

Gold Buffer, and 0.75U AmpliTaq Gold (Applied Byosistems, Foster City, CA). PCRs were 

performed on a 9700 GenAmp PCR System (Applera Corporation, Foster City, CA) with the 

following cycling conditions at 94 °C for 7 minutes; 40 cycles at 94 °C for 45 seconds, 56 °C for 

45 seconds, and 72 °C for 1 minute; and final step at 72 °C for 10 minutes. Primers were: 

BRAF 15 F: 5’-TCATAATGCTTGCTCTGATAGGA-3’ 

BRAF 15 R: 5’-GGCCAAAAATTTAATCAGTGGA-3’ 

PCR reactions were run on agarose gel to check the presence of the specific amplification 

products. PCR bands were cut and purified using the Genelute Gel Extraction Kit (St. Louis, 

MO). Purified products were then sequenced on the ABI PRISM 3100 Genetic Analyzer 

(Applied Biosystem). 

 

3.5 KIT genotyping 

KIT sequence was screened for mutations in exons 9, 11, 13 and 17 by direct sequencing. 

PCR was performed using standard conditions: initial denaturation 95°C for 7 min; 40 cycles at 

95 °C for 45 sec and 56 °C for 45 sec and 72 °C for 45 sec; final step 72 °C for 10 min with 

AmpliTaq Gold (Applied Biosystems) on 9700 GeneAmp PCR System (Applied Biosystems). 

Primers for KIT sequencing were selected using Primer3 software: 

- exon 9 F: 5’- CCAGGGCTTTTGTTTTCTTC - 3’ 

- exon 9 R: 5’- TGGTAGACAGAGCCTAAACATCC - 3’ 
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- exon 11 F: 5’- GATCTATTTTTCCCTTTCTC - 3’ 

- exon 11 R: 5’- AGCCCCTGTTTCATACTGAC - 3’ 

- exon 13 F: 5’- TCAGTTTGCCAGTTGTGCTT - 3’ 

- exon 13 R: 5’- AATGTCATGTTTTGATAACCT - 3’ 

- exon 17 F: 5’- TTCTTTTCTCCTCCAACCTAA - 3’ 

- exon 17 R: 5’- TGTCAAGCAGAGAATGGGTA - 3’ 

The PCR products were purified with Multi Screen PCR Plates (Millipore) and the 

sequencing reactions were performed in 20 µl final volume using Big Dye Terminator kit v3.1 

(Applied Biosystems) and 2.5 pmol/µl of each primer, and then purified with Multi Screen PCR 

Plates (Millipore). The sequence reactions were loaded on ABI PRISM 3100 Genetic Analyzer 

(Applied Biosystems) and analyzed using the Sequencing Analysis software 3.4 version. 

 

3.6 RNA extraction and cDNA synthesis 

RNA extraction was performed by using a commercial kit (High Pure RNA Paraffin kit, 

Roche) mainly following the manufacturer’s instructions and adding the same modification 

step as for DNA extraction. The lysis solution was poured on the slide to scrape off the 

cytological stained sample by using a single edged razor blade. Whole scraped material was 

then collected in a microcentrifuge tube and processed for RNA extraction. The 

quantity/quality of extracted RNA was estimated with Nanodrop 1000 spectrophotometer by 

using 1 μl of undiluted RNA solution. RNA was treated with DNase Ι recombinant, RNase-free 

(Roche). RNA was reverse transcribed in a final volume of 20 μl, containing 5X RT buffer, 10 

mM dNTPs, 50 ng/μl Random Primers, 0.1M DTT, 40 U/μl RNaseOUT, 50 μM oligo(dT), DEPC-

Treated Water, 15 U/μl Cloned AMV reverse transcriptase (Invitrogen, Carlsbad, CA). 

 

3.7  Quantitative Real-Time PCR (qPCR) 

The level of KIT, SYNGR2, C21orf4, Hs.296031, DDI2, CDH1, LSM7, TC1, NATH expression 

was analyzed by quantitative Real-Time PCR (qPCR) on the Rotor-Gene 6000 real time rotary 

analyzer (Corbett, Life Science, Australia) following the manufacturing instructions. 
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Endogenous reference gene (B2M, beta 2 microglobulin) was used to normalize each gene 

expression level. PCR products were previously sequenced on an Applied Biosystems 3130xl 

Genetic Analyzer (Foster City, CA) to confirm gene sequence. PCR was performed in 25 µl final 

volume, containing 5 µl of cDNA, 12.5 µl of MESA GREEN qPCR MasterMix Plus (EUROGENTEC, 

San Diego, CA), 40 pmol of each primer (Invitrogen, Carlsbad, CA) per reaction with the 

following cycling conditions: initial denaturation 95°C for 5 min; 40 cycles at 95 °C for 15 sec 

and 61 °C for 40 sec and 72 °C for 40 sec; final step 25 °C for 1 min. Primers were selected 

using Primer3 software: 

KIT F: 5’- GCACCTGCTGCTGAAATGTATGACATAAT - 3’ 

KIT R: 5’- TTTGCTAAGTTGGAGTAAATATGATTGG - 3’ 

 

SYNGR2 F: 5’- ATCTTCTCCTGGGGTGTGCT - 3’ 

SYNGR2 R: 5’- AGGGTGGCTGTTGGTAGTTG - 3’ 

 

C21orf4 F: 5’- GACAACAGTGGCTGTGTTTTAAG - 3’ 

C21orf4 R: 5’- GCATTGGATACAGCATTTATCAT - 3’ 

 

Hs.296031 F: 5’- TGCCAAGGAGCTTTATAGAA - 3’ 

Hs.296031 R: 5’- ATGACGGCATGTACCAACCA - 3’ 

 

DDI2 F: 5’- TGCAGTTCCCAAACTTACCC- 3’ 

DDI2 R: 5’- CAGCAACATATCTCGGAGCA- 3’ 

 

CDH1 F: 5’- GCATTGCCACATACACTCTC- 3’ 

CDH1 R: 5’- AGCACCTTCCATGACAGAC- 3’ 

 

LSM7 F: 5’-GACGATCCGGGTAAAGTTCCA - 3’ 

LSM7 R: 5’- AGGTTGAGGAGTGGGTCGAA - 3’ 

 

TC1 F: 5’- AAATCTTCTGACTAATGCTAAAACG - 3’ 

TC1 R: 5’- TTATTGTTGCATGACATTTGC - 3’ 
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NATH F: 5’-AAGAAACCAAAGGGGAACTT - 3’ 

NATH R: 5’- TAATAGGCCCAGTTTTCAGG - 3’ 

 

B2M F: 5’- CATTCCTGAAGCTGACAGCATTC - 3’ 

B2M R: 5’- TGCTGGATGACGTGAGTAAACC - 3’ 

 

A first PCR run was performed on control sample expressing the markers and run on 

2% agarose gel. The PCR product was excised from the gel, purified by using GenElute™ PCR 

Clean-Up (Sigma-Aldrich) and measured spectrophotometrically at 260 and 280 nm. The 

purified product was diluted in a 10-fold series to create the standards for a ten-point 

standard curve that was run in triplicate. Standard curves were generated for both KIT and 

B2M and showed a good linearity with consistent correlation coefficient (R2 = 0.999). Ct was 

determined by the Rotor-Gene 6000 software and exported for analysis after background 

subtraction. Threshold was set by standard curve and then imported in all the runs for data 

analysis. PCR efficiencies resulted similar for the marker genes and B2M in each experiment 

and ranged between 98-102%. The experiment was run in duplicate for each sample. 

 For each cDNA sample the ratio between the gene of interest expression value and 

B2M expression value was calculated. The expression ratio mean values and standard 

deviations of malignant and benign groups were calculated. To verify primers specificities, 

melting curve analysis was performed. Fluorescent data were acquired during the extension 

phase. After 40 cycles a melting curve for each gene was generated by slowly increasing 

(0.1°C/s) the temperature from 60°C to 95°C, while the fluorescence was measured. For each 

experiment a no-template reaction was included as a negative control. The expression of all 

the markers was ultimately represented as the ratio of absolute quantification by standard 

curve of the expression of the markers and B2M expression. 
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3.8 BRAF genotyping and gene expression data of 112 melanoma metastases 

DNA and total RNA was isolated from 112 metastatic tumor samples from as many 

patients treated at the Surgery Branch, National Institutes of Health, Bethesda, MD. Tumor 

samples were from snap frozen biopsies.  

BRAF sequencing was performed as described above. For gene expression analysis, cDNAs 

were fragmented, biotinylated, and hybridized to the GeneChip Human Gene 1.0 ST Arrays 

(Affymetrix WT Terminal Labeling Kit). Probe normalization, background correction, Log2 

transformation and summarization were performed using Robust Multi-Chip Average (RMA). 

Gene summary was obtained by averaging the mean of the probe values end expressed as 

Log2 intensity (122).  

TC1 mRNA expression values (Log2 transformed) were extrapolated and evaluated according 

BRAF mutational status.  

 
 

3.9 Statistical analyses 

 

3.9.1 Gene expression analysis 

Mann-Withney test and Student t-test were used to determine differences between 

mRNA expression levels of KIT, LSM7, C21orf4, DDI2, SYNGR2, TC1, Hs.296031 and CDH1, 

NATH, respectively. Also, the TC1 expression level in BRAF V600E and wild type malignant 

samples was tested by Student t-test. All the analyses were performed by using StatGraphics 

Centurion (V. 15, StatPoint, Inc.).  

 

3.9.2 ROC analysis 

To determine the diagnostic accuracy of the molecular computational model, we 

calculated the area under the curve (AUC) of the receiver operating characteristic (ROC) curve 

for each gene individually and in combination by using logistic regression analysis (Medcalc 

11, Medcalc Software, Stata Software).  
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In this analysis the true positive rate (Sensitivity) is plotted in function of the false positive 

rate (100-Specificity) for different cut-off points. Each point on the ROC plot represents a 

sensitivity/specificity pair corresponding to a particular decision threshold. A test with perfect 

discrimination (no overlap in the two distributions) has a ROC plot that passes through the 

upper left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC plot is to 

the upper left corner, the higher the overall accuracy of the test (123). 

 

3.9.3 BNN classifier 

Several computational models (Neural Network Bayesian Classifiers) were built in 

order to find the best combination of markers able to discriminate benign from malignant 

thyroid samples. This procedure uses a Probabilistic Neural Network (PNN) to classify cases 

into malignant and benign categories, based on 10 input variables (KIT, LSM7, C21orf4, DDI2, 

SYNGR2, TC-1, Hs.296031, CDH1, NATH expressions and BRAF mutational status) by 

implementing a nonparametric method for classifying observations into one of benign and 

malignant groups based on the observed expression variables.  

 

3.9.4 Molecular diagnostic accuracy 

Fisher’s test was used to compare samples correctly classified by the BNN model 

according to their probability score (> 90% and <90%). Diagnostic accuracy gain was then 

calculated after applying molecular tests (BRAF, KIT and BNN model). 

 

3.9.5 Correlation analysis  

In order to evaluate the biological importance of the markers analyzed, a multiple-

variable analysis was performed to analyze the correlation between the markers.  

These analyses were all performed by using Statgraphics Centurion (V. 15, StatPoint, Inc.).  
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4. RESULTS 

 

4.1 Expression and genotyping of KIT receptor in benign and malignant thyroid lesions 

KIT expression was analyzed by qPCR in the first set of 82 FNAC, histologically diagnosed 

as 36 benign and 46 malignant thyroid nodules (Table 1). Overall, KIT expression was detected 

in 59% of PTC (27/46) and in 100% of BN (36/36). The mean of KIT expression values (KIT/B2M 

ratio) was calculated for both benign (1.72) and malignant (0.138) groups and the difference 

resulted highly significant (p<0.0001).  

The sequencing of exons 9, 11, 13, 17 of the KIT gene resulted wild type for all the samples 

analyzed. 

 

Table 1. Histological and cytological diagnoses of 82 thyroid nodules 

Histological Diagnosis Cytological Diagnosis 

 PTC SPTC IFP 

PTC: 46 cases 30 (65%) 11 (24%) 5 (11%) 

 BN IFP  

BN: 36 cases 17 (47%) 19 (53%)  

PTC: papillary thyroid carcinoma. SPTC: suspicious for PTC. IFP: 
indeterminate follicular proliferation. BN: benign nodule. 

 

4.2 KIT expression and biological behaviour of thyroid nodules 

The value of KIT expression (KIT/B2M ratio) ranged between 0 and 9.34 (Table 2). To 

evaluate a possible relationship with the biological behaviour of lesions, KIT expression values 

(ev) were arbitrarily organized in four classes (Table 3): 

- Class I: KIT ev = 0; 

- Class II: KIT ev > 0 and ≤ 0.5; 
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- Class III: KIT ev > 0.5 and ≤ 3; 

- Class IV: KIT ev > 3; 

The percentage of malignant and of benign cases was calculated in each class and its 

statistical significance was determined (p-value).  
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Table 2. Morphological and molecular diagnosis in 82 thyroid nodules  

case  HD CD KIT  Class KIT ev BRAF  

1 PTC PTC I 0 V600E 

2 PTC PTC I 0 V600E 

3 PTC PTC I 0 V600E 

4 PTC PTC I 0 V600E 

5 PTC PTC I 0 V600E 

6 PTC PTC I 0 V600E 

7 PTC PTC I 0 V600E 

8 PTC PTC I 0 V600E 

9 PTC PTC I 0 V600E 

10 PTC PTC I 0 V600E 

11 PTC PTC I 0 V600E 

12 PTC PTC I 0 V600E 

13 PTC PTC I 0 WT 

14 PTC PTC I 0 WT 

15 PTC PTC I 0 WT 

16 PTC PTC II 0.5 V600E 

17 PTC PTC II 0.448 V600E 

18 PTC PTC II 0.105 V600E 

19 PTC PTC II 0.07 V600E 

20 PTC PTC II 0.0533 V600E 

21 PTC PTC II 0.049 V600E 

22 PTC PTC II 0.031 V600E 

23 PTC PTC II 0.022 WT 

24 PTC PTC II 0.013 V600E 

25 PTC PTC II 0.0126 WT 

26 PTC PTC II 0.01 WT 

27 PTC PTC II 0.004 WT 

28 PTC PTC II 0.0003 WT 

29 PTC PTC II 0.0002 V600E 

30 PTC PTC III 1.0506 WT 

31 PTC SPTC I 0 WT 

32 PTC SPTC I 0 WT 

33 PTC SPTC I 0 WT 

34 PTC SPTC I 0 WT 

35 PTC SPTC II 0.44 V600E 

36 PTC SPTC II 0.42 V600E 

37 PTC SPTC II 0.022 V600E 

38 PTC SPTC II 0.011 V600E 

39 PTC SPTC II 0.42 WT 

40 PTC SPTC II 0.37 WT 

41 PTC SPTC III 1.27 WT 

42 PTC IFP II 0.275 WT 

43 PTC IFP II 0.097 WT 

44 PTC IFP II 0.07 WT 
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HD: histological diagnosis. CD: cytological diagnosis. KIT ev: KIT expression value. PTC: 
papillary thyroid carcinoma. SPTC: suspicious for PTC. BN: benign nodule. IFP: indeterminate 
follicular proliferation. WT: wild type. 
 

45 PTC IFP II 0.023 WT 

46 PTC IFP III 0.57 WT 

47 BN BN II 0.3 WT 

48 BN BN II 0.14 WT 

49 BN BN II 0.07 WT 

50 BN BN II 0.1079 WT 

51 BN BN II 0.363 WT 

52 BN BN III 0.561 WT 

53 BN BN III 0.6457 WT 

54 BN BN III 0.858 WT 

55 BN BN III 0.96 WT 

56 BN BN III 0.97 WT 

57 BN BN III 1.051 WT 

58 BN BN III 1.3823 WT 

59 BN BN III 1.39 WT 

60 BN BN III 2.47 WT 

61 BN BN III 2.5083 WT 

62 BN BN III 2.6333 WT 

63 BN BN IV 7.24 WT 

64 BN IFP II 0.032 WT 

65 BN IFP II 0.04 WT 

66 BN IFP II 0.0463 WT 

67 BN IFP II 0.0599 WT 

68 BN IFP II 0.1143 WT 

69 BN IFP II 0.1957 WT 

70 BN IFP II 0.217 WT 

71 BN IFP II 0.2619 WT 

72 BN IFP III 0.7302 WT 

73 BN IFP III 0.84 WT 

74 BN IFP III 0.948 WT 

75 BN IFP III 1.09 WT 

76 BN IFP III 1.3727 WT 

77 BN IFP III 1.64 WT 

78 BN IFP III 1.67 WT 

79 BN IFP IV 3.4 WT 

80 BN IFP IV 7.69 WT 

81 BN IFP IV 8.73 WT 

82 BN IFP IV 9.34 WT 
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In class I the percentage of malignancy is 100% (19/19 cases), whereas in class IV the 

percentage of benignity is 100% (5/5). In class II the percentage of malignant cases is higher 

than benign cases: 65% (24/37) vs. 35% (13/37). On the other hand, class III has a higher 

percentage of benign cases than malignant ones: 86% (18/21) vs. 14% (3/21). Difference 

between malignant and benign lesions is statistically highly significant in classes I, IV and III 

(p<0.0001, p=0.0091, p<0.0001). P-value in class II is 0.14.  

 

Table 3. Classes of KIT expression value 

Class  
KIT ev PTC BN p value 

  n % n %  

I 0 19  100 0  0 < 0.0001 

II > 0 - < 0.5 24  65 13  35 = 0.1400 

III > 0.5 - < 3.0 3  14 18  86 < 0.0001  

IV > 3 0  0 5  100 = 0.0091 

  46  36   

KIT ev: KIT expression value. PTC: papillary thyroid carcinoma. BN: benign nodule.  

 

Figure 6 reports the results of fitting a logistic regression model. The p-value of the 

diagnostic model is less than 0.05, showing a statistically significant relationship between the 

variables at the 95% confidence level. Specificity and sensitivity of the diagnostic performance 

of the model were evaluated by ROC analysis and the AUC was 0.881, with C.I. 95% 0.79-0.94 

and p = 0.001, indicating that the model has a statistically significant efficacy in discriminating 

malignant from benign lesions (Fig. 7). 
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Figure 6. Logistic regression. Logistic regression model describing the relationship between 
the risk of malignancy and the classes of KIT expression. The p-value of the model resulted to 
be less than 0.05 

 

 
 

 
 

Figure 7. ROC analysis for KIT expression. The true positive rate (Sensitivity) is plotted in 
function of the false positive rate (100-Specificity) for different cut-off points. Each point on 
the ROC plot represents a sensitivity/specificity pair corresponding to a particular decision 
threshold. (AUC=0.9, C.I 95% 0.79-.94; p=0.001) 
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We also evaluated the predicted malignancy probability of samples belonging to any of 

the KIT expression classes (Fig. 8). 

 

 
 

Figure 8. The plot describes the malignancy predicted probability of samples falling in any of 
the four classes of KIT expression (histograms). The prediction of malignancy is 100% true in 
class I and 100% false in class IV, where all samples are actually malignant and benign lesions 
respectively. In class II the prediction is mostly in favor of a malignant status while in class III 
most of the predictions of malignancy are false 

 

4.3 KIT expression in FNAC 

The cytological diagnoses of the 46 histologically confirmed PTCs were distributed 

through the 4 classes as following (Table 4): 

- 30 cases cytologically diagnosed as PTC: 15 (50%) were in class I, 14 (47%) in class II, 1 

(3%) in class III and none (0%) in class IV. 

- 11 cases cytologically diagnosed as SPTC: 4 (36%) in class I, 6 (55%) in class II, 1 (9%) in 

class III and none (0%) in class 4. 

- 5 cases cytologically diagnosed as IFP: 4 (80%) were in class II, 1 (20%) in class III, whereas 

no case was present in class I and IV. 

The cytological diagnoses of the 36 histologically confirmed BN were distributed through the 

4 classes as following: 
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- 17 cases cytologically diagnosed as benign: 5 (29%) were in class II, 11 (65%) in class III, 1 

(6%) in class IV, whereas no case was present in class I. 

- 19 cases cytologically diagnosed as IFP: 8 (42%) were in class II, 7 (37%) in class III and 4 

(21%) in class IV, whereas no case was present in class I. 

 

Table 4. Distribution of cytological diagnosis in the KIT expression classes 
 

HD CD class I class II class III class IV 

  n % n % n % n % 

PTC PTC: 30 15 50 14 47 1 3 0 0 

 SPTC: 11 4 36 6 55 1 9 0 0 

 IFP: 5 0 0 4 80 1 20 0 0 

total 46 19  24  3  0  

          

BN BN: 17 0 0 5 29 11 65 1 6 

 IFP: 19 0 0 8 42 7 37 4 21 

total 36   13  18  5  

          

HD: histological diagnosis. CD: cytological diagnosis. PTC: papillary thyroid carcinoma. SPTC: 
suspicious for PTC. IFP: indeterminate follicular proliferation. BN: benign nodule. n: number of 
cases 
 
 
 

4.4 BRAF V600E genotyping and KIT expression values of cytological samples 

The BRAF V600E mutation (Table 2) was found in 54% of the 46 malignant samples 

(25/46). 48% BRAF V600E mutated samples were in KIT class I (12/25), as shown in Table 5. 

Class II contained the residual 52% of BRAF mutated cases (13/25). Class III and IV had no 

BRAF mutated cases. BRAF V600E was significantly more present in class I and II (p = 0.00026). 

No benign samples were BRAF mutated. 
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4.5 KIT/BRAF combined molecular analysis in thyroid nodule FNAC 

Table 5 shows that four cases of SPTC are in KIT class I, whereas four more cases harbor a 

BRAF V600E mutation. All these 8 cases can be reasonably considered as PTC. At the same 

time, the four cases with a cytological diagnosis of IFP that are in KIT class IV can reasonably 

considered as benign nodules. 

 

Table 5. BRAF mutational status according to KIT expression classes and to morphological 
diagnosis 

HD CD class I class II class III class IV 

  V600E WT V600E WT V600E  WT V600E WT 

          

PTC: 46 PTC: 30 12 3 9 5 0 1 0 0 

 SPTC: 11 0 4 4 2 0 1 0 0 

 IFP: 5 0 0 0 4 0 1 0 0 

          

BN: 36 BN: 17 0 0 0 5 0 11 0 1 

 IFP: 19 0 0 0 8 0 7 0 4 

 
HD: histological diagnosis. CD: cytological diagnosis. WT: wild type. PTC: papillary thyroid 
carcinoma. SPTC: suspicious for PTC. IFP: indeterminate follicular proliferation. 

 

4.6 Role of molecular diagnosis (BRAF/KIT) in increasing the diagnostic accuracy of 

FNAC 

As shown in Table 6, if the 8 cases of SPTC in KIT class I or hosting a BRAF V600E mutation 

are moved to the diagnostic group of PTC, the total number of PTC rises from 30 (65%) to 38 

(83%), with an advantage in diagnostic accuracy of malignancy of 18%. 

On the other hand, if the 4 cases of IFP in KIT class IV are moved to the diagnostic group of 

BN, the total number of BN rises from 17 (47%) to 21 (58%), with an advantage in diagnostic 

accuracy of benignity of 11%. 

Finally, if we consider both PTC diagnosis and BN diagnosis, the whole diagnostic accuracy 

gain is of 15% with a statistically significant p-value of 0.03. 
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Table 6. Role of molecular diagnosis in increasing the diagnostic accuracy of FNAC 

CD KIT class I BRAF V600E KIT class IV 

SPTC 4 4  

IFP   4 

  
CD 

 
MD 

 
DA 

PTC 30/46: 65% 38/46: 83% + 18% 

BN 17/36: 47% 21/36: 58%  + 11% 

PTC + BN 47/82: 57% 59/82: 72% + 15% 

CD: cytological diagnosis. PTC: papillary thyroid carcinoma. SPTC: suspicious for PTC. BN: 
benign nodule. MD: molecular diagnosis. DA: diagnostic accuracy 

 

4.7 Gene expression levels of the 9 markers 

After studying KIT gene expression in the first set of samples, few samples were removed 

from the cohort because of the paucity of biological material. We then added other samples 

and the final cohort comprised a total of 93 patients (49 malignant, 38 benign, 6 unknown). 

We tested the gene expression of KIT, LSM7, C21orf4, DDI2, SYNGR2, TC-1, Hs.296031, CDH1, 

and NATH on the new set of samples. We found KIT, CDH1, LSM7, C21orf4, DDI2 mRNA 

expression levels significantly higher in benign thyroid tumors compared to the malignant 

ones, p(KIT)<0.0001; p(CDH1)=0.004; p(LSM7)=0.03; p(C21orf4)=0.01; p(DDI2)=0.0001. 

However, there was no significant difference in NATH, SYNGR2, TC1, Hs.296031 mRNA 

expression. Among these markers, only TC1 was over-expressed in malignant lesions 

compared to the benign ones (Fig. 9A). 

 

4.8 BRAF status 

Among the 49 malignant samples, 28 carried the V600E mutation on BRAF exon 15. The 

diagnostic accuracy of BRAF mutational status was calculated as the ratio between the 

number of patients carrying V600E mutation over the total of malignant samples 

(28/49=57%). All the benign samples were wild type. 
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4.9 ROC analyses 

We employed receiver-operated characteristics (ROC) curve analyses to determine model 

robustness for predicting malignancy in thyroid samples using the expression of each gene 

individually (Fig. 9B, Table 7). Among the markers, KIT showed the highest AUC (0.9) meaning 

that it is the most powerful marker. We also performed a ROC analysis for the statistical 

significant markers (KIT, CDH1, LSM7, C21orf4, DDI2) and BRAF status in combination, the 

AUC resulted to be 0.8824, the sensitivity 91% and specificity 63% (Fig. 9C). Although the AUC 

resulted quite similar to the KIT one, the predictive power increases when the markers were 

combined together. 

 

 

 
 
Figure 9. Expression means of 49 malignant (red) and 38 benign (green) samples for each 
marker (A). ROC analysis for KIT, CDH1, LSM7, C21orf4, DDI2 separately. Among the markers, 
KIT resulted to be the most powerful in discriminating benign from malignant thyroid tumors 
(AUC=0.9) (B). ROC analysis for KIT, CDH1, LSM7, C21orf4, DDI2, and BRAF status in 
combination (AUC=0.88) (C). 
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Table 7. ROC analysis for each marker individually 

 Sensitivity Specificity AUC
a
 SE

b
 95% CI

c
 p value 

KIT* 79.6 86.8 0,900 0,0313 0,817-0.954 0,0001 

CDH1* 61.2 73.7 0.700 0,0586 0,559-0.766 0,0041 

NATH 57.8 57.9 0,553 0,0658 0,440-0.662 0,4209 

LSM7* 69.4 57.9 0.625 0.0633 0,515-0.727 0,0477 

C21orf4* 58.3 73.7 0.644 0.0607 0,533-0.744 0,0180 

DDI2* 56.2 86.8 0.729 0.0551 0.622-0.819 0,0001 

SYNGR2 47.9 78.9 0.608 0.0613 0.497-0.712 0.0780 

TC1 85.0 38.2 0,581 0,0679 0,460-0,695 0,2336 

Hs.296031 77.8 32.4 0,490 0,0671 0,375-0,605 0,8761 

 

aAUC (area under the curve), bSE (standard error), cCI (confidence interval), *p<0.05 

 

4.10 Principal Component Analysis and Clustering 

 We then performed Principal Component Analysis in order to visualize the discriminative 

power of all the markers according to malignant and benign status and to BRAF mutational 

status (Fig. 10).  

 

Figure 10. Principal Component analysis referring to malignant and benign status (A) and 
BRAF mutational status (B) 
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Overall, a separation between malignant and benign samples as well as between BRAF V600E 

and wild type samples was found, though not absolute. 

A similar finding was observed when clustering samples according to the 9 expression 

markers (Fig. 11A). 

We then sought to determine whether a differential expression profile of the 9 markers was 

present within the malignant group according to BRAF mutational status. Quite interestingly, 

malignant tumors bearing the V600E mutation were observed to cluster separately from wild 

type samples expressing the markers in a higher extent (Fig. 11B), and, more importantly, the 

behaviour of the malignant wild type samples recapitulated the one of benign samples.  

 

 

Figure 11. (A) Self-organizing map showing the clustering among benign and malignant 
samples according to the expression of the 9 markers, the top legend refers to BRAF 
mutational status and malignant and benign status. (B) Self-organizing map showing the 
clustering among the malignant samples according to the expression of the 9 markers, the top 
legend refers to BRAF mutational status 

 

By looking at the clustering of malignant samples according to BRAF mutational status, we 

observed that TC1 expression tended to be higher in BRAF wild type samples and we sought 

to determine the statistical significance of such trend.  

TC1 expression resulted significantly (p=0.001) higher in BRAF wild type samples as compared 

to the V600E ones (Fig. 12A), thus, oncogenic BRAF may play a role in modulating TC1 

expression.  

We then sought to test whether the tendency of BRAF V600E samples to down regulate TC1 

was restricted to thyroid tumors or conversely present also in melanoma. Towards this goal, 
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we extrapolated TC1 expression values (Log2 transformed) from microarray data of 112 

melanoma metastases and evaluated its differential expression according to BRAF mutational 

status without finding any statistically significant association (p=0.8) (Fig. 12B). Thus, the 

modulation of TC1 expression by BRAF V600E mutation might be a thyroid-specific event. 

We further compared the TC1 expression of thyroid benign samples to the one of BRAF wild 

type and V600E malignant samples separately. A statistically significant TC1 higher expression 

(p=0.005) was found in BRAF wild type but not V600E malignant samples as compared to the 

benign tumors (Fig. 12C), thus the behavior of thyroid tumors bearing BRAF V600E mutation 

recapitulates the one of benign samples in terms of TC1 expression.  

 

 

Figure 12. TC1 expression in BRAF wild type versus V600E thyroid samples (A) and melanoma 
metastases (B). TC1 expression in benign versus malignant BRAF wild type samples and in 
benign versus malignant BRAF V600E samples in thyroid (C) 
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We also tested the differential expression of each other marker according to BRAF mutational 

status in the malignant group (Fig. 13). Among all the markers and besides TC1, only KIT and 

CDH1 expression resulted significantly different among BRAF wild type and V600E samples. 

 

Figure 13. Differential expression of each single marker according to BRAF mutational status 
in the malignant samples 

 

We finally tested whether KIT, TC1 and CDH1 expression could discriminate between BRAF 

wild type and V600E samples. The discriminant analysis showed a predictive power of 80% 

(p=0.0009) 

 

4.11 Neural Networks 

The markers expression data were used to build Bayesian Neural Networks (BNN) in order 

to estimate the probability of thyroid malignancy.  
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We built several BNNs in order to find the most predictive one. This procedure uses a 

Probabilistic Neural Network (PNN) to classify cases into malignant and benign categories, 

based on 9 input variables (KIT, LSM7, C21orf4, DDI2, SYNGR2, TC1, Hs.296031, CDH1, and 

NATH), by implementing a nonparametric method for classifying observations into one of 

benign and malignant groups based on the observed expression variables.  

The Neural Network Bayesian Classifier made up of all markers has a predictive power of 

80%, while the classifier made up of KIT, CDH1, LSM7, C21orf4, DDI2, TC1 and Hs.296031 

resulted to have a discriminative power of 87.7%.  

This analysis was then conducted on 6 unknown samples in order to confirm the accuracy of 

the model. The pathological diagnosis for each sample was kept blinded until after the 

analysis was completed. When the blind was broken, we found that 5 of the 6 unknown 

samples were diagnosed by the model in concordance with the diagnosis determined by 

standard pathologic criteria. 

We also built a neural network classifier made up of the markers used in the most predictive 

model (KIT, CDH1, LSM7, C21orf4, DDI2, TC1 and Hs.296031) plus BRAF status. This classifier 

resulted to have a predictive power of 88.8%, and, more importantly, it resulted to 

completely discriminate the 6 unknown samples when the blind was broken (Table 8). By 

applying the BNN model, no classification errors came out when the probability of diagnosis 

was higher than 90%, thus allowing us to use this model as a correct predictor of samples with 

a probability score >90% (p<0.0001).  

 

Table 8. Probability values of the prediction model for the unknown samples 

Unknown 

samples Benign probability 

Malignant 

probability 

Predicted 

diagnosis 

Pathological 

diagnosis 

A 3,07E-07 1 Malignant Malignant 

B 0,294935 0,705065 Malignant Malignant 

C 0,427773 0,572227 Malignant Malignant 

D 7,09E-11 1 Malignant Malignant 

E 0,00012769 0,999872 Malignant Malignant 

F 0,94438 0,05562 Benign Benign 
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4.12 Role of molecular diagnosis (BRAF/KIT/BNN) in increasing the diagnostic accuracy 

of FNAC 

We stratified the samples depending on either the histological and cytological diagnosis 

(Table 9) and then calculated the gain of diagnostic accuracy obtained by applying BRAF 

molecular analysis, KIT expression model and BNN model to the indeterminate samples (Table 

10). 

Among the indeterminate samples (IFP and SPTC) at the cytological level, 11 SPTC were 

correctly diagnosed as malignant by BRAF test, 4 additional samples were correctly classified 

by KIT model as 1 malignant and 3 benign, and 9 additional samples were diagnosed by the 

BNN model as 1 malignant and 8 benign. As shown in Table 10, after the molecular analysis 

we can move 13 malignant samples to the diagnostic group of PTC and the total number of 

PTC rises from 30 (61%) to 43 (88%) with an advantage in diagnostic accuracy of malignancy 

of 27%. Similarly, if we move the 11 IFP samples diagnosed as benign after molecular analysis 

in the diagnostic group of BN the total number of BN raises from 19 (50%) to 30 (79%) with a 

gain of diagnostic accuracy of benignity of 29%.  

Finally, if we consider both PTC and BN diagnoses, the whole diagnostic accuracy gain is of 

28% with a statistically significant p-value of 0.0001. 

 

Table 9. Histological and cytological diagnosis of 87 thyroid nodules 

Histological Diagnosis Cytological Diagnosis 

 PTCa SPTCb IFPc 

PTCa: 49 cases 30 (61%) 14 (29%) 5 (10%) 

 BNd IFPc  

BNd: 38 cases 19 (50%) 19 (50%)  

 

aPTC: papillary thyroid carcinoma, bSPTC: suspicious papillary thyroid carcinoma, cIFP: 
indeterminate follicular proliferation, dBN: benign 
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Table 10. Role of molecular diagnosis in increasing the diagnostic accuracy of FNAC 
 

CDa 
BRAF 
V600E 

KIT class 1 
(malignancy 
probability 100%) 

KIT class 4 
(benignity 
probability 
100%) 

BNNd 
(probability score 
>90%) 

SPTCb 11(Mi) 1(Mi)  1(Mi) 

IFPc   3(Bh) 8(Bh) 

 CDe MDf DAg  

correctly 
diagnosed 
samples 

49/87: 
56% 

73/87: 84% +28%  

 

aCD: cytological diagnosis, bSPTC: suspicious papillary thyroid carcinoma, cIFP: indeterminate 
follicular proliferation, dBNN: Bayesian neural network, eCD: cytological diagnosis, fMD: 
molecular diagnosis, gDA: diagnostic accuracy, hB: benign, iM: malignant 

 

4.13 Correlation analysis 

A multiple-variable analysis was performed to analyze the correlation between the 

markers. The knowledge of the correlation of the biomarkers analyzed could give us a better 

understanding of the mechanisms underlying thyroid cancer biology. Thus, the statistical 

correlation may reflect biologically correlation between markers.  

The following pairs of variables resulted to be statistically (p<0.05) correlated: 

KIT and NATH, KIT and C21orf4, KIT and DDI2, CDH1 and NATH, CDH1 and DDI2, NATH and 

C21orf4, NATH and DDI2, NATH and SYNGR2, NATH and Hs296031, C21orf4 and DDI2, 

C21orf4 and Hs296031, DDI2 and TC1, DDI2 and Hs296031, SYNGR2 and Hs296031, TC1 and 

Hs296031 (Fig. 14, Table 11). 

 

 

 



 

 

54 

 

 

 

Figure 14. Correlation graph. The indicated variables (KIT, CDH1, NATH, LSM7, C21orf4, DDI2, 
SYNGR2, TC1, Hs. 296031) are displayed on the vertical axis of every plot in that row and on 
the horizontal axis of every plot in that column. Each pair of variables is thus shown twice, 
once above the diagonal and once below it. Significative correlations are marked with red 
boxes 
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Table 11. Correlation matrix of the 9 expression markers. In bold are the Pearson correlation 
R values and in red the statistical significant p-value for the specific variables pair   

 KIT CDH1 NATH LSM7 C21orf4 DDI2 SYNGR2 TC1 Hs296031 

KIT   0,0410  0,2598  0,0787  0,4374  0,2736  0,1658  -0,1417  0,0008  

  0,7250  0,0234  0,4990  0,0001  0,0168  0,1524  0,2220  0,9944  

CDH1  0,0410   0,3383  0,0948  -0,0057  0,3966  0,0513  0,0823  -0,0674  

 0,7250   0,0028  0,4155  0,9613  0,0004  0,6601  0,4794  0,5631  

NATH  0,2598  0,3383   0,1170  0,4320  0,4503  0,2372  0,1901  0,2814  

 0,0234  0,0028   0,3140  0,0001  0,0000  0,0391  0,1001  0,0138  

LSM7  0,0787  0,0948  0,1170   -0,0225  0,1133  -0,0571  0,0309  0,0669  

 0,4990  0,4155  0,3140   0,8471  0,3300  0,6243  0,7913  0,5656  

C21orf4  0,4374  -0,0057  0,4320  -0,0225   0,4032  0,1646  0,1862  0,2566  

 0,0001  0,9613  0,0001  0,8471   0,0003  0,1553  0,1073  0,0252  

DDI2  0,2736  0,3966  0,4503  0,1133  0,4032   0,1934  0,3165  0,2291  

 0,0168  0,0004  0,0000  0,3300  0,0003   0,0941  0,0053  0,0466  

SYNGR2  0,1658  0,0513  0,2372  -0,0571  0,1646  0,1934   0,0072  0,2468  

 0,1524  0,6601  0,0391  0,6243  0,1553  0,0941   0,9509  0,0316  

TC1  -0,1417  0,0823  0,1901  0,0309  0,1862  0,3165  0,0072   0,3405  

 0,2220  0,4794  0,1001  0,7913  0,1073  0,0053  0,9509   0,0026  

Hs296031  0,0008  -0,0674  0,2814  0,0669  0,2566  0,2291  0,2468  0,3405   

 0,9944  0,5631  0,0138  0,5656  0,0252  0,0466  0,0316  0,0026   
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5. DISCUSSION 

Papillary thyroid carcinoma (PTC) is the most common malignancy in thyroid tissue; about 

80% of incident thyroid cancers are PTC. Although PTC is usually associated with alterations in 

the RET/PTC-RAS-BRAF signaling pathway (20, 41), the detailed molecular mechanism is 

unclear. A few papers mentioning a role for KIT in thyroid malignancies suggested to perform 

an analysis of KIT expression on thyroid cells obtained by FNAC from benign and malignant 

thyroid nodules, with the double aim to study a human model of thyroid cancer and, at the 

same time, to verify if KIT expression analysis could be of any clinical interest. The present 

study evaluated KIT expression in a group of thyroid FNAC, assessed later on as malignant or 

benign by post-surgical histological analysis, and describes the silencing of KIT in PTC. These 

data are in full accordance with a previous paper of Mazzanti et al. (66), who were able to 

identify two classifier models, of 10 and 16 genes respectively, discriminative of PTC and BN, 

in both of which KIT gene was included. In this analysis KIT resulted heterogeneously 

expressed in goiters, whereas PTCs were negative. These data give also strength to the report 

that multiple miRNAs predicted to target KIT (miR-221, miR-222, miR-146) are up-regulated in 

PTC (72, 118). 

The biological significance of loss of KIT in thyroid malignancies is not clear. SCF, the KIT 

ligand, is not mitogenic in primary cultures of thyrocytes even in conjunction with thyroid-

stimulating hormone (124), a result which would indicate that SCF/KIT pathway may control 

some aspects of the thyrocyte differentiated phenotype rather than cell division. This would 

agree with the apparently strong selection for loss of KIT expression in neoplastic 

transformation of thyroid epithelium. This negative selection is in stark contrast with the gain 

of function due to genetic alterations of tyrosine kinase receptors (TRKs) in other types of 

cancers, suggesting that TRK signaling pathways may have opposite biological effects in 

different cell types. 

To explore the diagnostic utility of KIT expression in thyroid nodules, its expression values 

were divided in four arbitrarily defined classes, with class I characterized by the complete 

silencing of the gene. Class I and IV represented the two most informative groups, with 100% 

of the samples found malignant or benign respectively. Class III was also very informative 

including 86% of benign samples and having overall the highest statistical significance. On the 

other hand, in class II the samples belonging to the malignant group were 66%, which resulted 
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non significant. The fact that this was the only value of the study that does not reach a 

statistical significance, but is close to it, suggests that a higher number of cases could modify 

the statistical results. However, a ROC analysis was performed to measure the diagnostic 

performance of the model (Fig. 7), showing its good efficacy in predicting the malignant 

events (AUC=0.9 C.I 95% 0.79-.94; p=0.001).  

On the other side, quite interestingly, BRAF V600E mutation, which is a well-known marker 

for PTC, was found to be statistically more present in the KIT classes I and II, while class III and 

IV did not contain any sample, supporting therefore the association of low KIT expression 

levels to a malignant status. 

Molecular Pathology is the modern version of Pathology, where the whole of morphology 

and molecular alterations represents a powerful approach to diagnosis. In this line, this study 

aimed to verify the diagnostic potential of KIT expression analysis and demonstrated that the 

combined BRAF mutation and KIT expression approach is able to increase the diagnostic 

accuracy of FNAC of thyroid nodules of 18% for a diagnosis of malignancy and 9% for a 

diagnosis of benignity.  

Despite several carcinomas showed activating mutations of KIT gene (GISTs, melanomas, 

haematopoietic and lymphoid tumors), they have not been described in thyroid tumors and 

this study revealed a wild type sequence of KIT gene in exons 9, 11, 13, and 17. 

Finally, as previously published by Jin et al. (125), the present study shows that not only 

DNA but RNA too can be easily extracted from stained smears of FNAC and easily analyzed by 

qRT-PCR. KIT receptor expression was detectable regardless of the time of specimen 

collection from the archived material, we were able to successfully use slides prepared 7 

years ago and kept in our archives. Moreover all of the smears were independently reviewed 

by a senior cytopathologist, to assure adequate thyroid cell representation and confirm the 

cytological diagnosis of the slides in which KIT receptor expression was investigated. The 

simple method named manual macro-dissection and described elsewhere allows to perform 

molecular analysis only on selected cell population to be studied.  

Many candidate markers of thyroid cancer have been identified in microarray studies that 

require analytic and clinical validation in a cohort large enough to permit evaluation of the 

clinical utility of these markers. Quantitative RT-PCR has become a highly reliable technique 

that allows for precise quantification of gene expression levels identified on microarray 
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studies from various laboratories (126-128). Moreover, it is a technique that has been in 

clinical use as a diagnostic test in various fields of medicine. We believe our approach using 

real-time quantitative RT-PCR in a large study cohort of clinical FNA slide samples gives an 

accurate estimate of the clinical utility of using our 8-gene assay, as a diagnostic test to 

distinguish benign from malignant thyroid neoplasm. 

Currently, the diagnosis of thyroid nodules relies primarily on cytology. For the majority of 

patients with PTC, FNA-based cytology can make a diagnosis with high accuracy (129). 

However, there is a significant proportion of neoplasm in which this FNA-based pre-operative 

cytological diagnosis fails.  

The primary aim of this study was to find a diagnostic accurate pre-operative assay able to 

distinguish benign from malignant thyroid neoplasm. We found 5 of 9 proposed gene markers 

(KIT, LSM7, C21orf4, DDI2, CDH1) differentially expressed in malignant and benign thyroid 

samples with a significant p-value (<0.05). NATH, TC1, Hs.296031, SYNGR2 mRNA were not 

significantly differentially expressed between benign and malignant samples.  

We also performed the receiver operating characteristic (ROC) curves analysis in order to 

optimize the model for negative and positive predictive value in our thyroid cohort. We found 

that the ROC analysis for KIT, LSM7, C21orf4, DDI2, and CDH1 had a high diagnostic accuracy. 

The AUC for each significant marker ranged between 0.625 and 0.900. Therefore all the 

significant markers, alone and in combination, can be used to distinguish between malignant 

and benign FNA samples. The ROC analysis for the significant markers and BRAF status in 

combination showed an AUC of 0.8824, a sensitivity of 91% and specificity of 63%. 

When we applied the Principal Component Analysis to the benign and malignant samples 

we observed an overall separation among them according to the expression of the 9 markers 

in the study, thus the markers can together discriminate between benign and malignant 

thyroid tumors (Fig. 10A); such separation also reflects the differential BRAF mutational status 

(Fig. 10B). Similarly, a different classification of benign and malignant samples as well as of 

BRAF wild type and V600E samples was observed when clustering the samples according to 

the expression of the 9 makers (Fig. 11A), though not absolute.  

We then tested the differential expression profile of the 9 markers within the malignant 

group according to BRAF mutational status. Quite interestingly, malignant tumors bearing the 

V600E mutation were observed to cluster separately from wild type samples expressing the 
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markers in a higher extent, and, more importantly, the behaviour of the malignant wild type 

samples recapitulated overall the one of benign samples. This is an important finding; in fact 

since BRAF V600E has been shown to be associated with higher tumor aggressiveness (130-

132), the co-under expression of the 9 markers emerges as sign of more malignant tumor 

behaviour and should be prospectively evaluated. 

From the clustering of malignant samples according to BRAF mutational status we 

observed that TC1 expression tended to be higher in BRAF wild type samples and we sought 

to determine the statistical significance of such trend.  

TC1 expression resulted significantly (p=0.001) higher in BRAF wild type samples as compared 

to the V600E ones (Fig. 12A), thus, oncogenic BRAF may play a role in modulating TC1 

expression. Such tendency can be ascribed to a more aggressive behaviour of tumors that 

down regulate TC1. The mechanisms underlying TC1 down expression in BRAF V600E 

malignant samples are currently unknown and further studies are warranted to exploit this 

phenomenon.  

 We then tested whether the tendency of BRAF V600E samples to down regulate TC1 was 

restricted to thyroid tumors or conversely present also in melanoma. Towards this goal, we 

extrapolated TC1 expression values (Log2 transformed) from microarray data of 112 

melanoma metastases and evaluated its differential expression according to BRAF mutational 

status without finding any statistically significant association (p=0.8) (Fig. 12B). Thus, the 

modulation of TC1 expression by BRAF V600E mutation might be thyroid-specific. 

 We lastly compared the TC1 expression of benign samples to the one of BRAF wild type 

and V600E malignant samples separately. A statistically significant TC1 higher expression 

(p=0.005) was found in BRAF wild type but not V600E malignant samples as compared to the 

benign tumors (Fig. 12C), thus the behavior of thyroid tumors bearing BRAF V600E mutation 

recapitulates the one of benign samples in terms of TC1 expression.  

 By looking at the expression of the other markers we found that, besides TC1, also CDH1 

and KIT expression significantly discriminate between BRAF wild type and V600E malignant 

samples (Fig. 13) with a power of 80% (p=0.0009). As mentioned before, CDH1 encodes for 

the E-cadherin and its loss has been shown to be important for disruption of tight epithelial 

cell-cell contacts and release of invasive tumor cells from the primary tumor, thus its 

association with BRAF mutational status may reflect an aggressive tumor phenotype. As for 

CDH1, also KIT down regulation has been related to the progression into a malignant 
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phenotype and its association with BRAF V600E mutation may reflect this phenomenon. 

Regarding TC1, it is difficult to compare our data to the literature because studies addressing 

TC1 gene expression are sparse. The little information available suggests that TC1 is over 

expressed in thyroid papillary carcinoma (101, 109, 133) and concordant to the literature we 

found a higher TC1 expression in malignant tumors. However, the expression of TC1 is 

significantly lower in malignant thyroid cancers bearing BRAF V600E mutation, that suggests a 

potential influence of BRAF status on TC1 expression, but further functional studies are 

needed to understand the underlying mechanisms.  

In the last few years, a new class of techniques known as Bayesian Neural Networks (BNN) 

have been proposed as a supplement or alternative to standard statistical techniques (134). 

BNNs do not require explicit distributional assumptions (such as normality). This advantage 

has generated considerable interest in the use of neural network techniques for the 

classification of medical outcomes (134). We developed a Bayesian Artificial Neural Network 

model based on data collected from FNA samples. Bayesian classification has been applied 

across the spectrum of medicine, from optimization of pharmacotherapy dosing (135, 136), 

predicting cancer screening (137) and diagnostic test results (138, 139), to determining injury 

severity (140), assessing operative risk (141) and predicting surgical outcomes (142-145). We 

built several Neural Networks and the most predictive one has resulted to be made up of KIT, 

CDH1, LSM7, C21orf4, DDI2, TC1 and Hs.296031, with a power of 87.7%. The network was 

then validated on 6 unknown samples. The model determined the accurate diagnosis of 5 of 6 

unknown samples tested. Accuracy was based on a comparison to the gold standard 

pathological diagnosis as determined by clinical pathologists. 

It’s important to notice that we have put in the model also the not significant markers (TC1, 

Hs.296031), because their contribution in the discriminative power seems to be relevant. In 

fact, even though a variable is not significant, its combination with other variables may be 

significant, because of a certain tendency that makes them to go in the same way.  

The classifier built by using also BRAF status resulted to have a predictive marker of 88.8% 

and to successfully discriminate the unknown samples when the blind was broken (Table 8), 

thus the gene expression analysis combined to the BRAF mutational analysis could represent 

a very useful test to pre-operatively discriminate benign and malignant thyroid tumors. 
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The probability of the prediction of diagnosis for almost all the samples resulted to range 

between 95% and 100%, thus, although the general prediction value is 88.8%, the 

discriminative power to assess each sample can reach a value of 100%. These data also 

strengthen the importance of the 8-markers model as an adjunctive tool for the pre-operative 

diagnosis of thyroid nodules.  

We also stratified the samples depending on either the histological and cytological 

diagnoses (Table 9). The gain of diagnostic accuracy obtained by applying BRAF molecular 

analysis, KIT expression model and BNN model was then calculated.  

By applying the BNN model, no classification errors came out when the probability of 

diagnosis was higher than 90%, thus allowing us to use this model as a correct predictor of 

samples with a probability score >90% (p<0.0001).  

We then calculated the diagnostic accuracy gained by applying molecular diagnostic tests 

(Table 10). 

Among the uncertain samples (IFP and SPTC) at the cytological level, 11 were correctly 

diagnosed by BRAF test, 4 additional samples by KIT model and 9 additional samples by the 

BNN model. It is important to point out that IFP lesions are often very difficult to diagnose 

even at frozen section and in this study we developed a molecular approach that is able to 

correctly classify as certain benign 46% (11/24) of IFP lesions. Therefore by the use of 

molecular approach these patients would have been clinically enrolled to the follow up group 

instead of sent to surgery. Thus, the combined use of the molecular tests resulted to produce 

a diagnostic accuracy gain of 28% (Table 10). Basically, what we propose is the use of BRAF 

molecular analysis (after uncertain cytological diagnosis) to assess the malignancy of thyroid 

nodules in the first place, then the use of KIT model for the indeterminate nodules and at last 

the use of the 8-gene model to ultimately assess the diagnosis of the nodules that otherwise 

would remain suspicious. The combinatorial power of these tools could definitely increase the 

percentage of thyroid nodules correctly classified while decreasing the ones remained 

indeterminate. 

All these findings strengthen the importance of molecular pathology where the 

morphology and the molecular alterations represent a powerful approach to diagnosis. In this 

line, this study aimed to assess the diagnostic potential of the 8-gene expression model as an 

adjunctive tool in the pre-operative management of thyroid nodules. We demonstrated that 



 

 

62 

 

the 8-gene expression model provides an increased diagnostic power to the molecular 

pathology approach based on BRAF mutation and KIT expression analysis. 

We also performed a multiple variable analysis among all the markers analyzed, 

independently on the diagnostic classification, in order to evaluate a possible functional 

correlation among the markers (Fig. 10). In literature there is no evidence about the biological 

correlation among the well studied markers, but it’s interesting to note that the unknown 

marker Hs.296031 statistically correlates with NATH, C21orf4, DDI2, SYNGR2 and TC1. This 

may reflect also a biological correlation, thus further studies are needed to explore this issue.  

  



 

 

63 

 

6. CONCLUSION 

In summary, we have demonstrated that the expression-based classification of 

thyroid lesions here proposed is highly accurate and may provide a tool to overcome the 

difficulties in today’s pre-operative diagnosis of thyroid suspicious malignancies. We hoped 

that this test will be a useful adjunct to the pre-operative diagnosis of thyroid nodules. 
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