
University of Pisa

PhD School of Engineering: “Leonardo Da Vinci”

PhD program in “Applied Electromagnetism in electrical and biomedical
engineering, electronics, smart sensors, nano-technologies”

On the Energy Efficiency
of Networked Systems

ING-INF/05

Author:
Luca Niccolini

Advisors:
Prof. Giuseppe Iannaccone

Dr. Gianluca Iannaccone

2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14703686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Energy is a first-class resource for datacenter operators since its cost is the biggest
limiting factor in scaling a large computing facility. The solution embraced by
major operators is to build their facilities in strategic geographical locations and to
abandon expensive specialized hardware for cheap commodity systems. However,
such systems are not efficient when it comes to energy and a considerable amount
of research effort has been put in finding a solution to this problem. Furthermore,
the need for more programmable and flexible networking devices is pushing the
need for hardware commoditization also within the datacenter network.

In this thesis we propose two solutions aimed at improving the overall energy
efficiency of a datacenter facility. The first addresses efficiency in computing,
by proposing a different hardware architecture for server systems. We propose a
hybrid architecture that blends traditional server processors with very-low-power
processors from the mobile devices world. The second solution envisions the usage
of current server platforms as network switches or routers and provides guidelines
for the implementation of power saving algorithms that do not affect peak perfor-
mance while saving up to 50% power.

This work is based on both theoretical modeling and simulation and experi-
mentation with real-world prototypes.

ii

Acknowledgments
This work would have not been possible without the help, the support and the
sympathy of many people.

My advisors first: Giuseppe and Gianluca, they have guided me throughout these
three years and they have given me the opportunity to work on the challenging
problems exposed in this thesis. Sylvia Ratnasamy for our insightful discussions
on the relations between high-speed networking and energy efficiency, and Luigi
Rizzo for his very pragmatic approach, always ready to analyze the code and start
optimizing it.

Sometimes I wonder how these years would have been like without my old friends
and the new ones I met living in Pisa, Berkeley and San Francisco. I have never
been lonely and I want to thank them all.

Thanks to Claudio, Caterina and Agata for being my family for almost two years.
Thanks to all the guys from the lab in Pisa, to Valentina in particular, without her
these pages wouldn’t have been printed (literally), and to Martina for being always
angry and for creating the chaos in every occasion. Thanks to Massimo, a very
good friend.

When I first flew to Berkeley I never expected to meet my “missing brother”: Elias,
a European Intellectual but mostly a true friend.

I want to thank those who have always been with me even when we were geo-
graphically distant, David, Carlo and Tommaso.

A special thanks goes to Chiara who decided to embark with me in this journey.

Needless to say, having a lovely and supportive family has helped more than ev-
erything else. I want to thank my mother, my father, my sister and all my relatives.
My grandfather in particular who stimulated in me the interest in computing for
the first time, perhaps without even knowing it. He loved numbers and statistics in
his own way. He kept track of everything he could, from the area of the land he
cultivated and the efficiency of his vineyard to the cards that were played during
Briscola matches. This thesis is dedicated to him.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Space . 2

1.2.1 Reducing Power Usage Effectiveness 3

1.2.2 Reducing IT costs . 4

1.3 Thesis Overview and Contribution 9

2 Background 11
2.1 Small and Big cores . 11

2.2 Support for power management 12

3 Hybrid Datacenters 15
3.1 Hybrid Server Prototype . 17

3.1.1 Prototype architecture 17

3.1.2 Software configuration 19

3.1.3 Experimental results . 21

3.2 Latency and power model . 24

3.2.1 Response Latency . 24

3.2.2 Power Usage . 25

3.2.3 Model validation . 25

3.3 Evaluating hybrid server design 27

3.4 Related Work . 31

v

Contents

4 Energy-proportional Router 33
4.1 Deconstructing Power Usage . 36

4.1.1 Server architecture . 36

4.1.2 Workload . 37

4.1.3 Power characterization 38

4.2 Addressing Software Inefficiencies 40

4.3 Studying the Design Space . 42

4.3.1 Single core case . 42

4.3.2 Multiple cores . 46

4.4 Implementation . 52

4.4.1 Online adaptation algorithm 54

4.4.2 Assigning queues to cores dynamically 55

4.5 Evaluation . 57

4.6 Testbed setup and Additional measures 63

4.6.1 Measuring Latency . 63

4.6.2 Sleep states . 63

4.6.3 Traffic Burstiness . 65

4.7 Related Work . 69

5 Conclusion and Future Work 71
5.1 Conclusion . 71

5.2 Future Work . 72

Bibliography 89

vi

Chapter 1

Introduction

1.1 Motivation

The backbone of today’s computing infrastructure is powered by large-scale com-
puting facilities, commonly known as datacenters. A typical datacenter hosts tens
of thousand commodity servers connected by thousands networking devices and
presents challenging scaling problems at all the design levels [90]. However, en-
ergy costs constitute the most limiting factor in scaling a datacenter today.

With energy consumption in the order of tens of MegaWatts and electricity
bills up to tens of Millions Dollars per year, power-related costs represent a high
fraction of the total operating expenses for a datacenter and are growing faster than
equipment costs for both computing and networking. Power-related costs repre-
sent the second recurring cost, second only to labor. For this reason major datacen-
ter operators like Google, Amazon.com, Microsoft and Yahoo! are building their
facilities close to energy sources, where energy is cheap [92].

Scaling-out by adding more and more cheap commodity hardware, and re-
lying on fault-tolerant software to deal with (unavoidable) frequent failures, has
been proven a successful approach to achieve large scale while keeping hardware
expenses relatively low. The trend toward using cheap commodity hardware is
called “commoditization”.

Unfortunately, the hardware available today is not energy-proportional [60].
An ideal energy-proportional system would consume zero energy while active and
waiting for some work to execute. Current servers, instead, consume approxi-
mately 50% of their maximum power while running at down to 20% of their max-

1

Introduction

imum load. Furthermore, the average utilization of a single server is far from its
peak utilization, making the hardware work in its most inefficient operating region.

Commoditization is in progress also for the datacenter network. Similarly to
the computing infrastructure the goal is to build a scalable and reliable architecture
by using cheap off-the-shelf devices [111]. Inside their own datacenters, operators
ask maximum flexibility from the network in order to quickly deploy new net-
work protocols and mechanisms that can efficiently harness the particular network
topology [50, 80, 82, 83]. Programmable switches and routers based on the same
architecture as servers have been proposed as a means to achieve innovation at
speed [33, 71, 74]. However, the move towards commodity servers as network de-
vices suffers from the energy issues introduced above since networks are typically
overprovisioned and switching devices operate at low utilization on average.

Energy efficiency improvements at the server and switch/router level have the
potential to benefit from the datacenter scale. Even small savings on a single device
are amplified by the huge number of devices in a computing facility and by the
increasing number of datacenters around the globe.

The contribution of this dissertation is twofold. First, we propose to reduce the
energy consumption of computing by using heterogeneous multicore servers. An
heterogeneous design includes traditional high-performance and high-energy com-
ponents coupled with a low-speed and low-power subsystem exploited to maintain
external availability and run the workload in periods of low utilization. Then, we
address the problem of energy efficiency of packet-processing applications running
on commodity multicore servers and we advocate the implementation of smart al-
gorithms, that optimally operate the available computing resources, in order to
improve the overall energy efficiency.

1.2 Problem Space

Energy is a fast growing concern both for industry and society. While some alarms
have been sounded recently about the energy impact of computing [64], and of the
Internet in particular [29], we believe that the current computing and networking
technologies have a high potential for reducing the energy that society wastes ev-
eryday . Furthermore, the total energy consumed and embodied in the Internet,
estimated by Raghavan et al. [112], is negligible compared to the overall energy
used by society, with the total power absorbed by datacenters worldwide repre-
senting only 1.3% of the global energy consumption [95].

2

Introduction

We focus on the energy efficiency of datacenters as a means to achieve a better
scaling of computing facilities by lowering expenses for operators. The energy
consumed in a datacenter is logically divided in two categories: (i) the energy
absorbed by IT equipment; (ii) the energy indirectly consumed to keep the above
equipment operational. The former represents the electricity spent to perform the
main operations for which the datacenter has been built, i.e. computing, network-
ing and storage. The latter denotes the energy overhead and includes, among
other sinks, the power distribution and transformation infrastructure, the airflow
and cooling system, the lighting infrastructure and personnel offices.

The overall efficiency of a single facility is expressed in terms of the Power
Usage Effectiveness (PUE) metric. PUE is defined as the ratio between the total
energy absorbed by the facility and the energy utilized by IT devices (after power
conversion). The ideal PUE value is 1.0 and implies that all the energy entering a
datacenter is spent for useful work.

Given this classification of datacenters energy the work towards its reduction
follows two parallel paths: (i) Reducing PUE and (ii) Reducing the IT costs.

1.2.1 Reducing Power Usage Effectiveness

The U.S. Environmental Protection Agency published a report [64] in 2007 show-
ing that computing was responsible for 1.5% of the total U.S. energy consumption,
with datacenters being a big fraction of that. Also the average datacenter, at the
time, was reported to operate with a 100% energy overhead, i.e. with a PUE of
2.0. Since then, a lot of effort has been put in reducing this overhead through the
sharing of best practices [9] and measurement data [13] that were before retained
by operators as corporate secrets.

Best practices include how to continuously and correctly measure the PUE,
how to realize efficient cooling systems by leveraging free external resources (like
cold air and water) and how to properly place the servers to maximize the air
flow, how to distribute power by reducing the number of AC/DC conversions and
how to harness reusable energy sources and recyclable materials to reduce the
environmental impact.

Cooperation between major operators has been fostered by initiatives such as
“Climate Savers Computing” [9] and “The Green Grid” [41] and eventually re-
sulted in a community effort with Facebook releasing the whole design of their
new datacenters as an opensource project [27]. The project includes the techni-
cal specifications at each design level, from custom motherboard schematics and

3

Introduction

server chassis design [77] to electrical design of power distribution to the mechan-
ical airflow system [28].

As a result of this engineering work the PUE in large-scale datacenters is now
approaching its theoretical minimum, with the best-in-class operators advertising
a one year average1 of 1.14 [13] and a seasonal minimum of 1.07 [11]. This
optimization process is slowing the growth of datacenter electricity usage with
the actual values being significantly lower than the most optimistic predictions in
2007 [95].

1.2.2 Reducing IT costs

Minimizing the total cost of ownership (TCO) of IT equipment is a challenging
problem since it directly involves possible optimization both in hardware and soft-
ware. It is the topic of active research in Academia and industry and the pro-
posed solutions reflect the evolution of datacenters towards today’s warehouse-
sized general-purpose computers [90].

Workload specific. A first approach, that keeps the base hardware architec-
ture untouched, is to explore software solutions for optimizing power consump-
tion in presence of specific workloads [121] . Early days datacenters hosted few
tens of servers clustered together to run one specific application, such as high-
performance computations or distributed databases. With the rise of cloud com-
puting [56] however, datacenters should be able to run diverse workloads, ranging
from on-line data-intensive queries [107] that require low latency, to long-running
MapReduce [2, 4, 72] batch jobs that need high computing throughput and large
network bandwidth. Furthermore, with Infrastructure as a Service (IaaS) [3,22,30]
and Platfrom as a Service (PaaS) [12, 14, 42, 44] solutions the user has complete
control over his own virtual machines and applications and no assumption can be
made on the workload that the datacenter will run. Thus, the datacenter is seen
as a general-purpose warehouse-scale computer [90], and workload-specific opti-
mization are not generally applicable. With one exception.

The one specific-workload that is common to all the computing facilities and
whose optimization are widely applicable is the one related to networking and
packet processing applications. Switching, routing and other packet-processing

1Large datacenters are built in zones where it is possible to use external air or water for cooling,
for this reason there is a seasonal fluctuation of the PUE due to external weather condition and
temperature.

4

Introduction

applications typically run on dedicated hardware and provide network connectivity
to computing and storage hosts.

Our work on optimizing network devices for energy efficiency leverages the
trend towards commoditizing the network in datacenters. New network topolo-
gies [49, 80, 82, 83] have been proposed to flatten the network. These architec-
tures seek for a higher bisection bandwidth and lower over-subscription rates by
exploiting multiple paths inside the local network. They have the potential to re-
duce equipment cost by installing cheaper devices. The problem with advanced
topologies is that they require fundamental changes in the way packet forwarding
is performed. High level forwarding-plane protocols, like OpenFlow have the role
to blur the existing gap between traditional MAC layer (L2) and network layer (L3)
packet forwarding and are pushing the need for more flexibility and programma-
bility from the networking devices.

We believe that the solution to achieve the flexibility requested by this fast-
changing environment is the deployment of programmable routers based on the
same general-purpose server architecture used for computing and storage. A net-
work like this can accommodate changes at the speed of software deployment.
Furthermore, software developers can benefit from a well-known programming
environment and Instruction Set Architecture [33, 74].

Low-power manycore. A natural approach to build an energy-efficient comput-
ing infrastructure is to use energy-efficient hardware building blocks. The fast
growth of the mobile devices market has pushed the design of low-power proces-
sors and platforms in order to maximize devices’ battery life. Despite being intrin-
sically low-performance, these platforms are more efficient than traditional server
hardware in terms of instructions per Joule. Mobile systems design, targeted at
low-power operations, has lead to well-balanced systems while in the server world
we are assisting at an ever increasing performance gap between CPU, Memory
and I/O. Processor cores for mobile devices are indicated as small cores, or more
colloquially as wimpy cores, due to the reduced number of transistors needed to
implement their functionalities. Conversely, server processors with multiple out-
of-order execution engines and large multi-level caches are also indicated as big or
browny cores.

Several attempts have been made to run datacenter-like applications on systems
built by a high number of low-power elaboration units. These solutions differ in
their integration scale and can be divided in tightly-coupled and loosely-coupled
designs.

5

Introduction

The authors of FAWN (a Fast Array of Wimpy Nodes) [53] successfully ex-
plored the ability to run a key-value storage service on an array of loosely-coupled
(ethernet connected) nodes powered by a 500 MHz AMD Geode CPU and flash
storage. They show that a FAWN-like architecture can be cost-effective for dis-
tributed storage seek-bound workloads.

Some industry solutions, recently appeared on the market, implement a finer
scale integration of low-power cores. Seamicro product line includes platforms
with up to 768 1.6 GHz Intel Atom cores in one single box [36], thanks to a high-
speed integrated network fabric, and have been adopted, among others, by Mozilla
to power their web-servers [35] and by eHarmony [10] for distributed data analysis
with Hadoop [4]. Tilera pushes low-power cores integration even further, selling
a 64-core system-on-a-chip [62] that includes 1 and 10 Gbps network, PCIe and
DDR2 controllers. Each core has a shallow pipeline, for low-power operations
and more predictable performance. Fast intra-core communication is achieved
by means of a multi-layer mesh network and on-core L2 caches are leveraged to
implement a distributed L3 cache. Experience with memcache [76] in-memory
key-value storage shows that the TilePRO64 system is three times more energy-
efficient than a Xeon based system [63].

However, it has been shown that solutions with a large number of low-power
cores are not appropriate for all the datacenter workloads, resulting in signif-
icant performance slowdown for the most demanding applications like parallel
databases [99], web-search [91] and massive-data sort [123]. A high-scale data-
center must be general purpose, it should be able to run diverse workloads, most
of them unknown at design time. The main drawback of low-power manycore
architectures is that the single nodes are highly constrained in their hardware ca-
pabilities. Usually they have a 2 − 4 GB addressable memory bound and a low
number of connections for disk I/O. This lack of hardware capabilities imposes
strict constraints on the application programmer. Furthermore, many-core archi-
tectures force a shift in the programming model and may require a complete code
refactoring in order to benefit from the high core count.

Software development is an important factor to take in consideration when
computing the cost of a new hardware infrastructure in the datacenter. Hölzle [89]
proposes a rule of thumb for which it is not economically advantageous to switch
to a wimpy architecture if the single core performance is less than half the perfor-
mance of current browny cores.

Energy proportionality. A different approach to reduce power expenses in a

6

Introduction

large computing facility is to address the non-proportionality of the servers.

Many of these efforts focus on cluster-level solutions that dynamically consol-
idate work on a small number of servers. Thanks to this, underutilized servers can
be turned off at will and computation moved between machines if needed [113,
120]. Load balancers and task schedulers are instrumented with a prediction com-
ponent, based on previous history. Prediction results are exploited to starve some
machines of requests and consequently turn them off. The overall goal is to obtain
a quasi-power-proportional ensemble with non power-proportional building blocks
by consolidating the load, with server or rack granularity.

To further improve the proportionality of the system as a whole, hardware
heterogeneity can be exploited. In a datacenter with two different types of clusters,
the classic one with blade servers and a low-power one with low-power systems,
the latter can be leveraged to serve requests in a long low-load period [96, 110].
Solutions in this space affect hardware provisioning costs, charging the operator
of the burden to provide its facility with both systems to handle high-load and
proxy-systems for low load.

The general downside of consolidation techniques is that servers on/off cycles
2 and the workload consolidation overhead are in the order of tens of seconds.
Consolidation being typically achieved through virtualization and live migration
of virtual machines [59, 67, 69, 105]. Furthermore, it is challenging to predict the
incoming load on a fine timescale [24, 81]. One more problem with consolidation
is that network reachability is lost when machines are turned off. Most datacenters
run distributed key-value storage and distributed filesytems [66, 70, 73, 76, 79] in
which replicas are distributed among all the servers. Thus, a node not performing
computation might be required because it holds a replica that other nodes need
for their computation. For this reason, cloud providers are reluctant to turn off
computers, not to affect high availability. As an example, Amazon’s solution to
increase the overall server utilization while amortizing the cost of keeping servers
idle is to offer a service in which spare resources are offered at a variable price [1],
depending on the overall datacenter utilization, and users can bid on the instanta-
neous price.

A more integrated approach to power proportionality is to solve the problem
for a single server in order to benefit from the massive scale of the datacenter and
to hide the power saving mechanisms from the programmer as much as possible.
A solution in which a system can quickly transition to a deep sleep state while

2Current commodity servers do not expose system low-power states that are found in desktop
machines such as standby and suspend (i.e. ACPI S3, S4 and S5 states).

7

Introduction

still maintaining external network visibility and availability is needed to allow per-
server power-proportional behavior [48,106]. Servers running multiple services at
the same time shows short idle periods in the sub-second scale, making practically
unfeasible to completely shut down the machine as proposed by consolidation ap-
proaches.

We explore a similar approach to that first proposed by Meisner et al. [106]
requiring that the system is never unavailable to serve incoming requests. Despite
large periods of low utilization, servers are rarely completely idle and in the case
of latency-sensitive workloads active low-power states are the only solution to rea-
sonably scale down energy consumption with server load [107]. We leverage hard-
ware heterogeneity at the platform level by exploring the benefits of a system that
mixes high-performance energy-inefficient processors (with big cores) and low-
speed high-efficiency processors (with small cores). We believe that such hybrid
architectures comprising small cores and big ones can provide energy benefits at
the single-server level, by maintaining availability through small cores and waking
up big cores when the load increases so that service-level agreements (SLA) are
not violated.

The idea of hybrid architectures for energy-efficiency is not new, systems us-
ing mixed processors are starting to appear in the mobile devices market. Major
manufacturers, like NVidia, ARM and Qualcomm are pushing solutions with a big
and small cores mix [45, 47] or with cores operated at different frequencies and
voltages [46]. A hybrid design helps to increase energy efficiency by lowering the
power envelope of the system. Furthermore, the heterogeneous hardware design
can be made transparent to application programmers. In the aforementioned mo-
bile platforms for example, small cores are used to run background tasks, such
as checking e-mails, while big cores are awakened whenever high computational
power is needed, typically for multimedia tasks. The switch between small and big
cores is completely managed by the firmware, allowing the programmer to abstract
from the underlying hardware technology.

We study the problem of heterogeneous multi-core in server hardware and ex-
plore the feasibility of mixed architectures with current high-end processors and
mobile processors, specifically within the Intel Xeon and Atom processor fami-
lies [18].

8

Introduction

1.3 Thesis Overview and Contribution

The demand for highly-parallel computation on massive amounts of data is in-
creasing at a fast pace, pushing datacenter operators to enlarge their facilities or
build bigger ones. Today, datacenters are limited in scale by energy consumption
with 80% of the recurrent costs scaling with electricity costs.

In this thesis we tackle the problem of energy-efficiency of the networking in-
frastructure and power-proportionality of the computing machinery in large-scale
datacenters. Our focus is on the power-proportionality of the basic building blocks:
general-purpose servers and packet-processing devices.

In Chapter 2 we present the hardware mechanisms that today’s’ systems im-
plement, and that motivate our work, with a specific focus on those supported by
the Operating System. Then in Chapter 3 and Chapter 4 we present the main con-
tribution of this thesis that is twofold:

• In Chapter 3 we make the case for hybrid datacenters. We address the chal-
lenges in building a computing infrastructure that blends low power plat-
forms with high performance ones. We show how these designs can handle
diverse workloads with different service level agreements in an energy ef-
ficient fashion. We evaluate the feasibility of our approach through experi-
ments and then discuss the design challenges and options of hybrid datacen-
ters.

Given the positive results of this analysis, we propose a hybrid multipro-
cessor architecture for energy-proportional web servers and datacenters, to
achieve significant energy savings at the price of small increase in service
delay. The server consists of a subsystem with low-power cores, always on
and serving user requests when load is low, and a high-performance sub-
system, by default in sleep mode, woken up only when the load is high.
Through experiments on a hardware prototype and an accurate timing and
power model of the server we assess the performance and the energy benefits
for a Web server. Finally, we explore design guidelines for future energy-
proportional systems.

• In Chapter 4 we approach energy-efficiency in datacenter networks. We
aim at improving the efficiency of packet-processing applications running
on commodity server hardware without compromising their performance.
We investigate the design of a router that consumes power in proportion
to the rate of incoming traffic. We start with an empirical study of power

9

Introduction

consumption in current software routers, decomposing the total power con-
sumption into its component causes. Informed by this analysis, we develop
software mechanisms that exploit the underlying hardware power manage-
ment features for more energy-efficient packet processing. We incorporate
these mechanisms into Click [93] and demonstrate a router that matches the
peak performance of the original (unmodified) router while consuming up to
half the power at low loads, with negligible impact on the packet forwarding
latency.

In Chapter 5 we draw our conclusion, address the applicability of our work
and provide ideas and plans for future work.

10

Chapter 2

Background

In this chapter we present the hardware features and mechanisms that can be found
in modern processors and that motivates our work.

2.1 Small and Big cores

Traditionally, power efficient designs attempt to find the right balance between two
distinct, and often conflicting, requirements: (i) deliver high performance at peak
power (i.e., maximize compute capacity for a given power budget) and (ii) scale
power consumption with load (i.e., energy proportionality and very low power
operations). A fundamental challenge in finding a good balance is that, when
it comes to processor design, the mechanisms that satisfy the two requirements
above are significantly different. High performance requires mechanisms to mask
memory and I/O latencies using large multi-level caches (today’s server processors
use three cache levels with the last-level cache projected to soon reach 24MB [17]),
large translation lookaside buffers, out-of-order execution, high speed buses, and
support for a large number of pending memory requests. These mechanisms result
in large transistor counts leading to high leakage power and overall high power
consumption. In a modern high end processor, less than 20% of the transistor
count is dedicated to the actual cores [117, 122]. This is reflected in the processor
high power consumption. In our work we measured the power needed to keep the
“uncore” components active while reducing the “core” power consumption to the
minimum possible. We found that approximately 25 W are needed for a modern 6
cores Westmere CPU.

11

Background

Mobile processors designs, on the other hand, focus on those processor fea-
tures with low-power operations. For example, the Atom processor [78] includes
an in-order pipeline that can execute two instructions per cycle, a small L2 cache
and power-efficient clock distribution. The Atom simple micro-architecture imple-
ments only those features that give the best performance per watt. A strong design
constraint during the processor design has been to implement a feature only if it
guarantees “1% performance increase, for less than 1% power increase” [61]. E.g.,
simultaneous multi-threading has been implemented (in higher-end models of the
Atom family) since it provides a 36% performance improvement versus only a
19% increase in power.

This results in a strongly reduced transistor count with low leakage power and
limited power consumption at low load. Further, Atom design is focused on allow-
ing quick and frequent transitions to a very low power state (e.g., 80 mW with less
than 100 µs exit latency [78]).

2.2 Support for power management

Modern systems provide a variety of power management mechanisms that operate
at all levels in the platform. Some are only visible to the hardware while others
can be controlled directly by the operating system. Here, we introduce the basic
controls that are exposed to the operating system and we briefly summarize the
mechanisms only available to the hardware.

Core idle states (C-states). Each core in a package can be independently put into
one of several low power or “idle” states, which are numbered from C1 to Cn. The
state C0 is present on all platforms and refers to a core that is executing instructions
and consuming the highest amount of power since all the areas within the core are
powered on. Higher numbered states indicate that a successively larger portion of
the core is turned off resulting in a lower power draw. The particular C states that
are supported are vendor and processor specific. The Westmere processors we use
in Chapter 4 offers three C states (C1, C3 and C6) and allows to put each core,
independently from others on the same package, in different “idleness” states.

A core enters into a C state either by executing a HALT or MONITOR/MWAIT
instruction. The state entered is set using special registers of the CPU. The wakeup
event can be either an interrupt or a write access to the monitored memory range
specified by the MWAIT. C states are exited (to return to the C0 state) when the

12

Background

desired triggering event occurs. Considering the larger amount of circuitry turned
off, higher idle states take longer to revert back to the fully operational C0 state.
The time to return from a higher numbered C state back to C0 is termed the exit
latency of the state.

As an example, when in C1 the core is clock gated (the clock distribution into
the core is blocked), but the core is still drawing power. Going from C1 to C0 only
requires the clock distribution to be re-enabled; thus, the time it takes to execute
the first instruction (after being in C1) is comparable to that of a cache miss.

In C3, the L1 and L2 caches are flushed and turned off. In C6, in addition to
turning off the clock and the caches, the core is power gated (power distribution
into the core is disabled) after the core’s state is written to a reserved part of the L3
cache. Consequently, the time to enter/exit C3 and C6 is much higher (compared
to C1) due to the need to save and restore state, and to allow the voltage levels
to stabilize. Furthermore, on wakeup the core will start with a cold cache, which
results in lower performance.

The time to exit from a C-state is called “exit latency”, and we will measure it
for our system in Section 4.6.2.

Processor performance states (P-states). While a processor core is in active C0
state, its power consumption is determined by the voltage and operating frequency,
which can be changed with Dynamic Voltage and Frequency Scaling (DVFS). In
DVFS, voltage and frequency are scaled in tandem. This is because a particular
frequency requires a minimum voltage for the circuit to operate in a stable and re-
liable way. When voltage is reduced, transistors take longer to switch, and signals
take longer to propagate, leading to the circuit becoming unstable. To preserve
stability and correctness, the operating frequency must also be lowered.

Modern processors offer a number of frequency and voltage combinations,
each of which is termed a P state. P0 is the highest performing state (pegged at
the maximum voltage required by the highest operating frequency); subsequent P
states operate at progressively lower frequencies and voltages. Transitions between
P states require time to stabilize the frequency, but the transition can be applied
while the processor is executing instructions, without halting or freezing the core
nor flushing caches. While in general, cores can have independent power planes,
most processors incorporate a shared voltage rail across the cores, which forces a
shared P-state between cores belonging to the same package. Effectively, all the
cores run at a frequency that is dictated by the most hungry core. The processor in

13

Background

our system offers 14 P states with frequencies ranging from 1.6 GHz to 3.3 GHz.

Additional power states. Even though we do not use them directly in our sys-
tem, we need to mention two additional classes of power states: processor throttle
states (T-states) and platform sleep states (S-states). T-states force the proces-
sor frequency to be lowered when power dissipation approaches the thermal limit
to prevent the processor, or other subsystems, from being damaged. T-states are
similar to P-states, but they are managed by the core’s firmware and cannot be
controlled from software.

Turbo Boost [20] is an Intel proprietary mechanism that aims at increasing the
performance of a system that is not fully using all its cores while assuring that pro-
cessor power constraints are never violated. Turbo Boost is activated for cores that
are in the active C0 states when only a subset of the cores in the package is active.
In such particular circumstances the maximum operating frequency of the active
cores can be increased while still meeting the power, current and temperature limits
of the processor package. Akin to T-states, “boost-states” are only visible to hard-
ware and can potentially introduce non-predictable performance increases since its
activation depends on the workload and on the operating conditions (i.e. number
of active cores, estimated current consumption, estimated power consumption and
measured processor temperature). In the following work the Turbo Boost tech-
niques have been disabled in order to get repeatable experiments and measures.

S-states are defined for the entire system (not just the processor). S0 is the
active state, while in higher states portions of the system are turned off after saving
their state to RAM or persistent storage. The S-states reflect various degrees of
system-wide sleep and correspond to the familiar “stand-by” and “hibernation”
modes of laptops and desktop. The transition times involved in the S-states are
measured in seconds. We do not consider them in our work because the latencies
involved are much higher than the latencies high-speed services can tolerate and
also because server systems typically do not implement such features.

14

Chapter 3

Hybrid Datacenters

A more efficient use of energy is a key challenge for modern datacenter design:
it would enable significant reduction of costs and increase of computing power
density per unit volume. Datacenters’ building blocks are commodity servers, pro-
viding ease of deployment, low costs and familiar programming environments.
However, current servers - and therefore datacenters - are not energy efficient,
specifically at low load. Barroso et al. [60] report that more than 40% of en-
ergy is consumed to keep servers online while not executing any useful work, and
each server is typically used below 50% of its peak performance. Hence, the call
for energy-proportional systems, defined as systems whose power consumption is
proportional to the computing load.

In this chapter we show that a hybrid server architecture is a promising option
for achieving energy proportionality while paying a small additional cost in perfor-
mance. A hybrid multi-core architecture consists of a mix of low-power cores and
high-performance cores that coexist on the same motherboard and are coordinated
by the operating system or by the application. Low-power and high-performance
cores are classified respectively as “small” and “big” cores since advanced features
(such as large caches, out-of-order execution, etc.) affect core area by requiring a
larger number of transistors.

The basic concept is extremely simple: small cores are always on, keeping
the system responsive and serving user requests when the load is low. Big cores
are by default in a deep stand-by mode, and are woken up only when the load is
high. This approach is able to exploit several trends in semiconductor and proces-
sor technology. First, with the introduction of the Atom processor (“small” core in
our terminology) there is now a low-power alternative to the traditional server pro-

15

Hybrid Datacenters

cessor (Xeon product line) that shares the same instruction set architecture (ISA).
Sharing the same ISA allows for providing a single, and familiar, programming
environment to developers. A hybrid system is therefore equivalent to a traditional
server and requires no changes to the datacenter architecture or the management
processes of datacenter operators. Second, the performance of small cores is con-
tinuously increasing to meet users’ expectation of a full Internet experience on
smartphones, netbooks and tablets. Most importantly, battery life and small form
factor requirements force designers to select and implement energy-efficient fea-
tures and mechanisms for improving performance per Watt [61]. Finally, high
performance cores are adopting power saving features (clock gating, power gat-
ing, etc.) that permit individual cores and other subsystems within the same server
to be turned off to maximize energy efficiency at low load [19].

It has been recently pointed out that despite large periods of low utilization,
servers are rarely completely idle and in the case of latency-sensitive workloads
active low-power states are the only solution to reasonably scale down energy con-
sumption with server load [107]. Therefore, we believe that hybrid architectures
comprising small cores with big ones can provide energy benefits at the single-
server level, by maintaining availability through small cores and waking up big
cores when the load increases so that service-level agreements (SLA) are not vio-
lated.

We presented the key concept in a position paper [68]: here we present a com-
plete analysis showing experimental results on a prototype hardware with realistic
workloads. Using the prototype we derive and validate a simple, yet accurate,
model of the service delay and power on the hybrid system. We then use that
model to assess the feasibility of the hybrid approach as well as explore the design
space. Specifically, we study the design space along two dimensions: the ratio
of small vs. big cores in the system and the relative performance of small core
vs. big cores when processing Web requests. We show that the current small core
performance levels make hybrid multicore design feasible and that hybrid designs
are an extremely promising solution to achieve energy proportionality.

The rest of the chapter is structured as follows. In the next section we describe
the prototype system and present experimental results with different types of Web
server workloads. Then, in Section 3.2, we develop a high-level model of the hy-
brid server architecture, capable of accurately simulating timing performance and
time-dependent power consumption. The model is validated, in terms of accuracy
in the estimation of distributions of service delay times, through comparison with
experiments on the hardware prototype. In Section 3.3 we use the latency and
power model to explore various design options and estimate the energy savings

16

Hybrid Datacenters

that can be achieved. We review related work in Section 3.4.

3.1 Hybrid Server Prototype

We begin our analysis by measuring the performance of a hybrid architecture re-
search prototype. In the following subsections we describe the hardware and soft-
ware configuration and discuss experimental results.

3.1.1 Prototype architecture

The hybrid server prototype is based on a standard dual-socket motherboard suited
for Intel Xeon Harpertown [18] and compatible CPUs; however, the first socket
hosts an Intel Atom 330 processor, mounted by means of an adaptation board.
The board maps Atom pins to the Xeon socket and adjusts voltages accordingly.
Figure 3.1 shows a high-level view of the system with the two CPUs connected
to the northbridge chipset (MCH) through a shared front side bus (FSB). MCH
manages access to shared memory and to peripherals through the I/O controller
(IOCH).

Table 3.1 summarizes the main differences between the two CPUs. Since the
original purpose of the prototype was demonstrating hybrid server feasibility, some
tweaks have been made to achieve interoperability at the expense of overall per-
formance, degrading some Xeon features to those supported by Atom. For exam-
ple, Xeon clock and bus frequencies have been reduced to make the FSB work at
the maximum sustainable frequency of the Atom, i.e., 533 MHz. For this reason
the big CPU (a Xeon X5450) is constrained to a 1.2 GHz operating frequency,
much lower than the 3 GHz maximum clock rate. Furthermore, cache coherency
is achieved by making the smaller cache ignore snoops for entries that exceed its
size.

Atom and Xeon processors have different microarchitectures but implement
partially-overlapping Instruction Set Architectures (ISAs). They both have full
x86 compatibility exhibiting some differences only in instruction set extensions
(e.g. SSE instructions [39]). However, operating system support is needed to let
the applications abstract from these asymmetries [114].

The server runs the HeterOS operating system [100], developed from Intel, that
is a 64-bit compliant OS providing the following improvements on top of Linux:

Migration on fault: an application can execute instructions known only to a sub-

17

Hybrid Datacenters

Xe
on

IOCH

MCH

NIC Disk ...

M
em

or
y

FSB

A
to
mcore

th

th
core
th

th
L2 cache

core
th

core
th

core
th

core
th

L2 cache L2 cache L2 cache

Figure 3.1: Prototype hardware architecture. FSB is the Front Side Bus, MCH is
the Northbridge chipset, IOCH is the I/O controller.

set of cores. The operating system handles unknown instruction exceptions
and migrates the process that caused the fault to a core that understands the
instruction;

Dynamic scheduling: HeterOS provides both slow cores first and fast cores first
scheduling policies. They dynamically reschedule tasks, based on perfor-
mance metrics, to take advantage of CPU bound and I/O bound phases
within the same exectution flow.

As already mentioned, the hybrid server prototype is not optimized for power
consumption, and therefore exhibits high power consumption when only the Atom
is active. The main reason for that is the legacy shared-bus architecture, where the
bus is always on and MCH and IOCH do not have sleep states. Measured wall
power is 228 W at idle and 268 W at maximum load. For this reason, we will use
experiments to verify the feasibility of our proposal and to validate our model for a
hybrid server. Then, we will use the model to explore the performance achievable
if power saving features were fully implemented.

18

Hybrid Datacenters

Name Xeon X5450 Atom 330
Clock rate 1.2GHz 1.6GHz
Threads 4 4
Cores 4 2

Hyperthreading No Yes
L2 Cache 2x6MB 2x512KB

Table 3.1: Main differences between CPUs in the hybrid server prototype. They
have the same number of threads thanks to Atom implementing hyperthreading.

3.1.2 Software configuration

Here we describe the software setup used to assess the performance of our hy-
brid architecture prototype serving HTTP requests. The workbench consists of a
request generator connected to the server through a 1 Gbps Ethernet link.

Request generator. The client machine runs multiple instances of the http load [15]
request generator in order to increase the request rate up to the maximum load sus-
tainable by the server. By using this tool, requests can be generated at a constant
rate or with a specified degree of parallelism. The client machine also measures
per-request latency by computing it as the interval between the connection instan-
tiation at the server and the time the response is received by the client.

Web server. The software stack on the server machine is based on the Lighttpd [21]
Web server and its FastCGI module. Lighttpd is a lightweight and modular Web
server while FastCGI is a typical solution for boosting the execution of dynamic
requests. It defines a communication protocol between the Web server worker
threads and external processes, using sockets as the communication channel. FastCGI
processes are created at Web server startup and can run on the server machine as
well as remotely. In the FastCGI working model processes are persistent and serve
more than one request, saving the time needed in legacy CGI systems to fork one
process per request.

Processes are distributed in a way that enables us to exploit multicore paral-
lelism. Lighttpd runs one worker thread on the first Atom core while FastCGI
processes run on both the Xeon and Atom processors. The worker thread is re-
sponsible for accepting all the incoming requests and scheduling them on the most

19

Hybrid Datacenters

10
1

10
2

10
3

10
0

10
2

10
4

File Size (KB)

N
u
m

b
e
r

o
f
F

ile
s

Figure 3.2: Dataset file sizes follow a power-law distribution

suitable FastCGI process. We want requests to be allocated to a core and to run on
it until completion, without incurring in rescheduling overhead.

Scheduler. In our solution, processes are statically assigned to cores with a one
to one mapping. We modified the FastCGI module to make it aware of the under-
lying asymmetric processor set and changed the default load-balancing algorithm
into a threshold-based scheduler. The scheduler allocates incoming requests to
small cores when the load (as measured by the number of concurrent requests)
is below a defined threshold (St) and to big cores when the threshold is reached.
The threshold can be larger than the number of small cores, in that case pending
requests are queued and their execution is deferred. The threshold effectively is a
knob to trade-off power consumption for latency since increasing St reduces the
duty cycle of large cores. With this simple mechanism we create opportunities for
big cores to go in their deepest sleep state whenever the server is underutilized.
In Section 3.3 we analyze the effectiveness of this mechanism in terms of energy
efficiency.

Dataset. We collected a 10 GB dataset from the English version of Wikipedia.
Our dataset is composed of 250, 000 files with sizes ranging from 6 KB to 1.4 MB.
This is a representative dataset for Web applications that work with plain HTML
files. Figure 3.2 shows that file size in the dataset follows a Zipf distribution, as in
Ref. [58].

20

Hybrid Datacenters

Workload. The definition of a workload that is both simple and representative of
the applications of today’s datacenters is not straightforward. Servers in virtual-
ized environments and MapReduce nodes must be as general purpose as possible.
Instead, in the underlying infrastructure that powers large websites, most servers
act as specialized back-end nodes running only one kind of requests on their frag-
ment of the whole dataset (e.g. memcached nodes, message search). We consider
the following workloads to be executed on files in our dataset:

readfile: statically serve the file as is;

ksort: sort (key, value) pairs based on key values;

compress: deflate the input file using gzip;

count: computes a histogram of bytes.

The workloads above allow us to explore different deployment scenarios. The
readfile workload represents the traditional Web server; the other three instead
require to process and perform computation on the input data before sending the
response to the client. The computations vary in complexity and the subsystems
(CPU, memory, I/O) they employ. The workloads are conceptually simple and
do not represent applications in which slow blocking database requests are made.
However, they are representative for servers managing a high number of concurrent
connections with low latency. Exploring more complex workloads is a major part
of our future work.

3.1.3 Experimental results

In order to assess the service delay implications in systems with an hybrid set of
processors, we stress the server by gradually increasing the input query rate up
to the maximum sustainable load. We only report results for the count workload
since results for other workloads exhibits a very similar behavior.

Figure 3.3 reports the system performance in terms of service delay. It shows
values for the average service delay (top) and the 99th percentile of the service de-
lay (bottom). Each curve represents a different value for the scheduling threshold
St, i.e., the maximum number of simultaneous requests served by small cores.

By setting St = 0 we force the system to use big cores only. As can be
seen they sustain up to 75% of the maximum load of the hybrid solution. All
the other curves have a peak around 25% of the maximum load, where requests
are being processed almost exclusively by low-performance cores. When the load

21

Hybrid Datacenters

increases further, requests are forwarded to big cores and performance improves,
until saturation of the whole system is reached. From Figure 3.3 we evince a
3X speedup for our Xeon processor compared to Atom. Even if both processors
operate at the same clock frequency, the Atom cores are much slower as they do
not implement all performance boosting techniques of a Xeon core (such as out-
of-order processing, aggressive speculation, and instruction transformation).

22

Hybrid Datacenters

0 25 50 75 100
0

200

400

600

800

1000

Load (%)

A
v
e

ra
g

e
 s

e
rv

ic
e

 d
e

la
y
 (

m
s
)

S
t
=4

S
t
=8

S
t
=16

Xeon

(a)

0 25 50 75 100
0

500

1000

1500

2000

Load (%)

9
9

th
 p

e
rc

e
n

ti
le

 o
f

s
e

rv
ic

e
 d

e
la

y
 (

m
s
)

(b)

Figure 3.3: Experiment on hybrid prototype server: Average (a) and 99th per-
centile (b) service delay for the count workload for scheduling threshold St =
0, 4, 8, 16. Note that for St = 0 only Xeon is active.

23

Hybrid Datacenters

3.2 Latency and power model

In this section we present a high-level model for timing and power consumption
of a hybrid server. The model is validated with experiments on the prototype and
then used to assess achievable energy savings and performance.

3.2.1 Response Latency

The hybrid architecture we consider is a system with two distinct types of elab-
oration units — a small CPU with low-power cores and a big CPU with high-
performance cores — which share a single infrastructure. A scheduler is respon-
sible for the allocation of incoming requests between processors, i.e., it selects a
CPU c for each incoming request.

A CPU can run T c concurrent execution threads (see Table 3.1). When it is
fully loaded (i.e., if load = T c) incoming requests are queued and will start being
served as soon as one of the execution units becomes available. The total service
delay a request experiences is then the sum of two contributions: queuing delay
and execution delay. For each CPU we only model execution delay since queuing
delay directly depends on the requests execution speed and on the arrival process.

For a given workload type, service time is a function of the size of the requested
file, of the processor selected by the scheduler and of the number of currently active
requests (load). The file size determines the number of instructions to run while
the instantaneous processor load is an index for the inter-process interference due
to competition for shared resources (i.e. L2 and L3 caches, shared bus, · · ·). Let
t be the time a request starts being served and c the CPU that serves the request.
The service delay D is computed as

D(file, load, c) = α(c) + size(file)γ · β(c, load) (3.1)

α models the time needed to accept a request before starting the execution, and
depends only on the type of processor. β accounts for the performance of processor
c at a given load and is a workload-dependent coefficient. Given the restricted
range of file sizes in the dataset we express the dependency on file size as a power
function with exponent γ.

24

Hybrid Datacenters

3.2.2 Power Usage

It has been shown that the CPU is the most energy-proportional component in a
server system [60], thanks to idle sleep states (C-States) with short transition times
and active sleep states (P-States) that trade execution speed for energy. Other com-
ponents, such as memory, disks and high speed buses either do not implement sleep
states or are rarely completely idle, even if underutilized [107]. The trend in server
architectures however, is promising due to the progressive integration of memory
and I/O controllers on the processor die. This can affect power consumption in
two ways. First, the shared bus is replaced by point to point links (e.g. Quick-
Path Interconnect, QPI) that allow for more fine grained power control. Second,
the hardware logic dedicated to interfacing with memory and peripherals directly
depends on the CPU power state and can quickly transition to and from deep sleep
states.

Without loss of generality, for the purpose of evaluating power consumption
we can logically divide the whole system into subsystems each associated to a
given CPU. The total power consumption P (t) can be written as

P (t) =
∑
c

P c(t),

where P c(t) is the power consumption of the subsystem associated to CPU c.
Each subsystem can be in three different energy states: active, sleep and transition,
depending on the state of the corresponding CPU.

Let us consider the subsystem associated to CPU c: its instantaneous power
consumption, P c(t), is a function of the state: P csleep is the power consumption of
the CPU in sleep state. During transition between active and sleep state, power
consumption is approximated by P cidle, power dissipation when the CPU is idle.
Finally, when CPU is active, power is proportional to the instantaneous processor
load Lc:

P c(t) = P cidle +
P cmax − P cidle

T c
· Lc(t), (3.2)

where P cmax is power consumption at 100% utilization.

3.2.3 Model validation

The model has been implemented in an event-driven simulator using the simpy [37]
framework and has been tested against experimental data. Traces from experi-
ments in Section 3.1.3 are used as input to the simulator in order to replicate the
request arrival pattern.

25

Hybrid Datacenters

0 25 50 75 100
0

200

400

600

800

1000

Load (%)

A
v
e

ra
g

e
 s

e
rv

ic
e

 d
e

la
y
 (

m
s
)

S
t
=4 model

S
t
=4 exp.

S
t
=8 model

S
t
=8 exp.

S
t
=12 model

S
t
=12 exp.

(a)

0 25 50 75 100
0

500

1000

1500

2000

Load (%)

9
9

th
 p

e
rc

e
n

ti
le

 o
f

S
e

rv
ic

e
 d

e
la

y
 (

m
s
)

(b)

Figure 3.4: Comparison between simulation and experiments for average (a) and
99th percentile (b) of service delay.

Values of the model coefficients have been experimentally measured using the
test bench presented in Section 3.1.2 and instructing the request generator to issue
a fixed number N of simultaneous requests. For each N ≤ T c requests are im-
mediately executed and no queuing occurs. We generated random requests across
the whole dataset spectrum and measured the execution delay of each request. For
each CPU and load level we compute model parameters α and β, introduced in
Section 3.2.1, using Equation 3.1 to fit the experimental data. In our case we ob-
tain a good fit with a linear function, i.e., for γ = 1.

Figure 3.4 shows the request service delay, average (left) and 99th percentile
(right) for the count workload. Lines with symbols represent experimental data,

26

Hybrid Datacenters

simple lines simulation results. As can be seen, despite its simplicity, our model
correctly replicates the behavior of the real system with a delay peak in correspon-
dence of slow cores saturation and a performance speedup as soon as the scheduler
starts allocating requests to fast cores. The error introduced by the model is within
few percentage points even for the 99th percentile, which is harder to replicate than
the average.

We validate our assumption by showing that the model correctly predicts the
system behavior for different values of the scheduler threshold St(4, 8, 12). The
threshold indeed only affects queuing delay on small cores. For example when the
threshold is set to the number of small cores (i.e., St = T) there are no pending
requests and queuing delay is null on small cores.

3.3 Evaluating hybrid server design

Based on the model described in the previous section, we assess power consump-
tion of hybrid multicore architectures as a function of load and evaluate achievable
energy savings and performance.

As mentioned, our prototype would not be adequate to achieve significant en-
ergy saving, because idle power is too high and Xeon performance is intentionally
suppressed for the sake of interoperability.

To evaluate achievable power consumption for an optimized board, we mea-
sured power consumption of an AtomN450 netbook, which exhibited the same
10 W dynamic range as the Atom 330 but lower idle power. It consumes 12.1 W
with no load and 20.4 W at maximum load. Then, we consider a fully performing
Xeon as large CPU, with power at peak of 320 W.

We also assume that the subsystem associated to the large CPU can be turned
to a low-power standby mode in low-load time intervals, and is awakened by the
scheduler only when needed.

Reasonably, the power consumed in a sleep state can be expressed as a fraction
of Pidle. In the following we consider two cases, Ps = 0 and Ps = 0.25·Pidle. The
first is an ideal case and is used, coupled with a zero transition time, to consider
an ideal optimistic situation, whereas the second case is very conservative, and
should represent a pessimistic case. Coordinated sleep states among components
cannot be as fast as CPU sleep states (C-states) which have transition latencies in
the order of microseconds. For this reason we consider transition times tt up to
tens of milliseconds.

27

Hybrid Datacenters

0 25 50 75 100
0

50

100

150

200

250

300

350

A
v
e

ra
g

e
 p

o
w

e
r

(W
)

Load (%)

Worst−case

Ideal
t
t
=5ms

t
t
=10ms

t
t
=50ms

P
s
=0.25

P
s
=0

(a) count

0 25 50 75 100
0

50

100

150

200

250

300

350

A
v
e

ra
g

e
 p

o
w

e
r

(W
)

Load (%)

P
s
=0.25

 P
s
=0

(b) compress

Figure 3.5: Average power consumption vs. system load for the Count (a), and
Compress (b) workloads.

Figure 3.5 shows the average power consumption over the entire load range
for the count 3.5(a) and the compress 3.5(b) workload.

The thick straight line represents the worst-case scenario, i.e., a system that
consumes the sum of idle power for the two subsystems at idle and the sum of peak
power at maximum. Different transition times tt are considered, corresponding to
tt = 5, 10, 50 ms.

Note how all the solutions presented exhibit good energy proportionality, com-
pared to the worst case, thanks to the low energy of the small CPU subsystem and
to efficient sleep states of the large CPU subsystem. When the load increases above
70% all the power curves converge towards the worst case scenario. This is due to

28

Hybrid Datacenters

Xeon 1 2 3 4 8 16 Atom
0

100

200

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

Cores ratio (#Atom / #Xeon)

0

20

40

A
v
g
.
J
o
u
le

s
 p

e
r

R
e
q
.
(J

)

Delay

Energy

Figure 3.6: Average delay and average energy cost per request for different small
to big cores ratio.

the lack of idle periods that the big CPU can exploit to undergo the transition to a
sleep state.

The real advantage, in energy terms, is due to the fact that a typical server only
spend a small fraction of time in high load region and has a low load for most of the
time. In our solution power dissipation is small at low load, when only the small
CPU subsystem is active. This come at the price of increased latency in servicing
requests as we have shown in the previous section.

To better understand the latency vs. energy savings trade-off we can use our
service delay model of Section 3.2 to evaluate several what-if scenarios. In partic-
ular the model allows us to explore the design space across two dimensions: i) the
ratio of small to big cores, and ii) the relative performance of small to big cores.

Along the first dimension, as the number of small cores increases, more re-
quests will be served by small cores and the overall average service delay will be
larger. On the other hand, energy usage will be lower because high power big cores
can be idle longer.

Figure 3.6 shows the average service delay and average energy spent per re-
quest as a function of the ratio of number of Atom cores to Xeon cores. To derive
this figure we used as input a request load that mirrors the utilization distribution
reported in [60] for Google’s datacenters. From the figure a designer can pick a
desired average service latency (or energy per request) and obtain the best number
of Atom cores to reach that performance. Furthermore, the model shows at what
point adding more Atom cores has little impact on latency or energy usage. This

29

Hybrid Datacenters

is expected as for those ratios, all requests are always served by the Atom cores
and the Xeon cores stay always idle. The actual value is workload-dependent (a
ratio of 8 in our case) and datacenter operators can estimate the load of requests
and choose the best operating point accordingly.

The second dimension, the relative performance of cores, allows us to under-
stand the impact of technology advances. Given the size and growth prospects of
today’s mobile and tablet markets, a significant development effort is dedicated to
improve the performance of small low-power cores. 3.7(a) and 3.7(b) plot the av-
erage response delay and energy per request as a function of the “Atom speedup”,
i.e., as we vary the performance of the Atom cores while keeping the Xeon cores
the same. We also scale power usage linearly with performance in keeping with
Atom’s design constraint for which a feature is implemented only if it provides a
“1% performance increase for less than 1% power increase” [61]. The workload
is the same as before and follows the utilization distribution similar to [60].

Each line in the plots corresponds to a ratio of Atom vs. Xeon cores from one
to four. The figures show two interesting trends. As the Atom performance drops
below 0.5 of the current performance, there is very little energy advantage in using
more Atom cores. This is because the processing time of the Atom cores is so large
that more incoming requests need to be handled by the Xeon. As a consequence,
Xeon cores have very few opportunities to transition to an idle state. At the other
side of the spectrum, as the performance of the Atom cores increases adding more
small cores has little impact on the response delay but helps in reducing energy per
request significantly. If Atom cores were twice as fast as the cores in our hybrid
prototype, the energy per request could be almost halved incurring a negligible
service delay penalty.

30

Hybrid Datacenters

0.2 0.5 0.8 1 2 3
0

100

200

300

400

500

Atom speedup

A
v
e

ra
g

e
 D

e
la

y
 (

m
s
)

1

2

3

4

(a)

0.2 0.5 0.8 1 2 3
0

5

10

Atom speedup

A
v
g
.
J
o
u
le

s
 p

e
r

R
e
q
.
(J

)

1

2

3

4

(b)

Figure 3.7: Average delay (a) and average energy cost per request (b) for different
slow-core performance (speedup is normalized to the performance of current Atom
available on the market)

3.4 Related Work

The idea of hybrid or heterogeneous architectures is not new. At the datacenter
level, several proposals have been put forward in the literature to include arrays of
low-power systems next to high performance ones [36,53,81,96] that could handle
low-load scenarios or specific I/O-intensive workloads. These proposals however
require changing the way datacenters are designed and maintained and have seen
little adoption by datacenters operators. Further, developers need to refactor their
code to accomodate for the two different architectures that present very different
memory and I/O bandwidth constraints. Hybrid systems that share the same mem-
ory banks and I/O subsystems enable the same codebase to achieve high single-
thread performance when required and otherwise keep power consumption low.

At the system or processor level, asymmetric multicore processors (AMPs)

31

Hybrid Datacenters

have been proposed as natural successors of chip multi-processors (CMPs) since
they can provide energy efficiency in the execution of parallel threads, due to a
large number of small cores, while improving performance of sequential phases
through big cores. A large body of work in this field addresses the problem at the
single-chip level [54, 85, 97, 98, 125] through theoretical analysis and simulations
using synthetic workloads. We base our analysis on a real prototype akin to the
one used by Reddy et al. [114]. Access to a working system allows for actual
experimentation with real workloads as opposed to previous works that use FPGA-
synthesized CPUs [124] or symmetric multiprocessors (SMP) architectures with
cores tuned to work at different frequencies [57, 100].

32

Chapter 4

Energy-proportional Router

The network infrastructure is often viewed as an attractive target for energy-efficient
design since routers are provisioned for peak loads but operate at low average
utilization levels – e.g., studies report network utilization levels of <5% in en-
terprises [109], 30-40% in large ISPs [75], and a 5x variability in ADSL net-
works [104]. At the same time, network equipment is notoriously inefficient at
low load – e.g., a survey of network devices [65, 103] reveals that the power con-
sumed when a router is not forwarding any packets is between 80-90% of its peak
power consumed when processing packets at full line rate. Thus although in the-
ory networks offer significant opportunity for energy efficiencies, these savings are
rarely realized in practice.

This inefficiency is increasingly problematic as traffic volumes continue their
rapid growth and has led to growing attention in both research and industry [7,
16, 65, 75, 84, 103, 104, 109]. In anecdotal evidence: discussions with a major
ISP revealed that infrastructure power consumption represents their second largest
monthly recurring cost (second only to labor)1 and we see calls for research on the
topic from router vendors [8].

To date however, there have been no published reports on attempts to actually
build an energy-efficient router. Motivated by this deficiency, we thus tackle the
question of how one might build such an energy-efficient router.

The traditional challenge in building an energy efficient system lies in the in-
herent tradeoff between energy consumption and various performance metrics—in
our case, forwarding rate and latency. We cannot compromise on peak forwarding

1Private commn. Stuart Elby, VP of Network Architecture, Verizon.

33

Energy-proportional Router

rates since the incoming traffic rate is dictated by factors external to a given router
(and since we do not want to modify routing protocols). We can however explore
options that tradeoff latency for improved efficiency. The ability to do so requires:
(1) that the underlying hardware expose primitives for low-power operation and
(2) higher-level algorithms that invoke these primitives to best effect. Our work
focuses on developing these higher-layer algorithms, and we do so in the context
of general-purpose server hardware.

General-purpose hardware typically offers system designers three ‘knobs’ for
low-power operation: (i) regulate the frequency (and hence power consumption)
at which individual CPU cores process work, (ii) put an idle core into a ‘sleep’
state (powering down sub-components of the idle core) (iii) consolidate packet
processing onto fewer cores (adjusting the number of active cores).

As we shall see, not only do each of the above offer very different performance-
vs-power tradeoffs, they also lend themselves to very different strategies in terms
of the power management algorithms we must develop. For example, sleep-mode
savings are best exploited by maximizing idle times which implies processing
work as quickly as possible, while frequency-scaling is best exploited by process-
ing work as slowly as possible which reduces idle times.

The question of how to best combine the above hardware options is, to our
knowledge, still an area of active research for most application contexts and is
entirely uncharted territory for networking applications. We thus start by study-
ing the energy savings enabled by different hardware options, for different traffic
workloads. Building on this understanding, we develop a unified power manage-
ment algorithm that invokes different options as appropriate, dynamically adapt-
ing to load for optimal savings. We implement this algorithm in a Click software
router [94] and demonstrate that its power consumption scales in proportion to the
input traffic rate while introducing little latency overhead. For real-world traffic
traces, our prototype records a 50% reduction in power consumption, with no ad-
ditional packet drops, and only a small (less than 10 µs) cost in packet forwarding
latency. To our knowledge, this is the first demonstration of an energy-efficient
router prototype.

Before proceeding, we elaborate on our choice of general-purpose hardware
as prototyping platform and how this impacts the applicability of our work. To
some extent, our choice is borne of necessity: to our knowledge, current network
hardware does not offer low-power modes of operation (or, at least, none exposed
to third-party developers); in contrast, server hardware does incorporate such sup-
port, with standard software interfaces and support in all major operating systems.

34

Energy-proportional Router

That said, current network equipment may employ very different hardware options
and hence we expand more concretely on the applicability of our work to each:

• Our work applies directly to software routers built on commodity x86 hardware,
an area of growing interest in recent research [55, 74, 86, 102] with commercial
adoption in the lower-end router market [43].

• Network appliances – load-balancers, WAN optimizers, firewalls, IDS, etc. –
commonly rely on x86 hardware [5,32] and these form an increasingly important
component of the network infrastructure – e.g., a recent paper [119] revealed that
an enterprise network of ∼ 900 routers deployed over 600 appliances! Our work
is likewise directly applicable to such appliances.

• Commercial routers typically rely on network processors (NPs) rather than general-
purpose ones. While the specifics of our results may not apply directly to NPs, we
expect that the overall methodology by which we compare and combine different
power options will be of relevance. This is because the power modes that x86
hardware offers reflect fundamental technology options – turning cores on/off,
frequency and voltage scaling, clock gating, etc. – and hence it is likely that NP
designers will pursue similar approaches.2

• Many routers rely on specialized ASICs, particularly for simple low-level tasks
such as checksum calculations; it is unclear what form of power modes ASICs
will evolve to offer and hence we conservatively assume our work does not apply
to these.

• Finally, we note a growing trend towards equipment that augments the traditional
ASIC and NP-based platform with general-purpose CPUs in the form of ‘beefed
up’ control planes (e.g., Arista Networks), as one of multiple heterogeneous data-
plane engines (e.g., Cavium) or as ‘service blades’ on the data-plane (e.g., Cisco’s
Application eXtension Platform [6]).

More generally, we believe our results can positively influence the hardware
support for power management that emerges in specialized NPs and ASICs by
demonstrating: what magnitude of energy savings are possible using basic hard-
ware primitives; what performance tradeoff comes with these savings; and which
of the feasible kinds of hardware primitives maximize benefits.

2NPs, like modern multi-core systems, use a large number of computation cores/engines execut-
ing network software in parallel [40].

35

Energy-proportional Router

The remainder of this chapter is organized as follows. We start with a review of
the power consuption of current software routers (Section 4.1). We continue with
techniques to reduce power by eliminating software inefficiencies (Section 4.2)
and then study the tradeoffs between different power management options (Sec-
tion 4.3). We present the design and implementation of our unified power manage-
ment algorithm in Section 4.4 and the evaluation of our prototype in Section 4.5.
We finish with an overview of related work.

4.1 Deconstructing Power Usage

A necessary step before attempting the design of a power proportional router is to
understand the contribution of each server component to the overall power usage.

4.1.1 Server architecture

For our study, we chose an off-the-shelf server based on the Intel Xeon processor
that is commonly used in datacenter and enterprise environments. The overall
architecture is similar to that in servers from other manufacturers. Figure 4.1 shows
a simplified diagram of the components that make up the server: our server has
two CPU processors each of which consists of six cores packaged onto a single die
along with several “uncore” components (L3 caches, memory controllers, power
control unit, etc.).

The two processors are Xeon 5680 “Westmere” with a maximum clock fre-
quency of 3.3 GHz. They are connected to each other and to the I/O hub via
dedicated point-to-point links (called QuickPath Interconnect in our case). The
memory (6 chips of 1 GB) is directly connected to each of the processors. We
equipped the server with two dual-port Intel 10Gbps Ethernet Network Interface
Cards (NICs). The I/O hub interfaces to the NICs (via PCIe) and to additional
chipsets on the motherboard that control other peripherals. Other discrete compo-
nents include the power supply and the fans.

From a power perspective, we consider only the components that consume a
non-negligible amount of power: CPUs, memory, NICs, fans, and the mother-
board. We use the term “motherboard” as a generic term to include components
like the I/O Hub and PCIe bridge. It also includes other system peripherals not di-
rectly used in our tests: USB controller, SATA controller, video card, and so forth.
The power supply unit (PSU) delivers power to all components using a single 12V

36

Energy-proportional Router

CPU #2

CPU #1

IOH

m
em

or
y

network

disk

graphics

memory

PS
U

QPI QPI

QPI PCIe

Power Shunt Resistors inserted
for fine grained power measurement

Figure 4.1: Server Architecture

DC line to the motherboard, which is in turn responsible for distributing power to
all other subsystems (CPUs, fans, etc.).

We measure the current absorbed by the system by reading the voltage across
0.05Ω shunt resistors placed in series to the 12V line. This gives us the ability to
measure power with high accuracy and high sampling frequency and excludes from
the measurement the efficiency of the PSU, which is non-linear and can be quite
low in certain cases.3 Shunt resistors (hence individual power readings) are also
used for the two 10Gbps NICs: the cards are connected using PCIe riser boards,
with shunt resistors on the power supply lines.

4.1.2 Workload

Our server runs Linux 2.6.24 and Click [94] with a 10G Ethernet device driver
with support for multiple receive and transmit queues. Using multiple queues, a
feature available in all modern high speed NICs, we can make sure each packet is
handled from reception to transmission by only one core without contention. We
use Receive Side Scaling (RSS) [31] on the NIC to define the number of queues
and, hence, the number of cores that will process traffic. RSS selects the receive
queue of a packet using the result of a hash computed on the 5-tuple of the packet
header. This way traffic is evenly spread across queues (and cores) with packets
belonging to the same flow always processed by the same core. In the rest of
the paper, when we refer to a number of cores n we also imply that there are n
independent receive queues.

In the following sections, we first focus on the performance and power con-

3The PSU in our system is rated for 1400 W to have room for a large disk array, graphic cards,
etc. Our setup needs instead 300W or less where the PSU efficiency is in the 60-70% range.

37

Energy-proportional Router

sumption of a single server operating as an IPv4 router with four 10G ports. Later,
in Section 4.5, we consider more advanced packet processing applications such as
NetFlow, AES-128 encryption and redundancy elimination [51]. For traffic gen-
eration we use additional servers that are set up to generate either synthetic work-
loads with fixed size packets or trace-driven workloads. We used two machines
identical to our router server, each generator sends packets on two 10Gbps inter-
faces using multiple cores associated to multiple RSS queues in order to maximize
the packet rate.

4.1.3 Power characterization

Isolating the power consumption of each component is useful to answer two dif-
ferent questions: (1) where does the power go in a modern server? (2) how does
the power consumption vary with load?

The answer to the first question will let us identify which components are the
largest consumers while the answer to the second question tells us how much we
can potentially save by making that component more energy proportional. An ideal
component to focus on is one that consumes a large fraction of the total power and
whose consumption varies significantly with the input load.

We measure power in three sets of experiments: i) an idle system without Click
running; ii) a system running Click with no input traffic; iii) a system running
Click and forwarding 40 Gbps over four interfaces.

Given that we have only one aggregate power measurement for the entire
server (plus one dedicated to the NICs), we need to perform several measurements
to isolate each component. The system has eight fans, two CPUs and six memory
chips. For each scenario we measure the power P with all components and then
we physically remove one component (a memory chip, a CPU or a fan) and then
measure the power P ′. The difference P − P ′ is then the power consumed by that
component in that scenario.

Figure 4.2 shows the results of our experiments with IPv4 routing. At peak the
system reaches 269 W – 2.3x the idle power consumption of 115 W. With Click
running and no traffic the power consumption is 262 W, which is less than 3%
lower than the peak power. Several design considerations stem from the results in
Figure 4.2:

The CPUs are clearly the dominant component when it comes to power usage.
Even when all cores are idle, they consume almost half of the total idle power,

38

Energy-proportional Router

Idle, w/out Click Click, zero traffic Click, 40 Gbps
0

50

100

150

200

250

S
y
s
te

m
 p

o
w

e
r

(W
)

Motherboard Fans NICs Memory CPUs

Figure 4.2: Breakdown of power consumption across various components when
the system is idle and Click is not running (left), with Click running and no traffic
(middle), and with Click forwarding 40 Gbps of traffic (right).

or ≈ 25 W each. That energy is mostly used to keep the “uncore” online. At
peak, the CPUs reach ≈ 92 W each, which is about four times their idle power;
this contributes significantly to the more than doubling of the total system power
compared to idle.

The other system components contribute little to the overall power consumption.
The motherboard, the component with the second largest power draw, reaches
24 W and it does not vary from idle to peak load. The memory and NICs ex-
hibit a significant dynamic range – peak power is about twice the idle power – but
the overall contribution is quite limited (20 W for the six memory chips and 15 W
for the four 10 Gbps interfaces).

The system idle power is relatively high at 115 W. Even though this is an ongo-
ing concern for system architects, the general trend is towards a reduction in idle
power. Figure 4.3 shows the idle power of a number of systems since 2007 as re-
ported by SpecPower [38]. The plot shows a clear downward trend in idle system
power – halving in only 3 years! In the near future, this trend will continue by
integrating more components into the CPUs and designing more energy efficient
NICs [16] and memory chips [34].

Finally, the software stack exhibits very poor power scaling: the total power con-
sumption is almost constant at zero and full load. Click continuously polls the

39

Energy-proportional Router

Id
le

 P
ow

er

0

50

100

150

200

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●
●

●

●

●
●

●

●●

●

●●

●

●
●

●●
●●

●

● ●

●

●
●

●
●

●

●●

●

● ●

●

● ●

●●

●
●

●
●

●

●●
●

●●

●

●
●

●● ●●
●
●●

2008 2009 2010 2011

●● Single Processor
Dual Processor

Figure 4.3: Server idle power over time (data from [38])

network interface to look for incoming packets. While this mechanism allows to
easily achieve high throughput it also prevents the CPU from being idle even in
absence of traffic.

In summary, our analysis indicates that to achieve energy efficiency we should
focus on controlling the CPUs as they draw the most power and exhibit the largest
dynamic range from idle to peak. In the following section, we explore the mecha-
nisms available to software developers for controlling CPU power usage.

4.2 Addressing Software Inefficiencies

A pre-requisitive to exploiting low power states is to ensure that the software stack
itself is efficient – i.e., doesn’t engage in needless work that prevents the creation
of idle periods. We saw from Figure 4.2 that Click’s polling architecture causes
our server’s power consumption to be the same at zero load (no packets) and at full
bit rate. This section briefly describes how we fix this source of inefficiency.

Traditionally, operating systems and device drivers implemented packet pro-
cessing via interrupt handlers: incoming packets generate an interrupt that is pro-
cessed by the CPU. This approach impacts performance (each packet causes a
context switch and pays the interrupt handling penalty), and is also prone to live-
lock at higher loads [108]. To get around this, Click disables interrupts on the
network card and resort to polling the interface when the CPU is not busy. While
this does provide higher performance, this also means the CPU does not have idle

40

Energy-proportional Router

Idle 40Gbps @ 1024B 29Mpps @ 64B
0

50

100

150

200

250

S
y
s
te

m
 p

o
w

e
r

(W
)

NAPI−Click Click (unmodified)

Figure 4.4: Power consumption of NAPI-Click vs Click in polling mode.

periods where it can be put in low power states.

The Linux NAPI packet processing framework addresses this problem with a
hybrid approach [118]. Interrupts still wake up the CPU and schedule the packet
processing thread. However, the packet processing routine disables interrupts and
switches to polling mode while there are still packets in the input queue. After the
queue is drained, or a maximum batch of packets has been processed, the routine
ends and interrupts are re-enabled.

We modified the 10G driver and Click to operate in a similar fashion – we refer
to the resultant stack as “NAPI-Click”. Each receive queue of an interface raises a
different interrupt that is directed to the core that is handling that queue. Figure 4.4
shows the power savings with NAPI-Click vs. unmodified polling-mode Click for
different packet rates. We see that using NAPI reduces power consumption by
50% in idle mode and 22% when forwarding 40 Gbps of 1024B packets4.

On the performance side, enabling interrupts has no impact on the maximum
packet rate the router can forward – 29 Mpps with 64B packets. Another per-
formance metric of interest is packet processing latency. Additional latency may
be caused by the hardware rate-limiting interrupts and by the interrupt process-
ing required before running the polling routine. To measure the latency, we ran

4A careful analysis of Figure 4.4 reveals that Click in pure polling draws more power with no
traffic than at peak packet rate. In absence of traffic, the polling loop is quite short and the CPU
keeps reading memory locations present in cache (no new packets have arrived). As soon as packets
arrive, caches are invalidated triggering a sequence of cache misses. We conjecture that cores stall
waiting for the memory reads to complete and, thus, do less work and draw less power.

41

Energy-proportional Router

experiments using a server with two network interfaces, forwarding packets from
one to the other interface in a tight loop. A different machine acts as sender and
receiver and timestamps outgoing and incoming packets using the hardware times-
tamp counter. In an unloaded system and without NIC-level batching, the latency
is about 7 µs with polling and 12 µs with NAPI-Click. At high load, the latencies
of the two methods tend to converge as NAPI-Click degenerates to polling at high
load. We refer the reader to Section 4.6.1 for a more exhaustive description of our
setup and analysis of the latency results.

To conclude, the hybrid interrupt/polling solution allows us to scale the power
consumption between high load (when polling is used and power consumption is
high), and low load (when switching to interrupts drives power consumption down
for a negligible impact on latency).

4.3 Studying the Design Space

We now turn to exploring the design space of power-saving algorithms. A system
developer has three knobs by which to control CPU power usage: i) the number
of cores allocated to process traffic; ii) the frequency at which the cores run; and
iii) the sleep state that cores use when there is no traffic to process.

The challenge is how and when to use each of these knobs to maximize energy
savings. We first consider the single core case and then extend our analysis to
multiple cores. Our exploration is based on a combination of empirical analysis
and simple theoretical models; the latter serving to build intuition for why our
empirical results point us in a particular direction.

4.3.1 Single core case

With just one core to consider, we are left with two design knobs and our design
options boil down to one question: is it more efficient to run the core at a lower
frequency for a longer period of time or run the core at a (relatively) higher fre-
quency for a shorter period of time and then spend the remaining time in a sleep
state?

To understand which option is superior, we compare two extreme options by
which one might process W packets in time T :

• the “hare”: the core runs at its maximum frequency, fmax and then enters a
low-power sleep state (C1 or below). This strategy is sometimes referred to as

42

Energy-proportional Router

“race-to-idle” as cores try to maximize their idle time.

• the “tortoise”: the core runs at the minimum frequency, fx, required to process
the input rate of W/T . I.e., we pick a core frequency such that there is no idle
time. This is a form of “just-in-time” strategy.

To compare the two strategies we can write the total energy consumption of
one core over the period T as:

E = Pa(f)Ta(W, f) + PsTs + PiTi, (4.1)

where T = Ta(W, f) + Ts + Ti. The first term Pa(f)Ta(W, f) accounts for
the energy used when actively processing packets. Pa(f) is the active power at
frequency f and Ta(W, f) is the time required to process W packets at frequency
f . The second term considers the energy required to transition in and out of a
sleep state (to store/retrieve core state, stabilize the clock, etc.). The third term is
the energy consumption when idle.

With the tortoise strategy, the core runs at a frequency f = fx such that T =
Ta(W, fx) and no idle time; hence:

Etortoise = Pa(fx)Ta(W, fx) (4.2)

With the hare strategy, f = fmax and hence:

Ehare = Pa(fmax)Ta(W, fmax) + PsTs + PiTi, (4.3)

To facilitate comparison, let’s assume (for now) that Ts = 0 (instantaneous
transitions to sleep states) and Pi = 0 (an ideal system with zero idle power). Note
that these assumptions greatly favor any hare-like strategy.

With these assumption the comparison between the tortoise and hare boils
down to a comparison of their Pa()Ta() terms in Equations 4.2 and 4.3. The
literature on component-level chip power models tell us that the active power
Pa(f) for a component using frequency/voltage scaling grows faster than O(f)
but slower than O(f3).5 The term Ta(W, f) instead scales as 1/f in the best case.

5This is because power usage in a chip can be modeled as cV 2f where c is a constant that
reflects transistor capacitance, V is the voltage and f is the switching frequency. As frequency
increases voltage must also increase – larger currents are needed to switch transistors faster. Hence
power scales at best linearly, at worst cubically with frequency. Note that this power model assumes
the contribution from static power (such as leakage currents) is negligible.

43

Energy-proportional Router

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

120

140

160

180

200

220

240

Clock Frequency (GHz)

S
y
s
te

m
 P

o
w

e
r

(W
)

1
2

3
4
5

6
7

8
9
10

11
12

active
cores

Figure 4.5: Power vs. Frequency at maximum sustained rate. The solid black line
marks the system idle power.

Hence, putting these together, we would expect that Pa(fmax)T (W, fmax) is al-
ways greater than Pa(fx)T (W, fx), since fmax ≥ fx. Hence, despite our very
‘hare friendly’ assumptions (Ts = Pi = 0), basic chip power models would tell us
that it is better to behave like a tortoise than a hare.

Do experimental results agree with the above reasoning? To answer this, we
use the same experimental setup as in Section 4.1 with a workload of 64B packets
and plot results for our server using between 1 to 12 cores. We show results with
more than just one core to ensure we aren’t inadvertently missing a trend that arises
with multiple cores; in all cases however we only draw comparisons across tests
that use the same number of cores (i.e., unlike the comparisons we draw in the
following section).

We first look at how Pa(f) scales with f in practice. Figure 4.5 plots the
active power consumption, Pa(), as a function of frequency. For each data point,
we measure power at the maximum input packet rate that cores can sustain at that
frequency; this ensures zero idle time and hence that we are indeed measuring
only Pa(). We see that Pa() does not grow as fast as our model predicted – e.g.,
halving the frequency leads to a drop of only about 5% in power usage with one

44

Energy-proportional Router

core, up to a maximum of 25% with twelve cores. The reason for this is that, in
practice, many of the server’s components, both within the CPU (e.g., caches and
memory controllers) and external to the CPU (e.g., memory and I/O subsystems)
are not subject to frequency and voltage scaling and this leads to lower savings
than predicted.

Thus, active power consumption grows much more slowly with frequency than
expected. What about Ta(W, f)? Since the processing time dictates the forward-
ing rate a core can sustain, we look at the forwarded packet rate corresponding to
each of the data points from Figure 4.5 and show the results in Figure 4.6. Once
again, we see that our model’s predictions fall short: doubling the frequency does
not double the sustainable packet rate. For example, with one core, doubling the
frequency from 1.6 GHz to 3.2 GHz leads to an increase of approx. 70% in the for-
warded packet rate (down to 45% with twelve cores). Why is this? Our conjecture
is that the perfect 1/f scaling of processing time applies only to a CPU-intensive
workload. Packet processing however is very memory and I/O intensive and access
times for memory and I/O do not scale with frequency. Therefore, as we increase
the frequency we arrive at a point where the CPU does its work faster and faster
but it is then stalled waiting for memory accesses to complete, leading to a point
where increasing the frequency no longer improves productivity.

In summary, we find that, Pa() grows more slowly than expected with fre-
quency but at the same time Ta() decreases more slowly than expected. Where
does this leave the product Pa()Ta()? We cannot directly measure this product
(energy) and hence we look at efficiency in terms of packets-forwarded per Joule,
obtained by dividing the maximum sustained forwarding rate (from Figure 4.6) by
the power consumption (Figure 4.5). The result is shown in Figure 4.7 for increas-
ing frequency. As before, this captures system efficiency while actively processing
work (i.e., there’s no idle time). We see that, empirically, running at the max-
imum frequency is marginally more energy efficient in all configurations. That
is, if our assumptions of Ts = Pi = 0 were to hold, then the hare would actu-
ally be marginally more power-efficient than the tortoise – counter to theoretical
guidelines.

Of course, our assumptions are not realistic. In particular, we saw earlier (Fig-
ure 4.4) that Pi is quite high. Hence, the consumption due to the Pi and Ps terms
in Equation 4.3) tilts the scales back in favor of the tortoise.

The final validation can be seen in Figure 4.8 where we plot the total power
consumption for a fixed input packet rate at different frequencies. These are the
first set of results (in this section) where we include idle and transition times. Based

45

Energy-proportional Router

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

5

10

15

20

25

30

Clock Frequency (GHz)

M
a
x
im

u
m

 R
a
te

 (
M

p
p
s
)

1

2
3
4

5
6

7
8

9
10
11

12

active
cores

Figure 4.6: Packet rate vs. frequency at maximum sustained rate for different
number of cores.

on our analysis from the following section, we make an idle core enter the C1
sleep state. We consider 1, 6 and 12 cores and, for each experiment, we fix the
input packet rate to be the maximum rate the system can sustain at a frequency of
1.6 GHz; i.e., at 1.6 GHz, there is no idle time and this corresponds to the tortoise
strategy; the tests at 2.4 GHz and 3.3 GHz represent the (fast and fastest) hare
strategy. It is clear from the figure that the configuration with the lowest frequency
is always the most energy efficient.

Hence, in summary, the tortoise wins in keeping with what the theoretical
power model would suggest. However this is not because the work is more ef-
ficiently processed at low frequency (as the power models would indicate) but
because being idle is not sufficiently efficient (i.e., the terms PiTi and PsTs are
quite significant).

4.3.2 Multiple cores

We now consider the case where we haveN cores to (as before) processW packets
in time T . The results in the previous section show that it is more energy efficient

46

Energy-proportional Router

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

0.05

0.1

Clock Frequency (GHz)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

M
p

k
ts

 /
 J

)

1

2
3
4

5
6

7
8

9
10
11

12

active
cores

Figure 4.7: Processed packets per Joule varying the frequency and the number of
cores.

to run an individual core at a low frequency and minimize idle time. Applying
this to the multiple cores case would mean dividing the work – the W incoming
packets – across multiple cores such that each core runs at a frequency at which it
is fully utilized (i.e., no idle time). In doing so, however, we must decide whether
to divide the work across fewer cores running at a (relatively) higher frequency
or more cores at a low frequency. Again, we first look to theoretical models to
understand potential trade-offs.

Let us assume that a single core at a frequency f can process exactly W/k
packets in time T . Then, our design choice is between:

• “strength in speed”: use k cores at a frequency f . Each core processes W/k
packets, sees no idle time, and hence consumes energy kPa(f)T (W/k, f).

• “strength in numbers”: use nk cores at a frequency f/n. Each core now
processes W/nk packets, sees no idle time, and hence consumes energy
nkPa(f/n)T (W/kn, f/n).

As before, an idealized model gives T (W/k, f) = T (W/kn, f/n) (since

47

Energy-proportional Router

120

140

160

180

200

220

240

S
y
s
te

m
 p

o
w

e
r

(W
)

1 core
1.9 Mpps

6 cores
10 Mpps

12 cores
19 Mpps

1.6 GHz

2.4 GHz

3.3 GHz

Figure 4.8: Power consumption of three frequencies for a constant input rate. At
the lowest frequency (blue bar) the system has no idle time.

cores at f/n process 1/n-th the number of packets at 1/n-th the speed) and hence
our comparison is between kPa(f) and nkPa(f/n). If the active power Pa(f)
grows faster than O(f) (as the theory suggests) then the strength-in-numbers ap-
proach is clearly more energy efficient. This points us towards running with the
maximum number of cores, each running at the minimum frequency required to
sustain the incoming traffic.

Looking for empirical validation, we consider again the packets-forwarded per
Joule but now comparing two sets of configurations: one with k cores running
at frequency f and one with nk cores at frequency f/n. Unfortunately, since
our hardware offers a frequency range between [1.6, 3.3], we can only derive data
points for n = 2 and k = [1, 6] – the corresponding results are shown in Figure 4.9.
From the figure we see that the empirical results do indeed match the theoretical
guidelines.

However, the limited range of frequencies available in practice might raise
the question of whether we can expect this guideline to hold in general. That is,
what can we expect from m1 cores at frequency f1 vs. m2 cores at frequency f2
where m1 < m2 and f1 > f2? To answer this, we run an exhaustive experiment
measuring power consumption for all possible combinations of number of cores
(m) and core frequency (f). The results are shown in Figure 4.10 – for each
〈m, f〉 combination we measure the power consumption (shown on the Y-axis)
and maximum forwarding rate (X-axis) that the m cores can sustain at a frequency
f . Thus in all test scenarios, the cores in question are fully utilized (i.e., with no

48

Energy-proportional Router

1 2 3 4 5 6
0.02

0.04

0.06

0.08

0.1

0.12

k

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

M
p

k
ts

/J
)

k cores
f=3.2 GHz

2k cores
f=1.6 GHz

Figure 4.9: Comparing processed packets per Joule for k cores at frequency f and
nk cores at frequency f

n .

idle times). We see that, for any given packet rate, it is always better to run more
cores at a lower frequency, validating that “strength in numbers” is the preferred
approach to exploiting multiple cores.

Applying this strategy under the practical constraints of a real server system
however raises one additional problem. A naive interpretation of the strength-in-
numbers strategy would be to simply turn on all N available cores and then crank
up/down the frequency based on the input rate — i.e., without ever worrying about
how many cores to turn on. This would be reasonable if we could tune frequencies
at will, starting from close to 0 GHz. However, as mentioned, the frequency range
available to us starts at 1.6 GHz and, so far, we’ve only considered the efficiency
of m cores that run fully utilized at any frequency. For example, if we consider
the 12 core case in Figure 4.10 we only see the power consumption for data rates
higher than approx. 19 Mpps (the max forwarding rate at 1.6 GHz). How would
12 cores fare at lower packet rates?

Before answering this question, we must first decide how to operate cores that
are under-utilized even at their lowest operating frequency. The only option for
such cores is to use sleep states and our question comes down to which of the
three sleep states – C1, C3 or C6 – is best. The answer to this depends on the
power-savings vs. transition-latency associated with each C state. We empirically
measured the idle power consumption and average transition (a.k.a ‘exit’) latency
for each C state – the results are shown in Table 4.1. We see that C3 and C6 offer
only modest savings, compared to C1, but incur quite large transition times. This

49

Energy-proportional Router

0 5 10 15 20 25 30
120

140

160

180

200

220

240

260

Offered Load (Mpps)

S
y
s
te

m
 P

o
w

e
r

(W
)

1

2
3
4

5
6

7
8

9
10
11

12

active
cores

Figure 4.10: System power varying number of cores and operating frequency.
Each point corresponds to the maximum 64B packet rate that configuration can
sustain.

suggests that C1 offers the ‘sweet spot’ in the tradeoff.

To verify this, we measured the power consumption under increasing input
packet rates, using a fixed number of cores running at a fixed frequency. We do
three set of experiments corresponding to whether an under-utilized core enters
C1, C3 or C6. Figure 4.11 shows the results for 2, 4, and 12 cores and a frequency
of 1.6 GHz. We see that which C-state we use has very little impact on the total
power consumption of the system. This is because, even at low packet rates, the
packet-interarrival times are low enough (e.g., 1 Mpps implies 1 packet every 1 µs)
that cores have few opportunities to transition to C3 or C6. In summary, given its
low transition time, C1 is the best choice for an under-utilized core.

Now that we know what an under-utilized core should do, we extend the results
from Figure 4.10 by lowering the input data rates to consider the case of under-
utilized cores. For clarity, in Figure 4.12 we plot only a subset of the data points.
We see that, for any packet rate, the appropriate strategy is not to run with the
maximum cores at the lowest frequency but rather to run with the maximum cores
that can be kept fully utilized. For example, at 5 Mpps, the configuration with 3

50

Energy-proportional Router

sleep state system power avg. exit latency
C1 133 W < 1 µs
C3 120 W 60 µs
C6 115 W 87 µs

Table 4.1: Power consumption and exit latency for different sleep states. See
Section 4.6.2 for details on the experimental setup used to measure the above.

3 4 5 6 7 8 9 10
120

130

140

150

160

170

180

S
y
s
te

m
 P

o
w

e
r

(W
)

Packet rate (Mpps)

C1

C3

C62 cores

4 cores

12 cores

Figure 4.11: Comparing the impact of different C states on power consumption.
All cores are running at 1.6 GHz.

active cores saves in excess of 30 W compared to the 12 cores configuration.

In summary, our study reveals three key guidelines that maximize power sav-
ings:

1. strength in numbers: the aggregate input workload should be equally di-
vided between the maximum number of cores that can be kept fully utilized
when processing their share of the workload.

2. act like a tortoise: each core should run at the lowest possible frequency
required to keep up with its input workload (as opposed to running at higher
frequencies and then going to sleep).

3. take quick-n-light naps: if a single core running at its lowest possible fre-
quency is under-utilized, it should enter the lightest C1 sleep state (as op-
posed to deeper C3, C6 sleep states).

Following the above guidelines leads to the lower envelope of the curves in

51

Energy-proportional Router

0 5 10 15 20 25 30
100

150

200

250

Offered Load (Mpps)

S
y
s
te

m
 P

o
w

e
r

(W
)

3
6
9
12

Figure 4.12: System power consumption varying the input data rate. Cores transi-
tion to C1 when underutilized.

Figure 4.10 which represents the optimal power-consumption at any given packet
rate. In the following section, we describe how we combine these guidelines into
a practical algorithm.

4.4 Implementation

Our empirical results tell us that a strategy that yields the maximum power saving
is one that tracks the lower envelope of the curves in Figure 4.10. A simple imple-
mentation of that strategy could be to use a lookup table that, for any input data
rate, returns the optimal configuration in terms of number of cores and frequen-
cies. However, such an approach has two limitations. First, to work as promised,
it requires perfect knowledge of the instantaneous data rate. Second, any change
in the hardware — a new processor with more cores or a wider range of operat-
ing frequencies — would require comprehensive benchmarking to recompute the
entire table for all possible configurations.

An alternative is to devise an algorithm that, while adhering to the guidelines
of the previous section, tries to approximate the lower envelope of the curves with
no explicit knowledge of those curves. An approach that maps quite well to the
guidelines is the following iterative algorithm (that we will call “PowerSave”):

• Start with only one core active at the minimum frequency. All other cores are in
C6 deep power down state (“inactive”). The NIC is instructed to send packets

52

Energy-proportional Router

0 5 10 15 20 25 30
100

150

200

250

S
y
s
te

m
 P

o
w

e
r

(W
)

Offered load (Mpps)

click w/ powersave

optimal power

Figure 4.13: Power usage as a function of packet rate for our power saving algo-
rithm and an optimal strategy.

only to the one active core.

• As the load increases – beyond what the active core can sustain – wake up one
more core and split the traffic evenly among all active cores. If all cores are
active, increase the frequency of all cores to keep up with the input data rate.

• If traffic load decreases, first lower the frequency of all cores and then start
turning off one core at a time consolidating traffic onto the remaining active
cores.

To understand how well this algorithm could approximate the optimal power
curve we emulate its behavior by using the power measurement used to plot Fig-
ure 4.10. In Figure 4.13, we show the power usage for an optimal algorithm (i.e.,
one that follows the lower envelope of Figure 4.10) and for our approximated
power saving algorithm. The approximation closely tracks the optimal algorithm.
At very low rate our algorithm chooses to turn two cores on much earlier than the
optimal solution would. Even so, the additional power consumption is very small
(below 5 W) given that the two cores always run at the lowest frequency.

Turning this algorithm into an actual implementation requires two mecha-
nisms: i) a way of determining whether the current number of cores (and fre-
quency) is the minimum required to sustain the input rate, and ii), a way of di-
verting traffic across more cores or consolidating traffic onto fewer cores. The
remainder of this section describes our implementation of the two mechanisms.

53

Energy-proportional Router

4.4.1 Online adaptation algorithm

The goal of the adaptation algorithm is to determine if the current configuration
is the minimum configuration that can sustain the input traffic rate. The algorithm
needs to be able to quickly adapt to changes in the traffic load and do so with as
little overhead as possible.

A good indicator of whether the traffic load is too high or low for the current
configuration is the number of packets in the NIC’s queues. Obtaining the queue
length from the NICs incurs very little overhead as that information is kept in
one of the NIC’s memory-mapped registers. If the queues are empty – and stay
empty for a while – we can assume that too many cores are assigned to process the
incoming packets. If the queues are filling up instead, we can assume that more
cores (or a higher frequency) are needed to process the incoming packets.

This load estimation is run as part of the interrupt handler to allow for a quick
response to rate changes. Only one core per interface needs to run this estimator
to decide when to wake up or put to sleep the other cores. We set two queue
thresholds (for hysteresis) and when the number of packets is below (above) a
threshold for a given number of samples we turn off (turn on) one core – or if
all cores are already on increase/decrease the frequency. Listing 4.1 shows the
pseudocode of the algorithm.

The parameters qh and ql are used to set the target queue occupancy for each
receive queue. Setting low queue thresholds leads to smaller queueing delays at a
cost of higher power usage. The choice of the most appropriate thresholds is best
left to network operators: they can trade average packet latency for power usage.
In our experiments we set qh = 32 and ql = 4 for a target queueing delay of
≈ 10 µs – assuming a core can forward at 3 Mpps.

The variables ch and cl keep track of how many times the queue size is contin-
uously above or below the two thresholds. If the queue is above the qh threshold
for a sufficient time, the system is under heavy load and adds one more core or
increases the frequency (if all cores are already active). Note that every time we
change the operating point (number of cores or frequency), the counter is reset to
give the system sufficient time to react to the change. Conversely, if we are under
the ql threshold for a sufficient time, we decrease the frequency or turn off one
core if the frequency is already at the minimum. Once again, the counter is reset
after a shift to give the system time to react. After adjusting the operating level,
we process a batch of packets, and either repeat the loop, or halt (thus moving to
state C1) if there are no more packets to be processed. In case of a halt, the next

54

Energy-proportional Router

1 for (;;) {
2 // get a batch of packets and queue length
3 qlen, batch = input(batch_len);
4

5 // now check current queue length
6 if (qlen > q_h) {
7 // the queue is above the high threshold.
8 c_l = 0;
9 c_h++;

10 if (c_h > c_up) {
11 c_h = 0;
12 <add one core, if all are on, raise frequency>
13 }
14 } else if (qlen < q_l) {
15 // the queue is below the low threshold
16 c_l++;
17 c_h = 0;
18 if (c_l > c_down) {
19 c_l = 0;
20 <decrease frequency, if at min remove one core>
21 }
22 } else {
23 c_h = 0;
24 c_l = 0;
25 }
26 // process a full batch of packets
27 process(batch);
28

29 if (qlen == 0) halt();
30 }

Listing 4.1: Pseudocode for the adaptation algorithm.

interrupt will resume processing with no further delays other than those related to
interrupt generation and dispatching.

4.4.2 Assigning queues to cores dynamically

Our algorithm requires that the NIC be able to split the incoming traffic evenly
between a variable set of cores. For this we use the support for multiple input and
output queues that is present in all modern NICs. The mechanism we use is called
Receive Side Scaling (RSS) [31] and operates as follows.

For each incoming packet, the NIC computes a hash function on the five-tuple

55

Energy-proportional Router

RSS hash

1
2
1
2
1

1
2

...

C1

C2

Cn

RX queue 1

demux

queue
number

packets

7 lsb

}
}

 active
cores

idle
cores
(C6)

RX queue 2

RX queue n

redirect
table

Figure 4.14: NIC queues and redirect table. Hashes are computed on the 5-tuple of
each packet, and used to address one of the 128 entries of the redirect table. Each
entry in the table contains a queue number.

(source and destination IP, source and destination port, and protocol number) of the
packets. The 7 least significant bits of the hash are used as an index into a redirect
table. This table holds 128 entries that contain the number of the queue to be used
for packets with that hash, as shown in Figure 4.14. When a packet is placed in its
corresponding queue an interrupt is raised. Each queue has a dedicated interrupt
that we can program to be directed to any core.

The number of queues on a NIC can only be set at startup. Any change in the
number requires a reset of the card. For this reason we statically assign queues
to cores as we start Click. To make sure inactive cores do not receive traffic, we
modify the redirect table by mapping entries to queues that have been assigned to
active cores. We always keep the entries in the table well balanced so that traffic is
spread evenly across cores that are active and processing packets. The table is only
128 bytes long, so modifications are relatively fast and cheap (considering that we
do not modify it too often).

If a core does not receive traffic on its queue it remains in deep power down.
When additional cores are needed to process traffic, we reconfigure the redirect
table to include the additional queue. The update to the redirect table has almost
immediate effect; this is important because it immediately reduces the load on the
active cores. As soon as the first packets arrives to the new queue, the interrupt
wakes up the corresponding core, which eventually (after the exit latency) starts
processing the traffic.

Taking out a core is equally simple: we reprogram the redirect table so that no

56

Energy-proportional Router

new packets will reach the extra core. Also, we instruct the core to enter a C6 state
on halt() instead of C1. Eventually, the queue will become empty, and the core
will enter C6 from which it does not exit until the queue is enabled again.

4.5 Evaluation

To evaluate the performance of our prototype router in a realistic setting we gener-
ate traffic using two packet traces: the “Abilene-I” trace collected on the Abilene
network [26] and a one day long trace from the “2009-M57 Patents” dataset [23]
collected in a small-enterprise 1Gbps network. The former contains only packet
headers while the latter includes packet payloads as well.

Our generator software is composed of many traffic sources, each reading from
a copy of the original traces. By mixing multiple traffic sources we can generate
high bit rates as well as introduce burstiness and sudden spikes in the traffic load.
This helps in testing the responsiveness and stability of our power saving algo-
rithm.

We are interested in evaluating the performance of our system with a broad
range of applications. To this end, we run experiments with the following packet
processing applications: IPv4 routing, a Netflow-like monitoring application that
maintains per-flow state, an IPSEC implementation that encrypts every packet us-
ing AES-128 and the Redundancy Elimination implementation from [51] which
removes duplicate content from the traffic. Note that we use all applications as-is,
without modifications from their original Click-based implementations.

This set of applications is quite representative of typical networking applica-
tions. Routing is a state-less application where each packet can be processed in-
dependently of the other. Netflow is stateful and requires to create and maintain a
large amount of per-flow state. IPSEC is very CPU intensive but stateless. Finally,
Redundancy Elimination is both stateful (keeps information about previously ob-
served packets) and CPU intensive (to find duplicate content in packet payloads).

We generate similar input traffic profiles for all applications. Figure 4.15 shows
the traffic load over time for the different applications. We tune the traffic profiles
so that the average utilization of the router over the duration of the experiment is
around 35%. This results in different bit rates for different applications as they dif-
fer in per-packet processing cost (with Redundancy Elimination being the most de-
manding). The load is evenly distributed across the four interfaces and the routing
table is uniform so that no output interface has to forward more than the 10 Gbps

57

Energy-proportional Router

0 50 100 150 200 250 300
0

10

20

30

40

Time (s)

In
p

u
t

R
a

te
 (

G
b

p
s
)

Routing NetFlow IPSEC RE

Figure 4.15: Input traffic profile for different applications.

it can handle.

We first focus on the power consumption of the various applications and then
measure the impact of PowerSave on more traditional performance metrics such
as latency, drops and packet reordering.

Power consumption.
Figures 4.16[a-d] show the power consumption over time for the four applica-

tions under study. In the figures we compare the power consumption of the default
Click implementation, the NAPI-Click and Click with PowerSave. As expected,
unmodified Click fares the worst with a power consumption hovering around 270
W for all applications at all traffic rates. The power usage with NAPI-Click and
PowerSave instead tracks, to varying degree, the input traffic rate.

PowerSave is consistently the most energy efficient at all rates for all applica-
tions. The advantage of PowerSave is more prominent when the load is fairly low
(10−20%) as that is when consolidating the work across cores yields the maximum
benefits. Over the duration of the experiments, PowerSave yields an overall energy
saving between 12% and 25% compared to NAPI-Click and 27-50% compared to
unmodified Click.

Traditional performance metrics. We turn our attention to other metrics beyond
power consumption, namely: packet loss, latency and reordering. Our algorithm

58

Energy-proportional Router

may introduce loss or high latency by turning on cores too slowly in the face of
varying traffic demands. Reordering may be introduced when packets belonging
to the same flow are redirected to a different core.

Regarding packet losses, the PowerSave algorithm reacts quickly enough to
avoid packet drops. Indeed, no packet losses were observed in any of our experi-
ments.

We also measured the latency of packets traversing the router. Figure 4.17
plots the average, minimum and 99th percentile over each 1s interval – we collect
a latency sample every 1ms. We only plot results for one PowerSave experiment
with IPv4 Routing. Other experiments show similar behavior and are reported in
Section 4.6.1.

The average latency hovers in the 15 − 20 µs range. The same experiments
with Click unmodified yield an average latency of 11 µs. The 99th percentile of
the latency is up to 4 times the average latency – it peaks at 55 µs. Some of the
peaks are unavoidable since waking up a core on from C6 may introduce a latency
of up to 85 µs. However, that is limited to the first packet that reaches the queue
handled by that core.

As a last performance metric we also measured packet reordering. In our sys-
tem, reordering can only occur when traffic is diverted to a new queue. Hence,
two back to back packets, A and B, belonging to the same flow may be split across
two queues and incur very different latency. Given that new queues are activated
only when the current ones start to fill up, it is possible to have packet A at the
back of one queue while packet B is first in line to be served on the new queue.
On the other hand, packets in the newly activated queue will not be processed until
the core assigned to it exits a C6 state. Given that in our setting the adaptation
algorithm aims for ≈ 10 µs of queueing delay, it is quite likely that packet A will
be served while the new core is still exiting C6. We confirmed this conjecture in
our experiments. We have measured zero packets being reordered. To consider
an extreme case of very high bandwidth flows we even measured reordering of all
packets, independently of the flow they belong to, and still found none.

Impact of traffic burstiness. Our results so far were based on input traffic whose
fine-grained “burstiness” (i.e., over short timescales) derived from the natural vari-
ability associated with a software-based traffic source and multiplexing traffic from
multiple such sources. To study the impact of fine-grained burstiness in a more
controlled manner, we modified the traffic sources to generate traffic following an

59

Energy-proportional Router

on/off pattern. During an “on” period the traffic source generates a burst of back-
to-back packets at the maximum rate. We thus control the burstiness of the traffic
by picking the length of the “on” period (i.e., the number of back-to-back packets)
while keeping the average packet rate constant.

Figure 4.18 shows the power usage of our system as we vary the burstiness of
the sources (a value of 1 corresponds to uniform traffic). The average traffic rate is
around 2.5 Gbps per interface. In the interest of space we only plot the results for
IPv4 Routing. Other applications exhibit a similar behavior (see Section 4.6.3). As
we can see the power usage varies very little as we increase the burstiness. This
shows that the controller is stable enough to make sure large short-term burstiness
does not impact its performance. As expected, the power usage with unmodified
Click is flat while NAPI-Click benefits from traffic burstiness as interrupts are
spaced out more with burstier traffic. However, for all levels of burstiness, Power-
Save is clearly the most energy efficient. We measured also latency and packet loss
and saw similar results where burstiness has little or no impact. We refer the reader
to Section 4.6.3 for a detailed analysis of the latency results with bursty traffic.

60

Energy-proportional Router

0 50 100 150 200 250 300

100

150

200

250

300

Idle

Time (s)

S
y
s
te

m
 P

o
w

e
r

(W
)

Click NAPI−Click PowerSave

(a) Routing

0 50 100 150 200 250 300

100

150

200

250

300

Idle

Time (s)

S
y
s
te

m
 P

o
w

e
r

(W
)

(b) NetFlow

0 50 100 150 200 250 300

100

150

200

250

300

Idle

Time (s)

S
y
s
te

m
 P

o
w

e
r

(W
)

(c) IPSEC

0 50 100 150 200 250 300

100

150

200

250

300

Idle

Time (s)

S
y
s
te

m
 P

o
w

e
r

(W
)

(d) Redundancy Elimination

Figure 4.16: Power usage with (a) IPv4 routing, (b) NetFlow, (c) IPSEC, (d) Re-
dundancy Elimination.

61

Energy-proportional Router

0 50 100 150 200 250 300
0

10

20

30

40

50

60

Time (s)

L
a

te
n

c
y
 (

u
s
)

minimum

average

99
th

 percentile

Figure 4.17: Average, minimum and 99th percentile of the packet forwarding la-
tency when using Click with the power save algorithm.

0 10 20 30 40 50 60

120

140

160

180

200

220

240

260

Burst Size (packets)

S
y
s
te

m
 P

o
w

e
r

(W
)

Click

NAPI−Click

Powersave

Figure 4.18: System power varying the burstiness of the input traffic. The average
traffic rate is constant at 2.5 Gbps per interface

62

Energy-proportional Router

4.6 Testbed setup and Additional measures

4.6.1 Measuring Latency

To measure the packet latency introduced by our router we run experiments using
a server with two interfaces. The server is configured to forward packets between
the two interfaces in a tight loop. A different machine acts as a sender and receiver
and timestamps incoming and outgoing packets. Packets are timestamped with
the current value of the 64-bit TimeStamp Counter register (TSC) – counting the
number of elapsed clock cycles. In order to measure the latency introduced by the
server we first measured the baseline round trip time on the generator machine by
replacing our server with a cable. This gives us an estimate of the delay due to
packet generation and timestamping. We then run the same experiments replacing
the cable with our software router and we then remove the baseline from all the
measures. We measure the latency in processing a packet as a function of the
packet rate for 64B packets.

Figure 4.19 shows the results for the legacy Click stack and for the NAPI-Click
one while the input rate is increased up to the maximum the router can sustain.
When the system is underloaded the latency is about 7 µs with polling and 12 µs
with NAPI-Click. When the traffic increases to 1 Mpps and beyond the two meth-
ods tend to converge. Recall that with NAPI the interrupt handling routine disables
the interrupts and polls the interface until there are packets left in the queue. The
number of interrupts is function of the incoming packet rate, where more packets
means that less interrupts are received improving the measured latency. At very
high load there is no opportunity to re-enable interrupts and NAPI degenerates into
polling, as can be seen from the latency measured at the maximum sustainable rate.

4.6.2 Sleep states

In Section 4.3 we summarized the power and performance implications of using
sleep states (C-States) for inactive cores, here we provide detailed measures of the
power consumption and the exit latency for each sleep state supported by our plat-
form. Figure 4.20 shows the system power consumption measured while keeping
all the cores in the same state. Our machine supports C1, C3 and C6 states in
addition to the active C0 state. In order to keep cores in C0, each of them executes
an empty infinite loop. We also run cores at the minimum available frequency
(1.6 GHz), in this way we measure the lowest possible power consumption while
all the cores are utilized at 100%, i.e. 171 W. In C1 instead the power consumption

63

Energy-proportional Router

10
4

10
6

10
0

10
1

10
2

10
3

Packet rate (pps)

L
a
te

n
c
y
 (

u
s
)

NAPI−Click

Click (unmodified)

Figure 4.19: Packet processing latency with polling and interrupts varying the
input traffic rate.

is 133 W, that is 78% of the power in C0.

With all cores in C3 the system can shed an additional 14 W compared to
keeping all cores in C1. When all cores are in C6 the system power usage is down
to 115 W, that is 86% of the power consumed when all the cores are in C1. These
power savings are evenly distributed across cores.

To estimate the exit latencies we measure the delay of packets through a soft-
ware router using the same setup described in Section 4.6.1. The router is driven
by traffic at a very low packet rate (1 packet/sec) so that when an interrupt arrives,
the core must first exit from its C-state (C1, C3, C6 depending on the experiment)
and then packet processing can begin. Due to the low packet rate, cores have plenty
of time to return to a deep power down state before the next interrupt.

Figure 4.21 plots the packet delay (minimum, maximum, average) depending
on the C-state. The forwarding latencies in C0 and C1 are practically the same.
This validates that the exit latency from C1 is comparable to a cache miss. Waking
up from a deep power down state instead requires a longer time: 60 µs for C3 and
about 100 µs for C6.

The variability in packet latency is due to the fact that a core can wake from
a sleep state in order to process interrupts issued by peripherals other than NICs,
or to run operating system timer handlers. At the time a new packet arrive it
is possible that the core has already started the wakeup transition, so the packet
experiences a low latency. In the worst case instead a packet arrives immediately

64

Energy-proportional Router

C0@1.6GHz C1 C3 C6
0

50

100

150

200

250

S
y
s
te

m
 p

o
w

e
r

(W
)

Figure 4.20: Power consumption with no load and varying the C-states.

after the core has started a transition to enter the sleep state, thus paying both the
time to make the core sleep and the time to wake it up.

4.6.3 Traffic Burstiness

In Section 4.5 we have briefly analyzed how power consumption is affected by
the input traffic burstiness and we reported results only for a simple IPv4 routing
workload. Here we report additional results for all the applications analyzed in the
evaluation section.

In order to assess performance while varying traffic burstiness at a fine grained
level we have modified our traffic generators to aggregate packets in bursts while
keeping the overall packet rate constant. The traffic generator is an ON/OFF gen-
erator that batches packets during the OFF period and sends them all at once over
the wire in the ON period.

In all the experiments the rate is fixed to 2.5 Gbps per interface, a rate that
all the applications we consider can sustain. The packet sizes and payloads are
generated as explained in Section 4.5. We show results for NetFlow, IPSEC and
Redundancy Elimination applications.

Figures 4.22[a-c] show the system power consumption for Click, NAPI-Click
and our PowerSave solution while varying traffic burstiness. There is no surprise
in Click behavior, showing an almost constant power in all the configurations. The
common trend we notice is that NAPI benefits from a high burstiness in traffic
since this makes subsequent interrupts more spaced in time. Our power saving

65

Energy-proportional Router

C0 C1 C3 C6
0

20

40

60

80

100

120

Pa
ck

et
 L

at
en

cy
 (u

s)

Forwarding latency

C3 exit latency

C6 exit latency

Figure 4.21: Packet processing latency when the core is in C1, C3, and C6 idle
state. Error bars show the minimum and maximum latency while the cross shows
the average latency.

algorithm instead benefits from bursty traffic only for values lower than 32. For
higher levels of burstiness the average power slightly increases, due to the con-
troller switching to higher performance configurations as soon as a bust arrives.
Nonetheless the powersaving controller is able to respond quickly to incoming
bursts while keeping the system power consumption at minimum in all configura-
tions.

The side effect of bursty traffic is that it increases the overall packet latency
by quickly filling up the input queues. Figure 4.23 shows the average latency for
IPv4 routing and for NetFlow while varying the generator burstiness level. The
powersave controller is running and we can see how it make the latency increase
slower than linearly since it tries to keep the input queue occupancy between the
defined thresholds.

66

Energy-proportional Router

0 10 20 30 40 50 60

120

140

160

180

200

220

240

260

Burst Size (packets)

S
y
s
te

m
 P

o
w

e
r

(W
)

Click

NAPI−Click

Powersave

(a) NetFlow

0 10 20 30 40 50 60

150

200

250

Burst Size (packets)

S
y
s
te

m
 P

o
w

e
r

(W
)

Click

NAPI−Click

Powersave

(b) IPSEC

0 10 20 30 40 50 60

150

200

250

Burst Size (packets)

S
y
s
te

m
 P

o
w

e
r

(W
)

Click

NAPI−Click

Powersave

(c) Redundancy Elimination

Figure 4.22: System power varying the burstiness of the input traffic while running
different workloads.

67

Energy-proportional Router

0 10 20 30 40 50 60
15

20

25

30

35

Burst Size (packets)

A
v
g
.
P

a
c
k
e
t
L
a
te

n
c
y
 (

u
s
)

Routing

NetFlow

Figure 4.23: Average packet latency for IPv4 Routing and NetFlow while varying
the input traffic burstiness.

68

Energy-proportional Router

4.7 Related Work

We discuss relevant work in the context of both networking and computer systems.

Energy efficiency in networks. Prior work on improving network energy effi-
ciency has followed one of two broad trajectories. The first takes a network-wide
view of the problem, proposing to modify routing protocols for energy savings.
The general theme is to re-route packets so as to consolidate traffic onto fewer
paths. If such re-routing can offload traffic from a router entirely, then that router
may be powered down entirely [65, 88].

The second line of work explores a different strategy: to avoid changing rout-
ing protocols (an area fraught with concerns over stability and robustness), these
proposals instead advocate changes to the internals of a router or switch [52, 84,
109, 115]. The authors assume hardware support for low-power modes in routers
and develop algorithms that invoke these low-power modes. They evaluate their
algorithms using simulation and abstract models of router power consumption; to
date, however, there has been no empirical validation of these solutions.

Our focus on building a power-proportional prototype router complements the
above efforts. For the first line of work, a power-proportional router would enable
power savings even when traffic cannot be entirely offloaded from a router. To the
second, we offer a platform for empirical validation and our empirical results in
Section 4.3 highlight the pitfalls of theoretical models.

Energy-efficient systems. With the rise of data centers and their emphasis on
energy-efficiency, support for power management in servers has matured over
the last decade. Today’s servers offer a variety of hardware options for power-
management along with the corresponding software hooks and APIs. This has led
to recent systems work exploring how to best leverage this hardware support with
the aim of achieving power proportionality while actively processing a particular
workload.

Many of these efforts focus on cluster-level solutions that dynamically consol-
idate work on a small number of servers and power-down the remaining [67, 87,
120]. Such work is orthogonal to ours as their techniques are not applicable to our
context.

Closer to our focus is recent work looking at single-server energy proportion-

69

Energy-proportional Router

ality [91, 101, 106, 107, 121]. Some focus on improved hardware capabilities for
power management [91, 101]. The remaining [106, 107, 121] focus (like us) on
leveraging existing hardware support, but do so in the context of very different
application workloads.

Tsirogiannis et al. focus on database workloads and evaluate the energy ef-
ficiency of current query optimizers [121]. The authors in [106] focus on non-
interactive jobs in data centers and advocate the use of system-wide sleep (“S
states” described in Section 2.2) during idle times. They use analytical models
and simulations to demonstrate the potential power savings. This approach, how-
ever, assumes relatively long periods (on the order of tens of milliseconds and
greater) of idleness across memory, I/O, and CPUs. As such, their results (and S-
states more generally) are not applicable to typical network equipment that, even
if lightly utilized, is never completely idle. More recently, Meisner et al. [107] ex-
plore power management trade-offs for online data-intensive services such as web
search, online ads, etc. This class of workloads (like ours) face stringent latency
requirements and large, quick variations in load. Using benchmarks, the authors
in [107] derive analytical models to study the latency tradeoffs of power manage-
ment options, based on which they offer general recommendations for hardware
designers of future energy-efficient architectures.

In contrast to the above, we focus on networking workloads and exploiting
low-power options in current hardware. The result of our exploration is a lightweight,
online, power saving algorithm that we validate in a real system. We leave it to fu-
ture work to generalize our findings to application workloads beyond networking.

70

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we proposed solutions for improving the energy efficiency of dat-
acenter facilities. The problem has been tackled on two sides, respectively the
computing devices and the networking devices.

First we proposed a hybrid multiprocessor server architecture that is able to
exploit the advantages of diverse elaboration units; the system we envision blends
mobile processors with high-end ones and redirects the incoming requests to the
right processor in order to preserve as much energy as possible. This is an explo-
rative work since architectures like this are not commercially available yet. Af-
ter our initial analysis through analytical models and simulation we had the luck
to work with an early prototype, from Intel, that mounts a low-end Atom pro-
cessor with a high-performance Xeon. The system, even if built with a legacy
shared front-side bus design, could efficiently run a Web workload and gave us the
opportunity to get some preliminary measures on which we founded our succes-
sive studies. We developed a simple but effective analytical model to describe the
timing and energy characteristics of hybrid architecture designs. The model was
used to evaluate performance and power savings achievable with future hybrid
servers, showing the implications of the ratio of big and small cores in building
more power-proportional servers. We believe our work can be useful for hardware
designers to better understand the tradeoffs involved with hybrid architectures and
to finely tune the performance and energy operating point of devices.

We then approached the problem of improving the power efficiency of network

71

Conclusion and Future Work

devices without compromising their performance. For this, we studied the power-
vs-performance tradeoffs offered by different approaches to low-power operation,
in the context of devices based on commodity server hardware. We studied the
saving potentials offered by different mechanisms such as C-states, P-states and
number of cores, and studied the impact of these mechanisms on performance and
latency. Our study revealed three guiding principles to optimally combine differ-
ent hardware power management options: (i) run the system at the lowest possible
frequency (P-state) that can keep up with the load, (ii) use as few cores as pos-
sible, and (iii) keep the other cores in the lowest possible sleep state (C-state).
Based on these guidelines we build a prototype Click-based software router whose
power consumption grows in proportion to the offered load, using between 50%
and 100% of the original power, without compromising on peak performance. The
general-purpose hardware we used in our analysis is very different from dedicated
hardware and accelerators in today’s network devices. We have extensively dis-
cussed the applicability of our work in Chapter 4 and we believe that the need
for energy saving algorithms in networks will stem from the trend toward using
commodity devices in large datacenter networks. Also, we expect that the over-
all methodology by which we compare and combine different power options will
be of relevance, given that the sleep and throttle mechanisms we rely on reflect
fundamental techniques in CMOS transistor technology.

5.2 Future Work

Future Operating Systems and programming languages runtime will need to sup-
port compute cores heterogeneity. With big (fast) and slow (small) cores available,
the programmer will need to be aware of performance and energy asymmetry and
to be able to map diverse parts of the application on different sets of cores. An
interesting and challenging research topic will be to evaluate the implications for
applications developers, and to identify the software primitives needed to carefully
tune the operating point of the underlying hardware, in order to trade performance
for energy savings when possible and to request high computing capabilities when
required.

The work we presented about energy efficiency in datacenter networks has
been carried on with a particular software router implementation based on X86
architecture and the Click [93] packet processing framework. The next step would
naturally be to extend our results to different hardware architectures and software
stacks [74, 86, 116]. A careful performance evaluation of our power saving algo-

72

Conclusion and Future Work

rithm with applications beyond those explored here, especially applications with
strict real-time requirements, is needed in order to extend the applicability of our
work to devices acting as complex network appliances, also known as middle-
boxes [25]. We are also interested in applying the same design principles to more
general streaming workloads like video, music, voice and gaming.

73

74

Bibliography

[1] Amazon EC2 spot instances.
http://aws.amazon.com/ec2/spot-instances
(Cited on page 7.)

[2] Amazon Elastic MapReduce.
http://aws.amazon.com/elasticmapreduce
(Cited on page 4.)

[3] Amazon Web Services.
http://aws.amazon.com
(Cited on page 4.)

[4] Apache Hadoop.
http://hadoop.apache.org
(Cited on pages 4 and 6.)

[5] BlueCoat Proxy.
http://www.bluecoat.com
(Cited on page 35.)

[6] Cisco Application Extension Platform.
http://www.cisco.com/en/US/products/ps9701/index.html
(Cited on page 35.)

[7] Cisco Green Research Symposium, March 2008.
http://goo.gl/MOUNl
(Cited on page 33.)

[8] Cisco Research Call on Power.
http://goo.gl/np8wr
(Cited on page 33.)

[9] Climate Savers Computing.
http://www.climatesaverscomputing.org
(Cited on page 3.)

75

http://aws.amazon.com/ec2/spot-instances
http://aws.amazon.com/elasticmapreduce
http://aws.amazon.com
http://hadoop.apache.org
http://www.bluecoat.com
http://www.cisco.com/en/US/products/ps9701/index.html
http://goo.gl/MOUNl
http://goo.gl/np8wr
http://www.climatesaverscomputing.org

Bibliography

[10] eHarmony Finds a Compatible Match with SeaMicro.
http://www.seamicro.com/sites/default/files/SM_CP01_v1.3.pdf
(Cited on page 6.)

[11] Facebook Prineville Datacenter.
http://www.facebook.com/prinevilleDataCenter
(Cited on page 4.)

[12] Google App Engine.
http://code.google.com/appengine
(Cited on page 4.)

[13] Google energy-saving data centers.
http://www.google.com/about/datacenters
(Cited on pages 3 and 4.)

[14] Heroku: Cloud Application Platform.
http://www.heroku.com
(Cited on page 4.)

[15] http load - multiprocessing http test client.
http://www.acme.com/software/http_load
(Cited on page 19.)

[16] IEEE 802.3az Standard - Media Access Control Parameters, Physical Lay-
ers and Management Parameters for Energy-Efficient Ethernet.
http://goo.gl/fHtBq
(Cited on pages 33 and 39.)

[17] Intel Previews Intel Xeon ’Nehalem-EX’ Processor.
http://goo.gl/460la
(Cited on page 11.)

[18] Intel processors specs.
http://ark.intel.com
(Cited on pages 8 and 17.)

[19] Intel Sandy Bridge.
http://www.intel.com/SandyBridge
(Cited on page 16.)

[20] Intel Turbo Boost Technology - On Demand Processor Performance.
http://goo.gl/sjTGX
(Cited on page 14.)

[21] Lighttpd homepage.
http://www.lighttpd.net
(Cited on page 19.)

76

http://www.seamicro.com/sites/default/files/SM_CP01_v1.3.pdf
http://www.facebook.com/prinevilleDataCenter
http://code.google.com/appengine
http://www.google.com/about/datacenters
http://www.heroku.com
http://www.acme.com/software/http_load
http://goo.gl/fHtBq
http://goo.gl/460la
http://ark.intel.com
http://www.intel.com/SandyBridge
http://goo.gl/sjTGX
http://www.lighttpd.net

Bibliography

[22] Linode Cloud.
http://www.linode.com
(Cited on page 4.)

[23] “M57 Patents” Dataset.
https://domex.nps.edu/corp/scenarios/2009-m57/net
(Cited on page 57.)

[24] Marlowe: Intelligent Control For the Cloud.
http://research.microsoft.com/en-us/projects/marlowe
(Cited on page 7.)

[25] Middleboxes: Taxonomy and Issues.
http://tools.ietf.org/html/rfc3234
(Cited on page 73.)

[26] NLANR: Internet Measurement and Analysis.
http://moat.nlanr.net
(Cited on page 57.)

[27] Open Compute Project.
http://opencompute.org
(Cited on page 3.)

[28] Open Compute Server Technology.
http://opencompute.org/project_category/server-technology
(Cited on page 4.)

[29] Powering a Google Search.
http://goo.gl/PKbF
(Cited on page 2.)

[30] Rackspace Hosting.
http://www.rackspace.com
(Cited on page 4.)

[31] Receive-Side Scaling Enhancements in Windows Server 2008.
http://goo.gl/hsiU9
(Cited on pages 37 and 55.)

[32] Riverbed WAN optimization.
http://www.riverbed.com/us/solutions/wan_optimization
(Cited on page 35.)

[33] Routebricks: Enabling General Purpose Network Infrastructure.
http://routebricks.org
(Cited on pages 2 and 5.)

77

http://www.linode.com
https://domex.nps.edu/corp/scenarios/2009-m57/net
http://research.microsoft.com/en-us/projects/marlowe
http://tools.ietf.org/html/rfc3234
http://moat.nlanr.net
http://opencompute.org
http://opencompute.org/project_category/server-technology
http://goo.gl/PKbF
http://www.rackspace.com
http://goo.gl/hsiU9
http://www.riverbed.com/us/solutions/wan_optimization
http://routebricks.org

Bibliography

[34] SAMSUNG Develops Industry’s First DDR4DRAM, Using 30nm Class
Technology.
http://www.samsung.com/greenmemory
(Cited on page 39.)

[35] Seamicro, Mozilla case study.
http://goo.gl/YHSkL
(Cited on page 6.)

[36] Seamicro SM10000 Family of High Density, Low Power Servers.
http://www.seamicro.com/node/164
(Cited on pages 6 and 31.)

[37] SimPy Simulation Package.
http://simpy.sourceforge.net
(Cited on page 25.)

[38] SPECpower ssj2008 results.
http://www.spec.org/power_ssj2008/results
(Cited on pages 39 and 40.)

[39] Streaming SIMD Extensions.
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
(Cited on page 17.)

[40] Tensilica Multicore Design.
http://www.tensilica.com/methodology/multicore-design.htm
(Cited on page 35.)

[41] The Green Grid.
http://www.thegreengrid.org
(Cited on page 3.)

[42] VMware Cloud Foundry.
http://cloudfoundry.com
(Cited on page 4.)

[43] Vyatta Router Firewall and VPN Products.
http://www.vyatta.com/products
(Cited on page 35.)

[44] Windows Azure.
http://www.windowsazure.com
(Cited on page 4.)

[45] Big.LITTLE Processing with ARM CortexTM-A15 and Cortex-A7. Im-
proving Energy Efficiency in High-Performance Mobile Platforms. ARM
whitepaper, 2011.
(Cited on page 8.)

78

http://www.samsung.com/greenmemory
http://goo.gl/YHSkL
http://www.seamicro.com/node/164
http://simpy.sourceforge.net
http://www.spec.org/power_ssj2008/results
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://www.tensilica.com/methodology/multicore-design.htm
http://www.thegreengrid.org
http://cloudfoundry.com
http://www.vyatta.com/products
http://www.windowsazure.com

Bibliography

[46] Snapdragon S4 Processors: System on Chip Solutions for a New Mobile
Age. Qualcomm whitepaper, 2011.
(Cited on page 8.)

[47] Variable SMP A Multi-Core CPU Architecture for Low Power and High
Performance. NVidia whitepaper, 2011.
(Cited on page 8.)

[48] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta. Som-
niloquy: augmenting network interfaces to reduce pc energy usage. In
Proceedings of the 6th USENIX symposium on Networked systems design
and implementation, NSDI’09, pages 365–380, Berkeley, CA, USA, 2009.
USENIX Association.
(Cited on page 8.)

[49] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. SIGCOMM Comput. Commun. Rev., 38:63–
74, August 2008.
(Cited on page 5.)

[50] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center tcp (dctcp). In Proceedings
of the ACM SIGCOMM 2010 conference on SIGCOMM, SIGCOMM ’10,
pages 63–74, New York, NY, USA, 2010. ACM.
(Cited on page 2.)

[51] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet caches
on routers: the implications of universal redundant traffic elimination. In
Proceedings of the ACM SIGCOMM 2008 conference on Data communica-
tion, SIGCOMM ’08, pages 219–230, New York, NY, USA, 2008. ACM.
(Cited on pages 38 and 57.)

[52] G. Ananthanarayanan and R. H. Katz. Greening the switch. In Proceed-
ings of the 2008 conference on Power aware computing and systems, Hot-
Power’08, pages 7–7, Berkeley, CA, USA, 2008. USENIX Association.
(Cited on page 69.)

[53] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. Fawn: a fast array of wimpy nodes. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, SOSP ’09,
pages 1–14, New York, NY, USA, 2009. ACM.
(Cited on pages 6 and 31.)

79

Bibliography

[54] M. Annavaram, E. Grochowski, and J. Shen. Mitigating amdahl’s law
through epi throttling. In Proceedings of the 32nd annual international sym-
posium on Computer Architecture, ISCA ’05, pages 298–309, Washington,
DC, USA, 2005. IEEE Computer Society.
(Cited on page 32.)

[55] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feamster. Switchblade:
a platform for rapid deployment of network protocols on programmable
hardware. In Proceedings of the ACM SIGCOMM 2010 conference on
SIGCOMM, SIGCOMM ’10, pages 183–194, New York, NY, USA, 2010.
ACM.
(Cited on page 35.)

[56] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the
clouds: A Berkeley view of cloud computing. Technical report, Technical
Report UCB/EECS-2009-28, EECS Department, University of California,
Berkeley, 2009.
(Cited on page 4.)

[57] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of perfor-
mance asymmetry in emerging multicore architectures. In Proceedings of
the 32nd annual international symposium on Computer Architecture, ISCA
’05, pages 506–517, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.
(Cited on page 32.)

[58] P. Barford and M. Crovella. Generating representative web workloads for
network and server performance evaluation. SIGMETRICS Performance
Evaluation Review, 26:151–160, June 1998.
(Cited on page 20.)

[59] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In Pro-
ceedings of the nineteenth ACM symposium on Operating systems princi-
ples, SOSP ’03, pages 164–177, New York, NY, USA, 2003. ACM.
(Cited on page 7.)

[60] L. A. Barroso and U. Hölzle. The case for energy-proportional computing.
Computer, 40(12):33–37, 2007.
(Cited on pages 1, 15, 25, 29 and 30.)

80

Bibliography

[61] B. Beavers. The story behind the intel atom processor success. Design Test
of Computers, IEEE, 26(2):8 –13, march-april 2009.
(Cited on pages 12, 16 and 30.)

[62] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, et al. Tile64-processor: A 64-core soc with mesh
interconnect. In Solid-State Circuits Conference, 2008. ISSCC 2008. Digest
of Technical Papers. IEEE International, pages 88–598. IEEE, 2008.
(Cited on page 6.)

[63] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele. Many-core key-
value store. In Green Computing Conference and Workshops (IGCC), 2011
International, pages 1–8. IEEE, 2011.
(Cited on page 6.)

[64] R. Brown, E. Masanet, B. Nordman, B. Tschudi, A. Shehabi, J. Stanley,
J. Koomey, D. Sartor, P. Chan, J. Loper, et al. Report to congress on server
and data center energy efficiency. Public law, 109:431, 2007.
(Cited on pages 2 and 3.)

[65] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright.
Power awareness in network design and routing. In INFOCOM 2008. The
27th Conference on Computer Communications. IEEE, pages 457 –465,
april 2008.
(Cited on pages 33 and 69.)

[66] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage
system for structured data. ACM Trans. Comput. Syst., 26:4:1–4:26, June
2008.
(Cited on page 7.)

[67] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle.
Managing energy and server resources in hosting centers. In Proceedings
of the eighteenth ACM symposium on Operating systems principles, SOSP
’01, pages 103–116, New York, NY, USA, 2001. ACM.
(Cited on pages 7 and 69.)

[68] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and L. Nic-
colini. An energy case for hybrid datacenters. SIGOPS Operating Systems
Review, 44:76–80, March 2010.
(Cited on page 16.)

81

Bibliography

[69] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation
- Volume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005. USENIX
Association.
(Cited on page 7.)

[70] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow., 1:1277–1288, August 2008.
(Cited on page 7.)

[71] P. Costa, T. Zahn, A. Rowstron, G. O’Shea, and S. Schubert. Why should we
integrate services, servers, and networking in a data center? In Proceedings
of the 1st ACM workshop on Research on enterprise networking, WREN
’09, pages 111–118, New York, NY, USA, 2009. ACM.
(Cited on page 2.)

[72] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. ACM Communication, 51:107–113, Jan. 2008.
(Cited on page 4.)

[73] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: ama-
zon’s highly available key-value store. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, SOSP ’07, pages
205–220, New York, NY, USA, 2007. ACM.
(Cited on page 7.)

[74] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: exploiting paral-
lelism to scale software routers. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09, pages 15–28, New
York, NY, USA, 2009. ACM.
(Cited on pages 2, 5, 35 and 72.)

[75] W. Fisher, M. Suchara, and J. Rexford. Greening backbone networks: re-
ducing energy consumption by shutting off cables in bundled links. In
Proceedings of the first ACM SIGCOMM workshop on Green networking,
Green Networking ’10, pages 29–34, New York, NY, USA, 2010. ACM.
(Cited on page 33.)

82

Bibliography

[76] B. Fitzpatrick. Distributed caching with memcached. Linux J., 2004:5–,
Aug. 2004.
(Cited on pages 6 and 7.)

[77] E. Frachtenberg, A. Heydari, H. Li, A. Michael, J. Na, A. Nisbet, and
P. Sarti. High-efficiency server design. In Proceedings of 2011 Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 27:1–27:27, New York, NY, USA, 2011. ACM.
(Cited on page 4.)

[78] G. Gerosa et al. A Sub-2W Low Power IA Processor for Mobile Internet
Devices in 45nm High-k Metal Gate CMOS. IEEE Journal of Solid-State
Circuits, Jan. 2009.
(Cited on page 12.)

[79] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems prin-
ciples, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.
(Cited on page 7.)

[80] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data center
network. Commun. ACM, 54:95–104, Mar. 2011.
(Cited on pages 2 and 5.)

[81] B. Guenter, N. Jain, and C. Williams. Managing cost, performance, and
reliability tradeoffs for energy-aware server provisioning. In INFOCOM,
2011 Proceedings IEEE, pages 1332–1340. IEEE, 2011.
(Cited on pages 7 and 31.)

[82] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
Bcube: a high performance, server-centric network architecture for modular
data centers. In Proceedings of the ACM SIGCOMM 2009 conference on
Data communication, SIGCOMM ’09, pages 63–74, New York, NY, USA,
2009. ACM.
(Cited on pages 2 and 5.)

[83] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable
and fault-tolerant network structure for data centers. In Proceedings of the
ACM SIGCOMM 2008 conference on Data communication, SIGCOMM
’08, pages 75–86, New York, NY, USA, 2008. ACM.
(Cited on pages 2 and 5.)

83

Bibliography

[84] M. Gupta and S. Singh. Greening of the internet. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’03, pages 19–26, New York, NY,
USA, 2003. ACM.
(Cited on pages 33 and 69.)

[85] V. Gupta and R. Nathuji. Analyzing performance asymmetric multicore
processors for latency sensitive datacenter applications. In Proceedings of
the 2010 international conference on Power aware computing and systems,
HotPower’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.
(Cited on page 32.)

[86] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated
software router. In Proceedings of the ACM SIGCOMM 2010 conference on
SIGCOMM, SIGCOMM ’10, pages 195–206, New York, NY, USA, 2010.
ACM.
(Cited on pages 35 and 72.)

[87] T. Heath, B. Diniz, E. V. Carrera, W. Meira, Jr., and R. Bianchini. Energy
conservation in heterogeneous server clusters. In Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, PPoPP ’05, pages 186–195, New York, NY, USA, 2005. ACM.
(Cited on page 69.)

[88] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: saving energy in data center
networks. In Proceedings of the 7th USENIX conference on Networked
systems design and implementation, NSDI’10, pages 17–17, Berkeley, CA,
USA, 2010. USENIX Association.
(Cited on page 69.)

[89] U. Hölzle. Brawny cores still beat wimpy cores, most of the time. IEEE
Micro, 30(4), 2010.
(Cited on page 6.)

[90] U. Hölzle and L. A. Barroso. The Datacenter as a Computer: An Intro-
duction to the Design of Warehouse-Scale Machines. Morgan and Claypool
Publishers, 1st edition, 2009.
(Cited on pages 1 and 4.)

84

Bibliography

[91] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web search using mo-
bile cores: quantifying and mitigating the price of efficiency. In Proceed-
ings of the 37th annual international symposium on Computer architecture,
ISCA ’10, pages 314–325, New York, NY, USA, 2010. ACM.
(Cited on pages 6 and 70.)

[92] R. Katz. Tech titans building boom. Spectrum, IEEE, 46(2):40–54, 2009.
(Cited on page 1.)

[93] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Trans. Comput. Syst., 18:263–297, August 2000.
(Cited on pages 10 and 72.)

[94] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click
modular router. ACM Trans. Comput. Syst., 18:263–297, August 2000.
(Cited on pages 34 and 37.)

[95] J. Koomey. Growth in Data center electricity use 2005 to 2010. Oakland,
CA: Analytics Press, 2011.
(Cited on pages 2 and 4.)

[96] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz. Nap-
sac: design and implementation of a power-proportional web cluster. SIG-
COMM Comput. Commun. Rev., 41:102–108.
(Cited on pages 7 and 31.)

[97] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Proces-
sor power reduction via single-isa heterogeneous multi-core architectures.
Computer Architecture Letters, 2(1):2, january-december 2003.
(Cited on page 32.)

[98] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen. Single-isa
heterogeneous multi-core architectures: the potential for processor power
reduction. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th An-
nual IEEE/ACM International Symposium on, pages 81 – 92, dec. 2003.
(Cited on page 32.)

[99] W. Lang, J. M. Patel, and S. Shankar. Wimpy node clusters: what about
non-wimpy workloads? In Proceedings of the Sixth International Workshop
on Data Management on New Hardware, DaMoN ’10, pages 47–55, New
York, NY, USA, 2010. ACM.
(Cited on page 6.)

85

Bibliography

[100] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn. Op-
erating system support for overlapping-isa heterogeneous multi-core archi-
tectures. In High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pages 1 –12, jan. 2010.
(Cited on pages 17 and 32.)

[101] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-
hardt. Understanding and designing new server architectures for emerging
warehouse-computing environments. In Proceedings of the 35th Annual
International Symposium on Computer Architecture, ISCA ’08, pages 315–
326, Washington, DC, USA, 2008. IEEE Computer Society.
(Cited on page 70.)

[102] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao, and
Y. Zhang. Serverswitch: a programmable and high performance platform
for data center networks. In Proceedings of the 8th USENIX conference
on Networked systems design and implementation, NSDI’11, pages 2–2,
Berkeley, CA, USA, 2011. USENIX Association.
(Cited on page 35.)

[103] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan. A power bench-
marking framework for network devices. In Proceedings of the 8th Inter-
national IFIP-TC 6 Networking Conference, NETWORKING ’09, pages
795–808, Berlin, Heidelberg, 2009. Springer-Verlag.
(Cited on page 33.)

[104] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On dominant char-
acteristics of residential broadband internet traffic. In Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference, IMC
’09, pages 90–102, New York, NY, USA, 2009. ACM.
(Cited on page 33.)

[105] M. R. Marty and M. D. Hill. Virtual hierarchies to support server con-
solidation. In Proceedings of the 34th annual international symposium on
Computer architecture, ISCA ’07, pages 46–56, New York, NY, USA, 2007.
ACM.
(Cited on page 7.)

[106] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating server
idle power. SIGPLAN Not., 44:205–216, March 2009.
(Cited on pages 8 and 70.)

86

Bibliography

[107] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch.
Power management of online data-intensive services. SIGARCH Comput.
Archit. News, 39:319–330, June 2011.
(Cited on pages 4, 8, 16, 25 and 70.)

[108] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Trans. Comput. Syst., 15:217–252, August
1997.
(Cited on page 40.)

[109] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall.
Reducing network energy consumption via sleeping and rate-adaptation. In
Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’08, pages 323–336, Berkeley, CA, USA, 2008.
USENIX Association.
(Cited on pages 33 and 69.)

[110] M. Olson, K. Christensen, S. Lee, and J. Yun. Hybrid Web Server: Traffic
Analysis and Prototype. In Conference on Local Computer Networks. IEEE,
2011.
(Cited on page 7.)

[111] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and I. Stoica.
A cost comparison of datacenter network architectures. In Proceedings of
the 6th International COnference, Co-NEXT ’10, pages 16:1–16:12, New
York, NY, USA, 2010. ACM.
(Cited on page 2.)

[112] B. Raghavan and J. Ma. The Energy and Emergy of the Internet. ACM,
2011.
(Cited on page 2.)

[113] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level power
management for dense blade servers. In Proceedings of the 33rd annual
international symposium on Computer Architecture, ISCA ’06, pages 66–
77, Washington, DC, USA, 2006. IEEE Computer Society.
(Cited on page 7.)

[114] D. Reddy, D. Koufaty, P. Brett, and S. Hahn. Bridging functional het-
erogeneity in multicore architectures. SIGOPS Operating System Review,
45:21–33, February 2011.
(Cited on pages 17 and 32.)

87

Bibliography

[115] P. Reviriego, K. Christensen, A. Sánchez-Macián, and J. A. Maestro. Using
coordinated transmission with energy efficient ethernet. In Proceedings of
the 10th international IFIP TC 6 conference on Networking - Volume Part
I, NETWORKING’11, pages 160–171, Berlin, Heidelberg, 2011. Springer-
Verlag.
(Cited on page 69.)

[116] L. Rizzo and M. Landi. netmap: memory mapped access to network de-
vices. In Proceedings of the ACM SIGCOMM 2011 conference on SIG-
COMM, SIGCOMM ’11, pages 422–423, New York, NY, USA, 2011.
ACM.
(Cited on page 72.)

[117] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, B. Cherkauer, J. Stinson,
J. Benoit, R. Varada, J. Leung, R. Limaye, and S. Vora. A 65-nm dual-
core multithreaded xeon reg; processor with 16-mb l3 cache. Solid-State
Circuits, IEEE Journal of, 42(1):17 –25, jan. 2007.
(Cited on page 11.)

[118] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In Proceedings
of the 5th annual Linux Showcase & Conference - Volume 5, pages 18–18,
Berkeley, CA, USA, 2001. USENIX Association.
(Cited on page 41.)

[119] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi. The middlebox
manifesto: enabling innovation in middlebox deployment. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks, HotNets ’11, pages
21:1–21:6, New York, NY, USA, 2011. ACM.
(Cited on page 35.)

[120] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu. De-
livering energy proportionality with non energy-proportional systems: op-
timizing the ensemble. In Proceedings of the 2008 conference on Power
aware computing and systems, HotPower’08, pages 2–2, Berkeley, CA,
USA, 2008. USENIX Association.
(Cited on pages 7 and 69.)

[121] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy
efficiency of a database server. In Proceedings of the 2010 international
conference on Management of data, pages 231–242. ACM, 2010.
(Cited on pages 4 and 70.)

88

Bibliography

[122] G. Varghese, J. Sanjeev, T. Chao, K. Smits, D. Satish, S. Siers, V. Naydenov,
T. Khondker, S. Sarkar, and P. Singh. Penryn: 45-nm next generation Intel
core 2 processor. In Solid-State Circuits Conference, 2007. ASSCC ’07.
IEEE Asian, pages 14 –17, nov. 2007.
(Cited on page 11.)

[123] V. Vasudevan, L. Tan, D. Andersen, M. Kaminsky, M. A. Kozuch, and P. Pil-
lai. FAWNSort: Energy-efficient Sorting of 10GB.
(Cited on page 6.)

[124] Q. Wang, R. Kassa, W. Shen, N. Ijih, B. Chitlur, M. Konow, D. Liu,
A. Sheiman, and P. Gupta. An fpga based hybrid processor emulation plat-
form. In Proceedings of the 2010 International Conference on Field Pro-
grammable Logic and Applications, FPL ’10, pages 25–30, Washington,
DC, USA, 2010. IEEE Computer Society.
(Cited on page 32.)

[125] D. H. Woo and H.-H. S. Lee. Extending amdahl’s law for energy-efficient
computing in the many-core era. Computer, 41:24–31, December 2008.
(Cited on page 32.)

89

	Introduction
	Motivation
	Problem Space
	Reducing Power Usage Effectiveness
	Reducing IT costs

	Thesis Overview and Contribution

	Background
	Small and Big cores
	Support for power management

	Hybrid Datacenters
	Hybrid Server Prototype
	Prototype architecture
	Software configuration
	Experimental results

	Latency and power model
	Response Latency
	Power Usage
	Model validation

	Evaluating hybrid server design
	Related Work

	Energy-proportional Router
	Deconstructing Power Usage
	Server architecture
	Workload
	Power characterization

	Addressing Software Inefficiencies
	Studying the Design Space
	Single core case
	Multiple cores

	Implementation
	Online adaptation algorithm
	Assigning queues to cores dynamically

	Evaluation
	Testbed setup and Additional measures
	Measuring Latency
	Sleep states
	Traffic Burstiness

	Related Work

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

