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1 Introduction 

The continuous growth of the Internet, and its 

increasingly presence as a means for Telecommunication, 

makes progressively relevant the identification of 

anomalous behaviors in network traffic. This research 

topic is becoming important also in telephone networks, 

due to the fact that the use of VoIP (Voice over IP) 

technologies is more and more widespread today. Indeed, 

beyond the remarkable advantage of lower costs and the 

access to a large number of web-based services, such as 

video communications or text-messaging chat, many IP-

based threats that plagued Internet users start to be 

directed to the VoIP services. It is really easy to foresee 

that VoIP users are already targets of attacks such as 

Telemarketer activity, Eavesdropping, Identity theft and 

Denial of Services. 

To reveal this type of attack, several intrusion detection 

systems have been developed over time, even in 

telephone context. An intrusion detection system can 

follow two different approaches: signature-based, where 

the system identifies patterns of traffic or application 
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behaviors recognized to be malicious; anomaly detection-

based, where the system gathers a “normal” baseline 

through statistical analysis and compare the activities 

within the network of application with it. For this reason, 

this second type of intrusion detection system is in 

general preferred when the working scenario is 

unsupervised, i.e. there is no a priori knowledge of the 

normal or the anomalous behavior of the traffic.  

As we can see in the following chapter, in a VoIP 

environment, or more generally in a telephone network, 

the intrusion detection techniques can exploit several 

informations to identify anomalous behaviors. For this 

reason, they can work both at a fine-grained level, 

evaluating if a given call or the behavior of a user is 

anomalous or not, both looking to the general behavior of 

the user and analyzing the statistics of its calls.  

In general, in the first case we talk of intrusion detection 

techniques
[1]

 that can be found at each level of the 

telephone network, from the backbone to the end-user 

systems, because they are able to identify anomalous 

behaviors looking to the management plane, for example 

the header of the Session Initiation Protocol (SIP) 
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packets, but also to the data plane, for example the Real 

Time Protocol (RTP) packets.  

In general, in the second case we talk of unsupervised 

anomaly detection techniques
[2]

 that rely on a central 

node able to collect raw data regarding the calls of the 

phone users, to gather the description of a legitimate user 

profile, and to perform anomaly detection based on it. 

For example, it is possible to define the set of behaviors 

exhibited by the majority of the phone users as the 

legitimate profile. In this kind of intrusion detection 

systems, there are various types of data used to analyze 

the statistics of a phone call but one of the most 

immediate way to get this information is through the Call 

Detail Records (CDRs). Indeed, the CDRs are labels used 

for billing purpose and they contain general information 

for each call, such as the source and destination phone 

number and the call duration.  

This work represents mine contribution to the research in 

this field and is the result of a six-month internship at the 

Network Laboratories of NEC, Heidelberg (Germany). 

The work was performed thanks to the collaboration of 

my local supervisor, Dr. Maurizio Dusi, and my referent 

for University of Pisa, Dr. Christian Callegari. 
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In this thesis we propose a novel anomaly detection 

technique that tries to solve two of the main drawbacks 

of having a central node responsible for the anomaly 

detection stage:  

1. it does not allow to take advantage of the probes 

already distributed over the network. For scalability 

reason, telephone networks are commonly designed 

according to a hierarchical topology
[15]

, where Points 

of Presence (PoPs) are the bridge between end users 

and the overall network infrastructure, and each PoP 

is already able to collect and to process the 

information regarding the part of the network they are 

able to see.  

2. anomalies that are localized on few PoPs can pollute 

the description of the legitimate profile when 

aggregated together, thus affecting the classification 

decision of the central node. For instance, if a certain 

attitude is sparse over few PoPs, contribute to form 

the legitimate profile when data are considered as a 

whole, since the aggregation hides the sparseness of 

the activity. 
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To overcome these issues, our methodology allows 

operators to gather an unsupervised description of a 

pollution-free normal user behavior of their network and 

subsequently to perform distributed anomaly detection, 

thus taking advantage of the topology of the network 

itself. The methodology gathers the behaviors of each 

users analyzing them during a specific interval of time, 

through general statistics obtained from the CDRs of 

their calls and, in the processing stage, it combines 

Principal Component Analysis (PCA), a well-known 

method for network anomaly detection
[3][12][13]

, with 

Agglomerative Hierarchical Clustering (AHC), a method 

used in the complex network field to identify community 

within a network
[4]

. 

In mathematical terms, through PCA it is possible to 

represent a high dimensional space, given in our case by 

different statistics describing the telephone activities of 

each user, in a new reference system. The dimensions of 

the new reference system, called typically Principal 

Components (PCs), are a linear combination of the 

original ones, and are defined in such a way that the first 

one points towards the direction that account for as much 

of the variability in the data as possible, and each 
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succeeding ones points towards the direction of the 

highest variability possible, under the constraint that it be 

orthogonal to each preceding dimension. With such a 

transformation of the original reference system, the first 

PCs obtained are able to collect most of the variance 

within the dataset and to describe the “common” 

behaviors within the network. For this reason, the first 

PCs are the descriptors of the so-called normal subspace 

and the descriptions of users well approximated by only 

means of them represent the legitimate profile. 

Conversely, descriptions of users that also need the 

remaining components, that describe the so-called 

anomalous subspace, represent rare behaviors within the 

network and they can be labeled as anomalous.  

The idea is to let each PoP perform PCA on its portion of 

users, gathers the description of the normal subspace and 

send it to a central node. The central node then applies an 

AHC algorithm to identify communities of probes with 

similar description of the normal subspace and select the 

community that contains the legitimate profile. 

Eventually each PoP exploits such profile to perform 

PCA-based anomaly detection on its own set of users. 
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To evaluate the effectiveness of the proposed 

methodology, we compare it against a classical 

application of the PCA on a given dataset, i.e. a 

centralized approach where a central node performs PCA 

on the whole set of users present within the network.  

Experimental results show that our distributed technique 

has several advantages over the centralized approach. 

First, it is able to point out behaviors of users that are 

widespread within PoPs, whereas in the centralized 

approach such behaviors affect the computation of the 

normal subspace. Second, our approach leads to a profile 

which is stable over time. 

In more detail our contribution is: 

 a parallelization of the computation of PCs on a 

hierarchical topology; 

 a distributed technique for PCA-based anomaly 

detection; 

 design of an unsupervised mechanism for 

automatically gathering the profile of legitimate 

phone users; 
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 profiling of actual phone users labeled as 

anomalous. 

The remainder of the thesis is organized as follows. In 

Chapter 2 we present the possible attack that can be 

brought to a telephone network and in general how they 

can be faced exploiting the available information. In 

Chapter 3 we present a classical application of the PCA 

with an example of how the computation of the PCs can 

be parallelized, exploiting the hierarchical topology of a 

telephone network. In Chapter 4 we present our 

technique in detail, showing the exchange of messages 

needed to make it work. In Chapter 5 we present 

experimental results obtained with our technique in 

several weeks of real telephone traffic and a comparison 

with the results obtained with the centralized approach. 

In Chapter 6 we present our conclusions and a possible 

application of our technique in a network where more 

than one operator is present. 
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2 Security issues in a telephone 

network 

The typical flexibility of VoIP solutions also creates, in 

addition to obvious advantages as outlined above, serious 

security problems for communication systems that 

employ it. Since VoIP is directly connected with the data 

network, bringing an attack is much easier than it was in 

the traditional telephone network. 

Over time, the scientific community has listed several 

possible attacks towards VOIP or classical telephone 

architecture. A complete overview can be found in [5]. 

Below we provide the more important set of these 

attacks, showing which of them can be pointed out 

observing the general behavior of a user through a 

statistical approach. 

2.1 Attack classification 

The threats that may be brought towards phone 

architectures may be divided into using 5 basic groups: 
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 Eavesdropping: the attacker can monitor and 

intercept the entire signaling and/or the flow of data 

two or more phone users exchange. 

 

The attacker, however, cannot change them. In the 

PSTN, this type of attack was only possible with a tap 

in the terminal user. With VoIP, it is possible to bring 

it with success if you have easy access to the Internet 

and appropriate tools. This type of attack, as well as 

the obvious invasion of privacy, can lead to the 

interception of sensitive information, ranging from 

simple e-mail address, stolen to be used in a 

Fig. 2.1 Eavesdropping of a call 
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following attack of SPAM, to the number of credit 

card or bank account. 

 Interception and Modification Threats: in this 

case, the attacker is also able to change the signaling 

or the data flow. The attacker is able to interpose 

himself on calls routed to other telephone users (man 

in the middle attack), or modify the signaling so that 

the communication is supported with a degraded 

QoS. 

 

Fig. 2.2 Men in the Middle attack 

 Abuse of Service threats: this attack is used to 

commit fraud or to avoid paying certain telephone 
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services. Indeed, the attacker tries to steal the identity 

of someone else and let them pay the consequences of 

his behavior. The identity theft is also used by 

spammers, in order to avoid some of the prevention 

technique adopted from telephone network. 

In general this type of attack especially plagues VoIP 

users and is difficult to prevent only looking to the 

general behavior of the users. Given the type of anomaly 

detection technique we are proposing, this type of attack 

is out of the scope of this thesis. Otherwise, these threats 

are faced by the use of security software tools such as: 

 Authentication: is needed to understand who the 

sender of a specific call or packet is. Authentication 

can take place between different entities or end-to-

end. 

 Encryption: is needed to protect the content of 

packets from being read by other parties than the ones 

which are supposed to be their receiver. Encryption 

follows the same paradigm as authentication, and can 

be done between two gateways in a tunneling mode, 

or directly on an end-to-end basis. 
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The remaining groups of attacks are: 

 Interruption of Service: this type of attacks tries to 

compromise the availability of a given service, and it 

can be brought in several ways: sending invalid 

request so complex which may have the effect of a 

sharp slowdown or even a crash by a Proxy Server; 

sending a huge number of requests from a single 

entity of the telephone network (Denial of Service 

attack) or from more points at the same time 

(Distributed Denial of Service), saturating the 

resources available at a Proxy Server or an endpoint; 

trying to redirect a call that already exists towards a 

different endpoint or Proxy Server or to tear it down, 

sending a BYE or CANCEL request. 
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Fig. 2.3 DoS attack 

 Social Threats: among other type of attacks, there 

belongs the activity of telemarketers, where malicious 

user tries to deliver unsolicited, lawful or unlawful 

content regarding product or services. This type of 

SPAM is already present in the traditional PSTN 

network, but can be potentially more dangerous in 

VoIP architecture. Indeed, a telemarketer as to face 

considerably reduced cost in order to make such calls, 

both in the method by which these calls are placed (a 

simple software), both in the material costs of the 

calls themselves (they can exploit flat rates). 

A statistical approach, like the one we are proposing in 

this work, is able to face this last categories of attack 
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thanks to the fact that the activities of such malicious 

users is significantly different from the common behavior 

of a normal user. For example, analyzing the incoming 

and outgoing calls of a user which is carrying out a DoS 

attack, we would find subsequent short or unestablished 

placed calls and almost no received calls and it is easy to 

predict that this is not the normal usage of a telephone. 
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3 PCA for telephone anomalies 

When we are searching for an anomalous behavior within 

the network, we are probably dealing with a huge amount 

of data-samples described by multivariate features, even 

if these anomalous events occur infrequently. For this 

reason, defining a representative normal behavior is 

challenging and this boundary between normal and 

outlying behaviors, typically not precise, keeps evolving. 

With in mind the possible attacks we can face applying 

an anomaly detection technique, in this chapter we 

introduce a statistical tool able to express the data in such 

a way to highlight their similarities and differences, to 

reduce the dimensionality of the original dataset without 

much loss of information and to adapt itself to the work 

conditions: this software tool is the Principal Component 

Analysis (PCA).  

This technique is the core of the methodology we 

propose in this work.  
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3.1  Principal Component Analysis 

PCA is a coordinate transformation method that maps 

measured data onto a new set of axes, the Principal 

Components (PCs). Each component has the property 

that it points in the direction of maximum variation 

remaining in the data, given the energy already accounted 

for in the preceding components
[6]

.  

As such, the first principal component captures the total 

energy of the original data to the maximum degree 

possible on a single axis. The next succeeding 

components then capture the maximum residual energy 

among the remaining orthogonal directions. In this sense, 

the axes of the new reference system are ordered by the 

amount of energy in the data they are able to collect.  

But how is it possible to compute these Principal 

Components? In Figure 3.1 we show a two dimensional 

dataset and the representation of the eigenvector of the 

covariance matrix C of the dataset itself:  
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Fig. 3.1 Application of PCA to a 2-D dataset 

It is possible to see that the plot of data has quite a strong 

pattern. The two features do indeed increase together. 

The covariance matrix of such a dataset show strong 

cross-correlation between the features, and, accordingly, 

the representation of the eigenvectors of the covariance 

matrix provide us with information about the patterns in 

the dataset itself. As we can see from the blue lines, the 

first eigenvector goes through the middle of the points, 

like drawing a line of best fit. That eigenvector is 

showing how these two features are related along that 

line. The second eigenvector shows the other, less 

important, pattern in the data, that all the points follow 

the main line, but are off to the side of the main line by 
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some amount. So, by this process of taking the 

eigenvectors of the covariance matrix, we have been able 

to extract lines that characterize the data, i.e. the 

Principal Components. 

Generalization to n-dimensions, as in the case of the 

dataset we will use in our context, it is not easy to 

represent in the same graphical way, but works following 

the same principle. 

3.1.1 Computation of the Principal 

 Components 

Shifting from the geometric interpretation to a linear 

algebraic formulation, the computation of the Principal 

Components starts from the evaluation of a dataset. Each 

data-sample of this dataset is described by several 

dimensions, where each dimension represent a particular 

feature with which we evaluate the behavior of the data-

sample itself. For example, in a telephone network each 

data-sample can be a phone user, and each feature can be 

a statistics collected in a particular interval of time 

regarding the use of the phone he has. A possible feature 

can be the number of calls placed in the period under 
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analysis, or their average duration. Given this 

assumption, the description of the whole dataset is done 

through a matrix Q, where each row represents a phone 

user and each column represents a feature.  

In a general case, the dataset Q is: 

          

where X is the number of data-samples in the dataset and 

N the number of features used for their description. 

The PCA is applied to the matrix Q and, as we have 

shown in the preceding sections, transform in a new 

reference system the features used to describe each data-

sample. The obtained PCs are a linear combination of the 

original axes, and are ordered by the quantity of dataset’s 

energy they are able to collect. Starting from the dataset 

Q, it is possible to compute the PCs following two 

different approaches: the covariance method and the 

singular value decomposition.  

Since we will deploy PCA in a distributed environment, 

we only describe the covariance method. Indeed, it is 

possible exploit the different PoPs already present in a 



27 

 

telephone network, as shown in [7], through the 

covariance method, parallelizing the computation.  

With this method, the computation of the Principal 

Components is performed through the following steps:  

1. Computation of the empirical mean of each column: 

        
 

 
       

 

   

 

      at the end of this step, µ is a 1×N row vector. 

2. Subtraction of the mean from the correspondent 

column: 

        

      where h is a column vector X×1 of 1’s and B at the 

end of the step is an X×N matrix. 

3. Computation of the empirical covariance matrix of B: 

  
 

 
     

at the end of this step C is an N×N matrix. 
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4. Computation of eigenvalues v and eigenvectors g of 

the covariance matrix C. The number of features 

used, and accordingly the dimensionality of C, can be 

at most in the hundreds, and any method we choose 

to evaluate the eigenvector and the eigenvalues make 

this step less computationally heavy compared to the 

preceding ones. Indeed in that case we are dealing 

with matrices large proportionally to our dataset. 

5. Sorting the eigenvectors g by the decreasing order of 

the correspondent eigenvalues, i.e. the quantity of 

energy of the dataset they are able to collect. V and G 

store the eigenvector and the eigenvalues in the new 

order. 

V represents the new basis for the starting matrix B, and 

its columns are the Principal Components we are 

searching for, ordered by the energy of the dataset they 

are able to collect. 

3.1.2 Mapping the data-samples 

Given the new reference system, expressed with the 

matrix V, it’s possible to map all the data-samples in the 

new reference system through the following equation: 
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where each row of B’ represents the data-samples in the 

reference system described by the Principal Components. 

For example, a final result can be the one shown by 

Fig.3.2: 

 

Fig. 3.2 Mapping of Data-samples through PCA 

If it is possible to find a pattern within the dataset, the 

first Principal Components can represent each data-

sample with a small loss of information because they are 

able to collect almost the entire energy within the dataset. 

The pattern shared by the majority of the data-sample is 

the common behavior of the network, and for this reason, 
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the first PCs are what we claim to be the legitimate 

profile. 

This is the case of the preceding picture, where a single 

PC is able to characterize the whole dataset. The 

subspace obtained from the first PCs is also known as the 

normal subspace. Conversely, a data-sample that has a 

different behavior from the pattern described by the 

normal subspace needs also the last Principal 

Components to be well characterized. The subspace 

described from these PCs is also called the anomalous 

subspace.  

From this sentence, it follows a way to identify data-

samples that acts as outliers. In literature, the error made 

approximating data-samples with a small number of PCs 

is called Squared Prediction Error (SPE) and represents 

their energy into the anomalous subspace. For this 

reason, the SPE discriminate if a data-sample follow or 

not the pattern described by the normal subspace. If we 

use the matrix PC to contain the first P Principal 

Components, the SPE can be evaluated with the 

following equation: 
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where PC is an N×P matrix. Using a dataset with the 

subtraction of the averages of each column is a 

fundamental part to minimize the SPE.  

In previous work where Principal Component Analysis 

was employed, the tests used to choose the number of 

PCs that describe the normal subspace were quite 

different. Among several other tests we have tried
[11]

, 

such as the Cattel’s Scree Test, the empirical 3  method 

proposed by Lakhina in [3], the Humphrey-Ilgen parallel 

analysis and the Broken Stick method, in this section we 

present the only one that had successful results in our 

context: the “Cumulative percentage of Total 

Variation
[6]

”. The chosen method computes the 

cumulative percentage of energy contained within the 

first P eigenvectors with the following equation: 

      
      

   

      
   

 

(remember that G contains the value of the ordered 

eigenvalues, corresponding to the variance collected 

within the correspondent PC). The number of PCs of the 

normal subspace is the first P able to collect at least a 
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fixed percentage of the total. In our methodology we set 

this percentage with a Montecarlo simulation
[14]

 to a 95% 

value. 

3.2  Dataset Description 

Thanks to the collaboration with a small European 

telecom operator, we had the possibility to evaluate the 

application of PCA in a telephone environment over a 

dataset composed by 30 millions of calls, collected in a 

period of five consecutive weeks. In average, we 

obtained 148K active users each day. The calls were in 

form of anonymized Call Detail Records (CDR), whose 

structure is represented in Fig. 3.3.  

 

Fig. 3.3 Call Detail Records 

For each call, a CDR contains information such as the 

source and destination phone number (at least one of the 

interpreter of each call was an user of the operator that 

collected the calls), the time the call started, the call 

duration as well as the cause code or response code, 

which indicates whether the call was established or if an 
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error occurred. Even if CDRs were from VoIP as well as 

PSTN networks, this field was given accordingly to SIP 

reply codes
[8]

.  

In our analysis, we interpreted each replay code as a 

particular status for the correspond call: 

Call Status Reply Code 

Normal 200,408,486 

Suspicious 4XX 

Network error 5XX,6XX 

We considered a call ending as normal if the code was 

successful, if the called user did not answer in time or 

was already busy in a conversation. We considered a call 

ending as suspicious if there was any other client failure. 

We considered a call ending with network error if there 

was a server or global failure in the network. 

In our trials, for each day, CDRs were grouped by users 

and we evaluated the behavior of each user extracting the 

following N=10 features: 

 number of calls: placed and received; 

 number of established calls: placed and received (i.e., 

calls with a duration greater than zero); 



34 

 

 number of calls suspicious and with network errors; 

 number of distinct callers and distinct callees: total 

and on established calls only. 

These features were inspired by previous works on 

analysis of phone data
[9]

. The reason behind considering 

a per-user set of features lays in the fact that our goal was 

to identify users responsible for anomalous calls rather 

than in detecting the anomalous calls itself. Under this 

respect, we believed that the choice of an observation 

window of one day was a reasonable trade-off between 

the promptness of the anomaly detection mechanism and 

the ability to gather user’s behavior with respect to the 

chosen features.  

3.3  Telephone network: application 

 scenario 

Telephone networks commonly follow a hierarchical 

topology, where users connect to the network through 

Points of Presence and interconnecting switches ensure 

the communication between PoPs. In Fig.3.4 can 

represent a possible infrastructure of a telephone 

network. 



35 

 

 

Fig. 3.4 Possible Topology of a Telephone Network 

Each PoP is in charge for a specific geographical area 

and for a set of users which is almost stable over time. 

This topology allows scalability as the number of users 

and the volume of traffic within the network increase.  

In general, even if in the network there are already probes 

with a partial visibility of the network itself, an anomaly 

detection technique relies on a central node that collects 

all the information needed, and directly applies the 

detection of the anomalous traffic to the raw data. This 

solution suffers of different drawbacks:  

 it does not exploit the PoPs already present in the 

network; 
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 requires the transport of a huge and sensitive amount 

of data through the network; 

 presents a single point of failure which can become 

itself target of attacks. 

With the assumption that the PoPs just mentioned in a 

telephone network are able to collect the CDRs both for 

the incoming and outgoing calls, regarding the set users 

of their telecomm operator they are in charge of, we 

present in the following sections two different application 

of Principal Component Analysis in a telephone 

environment: an anomaly detection technique that 

exploits the different PoPs to parallelize the computation 

of PCs, but still centralizes the raw data and the 

identification of the anomalous users; our anomaly 

detection technique, where a PoP that observes traffic of 

its users and records information about their calls, 

identifies directly the anomalous users, only receiving the 

description of the normal subspace of the other probes 

within the network from a central orchestrator. With our 

solution we solve part of the problems a centralized 

technique has. Indeed, we avoid the transportation of the 

raw data within the network, we exploit all the present 
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PoPs and we distribute the decision over the behavior of 

the single user, reducing the importance of the central 

node in the anomaly detection architecture. 

3.4 Centralized PCA-based anomaly 

detection technique 

As we have seen in the preceding sections, Principal 

Component Analysis is able to point out data-samples 

that do not follow the general behavior of the dataset, i.e. 

what we claim to be the legitimate user profile.  

In the first approach we propose, we apply the PCA in a 

central node to a matrix Q where each row represents one 

of the user present within the entire network, and each 

column is one of the feature we extracted from the CDRs 

following the process described in section 3.2. 
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3.4.1 Parallelization of the computation of 

 PCs 

Gathering the Principal Components of a matrix like Q 

(on average in our context a 150K×10 matrix) is 

computationally heavy due to the calculation of its 

covariance matrix. For this reason, even if the decisions 

are taken centralizing all the information from the probes, 

we found interesting to parallelize the computation of the 

covariance matrix, thus of the Principal Components.  

As we said before, the empirical covariance matrix of a 

generic array Q in general can be computed through the 

equation: 

  
 

 
         

 

where X is the number of row of Q and µ is an arrow 

vector containing the averages of the columns of Q. 

Following what we found in [7], it’s possible to gather 

the same results with the subsequent steps: 

1. Evaluation of the number of row (X) and of the 

averages (µ) of the columns of matrix Q. 
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2. Horizontal split of the original matrix Q into n 

subsets. It’s not important that the subsets obtained 

have the same number of row, as we can see from 

Fig. 3.5. 

 

Fig. 3.5 Splitting B 

3. For each subset Xi, evaluation of the partial result: 

          
     

4. Obtaining the covariance matrix by summing and 

normalizing the partial results:  
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If we consider the subset Xi as the subset a probe can 

obtain observing its part of the network, it’s possible to 

use this procedure to parallelize the computation of the 

covariance matrix C, even maintaining the anomaly 

detection stage in the central node. In regard to the 

scenario of our context, the exchange of messages we 

deserve to make it work can be resumed thanks to 

Fig.3.6. 

 

Fig 3.6 Parallelize the computation of C 

1. each probe evaluates the number of user Xsub-i of its 

subset, computes the sum of each column of Xi and 

store them in µpar-i; 
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2. each probe sends Xi, Xsub-i and µpar-I to the central 

node; 

3. while each probe computes CovPari, the central 

nodes computes the total number of users in the 

dataset and the array of the averages of each column: 

         

 

   

   
 

 
       

 

   

 

4. each probe sends CovPari to the central node; 

5. the central node gathers C (a 10×10 matrix), its 

eigenvalues and eigenvectors. Sorting the eigenvectors by 

the correspondent eigenvalue, the central node gathers the 

Principal Components, i.e. matrices V and array G. 

Experimental results proved that in our context the parallelized 

approach is able to obtain the same results of the centralized 

approach, saving up to the 95% of the time. 
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Fig.3.7 Computational time for C 

We tested the time needed to compute the covariance 

matrix without considering the transport of the 

information between the probes and the central node. We 

chose this solution because both approaches almost send 

the same information through the network and we can 

consider this time as a constant. In the trials of the 

parallelized approach, each probe had a visibility of 

around 10K users, and this means that increasing the 

number of users in the network requires more probes. 

As we supposed previously, the computation of the PCs 

from the covariance matrix C only represents a small 

percentage of the total computational time. 
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3.4.2 Anomaly detection stage 

At the end of the computation of the PCs, whatever 

approach we decide to implement, the central node ends 

up with the Principal Components and the original 

dataset Q. Following the steps described in section 3.1, 

the central node is able to split the new reference system 

described by the PCs into the normal and anomalous 

subspaces thanks to the cumulative percentage method, 

to map onto the two subspaces all the active users within 

the network in the day under analysis and to evaluate the 

SPE characterizing the approximation made choosing a 

subset of the available PCs. Thanks to a Montecarlo 

simulation, we evaluate a threshold T for the energy of 

the users within the anomalous subspace and we label as 

anomalous all the users that exceed the given threshold.  
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4 A distributed PCA-based 

approach in a telephone 

network 

A centralized technique, as the one just proposed, suffers 

of several drawbacks, as we already mentioned. In 

addition, an anomaly detection technique that exploits the 

Principal Component Analysis also suffers from the 

pollution of the legitimate profile. Indeed, if a small 

number of outliers in the dataset act completely different 

from the common behaviors of the data-samples, the 

PCA will gather Principal Components biased towards 

this anomalous behavior
[10]

. Therefore, also the labeling 

of each data-sample will result biased.  

For this reasons, in this chapter we propose a new 

methodology that tries to solve this problem, gathering 

the legitimate-user profile avoiding the outliers from 

being part of the computation of the PCs.  

4.1 Pollution of the legitimate-profile 

To understand how the PCA is sensible to the pollution, 

we propose a simple graphical example with Fig.4.1. 
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Fig. 4.1 Pollution of PCs 

In the simple dataset shown in the picture, we used two 

features to describe the data-samples. Even if only the 

4% of the data-samples acts in a different way compared 

to the visible pattern revealed, the first Principal 

Component is almost in the middle of the two groups. As 

we already mentioned, it’s clear how an anomaly 

detection technique that labels the data-samples as 

anomalous with a huge energy in the anomalous 

subspace (in this case the one described by the second 

PC), can make wrong decision due to the biased 

representation of the new reference system obtained. 
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4.2 The methodology 

Considering the same scenario we present in the 

centralized approach, in our methodology the process of 

gathering the legitimate user profile still relies on the 

communication between a central node and the PoPs. 

This exchange tries to gather and apply to the dataset PCs 

free of pollution. 

 

Fig. 4.2 Graphical summary of the methodology 

To achieve such a result, we will follow the subsequent 

steps: at first, each PoP applies the PCA to its subset of 

users to gather the description of the normal subspace, 

and sends such description to the central node; the central 
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node than applies an AHC algorithm to identify a subset 

of users considered free of pollution and computes the 

legitimate-user profile; eventually, each PoP receives the 

profile and performs PCA-based anomaly detection 

within its subset of users.  

4.2.1 Probe side: PCA analysis 

Given Xp users and the N features we decided to extract 

from the CDRs, each probe p performs PCA on the 

matrix Qp =  Xp× N, as shown in section 3.1. At the end 

of the process, each probe gather its own PCs, that 

represent a snapshot of the behaviors of the users they 

serve, and splits the new reference system into the 

normal and anomalous subspaces with the cumulative 

percentage method. As in the centralized approach, the 

first Lp components able to collect the 95% of the energy 

of the dataset are chosen to describe the normal subspace. 

Eventually, each probe sends to the central node the 

following information: 

 the matrix V, which contains all the PCs of the 

subset, the number of components Lp that describe 

the normal subspace and the array G, which contains 
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the ordered eigenvalues of Qp. This type of 

information is used to find similarities within the new 

reference systems obtained by the probes. 

 the number of users of its own subset Xp, the sum of 

the column of Qp, i.e. µp, and its partial Covariance 

Matrix CovParp. This information is the same we 

used in a previous section to parallelize the 

computation of the covariance matrix of the whole 

dataset, and it will be useful in following steps to 

obtain in the central point the PCs of the dataset we 

consider free of pollution without any approximation, 

although the central node does not have the raw data.  

4.2.2 Central node side: gathering the 

 legitimate  user profile 

The goal of this step is to identify the community of 

probes, which encloses the description of legitimate 

users. The supposition made is that probes that do not 

contain outliers act in the average in the same way and 

have similar PCs that describe the normal subspace (we 

will call them PCp) even if they only see different parts 

of the network. We decide to evaluate how the PCp are 



49 

 

similar and discover the “clean” community through an 

Agglomerative Hierarchical Clustering algorithm. In the 

following, we refer to such community as CN.  

Hierarchical clustering mechanism is proven to work 

well when coupled with outlier detection techniques
[4]

. 

AHC creates a hierarchy of clusters, which may be 

represented in a tree structure called dendrogram, 

following a bottom-up approach. The leaves of the tree 

correspond to each individual probe and the root consists 

of a single cluster containing all the probes. The 

algorithm starts from the leaves and successively a series 

of merging operations follows that eventually forces all 

the probes into the same cluster. The choice of the 

clusters to merge is determined by a linkage criterion, 

which is a function of the pair wise distances between 

observations: in our case, we use a Weighted Euclidean 

Distance metric to evaluate how different the PCs of the 

probes are.  

Given M probes, the central node computes the mutual 

Euclidean distance between the PCp of one probe 

towards the PC of the other M-1 probes following these 

steps: 
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 in case the probes have a different number of 

components describing the normal subspace, the 

central node computes the distances between the 

probes considering a number of PCs equal to L = 

maxp=1,…M{ Lp }. 

 considering the PCs mutually orthonormal, the 

central node computes for each possible couple of 

probes, only the Euclidean distance of PCs that 

belong to the same column of matrix V, i.e. it 

computes dj(PCp,PCq), the distance between the j-th 

components of the probes p and the j-th components 

of the probes q.  

 due to the fact that the more the energy a PC is able 

to collect, the more the behavior it is describing is 

present within the dataset, we decide to give to the 

first components more importance in the computation 

of the total distance between the PCp of different 

probes. For this reason, the mutual Euclidean distance 

between two probes is computed as follows: 
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where   
  represent the average percentage of energy 

the    j-th component counts for in the couple of 

probes we are analyzing on the total energy of their 

normal subspace. The computation of   
  is made 

through the following equation: 

    
        

           
 
   

  

Given such computation, the maximum Euclidean 

Distance between probes is   . 

Once the central node has computed the Euclidean 

distance between all probes, the AHC algorithm 

aggregates the pair of probes that exhibit the minimum 

mutual distance into one cluster. The distance between 

this new cluster and a given probe is then the average of 

the distances between the probe and each member of the 

cluster:  

                       
 

 
    

 

 

   

                
 

 

   

              

The algorithm iterates joining probes until one of the 

following two conditions are reached: the mutual 

Euclidean distance between clusters is over a given 
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threshold S, or all the M probes are grouped into one 

single cluster. 

An example of how a dendrogram can be in our context, 

considering 20 probes and a given threshold S as stop 

condition follows in Fig. 4.3. 

 

Fig.4.3 Example of a Dendrogram 

In our methodology, the threshold S is set to the average 

of the minimum Euclidean distances between a given 

probe towards the other: 

  
 

 
            

    

 

   

             



53 

 

When AHC returns, the cluster that contains the majority 

of probes is defined as the community CN, while the 

remaining probes belong to the community of outsiders 

called CA. The supposition behind this decision is that the 

outliers, or group of outliers, changes the description of 

the normal subspace each in a different way and the 

biggest group that acts in the same way is free of 

pollution. By the way, we will see in the following 

section how to avoid taking the wrong community in the 

case a huge number of outliers of the same species affect 

the description of the normal subspace of several probes. 

At this point the central node gathers the description of 

the legitimate-user profile, by computing the PCs that 

describe the normal subspace of CN, namely PCN. The 

computation is performed starting from the covariance 

matrix C of the probes belonging to the clean 

community, based on the information already sent by its 

probes: 

  
 

  
         

 

   

   
     

 

All this information is already present in the central node, 

and can be gathered with the following computation: 
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   . 

In this way, the PCN are obtained without sending the 

raw data to the central node and without any 

approximation. From the covariance matrix all the PCs of 

the clean community are easily computed through the 

determination of its eigenvectors and eigenvalues. As for 

the single probe, also in this case the number of PCs 

representative of the normal subspace is chosen by using 

the cumulative percentage method and 95% of the total 

energy of CN as the minimum amount of energy it has to 

collect. It is worth noting that this new set of PCs better 

describe the legitimate user profile with respect to those 

computed by the single probes, given that it is computed 

on a more complete set of normal users.  

Hence, the central node distributes back to the probes the 

PCN, together with the value of the threshold S, the array 

GN and the averages  
 

. This kind of information is sent 

because the probes will use them to perform a cross-

check of the profile being gathered. 
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4.2.3 Community check: the Joining Phase 

Before performing anomaly detection, each probe checks 

whether the profile actually corresponds to one of 

legitimate users. Indeed, it may happen that the AHC 

algorithm chooses the wrong community, even if this 

community represents the bigger community within the 

network. In fact, it is possible that probes with a 

widespread type of outliers have similar PCs, that they 

are grouped in the same community and, in a period of 

time where the number of outliers is not negligible and 

the CN counts for a small number of probes, which this 

type of anomalous community becomes the bigger 

community within the network. In this case, the 

particular type of outliers characterizing the subset of 

probes wrongly chosen as CN will pollute the 

computation of PCs and they will go completely 

undetected in the anomaly detection stage. 

To prevent this problem each probe belonging to CA 

performs the following scheme: 

1. compute the SPE of their own users, normalizing 

them by the averages of the column of CN, i.e.  
 

, 

and mapping them onto the received profile: 
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where h is a column vector Xp×1 of 1’s; 

2. sort users by their SPE; 

3. discard the user with the highest energy accordingly 

to the legitimate profile received; 

4. compute their own PCp without considering 

discarded users; 

5. if the mutual distance between PCN and PCp, 

computed as: 

                

  

   

             

where    is the number of PCs of the normal 

subspace of CN, is bigger than S go to step 2; 

6. the probe successfully joined the clean community. 

In case the central node gathers a polluted profile, i.e. CN 

contains widespread anomalies, probes without that kind 

of anomaly will not obtain PCp that satisfies the 
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condition of Step 5 and an unsuccessful joining phase 

reveals that. 

At the end of this phase the probes communicate to the 

central node whether they were able to join CN or not. In 

case of failure, the central node picks the next-largest 

community identified by AHC as CN, computes its PCs 

and sends them with the additional information 

mentioned before to the probes. The probes belonging to 

the new CA repeat the joining phase. If the joining is still 

unsuccessful, the central node increases the threshold S 

by the 10% and repeats the procedure, until all the probes 

send a positive feedback about the profile PCN. Note that 

in case S reaches the maximum d(PCp,PCN), all probes 

are grouped into one cluster, and our method becomes 

equivalent to the centralized approach. In Fig.4.4 we 

show a case where all the probes erroneously belonging 

to CA not able to join the “clean” community. 
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Fig.4.4 Wrong CN detection 

As we can see from the picture, the Euclidean Distance 

grows instead of decreasing when we remove the most 

“anomalous” users, meaning that they are not able to 

gather the same common behavior of CN. 

Thanks to this procedure we are also able to avoid 

problems when the threshold S is too low and a small 

number of probes is not able to reach such grade of 

similarity with CN. In Fig.4.5 there is a case where this 

happened, with only two probes not able to reach the low 

threshold S. 
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Fig.4.5 Unsuccessful joining phase towards the correct CN 

In general, if CN is chosen correctly all the probes reach 

the same PCs removing a small number of users and the 

joining phase successful ends, as in the case we show in 

Fig.4.6. 
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Fig. 4.6 Successful joining phase 

4.2.4 Probe Side: Anomaly detection 

When the central node receives the successful feedback 

from all the probes, sends back an acknowledgment to 

the probes and the anomaly detection stage starts. Note 

that all the probes can exploit the PCN they already have. 

This anomaly detection stage serves the purpose of 

detecting the users responsible for anomalous behaviors 

in phone traffic, based on the profile gathered at the 

central node with the procedure just presented. 

During this phase, each probe, even the probes belonging 

to CN, maps its subset of users onto the PCN, and 
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computes their energy into the anomalous subspace. This 

operation corresponds to computing the following SPE 

for each user: 

                           
   . 

The probes then compare the SPE of each user with a 

threshold value Tp, which is set by each probe by means 

of Montecarlo simulations, and label all users with a 

        as anomalous. 
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5  Experimental Results 

To apply our methodology to a distributed scenario as 

described in Chapter 4 from the available data, users that 

appear in the first day under analysis have been randomly 

split among a typical number of probes that a telecomm 

operator can have, i.e. 20 probes. In the following days, 

the same association user-probe is kept if the user is 

present the days before, otherwise we randomly assign it 

to one of the probes. In this way, we end up with 

approximately 8K users for each probe. 

For each day, we compute the matrix Qp of each probe, 

and consequently the description of the normal subspace 

PCp, by following the procedure outlined in the previous 

chapter. 

In the first part of this chapter we will show the results of 

our methodology related to one initial random 

assignment between users and probes. In the second part 

of this chapter we will show the comparison of those 

results to the one obtained from the centralized PCA-

based approach. However, experiments were repeated by 
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randomly varying the initial assignments, verifying that 

the reported considerations hold. 

5.1 Numerical evaluation of the Distributed

 anomaly detection technique 

In this section we propose the numerical results we 

obtained with the distributed methodology proposed. 

To avoid showing repetitive results, in this section we 

only use the most interesting week of the five available 

ones. 

5.1.1 Probe side: PCA analysis 

In our simulation, each day the probes present in the 

network started this phase extracting from the CDRs the 

features we decide to use regarding incoming and 

outgoing calls of the users it is in charge of.  

To decide to which day a call placed across two different 

days belongs, we use the lasting timer as assignment 

parameter. If the interpreters of the call under analysis 

belong to the telecom operator, the same call is 

considered both in the computation of the statistics 

concerning the incoming calls of the callees, and in the 

computation of the statistics of the outgoing calls of the 
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callers. If only one of the interpreters belongs to the 

telecomm operator, the call is only used to evaluate the 

statistics of the internal user. Also evaluating the 

statistics of the external user can be misleading because 

we only have partial visibility of their behavior, i.e. their 

interaction with the internal users of our telecomm 

operator. 

 

At the end of the feature extraction phase, each probe 

ends up with its Qp, and following the procedure 

illustrated in the previous chapter, computes its own PCp. 

To compare how different the local PCs  in this initial 

stage for the week under analysis is, we show Table 5.1. 

Day 
Average 

           

Maximum 

           

Max 

#PCs 

Norm. 

Subspace 

Threshold 

S for 

AHC  

Monday 0.258 0.629 4 0.118 

Tuesday 0.287 0.622 4 0.139 

Wednesday 0.333 0.578 5 0.128 

Thursday 0.360 0.559 5 0.129 

Friday 0.333 0.585 5 0.143 

Saturday 0.382 0.775 5 0.144 

Sunday 0.419 0.674 5 0.150 

Tab.5.1 Starting condition 
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As we can see from the table, each day presents at least a 

couple of probes that gathers PCs for the normal 

subspace completely different from each other (near the 

50% of the maximum possible). In general, this 

difference is due to a few users present in one of the two 

probes acting differently from the legitimate behavior, 

i.e. the behavior shown from the majority of the users, 

and it is a demonstration of how easily the computation 

of the PCs can be polluted.  

On the other hand, the threshold set from the AHC 

algorithm for the determination of the clean community 

is very low if compared to the average distance shown 

from the probes. For this reason, only probes with a high 

degree of similarity can be part of CN. 

In Fig.5.1 we show the situation of the Weighted 

Euclidean Distance between the probes in the day of the 

week where the PCs are in average more distant from 

each other, i.e. Sunday. 
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Fig. 5.1 Heat map - Initial Condition 

In this heat map the distance between probes is shown 

through colors. The cold colors represent probes with 

PCs very similar to each other, instead the hot colors 

represent probe with very different PCs.  

Even in this day where the PCs are in average different 

from a probe to another, the heat map points out 

interesting patterns. There are clusters of several probes 

where the mutual distance d(PCp,PCq) is towards zero, 

suggesting that those probes have a similar description of 

the normal subspace. For this reason, they represent a 

single community during the AHC algorithm since they 

have users that act in general in the same way. However, 
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some probes differ from all others and result in a yellow 

stripe in the heat map (e.g. probe number 11). Finally, 

there are probes which share a similar description of their 

normal subspace, but such description differs from the 

behavior described by the majority of the probes: a 

yellow stripe interleaved by blue square is the visual 

representation of such pattern. Even though this type of 

probes does not count for the majority of the probes, they 

will be a single community too under the AHC 

algorithm. 

5.1.2 Gathering the legitimate profile 

Thanks to the methodology, the central node have 

gathered every day a community where each probes is 

able to join before the distributed technique becomes 

equal to the centralized one, i.e. the probes is considered 

as a single cluster. In Table 5.2 we show the results for 

the same week presented in the preceding section.  
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Day 
Maximum 

           

Probes 

ϵ CN 

Number 

PCs 

Norm. 

Subspace 

PCN 

Monday 0.091 9 3 

Tuesday 0.080 9 3 

Wednesday 0.095 6 4 

Thursday 0.136 4 4 

Friday 0.065 3 4 

Saturday 0.091 8 4 

Sunday 0.073 3 4 

Tab 5.2 Situation after all probes join CN 

As we can see from the table, after the “joining of the 

community phase” each probe is very close to the PCs 

gathered from the CN community. This means that in 

every day we are able to gather a general description of 

the behavior of the users that can be found in each probe, 

i.e. the legitimate profile. If we compare the PCs 

gathered from each probes to the one gathered from the 

other probes at the final stage of the procedure we can 

find a situation as the one in Fig.5.2. 
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Figure 5.2 Final stage gathering legitimate profile 

The PCs gathered from each probe during the “joining 

phase” are not only similar to the PCs of the CN, as we 

can see also from the last line of the picture where PCN is 

reported, but also to each other. 

It is also possible to see that in general less than the 50% 

of the probes belong to the clean community. This means 

that at least the 50% of the probes gathers a polluted 

description of the normal subspace in the initial stage, but 

is able to point out the users responsible for this 

pollution.  

Finally, to collect the 95% of the energy, the clean 

community needs a smaller number of PCs. Indeed, only 



70 

 

considering the users that follow the legitimate profile 

make easier the description of the normal subspace 

through the Principal Component Analysis. 

But what is the legitimate user profile gathered during 

this stage? Each day the methodology computes the PCN 

based to the behavior of the users it is analyzing, and in 

general we obtain different snapshots for different days. 

What is interesting is that the first PCs of the clean 

community is fundamentally stable in the five weeks, and 

let us analyze the nature of the legitimate profile. 

 

Tab. 5.3 Evaluation of first PCN 
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From Table 5.3, the first PC is able to collect more than 

the 50% of the whole normal subspace. Considering that 

the PCs are the orthonormal directions composing the 

new reference system gathered through PCA, the sum of 

the square weights of each feature is the same if it is done 

through the 10 PCs, so how much a feature is present in 

the normal subspace, the more this feature will be well 

approximated only using this description. For this reason, 

according to our dataset and the partial representation of 

the normal subspace shown, we find that legitimate-users 

can place and establish a number of calls that spans over 

a wide range and towards a number of callees that can 

vary, while his number of received calls, their 

establishment ratio and the number of callers has to be 

close to the average of the dataset. 

This representation of the normal subspace shows that 

most of the variability of our dataset is due to active 

features. 
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5.1.3 Anomaly Detection stage 

As we said in the preceding chapter, to perform anomaly 

detection, we order the users by the energy they have in 

the anomalous subspace after mapping them onto the 

PCN and we perform a Montecarlo simulation for each 

probe, even for the probes belonging to CN, to set a 

threshold Tp to discriminate between legitimate and 

anomalous users.  

At the end of this stage we inspect the characteristic of 

the users labeled as anomalous and we discover that most 

of them act as well-known malicious users or that they 

are enduring an attack. Remember that we are working in 

an unsupervised scenario, without any kind of ground 

truth, except 4 telemarketers confirmed by the telecomm 

operator. 

All the users pointed out in this phase can be profiled in 

the following eight major behaviors: 

 users that place almost all the calls where they are 

involved (at least 90% out of the total), with a low 

percentage of establishment (at most 30% of the calls 

placed, but in general under the 10%) and towards a 
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few number of callees (at most the 20% of unique 

callees on the total number of calls placed). This are 

statistics that can be found when an attacker is 

carrying out a DoS attack, i.e. he is repeatedly calling 

the same user to put out of order its terminal or 

making him stop answering. 

 users that place almost all the calls where they are 

involved in (at least 90% out of the total), with a 

percentage of establishment near the 50% towards a 

big number of callees (at least the 75% out of the 

total number of calls placed). This statistics are 

similar to the ones belonging to the only ground truth 

we had, i.e. 4 telemarketers confirmed by the 

telecomm operator, that our methodology was able to 

always point out when they were active during the 

period under analysis. 

 users that place almost all the calls where they are 

involved in (at least 90% out of the totals), with a 

high percentage of establishment (at least 80% of the 

calls placed) towards few callees (less than 20% if 

compared to the number of placed calls). This type of 

behaviors seems to be anomalous but not critical. Due 
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to the fact that those users count for at least 50 to 700 

calls placed every day, however this profile shows 

strong relationship between users. 

 users with a received out of places call ratio of at 

least 90%, with a low percentage of establishment 

(30%) from few callers (less than 10% compared to 

the number of received calls). This type of profile can 

appear in the case a user is under a DoS attack, as 

said before. 

 users with a received out of places call ratio of at 

least 90%, with a percentage of establishment less 

than the 20%, from a big number of callers (at least 

the 50% compared to the total number of calls 

received). This type of statistics is the same we can 

found when a user is under a DDoS attack. 

Differently from the previous profile, more than one 

user starts calling the same callees, involving all its 

available resources. 

 users with a received out of places call ratio of at 

least 90% with a high percentage of established call 

from a big number of callers (respectively at least 
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80% and 60% out of the total calls received).This is a 

typical behavior a call-center can have. 

 users with a received out of places call ratio of at 

least 90%, with a high percentage of establishments 

(at least 80%) from few callers (less than 10% out of 

the calls received). Also in this case users are 

anomalous but probably not malicious. 

 users with at least 20 calls with network error calls or 

ending with a suspicious code. This kind of users can 

represent a problem within the network. 

In Table 5.4 we report the number of users for each 

profile pointed out in the week we are discussing. 

Profile # of users 

DoS victim 40 

DDoS victim 11 

Call Center 12 

Bugged User 55 

User Bugger 14 

DoS attacker 129 

Telemarketer 11 

Network problem 63 

Tab.5.4 Anomalous users pointed out 
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The number of DoS attacks and DoS victims, such as the 

number of bugged users and user buggers differs because 

we do not compute statistics of external users to the 

considered network. All the users, except for the one 

expressing network problems, are also shown in more 

detail in Fig.5.3. 

 

 

Fig. 5.3 Calls received versus Calls placed anomalous users 

In this first figure we see that the anomalous users follow 

two main big profiles: a user that places all the calls 

where he is involved; a user that receives all the calls 

where he is involved. There are not anomalous users that 

share the number of calls where they are involved equally 
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between calls placed or received, i.e. the type of behavior 

we can foresee to be the normal usage of a phone. 

Another interesting characteristic is that all the 

anomalous users are at least involved in 50 calls. 

In Fig. 5.4 and 5.5 we represent the users in two different 

planes: we show the establishment rate and unique callers 

for the passive users and the establishment rate and 

unique callees for the active users. 

 

Fig.5.4 Description of Passive anomalous 
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Fig. 5.5 Description of anomalous active users 

In both pictures it is clear that the clustering of the 

anomalous users correspond to different behavior of the 

users pointed out. 

Considering the profiles pointed out from the distributed   

PCA-approach, we search for them also into the users 

with a SPE under the threshold Tp, i.e. the users 

belonging to the legitimate profile. In this analysis we 

have actually found users with the same profile of the 

anomalous users, but involved in general in a smaller 

number of calls compared to the ones pointed out in the 

anomaly detection stage. Accordingly to this, PCA 

assigns energy in the anomalous subspace to users 
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following the same behavior proportionally to the 

number of calls they are involved in.  

We conclude this section showing the comparison of the 

PCs of the clean community with or without the 

anomalous users we point out in the anomaly detection 

stage. Indeed, as said previously, in the clean community 

there are also sparse anomalous users that affect slightly 

the computation of PCN. Analyzing the Weighted 

Euclidean Distance between PCs computed considering 

or not the anomalous users contained within CN, we 

obtain the results shown in Fig.5.6. 

 

Fig.5.6 Comparison PCs of CN considering or not anomalous 

users 
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As we can see from the picture, except for the peak 

registered the forth Monday of the period, we have found 

a difference at most of the 3% of the maximum distance 

we can obtain. 

It is this result, with inherent implementation difficulties, 

that prevent us from computing and applying the PCN of 

the clean community after cleaning them of its 

anomalous users as the legitimate user profile in the 

detection stage. 

5.1.4 The importance of the Joining Phase 

Thanks to the “Joining Phase” we are able to prevent a 

wrong selection of the clean community. In this section 

we will show an example of the possible anomalous 

behavior that the biggest community can contains. 
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Fig.5.7 Prevent the wrong community selection 

Gathering the PCN from the biggest community of the 

dendrogram in Fig.5.7, no probe is able to join it. 

Analyzing this community after mapping all the users 

with its own PCs, we are able to point out only 2 users 

belonging to the profile described in the previous section. 

Removing those users, the PCs of the normal subspace 

do not change (the change is less than 1%) and there is 

not the joining of the other probes even after this 

recalculation. 

Performing our procedure, we obtain as the clean 

community the next-largest community and every single 



82 

 

probe, even the ones belonging to the biggest 

community, is able to join it. To evaluate how different 

are the PCs obtained, we compute the Weighted 

Euclidean Distance between the PCs of the two 

community and we obtain a distance of 0.3 (almost the 

20% of the maximum possible). Applying the PCN to the 

biggest community we have found several anomalous 

users that are completely undetected applying its clean 

PCs. Those users belong to the profiles of Table 5.5. 

Profile # of users 

User Bugger 2 

DoS attacker 4 

Telemarketer 1 

Network problem 1 

Tab. 5.5 Anomalous users biggest community 

Without those users, all with active anomalous behavior, 

the PCs of the biggest community reduce of a 50% their 

distance to PCN, meaning that evaluated as a whole, 

those users are able to heavily affect the computation of 

the normal subspace.  

We keep evaluating the behavior of the users under the 

threshold of the biggest community and we have found 
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16 other users belonging to the active profile that are not 

detected neither with our distributed approach. Those 

users are involved in at most 50 calls but, even if our 

methodology does not consider them as anomalous users, 

evaluating the PCs of the biggest community also 

without them the result is that the two couples of clean 

PCs are nearly equal. 

Even if we are not able to find such a case in our 

analysis, there is a possible situation where also our 

joining phase fails. Indeed, if the same anomalous 

behavior is spread within every probe of the network, it is 

not possible to gather a description of the normal 

subspace free of pollution. Furthermore, due to the fact 

that the widespread anomalies is part of the common 

behavior of the network, each probes can gather similar, 

even if not clean, PCs  and the joining phase is not even 

able to point out this situation. 

5.2 Comparison against the centralized 

 approach 

In this section we provide a comparison between our 

approach and the centralized one. We compare the two 
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approaches in terms of the anomalous profile detected 

and of stability over time of the computed principal 

components. 

5.2.1 Profiling of anomalous users 

For each day, we compute the Euclidean distance 

between the PCs describing the normal subspace in the 

centralized and distributed approach. The results shown 

in Fig.5.8 are for the trial we have also reported in the 

previous sections. 

 

Fig.5.8 Difference between PCN and the PCs of the whole set of 

users 
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The Euclidean Distance between the PCs gathered is 

evaluated considering the number of PCs for the normal 

subspace of the clean community. There are several days 

where the centralized approach needs more PCs of the 

clean community to collect the 95% of the energy of the 

dataset, and in those days the representation of its normal 

subspace change even more of what the Euclidean 

Distance shows. By the way, it is possible observe a 

difference between PCs describing the normal subspace 

between the 5% and the 40% of maximum we can 

achieve, that is     

To inspect the impact of such distance, we consider first 

of all the users pointed out in the anomalous detection 

stage from the distributed approach and check their 

energy in the centralized approach. On average, the 

profiles have a variation of the energy in the anomalous 

subspace that can be resumed by Table 5.6. 
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Tab.5.6 Variation energy for anomalous users in anomalous 

subspace 

Note that the total energy of the users is the same in both 

approaches, as PCA maps the data into a rotated 

reference system which conserves the energy of each 

sample. Therefore, if the same sample has a lower energy 

in the anomalous subspace in one of the two approaches, 

it means that its behavior is part of the legitimate profile.  

For this reason, the variation of the energy is due to the 

fact that the legitimate profile gathered from the 

centralized approach also considers anomalous users in 

the computation of the PCs that describe the normal 

subspace, thus resulting in polluted PCs.  Instead, our 
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approach discards the probes that contain such behaviors 

from the selection of CN, thus leading to a pollution-free 

profile.  

Fig.5.9 shows the different behavior of the two 

approaches, comparing the energy in the anomalous 

subspace of the users that belong to the Dos victim 

profile in a particular day under analysis.  

 

Fig.5.9 Distributed versus Centralized approach 

In the figure, two boxplots represent the energy of the 

anomalous profile in the two different approaches and 

two thresholds are shown. The lower one is the threshold 

set in the centralized approach to evaluate if a user is 
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anomalous or not, the second one represents the 

maximum threshold set in the distributed approach to 

identify the anomalous users among the users they are in 

charge of. As we can see from the picture, the Dos victim 

profile goes completely undetected in the centralized 

approach, thus meaning that the normal behavior was 

polluted and biased towards this type of behavior. In the 

distributed approach, all the users belonging to this 

behavior, with a number of calls at least of 50, is above 

the set thresholds and was easily identified. 

Considering all the users pointed out from the centralized 

approach, we are not able to discover any additional 

interesting profiles. By the way, if the day under analysis 

contains a large number of “active” anomalous users (e.g. 

profile such as a DoS attacker or a Telemarketer), the 

centralized approach assigns them a smaller energy in the 

anomalous subspace but is able to point out with more 

accuracy anomalous “passive” users (e.g. profile such as 

Call Centers), i.e. it is able to also point out users 

belonging to this type of profiles involved in a smaller 

number of calls.  Viceversa, if the day under analysis 

contains a large number of anomalous “passive” users, 

the centralized approach assigns to them a lower 
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anomalous energy but is able to point out with more 

accuracy the anomalous “active” users. 

5.2.2 Stability of the legitimate-user profile 

To compare the legitimate profile gathered from the two 

different approaches, we compute for each profile the 

Euclidean Distance between the Principal Components 

obtained in each day with the ones obtained the following 

day. In this way we can evaluate if the normal behavior 

of the phone users shows temporal stability. In the 

Fig.5.10 we start with the results obtained from the 

centralized approach. 

 

Fig.5.10 Distance Centralized PCs of each day with the following 
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We split the representation within the five week we have 

availability, taking as a reference point in the picture the 

distance between the centralized PCs obtained in each 

Monday with the one obtained in the following Tuesday. 

After a couple of week where the legitimate profile 

gathered from the centralized approach seems to be quite 

stable, the gathered PCs show an high variability, without 

any kind of recognizable pattern. If we look at the 

differences between the PCs that describe the normal 

subspace obtained from our methodology we can find the 

situation of Fig.5.11. 

 

Fig.5.11 Comparing Distributed PCs of each day with the 

following 
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In the picture we report a box plot of the five trials we 

have done, and the blue line represents an average of the 

obtained results. As we can show, the legitimate user 

profile shows a temporal stability that is absent with the 

centralized approach, except for a big peak we found in 

each one of the five trials, between the PCs of the third 

Tuesday and the third Wednesday. Interesting local peaks 

are also found between the Sundays and the Mondays, 

where it is possible to foresee a change of the use of the 

phone, since we pass from a week-end day to a working 

day. 

To justify the main peak we pointed out in the preceding 

analysis, we start evaluating if the change of the common 

behavior of the traffic is stable after the peak itself or not. 

Therefore, the two following pictures respectively 

represents the Euclidean Distance between the PCN of 

one day before the peak, e.g. the third Monday, and the 

PCN of each other day; the Euclidean Distance between 

the PCN of one day after the peak, e.g. the third 

Wednesday, and the PCN of each other day. The result is 

shown for one particular trials in Fig.5.12 and 5.13. 
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Fig.5.12 Euclidean Distance between 3
rd

 Monday and each other 

day 

 

Fig.5.13 Euclidean Distance between 3
rd

 Wednesday and each 

other day 
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As it is clear from both images, the profile we gather 

before the peak is completely different from the one we 

gather after the peak itself. If we look at the results 

shown in the previous section, we can see that after the 

third Wednesday, also the number of Principal 

Components needed to collect the 95% of the energy of 

the dataset changes. To be sure that our methodology is 

not showing wrong results we manually investigated the 

dataset to see if this change within the traffic is really 

happened.  

Thanks to the manual inspection we are able to point out 

that every single feature changes his behavior in the day 

of the peak and maintains this new status in the second 

period of our analysis: the average number of received 

and placed calls increases of a 10%, the number of 

suspicious or with network problem calls increases of a 

50%, while the average percentage of established calls 

and unique callers/callees decreases of the 10%.  

In Fig.5.14 and 5.15 we show an example of this change 

for the average number of placed and received calls and 

their establishment rate. To preserve the information 

given by the telecomm operator, the pictures are 

normalized with the average number of calls of the 
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dataset and the total establishment percentage 

respectively. 

 

Fig.5.14 Normalized number of calls placed and received 

 

Fig.5.15 Normalized Establishment Rate 
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The telecomm Operator confirmed us that new trunks of 

its network started to be monitored during the period 

under analysis and it is possible that we are able to point 

out one of the day where this happened (the peak 

corresponds to the first day of a month).  

By the way, a clear change of the common behavior of 

the user happens, and with our methodology we are able 

to adapt the description of the new normal subspace to 

this change. On the other hand, from this change of the 

behavior of the phone users, the centralized approach 

started to gather a legitimate profile different each day, 

without showing a clear pattern. 

5.3 Changing the number of probe 

To conclude the evaluation of our methodology we 

change the number of probes used to split the phone 

users present within the network. In this way we can 

evaluate if we are able to gather a similar PCs between 

probes reducing the number of users they are in charge 

of, even if this situation is not so realistic due to the fact 

that the PoPs within a telephone network can be at most 

some tens, or if we use a similar condition to the 

centralized approach. 
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The comparison is made in term of temporal stability of 

the legitimate profile gathered. In Fig.5.16 shows the 

result obtained using a network of 40 probes and the one 

obtained with the approach described in previous 

sections. The evaluation is made for both cases in 5 

different trials.  

 

Fig. 5.16 Euclidean Distance day to day, 20 and. 40 probes 

Even increasing the number of probes, and ending up 

with subset of only 4000 users for each probe, the 

methodology is able to gather PCN with a high grade of 

seasonality, i.e. the principal components mostly change 

as the week starts, and acts similarly compared to the 

technique we showed in the previous sections.  
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This result shows that decreasing the number of users 

each probe is in charge of, we are still able to gather 

similar PCs from one subset to another and that probably 

the obtained CN contains even less anomalous behavior 

of the community we gather with 20 probes. 

Fig.5.17, instead, shows the result obtained using a 

network of 5 probes and the centralized approach. 

 

Fig. 5.17 Euclidean Distance day to day, Whole Dataset and. 5 

probes 

Reducing the number of probes, and gathering the 

legitimate user profile choosing between a small numbers 

of possibilities does not help, and leads to PCN polluted 
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from the anomalies that the “clean” community still 

contains. The temporal stability in the picture does not 

show any seasonality and the trend of the legitimate 

profile is close to the one observed for the centralized 

approach, i.e. consecutive PCN appears dissimilar. 
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6 Conclusion 

The state of the art of the intrusion detection systems 

applied into telephone traffic can count on several 

possible techniques to prevent or recognize anomalous 

behavior within the network.  

This work represents my contribute to the research in this 

field, and consists in a new anomaly detection technique 

that aims at identifying anomalous phone users through a 

statistical study of the behavior of the network and at 

resolving part of the issues present in a centralized 

anomaly detection technique.  

Every day, our methodology gathers the general behavior 

of each user extracting statistics, such as the number of 

calls placed or received, from the Call Detail Records 

collected from PoPs distributed within the networks. 

From the obtained dataset, our methodology gathers a 

description of the common behavior of the network, i.e. 

the legitimate profile, exploiting a well-know statistical 

tool, the Principal Component Analysis. Thanks to the 

Principal Component analysis, our methodology obtains 

a compact representation of the user behavior of each 
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probe, and applying a technique able to point out 

communities within a given dataset, i.e. Agglomerative 

Hierarchical Clustering, can infer similarities within the 

network and subsequently the legitimate user profile. 

Based on the legitimate user profile, the technique 

performs anomaly detection. 

The most part of the users the techniques point out 

represent statistics referable to actual malicious behavior 

we can have within a phone network, such as 

telemarketer activity or DoS attack, while the last part 

can be seen as anomalous, but not malicious behaviors of 

a phone user, such as Call Center. 

The technique gathers these results distributing the 

anomaly detection stage and exploiting the PoPs already 

present in a phone network. Comparing the results 

obtained with a classical application of PCA to telephone 

traffic, where all decisions are centralized and a single 

point of failure is present in the anomaly detection, our 

methodology proves to be able to better adapt itself to the 

conditions of the traffic and to gather a pollution-free 

legitimate profile. Preventing that widespread anomalies 

are considered into the computation of the description of 
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the normal subspace, i.e. PCN, our methodology is also 

able to avoid that those kinds of behavior go undetected. 

Finally, beyond the advantages just mentioned, our 

methodology has also the interesting characteristic to 

exchange messages without private information between 

probes and the central node and, therefore, it has the 

possibility to be applied even in a scenario where more 

than one telecomm operator is present, as the one in 

Fig.6.1. 

 

Fig.6.1 Scenario with more than a telecomm operator 

Considering each telecomm operator as a probe, we can 

imagine that they are able to gather and send, without 
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disclosing sensible information, their PCN to a trusted 

global central node, which combines such information 

with the same algorithm shown for a single telecomm 

operator and gathers the PCs that describe the normal 

subspace of a larger clean community.   
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