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Introduction

The most popular market model in continuos time is the Black-Scholes model. It assumes for the
underlying process, a geometric Brownian motion with constant volatility, that is

dSt = rStdt+ σStdW̃t,

dBt = rBtdt,

where r is the constant risk-free rate, St is the stock and σ is the constant volatility of the stock.
Under these assumptions, closed form solutions for the values of European call and put options,
are derived by use of the PDE method. We want to discuss by present work, the PDE approach in
most complicated cases of market models. Our objective is to use two different techniques that are
respectively Spectral Methods and Geometrical Approximation (the latter introduced by us), in
order to compute the price of the derivatives for the following kinds of contracts: Double Barrier
options in Black-Scholes model; Vanilla options and Barrier options in Heston’s model; Vanilla
options in SABR model. We have structured the work in five chapters:

Chapters 1 and 2, respectively show the theoretical foundations of the parabolic PDE, and the
Black-Scholes market model.

In chapter 3, we are going to consider Double Barrier Options, in Black-Scholes model, that be-
longs to the kind of exotic options, in which case we have a deterministic volatility function σ(t).
For example we consider the value of a Knock-out, down-and-out Call option, that is given by the
solution of the Black-Scholes equation with appropriate boundary conditions, but we are able to
discuss also the cases in which we have Knock-in options, or we have a Put option and do not a
Call. To grant the existence and uniqueness of the solution, it is necessary to define the boundary
condition and the initial condition. Also we require that when the value of the underlying asset
hits the two barriers, lower (L) and upper (H), the option is cancelled in our case, but it could be
activated for knock-in options . The best method to solve the above problem, is the using of the
Spectral Theory, which allows to write the price of the Knock-out or Knock-in options, as series
expansion. We are going to compare the spectral method with others, studying also the computa-
tional complexity.

In chapter 4, we propose a new technique, that we have called the Geometrical Approximation
method. We are going to consider well known stochastic volatility market models. The assump-
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tion of constant volatility isn’t reasonable in a real market, since we require different values for the
volatility parameter for different strikes and different expiries to match market prices. The volatil-
ity parameter that is required in the Black-Scholes formula to reproduce market prices is called the
implied volatility. To obtain market prices of options maturing at a certain date, volatility needs
to be a function of the strike. This function is the so called volatility skew or smile. Furthermore
for a fixed strike we also need different volatility parameters to match the market prices of op-
tions maturing on different dates written on the same underlying, hence volatility is a function
of both the strike and the expiry date of the derivative security. This bivariate function is called
the volatility surface. There are two prominent ways of working around this problem, namely,
local volatility models and stochastic volatility models. For local volatility models the assumption
of constant volatility made in Black and Scholes (1973) is relaxed. The underlying risk-neutral
stochastic process becomes

dSt = r(t)Stdt+ σ(t, St)StdW̃t,

where r(t) is the instantaneous forward rate of maturity t implied by the yield curve and the func-
tion σ(St, t) is chosen (calibrated) such that the model is consistent with market data, see Dupire
(1994), Derman and Kani (1994) and (Wilmott, 2000). It is claimed in Hagan et al. (2002) that local
volatility models predict that the smile shifts to higher prices (resp. lower prices) when the price of
the underlying decreases (resp. increases). This is in contrast with the market behaviour where the
smile shifts to higher prices (resp. lower prices) when the price of the underlying increases (resp.
decreases). Another way of working around the inconsistency introduced by constant volatility
is by introducing a stochastic process for the volatility itself; such models are called stochastic
volatility models. The major advances in stochastic volatility models are Hull and White (1987),
Heston (1993) and Hagan et al. (2002). Such models have the following general form

dSt = µtStdt+ σδt a2(St)dW
(1)
t ,

dσjt = b1(σ, t)dt+ ασδt dW
(2)
t ,

dW
(1)
t dW

(2)
t = ρdt,

dBr = rBtdt,

and varying its parameters we can obtain them:
• for δ = 1, j = 1, α 6= 0, a2(S) = Sβ , β ∈ (0, 1] and b1 = 0, we get the SABR model, by Hagan;

• for δ = 1, j = 2, α 6= 0, a2(S) = S and b1 = k(θ − σjt ), we get Heston model, by Heston;

• for δ = 1, α = 0 and b1 = 0 we get Black-Scholes model with constant volatility, by Black-
Scholes-Merton;

where the tradable security St and its volatility σt are correlated, i.e.,

< dW
(1)
t , dW

(2)
t >= ρdt.

Using the above indicated general market model, from Itô’s lemma, it is possible to derive, under
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mild additional assumptions, the partial differential equation satisfied by the value function of
a European contingent claim. For this purpose, one needs first to specify the market price of
volatility risk λ(σ, t). The market price for the risk is associated with the Girsanov transformation
of the underlying probability measure leading to a particular martingale measure. Let us observe
that pricing of contingent claims using the market price of volatility risk is not preferences-free.
The price function f = f(t, S, σ) of a European contingent claim has to satisfy a specific PDE of
the form:

∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+ ρσSb(σ, t)

∂2f

∂S∂t
+

1
2
b(σ, t)2 ∂

2f

∂σ2

+ rS
∂f

∂S
+ [a(σ, t) + λ(σ, t)b(σ, t)]

∂f

∂σ
− rf = 0,

with the terminal condition Φ(ST ) = f(T, S, σ) for every S ∈ R+ and σ ∈ R+.

We are going to use some geometrical transformations in order to simplify the above pricing PDE.
Our idea is to determine, by Ito’s lemma, the exact PDE for derivative pricing in Heston and SABR
market model and instead to use the exact pay-off function, for example, for a Vanilla Call option
(ST −E)+, we consider this (ST eεT − E)+, where εT is a stochastic process linked to volatility (or
variance). What mean εT will be clear later. Hence, we are able to solve the exact PDE, but with
different Cauchy’s condition (with respect to original problem).

In other words it is possible to approximate our closed form solution obtained by considerations
on property of continuity of Feynman-Kač formula, with the solutions computed using the nu-
merical techniques known in literature.

Finally, in Chapter 5 we are going to present another approximation technique, again for the Hes-
ton model, based on different idea, respect to Geometrical Approximation method. In fact in this
case we are going to choose a particular volatility risk price, so that, the drift term of the variance
processes is equal to zero. Also by the latter procedure, that we name Perturbative Method, we
are able to evaluate the Vanilla Options, and not only, through an approximate solution in closed
form, that can be used also for pricing several kinds of derivatives contracts, and we have used
here also for computing the price of the knock-out Barrier Options.
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Chapter 1

Theoretical Foundations

In this chapter we are going to introduce the basic notions of the PDEs of parabolic kind with
particular attention on the properties of the density function. Besides, we are going to show some
results of Functional Analysis that we are going to use in Chapter 3. We also introduce some
geometrical considerations on PDEs associated to stochastic volatility market models, that we will
be discussed in more detail in Chapter 4 and Chapter 5.

11



12 CHAPTER 1. THEORETICAL FOUNDATIONS

1.1 Canonical Diffusion Process

The determination of the prices of financial derivative securities can be reduced to solving partial
differential equations; in Chapter 2, we are going to introduce the Black-Scholes model as a rel-
evant example. The PDEs used in Finance are typically of parabolic kind, thus it is important to
introduce some notions about this topic.

Let L2(I,m) be a Hilbert space of real-valued functions with domain an interval I ⊂ Rn, and
with m random measure: in probability theory, a random measure is a measure of random events.
A random measure of the form:

m =
N∑
n=1

δ(Xn),

where δ is the Dirac measure, and Xn are random variables, is called a point process or random
counting measure. This random measure describes the set of N particles, whose locations are
given by the (generally vector valued) random variables Xn. Random measures are useful in the
description and analysis of Monte Carlo methods, such as Monte Carlo numerical quadrature and
particle filters.

The functions that belong to L2(I,m) are square-integrable, and the inner product in L2(I,m)
is defined as follows:

〈f, g〉 =
∫
I

f(x)g(x)m(x)dx. (1.1)

We define the infinitesimal operator K0 in its general form as:

K0 = −1
2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j

bj(x)
∂

∂xj
+ c(x), x ∈ Rn. (1.2)

The domain of K0 in L2(I,m) is (McKean 1956, p. 526 and Langer and Schenk 1990, pp. 15):

D(K0) := {f ∈ L2(I,m) : f, f ′ ∈ ACloc(I),K0f ∈ L2(I,m)+boundary conditions },

where ACloc(I) is the space of functions absolutely continuous over each compact subinterval of
I . The boundary conditions give a value at the solutions of PDEs on the border.

If K0 is the generator of a diffusion process with transition density p0(x, y, t), then the matrix
of its diffusion coefficients (aij(x))ni,j is given by

aij(x) := limt→0
1
t

∫
(ξ:|ξ−x|<ε)

dξ(ξi − xi)(ξj − xj)p0(x, ξ, t), (1.3)

for any ε > 0. Such a process is said to be canonical if its transition density can be approximated by
the Wiener density, i.e. if

p0(x, ξ, t) ≤ c1
1

(2)n/2
exp

(
−c2
|x− ξ|2

2t

)
, (1.4)
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where c1 and c2 are arbitrary constants. This assumption implies that the coefficients aij(x), 1 ≤
(i, j) ≤ n, of the diffusion matrix are bounded. The processes which are generated by operators of
the K0 form , see eq. (1.2), are the following kind:

dxt = bj(xt)dt+ ai,j(xt)dWt xt ∈ Rn, ∀t ∈ [0, T ],

in whichWt is a Wiener process in Rn; it is an old topic studied in the literature for many situations.
Dynkin [29] assumes that the coefficients aij and bj are bounded and the diffusion coefficient ai,j
satisfies the following ellipticity condition:

n∑
i,j=1

λiλjaij(x) ≥ γ
n∑
j=1

|λ|2, (1.5)

for all (λ1, ........, λn) ∈ Rn, where γ is an arbitrary constant. It then follows the corresponding
transition density can be estimated by the Wiener density: see Dynkin (Theorem 0.5, pp.229 [29]).
Kochubei [69] gives rather general conditions on the coefficients of the operator in (1.2) which
guarantee that it generates a Feller semigroup (Markov process) with continuous density. In fact
the assumption on the coefficients are the following:

(a) The functions aij are twice differentiable and the partial derivatives ∂2aij
∂xk∂xl

, 1 ≤ k, l ≤ n

belong to L1
loc(Rn), space of locally summable functions on R. The functions

∑n
j=1

∂aij
∂xj

, 1 ≤ i ≤ n,

and
∑n
ij

∂2aij
∂xi∂xj

are locally Hölder continuos.

(b) The functions bj belong to Lnloc(Rn) and the function
∑n
j=1

∂bj
∂xj

belongs to Lmax(1,n/2)
loc (Rn) =

{f Borel-measurable: ‖1If‖max(1,n/2) <∞, I ⊆ Rn compact} .

(c) The inequality

n∑
ij

∂2aij(x)
∂xi∂xj

≤ 0, (1.6)

holds for all x ∈ Rn. In addition,

c(x) ≥ max

 n∑
j=1

∂bj(x)
∂xj

, 0

 ≥ 0, (1.7)

for all x ∈ Rn.
Under the assumption (a), (b) and (c) the operator K0 generates a Feller semigroup and hence a
Markov process

{(Ω,F,P), (X(t) : t ≥ 0), (θt : t ≥ 0), (E, ε)}, (1.8)

with state space E = Rn and with a probability density function p0(x, y, t) for which all the condi-
tions hereafter A1 → A4 are satisfied:
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A1. Markov property:
p0(x, y, t) is non-negative and it verifies the Chapman-Kolmogorov identity, i.e.,∫

dzp0(s, x, z)p0(t, z, ξ) = p0(t+ s, x, ξ) t > s, x, ξ ∈ E (1.9)

A2. Feller property:
For every f ∈ C∞(E) the function x →

∫
dm(ξ)f(ξ)p0(x, ξ, t) belongs to C∞(E), where m(ξ) is a

random-measure.

A3. Continuity:
For every f ∈ C∞(E) and for every x ∈ E the following identity is true:

limt→0

∫
dm(y)f(y)p0(t, x, y) = f(x). (1.10)

A4. Symmetry:
The function p0(t, x, y) is symmetric: p0(t, x, y) = p0(t, y, x) for all t > 0, and for all x and y in E.

The PDE, whose generator is the K0 operator, is of parabolic kind if and only if the determinant
function of ai,j(x) is equal to zero ∀x ∈ I ⊂ Rn.

1.1.1 Nonnegative Solutions of Cauchy’s Problem

Let be given the parabolic operators K0 (1.2). in which we separate the spacial variables xj from
the temporal variables t as follows:

K0f :=
1
2

n∑
i,j=1

aij(t, x)
∂2f

∂xi∂xj
+

n∑
j

bj(t, x)
∂f

∂xj
+ c(t, x)f − ∂f

∂t
= 0, x ∈ Rn, t ∈ R+.

We make the following hypothesis:

(1) Let the coefficients ai,j(t, x), bj(t, x), c(t, x) be real functions.
Let the matrix ai,j be symmetric and positive semi-defined.
Let the coefficient c be inferiorly limited:

c0 := inf{c} ∈ R.

(2) Suppose there exists a constant M , such that:

|ai,j(t, x)| < M, |bj(t, x)| < M(1 + |x|), |c(t, x)| < M(1 + |x2|),

∀(t, x) ∈ R× R+, i, j = 1 · · · · · ·N.
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(3) Suppose that the operator K0 has a fundamental solution G(t, x|s, y), namely, for the Cauchy’s
problem:

K0f = 0 (t, x) ∈]s,+∞[×RN ,

f(0, x) = φ(x) x ∈ RN ,

we have:

f(t, x) =
∫

RN
G(t, x|s, y)φ(y)dy.

Suppose there exists λ > 0, so that, ∀T , i = 1, · · ·N , t ∈]s, s + T [, x, y ∈ RN and apply the
following relations:

1
M
G 1
λ

(t, x|s, y) ≤ G(t, x|s, y) ≤MGλ(t, x|s, y),
∣∣∣∣∂G(t, x|s, y)

∂yi

∣∣∣∣ ≤ M√
t− s

Gλ(t, x|s, y),

where M is positive constant linked to T , and Gλ(t, x|s, y) is the fundamental solution of the
heat operator λ

2∇
2
x − ∂t, in RN+1:

Gλ(t, x|, s, y) =
1

(2πλ(t− s))
N
2

exp

(
|x− y|2

2λ(t− s)

)
.

(4) Suppose there exists the adjoint operator K∗0 of K0, so that:

K∗0 =
1
2

n∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
+

n∑
j

b∗j (t, x)
∂

∂xj
− c∗(t, x) +

∂

∂t
x ∈ Rn t ∈ R+.

where

b∗i = −bi +
N∑

i,j=1

∂

∂xi
ai,j , c∗ = c+

1
2

N∑
i,j

∂

∂xixj
ai,j −

N∑
i,j=1

∂

∂xj
bj .

and verify the same growing hypothesis of the coefficients bj and c seen before in (2).

Theorem (1.1)
Let Cauchy’s problem be given:

K0f = 0 (t, x) ∈]0,+∞[×RN ,

f(0, x) = φ(x) x ∈ RN ,

so that, let be verified the previous hypothesis (1),(2),(3),(4).
Thus, there exists at most one solution f ∈ C1,2 inferiorly limited.
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1.2 The General Form of the Spectral Representation

In Functional Analysis, a very important result is the Spectral Theorem for semigroups of self-
adjoint operators. By the latter theorem, we are able to write the solution of PDEs of parabolic kind
as series expansion of eigenfunctions of the associated Sturm-Liouville problem. This is a relevant
topic in Mathematical Finance. In order to use the Spectral Theorem in Finance, we introduce some
theoretical notions to produce a spectral representation. Define the value of a derivative security
as V (Xt, t), where Xt is a random variable in R and t is the actual time. Now write V (x, t) = [Ptf ]
where x ∈ R and K0, see eq.(1.2) for n = 1, is the generator operator of Pt for f ∈ L2(I,m) and
t ≥ 0; that is

K0 = −1
2
a(x)

∂2

∂x2
+ b(x)

∂

∂x
+ c(x), x ∈ I ⊂ R,

[Ptf ] = exp(−tK0)f =
∫
I

p0(x, ξ, t)f(ξ)dm(ξ), (1.11)

and

p0(x, ξ, t) = m(ξ)
∫

(−∞,0]

dλ

eλt ∞∑
i,j=1

φj(x, λ)φi(ξ, λ)

 t > 0, x, ξ ∈ I, (1.12)

where φi=1,··· ,N (x, λ) are the eigenfunctions, of Sturm-Liouville problem associated with K0 (see
Borodin and Salmin 1996, Chapter II for details on one-dimensional diffusion and for a quick
review of the Spectral Theorem, or see also Ito and McKean (1974), in which it is possible to find
a general spectral representation for the semigroup of a one-dimensional diffusion with killing
in L2(I,m)). When the operator Pt is self-adjoint on its domain, and this is bounded too, by
Hilbert-Schmidt Theorem, we know that its spectrum is simple and purely discrete (Elliot 1954 and
McKean 1956, Theorem (3.1). Let (λi)Ni=1, 0 > λ1 > λ2 > ..., limN→∞λN = −∞, be the eigenvalues
of ODE associated to K0 infinitesimal generator, obtained from the latter by separation variable
method, and let (φi)Ni=1 be the corresponding eigenfunctions orthonormalized so that ||φN ||2 = 1
and

〈φi, φj〉 =
∫
I

φi(x)φj(x)m(x)dx = δi,j =

{
0 for i6= j,
1 for i=j.

McKean (1956), proves a number of smoothness properties for p0(x, ξ, t). For f ∈ L2(I,m), the
equation (1.11) can be rewritten as a spectral expansion:

[Ptf ](x) =
∫

(−∞,0]

dλeλt
∞∑

i,j=1

φi(x, λ)cj(λ) x ∈ I, t > 0, (1.13)

where the expansion coefficients are

ci(λ) =
∫
I

dξm(ξ)f(ξ)φi(ξ, λ) i = 1, · · · , N (1.14)
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and the Parseval equality holds

||f ||2 =
∫

(−∞,0]

∞∑
i,j=1

ci(λ)cj(λ)dλ. (1.15)

Thus we have at the time zero, by Feynman-Kač formula, that the present value or price of deriva-
tive security can then be represented as risk-neutral expectation of discounted payoff:

V (T, x) = EQ

[
e−
R T
0 r(s)dsf(XT )|X0 = x

]
,

where f is the solution of the parabolic PDE: K0f(x) = 0, and f(XT ) is the pay-off of a derivative
contract. Then the spectral representation for the density and the spectral expansion for the value
function simplify to the following series converges uniformly on the compact squares in (I × I);
summarising, we can write:

p0(x, ξ, t) = m(ξ)
∞∑
i=1

eλitφi(x)φi(ξ), x, ξ ∈ I, t > 0, (1.16)

and the derivative security price is given by:

V (T, x) = [PT f ](x) =
∞∑
i=1

cie
λnTφi(x),

f ∈ L2(I,m), x ∈ I, T > t > 0,

ci = 〈f, φi〉 , ||f ||2 =
∞∑
i=1

c2i .

(1.17)

In chapter 3 we will use the Spectral Theory in order to price Double Barrier options, following
the approach of Pelsser (2000) [98] and Linetsky (2003) [85].

1.3 Geometrical point of view of Stochastic Problems

The study of PDEs on stochastic volatility market models, can benefit from some geometrical con-
siderations. Here we borrow from Bourgade and Croissant (2005) the theoretical foundations on
which we are going to build our approximation method.

We consider a stochastic market model, with stochastic coefficients a1, b1 for drift and a2, b2 for
diffusion, with constant continuously compounded risk free interest rate r, in which the underly-
ing asset St follows a geometric Brownian motion and there is a derivative security whose value is
given by f(t, S, σ) with payoff f(T, S, σ) = Φ(ST ), thus we can write respect to natural probability
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measure P :

dSt = a1(σt, St)dt+ a2(σt, St)dW
(1)
t ,

dσt = b1(σt)dt+ b2(σt)dW
(2)
t ,

dBt = rBtdt,

f(T, S, σ) = Φ(ST ).

Note that the drift and the diffusion coefficients do not depend on time, with < dW (1), dW (2) >=
ρdt, where ρ is a constant correlation coefficient. Choosing to rewrite the above SDEs with respect
to martingale measure Q we have :

dSt = rStdt+ a2(σt, St)dW̃
(1)
t ,

dσt = b̃1(σt)dt+ b2(σt)dW̃
(2)
t ,

dBt = rBtdt,

f(T, S, σ) = Φ(ST ).
(1.18)

From (5.2), through the Ito’s lemma, we have the backward Fokker Planck equation written as
follows:

∂f

∂t
+

1
2

(
a2

2

∂2f

∂S2
+ 2ρa2b2

∂2f

∂σ∂S
+ b22

∂2f

∂σ2

)
+ rS

∂f

∂S
+ b̃1

∂f

∂σ
= rf, (1.19)

in which we have imposed St = S following the PDE notation, and b̃1(σt) = b1(σt) + λ(σt), where
λ(σt) is an arbitrary price of volatility risk. We now focus our attention on the squared term; and
define the metric gi,j as follows:

gij =
1

(1− ρ2)a2
2b

2
2

(
b22 −ρa2b2

−ρa2b2 a2
2

)
i, j = 1, 2

g−1
ij =

(
a2

2 ρa2b2
ρa2b2 b22

)
(1.20)

g = det (gij) =
1

(1− ρ2)a2
2b

2
2

thus we can write the equation (1.19) in more compact and elegant way:

∆ = g−1/2∂i

(
g1/2gij∂j

)
, (1.21)

∂f

∂t
+
(

1
2

∆ + V

)
f = rf,
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where V is a first-order operator. Therefore, since the matrix gi,j is symmetric exists its diagonal
form, that we call hi,j , and we can rewrite the equation (1.19) as follows:

∆ = g−1/2∂i

(
g1/2hij∂j

)
.

At this point we can transform the second-order term of the PDE (1.19), in its diagonal form:

∂f1

∂t
+
(

1
2
g−1/2∂i

(
g1/2hij∂j

)
+ V

)
f1 = rf1,

where f1 is the new function written as function of the new variables, variables with respect to
which gi,j becomes the diagonal matrix hi,j .

We are going to use this approach in Chapter 4 and in Chapter 5, in order to compute the fair
price of options in the Heston model and in the SABR model.
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Chapter 2

The Black-Scholes Model

In this chapter we briefly introduce the basic principles on which it is possible to build a model in
continuous time under the assumption of perfect markets. The Black-Scholes model has been one
of the first models of this kind, and it has both a historical and conceptual importance. In fact, it
represents the benchmark for PDE pricing methods in quantitative finance. Therefore, in order to
derive the Black-Scholes PDE and its transformation in canonical form, we introduce the notions
of arbitrage, of perfect markets, of completeness, of replicant portfolios and some useful variable
transformations.

21
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2.1 Arbitrage Arguments

An arbitrage is the simultaneous purchase and sale of assets, by means of which one can obtain
a profit with no risk. The classic example of arbitrage is the following. Assume that we have
two assets A and B with the same price, and that the asset B will be certainly worth more than
asset A at a given maturity T . In this case, the arbitrageur will buy B and sell A at the same
time, thus earning a sure profit equal to difference at maturity T between the values of B and
A. The concept of arbitrage is fundamental to build a market model which makes sense. In an
efficient market, indeed, there should not be arbitrage opportunities. Then, we are going to assume
absence of arbitrage throughout the whole Thesis. We also make the following assumptions: both
the borrowing interest rate and the lending interest rate are equal, short selling is allowed with
no costs, the assets and options are infinitively divisible, and there is are transaction costs of any
kind. When all these assumptions are verified, we say that we are in a perfect market.

2.1.1 Black-Scholes

We assume that in the market there are two assets, a risk-free bond Bt with constant interest rate
r and a stock St. Define a portfolio as a couple of coefficients (α, β) representing the quantities
invested in each. We indicate by Vt the value of the portfolio:

Vt = αSt + βBt. (2.1)

The absence of arbitrage opportunities is equivalent to assume that all strategies in which we have
risk-free portfolios have the same rate of return r.

Let us elaborate on this last point. Suppose that V is the value of portfolio and that during a
time step dt the return of the portfolio dV is risk-free.
If we have:

dV > rV dt,

then an arbitrageur could make a risk-free profit dV − rV dt during the time step dt by borrowing
an amount V from a bank and investing it in the portfolio. Conversely, if

dV < rV dt,

then the arbitrageur can assume a short position and invest V in a bank and get a net income
rV dt− dV during the time step dt without taking any risk. Thus only when

dV = rV dt,

the arbitrage condition is verified and it is impossible to realise a profit without taking any risk.

We now introduce the concept of financial derivative. In financial terms, a derivative is a finan-
cial instrument or, more simply, an agreement between two people or two counterparts that has
a value determined by the price of some other asset which is called the underlying. It is then a
financial contract whose value is linked to the future price movements of the underlying asset,
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which can be a share, a currency or any other financial asset (including another derivative). There
are many kinds of derivatives, with the most notable being swaps, futures, and options. However,
since a derivative can be placed on any sort of security, the scope of all derivatives is potentially
endless. In this Thesis, we define a derivative as an agreement between two parties that is contin-
gent on a future outcome of the underlying St. Thus, we will define a derivative via its pay-off
function Φ(ST ) at maturity T .

Let f denote the value of an option that depends on the value of the underlying asset St and
on time t, i.e., f = f(S, t). A market model is said to be a complete market if, for every derivative
security, there exists at least a portfolio that reproduces its value at any time (for more details on
this concept and asset pricing theorems, see Ingersoll, pp. 45-46). One can prove, that the Black-
Scholes model we are dealing with in this Chapter is complete (see Ingersoll, pp. 304). Assume
that in an infinitesimal time step dt, the underlying asset pays out a dividend Sqdt, where q is a
constant known as the dividend yield. Further, assume that St follows a geometric Brownian motion
with constants µ and σ. We then have the following market model:

dSt = µStdt+ σStdWt,

dBt = rBtdt,

f(ST , T ) = Φ(ST ),
(2.2)

where Wt is a standard Brownian motion. According to Ito’s lemma, the random walk followed
by f is given by

df =
∂f

∂S
dS +

(
∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2

)
dt. (2.3)

Hence we require f to have at least one t derivative and two S derivatives.

Now we can construct a portfolio (or strategy) that hedges the value of derivative security f at
any time. We consider the equation (2.1) and suppose that our portfolio receives Sqdt for every
asset held, the earnings for the owner of the portfolio during the time step dt is:

dV = αdS + αSqdt+ rβBtdt,

(2.4)

and by completeness we have dV = df . Using (2.3), we find the Black-Scholes partial differential
equation:

∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+ (r − q)S ∂f

∂S
= rf, t ∈ [0, T ], S ∈ [0,+∞)

f(S, T ) = φ(S),
(2.5)

in which we have chosen α = ∂f
∂S in order to eliminate the random component. The key idea to

derive this equation is then to eliminate the uncertainty. The linear differential operator is given
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by

∂

∂t
+

1
2
σ2S2 ∂2

∂S2
+ (r − q)S ∂

∂S
− r

and it has a financial interpretation as a measure of the difference between the return on hedged
option portfolio

∂

∂t
+

1
2
σ2S2 ∂2

∂S2
− qS ∂

∂S
,

and the return on a bank deposit

r

(
1− S ∂

∂S

)
.

Although the difference between the two returns is identically zero for options in European style,
it is different from zero for options in American style. In this Thesis, we are going to consider only
European options, or options that can be reduced to the European case, such as double-barrier
options.

Remarks From the Black-Scholes equation (2.5), we know that the parameter µ in (2.2) does
not affect the option price, i.e., the option price determined by this equation is independent of the
average return rate of an asset price per unit time. Besides, from the derivation the Black-Scholes
equation (2.5), we know that this partial differential equation holds for any option (or portfolio of
options) whose value depends only on S and t.

In order to determine a unique solution of the Black-Scholes equation, the solution at the expiry,
t = T , needs to be given. These conditions are called the final conditions for the partial differential
equation.

2.1.2 Black-Scholes Equation in its Canonical form

We introduce some transformations by which we reduce the Black-Scholes equations to the heat
equation, since Green’s function for the heat equation has a known analytical expression.

The transformations of variables that turn the equation of Black-Scholes (2.5) into a heat equa-
tion, for constant volatility and constant interest rate, read as follows

Y = lnS +
(
r − q − 1

2
σ2

)
(T − t),

τ =
1
2
σ2(T − t),

f(S, t) = e−r(T−t)F (Y, τ).
(2.6)
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Substituting the relations (2.6) in the equation of Black-Scholes (2.5), we get the canonical form of
a parabolic kind PDE:

∂F

∂τ
=
∂2F

∂Y 2
, Y ∈ (−∞,∞), t ∈ [0, T ]. (2.7)

In more general cases, we can have (r, q, σ) as time dependent parameters. In these cases the
transformation that changes the Black-Scholes equation into a heat equation (Canonical form of
parabolic PDE) is given by:

Y = lnS +
∫ T

t

(
r(s)− q(s)− 1

2
σ2(s)

)
ds,

τ =
1
2

∫ T

t

σ2(s)ds,

f(S, t) = e−
R T
t
r(s)dsF (Y, τ).

(2.8)

In Chapter 4, we will illustrate suitable coordinate transformations for market models with stochas-
tic volatility, which will start from geometric considerations devised to simplify our problem. This
will come at the cost of an approximation of the pay-off function φ(ST ) that will reduce the PDE
to one easier to solve.
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Chapter 3

Spectral methods in Finance

In this Chapter we are going to discuss techniques for pricing Double Barrier option. We are going
to compare the computational efficiency of the following numerical methods, which are routinely
used in finance:
1) Laplace Transform method,
2) expansion of normal distribution,
3) spectral expansion by Fourier series,
4) Monte-Carlo simulation.

27
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3.1 Pricing Double Barrier Options

Barrier Options belong to the class of Exotic Options. These are usually traded between companies
and banks and are not quoted on an exchange. In this case, we usually say that they are traded
in the over-the-counter market (OTC). Most Exotic Options are quite complicated, and their final
values depend not only on the asset price at expiry but also on the asset price at previous times.
They are determined by part or the whole of the path of the asset price during the life of the op-
tion. These options are called path-dependent Exotic Options. Over the time, several papers have
studied the issue of evaluating the price of Barrier Options and Double-Barrier Options in the
Black-Scholes market model.

The Barrier options or the Double-Barrier Options can be of two kinds: knock-out, or knock-in.
They are options that either become worthless or exercised if the underlying asset value reaches
the level, so-called Barrier level. Thus a down-and-out Call is identical to a European Call with the
additional provision that the contract is cancelled if the underlying asset price hits a pre-specified
lower barrier level. An up-and-out Call is the same, except that contract is cancelled when the un-
derlying asset price first reaches a pre-specified upper barrier level. One can repeat the same rea-
soning for the down-and-out and up-and-out Put options. Knock-in options are complementary
to the knock-out options. Knock-out Double-Barrier Options are cancelled when the underlying
asset first reaches either the upper or lower barrier, contrariwise in the case of knock-in Double-
Barrier.

In (1992) Kunitomo and Ikeda obtain a pricing formulas expressing the prices of Double-Barrier
knock-out Calls and Puts, by infinite series of normal probabilities. Later in (1996) Geman and Yor
using the probabilistic methods, derive an expressions for the Laplace transform of the Double-
Barrier Option price. Taleb (1997) discusses practical issues with trading and hedging double-
barrier options. In (2000) Schroder inverts the Laplace transform analytically using the Cauchy
Residue Theorem, expresses the resulting trigonometric series in terms of Theta functions, and
studies its convergence and numerical properties. Again, in (2000) Pelsser considers several varia-
tions on the basic Double-Barrier knock-out options, including binary Double-Barrier options and
expresses their pricing formulae in terms of trigonometric series. In last, Linetsky (2003) by us-
ing the spectral method obtains the fair price of a Double-Barrier options, studying the spectrum
properties of the Black-Scholes infinitesimal operator.

In the present work, we are going to show the Linetsky idea comparing numerically his method
with those obtained by above indicated authors. Our contribution is that to study the computa-
tional complexity of the problem, and to argue that the spectral method is the “best” numerical
method.

We assume to be in a Black-Scholes market model, with constant continuously compounded risk
free interest rate r, in which the underlying asset St follows a geometric Brownian motion with
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constant volatility σ and dividend yield q, and there is a derivative security with payoff f(S, T ):

dSt = µStdt+ σStdWt S ∈ [0,+∞),
dBt = rBtdt,

f(S, T ) = Φ(ST ).

Then, according to the standard option pricing theory (see, eg. Duffie, 1996), the knock-out Double
Barrier Call value at the contract inception t = 0 is given by the discounted risk-neutral expectation
of its pay-off at expiration t = T :

C(T, S,K,H,L) = e−rTEQ
[
(ST −K)+ × 1{∀t∈[0,T ]:L<St<H |S0

]
.

In other words, if the value of the underlying asset S hits the two barriers, the lower L or the upper
H , at any point in time, the pay-off of the option is zero.

In what follows we use the PDE formalism, thus we replace St with S. The PDE for pricing
knock-out Double Barrier Call is given by the following Cauchy-Dirichlet’s problem:

∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+ (r − q)S ∂f

∂S
− rf = 0,

S ∈ [L,H], t ∈ [0, T ],

f(T, S) = (S −K)+ × 1{∀t∈[0,T ]:L<S<H},

f(t, L) = 0,
f(t,H) = 0,

(3.1)

in which we can restrict our domain to the interval [L,H], since our pay-off is zero for S < L, S >
H . The PDE (3.1) verifies the Hilbert-Schmidt Theorem, and by this one we are able to compute
its solution as series expansion of its eigenfunctions (see Chapter 1 for theoretical details).

Through the transformation of variables described in Chapter 2, the Black-Scholes equation (3.1)
assumes the canonical form:

∂F

∂τ
=
∂2F

∂Y 2
, (3.2)

Y ∈ [A,B], τ ∈
[
0,

1
2
σ2(T − t)

]
,

F (A, τ) = 0, F (B, τ) = 0,

F (Y, 0) = (eY L− k)+ × 1{∀t∈[0,T ]:A<Y<B},

where A(t) = (lnL+ θ(T − t)), B(t) = (lnH + θ(T − t)) and θ = (r − q − 1
2σ

2).
It is clear that in an analogous way we can write the price of a Knock-in Option.
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Pricing Theorem Under the Black-Scholes framework the arbitrage-price of a Knock-out Call
Double Barrier Option is given by:

f(S, t) =
∫ H

L

dS′e−r(T−t)(S′ −K)+ × 1{∀t∈[0,T ]:L≤S≤H}G(S′, S, t)

=
∫ H

L

dS′

S′
e−r(T−t)(S′ −K)+ × 1{∀t∈[0,T ]:L≤S≤H} ×

2
ln(H/L)

∞∑
n=−∞

e
− (nπ)2

(ln(H/L))2 ( 1
2σ

2(T−t)) sinnπ
(

ln(S′/L)
ln(H/L)

)
sinnπ

(
ln(S/L)
ln(H/L)

)
(3.3)

where S′ = eξL is equal to S at the time t = T , for every underlying asset value S ∈ [L,H];

Proof:
let the PDE in canonical form of parabolic kind of second order be given, with the following
boundary conditions:

∂F

∂τ
=
∂2F

∂Y 2
, (3.4)

Y ∈ [A,B], τ ∈
[
0, T

]
, T =

1
2
σ2(T − t),

F (A, τ) = 0, F (B, τ) = 0,

F (Y, 0) = (eY −K)+,

where we have also chosen the initial condition as (eY − K)+. Now we can use the separation
method of variables and rewrite the function F (Y, τ) = U(Y ) ×W (τ). In this way the PDE (3.1)
becomes a system of two ODEs in which one is a linear differential equation of first order with
respect to t, and the other is the Sturm-Liouville problem of the second order:

∂U(Y )W (τ)
∂τ

=
∂2U(Y )W (τ)

∂Y 2
. (3.5)

Thus we have

U(Y )
∂W (τ)
∂τ

= W (τ)
∂2U(Y )
∂Y 2

, (3.6)

1
W (τ)

∂W (τ)
∂τ

=
1

U(Y )
∂2U(Y )
∂Y 2

. (3.7)

Therefore the left hand side depends only on the variable τ and the right hand side depends only
on the variable Y ; then we can set the left hand side and the right hand side equal to a negative
constant [M. A. Al-Gwaiz, Sturm-Liouville Theory and its Applications, 2008]:

1
W (τ)

dW (τ)
dτ

= −λ2 (3.8)
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1
U(Y )

d2U(Y )
dY 2

= −λ2. (3.9)

Note that we have chosen a negative constant−λ2, because it makes the function F (Y, τ) bounded.
Solving the above system of ODEs, we have:

W (τ) = W (0)e−λ
2τ , (3.10)

d2U(Y )
dY 2

+ λ2U(Y ) = 0. (3.11)

Equation (3.8) is solved and its solution is obtained from equation (3.10). The equation (3.11) plus
the boundary conditions is a Sturm-Liouville problem:

d2U(Y )
dY 2

+ λ2U(Y ) = 0, Y ∈ [A,B], (3.12)

U(A) = 0, U(B) = 0.

In order to change the interval of the definition and to simplify the computation, we introduce the
following variable:

Y = η +A =⇒ η = Y −A

Hence, we have U(Y ) = U(η + L) = ℵ(η), where η ∈ [0, l] and l = B −A,

dU(Y )
dy

=
dℵ
dη
,

d2U(Y )
dY 2

=
d2ℵ
dη2

.

Equation (3.9) is now defined over the interval [0, l]

d2ℵ(η)
dη2

+ λ2ℵ(η) = 0, η ∈ [0, l],

ℵ(0) = 0, ℵ(l) = 0.

The solution of the equation is given by the following relation:

ℵ(η) =
+∞∑
n=1

[
sin

nπη

l

]
, (3.13)

where αn is equal to zero for the boundary condition ℵ(0) = 0. At this point, after we have
substituted the variable Y with η, thus defining F (Y, τ) = F (η, τ) we can write the solution of the
heat equation (5.7) as follows:

∂F

∂τ
=
∂2F

∂η2
, (3.14)

η ∈ [0, l], τ ∈
[
0, T

]
, T =

1
2
σ2(T − t),

F (0, τ) = 0, F (l, τ) = 0,



32 CHAPTER 3. SPECTRAL METHODS IN FINANCE

F (η, 0) = (eη+A −K)+.

Remembering that F (η, τ) = ℵ(η)W (τ), we have:

F (η, τ) =
+∞∑
n=1

e−(nπl )2
τ
[
cn sin

(nπη
l

)]
, (3.15)

and this is true if and only if:

cn =
2
l

∫ l

0

dξ(eξ+A −K)+ sin
(
nπξ

l

)
, (3.16)

F (η, τ) =
+∞∑
n=1

e−(nπl )2
τ

[
2
l

∫ l

0

dξ(eξ+A −K)+sin

(
nπξ

l

)
sin
(nπη

l

)]
, (3.17)

F (η, τ) =
∫ l

0

dξ(eξ+A −K)+

[
2
l

+∞∑
n=1

e−(nπl )2
τ sin

(
nπξ

l

)
sin
(nπη

l

)]
. (3.18)

In order to simplify the above relation we introduce the Green’s function:

G(τ, η, ξ) =

[
2
l

+∞∑
n=1

e−(nπl )2
τ sin

(
nπξ

l

)
sin
(nπη

l

)]
, η, ξ ∈ [0, l],

so that we may write, in a very elegant way, the solution of the parabolic PDE in canonical form
of the second order, as follows:

f(S, t) = F (η, τ) =
∫ l

0

dξ(eξ+A −K)+G(τ, η, ξ), (3.19)

and using the Poisson transform, we can write the Green’s function in the form of a difference
between two normal distributions:

G(τ, η, ξ) =

[
2
l

+∞∑
n=1

e−(nπl )2
τ sin

(
nπξ

l

)
sin
(nπη

l

)]

=
1

2
√
πτ

+∞∑
n=−∞

[
e−

(η−ξ+2nl)2

4τ − e−
(η+ξ+2nl)2

4τ

]
. (3.20)

3.2 Numerical Implementation and Computational Complexity

The problem of computing the transition density G(τ, η, ξ) is a classic one (see Feller, 1971, pp.341-
3 and pp. 478, or Cox and Miller, 1965) and there exist at least three different ways to write it
explicitly.
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The first way is an inverse Laplace transform of the resolvent K(s, η, ξ):

K(s, η, ξ) =
e−
√

2s|η−ξ|
√

2s
+
e
√

2s(η−ξ) + e−
√

2s(η−ξ) − e
√

2s(η+ξ) − e−
√

2s(η+ξ−2l)

√
2s(e

√
2sl − 1)

(3.21)

where

K(s, η, ξ) =
∫ +∞

0

e−sτG(τ, η, ξ)dτ. (3.22)

The function K solves the ordinary differential equation

1
2
d2K

dη2
− sK = −δ(η − ξ),

with boundary conditions:

K(s, 0, ξ) = K(s, l, ξ) = 0.

The second way, as we have seen before in Eq. (3.20), is a series of normal densities:

G(τ, η, ξ) =
1

2
√
πτ

+∞∑
j=−∞

[
e−

(η−ξ+2jl)2

4τ − e−
(η+ξ+2jl)2

4τ

]
. (3.23)

Finally, we write the Green function as a Fourier series:

G(τ, η, ξ) =

2
l

+∞∑
j=1

e
−
„
ω2
j τ

2

«
sin (ωjη) sin (ωjξ)

 , ωj =
jπ

l
. (3.24)

Geman and Yor (1996), following the equation (3.22), compute the Laplace transform of the resol-
vent (4.30) (for any complex number s with Re(s) > α2/2):∫ +∞

0

eαξK(s, η, ξ)dξ = g1(s) + g2(s), (3.25)

where

g1(s) =

[
eαu+(l−η)

√
2s − eακ+(κ−η)

√
2s − eαl+(l+η)

√
2s + eακ+(κ+η)

√
2s
]

√
2s
(
2l
√

2s− 1
)

(
√

2s+ α)

+

[
eαη+(η−κ)

√
2s + eαl+(l−η)

√
2s − eαl+(κ−l)

√
2s − eακ+(2l−κ−η)

√
2s
]

√
2s
(
2u
√

2s− 1
)

(
√

2s− α)
,
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g2(s) =



1√
2s(
√

2s+α)

(
eαη − eακ+(κ−η)

√
2s
)

+ 1√
2s(
√

2s−α)

(
eαη − eαl+(l−η)

√
2s
)
, κ ≤ η ≤ l

1√
2s(
√

2s−α)

(
eαη+(η−κ)

√
2s − eαl+(l−η)

√
2s
)
, 0 ≤ η ≤ κ

(for details see Geman and Yor, 1996), but this method, from the computational point of view, is
not very efficient, because it needs to compute the inverse Laplace transform numerically.

Alternatively, substituting the expansion (3.23) in (3.19) and performing the integration term-
by-term leads to the representation as an infinite sum of normal probabilities (see Kunitomo and
Ikeda, 1992).

Finally, an alternative representation is obtained by integrating the Fourier series (5.18) term-by-
term (see Pelsser, 2000; Linetsky, 2003). where ωn = nπ

u . The identity between (3.23) and (5.18),
is a classic example of the Poisson summation formula (Feller, 1971). However, series (3.23) and
(5.18) have very different numerical convergence properties, in fact the latter converges quicker.
See Schroder (2000) for details. As we are going to show below, the technique proposed by Pelsser
(2000) and Linetsky (2003) is faster than those proposed by Geman Yor (1996) and Kunitomo Ikeda
(1992). The method of computing the arbitrage price of double barrier options through ”Fourier
expansion” is also simple to implement. In fact it is possible to write down a simple algorithm, in
order to get the correct value for Double-Barrier Options just by summing eigenfunctions.

Anther popular method in Quantitative Finance is Monte-Carlo simulations; to evaluate the price
of Double Barrier options by Monte-Carlo, we compute approximately five thousand integrals (see
Geman Yor, 1996) and the standard deviation of the Monte-Carlo price is computed on a sample
of 200 evaluation. Therefore, Monte-Carlo method is more expansive than others, and from com-
putational complexity point of view it is not very efficient method.

The computational complexity of spectral expansion depends to the coefficients cn in (3.16) that
are the weights in the sum (3.27), and these integrals are computed numerically:

cn =
2

ln(H/L)

∫ ln(H/L)

0

dξ(eξL−K)+ sinnπ

(
ξ

ln H
L

)
. (3.26)

The price is given by following relation:

f(S, t) = e−
R T
t
r(s)ds

+∞∑
n=−∞

e
−
„

nπ

ln H
L

«2
1
2σ

2(T−t)
[
cn sinnπ

(
ln(S/L)
ln(H/L)

)]
. (3.27)

Note that e
−
„

nπ

ln H
L

«2
1
2σ

2(T−t)
decreases quickly. Thus, choosing a small number, ε, and defining

n(ε) by means of:

exp

−( nπ

ln H
L

)2
1
2
σ2(T − t)

 = ε, (3.28)
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we have:(
nπ

ln
(
H
L

))2

=
2

σ2(T − t)
ln
(

1
ε

)
, (3.29)

n(ε) =
1
π

ln
(
H

L

)√
2

σ2(T − t)
ln
(

1
ε

)
. (3.30)

Now, in order to study the computational complexity of our problem, we define

an = e−( nπ
ln(H/L) )

2 1
2σ

2(T−t)cn, (3.31)

so that we have

an = e−( nπ
ln(H/L) )

2 1
2σ

2(T−t) 2
ln(H/L)

∫ ln(H/L)

0

dξ(eξL−K)+ sinnπ
(

ξ

ln (H/L)

)
, (3.32)

the value of the integral is a function of n and it results to be∫ ln(H/L)

0

dξ(eξL−K)+ sinnπ
(

ξ

ln(H/L)

)
=
∫ ln(H/L)

ln(K/L)

dξ(eξL−K) sinnπ
(

ξ

ln(H/L)

)
,

= (−1)n+1K

(
n2π2(ln(H/L)− nπ)

L ln(H/L) [(lnH/L)2 + (nπ)2]

)
.

Thus we have:

cn = (−1)n+1K

(
2n2π2(ln(H/L)− nπ)

L(lnH/L)2 [(lnH/L)2 + (nπ)2]

)
,

and

an = (−1)n+1K

(
2n2π2(ln(H/L)− nπ)

L(lnH/L)2 [(lnH/L)2 + (nπ)2]

)
e−( nπ

ln(H/L) )
2 1

2σ
2(T−t).

Let bn be:

bn = (−1)nK
(

2n2π2

L(lnH/L)2 [(lnH/L)2 + (nπ)2]

)
e−( nπ

ln(H/L) )
2 1

2σ
2(T−t).

We can bound an with bn, in other words an < bn and since limn→+∞bn = 0, this proves that also

an goes to zero for n → +∞ . Therefore if the following condition:
(

nπ
ln(H/L)

)2
1
2σ

2(T − t) ≥ 1
is satisfied, the coefficients an goes to zero very quickly. In practice, it is enough to compute
only the terms up to n = 3 to get an accurate solution. If the above condition is not satisfied,
more coefficients are needed. Figures 3.1, 3.2, 3.3, which are for three different choices of the
parameters, show that an converges to zero in very few steps. In all figures, we have chosen
ε = 10−4. This shows that the spectral method is very efficient. Let us observe that, the larger
the lifetime of the option, the smaller is the value of the number n(ε). Hence for a fixed ε, we can
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compute approximately the value of f(S, t) using the partial sum of n(ε) eigenfunctions. By the
analytical formula, it is possible to manage the accuracy by choosing the number of eigenfunctions.
The obtained results are shown in the Table provided below. Our results are compatible with
those obtained by Geman Yor(1996), Kunitomo Ikeda(1992) and with those obtained by using the
Monte-Carlo method. The advantage of the Spectral method, is that it decreases the computational
complexity. Hence, when it is possible to write the price in terms of a series expansion, it is always
worth to do so. The Fourier expansion introduced by Pelsser requires a number of operations
which is two orders of magnitude less than the Monte-Carlo method and one order of magnitude
less than the Laplace transform method used by Geman and Yor (1996).

Table 3.1: S(0) = 2, (T − t) = 1− year

Numerical Techniques σ r k H L f(X, T-t)
Monte Carlo price (st, dev. 0.003) 0.2 0.02 2 2.5 1.5 0.0425

0.5 0.05 2 3 1.5 0.0191
0.5 0.05 1.75 3 1 0.0772

Geman-Yor price 0.2 0.02 2 2.5 1.5 0.0411
0.5 0.05 2 3 1.5 0.0178
0.5 0.05 1.75 3 1 0.0762

Kunitomo-Ikeda 0.2 0.02 2 2.5 1.5 0.0411
0.5 0.05 2 3 1.5 0.0179
0.5 0.05 1.75 3 1 0.0762

Fourier 0.2 0.02 2 2.5 1.5 0.0412
0.5 0.05 2 3 1.5 0.0178
0.5 0.05 1.75 3 1 0.0754
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Figure 3.1: Shows an as a function of n in the case σ = 0.2, r = 0.02,K = 2, H = 2.5, L = 1.5.
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Figure 3.2: Shows an as a function of n in the case σ = 0.5, r = 0.05,K = 2, H = 3, L = 1.5.
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Figure 3.3: Shows an as a function of n in the case σ = 0.5, r = 0.05,K = 1.75, H = 3, L = 1.
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Chapter 4

Stochastic Volatility and Geometrical
Approximation

In this chapter, we introduce a method that we name Geometrical Approximation (G. A.), by which
it is possible to study stochastic volatility market models (as Heston and SABR). The G. A. intends
to be an alternative method useful to obtain the approximated price of Vanilla Options.

41
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4.1 Introduction

There are many economic, empirical, and mathematical reasons for choosing a model as Heston
(see Cont 2001 for a detailed statistical/empirical analysis). Empirical studies have shown that an
asset log-return distribution is non-Gaussian. The Heston model is characterised by heavy tails
and high peaks at zero (leptokurtic). There is also empirical evidence and economic arguments
that suggest that equity returns and implied volatility are negatively correlated (also termed the
leverage effect). This departure from normality is a plague of the Black-Scholes-Merton model, in
contrast, of Heston model in which this phenomenon is expected.

The assumption of constant volatility is not reasonable, since we require different values for the
volatility parameter for different strikes and different expiries to match market prices. The volatil-
ity parameter that is required in the Black-Scholes formula to reproduce market prices is called
the implied volatility. This is a critical internal inconsistency, since the implied volatility of the
underlying should not be dependent on the specifications of the contract.

There are two prominent ways of working around this problem, namely, local volatility mod-
els and stochastic volatility models. Earlier examples of stochastic volatility models are: Hull and
White (1987). Scott (1987, 1991) Wiggins (1987) Stein and Stein (1991), Heston (1993). Typically,
the stock price dynamics and the volatility dynamics are governed by two (possibly correlated)
Brownian motions, and thus the price risk and the volatility risk are partially separated (they may
even be ”orthogonal” if the two driving Brownian motions are independent as, for instance, in the
case of Hull White 1987 model). It is an empirical truth that the value of the stock price and the
volatility risk are closely tied to each other. The latter property is an undesirable features if we
wish to use the Black-Scholes model to hedge volatility risk.

4.2 Stochastic volatility models

In a continuous-time framework, the generic form of stochastic volatility market models is the
following:

dSt = µ(St, t)dt+ σtStdW
(1)
t

dσt = a(σt, t)dt+ b(σt, t)dW
(2)
t ,

(4.1)

with the stochastic volatility σt (also known as the instantaneous volatility or the spot volatility).
W (1) and W (2)are standard one-dimensional Brownian motions defined on some filtered prob-
ability space (Ω,F,P), with the cross-variation satisfying dW

(1)
t dW

(2)
t = ρdt for some constant

ρ ∈ [−1, 1]. Recall that the Brownian motionsW (1) andW (2) are mutually independent if and only
if they are uncorrelated, that is, when ρ = 0.

For the Asset Pricing Theorems we have to that the drift of St processes is rSt under the risk-
neutral probability measure, and we obtain this by using Girsanov and Radom Nykodim Theo-
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rems. We indicate in what follows the probability measure equivalent to P with Q, and respects at
the latter, our model becomes:

dSt = rStdt+ σtStdW̃
(1)
t , (4.2)

with the spot volatility σ satisfying

dσt = ã(σt, t)dt+ b(σt, t)dW̃
(2)
t , (4.3)

for some drift coefficient ãt. We shall adopt a commonly standard convention

ãt(σt, t) = a(σt, t) + λ(σt, t)b(σt, t), (4.4)

for some (sufficiently regular) functions λ(σt, t). The presence of the additional term in the drift
of the stochastic spot volatility σ under an equivalent martingale measure is an immediate conse-
quence of Girsanov’s theorem. The particular form of this term and its selection is an important
question. It is usually motivated by practical considerations.

The stochastic volatility models are not complete, and thus a typical contingent claim (such as
a European option) cannot be priced by arbitrage arguments only. In other words, the standard
replication arguments cannot be any longer applied to most contingent claims. For this reason, the
issue of valuation of derivative securities under market incompleteness has attracted considerable
attention in recent years, and various alternative approaches to this problem were subsequently
developed.

4.2.1 PDE Approach

Under (4.2), (4.3) from Itô’s lemma, it is possible to derive under mild additional assumptions, the
partial differential equation satisfied by the value function of a European contingent claim, that
is a PDE representing a two-dimensional process. For this purpose, one needs first to specify the
market price of volatility risk λ(σ, t). The market price for the risk is associated with the Girsanov
transformation of the underlying probability measure leading to a particular martingale measure.
Let us observe that pricing of contingent claims using the market price of volatility risk is not
preferences-free. Usually, one assumes that the representative investor is risk-averse and has a
constant relative risk-aversion utility function.

To illustrate the PDE approach mentioned above, assume that the dynamic of two dimensional
diffusion process (S, σ), under a martingale measure, is given by (4.2), (4.3), with Brownian mo-
tions W̃ (1)

t and W̃
(2)
t such that dW̃ (1)

t dW̃
(2)
t = ρdt for some values of ρ ∈ [−1, 1]. Suppose also

that both processes S and σ, are nonnegative. Then the price function f = f(S, σ, t) of a European
contingent claim (see for instance, Garman (1976) or Hull and White (1976)) solves, for a generic
stochastic volatility market models, the following PDE:

∂f

∂t
+

1
2
σ2S2 ∂

2f

∂S2
+ ρσSb(σ, t)

∂2f

∂S∂t
+

1
2
b(σ, t)2 ∂

2f

∂σ2

+ rS
∂f

∂S
+ [a(σ, t) + λ(σ, t)b(σ, t)]

∂f

∂σ
− rf = 0, (4.5)



44 CHAPTER 4. STOCHASTIC VOLATILITY AND GEOMETRICAL APPROXIMATION

with the terminal condition φ(ST ) = f(T, S, σ) for every S ∈ R+ and σ ∈ R+.
Let us remark once again that we do not claim here that Q is a unique martingale measure for a
given model. Hence, unless volatility-based derivatives are assumed to be among primary assets,
the market price of volatility risk needs to be exogenously specified.

4.3 Heston model

The stochastic volatility model, proposed by Heston (1993), assumes that the asset price St satisfies
the following SDE

dSt = µStdt+
√
νtStdW

(1)
t , S ∈ [0,∞), (4.6)

with the instantaneous variance νt is also a stochastic process

dνt = k(θ − νt)dt+ α
√
νtdW

(2)
t , ν ∈ (0,∞), k, θ, α ∈ R, (4.7)

where W (1) and W (2) are standard one-dimensional Brownian motions defined on filtered prob-
ability space (Ω,F,P), which the cross-variation 〈W (1),W (2)〉 = ρt for some values of ρ ∈ [−1, 1].
The pricing function f and the market price of volatility risk λ are both functions of variables
(S, ν, t). The stochastic volatility models have the drawback of needing an exogenous hypothesis,
that is the risk price of volatility. Usually in literature this is given by the following process:

λ(νt, t) = λ
√
νt,

for some constant λ such that λα 6= k; the choice of λ(t, ν) is an important theoretical problem that
we discuss later in the next sections. Hence, under a martingale measure Q, equations (4.6), (4.7)
become

dSt = rStdt+
√
νtStdW̃

(1)
t , (4.8)

and

dνt = κ(Θ− νt)dt+ α
√
νtdW̃

(2)
t , (4.9)

where we set

κ = (k − λα), Θ = θk(k − λα)−1, (4.10)

and where W̃ (1)
t and W̃ (2)

t are standard one-dimensional Brownian motions respect to Q such that
〈dW̃ (1)

t , dW̃
(2)
t 〉 = ρdt. It is now easy to see that the pricing PDE for European derivatives in Heston

model, by Itô’s lemma, has the following form:

∂f

∂t
+

1
2
νS2 ∂

2f

∂S2
+ ρναS

∂2f

∂S∂ν
+

1
2
να2 ∂

2f

∂ν2
+ κ(Θ− ν)

∂f

∂ν
+ rS

∂f

∂S
− rf = 0, (4.11)
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with the terminal condition f(S, ν, T ) = φ(S) for every S ∈ R+, ν ∈ R+ and t ∈ [0, T ], and with
the boundary conditions:

f(t, S, ν) = φ(S),
f(t, 0, ν) = 0,
∂f

∂S
(t, S,∞) = 1,

rS
∂f

∂S
(t, S, 0) + κΘ

∂f

∂ν
(t, S, 0)− rf(t, S, 0) +

∂f

∂t
(t, S, 0) = 0,

f(t, S,∞) = S.

(4.12)

We take here for granted the existence and uniqueness of (nonnegative) solutions S and ν to Hes-
ton’s SDE. It is common to assume 2KΘ/α2 > 1 (Feller’s condition) , so that, if ν0 > 0 the solution
of the SDE (4.9) is strictly positive .

4.4 Pricing methods for the Heston model

In the literature, the alternative methods used to price the European options in the Heston model,
can be divided into two categories:

(1) Numerical methods;

(2) Approximation methods.

In the first case, the objective of the analysis is to find the exact price, and the approximation comes
from the numerical analysis. In the second case, one starts from on approximated problem in order
to find an analytical solution. The method proposed in section 4.4 belongs to this second line of
research.

4.4.1 Numerical methods

(a) Fourier transform method
The historic solution, the first solution of the Heston’s PDE, was in 1993 [57]; where the au-
thor computes the solution written in semi-closed form. The solution for PDE (4.11) pricing a
European Call options, is the following:

C(t, S, ν) = SP1 − Ee−r(T−t)P2,
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where P1 and P2 are:

Pj(T, x, ν; lnE) =
1
2

+
1
π

∫ +∞

0

Re

[
e−ıφ lnEfj(t, x, ν;φ)

ıφ

]
dφ, j = 1, 2

(4.13)

and fj is the characteristic function: fj(t, x, ν;φ) = eCj(T−t;φ)+Dj(T−t;φ)ν+ıφx,
where x = lnS (see the Appendix for more details).

Cj(T − t;φ) = rφı(T − t) +
a

α2

[
(bj − αρφı+ dj)(T − t)− 2 ln

(
1− gjedj(T−t)

1− gj

)]
,

Dj(T − t;φ) =
bj − αρφı+ dj

α2

[
1− edj(T−t)

1− gjedj(T−t)

]
,

and

gj =
bj − αρφı+ dj
bj − αρφı− dj

,

dj =
√

(αρφı− bj)2 − α2(2ujφı− φ2),

a = κΘ, b1 = κ+ λ− αρ, b2 = κ+ λ, u1 =
1
2

u2 = −1
2

;

where λ is the price of the volatility risk and it is usually chosen equal to zero. The formula
(4.13) is not straightforward to implement. The inverse Fourier transform method is a numeri-
cal method based on numerical integration techniques; so that using it we have some problems
to define the correct domain of integration. When the volatility of volatility α becomes small,
integration of the Fourier transform might lose some accuracy [80]. Several solutions have
been proposed in the literature, which suggest a robust implementation. The principal inte-
gration techniques are: Gauss-Legendre, Gauss-Lobatto or FFT. In the recent years, this tech-
niques have been improved by several works; to name a few: Jaeckel Kahl [62], and Albrecher
et al. [2]. Referring to (4.13), Jaekel and Kahl prove that the Re

[
e−ıφ lnEfj(t, x, ν;φ)/ıφ

]
have

limits on both ends. They suggest to use an adaptive integration algorithm to correct the os-
cillatory behaviour [58]. Albrecher et al. suggest to transform the characteristic function fj of
the log forward asset price (F = er(T−t)S) as follows:

f̃j = EQ
[
eıφ lnF

]
=

{
f̃1 = eC̃1(T−t;φ)+D̃1(T−t;φ)ν+ıφ lnF ,

f̃2 = eC̃2(T−t;φ)+D̃2(T−t;φ)ν+ıφ lnF ,
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where

C̃1(T − t;φ) = a
α2

[
(κ− αρφı+ dφ)(T − t)− 2 ln

(
1−gφedφ(T−t)

1−gφ

)]
,

D̃1(T − t;φ) = κ−αρφı+dφ
α2

[
1−edφ(T−t)

1−gφedφ(T−t)

]
,

gφ = κ−αρφı+dφ
κ−αρφı−dφ ,

dφ =
√

(αρφı− κ)2 + α2(φı+ φ2),

and 

C̃2(T − t;φ) = a
α2

[
κ− αρφı+ dφ)(T − t)− 2 ln

(
1−g̃φedφ(T−t)

1−g̃φ

)]
,

D̃2(T − t;φ) = κ−αρφı+dφ
α2

[
1−edφ(T−t)

1−g̃φedφ(T−t)

]
,

g̃φ = κ−αρφı−dφ
κ−αρφı+dφ = 1

gφ
,

dφ =
√

(αρφı− κ)2 + α2(φı+ φ2).

In order to insure that the principal branch of the complex root is always identified. Therefore,
following the Abrecher approach one has an algorithmic advantage. See the article in [2] for
the explanation.

The Fourier transform method [2], [57], [62] works well for a given range of the model pa-
rameters, and it shows robustness properties when the model parameters move, thus one can
conclude that it is useful to calibration procedure.

(b) Finite difference method
The finite difference method (Crank-Nikolson) is a flexible method which can be used for
many pay-offs: European options or certain path dependent derivatives. In this case, the
drawback is that we have to approximate the option prices on a grid. Accurate pricing re-
quires a substantial amount of grid points. The theoretical aspects of this methods can be
found in the Appendix and, more extensively in [3], [67] .

(c) Monte Carlo method
The derivatives price obtained by Monte Carlo method is very sensitive to the effective value
of the volatility which is too clumsily approximated by the Euler scheme (see e.g. Sauer, 2005,
pp. 460 or the Appendix). From a more theoretical point of view, the question of the true mar-
tingality of an asset following Heston dynamics is not clear up to now as studied for instance
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by Jourdain in [63]. The Monte Carlo method is the most expensive numerical method, but its
accuracy is not better than that given by the Fourier transform or the finite difference method.
We are going to use the above numerical techniques in the next section: “Numerical experi-
ments”, in order to determine the fair price of a European Call option, comparing the latter
methods to each other and also with the Geometrical Approximation.

4.4.2 Approximation method

(a) Implied Volatility method
An important contribute to approximation methods for the Heston model is given by
Lewis [80]. In order to present the theoretical method proposed by Lewis, we denote
σ2
T (d) the implied variance for a log forward moneyness d = log(E/Ft)

T and following the
author, we write the variance associated to the Heston model as follows:

σ2
T (d) = I0 + I1(d) + I2(d),

where Ij represents the j-th order approximation for small d, and the parameters set are risk-
neutral:
I0 = Θ + ν0−Θ

κT

(
1− e−κT

)
,

I1(d) = σM1
T

(
1
2 + d

I0T

)
,

I2(d) = σ2

T

[
M3

(
d2

2I2
0T

2 − 1
I0T
− 1

8

)
+M4

(
d2

I2
0T

2 − d
I0T
− 4−I0T

4I0T

)]
+ M1

2

(
− 5d2

2I3
0T

3 − d
I0T

+ 12+I0T
8I0T 2

)
,

where

M1 =
κρT [Θ−(ν0−Θ)e−κT ]+(ν0−2Θ)(1−e−κT )

κ2 ,

M2 = [Θ−2(ν0−Θ)e−κT ]T+ 1−e−kT
κ [(ν0−Θ

2 )(1+e−κT )−2Θ]
2κ2 ,

M4 = ρ2

κ3 (ν0 − 3Θ) + ρ2Θt
κ2 + ρ2

κ3 (3Θ− ν0)e−κt + ρ2t
κ2 e
−κt(2Θ− ν0) + ρ2t2

2κ (Θ− ν0)e−κt.

Lewis’s idea is to obtain the implied volatility from the implied variance σ2
T (d), and by this sub-

stituting in the Black-Scholes solution, compute an approximate price of the derivatives in the
Heston model. The method proposed by Lewis [80], is very useful to study the asymptotic prop-
erties of the Heston model, for small and large maturities.

Although the Lewis’s work is very useful it is not mathematically rigorous. In this sense, Forde
and Jacquier improve, from the theoretical point of view, Lewis’s results on small-time asymptotic
behaviour and long-time asymptotic behaviour.

In the small-time case, using the Gärtener-Ellis theorem from large deviations theory, Forde and
Jacquier [36] show that the small-time asymptotic behaviour in the Heston model satisfies a small-
time large deviation principle (see Theorem 1.1 [36]). In Theorem 2.5 [36] the authors show how
to compute the level, the slope and the curvature of the implied volatility in the small-time, with
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limit at-the-money. The results obtained by Forde and Jacquier are consistent with those obtained
probabilistic methods by Durrleman [31].

Here we present the main result of interest in practice as proved in [36]:

(1) Theorem ( Forde-Jacquier [36], Theorem 2.4 and 2.5 )
Let Ft be a process which follows the Heston dynamic. Then, as T → 0, we have:

I(d) = limT→0σT (d) =


d√

2Λ∗(d)
if d 6= 0

√
ν0

[
1 + ρz

4 +
(

1
24 −

5
48ρ

2
)
z2 +O

(
z3)
]

if d 6= 0,

where z = ρd
ν0

and Λ∗(·) is the Legendre transform of the Laplace transform
Λ(p) = limT→0

[
t× E

(
e
p
T (XT−X0)

)]
. Where σT (d) is the implied volatility written on the for-

ward asset price Ft, with strike E = F0e
d∗T maturing at time T (see [32] for details).

Concerning the large-maturity behaviour of the Heston model, in [80] Lewis obtains the
large-time behaviour of the implied volatility as a second-order polynomial in the forward
log-moneyness Xt = log(Ft). Forde and Jacquier, by using of the Large Deviations Theory,
extend the Lewiss 0-th order asymptotic result to the case in which the strike is F0e

d∗T . In this
case when the maturity gets large, the range of possible strikes gets large too. We present here
as made before, the main result of interest in practice as proved in [37]:

(2) Theorem ( Forde-Jacquier [37] Corollary 1.7 of Theorem 1.1 )
For d ∈ R −

{
−Θ

2 ,+
Θ
2

}
and if κ > ρα, then we have the following large-time asymptotic

behaviour for σT (d)

σ2
∞(d) = limT→+∞ =

2
(
2V ∗S (−d) + d− 2

√
V ∗S (−d)2 + V ∗S (−d)d

) (
d < −Θ

2 , d > Θ
2

)
,

2
(
2V ∗S (−d) + d+ 2

√
V ∗S (−d)2 + V ∗S (−d)d

) (
−Θ

2 < d < Θ
2

)
,

and

limd→Θ
2
σ2∞(d) = Θ,

limd→−Θ
2
σ2∞(d) = Θ,

(4.14)

where Θ = κΘ
κ−ρα and V ∗(·) is the Legendre transform of the Laplace transform of

V (p) = limT→+∞

[
1
T

EQ

(
ep(XT−X0)

)]
,
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and V ∗S (d) = V ∗(d)− d.
The symmetric properties of the Heston model are given by (4.14) (see [37] for a precise statement
and its proof).

Corollary 1.17 in [37] is the main result, and it is useful to give an approximation value for long-
maturity Call options:

EQ
(
ST − Eed×T

)
' CBS(S0, S0e

d×T , T, σ∞(d)) T → +∞,

where CBS(S0, E, T, σ) is the Black-Scholes Call option formula with initial stock price S0, strike
price E, maturity T and volatility σ. Quoting the authors’ work: “It can also be used for implied
volatility smile extrapolations at large maturities, where Monte Carlo and PDE methods break
down”. Nevertheless, the large deviation principle is unmannerly; therefore the authors compute
the implied variance as σ2

T (d) = σ2
∞(d)+ a(d)

T +O
(

1
T 2

)
, where the correlation term a(d) is computed

using Laplace’s method for Countor integrals. The practical relation obtained from Forde and
Jacquier is the following:

EQ
(
ST − Eed×T

)
→ CBS

(
S0, S0e

d×T , T,

√
σ2
∞(d) +

a(d)
T

+O

(
1
T 2

))
T → +∞.

Their results appear to be valuable and easy to use, but their proof need sophisticated mathemati-
cal instruments.

(b) Analytic and Geometric Methods for Heat Kernel
The Avramidi’s technique is an approximation method for PDEs for stochastic volatility models.
The author bases his work on the geometrical considerations of Bourgade and Croissant (2005); he
shows its application at two cases: SABR and Heston.

On the SABR model he writes the PDE operator L (see pp. 232, “Analytic and Geometric Methods
for Heat Kernel Applications in Finance”, Preprint 2007) in the form:

L = L0 + L1,

where L0 is the scalar Laplacian,

L0 = −g−1/2∂ig
1/2gij∂j ,

and L1 is the first order operator:

L1 =
ν2

2
y2C(x)

dC(x)
dx

∂x.
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The heat kernel of the operator L0 is given by:

U0(t, x, x′) =
1

4πt

√
ρr

sinh(ρr)
exp

(
−r

2

4t

)
×
[
1− t

4r2
(ρ2r2 + ρr coth(ρr)− 1) +O(t2)

]
,

where ρ = ν√
2

and considering the operator L1 as a perturbation, the author gets as follows:

U(t, x, x′) =
[
1− tL1 +

t2

2
(L2

1 + [L0, L1]) +O(t3)
]
U0(t, x, x′).

That reduces itself to Hagan formula if we restrict to the linear order in L1 (see “Analytic and Ge-
ometric Methods for Heat Kernel Applications in Finance”, Preprint 2007, for theoretical details,
pp.231).

On the Heston model, Avramidi [6] shows as solve the Heston’s PDE, through Fourier transform,
some coordinate transformations, and a perturbative expansion of the heat kernel.

In other words, starting from the known Heston’s PDE, written using the Mellin’s coordinates
(x = lnS, u = ν

η , τ = η
2 (T − t)):[

∂

∂τ
− u(

∂2

∂x2
+ 2ρ

∂2

∂x∂u
+

∂2

∂u2
+ (u− 2

r

η
)
∂

∂x
+ 2

λ

η

(
u− ν

η

)
∂

∂u
+ 2

r

η

]
U(τ, x, u, x′, u′) = 0,

and using the Fourier transform one has:

U(τ, x, u, x′, u′) =
∫ ı+∞

−∞

dp

2π
eıp(x−x

′)Ũ(τ, p, u, u′),

where a is a real constant that must be chosen in such a way that the integral converges; then the
function Ũ satisfies the following PDE:[

∂τ − u∂2
u + (2β1u+ β0)∂u + γ1u+ γ0

]
Ũ = 0,

where

β1 =
λ

η
− ıρp, β0 = −2

λ

η2
ν,

γ1 = p2 + ıp, γ0 = 2
r

η
(1− ıp).

After many calculi (see “Analytic and Geometric Methods for Heat Kernel Applications in Fi-
nance”, Preprint 2007, for theoretical details, pp.239) it is possible to find the following solution:

U(τ, x, u, x′, u′) =
∫ ıa+∞

ıa−∞

dp

2π

∫ b+ı∞

b−ı∞

dq

2πı
eıp(x−x

′)+qu−q0u′
(
q0 − q1

q − q1

)a1

×
(
q0 − q2

q − q2

)a2

,
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that is rather complicated since it involves two complex integrals. In order to simplify this prob-
lem, Avramidi choses a particular heat kernel:

Pn(τ, x, u) =
∫ +∞

0

dx′
∫ +∞

0

du′U(τ, x, u, x′, u′)enx
′
,

which can be rewrite as series expansion of complex integral that can be solved by residue theory:

Pn(τ, x, u) =
∫ ı+∞

ı−∞

dp

2π
1

(ıp− n)
eıpx−(γ0+β0β1)τ

× exp
(
− uγ1 sinh(Dτ)
β1 sinh(Dτ) +D cosh(Dτ)

)
×
(

cosh(Dτ) + β1
sinh(Dτ)

D

)β0

.

Thus, by Avramidi method is possible to compute the kernel of the Heston’s PDE as series ex-
pansion of complex integral, and it is an alternative method to evaluate derivatives in the Heston
model.

4.5 Geometrical Approximation method: Heston model

In this section, we propose an approximation technique for pricing European options through the
solution of PDE (4.11). We call it the Geometrical Approximation Method for derivatives pricing,
since the solution method for the PDE is based on geometrical considerations. We will apply this
methodology to the Heston [24] and SABR [27] model, but the proposed technique potentially ap-
plies for more general specifications of the diffusion processes.

For ease of exposition, we now focus on the Heston model. The proposed technique is based
on a stochastic approximation of the Cauchy condition of the PDE (4.11): it consists in using the
final condition Φ (ST eεT ) where εT = ρ(ν−νT )/α, instead of the standard pay-off function Φ(ST ).
Notice that εT is a stochastic quantity and ν is the risk-neutral expected value of νT , see equation
(4.15) below.

The advantage of the approximation is of providing closed formulas for European options. The
geometrical interpretation of such an approximation will be more apparent when computing the
price of a European call option, where we impose that ρ = sin θρ and

√
1− ρ2 = cos θρ, θρ ∈

(−π/2, π/2). Notice that if ρ = 0 there is no approximation and the formulas are exact. In all other
cases, we will have to estimate the approximation error.

By the form of the approximation, we can see that it will make not a big difference with the actual
option price if εT = ρ(ν − νT )/α is small. To compute the mean and the variance of εT , we need
the mean and the variance of νT which are given, in the Heston model, by:

ν = EQ[νT ] =
[
(ν0 −Θ)e−κT + Θ

]
.

(4.15)
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Where εT is given by:

εT =
ρ(ν − νT )

α
=
ρ

α

[
(ν0 −Θ)e−κT + Θ− νT

]
,

(4.16)

and thus

EQ(εT ) = 0.

It is worth noting that for α = 0 we have a singularity, but this one is not interesting case, since for
α = 0 we have a deterministic variance (4.9), thus one can consider α ∈ R+ − {0}. Regarding the
variance we have,

V ar(νT ) = ν0
α2

κ

(
e−κT − e−2κT

)
+
θα2

2κ
(
1− e−κT

)2
=
α2

κ

(
1− e−κT

) [(
ν0 −

Θ
2

)
e−κT +

Θ
2

]
, (4.17)

so that

V ar(εT ) = V ar
( ρ
α

(ν − νT )
)

= EQ
[
ε2
T

]
− EQ [εT ]2 ,

(4.18)

where EQ[εT ] = 0, thus we have:

V ar(εT ) =
ρ2

α2

[
EQ
(
ν2
T

)
− ν2

]
=
ρ2

α2
V ar(νT ) =

ρ2

κ

(
1− e−κT

) [(
ν0 −

Θ
2

)
e−κT +

Θ
2

]
.

Both for the variance of the variance processes νT and the variance for εT processes we a have a
singularity for κ = 0, i.e., for k = λα, see (4.10), but for hypothesis k 6= λα, as we have just said in
the previous section, and thus we consider κ 6= 0. Let us compute the limits of these quantities:

limT→0V ar(νT ) = 0,

limT→+∞V ar(νT ) =
α2Θ
2κ

,

(4.19)

therefore we have for εT :

limT→0V ar(εT ) = 0,

limT→+∞V ar(εT ) =
ρ2Θ
2κ

.

(4.20)
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Thus the variance νT goes to zero for T small and when T is large the variance approaches to
α2Θ/2κ. Equivalently our stochastic error εT goes to 0 for T small and when T is large it ap-
proaches to (ρ2Θ/2κ), that is great or equal to zero.

In what follows we use the PDE formalism, thus we replace St with S and νt with ν. In order
to evaluate a European Call option in the Heston model, using the G. A. method, we have to mod-

ify the pay-off as follows:
(
Se

ρ(ν−ν)
α − E

)+

, that reduces itself at maturity to a pay-off near at the

(S −E)+ giving us an approximate Call option price. It is worth noting that
(
Se

ρ(ν−ν)
α − E

)+

can

be also written as follows e
ρν
α

(
Se
−ρν
α − Ee

−ρν
α

)+

, in which Ee
−ρν
α is a constant. For simplicity we

put Ee
−ρν
α = E, in order to rewrite our modified pay-off as follows: e

ρν
α

(
Se
−ρν
α − E

)+

.
Our formulation of Heston problem for derivatives pricing, is a Cauchy’s problem:

∂f

∂t
+

1
2
νS2 ∂

2f

∂S2
+ ρναS

∂2f

∂S∂ν
+

1
2
να2 ∂

2f

∂ν2
+ κ(Θ− ν)

∂f

∂ν
+ rS

∂f

∂S
− rf = 0,

S ∈ [0,+∞), ν ∈ [0,+∞),

f(T, S, ν) = e
ρν
α

(
Se
−ρν
α − E

)+

, t ∈ [0, T ],

f(t, S, ν) ∈ C2,1 ([0,+∞)× [0,+∞)× [0, T ]). For the Theorem (1.1) (see Chapter 1 for theoretical
aspects on parabolic operators), we start saying that we are able to define our problem as a case
study well-posed.

We now simplify the PDE (4.11) at hand. To this end, let us introduce new variables x, ν̃ and
a new function f1:

S = ex, ν = ν̃α, x ∈ (−∞,+∞), ν ∈ [0,+∞), t ∈ [0, T ],

f(t, S, ν) = e−r(T−t)f1(t, x, ν̃).

The determinant of the jacobian matrix has not singularities within the domain, but only for S = 0
which is a boundary point, and this one guarantees us that the new PDE is:

∂f1

∂t
+

1
2
ν̃α

(
∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+
∂2f1

∂ν̃2

)
+
κ

α
(Θ− ν̃α)

∂f1

∂ν̃
+
(
r − 1

2
ν̃α

)
∂f1

∂x
= 0,

f1(T, x, ν̃) = e
ρν
α (ex−ρν̃ − E)+,

(4.21)

in which we have considered the modified pay-off: e
ρν
α (ex−ρν̃ − E)+, instead of (ex − E)+ with

respect to the new variables x, ν̃. Now we consider only the terms that have derivatives of the
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second order and after that, we try a new set of coordinates that transform the PDE in a simpler
form. As a first step, we write the characteristic equation associated to the second order terms of
our PDE (4.21) , then we compute its roots:

∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+
∂2f1

∂ν̃2
= 0.

The characteristic equation results to be(
dx

dν̃

)2

− 2ρ
(
dx

dν̃

)
+ 1 = 0,

∆ = 42(1− ρ2) ≤ 0, ρ ∈ (−1, 1),

so that the squared term is of elliptic kind, and the roots belong at the set of complex numbers(
dx

dν̃

)
1/2

= ρ± ı
√

1− ρ2.

At this point we can define the characteristic lines (remembering what was said in chapter 1, these
are also defined as geodesics) as follows

x− (ρ+ ı
√

1− ρ2)ν̃ = z,

x− (ρ− ı
√

1− ρ2)ν̃ = w.

Through another change of variables, we obtain a linear system easy to solve:

z = ξ + ıη, w = ξ − ıη,

so that results w = z

ν̃ = − η√
1− ρ2

, x =
ξ
√

1− ρ2 − ρη√
1− ρ2

,

η = −ν̃
√

1− ρ2, ξ = x− ρν̃,
(4.22)

where η ∈ (−∞, 0) and ξ ∈ (−∞,+∞), in which we have a singularity for ρ = ±1, while the
determinant of the jacobian matrix has not singularities, in fact this one is equal to

(
−
√

1− ρ2
)

.
Thus we have to transform f1 in another function f2 dependents of the new variables (t, ξ, η).

At this point, it is fundamental to make the following geometrical consideration, in order to under-
stand our method. We have defined a new system of coordinates, where ~eη, ~eξ, ~et, are orthogonal
directions; we can think of x, ν̃ as vectors, whose projections on the axes are respectively given by

~x = (0)~eη + (x)~eξ, ~̃ν = (ν̃ cos θρ)~eη + (ν̃ sin θρ)~eξ,
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where, we have supposed ρ = sin θρ and
√

1− ρ2 = cos θρ, θρ ∈ (−π/2, π/2). Now we can define
a new vector, that we call ~V , whose projections are

~V ≡ (Vη, Vξ), Vη = −ν̃ cos θρ, Vξ = x− ν̃ sin θρ,

by which, we can show the vectorial relation that exists between the variables (x, ν̃).

Now, from the Cauchy’s condition, we are able to write the new function f2, as function of vari-
ables t and Vξ(x, ν̃), because, the function f depends, at the time T , only on the projection terms
upon the axis ξ, therefore, because of the continuity properties of the Feynman-Kač formula, we
can suppose that is true at any time t:

f1(t, x, ν̃) = f2(t, Vξ(x, ν̃)), t ∈ [0, T ],

now we may substitute them in the old squared term

∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+
∂2f1

∂ν̃2
= (1− ρ2)∇2

Vξ
f2(t, Vξ(x, ν̃)),

where ∇2
Vξ

(·) is the Laplace’s operator with respect to the variable Vξ . Thus, the new PDE of
Heston’s model has become:

∂f2

∂t
− αVη√

1− ρ2

[
(1− ρ2)

2
∂2f2

∂V 2
ξ

−
(

1
2
− κ

α
ρθ

)
∂f2

∂Vξ

]
+
(
r − κ

α
ρθ
) ∂f2

∂Vξ
= 0, (4.23)

with a singularity for ρ = ±1, and where the following final condition is given by

f2(T, Vξ) = e
ρν
α

(
eVξ − E

)+
,

where

Vξ = x− ρν̃ = lnS − ρ

α
ν, Vξ ∈ (−∞,+∞).

Now, we can compute the solution of PDE (4.23) in closed form.

Another change of coordinates is sufficient to simplify last PDE. We may define a new transforma-
tion of coordinate and the new function f3, as follows

γ = Vξ +
(
r − k

α
ρθ

)
(T − t), γ ∈ (−∞,+∞),

τ =
∫ T

t

νsds, τ ∈

[
0,
∫ T

0

νsds

]
,

f2(t, Vξ) = f3(τ(t), γ(t, Vξ)).
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The determinant of the jacobian matrix, that is equal to ν, has not singularities within the domain,
but only for ν = +∞which is a boundary point.

Substituting what we have just found, in the previous equation, we finally have a simpler Cauchy’s
problem:

∂f3

∂τ
=

(1− ρ2)
2

∇2
γf3 −

(
1
2
− κρ

α

)
∂f3

∂γ
,

f3(0, γ) = e
ρν
α

(
eγ − E

)+
,

γ ∈ (−∞,∞), τ ∈

[
0,
∫ T

0

νsds

]
,

(4.24)

where ∇2
γ(·) is the Laplace’s operator with respect to the γ-variable. Now we can rewrite the

function f3 as follows, in order to obtain the one-dimensional heat equation:

f3(τ, γ) = eaτ+bγf4(τ, γ),

where

a = − (1/2− κρ/α)2

2(1− ρ2)
, b =

(1/2− κρ/α)
(1− ρ2)

,

so we have

∂f4

∂τ
=

(1− ρ2)
2

∇2
γf4.

Also in this case we have singularities for ρ = ±1 on a and b, as well as for the variable τ .

At this point we have another problem that has a simpler solution (see A. D. Polyanin, Handbook
of Linear PDE, pp.45):

∂f4

∂τ
=

(1− ρ2)
2

∇2
γf4, γ ∈ (−∞,+∞), τ ∈

[
0,
∫ T

0

νsds

]
,

f4(0, γ) = e
ρν
α

(
eγ − E

)+
.

We now are able to write the solution, that is

f4(τ, γ) =
1√

2π(1− ρ2)τ

∫ +∞

−∞
dγ′f4(0, γ′) exp

[
− (γ′ − γ)2

2(1− ρ2)τ

]
=
∫ ∞
−∞

dγ′f4(0, γ′)G(γ′, 0|γ, τ), (4.25)
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where

G(γ′, 0|γ, τ) =
1√

2π(1− ρ2)τ
exp

[
− (γ′ − γ)2

2(1− ρ2)τ

]
,

and

f(t, S, ν) = e−r(T−t)+aτ+bγf4(τ, γ),

f(T, S, ν) = ebγf4(0, γ),

f4(0, γ) = e−bγe
ρν
α

(
eγ − E

)+
,

for which we have

f4(τ, γ) =
1√

2π(1− ρ2)τ

∫ +∞

−∞
dγ′e−bγ

′
e
ρν
α

(
eγ
′
− E

)+

exp
[
− (γ′ − γ)2

2(1− ρ2)τ

]

=
1√

2π(1− ρ2)τ

∫ +∞

lnE

dγ′e−bγ
′
e
ρν
α

(
eγ
′
− E

)
exp

[
− (γ′ − γ)2

2(1− ρ2)τ

]
.

Thus follows the solution on the modified payoff function, by which approximate the Heston
solution for Call options:

f(t, S, ν) =
e−r(T−t)+aτ+bγ√

2π(1− ρ2)τ

∫ +∞

lnE

dγ′e−bγ
′
e
ρν
α

(
eγ
′
− E

)
exp

[
− (γ′ − γ)2

2(1− ρ2)τ

]

= Se
ρ
α (ν−ν)eδN(dρ1) − Ee−r(T−t)N(dρ2), (4.26)

where

δ = −

[
κ

α
ρΘ−

(
a+

(1− b)2(1− ρ2)
2

)
1

T − t

∫ T

t

νsds

]
(T − t)

= −

[
κ

α
ρΘ +

(
ρ2

2
− κ

α
ρ

)
1

T − t

∫ T

t

νsds

]
(T − t), (4.27)

dρ1 =
ln(Se

ρ
α (ν−ν)/E) +

[(
r − κ

αρΘ
)

+ (1− b)(1− ρ2) 1
T−t

∫ T
t
νsds

]
(T − t)√

(1− ρ2)
∫ T
t
νsds

=
ln(Se

ρ
α (ν−ν)/E) +

[(
r − κ

αρΘ
)

+
(

1
2 + κρ

α − ρ
2
)

1
T−t

∫ T
t
νsds

]
(T − t)√

(1− ρ2)
∫ T
t
νsds

, (4.28)
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dρ2 =
ln(Se

ρ
α (ν−ν)/E) +

[(
r − κ

αρΘ
)
− b(1− ρ2) 1

T−t
∫ T
t
νsds

]
(T − t)√

(1− ρ2)
∫ T
t
νsds

=
ln(Se

ρ
α (ν−ν)/E) +

[(
r − κ

αρΘ
)
−
(

1
2 −

κρ
α

)
1

T−t
∫ T
t
νsds

]
(T − t)√

(1− ρ2)
∫ T
t
νsds

. (4.29)

From theoretical viewpoint, the G. A. method is compatible with the Hull-White formula (see
“Derivatives in Financial Markets with Stochastic Volatility”, authors J. P. Fouque, G. Papanico-
lau, K. R. Sircar, pp.51).

In fact for ρ = 0 we have that our solution reduce itself to the Black-Scholes solution with av-
erage volatility over the time, instead of the spot volatility.
From 4.26, 4.27, 4.28, 4.29 follows that for ρ = 0 we have ε = 0, δ = 0 and

dρ=0
1 =

ln(S/E) +
(
r + 1

2
1

T−t
∫ T
t
νsds

)
(T − t)√∫ T

t
νsds

,

dρ=0
2 =

ln(S/E) +
(
r − 1

2
1

T−t
∫ T
t
νsds

)
(T − t)√∫ T

t
νsds

,

then we find the Hull-White formula:

f(t, S, ν)ρ=0 = SN(dρ=0
1 )− Ee−r(T−t)N(dρ=0

2 ) = CBS(t, S,
√
ν̃),

where ν̃ = 1
T−t

∫ T
t
νsds.

On the boundary of its domain, the function f(t, S, ν) ( 4.26), assumes the following values:

f(t, 0, ν) = 0,

f(t, S, 0) =

{(
Se

ρ
αν
)
e−

κ
αρΘ(T−t) − Ee−r(T−t) dρ1, d

ρ
2 > 0

0 dρ1, d
ρ
2 < 0
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f(t,+∞, ν) = +∞,

f(t, S,+∞) =



0 b > 1,{
ρ > 0 0
ρ < 0 +∞

0 < b < 1,{
ρ > 0

(
Se

ρ
αν − Ee−r(T−t)

)
ρ < 0 +∞

b < 0,

∂f

∂S
(t,+∞, ν) = eε+δ,

∂2f

∂S2
(t,+∞, ν) = 0.

Concluding for a European Call option we have:

Cρ,α,Θ,κ(t, S, ν) = (Seε) eδN(dρ1)− Ee−r(T−t)N(dρ2),
(4.30)

where ε = ρ
α (ν − ν). For a Put we have:

Pρ,α,Θ,κ(t, S, ν) = Ee−r(T−t)N(−dρ2)− (Seε) eδN(−dρ1).
(4.31)

As one can see from the solution (4.26), the singularities due to the new variables vanish when
we use the old variables. The terms in which the singularities for ρ = ±1 don’t simplify, are the
arguments dρ1 and dρ2 of the normal distributions N.

The proceeding of the solution (4.26) for ρ→ ±1 is given by the limit:

lim
ρ→±1

[
Se

ρ
α (ν−ν)eδN(dρ1)− Ee−r(T−t)N(dρ2)

]
.

It is known by (4.30) that dρ2 = dρ1 −
√

(1− ρ2)ν̃(T − t) and for ρ → ±1 we have dρ2 = dρ1. Thus,
there are two possible cases, dρ1, d

ρ
2 > 0 and dρ1, d

ρ
2 < 0.

For dρ1, d
ρ
2 < 0, the limit will be:

lim
ρ→±1

[
Se

ρ
α (ν−ν)eδN(dρ1)− Ee−r(T−t)N(dρ2)

]
= 0.

For dρ1, d
ρ
2 > 0, the limit will be:

lim
ρ→±1

[
Se

ρ
α (ν−ν)eδN(dρ1)− Ee−r(T−t)N(dρ2)

]
= Se

±1
α (ν−ν)e−[±κα Θ+( 1

2−
±κ
α )ν̃](T−t) − Ee−r(T−t).
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Since the G. A. method is an approximation technique, we need to compute, if it is possible, how
is the error. Defining an Error function as follows:

Err(ρ) =
‖CGA(t, S, ν)− CH(t, S, ν)‖

E
,

(4.32)

where ‖ · ‖ is the norm of L1 space. We cannot compute (4.32) analytically, even if we could do it
with a Fourier transform, which has to be computed numerically. But it is worth noting that by
the triangle inequality one can say at least, from theoretical point of view, that the Error function
(4.32) is bounded.

Proposition: Theoretical estimation of Errors

Let be given the Call Option prices by G. A. method and by Fourier Transform method:

CGA(t, S, ν) = (Seε) eδN1 − Ee−r(T−t)N2

CH(t, S, ν) = SP1 − Ee−r(T−t)P2

where P1 and P2 are the distributions of the Heston’s solution (4.13), and we have replaced N(dρ1)
with N1 and N(dρ2) with N2 for computing simplicity.
Thus we have:

‖CGA(t, S, ν)− CH(t, S, ν)‖ = ‖S
(
eε+δ ×N1 − P1

)
− Ee−r(T−t) (N2 − P2) ‖

= ‖S
(
eε+δ ×N1 −P1

)
+ Ee−r(T−t) (P2 −N2) ‖

≤ ‖S
(
eε+δ ×N1 −P1

)
‖ + ‖Ee−r(T−t) (P2 −N2) ‖.

For S = E, we have:

Err(ρ) = ‖
(
eε+δ ×N1 −P1

)
+ e−r(T−t) (P2 −N2) ‖

≤ ‖
(
eε+δ ×N1 −P1

)
‖ + e−r(T−t)‖ (P2 −N2) ‖.

For S = E(1± 10%
√

ΘT ), we have:

Err(ρ) = (1± 10%
√

ΘT )‖
(
eε+δ ×N1 −P1

)
+ e−r(T−t) (P2 −N2) ‖

≤ (1 ± 10%
√

ΘT )‖
(
eε+δ ×N1 −P1

)
‖ + e−r(T−t)‖ (P2 −N2) ‖.
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In other words we can say that the Error between the G.A method and Fourier method, is given by
the difference among the normal distributions Nj=1,2 and the distributions Pj=1,2, or again, how
the distribution of the Heston model is different to a Normal distribution.

4.5.1 Greeks and Put-Call-Parity

In order to find the best hedging strategy, we use a replicant portfolio. So, we need to know the
value of the first and second, derivative of the price, with respect to S, that we respectively call
∆(·) and Γ(·) strategies for a European call option and European put option.

In the Heston model the best way in literature to compute the Greeks by Fourier method is to use
Shaw’s approach [111]. This one is an alternative Fourier method, in which one has the advantage
that the computation of the Greeks is straightforward. ∆ and Γ can be got just by multiplying the
Shaw’s integral V with −ıφS and −φ2

S2 respectively.

V =
1

2π
e−rτ

∫ ıc+∞

ıc−∞
eıφxW̃ (φ, ν, 0)G(φ, ν, τ)dφ,

where the Green’s function has the form:

G(φ, ν, τ) = eC(τ,φ)+νD(τ,φ),

and

W (x, ν, τ) =
1

2π

∫ +∞

−∞
e−ıφxW̃ (φ, ν, τ)dφ,

W̃ (φ, ν, τ) =
∫ +∞

−∞
eıφxW (x, ν, τ)dx.

The initial condition of W̃ (φ, ν, τ) for European Call is

W̃ (φ, ν, 0) =
∫ +∞

−∞
eıW (x, ν, 0)dx =

∫ +∞

logE

(
e(1+ıφ)x − Eeıx

)
dx =

E1+ıφ

ıφ− φ2
,

where the integral has to evaluated at Im(φ) > 1; x = logS+r(T−t), τ = T−t andW = V er(T−t).

Using the Geometrical Approximation method we are able to provide in closed form the Greeks,
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proving the Put-Call-Parity relation. The proposed solution is simpler than Shaw’s solution as one
can see comparing them each other. In other words, by G .A. method, we obtain approximated
solutions with formulas simple as well as in the B. S. case, but working with stochastic volatility
market model.

∆call =
∂Cρ,α,Θ,κ

∂S
= (eε)eδN(dρ1),

Γcall =
Eeδ−(dρ1)2/2

S
√

2π(1− ρ2)ν(T − t)
,

and

∆put =
∂Pρ,α,Θ,κ

∂S
= −(eε)eδN(−dρ1),

Γput =
Eeδ−(dρ1)2/2

S
√

2π(1− ρ2)ν(T − t)
,

thus we have

Γput = Γcall.

The Put-Call-Parity condition is verified, and this is consistent with the assumption that we are in
a free arbitrage market (see figures 4.1, 4.2).
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Figure 4.1: Greeks-∆, for Call option computed by G. A. method in the Heston model, with the
following parameter set: S0 = E = 100, α = 0.39, ν0 = 0.03, Θ = 0.04, ρ = −0.1, T = 1− year
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Figure 4.2: Greeks-Γ, for Call option computed by G. A. method in the Heston model, with the
following parameter set: S0 = E = 100, α = 0.39, ν0 = 0.03, Θ = 0.04, ρ = −0.1, T = 1− year
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4.6 Numerical comparison of G. A. with alternative methods

In this section we compare the G. A. method proposed here with the aforementioned numerical
procedures proposed in the literature. The purpose of this section is then to evaluate the impact
of the approximation needed by the G. A. method to get a closed-form solutions for Call prices, in
the case of sensible parameter values.

Before we compare the Call option prices, we compute three volatility surfaces using the Fourier
transform method. The Matlab code for implementing Fourier transform is transcript in the Ap-
pendix. We use the parameter set κ = 2, Θ = 0.04, α = 0.4, ν0 = 0.038,r = 0.01,S0 = 1,E ∈ [0.8, 1.2],
t ∈ [0.5, 3], which are the values proposed in [95]. To illustrate the impact of the correlation co-
efficient, we use ρ = 0,+0.5,−0.5 in Figures 4.3, 4.4, 4.5 respectively. The figures show that the
impact of ρ is on the skewness of the volatility surface. With ρ = 0 (Figure 4.3) we observe the clas-
sical volatility smile whose magnitude decreases with maturity. With ρ 6= 0, the smile is instead
skewed, see Figures 4.4 and 4.5.

We now compare the G. A. method with the three numerical methods (Fourier transform, Fi-

Table 4.1: Call option prices computed with the G. A. method and three alternative numerical methods: Fourier transform method,

Finite Difference Method (F. D. M. ) and Monte Carlo method (M. C. ). Parameter values are those in Bakshi, Cao and Chen (1997) namely

κ = 1.15, Θ = 0.04, α = 0.39 and ρ = −0.64. We have chosen r = 3% E = 100, ν0 = 0.03 and three different maturities T .

At-the-money options (ATM) have S0 = E; in-the-money options (INM) have S0 = E(1 + 10%
√

ΘT ) and out-of-the money options

(OTM) have S0 = E(1− 10%
√

ΘT ).

(T = 6/12)
G. A. Fourier F. D. M. M.C

ATM 5.4265 5.5707 5.5461 5.5574
INM 6.3111 6.5265 6.5030 6.5123
OTM 4.6244 4.6766 4.6491 4.6643

(T = 9/12)
G. A. Fourier F. D. M. M.C

ATM 7.0120 7.0500 7.112 7.0300
INM 8.1344 8.2561 8.2115 8.2347
OTM 5.9894 5.9177 5.8770 5.8991

(T = 1)
G. A. Fourier F. D. M. M.C

ATM 8.4300 8.3816 8.3293 8.3550
INM 9.7652 9.8020 9.7503 9.7734
OTM 7.2086 7.0445 6.9907 7.0196

nite Difference method and Monte Carlo simulations). For values of ρ = −1,+1 we have two
degenerate cases, but we are not going to consider these cases in our numerical experiments. The
parameter values are those estimated in Bakshi, Cao and Chen (1997) and reported in table IV
of their paper. Bakshi, Cao and Chen estimate the correlation under three different measure [6],
and this results to be around −0.64 for derivatives on an underlying asset, and around −0.28 for
derivatives on an index; the latter value has been obtained by the sample time-series correlation
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Table 4.2: Same as table (4.2) with ρ = −0.28.

(T = 6/12)
G. A. Fourier F. D. M. M. C.

ATM 5.5022 5.5548 5.5479 5.5524
INM 6.3531 6.4566 66.4434 6.4431
OTM 4.7178 4.7229 4.7077 4.7117

(T = 9/12)
G. A. Fourier F. D. M. M. C.

ATM 6.9829 7.0383 7.0297 7.0196
INM 8.0571 8.1761 8.1692 8.1558
OTM 5.9895 5.9851 5.9757 5.9680

(T = 1)
G. A. Fourier F. D. M. M. C.

ATM 8.3093 8.3751 8.3905 8.3501
INM 9.5816 9.7171 9.7352 9.6901
OTM 7.1294 7.1286 7.1425 7.1058

between daily S&P 500 index returns and daily changes in the implied volatility of a given option
model. The G. A. method needs low correlation in order to reduce the stochastic error eεT , so that
for ρ = −0.28 we have that the G. A. prices, see table 4.2, are precise with an error around 3%.

Before to discuss a case of high correlation, it is worth noting that, the G. A method gets the price
of the modified payoff, which for negative correlation is always out the money. In other word, if
we supposed to be in the case at money, in which we have S0 = E = 100, the G. A method gets the
price for S0e

ε0 < E. Thus for ρ < 0 we get the price for an option out the money. For |ρ| smaller
than 0.3, this problem is neglectable for maturity T within 1− year, but for |ρ| bigger than 0.3, we
have to consider this one, adding the initial error capitalised at rate r, i.e., we supposed to buy a
bond at time zero so that at maturity its value is |S0e

ε0 − E|er(T−t). This procedure is reasonable
for high level of correlation in which the difference at time zero between S0e

ε0 − E is sensible. In
fact by this reasoning, for ρ = −0.64, the G. A. technique is precise with an error around 5%, that
otherwise would have been around 10%, see table 4.1 (see the code in Appendix).

Using a correlation lower than before, for example ρ = −0.1, we obtain that the G. A. prices
are close to the Fourier prices, as we are going to show later by Figures 4.10, 4.11, 4.12. In fact, in
this case we make an error less than 2%, see table 4.3.
The integration formula (4.13) we use is based on Gauss-Legendre approximation with 20 points;

the routine is implemented in Matlab and reported in the Appendix. To implement the Monte
Carlo method we have written a code in C + +, in which we use a time step of 1/250 (in yearly
units) and N = 106 trajectories (see the Appendix for details); either it is possible to use the “Fair-
mat” software (there exists an academic version) based on the Monte Carlo method, by which
obtain the prices of every kind of derivative contracts. For Finite Difference method we use the
results in the website (http : //Kluge.in− chemnitz.de), [3], [68] but in the Appendix one can find
the code of Crank-Nicolson algorithm written in MatLab.
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Table 4.3: Same as table (4.1) with ρ = −0.1.

(T = 6/12)
G. A. Fourier F. D. M. M. C.

ATM 5.6247 5.5419 5.5348 5.5300
INM 6.4689 6.4152 6.4089 6.4022
OTM 4.8449 4.7413 4.7338 4.7305

(T = 9/12)
G. A. Fourier F. D. M. M. C.

ATM 7.1051 7.0212 7.0368 7.0032
INM 8.1681 8.1231 8.1407 8.1035
OTM 6.1202 6.0078 6.0231 5.9915

(T = 1)
G. A. Fourier F. D. M. M. C.

ATM 8.4165 8.3547 8.4334 8.3307
INM 9.6725 9.6556 9.7383 9.6295
OTM 7.2499 7.1542 7.2308 7.1324

It is worth spending some words to describe the distribution of the stochastic error term eεT which,
in the G. A. method, is assumed to be close to 1. Let us remark that the stochastic error is given by:

eεT = e
ρ{[(ν0−Θ)e−κT+Θ]−νT}

α ,

(4.33)

thus its stochasticity fully depends on the random variable νT . We simulate the Heston model
with the parameter values in [89], with different values of the correlation coefficient ρ. The distri-
bution of eεT is reported in Figures 4.6, 4.7, 4.8, 4.9 with (ρ = −0.1, T = 1/12), (ρ = −0.1, T = 1),
(ρ = −0.9, T = 1/12), (ρ = −0.9, T = 1) . As one can see the stochastic error distributes approx-
imatively as a gaussian. In the case of low correlation we have a distribution close to 1 and small
variance, either for short maturities than for long maturities. Unlike for the high correlation in
which case we have again a distribution for the error, but with higher variance.

Finally, we evaluate the difference between the option price value computed with the Fourier
method and the G. A. method as a function of the maturity of the option. Figures 4.10, 4.11, 4.12
show the results, see the captions for parameter values. We can see by those Figures 4.10, 4.11, 4.12
that the distance of the G. A. value from the Fourier transform value is reduced when we move
in the money and at the money and not out the money. We can observe that our solution (4.30)
verifies the law of monotonicity with respect to maturity.

Concluding, the numerical experiments highlight that the G. A. method can be used for evaluating
option contracts when the correlation is low. In our experiments with sensible data, we find that
a reasonable estimate of the approximation error is around 1% (clearly, the precise value depends
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on the parameter set adopted). This error increases with maturity and correlation coefficient (as
well as inversely with the mean-reversion speed). It appears clear that a crucial parameter is the
correlation, with the G. A. being more reliable for low values of the correlation. In other words, the
accuracy of he G. A. method is mostly determined by the magnitude of the correlation. Markets
in which the price/volatility correlation is low, and thus the G. A. method seems more promising,
are the Electricity Markets, see [28], [99].
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V olatility surface in the Heston model

 

Figure 4.3: Implied volatility surface in the Heston model, ρ = 0, k = 2, Θ = 0.04, α = 0.4,
ν0 = 0.04,r = 0.01,S0 = 1, E ∈ [0.8, 1.2], t ∈ [0.5, 3]
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V olatility surface in the Heston model

 

Figure 4.4: Implied volatility surface in the Heston model, ρ = +0.5, k = 2, Θ = 0.04, α = 0.4,
ν0 = 0.04,r = 0.01,S0 = 1, E ∈ [0.8, 1.2], t ∈ [0.5, 3]
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V olatility surface in the Heston model

 

Figure 4.5: Implied volatility surface in the Heston model, ρ = −0.5, k = 2, Θ = 0.04, α = 0.4,
ν0 = 0.04,r = 0.01,S0 = 1, E ∈ [0.8, 1.2], t ∈ [0.5, 3]
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Figure 4.6: Distribution of the stochastic error eεT , obtained via simulation with parameter values
in [6] and ρ = −0.1, T = 1-month
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Figure 4.7: Distribution of the stochastic error eεT , obtained via simulation with parameter values
in [6] and ρ = −0.1, T = 1-year
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Figure 4.8: Distribution of the stochastic error eεT , obtained via simulation with parameter values
in [6] and ρ = −0.9, T = 1-month
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Figure 4.9: Distribution of the stochastic error eεT , obtained via simulation with parameter values
in [6] and ρ = −0.9, T = 1-year
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Figure 4.10: At the money - Call prices computed with the Fourier integral and with the Geomet-
rical Approximation as a function of the maturity, for ρ = −0.1, k = 1.15, Θ = 0.04, ν0 = 0.038,
α = 0.39, [6]. The points of the abscissas are the maturities in months.
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Figure 4.11: In the money - Call prices computed with the Fourier integral and with the Geomet-
rical Approximation as a function of the maturity, for ρ = −0.1, k = 1.15, Θ = 0.04, ν0 = 0.038
α = 0.39, [6]. The points of the abscissas are the maturities in months.
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Figure 4.12: Out the money- Call prices computed with the Fourier integral and with the Geomet-
rical Approximation as a function of the maturity, for ρ = −0.1, k = 1.15, Θ = 0.04, ν0 = 0.038
α = 0.39, [6]. The points of the abscissas are the maturities in months.
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4.7 SABR model

In a quite recent paper by Hagan et al. (2002-2003), the authors examine the issue of dynamics
of the implied volatility smile. They argue that any model based on the local volatility function
incorrectly predicts the future behaviour of the smile, i.e., when the price of the underlying asset
decreases, local volatility models predict that the smile shifts to higher prices. Similarly an increase
of the price results in a shift of the smile to lower prices. It was observed that the market behaviour
of the smile is precisely the opposite. Thus, the local volatility model has the inherent flaw of
predicting the wrong dynamics of the Black-Scholes implied volatility. Consequently, hedging
strategies based on such a model may be worse than the hedging strategies evaluated for the naive
model with constant volatility as those of Black-Scholes models. A particular model proposed and
analysed by Hagan et al. (2002-2003) is specified as follows: under a martingale measure Q the
forward price is assumed to obey the SDE

dFt = σFt F
β
t dW̃

(1)
t β ∈ (0, 1], (4.34)

and

dσFt = ασFt dW̃
(2)
t α ∈ R, (4.35)

where W̃ (1)
t and W̃

(2)
t are Brownian motions with respect to a common filtration FW , with a con-

stant correlation coefficient ρ ∈ [−1, 1]. The model given by (4.34)-(4.35) is known as the SABR
model. It can be seen as a natural extension of the classical CEV model, proposed by Cox(1975).
The model can be accurately fitted to the observed implied volatility curve for a single maturity
T . A more complicated version of the model is needed if we wish to fit volatility smiles at several
different maturities. More importantly, the model seems to predict the correct dynamics of the im-
plied volatility skews (as opposed to the CEV model or any model based on the concept of a local
volatility function). To support this claim, Hagan et al. (2002) derive and study the approximate
formulas for the implied Black and Bachelier volatilities in the SABR model. It appears that the
Black implied volatility σ̂(K,T ), in this model can be represented as follows:

σ̂(E, T ) =
σ0

(F0/E)(1−β)/2
(

1 + (1−β)2

24 ln2(F0/E) + (1−β)4

1920 ln4(F0/E) + .....
)×

z

χ(z)

{
1 +

[
(1− β)2σ2

0

24(F0E)(1−β)
+

ρβσ0α

4(F0E)(1−β)/2
+

(2− 3ρ2)α2

24

]
T + .......

}
, (4.36)

where E is the strike price, F0 is the underlying asset value at the time t = 0 and σ0 is the value of
the volatility at time t = 0,

z =
α

σ0
(F0/E)(1−β)/2 ln(F0/E),

and

χ(z) = ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
.
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In the case of at-the-money option, the formula above reduces to

σ̂(F0, T ) =
σ0

F
(1−β)
0

{
1 +

[
(1− β)2σ2

0

24(F0)2(1−β)
+

ρβσ0α

4(F0)(1−β)
+

(2− 3ρ2)α2

24

]
T + .......

}
.

It is worth noting that the SABR model has an accurate asymptotic solution. This solution, as well
as its implications for pricing the interest derivatives, has been described in [54]. In the paper
written by P. Hagan , A. Lesniewski and D. Woodward, has been obtained the improving of the
results presented in [55]. First the authors present a more systematic framework for generating
an accurate, asymptotic form of the probability distribution in the SABR model; and second they
address the issue of low strikes, or the behaviour of the model as the forward rate approaches zero.
The study is based on a WKB type expansion for the heat kernel of a perturbed Laplace-Beltrami
operator on a suitable hyperbolic Riemannian manifold [55].

4.7.1 Geometrical Approximation method: SABR model

It is our intention use the Geometrical Approximation method also for SABR market model. We
can accomplish this only in the case in which the parameter β is equal to 1 [27].

Let the following market, under natural measure P, be given:

dSt = µ
(S)
t Stdt+ σtStdW

(1)
t ,

dσt = µ
(σ)
t σtdt+ ασtdW

(2)
t ,

dBt = rBtdt,

dW
(1)
t,(P)dW

(2)
t = ρdt,

f(T, ST , σT ) = φ(ST ),
(4.37)

in which St is the underlying asset value at time t, σt is the stochastic volatility, ρ is the correlation
factor between W (1), W (2), that are Brownian motions, and finally Bt is a zero coupon bond with
borrowing interest rate r, and f(T, ST , σT ) = φ(ST ) is a derivative contract. The market price risk
for St is given by

λ
(S)
t (St, σt, t) =

r − µ(S)
t

σt
. (4.38)

Now we choose the market price of volatility risk, in order to have the SABR model with β = 1, as
follows:

λ
(σ)
t (σt, t) =

−µ(σ)
t

α
. (4.39)
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Under the martingale measure Q, the forward price is assumed to obey the SDE:

dFt = σ
(F )
t FtdW̃

(1)
t , Ft ∈ [0,∞), t ∈ [0, T ], β ∈ (0, 1),

dσ
(F )
t = ασ

(F )
t dW̃

(2)
t , α ∈ R,

dW̃
(1)
t dW̃

(2)
t = ρdt, ρ ∈ [−1, 1]

dBt = rBtdt,

f(T, FT , σFT ) = Φ(FT ),

where Ft = er(T−t)St is the forward price, and Φ(FT ) is a generic derivative contract. As well as
in the Heston case, we compute the expected value of volatility process also for SABR model:

σ = EQ[σT ] = σ0e
α2
2 T ,

and we define εT = ρ
α (σ − σT ). Also in this case we have: EQ[εT ] = 0. We now are going to

repeat the same procedure that we have used in Heston model in order to compute the price of
the Vanilla Options.

As seen for Heston case, we use a modified pay-off instead of (FT − E)+. For a Call we have:(
FT e

ρ
α εT − E

)+
=
(
FT e

ρ
α (σ−σT ) − E

)+
= e

ρσ
α

(
FT e

−ρσT
α − Ee

−ρσ
α

)+

, finally considering E =

Ee
−ρσ
α , we have the following modified pay-off e

ρσ
α

(
FT e

− ρσTα − E
)+

, as well as for the Heston
case.
We use the PDE formalism, thus we replace Ft with F and σt with σ. The Cauchy’s problem for
the SABR case is given by:

∂f

∂t
+

1
2

(σ)2

(
F 2 ∂

2f

∂F 2
+ 2ρFα

∂2f

∂F∂σ
+ α2 ∂

2f

∂σ2

)
− rf = 0 F ∈ [0,+∞), σ ∈ [0,+∞),

f(0, F, σ) = e
ρσ
α

(
Fe−

ρσ
α − E

)+

, t ∈ [0, T ],

(4.40)

for which f ∈ C2,1 ([0,+∞)× [0,+∞)× [0, T ]).
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In order to simplify eq. (4.40), we change some variables:

x = lnF, x ∈ (−∞,∞) t ∈ [0, T ]

σ̃ =
σ

α
, α ∈ R, σ̃ ∈ [0,∞);

f(t, F, σ) = e−r(T−t)f1(t, x, σ̃),

∂f1

∂t
+

1
2

(σ̃)2α2

(
∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂σ̃
+
∂2f1

∂σ̃2

)
,−1

2
(σ̃)2α2 ∂f1

∂x
= 0,

f1(T, x, σ̃) = e−
ρσ
α

(
ex−ρσ̃ − E

)+
,

in which we have considered the modified payoff: e−
ρσ
α

(
ex−ρσ̃ − E

)+
, instead of (ex − E)+ with

respect to the new variables x, σ̃. Using the same method that we have used in the previous
sections, we have:

Vξ = x− ρσ̃, Vξ ∈ (−∞,+∞),

Vη = −σ̃
√

1− ρ2, Vη ∈ (−∞, 0],

τ =
1
2

∫ T

t

σ2
sds, τ ∈

[
0,

1
2

∫ T

0

σ2
sds

]
,

f1(t, x, σ̃, t) = f2(τ(t, Vη), Vξ(x, σ̃))

The PDE to solve is:

∂f2

∂τ
= (1− ρ2)

∂2f2

∂V 2
ξ

− ∂f2

∂Vξ
,

f2(0, Vξ) = e
ρσ
α

(
eVξ − E

)+
.

Now in order to eliminate the linear term, we make the following transformation

f2(τ, Vξ) = e
Vξ

2(1−ρ2) f3(τ, Vξ),

and we obtain

∂f3

∂τ
= (1− ρ2)

∂2f3

∂V 2
ξ

, Vξ ∈ (−∞,+∞), τ ∈

[
0,

1
2

∫ T

0

σ2
sds

]
,

f3(0, Vξ) = e
−

Vξ

2(1−ρ2) e
ρσ
α

(
eVξ − E

)+
.

(4.41)
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Thus, the solution of the PDE (4.41) is given by:

f(t, F, σ) =
e
−r(T−t)+

Vξ

2(1−ρ2)

2
√
π(1− ρ2)τ

∫ +∞

−∞
dV ′ξe

−
V ′ξ

2(1−ρ2) e
ρσ
α

(
eVξ − E

)+
exp

[
−

(V ′ξ − Vξ)2

4(1− ρ2)τ

]

=
(
Fe−r(T−t)

)
e
ρ
α (σ−σ)e

„
(1−2ρ2)
4(1−ρ2)

R T
t
σ2
sds

«
N(dρ1)− Ee−r(T−t)+

RT
t σ2

sds

8(1−ρ2) N(dρ2).

Thus we have

f(t, F, σ) =
(
Fe

ρ
α (σ−σ)

)
e
−
„
r− (1−2ρ2)

8(1−ρ2)
1

T−t
R T
t
σ2
sds

«
(T−t)

N(dρ1)−Ee
−
 
r−

1
T−t

RT
t σ2

sds

8(1−ρ2)

!
(T−t)

N(dρ2),

(4.42)

where

δρ1 = −

(
r − (1− 2ρ2)

8(1− ρ2)
1

T − t

∫ T

t

σ2
sds

)
(T − t),

δρ2 = −

(
r −

1
T−t

∫ T
t
σ2
sds

8(1− ρ2)

)
(T − t),

(4.43)

and

dρ1 =
ln
(
Fe

ρ
α (σ−σ)/E

)
+ 1

2 (1− 2ρ2)
∫ T
t
σ2
sds√

(1− ρ2)
∫ T
t
σ2
sds

,

dρ2 =
ln
(
Fe

ρ
α (σ−σ)/E

)
− 1

2

∫ T
t
σ2
sds√

(1− ρ2)
∫ T
t
σ2
sds

.

It is worth noting that also for SABR model, we are able to obtain the Hull-White formula for
ρ = 0. The price for a Call option, written on forward value F of underlying asset in a SABR
market model for β = 1, is given by:

C(t, F, σ) = (Feε) eδ
ρ
1 N(dρ1)− Eeδ

ρ
2 N(dρ2),

(4.44)

where ε = ρ
α (σ − σ). For a Put option we have:

P (t, F, σ) = Eeδ
ρ
2 N(−dρ1)− (Feε) eδ

ρ
1 N(−dρ1).

(4.45)
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Contrariwise that in Heston model, in the SABR case, we may define a theoretical error function
given by the difference between the Hagan (2002) formula and G. A. formula. For a Call we have:

Err =
∣∣∣CHagan(t, F, σ)− C(G.A.)(t, F, σ)

∣∣∣
=
∣∣∣F [e−r(T−t)N(d1)− eε+δ

ρ
1 N(dρ1)

]
− E

[
e−r(T−t)N(d2)− eδ

ρ
2 N(dρ2)

]∣∣∣ ,
where d1,2 = log(F/E)± 1

2 σ̂
2(E,T )(T−t)√

σ̂2(E,T )(T−t)
and σ̂(E, T ) = σ0

(
z

χ(z)

){
1 +

[
ρασ0

4 + 2−3ρ2

24 α2
]
× T

}
,

z = α
σ0

ln(F0/E).

4.7.2 Greeks and Put-Call-parity

Exactly like in the Heston’s model, also in the SABR model, in order to find the best hedging strat-
egy, we use a replicant portfolio. So we need to know the value of the first and second derivative
of the price, with respect to F , that we respectively name ∆(·) and Γ(·) strategies:

∆call =
∂C(t, F, σ)

∂F
= (eε) eδ

ρ
1 N(dρ1),

Γcall =
∂2C(t, F, σ)

∂F 2
=
Ee

(1−2ρ2)
8(1−ρ2)

σ2(T−t)− (dρ1)2

2

F
√

2πσ2(T − t)
,

and

∆put =
∂P (t, F, σ)

∂F
= − (eε) eδ

ρ
1 N(−dρ1),

Γput =
∂2P (t, F, σ)

∂F 2
=
Ee

(1−2ρ2)
8(1−ρ2)

σ2(T−t)− (dρ1)2

2

F
√

2πσ2(T − t)
,

thus we have

Γput = Γcall.

In the figures hereafter 4.13, 4.14, we can see the drawing of the Greeks, ∆ and Γ over the time,
and these one have a trend compatible with what is known in literature.
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Figure 4.13: Greeks-∆, for Call option computed by G. A. method in the SABR model, with the
following parameter set: S0 = E = 100, α = 0.29, σ0 = 20%, ρ = −0.1, T = 1− year
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Figure 4.14: Greeks-Γ, for Call option computed by G. A. method in the SABR model, with the
following parameter set: S0 = E = 100, α = 0.29, σ0 = 20%, ρ = −0.1, T = 1− year
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4.7.3 Numerical comparison

In this section we compute and compare the Call option prices (see Table 4.4, 4.5) calculated by
our approximation method with those obtained by Hagan formula (2002), in the case of β = 1
(log-normal case):

σ̂(E, T ) = σ0

(
z

χ(z)

){
1 +

[
ρασ0

4
+

2− 3ρ2

24
α2

]
× T

}
,

z =
α

σ0
ln(F0/E),

and

χ(z) = ln

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
.

The algorithms are written in the MatLab code reported in the Appendix. The parameters set used
is that obtained in “The SABR LIBOR Market Model” by R.Rebonato, K. MCkay, R.White, 2009,
pp.29 [104] and G. West [119].
As in the Heston case, we simulate the stochastic error, whose stochasticity fully depends from

Table 4.4: Call prices obtained in the SABR model with the G. A. method and with the Hagan formula for the parameter values in [104]

in which one has α = 0.29, ρ = −0.71. We have chosen r = 3% E = 100, σ0 = 20% and three different maturities T . At-the-money

options (ATM) have F0 = E; in-the-money options (INM) have F0 = E(1 + 10%
√
σ0T ) and out-of-the money options (OTM) have

F0 = E(1− 10%
√
σ0T ).

(T = 1/12)
G. A. Hagan

ATM 2.3426 2.2956
INM 3.0008 2.9492
OTM 1.7655 1.6605

(T = 3/12)
G. A. Hagan

ATM 3.9097 3.9495
INM 5.0110 5.1039
OTM 2.9481 2.8821

(T = 6/12)
G. A. Hagan

ATM 5.3064 5.5295
INM 6.8070 7.1942
OTM 4.0023 4.0742
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Table 4.5: Same as table (4.4) with ρ = −0.1.

(T = 1/12)
G. A. Hagan

ATM 2.2855 2.2983
INM 2.9702 2.9389
OTM 1.7152 1.6764

(T = 3/12)
G. A. Hagan

ATM 3.9241 3.9654
INM 5.0839 5.0795
OTM 2.9615 2.9351

(T = 6/12)
G. A. Hagan

ATM 5.4885 5.5684
INM 7.0892 7.1575
OTM 4.1643 4.1901

the random variable σT . To describe the distribution of the stochastic error term eεT which, in the
G. A. method is assumed to be close to 1, its analytical form is:

eεT = e

ρ

264σ0e

„
α2
2 T

«
−σT

375
α .

(4.46)

We simulate the SABR model with the above parameter values, and different correlation ρ. The
distribution of eεT is reported in Figures 4.15, 4.16, with (ρ = −0.1, T = 1− year), (ρ = −0.9, T =
1 − year) . As one can see the stochastic error distributes as a gaussian. In the case of low corre-
lation we have a chart close to 1 and small variance. Unlike for the high correlation in which case
we have again a gaussian distribution for the error, but with higher variance.

Finally, we evaluate the difference between the option price value computed with the Hagan
method and the G. A. method as a function of the maturity of the option. Figures 4.17, 4.18,
4.19 show that the distance of the G. A. value from the Hagan value is reduced when we move
in the money and at the money unlike out the money. Besides, we can observe that our solution
(4.30) verifies the law of monotonicity with respect to maturity.

Concluding, in our experiments with sensible data (α = 0.29, ρ = −0.71), we find that a reasonable
estimate of the approximation error is around 5% , and it becomes around 2% for low correlation
ρ = −0.1, see Table 4.4, 4.5 (clearly, the precise value depends on the parameter set adopted). This
error increases with maturity and correlation coefficient. In other words, the accuracy of the G. A.
method is determined by the magnitude of the correlation.
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Again from (4.46), we have that for low values of correlation our method gives accurate prices,
because our stochastic error is close to 1.

Although in the SABR case the G. A. technique presents some differences due to the form of the
expected value. In fact for the SABR model the expected value for T → 0 and T → +∞ is equal to:

EQ[σT ] = σ0e
α2
2 T ,

limT→0EQ[σT ] = σ0, limT→+∞EQ[σT ] = +∞,

and differently from the Heston case, for maturity date that goes to infinity, the expected value is
unbounded. Thus we can conclude that our method in the SABR model loses accuracy when the
maturity increases.
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Figure 4.15: Distribution of the stochastic error eεT , obtained via simulation, for β = 1, ρ = −0.1,
σ0 = 20% α = 0.29, T = 1-year
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Figure 4.16: Distribution of the stochastic error eεT , obtained via simulation, for β = 1, ρ = −0.9,
σ0 = 20% α = 0.29, T = 1-year
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Figure 4.17: In the money - Call option prices computed with the Hagan method and with the
Geometrical Approximation method as a function of the maturity, for ρ = −0.1, σ0 = 20% α =
0.29. The points of the abscissas are the maturities in months.
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Figure 4.18: At the money - Call option prices computed with the Hagan method and with the
Geometrical Approximation method as a function of the maturity, for ρ = −0.1, σ0 = 20% α =
0.29. The points of the abscissas are the maturities in months.
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Figure 4.19: Out the money - Call option prices computed with the Hagan method and with
the Geometrical Approximation method as a function of the maturity, for ρ = −0.1, σ0 = 20%
α = 0.29. The points of the abscissas are the maturities in months.
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Chapter 5

Perturbative method: Heston model
with drift zero

In this Chapter, we present a perturbative method by a particular choice of the volatility risk price
in the Heston model, namely such that the drift term of the risk-neutral stochastic volatility process
is zero. This will allow us to introduce an approximating technique for solving the pricing PDE in
the Heston case.

97
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5.1 Perturbative methods: Vanilla Options

In this Chapter we want to present an alternative approach to discuss the Heston model, based
on perturbative expansion, by a particular choice of the volatility price of risk, of PDE (4.11), i.e.,
such that the drift term of the risk-neutral stochastic volatility process is zero [25]. As will be clear
later, our formula gives an accurate price close to that obtained by Fourier transform formula,
choosing the following risk-neutral parameters set: κ = 0,Θ = indeterminate, as we will see in
the section Numerical experiments. The advantage is that in this case we are also able to compute
an approximate solution of the Heston PDE (4.11) which can be written in closed form. Our so-
lution is easy to implement and by the latter also we are able to compute the Greeks in closed form.

Our methodology consists to choose the following volatility risk price

λ(t, νt) =
k(θ − νt)
α
√
νt

, (5.1)

namely such that the Heston market model becomes the following:

dSt = rStdt+
√
νtStdW̃

(1)
t ,

dνt = α
√
νtdW̃

(2)
t , α ∈ R+,

dW̃
(1)
t dW̃

(2)
t = ρdt, ρ ∈ (−1,+1),

dBt = rBtdt,

(5.2)

in the risk-neutral measure Q. Notice that for the above process the Feller condition is not ful-
filled, thus the volatility has an absorbing state at 0. This is not a problem since first, this is the
risk-neutral evolution of the volatility, and second because of the analytical tractability of this par-
ticular problem which might provide handy formulas for the volatility surface. Notice that also
the popular SABR model analysed later in the Thesis has a zero risk-neutral drift. As seen before,
when the volatility is a Markov Itô processes, we have a pricing function for European derivatives
of the form f(t, St, νt) from no-arbitrage arguments, as in the Black-Scholes case, the function
f(t, St, νt) satisfies a partial differential equation with two space dimensions (S and ν). In what
follows we use the PDE formalism, thus we replace St with S and νt with ν. Thus we can write by
Feynman-Kač formula the PDE pricing , that is Cauchy’s problem, as follows:

∂f

∂t
+

1
2
ν

(
S2 ∂

2f

∂S2
+ 2ραS

∂2f

∂S∂ν
+ α2 ∂

2f

∂ν2

)
+ rS

∂f

∂S
− rf = 0,

f(T, S, ν) = Φ(S) ρ ∈ (−1,+1), α ∈ R+,

S ∈ [0,+∞) ν ∈ [0,+∞) t ∈ [0, T ],
(5.3)

for which f(t, S, ν) ∈ C2,2 ([0,+∞)× [0,+∞)× [0, T ]), such that, Φ(S) is a general pay-off func-
tion for a derivative security; in what follows we consider a call option: Φ(S) = (S − E)+. In
order to manage a simpler PDE, we make some coordinate transformations; these ones are equal
to those just discussed in Chapter 4, therefore in what follows we are assuming them, without any
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discussions:

1st transformation


x = lnS, x ∈ (−∞,+∞),
ν̃ = ν/α, ν̃ ∈ [0,+∞),
f(t, S, ν) = f1(t, x, ν̃)e−r(T−t),

thus we have:

∂f1

∂t
+

1
2
ν̃

(
∂2f1

∂x2
+ 2ρ

∂2f1

∂x∂ν̃
+
∂2f1

∂ν̃2

)
+
(
r − 1

2
ν̃

)
∂f1

∂x
− rf1 = 0,

f1(T, x, ν̃) = (ex − E)+
, ρ ∈ (−1,+1), α ∈ R+,

x ∈ (−∞,+∞), ν̃ ∈ [0,+∞), t ∈ [0, T ].

Again, we make another coordinates transformation:

2ndtransformation


ξ = x− ρν̃, ξ ∈ (−∞,+∞),
η = −ν̃

√
1− ρ2, η ∈ (−∞, 0],

f1(t, x, ν̃) = f2(t, ξ, η),

and we have:

∂f2

∂t
+

αη

2
√

1− ρ2
(1− ρ2)

(
∂2f2

∂ξ2
+
∂2f2

∂η2

)
+

(
r − αη

2
√

1− ρ2

)
∂f2

∂ξ
− rf2 = 0,

f2(T, ξ, η) =
(
eξ−ρη/

√
1−ρ2 − E

)+

, ρ ∈ (−1,+1), α ∈ R+,

ξ ∈ (−∞,+∞), η ∈ (−∞, 0], t ∈ [0, T ].

Finally, by the third coordinates transformation:

3rdtransformation


γ = ξ + r(T − t), γ ∈ (−∞,+∞),
δ = −η, δ ∈ [0,+∞),
τ = − αη

2
√

1−ρ2
(T − t), τ ∈ [0,+∞),

f2(t, ξ, η) = f3(τ, γ, δ),

we obtain the following PDE:

∂f3

∂τ
− (1− ρ2)

(
∂2f3

∂γ2
+
∂2f3

∂δ2
+ 2φ

∂2f3

∂δ∂τ
+ φ2 ∂

2f3

∂τ2

)
+
∂f3

∂γ
= 0,

f3(τ, γ, δ) =
(
eγ+ρδ/

√
1−ρ2 − E

)+

, ρ ∈ (−1,+1), α ∈ R+,

γ ∈ (−∞,+∞), δ ∈ [0,+∞), τ ∈ [0,+∞) ,
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where φ = α(T−t)
2
√

1−ρ2
. It is worth noting that ρ ∈ (−1,+1) and thus φ can assume only finite values.

At this point we can make the subsequent considerations: if we suppose α ∼ 10−2 thus for matu-
rity date lesser than 1-year the term (T − t) ∼ 10−1, 2

√
1− ρ2 ∼ 1 and φ ∼ 10−3; obviously we

have φ2 ∼ 10−6. Thus it is reasonable to approximate φ ' 0.

The PDE that comes out from the above indicated considerations is the following:

[
∂f3

∂τ
− (1− ρ2)

(
∂2f3

∂γ2
+
∂2f3

∂δ2

)
− ∂f3

∂γ

]
= 0,

f3(0, γ, δ) = (eγ+ρδ/
√

1−ρ2 − E)+, ρ ∈ (−1,+1), α ∈ R+,

γ(−∞,+∞), δ ∈ [0,+∞), τ ∈ [0,+∞).
(5.4)

The new PDE (5.4) is simpler than (5.3) and we now are able to find its solution in closed form. In
order to obtain the latter, we impose that:

f3(τ, γ, δ) = e
1

4(1−ρ2)
τ+ 1

2(1−ρ2)
γ
f4(τ, γ, δ), (5.5)

thus we have:

∂f4

∂τ
= (1− ρ2)

(
∂2f4

∂γ2
+
∂2f4

∂δ2

)
,

f4(0, γ, δ) = e
− γ

2(1−ρ2)

(
eγ+ρδ/

√
1−ρ2 − E

)+

,

τ ∈ [0,+∞), δ ∈ [0,+∞), γ ∈ (−∞,+∞),
(5.6)

where f(t, S, ν) = e
−r(T−t)+ τ

4(1−ρ2)
+ γ

2(1−ρ2) f4(τ, γ, δ).
The solutions of PDE (5.16) is known in the literature (Andrei D. Polyanin, Handbook of Lin-
ear Partial Differential Equations, 2002, pp. 188), and it can be written as integral, whose kernel
G(0, γ′, δ′|τ, γ, δ) is a bivariate gaussian function:

f4(τ, γ, δ) =
∫ +∞

0

dδ′
∫ +∞

−∞
dγ′f4(0, γ′, δ′)G(0, γ′, δ′|τ, γ, δ)

+ (1 − ρ2)
∫ τ

0

dτ ′
∫ +∞

−∞
dγ′f4(τ ′, γ′, 0)

∂G(0, γ′, δ′|τ, γ, δ)
∂δ′

|δ′=0,
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where the second term is zero, because for δ = 0, also τ = 0 at any time. Thus we can write as
follows:

f4(τ, γ, δ) =
∫ +∞

0

dδ′
∫ +∞

−∞
dγ′f4(0, γ′, δ′)G(0, γ′, δ′|τ, γ, δ)

=
∫ +∞

0

dδ′
∫ +∞

−∞
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)+

G(0, γ′, δ′|τ, γ, δ)

=
∫ +∞

0

dδ′
∫ +∞

lnE−ρδ′/
√

1−ρ2
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)
G(0, γ′, δ′|τ, γ, δ),

(5.7)

the kernel G(0, γ′, δ′|τ, γ, δ) is given by:

G(0, γ′, δ′|τ, γ, δ) =
1

4τ(1− ρ2)

[
e
− (γ′−γ)2+(δ′−δ)2

4τ(1−ρ2) − e−
(γ′−γ)2+(δ′+δ)2

4τ(1−ρ2)

]
.

Therefore we can rewrite:

f4(τ, γ, δ) =
∫ +∞

0

dδ′
∫ +∞

lnE−ρδ′/
√

1−ρ2
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)
×

1
4τ(1− ρ2)

[
e
− (γ′−γ)2+(δ′−δ)2

4τ(1−ρ2) − e−
(γ′−γ)2+(δ′+δ)2

4τ(1−ρ2)

]
,

and the fair price of a Call option in European style is given by:

f(t, S, ν)

= e
−r(T−t)+ τ

4(1−ρ2)
+ γ

2(1−ρ2)

∫ +∞

0

dδ′
∫ +∞

lnE−ρδ′/
√

1−ρ2
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)
×

1
4τ(1− ρ2)

[
e
− (γ′−γ)2+(δ′−δ)2

4τ(1−ρ2) − e−
(γ′−γ)2+(δ′+δ)2

4τ(1−ρ2)

]
.

Thus, if we indicate with C(t, S, ν) the value at any time t of a Call option, we have:

C(t, S, ν) = e
ν(T−t)
4(1−ρ2)S

[
N
(
d1, a0,1

√
1− ρ2

)
− e(−2 ραν)N

(
d2, a0,2

√
1− ρ2

)]
− e

ν(T−t)
4(1−ρ2)Ee−r(T−t)

[
N
(
d̃1, ã0,1

√
1− ρ2

)
−N

(
d̃2, ã0,2

√
1− ρ2

)]
. (5.8)

Differently of Black-Scholes market model with deterministic volatility in which we have one di-
mensional normal distribution functions, in the Black-Scholes with stochastic volatility. We have
the bivariate normal distribution functions, in which the arguments are:

d1 = ν/α+ρν(T−t)√
ν(T−t)

,

d2 = −ν/α+ρν(T−t)√
ν(T−t)

,

a0,1 = ln(S/E)+(r+ν/2)(T−t)√
(1−ρ2)ν(T−t)

,

a0,2 = ln(S/E)+(r+ν/2)(T−t)−2ρν/α√
(1−ρ2)ν(T−t)

,



d̃1 = ν/α√
ν(T−t)

,

d̃2 = −ν/α√
ν(T−t)

,

ã0,1 = ln(St/E)+(r−ν/2)(T−t)√
(1−ρ2)ν(T−t)

,

ã0,2 = ln(St/E)+(r−ν/2)(T−t)−2ρνt/α√
(1−ρ2)ν(T−t)

.

(5.9)
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It is worth noting that for ρ equal to zero we have:

d2 = −d1, a0,1 = a0,2,

d̃2 = −d̃1, ã0,1 = ã0,2.

Similarly, we may write the fair price of a Put option in European style:

P (t, S, ν) = e
ν(T−t)
4(1−ρ2)Ee−r(T−t)

[
N
(
d̃1,−ã0,1

√
1− ρ2

)
−N

(
d̃2,−ã0,2

√
1− ρ2

)]
− Se

ν(T−t)
4(1−ρ2)

[
N
(
d1,−a0,1

√
1− ρ2

)
− e−2 ρανN

(
d2,−a0,2

√
1− ρ2

)]
. (5.10)

Theoretical Error
The theoretical error in Perturbative method can be evaluated by computing the terms that we
have before neglected

Err =
(

2φ ∂2

∂δ∂τ + φ2 ∂2

∂τ2

)
f(t, S, ν),

where φ = α(T−t)
2
√

1−ρ2
and f(t, S, ν) is the solution of the PDE (5.4).

As one can see in Numerical Experiments section, the error will be around 1% for maturity lesser
than 1-year.

5.1.1 Greeks and Put-Call-Parity

The way to reduce the sensitivity of a portfolio to the movement of something by taking opposite
positions in different financial instruments is called hedging. Hedging is a basic concept in finance.
For the stochastic volatility market models used in literature, is not possible to write the Greeks in
closed form. Contrariwise by our model we are able to compute the Greeks in closed form; and in
order to verify the Put-Call-Parity relation, we compute only ∆ and Γ as follows:

∆call =
∂C(t, S, ν)

∂S

= e
ν(T−t)
2(1−ρ2)

[
N
(
d1, a0,1

√
1− ρ2

)
− e−

2ρ
α νN

(
d2, a0,2

√
1− ρ2

)]
+ E

e
ν(T−t)
2(1−ρ2)√

2(1− ρ2)ν(T − t)

∂N
(
d1, a0,1

√
1− ρ2

)
∂a0,1

− e−2 ραν
∂N

(
d2, a0,2

√
1− ρ2

)
∂a0,2


−
(
E2

S

)
e
−
“
r− ν

2(1−ρ2)

”
(T−t)√

2(1− ρ2)ν(T − t)

∂N
(
d̃1, ã0,1

√
1− ρ2

)
∂ã0,1

−
∂N

(
d̃2, ã0,2

√
1− ρ2

)
∂ã0,2

 .
(5.11)
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∆put =
∂P (t, S, ν)

∂S

=
(
E2

S

)
e
−
“
r− ν

2(1−ρ2)

”
(T−t)√

2(1− ρ2)ν(T − t)

∂N
(
d̃1,−ã0,1

√
1− ρ2

)
∂ã0,1

−
∂N

(
d̃2,−ã0,2

√
1− ρ2

)
∂ã0,2


− e

ν(T−t)
2(1−ρ2)

[
N
(
d1,−a0,1

√
1− ρ2

)
− e−

2ρ
α νN

(
d2,−a0,2

√
1− ρ2

)]
− E e

ν(T−t)
2(1−ρ2)√

2(1− ρ2)ν(T − t)

∂N
(
d1,−a0,1

√
1− ρ2

)
∂a0,1

− e−2 ραν
∂N

(
d2,−a0,2

√
1− ρ2

)
∂a0,2

 .

(5.12)

Thus we have:

Γcall = Γput

=
(
E

S

)
e
ν(T−t)
2(1−ρ2)√

2(1− ρ2)ν(T − t)

∂N
(
d1, a0,1

√
1− ρ2

)
∂a0,1

− e−
2ρ
α ν

∂N
(
d2, a0,2

√
1− ρ2

)
∂a0,2


+
(
E2

S

)
e
ν(T−t)
2(1−ρ2)

2(1− ρ2)ν(T − t)

∂2N
(
d1, a0,1

√
1− ρ2

)
∂a2

0,1

− e−2 ραν
∂2N

(
d2, a0,2

√
1− ρ2

)
∂a2

0,2


−
(
E2

S2

)
e
−
“
r− ν

2(1−ρ2)

”
(T−t)

2(1− ρ2)ν(T − t)

∂2N
(
d̃1, ã0,1

√
1− ρ2

)
∂ã2

0,1

−
∂2N

(
d̃2, ã0,2

√
1− ρ2

)
∂ã2

0,2


+
(
E2

S2

)
e
−
“
r− ν

2(1−ρ2)

”
(T−t)√

2(1− ρ2)ν(T − t)

∂N
(
d̃1, ã0,1

√
1− ρ2

)
∂ã0,1

−
∂N

(
d̃2, ã0,2

√
1− ρ2

)
∂ã0,2

 ,

and we can conclude that our model verifies the Put-Call-Parity relation.

5.1.2 Numerical Experiments

In this section we compare the approximated option price (5.8) with the Fourier transform method.
We use the following risk-neutral parameter set: κ = 0,Θ = indeterminate. We could not find es-
timates of such a model in the literature. Also in this case we use the integration method based on
Gauss-Legendre approximation with 20 points as done previously for the Heston’s formula (4.13).
As one can see in the table (5.1.2) the prices proposed by our approximation method are close to
Fourier prices. Besides it is worth noting that for φ << 1 we find the property that the price of a
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Table 5.1: Call option prices computed with formula (5.8) (approximation method) and with the Fourier transform method where

κ = 0, Θ = indeterminate, α = 0.1 and ρ = −0.64. We have chosen r = 3% E = 100, ν0 = 0.04 and three different maturities

T . At-the-money options (ATM) have S0 = E; in-the-money options (INM) have S0 = E(1 + 10%
√
ν0T ) and out-of-the money options

(OTM) have S0 = E(1− 10%
√
ν0T )).

(T = 1/12)
Perturbative method Fourier

ATM 2.4305 2.4261
INM 2.7337 2.7341
OTM 2.1503 2.1410

(T = 3/12)
Perturbative method Fourier

ATM 4.3755 4.3524
INM 4.9037 4.8942
OTM 3.8871 3.8499

(T = 6/12)
Perturbative method Fourier

ATM 6.3790 6.3765
INM 7.1214 7.1322
OTM 5.6925 5.6358

European option in the Heston model follows a Bivariate Normal distribution (5.8). Our method-
ology loses accuracy for α ∼ 10−1 and maturity date longer than 1 year. Contrariwise for α ∼ 10−2

(see Figures 5.1, 5.2, 5.3).

Finally, we evaluate the difference between the option price value computed with the Fourier
method and the proposed approximation method as a function of the maturity of the option. Fig-
ures 5.1, 5.2, 5.3 show the results, see the captions for parameter values. We can see that the
distance among the values given from the two methods is reduced when we move in the money
and at the money unlike out the money. In fact one has that the difference among the two methods
is lesser than 1% in the money and at the money and becomes around 2% out the money for ma-
turity of 1-year. Besides we can observe that our solution (4.30) verifies the law of monotonicity
with respect to maturity.
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Figure 5.1: A the money - Call prices computed with the Fourier integral and with the Approxi-
mation method as a function of the maturity, for ρ = −0.64, κ = 0, Θ = indeterminate, ν0 = 0.04,
α = 0.01. The points of the abscissas are the maturities in months.
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Figure 5.2: In the money - Call prices computed with the Fourier integral and with the Approxi-
mation method as a function of the maturity, for ρ = −0.64, κ = 0, Θ = indeterminate, ν0 = 0.04,
α = 0.01. The points of the abscissas are the maturities in months.
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Figure 5.3: Out the money - Call prices computed with the Fourier integral and with the Approx-
imation method as a function of the maturity, for ρ = −0.64, κ = 0, Θ = indeterminate, ν0 = 0.04,
α = 0.01. The points of the abscissas are the maturities in months.
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5.2 Barrier Options

Using the same market model (5.2), and as done in the previous section, using the PDE formalism,
for which we have replaced St with S and νt with ν, we get the fair price of a European down-
and-out Call option, through the Perturbative Method [26].

The Barrier Options can be of two kinds: knock-out, or knock-in. Barrier Options are options
that either become worthless or exercised if the underlying asset value reaches the level, so-called
barrier level.
The simplest knock-out options are the down-and-out Call and the up-and-out Put. An option is
called a down-and-out Call if it is actually a Call when S is always greater than the barrier during
the life of the option, and it becomes worthless when S reaches the barrier from above at any time
t < T before expiring. We call this barrier a lower barrier L, and in this section we mainly consider
the case that such barrier is below the exercise price E. A down-and-out Call could be a European
style, or an American style option just like a vanilla option. An up-and-out Put is similar to a
down-and-out Call. However, instead of a lower barrier , it has an upper barrier H , which we
assume is greater than E. It is a put if S is never above H and becomes worthless when S crosses
the barrier H from below at any time t < T prior to expiry.
A Knock-in option is a contract that comes into existence if the asset price crosses a barrier. For ex-
ample, a down-and-in Call with a lower barrier L expires worthless unless the asset price reaches
the lower barrier from above prior to or at expiry. If it crosses the lower barrier from above at
some time before expiry, then the option becomes a vanilla option. An up-and-in Put is similar
to a down-and-out Call, but the barrier is an upper one and the Put option is activated when S
crosses the upper barrier from below.

Now let us look at a European down-and-out Call option. Let f = CoutL (t, S, ν) denote the value
of this option. If S is always greater than L, then it is a standard Call option in European style.

f = CoutL (t, S, ν) satisfies the following Cauchy-Dirichlet’s problem:

∂f

∂t
+

1
2
νS2 ∂

2f

∂S2
+ ρναS

∂2f

∂S∂ν
+

1
2
να2 ∂

2f

∂ν2
+ rS

∂f

∂S
− rf = 0,

f(T, S, ν) = (S − E)+ × 1{∀t∈[0,T ]:S>L},

f(t, L, ν) = 0,
S ∈ [L,∞), ν ∈ [0,+∞), t∈ [0, T ],

(5.13)

for which f(t, S, ν) ∈ C2,2 ([0,+∞)× [0,+∞)× [0, T ]), E > L and f(T, S, ν) is a knock-out Call
option payoff.

In order to manage a simpler PDE, we make the same coordinate transformations that we seen
in the previous section, and considering worthless the terms φ ∂

2f2
∂δ∂τ and φ2 ∂

2f2
∂τ2 , we have the fol-
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lowing PDE:[
∂f3

∂τ
− (1− ρ2)

(
∂2f3

∂γ2
+
∂2f3

∂δ2

)
− ∂f3

∂γ

]
= 0,

f3(0, γ, δ) =
(
eγ+ρδ/

√
1−ρ2 − E

)+

× 1{∀t∈[0,T ]:γ>A}, ρ ∈ (−1,+1), α ∈ R+,

γ(−∞,+∞), δ ∈ [0,+∞), τ ∈ [0,+∞),
(5.14)

where A =
[
lnL+ r

√
1−ρ2

α

(
τ
δ

)
−
(

ρ√
1−ρ2

)
δ

]
.

The new PDE (5.14) is simpler than (5.13) and we now are able to find its solution in closed-form.
In order to obtain the latter, we impose that:

f3(τ, γ, δ) = e
1

4(1−ρ2)
τ+ 1

2(1−ρ2)
γ
f4(τ, γ, δ), (5.15)

thus we have:

∂f4

∂τ
= (1− ρ2)

(
∂2f4

∂γ2
+
∂2f4

∂δ2

)
f4(0, γ, δ) = e

− γ

2(1−ρ2)

(
eγ+ρδ/

√
1−ρ2 − E

)+

× 1{∀t∈[0,T ]:γ>A},

τ ∈ [0,+∞), δ ∈ [0,+∞), γ ∈ (−∞,+∞).
(5.16)

The solution of the heat equation in the domain [A,+∞)×[0,+∞)×[0,+∞), is known in literature
(Andrei D. Polyanin, Handbook of Linear Partial Differential Equations, 2002, pp. 189), and the
latter is given by :

f4(τ, γ, δ) =
∫ +∞

0

dδ′
∫ +∞

A′
dγ′f4(0, γ′, δ′)G(0, γ′, δ′|τ, γ, δ)

+ (1− ρ2)
∫ τ

0

dτ ′
∫ +∞

A′
dγ′f4(τ ′, γ′, 0)

∂G(0, γ′, δ′|τ, γ, δ)
∂δ′

|δ′=0,

+ (1− ρ2)
∫ τ

0

dτ ′
∫ +∞

0

dδ′f4(τ ′, A′, δ′)
∂G(0, γ′, δ′|τ, γ, δ)

∂γ′
|γ′=0, (5.17)

where the Green’s function is the following:

G(0, γ′, δ′|τ, γ, δ)

=
1

4π(1− ρ2)τ

{
e
− [γ−γ′−(A−A′)]2

4(1−ρ2)τ − e−
[γ+γ′−(A+A′)]2

4(1−ρ2)τ

}{
e
− (δ−δ′)2

4(1−ρ2)τ − e−
(δ+δ′)2

4(1−ρ2)τ

}
.

The third and second terms of (5.17) are equal to zero; the second for the equations (4.41), in fact
if δ = 0 also τ = 0; and the third for hypothesis f4(τ, γ = A, δ) = 0 at any time.
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Then, for (E ≥ L), the price of a down-and-out Call option is

f4(τ, γ, δ) =
∫ +∞

0

dδ′
∫ +∞

A′
dγ′f4(0, γ′, δ′)G(0, γ′, δ′|τ, γ, δ)

=
∫ +∞

0

dδ′
∫ +∞

A′
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)+

G(0, γ′, δ′|τ, γ, δ)

=
∫ +∞

0

dδ′
∫ +∞

A′
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)+

×

1
4π(1− ρ2)τ

{
e
− [γ−γ′−(A−A′)]2

4(1−ρ2)τ − e−
[γ+γ′−(A+A′)]2

4(1−ρ2)τ

}{
e
− (δ−δ′)2

4(1−ρ2)τ − e−
(δ+δ′)2

4(1−ρ2)τ

}
=
∫ +∞

0

dδ′
∫ +∞

lnE− ρ√
1−ρ2

δ′
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)
×

1
4π(1− ρ2)τ

{
e
− [γ−γ′−(A−A′)]2

4(1−ρ2)τ − e−
[γ+γ′−(A+A′)]2

4(1−ρ2)τ

}{
e
− (δ−δ′)2

4(1−ρ2)τ − e−
(δ+δ′)2

4(1−ρ2)τ

}
,

but we know by previous section that:

f(t, S, ν) = e
−r(T−t)+ τ

4(1−ρ2)
+ γ

2(1−ρ2) f4(τ, γ, δ),

thus we have

f(t, S, ν)

= e
−r(T−t)+ τ

4(1−ρ2)
+ γ

2(1−ρ2)

∫ +∞

0

dδ′
∫ +∞

lnE− ρ√
1−ρ2

δ′
dγ′e

− γ′

2(1−ρ2)

(
eγ
′+ρδ′/

√
1−ρ2 − E

)
×

1
4π(1− ρ2)τ

{
e
− [γ−γ′−(A−A′)]2

4(1−ρ2)τ − e−
[γ+γ′−(A+A′)]2

4(1−ρ2)τ

}{
e
− (δ−δ′)2

4(1−ρ2)τ − e−
(δ+δ′)2

4(1−ρ2)τ

}
,

and solving the above integral we have the fair price of down-knock-out Call option:

CoutL (t, S, ν) = e−(bρr(T−t))
[
ecρν(T−t)N(h1)− e−

ρν

α(1−ρ2)N(h2)
]
×S ∗

N(d1)−
(
L

S

) 1−2ρ2

1−ρ2

N(d2)

− e ν(T−t)
2(1−ρ2)E ∗

[
N(d̃1)−

(
S

L

) 1
1−ρ2

N(d̃2)

] , (5.18)

where

h1 = ν/α+ρν(T−t)/(1−ρ2)√
ν(T−t)

, h2 = −ν/α+ρν(T−t)/(1−ρ2)√
ν(T−t)

,

d1 = ln(S/E)+(1−2ρ2)(ν/2)(T−t)√
(1−ρ2)ν(T−t)

, d̃1 = ln(S/E)−(ν/2)(T−t)√
(1−ρ2)ν(T−t)

,

d2 = ln(L2/E∗S)+(1−2ρ2)(ν/2)(T−t)√
(1−ρ2)ν(T−t)

, d̃2 = ln(L2/E∗S)−(ν/2)(T−t)√
(1−ρ2)ν(T−t)

,
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and

bρ =
(

1− 1
2

(1− ρ2)
)

cρ = ρ2

(
1− 1

4(1− ρ2)2

)
.

By formula (5.18), we know that the price of a down-and-out Call option is cheaper than the price
of a vanilla call option, as we are going to prove in the next section “Numerical experiments”.
Under the financial point of view, it is clear that a holder of a vanilla call option should pay less
premium. However, if the price is always greater than L (which is what a holder of a Call Option
expects), then it is the same as a Call. This is why a down-and-out Call option is so attractive for
many people.

Let us now consider a down-and-in European Call option and let CinL (t, S, ν) be its value. The
option value CinL (t, S, ν) satisfies the PDE associated to our model for S > L. We need to deter-
mine the correct final and boundary conditions. A down-and-in option expires worthless unless
the asset price reaches the lower barrier L before expiry, i.e., if S has been greater than L up to
time T , then the option is not activated. Thus for S > L, ∀t ∈ [0, T ], the final condition is:

CinL (T, S, ν) = 0.

If the asset price S reaches L before expiry, then the option immediately turns into a Vanilla Call,
and the boundary condition is:

CinL (t, S = L, ν) = C(t, S, ν).

Therefore, the fair value of a down-and-in option is the solution of the following final-boundary
value problem

∂f

∂t
+

1
2
νS2 ∂

2f

∂S2
+ ρναS

∂2f

∂S∂ν
+

1
2
να2 ∂

2f

∂ν2
+ rS

∂f

∂S
− rf = 0,

f(T, S, ν) = (S − E)+ × 1{∀t∈[0,T ]:S>L},

f(t, L, ν) = C(t, L, ν),
(5.19)

in which case, we have supposed f(t, S, ν) = CinL (t, S, ν) consistently with previous notation,
where S ∈ [L,+∞), t ∈ [0, T ]. By the following identity:

C(t, S, ν) = CoutL (t, S, ν) + CinL (t, S, ν) S ≥ L, (5.20)

we have the fair value of a down-and-in Call option as follows:

CinL (t, S, ν) = C(t, S, ν)− CoutL (t, S, ν).

Obviously, CoutL (t, S, ν) = 0 and CinL (t, S, ν) = C(t, S, ν) for S < L. Therefore the identity

C(S, ν, t) = CoutL (t, S, ν) + CinL (t, S, ν) S ≥ L,

still holds for S < L.
For a European up-and-out option with H > E, the solution is similar to the formula (5.18). It can
also be shown that the sum of a European up-and-out Put option and a European up-and-in Put
option equals a European vanilla Put option.
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5.2.1 Numerical experiments

In this section we compute the price of a down-and-out Call Barrier Option [26] using the approx-
imation method described above. The correlation value is the same used by Baksi-Kao-Chen, but
in our case the drift of the variance process is zero, and we do not have a direct comparison with
an alternative method. Thus we report the corresponding European Call values which, by con-
struction, should be larger; and also the prices obtained by Heston model, choosing a particular
set of values: k = 0 and Θ = indeterminate, in order to have the same market model (5.2) at
stochastic volatility with drift zero for the variance process.

In table 5.2 we can read that the price of the down-knock-out Call options is lower than the Eu-
ropean Call option obtained using the same market model and parameter values. This result is
compatible with what we have expected for Financial Theory (see Hull, ”Options , Futures and
other Derivatives” pp. 483 ). In table 5.3, we can read the results from comparison with Fourier
method in the Heston case (by Gauss-lobotto algorithm). As one can see, the down-and-out Call
option prices given by both methods are close to each other with a difference lesser 1%.

We want to remark that the proposed methodology is an approximation method; this one can
be used in a stochastic volatility market model with arbitrary drift term. In fact, it is sufficient to
choose a price of volatility risk, such that the drift of volatility process is zero to obtain the PDE
(5.13).

Table 5.2: Down-and-out Call Barrier Option prices and European Call option prices computed by Approximation method for E =

100, L = 70, α = 0.1, ρ = −0.64. We have chosen r = 3%, ν0 = 0.04 and three different maturities T . At-the-money options

(ATM) have S0 = E; in-the-money options (INM) have S0 = E(1 + 10%
√
ν0T ) and out-of-the money options (OTM) have S0 =

E(1− 10%
√
ν0T ).

(T = 1/12)
down-and-out Call Vanilla Call

ATM 1.77384 2.4305
INM 2.0727 2.7337
OTM 1.5048 2.1503

(T = 3/12)
down-and-out Call Vanilla Call

ATM 3.0715 4.3755
INM 3.5822 4.9037
OTM 2.6123 3.8871

(T = 6/12)
down-and-out Call Vanilla Call

ATM 4.3145 6.3790
INM 5.0229 7.1214
OTM 3.6785 5.6925
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Table 5.3: Down-and-out Call Barrier Option prices computed by Perturbative method and Fourier method, for E = 100, L = 80,

α = 0.1, ρ = −0.64. We have chosen: r = 3%. At-the-money options (ATM) have S0 = E; in-the-money options (INM) have

S0 = E(1 + 10%
√
ν0T ) and out-of-the money options (OTM) have S0 = E(1− 10%

√
ν0T ).

(T = 6/12)
Volatility Perturbative method Fourier method

20% 4.3361 4.3196
ATM 30% 6.4678 6.4593

40% 8.2098 8.4480
20% 5.1092 4.9654

INM 30% 7.6807 7.6785
40% 9.9626 9.9847
20% 3.6172 3.4234

OTM 30% 5.7154 5.7209
40% 6.5834 6.5061
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The Thesis investigates the benefits of Spectral Methods, which are found to be an appealing
numerical technique when the solution in closed form doesn’t exist, but unfortunately it cannot
be used in every case. A remarkable case in which it is possible to use the Spectral Methods is for
pricing the Double Barrier Options as we have seen in Chapter 3.

The main achievement of this Thesis is the introduction of two methods, that we have called Geo-
metrical Approximation and Perturbative Method respectively, by which is possible to evaluate
the fair option prices in the Heston and SABR market model. Both proposed methods can be gen-
eralised to other market models and for pricing other derivatives contracts, although, in order to
show the above methodologies, we have chosen to pricing Options of only two kinds: Vanilla Op-
tions and knock-out Barrier Options.

On the first, we have that the G. A. method intends to be an alternative method, which can be
particularly convenient for sensible values of the model parameters, which allows computation of
closed-form expressions of approximated option prices.

The option price is approximated since we can get closed-form solutions for the PDE at the cost of
modifying the Cauchy’s condition, rather than looking for a numerical solution to the PDE with
the exact Cauchy’s condition. The proposed method has the advantage to compute a solution in
closed form, therefore, we do not have the problems which plague the numerical methods.

For example, one can consider the inverse Fourier transform method, in which we have to com-
pute an integral between zero and infinity. In this case in fact, there is always some problem in
order to define (in practice) the correct domain of integration; or equivalently, considering also the
finite difference method, in which we have to define a suitable grid, in other words we have some
problems about the choice of the grid’s meshes.

In the present work we have used the Geometrical Approximation method in the Heston model
and in the SABR model, comparing the Vanilla Option price obtained with these computed by
inverse Fourier transform, Monte-Carlo simulation and Finite Difference method or again the Im-
plied Volatility method.

The Geometrical Approximation method is more reliable for low values of the correlation be-
tween price and variance shocks. In this case, our numerical experiments in a specific but sensible
case show that the difference with the Fourier method is of the order of 1%. Markets in which
the price/volatility correlation is low, and thus the G. A. method seems more promising, are the
Electricity Markets.

Besides it is possible, through the G. A. method, get the Vanilla Option price by a strategy, whose
price at time zero is equal to the sum of the option price with modified payoff and a bond price, so
that, this one is equal to the difference between |S0e

ε0 − E| capitalised at rate r. This strategy gives
us, for every correlation value, a price higher than the Heston price around some percent, but in
this way the writer of the Options is fully hedged. This strategy can be very useful for Banks and
Institutions that write derivatives contracts.

On the second, the Perturbative Method, we have elaborated another approximating approach,
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illustrated in Chapter 5, in which we have discussed a particular choice of the volatility price of
risk in the Heston model, namely such that the drift term of the risk-neutral stochastic volatility
process is zero. This allowed us to illustrate an alternative methodology for solving the pricing
PDE in an approximate way, in which we have neglected some terms of the PDE, recovering a
pricing formula which in this particular case, turn out to be simple, for Vanilla Options and Bar-
rier Options. The approximating formulas give an accurate price close to that obtained by Fourier
transform for the Vanilla options, and Down-knock-out Call options. The Perturbative method
can be used for pricing several derivatives contracts and we are sure that manifold applications
will follow.
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(60) Itǒ, K., and H. McKean, (1974) ”Diffusion Processes and their Sample Paths”, 2nd Printing,
Springer, Berlin.

(61) Jacquier, A. (2007) ”Asymptotic skew under stochastic volatility”. Working Paper, Birbeck
College.

(62) Jaeckel, P., Kahl, C. (2006), Not-so-complex logarithms in the Heston model, Wilmott Maga-
zine.

(63) Jourdain, B. (2005), Loss of martingality in asset price models with lognormal stochastic
volatility. Preprint CERMICS 2004-267 : results previously obtained by C.A. Sin, Compli-
cations with stochastic volatility models. Adv. in Appl. Probab. 30 (1998), no. 1, 56268.

(64) Karlin, S., and H.M. Taylor, (1981) ”A Second Course in Stochastic Processes”, Academic
Press, San Diego.



124 CHAPTER 5. PERTURBATIVE METHOD: HESTON MODEL WITH DRIFT ZERO

(65) Keller-Ressel, M. (2009), Moment Explosions and Long-Term Behavior of Affine Stochastic
Volatility Models. Forthcoming in Mathematical Finance.

(66) Kent, J., (1980) ”Eigenvalue Expansions for Diffusion Hitting Times, Z. Wahrsch. verw.Gebiete,
52, 309-319.

(67) Kent, J., (1982) ”The Spectral Decomposition of a Diffusion Hitting Time”, Annals of Applied
Probability, 10, 207-19.

(68) Kluge T., (2002) ”Pricing derivatives in stochastic volatility models using the finite difference
method”, PhD Thesis.

(69) Kochubei A. N., (1985) ”Singular parabolic equations and Markov processes”, Math USSR
Izvestiya 24, 73-97.

(70) Kunitomo, N., and M. Ikeda, (1992) ”Pricing Options with Curved Boundaries”, Mathemati-
cal Finance, 2, 275-98.

(71) Labordere, P.H. (2005), A general asymptotic implied volatility for stochastic volatility mod-
els. Preprint available at http : //arxiv.org/abs/cond−mat/0504317.

(72) Lee, R. (2004) ”The moment formula for implied volatility at extreme strikes”, Mathematical
Finance 14, 469-480.

(73) Levinson, N., (1951) ”A Simplified Proof of the Expansion Theorem for Singular Second Or-
der Differential Operators”, Duke Mathematical Journal, 18, 57-71.

(74) Levitan, B.M., (1950) ”Expansion in Characteristic Functions of Differential Equations of the
Second Order”, Gostekhizdat, Moscow (in Russian).

(75) Levitan, B.M., and I.S. Sargsjan, (1975) ”Introduction to Spectral Theory”, American Mathe-
matical Society, Providence, RI.

(76) Lewis, A., (1994) ”Three Expansion Regimes for Interest Rate Term Structure Models”, work-
ing paper.

(77) Lewis, A., (1998) ”Applications of Eigenfunction Expansions in Continuous-Time Finance”,
Mathematical Finance, 8, 349-383.

(78) Lewis, A., (2001) ”A Simple Option Formula for General Jump-Diffusion and other Exponen-
tial Levy Processes”, working paper.



5.2. BARRIER OPTIONS 125

(79) Lewis, A., (2002) ”Asian Connections”, Wilmott Magazine.

(80) Lewis, A. (2000) ”Option pricing under stochastic volatility, with Mathematica code”, Finance
Press.

(81) Linetsky, V., (1999) ”Step Options”, Mathematical Finance, 9, 55-96.

(82) Linetsky, V., (2001) ”Exact Pricing of Asian Options: An Application of Spectral Theory”,
working paper, Northwestern University.

(83) Linetsky, V., (2002a) ”Exotic Spectra”, RISK, April, 85-89.

(84) Linetsky, V., (2002b) ”Lookback Options and Hitting Times of One-dimensional Diffusions:
A Spectral Expansion Approach”, working paper, Northwestern University.

(85) Linetsky, V., (2003a) ”The Spectral Representation of Bessel Processes with Drift: Applications
in Queueing and Finance”, working paper, Northwestern University

(86) Linetsky, V., (2003b) ”Computing Hitting Times of the OU and CIR Processes”, working pa-
per, Northwestern University.

(87) Lipton, A., (1999) ”Similarities via Self-similarities”, RISK, September, 101-105.

(88) Lipton, A., (2000) ”Exact Pricing Formula for Call and Double-No-Touch Options in the Uni-
versal Volatility Framework”, Working Paper.

(89) Lipton, A., (2001) ”Mathematical Methods for Foreign Exchange”, World Scientific, Singa-
pore.

(90) Lipton, A., (2002) ” The Volatility Smile Problem”, RISK, February, 61-65.

(91) Lipton, A., and W. McGhee, (2002) ”Universal Barriers”, RISK, May, 81-85.

(92) Lucic, V. (2003), ”Forward start options in stochastic volatility models”, Wilmott Magazine,
September.

(93) Meddahi, N., (2001) ”An Eigenfunction Approach for Volatility Modeling”, Working Paper,
CIRANO, Montreal, CAHIER 29-2001.

(94) Medvedev, A., Scaillet, O. (2004) ”A Simple Calibration Procedure of Stochastic Volatility
Models with Jumps by Short Term Asymptotic”, FAME Research Paper Series rp93, Interna-
tional Center for Financial Asset Management and Engineering.



126 CHAPTER 5. PERTURBATIVE METHOD: HESTON MODEL WITH DRIFT ZERO

(95) Moodley, N. (2005), The Heston Model: ”A Practical Approach An Honours Project submitted
to the Faculty of Science”, University of the Witwatersrand, Johannesburg, South Africa.

(96) Morse, P.M., and H. Feshbach, (1953) ”Methods of Theoretical Physics”, Part II McGraw-Hill.

(97) Ninomiya, S., Victoir, N. (2008), ”Weak approximation of stochastic differential equations and
application to derivative pricing”, Applied Mathematical Finance, Vol.15, No.2, 107-121.

(98) Pelsser, A., (2000) Pricing Double Barrier Options Using Analytical Inversion of Laplace
transforms, Finance and Stochastics, 4, 95-104.

(99) Pilipovic, D., (1998) Energy Risk, McGraw-Hill, New York.

(100) Pitman J.W., and M. Yor, (1981) ” Bessel Processes and In nitely Divisible Laws”, in D. Williams,
Ed., Stochastic Integrals, Lecture Notes in Mathematics, Vol. 851, Springer,Berlin.

(101) Pitman J.W., and M. Yor, (1982) ”A Decomposition of Bessel Bridges”, Zeit. Wahrsch.Geb., 59,
425-457.

(102) Pryce, J.D., (1993) ”Numerical Solution of Sturm-Liouville Problems”, Clarendon, Oxford.

(103) Prudnikov, A.P., Yu.A. Brychkov, and O.I. Marichev, (1986) ”Integrals and Series”, Vol. 2,
Gordon and Breach, New York.

(104) Rebonato,R., MCkay,K., White, R. (2009): “The SABR LIBOR Market Model”, Wiley.

(105) Reed, M. and B. Simon, (1980), Functional Analysis, Academic Press, San Diego.

(106) Rogers, L.C.G., Tehranchi, M. (2009) ” Can the implied volatility surface move by parallel
shifts”, forthcoming in Finance and Stochastics.

(107) Rozenblum, G.V., M.A. Shubin and M.Z. Solomyak, (1994) ”Spectral Theory of Differential
Operators”, Encyclopedia of Mathematical Sciences, Vol. 64, Springer.

(108) Sauer, T. (2005): “Numerical Analysis”, Addison Wesley.

(109) Shiga, T., and S. Watanabe, (1973) ”Bessel Diffusions as a One-Parameter Family of Diffusion
Processes”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 27, 37-46.

(110) Slater, L.J., (1960) ”Confluent Hypergeometric Functions”, Cambridge University Press.



5.2. BARRIER OPTIONS 127

(111) Shaw, W.T., (2008) ” Stochastic Volatility, models of Heston type”, Working paper.

(112) Tehranchi, M. (2009) ”Asymptotics of implied volatility far from maturity”, Preprint, Cam-
bridge University.

(113) Titchmarsh, E.C., (1962) ”Eigenfunction Expansions Associated with Second-order Differen-
tial Equations”, Clarendon, Oxford.

(114) Vasicek, O.A., (1977) ”An Equilibrium Characterization of the Term Structure”, Journal of
Financial Economics, 5, 177-188.

(115) Varadhan, S.R.S. (1967) ”On the behavior of the fundamental solution of the heat equation
with variable coefficients”, Comm. Pure Appl. Math., 20, 431-455.

(116) Zeliade System (2009) White paper http : //www.zeliade.com

(117) Watanabe, S., (1975)” On Time Inversion of One-dimensional Diffusion Processes”, Zeitschrift
fur Wahr., 31, 115-124.

(118) Weidmann, J., (1987) ”Spectral Theory of Ordinary Differential Operators”, Lecture Notes in
Mathematics, Vol. 1258, Springer, Berlin.

(119) West G., (2005) Calibration of the SABR model in illiquid markets, Applied Mathematical
Finance, vol. 12, no. 4, pp. 371385.

(120) Yu Tian, (2010) ”Option Pricing with the SABR Model on the GPU”, (working paper).



128 CHAPTER 5. PERTURBATIVE METHOD: HESTON MODEL WITH DRIFT ZERO



Appendix A

Numerical methods for the Heston
and SABR model

129



130 APPENDIX A. NUMERICAL METHODS FOR THE HESTON AND SABR MODEL

A.1 Heston method
Let be given the Heston PDE:

∂f

∂t
+

1

2
νS

2 ∂
2f

∂S2
+ αρνS

∂2f

∂S∂ν
+

1

2

∂2f

∂ν2
+ rS

∂f

∂S
+ [κ(Θ− ν)− λ(t, S, ν)]

∂f

∂ν
− rf = 0;

(A.1)

with following Cauchy and Dirichlet conditions:

f(T, Sν) = (S − E)
+
,

f(t, 0, ν) = 0,

∂f

∂S
(t,∞, ν) = 1,

rS
∂f

∂S
+ κΘ

∂f

∂ν
(t, S, 0)− rf(t, S, 0) +

∂f

∂t
(t, S, 0) = 0,

f(t, S,∞) = S.

Suppose that the solution to the Heston PDE is like the form of Black-Scholes model:

f(t, S, ν) = SP1 − Ee−r(T−t)P2

(A.2)

where P1 and P2 is what we are going to find. Make the transform x = lnS and substitute the formula (A.2) into the PDE (A.1). We will
get

∂Pj

∂t
+

1

2
ν
∂2Pj

∂x2
+ αρν

∂2Pj

∂x∂ν
+

1

2

∂2Pj

∂ν2
+ (r + ujν)

∂Pj

∂x
+ (a − bjν)

∂Pj

∂ν
= 0, j = 1, 2 (A.3)

where u1 = 1
2 , u2 = − 1

2 , a = κΘ, b1 = κ+ λ− αρ, b2 = κ+ λ.

Considering the pay-off of the option, they are subject to the initial condition

Pj(T, x, ν; lnE) = 1x≥lnE

Pj are the conditional probability that the option will expire in the money. Heston showed that the characteristic function of Pj is:

fj(t, x, ν;φ) = e
Cj(T−t;φ)+Dj(T−t;φ)ν+ıφx

where

Cj(T − t;φ) = rφı(T − t) +
a

α2

"
(bj − αρφı+ dj)(T − t)− 2 ln

 
1− gjed(T−t)

1− gj

!#
,

Dj(T − t;φ) =
bj − αρφı+ dj

α2

"
1− edj(T−t)

1− gjedj(T−t)

#
,

and

gj =
bj − αρφı+ dj

bj − αρφı− dj
,

dj =
q

(αρφı− bj)2 − α2(2ujφı− φ2).
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Convert the characteristic function back, we can get

Pj(T, x, ν; lnE) =
1

2
+

1

π

Z +∞

0
Re

"
e−ıφ lnEfj(t, x, ν;φ)

ıφ

#
dφ

Then solution of Heston PDE is a direct result.

A.1.1 MatLab Code for the Heston model
function [call_value]=heston(T,S0,K,v0,theta,kappa,sigma,rho,lambda,r)\\

Heston.m calculates the heston option price by using 20 points\\
Gauss-Legendre Integration in every small interval.\\
\\
The algorithm is based on the analytic solution given by Heston (1993).\\
The same notation for each parameter as shown in Heston’s paper is \\
being used (1993). \\
\\
T = 1;\\
r = 0.03;\\
S0 = 100;\\
K = 100;\\
kappa = 2;\\
theta= 0.04;\\
v0 = 0.4;\\
sigma = 0.038;\\
rho = -0.1;\\
lambda = 0;\\
\\
i = sqrt(-1);\\
x0 = log(S0);\\
a = kappa*theta;\\
\\
Gauss_Legendre20=[0.0176140070678 0.0406014298819 0.0626720482976\\
0.0832767415506 0.101930119822 0.118194531969 0.131688638458 \\
0.142096109327 0.149172986482 ...0.15275338714 0.15275338714 \\
0.149172986482 0.142096109327 0.131688638458 0.118194531969 \\
0.101930119826 0.0832767415506 0.0626720482976 0.0406014298819\\
0.0176140070678; -0.993128599185 -0.963971927278 -0.912234428251\\
-0.839116971822 -0.74633190646 -0.636053680727 -0.510867001951 ...\\
-0.373706088715 -0.227785851142 -0.0765265211335 0.0765265211335\\
0.227785851142 0.373706088715 0.510867001951 0.636053680727\\
0.74633190646 ...0.839116971822 0.912234428251 0.963971927278 \\
0.993128599185]; the first row is the weight, the second row is the abscissas\\
cutoff=200; truncate phi at 200 \\
intvl=2; length of each interval in each interval apply 20 points\\
Gauss-Legendre Integration\\

\\
P1_int=zeros(1,cutoff/intvl);\\
P2_int=zeros(1,cutoff/intvl);\\
for j=1:cutoff/intvl\\

for k=1:20\\
phi=intvl*Gauss_Legendre20(2,k)/2+intvl*(2*j-1)/2;\\
P1_int(j)=Gauss_Legendre20(1,k)*(real(exp(-i*phi*log(K))\\

*feval(’f1’,x0,v0,T,phi,theta,kappa,sigma,rho,lambda,r,i,a)/(i*phi)))+P1_int(j);\\
P2_int(j)=Gauss_Legendre20(1,k)*(real(exp(-i*phi*log(K))\\

*feval(’f2’,x0,v0,T,phi,theta,kappa,sigma,rho,lambda,r,i,a)/(i*phi)))+P2_int(j);\\
end\\
P1_int(j)=intvl/2*P1_int(j);\\
P2_int(j)=intvl/2*P2_int(j);\\

end\\
P1=0.5+sum(P1_int)/pi;\\
P2=0.5+sum(P2_int)/pi;\\
call_value=S0*P1-K*exp(-r*T)*P2;\\
\\
function y=f1(x,v,t,phi,theta,kappa,sigma,rho,lambda,r,i,a)\\
u1=0.5;\\
b1=kappa+lambda-rho*sigma;\\
d1=sqrt((rho*sigma*phi*i-b1).ˆ2-sigmaˆ2*(2*u1*phi*i-phi.ˆ2));\\
g1=(b1-rho*sigma*phi*i+d1)/(b1-rho*sigma*phi*i-d1);\\
C1=r*phi*i*t+a*(b1-rho*sigma*phi*i+d1)*t/(sigmaˆ2);\\
D1=(b1-rho*sigma*phi*i+d1)/(sigmaˆ2)*((1-exp(d1*t))/(1-g1*exp(d1*t)));\\
y=exp(C1+D1.*v+i*phi*x).*((1-g1.*exp(d1.*t))./(1-g1)).ˆ(-2*a/(sigmaˆ2));\\
\\
function y=f2(x,v,t,phi,theta,kappa,sigma,rho,lambda,r,i,a)\\
u2=-0.5;\\
b2=kappa+lambda;\\
d2=sqrt((rho*sigma*phi*i-b2).ˆ2-sigmaˆ2*(2*u2*phi*i-phiˆ2));\\
g2=(b2-rho*sigma*phi*i+d2)/(b2-rho*sigma*phi*i-d2);\\
C2=r*phi*i*t+a*(b2-rho*sigma*phi*i+d2)*t/(sigmaˆ2);\\
D2=(b2-rho*sigma*phi*i+d2)/(sigmaˆ2)*((1-exp(d2*t))/(1-g2*exp(d2*t)));\\
y=exp(C2+D2.*v+i*phi*x).*((1-g2.*exp(d2.*t))./(1-g2)).ˆ(-2*a/(sigmaˆ2));\\
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A.2 Finite difference method
We present the finite difference schemes used in chapter4.

∂f

∂t
= a(x, y)

∂2f

∂x2
+ 2b(x, y)

∂2f

∂x∂y
+ c(x, y)

∂2f

∂y2
+ d(x, y)

∂f

∂x
+ e(x, y)

∂f

∂y

(A.4)

on the domain (x, y, t) ∈ Ω = [Lx, Hx]× [Ly, Hy ]× R+ where the coefficients satisfy the following inequalities

ac− b2 > 0, a > 0, c > 0, d ≥ 0, (A.5)

d ≥ 0, e(x, Ly) ≥ 0 ande(x,Hy) ≤ 0 (A.6)

and the following equalities

a(x;Ly) = b(x;Ly) = c(x;Ly) = 0. (A.7)

The inequalities in (A.5) must hold for the PDE to be parabolic. The inequalities in (A.6) and the equalities in (A.7) are general enough
to allow for all PDEs that arise in stochastic volatility models. For the problem to be well posed an initial condition, u(x; y; 0) = φ(x; y),
and four boundary conditions need to be specified. A Dirichlet condition will be used for the boundary at x = Lx and a von Neumann
condition will be used at x = Hx

f(t, Lx, y) = cL
∂f

∂x
(t,Hx, y) = cH . (A.8)

Neither a Dirichlet nor a von Neumann condition is used as a boundary condition in the y-direction, the only requirement is that the PDE
itself must be solved on the boundaries, see Zvan et al. [2003] and Duffy [2006]. Using equation (A.7) and the assumption that

∂f

∂t
= d(x, y)

∂f

∂x
+ e(x, y)

∂f

∂y
, y = Ly

∂f

∂t
= a(x, y)

∂2f

∂x2
+ d(x, y)

∂f

∂x
y = Hy.

The fully implicit and Crank-Nicolson schemes require the inversion of non tri-diagonal matrices. Such schemes turn out to be very slow,
we will discuss how splitting methods can be employed to overcome this problem. Stability, consistency and convergence of these methods
will be shown on a uniform grid. In the first section the general Taylor approximations used to obtain the discrete approximations to our
continuous derivatives will be derived. Then we will investigate different types of finite difference schemes that can be used to approximate
the solutions of two dimensional parabolic PDEs.

A.2.1 Discrete approximations
The finite difference method truncates the unbounded domain Ω to the bounded domain Ω = [Lx, Hx]× [Ly, Hy ]× [0, T ]. One can see
that our aim is to obtain approximations to the true solution on the three dimensional mesh

Ω̃ = {(t, xi, yi)|i = 0, 1, .....,m, j = 0, 1, ....., n, k = 0, 1, ....., l}
.

with the approximation at each mesh point given by

f
k
i,j ≈ f(t, xi, yj)

.
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Assuming, for the moment, that the mesh points are uniformly spaced we can write

xi = Lx + ihx fori = 0, 1, ......,m

yi = Ly + jhy forj = 0, 1, ......., n

tk = k∆t fork = 0, 1, ............., l

where

hx =
Hx − Lx

m
,hy =

Hy − Ly
m

∆t =
T

l
.

The finite difference approximations of the derivatives in (A.4), excluding the approximation of the mixed derivative, one can be obtained
in exactly way, as follows

∆
+
x u

k
i,j =

uki+1,j − u
k
i,j

hx

∆
+
y u

k
i,j =

uki,j+1 − u
k
i,j

hy

∆
−
x u

k
i,j =

uki,j − u
k
i−1,j

hx

∆
−
y u

k
i,j =

uki,j − u
k
i,j−1

hy

∆xu
k
i,j =

uki+1,j − u
k
i−1,j

2hx

∆yu
k
i,j =

uki,j+1 − u
k
i,j−1

2hy

∆
2
xu
k
i,j =

uki+1,j − 2uki,j + ui−1,j

h2
x

∆
2
yu
k
i,j =

uki,j+1 − 2uki,j + ui,j−1

h2
y

(A.9)

We still need to derive the divided difference approximation of the mixed derivative. We give a derivation of the second order approximation
to the mixed derivative proposed in Hout and Welfert [2006]. Second order approximations of the cross derivative can be derived with the
aid of the following Taylor expansions about the reference point (xi, yj , τk)

u(xi+1, yj+1, τk) = u+ hx
∂u

∂x
+ hy

∂u

∂y
+

1

2
h

2
x

∂2u

∂x2
+ hxhy
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2
h
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+
1

3!
h

3
x
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3

3!
h
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xhy

∂3u

∂x2∂y
+

3

3!
hxh

2
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∂3u
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h

3
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+ 0(h

4
x, h

3
xhy, h

2
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2
y, hxh

3
y, h

4
y) (A.10)

u(xi−1, yj+1, τk) = u− hx
∂u

∂x
+ hy

∂u
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x
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y) (A.11)
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u(xi+1, yj−1, τk) = u+ hx
∂u

∂x
− hy

∂u
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u(xi−1, yj−1, τk) = u− hx
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To construct a general second order approximation the following linear combinations are of critical importance
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by making an appropriate linear combination of the first two equations we obtain

(1 + ω)[u(xi+1, yj+1, τk) + u(xi−1, yj−1, τk)]− (1− ω)[u(xi−1, yj+1, τk) + u(xi+1, yj−1, τk)]
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where ω ∈ [−1,+1]. The ∂2u
∂x2 and ∂2u

∂y2 terms ca now be eliminate by adding−2ω of (5.18), after rearranging we obtain
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The difference operator for the mixed derivative can be written as

∆
ω
xyu

k
i,j =
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4hxhy
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4hxhy
(A.21)

A.2.2 MatLab Code for CranKNicolson method
function [P] = CrankNicolsonEuro(OptionType,SO,K,r,q,T,sig,Smin,Smax,Ds,Dt)
This function prices a Vanilla European Call/Put using the Crank Nicolson
Scheme of the Finite Difference Method.

Parameters are as follows:
OptionType = 1 for a Call or 0 for a Put
SO = initial asset price ;
K = strike price ;
r = risk free rate ;
q = dividend rate;
T = time to maturity ;
sig = volatility ; Smin = minimum stock price ;
Smax = maximum stock price ;
Ds = stock price step size ;
Dt = time step size.

This function keeps track of the time required to price the option.
Note: When pricing using Finite Difference Methods, you increase accuracy
by making the mesh finer and finer. In our case adequate pricing results are
obtained with Ds = 1 and Dt = 1/600 with Smin = 20 and Smax = 300.

Please note that the use of this code is not restricted in any way.
However, referencing the author of the code would be appreciated.
To run this program, simply use the function defined in the 1st line.
http://www.global-derivatives.com
info@global-derivatives.com
Olivier Rochet (February 2006)

tic Keep track of time
Smax = 300;
Smin = 0;
Calculate number of stock price steps and take care of rounding.
N = round((Smax - Smin)/Ds);
Ds = (Smax - Smin)/;
Calculate number of time steps and take care of rounding.
M = round(T/Dt);
Dt = (T/M);

ME=zeros(N,N); define ME matrix
MI=zeros(N,N); define MI matrix
S=zeros(N,1); stock price vector
V=zeros(N,1); option value vector
matsol=zeros(N,M+1); solution matrix

for i=1:1:N Generate S and V vector
S(i)=Smin + i*Ds;
if OptionType == 1

V(i)=max(S(i)-K,0); Call: Payoff that is initial condition
else

V(i)=max(K-S(i),0); Put: Payoff that is initial condition
end

end

Build ME matrix
for i=1:1:N

Set up coefficients
Alpha = 0.5*(sigˆ2)*(S(i)ˆ2)*(Dt/(Dsˆ2));
Betha = (r-q)*S(i)*(Dt/(2*Ds));
Bde = Alpha - Betha;
De = 1-r*Dt-2*Alpha;
Ade = Alpha + Betha;
Fill ME matrix

if i==1
ME(i,i) = 1 + De + 2*Bde;
ME(i,i+1) = Ade - Bde;

elseif i==N
ME(i,i-1) = Bde - Ade;
ME(i,i) = 1 + De + 2*Ade;

else
ME(i,i-1) = Bde;
ME(i,i) = 1 + De;
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ME(i,i+1) = Ade;
end

end

matsol(:,1)=V; Initiate first column of matrix solution with payoff that
is initial condition

Build MI matrix
for i=1:1:N

Set up coefficients
Alpha = 0.5*(sigˆ2)*(S(i)ˆ2)*(Dt/(Dsˆ2));
Betha = (r-q)*S(i)*(Dt/(2*Ds));
Bdi= -Alpha + Betha;
Di= 1+r*Dt+2*Alpha;
Adi= -Alpha - Betha;
Fill MI matrix
if i==1

MI(i,i) = 1 + Di + 2*Bdi;
MI(i,i+1) = Adi - Bdi;

elseif i==N
MI(i,i-1) = Bdi - Adi;
MI(i,i) = 1 + Di + 2*Adi;

else
MI(i,i-1) = Bdi;
MI(i,i) = 1 + Di;
MI(i,i+1) = Adi;

end
end

invMI = MIˆ-1; Invert matrix MI before performing calculations

for k=1:M Generate solution matrix
matsol(:,k+1)= invMI*ME*matsol(:,k);

end

find closest point on the grid and return price
with a linear interpolation if necessary

DS = SO-Smin;

indexdown = floor(DS/Ds);
indexup = ceil(DS/Ds);

if indexdown == indexup
P = matsol(indexdown,M+1);

else
P = matsol(indexdown,M+1)+ (SO - S(indexdown))/(S(indexup)-S(indexdown))...

*(matsol(indexup,M+1) - matsol(indexdown,M+1));
end

toc Keep track of time

A.3 SDE approximation
Monte Carlo simulation was performed by discretising the stochastic processes using the Euler-Maruyama method. This resulted in,

St = St−1 + rSt−1dt+
√
νt−1St−1dW̃

(1)
t

νt = νt−1 + κ(Θ− νt−1)dt+ α
√
νt−1dW̃

2
t

where W̃ (1)
t and W̃

(2)
t are standard normal random variables with correlation ρ. The above can be made computationally easier by

expressing W̃ (1)
t and W̃ (2)

t , as a function of independent standard normal random variables, using the Cholesky decomposition,

W̃
(1)
t = ξ

(1)
t

˜W (2)
t = ρξ

(1)
t + ξ

(2)
t

p
1− ρ2

where ξ(1)
t and ξ(2)

t are independent standard normal random variables.



A.3. SDE APPROXIMATION 137

A.3.1 C++ Code for Monte-Carlo method

#include <iostream>
#include <valarray>

#define BOOST_NO_STDC_NAMESPACE
#include <Scrivania/cpp/boost/random.hpp>

std::pair<double,double> meanVariance(const std::valarray<double>& x)
{
//std::cout << x.size() << std::endl;
double mean = 0;
double M2 = 0.0;
size_t n=0;
while(n<x.size())
{
double valore = x[n++];
double delta = valore-mean;
mean += delta/n;
M2 += delta*(valore-mean);

}
double variance = M2/(n-1);
//std::cout << mean << ’ ’ << variance << std::endl;
return std::make_pair(mean,variance);

}

std::valarray<double> partePositiva(const std::valarray<double>& x)
{
std::valarray<double> result = x;
for(size_t i=0; i<x.size(); ++i)
{
if(result[i]<0.0) result[i]=0.0;

}
return result;

}

class StateVariable : public std::pair<double,double>
{
public:
StateVariable()
: std::pair<double,double>(), S(this->first), V(this->second) {}
StateVariable(const double& S0, const double& V0)
: std::pair<double,double>(S0,V0), S(this->first), V(this->second) {}
StateVariable& operator=(const StateVariable& s)
{
if(this!=&s)
{
S = s.S;
V = s.V;

}
return *this;

}
double& S;
double& V;

};

class RandomVector
{
public:
RandomVector(size_t n0) : n(n0), v(n) {}
const StateVariable& operator[] (size_t i) const
{
return v[i];

}
StateVariable& operator[] (size_t i)
{
return v[i];

}
const double& S(size_t i) const
{
return v[i].S;

}
const double& V(size_t i) const
{
return v[i].V;

}
double& S(size_t i)
{
return v[i].S;

}
double& V(size_t i)
{
return v[i].V;

}
std::valarray<double> S() const
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{
std::valarray<double> result(n);
for(size_t i=0; i<n; ++i)
result[i] = S(i);

return result;
}
std::valarray<double> V() const
{
std::valarray<double> result(n);
for(size_t i=0; i<n; ++i)
result[i] = V(i);

return result;
}

private:
const size_t n;
std::valarray<StateVariable> v;

};

const std::pair<double,double> operator*(const RandomVector& v1, const RandomVector& v2)
{
return std::make_pair((v1.S()*v2.S()).sum(),(v1.V()*v2.V()).sum());

}

class HestonModel
{
public:
HestonModel(const double& r0, const double& kappa0, const double& theta0,
const double& lambda0, const double&corr0, const double& S00, const double& V00)
: S0(S00), V0(V00), r(r0), kappa(kappa0), theta(theta0), lambda(lambda0), corr(corr0),
rad1MenoCorr2(std::sqrt(1.0-corr0*corr0)), kappaTheta(kappa*theta)

{}
double S0;
double V0;
std::pair<double,double> callMonteCarlo(const double& T, const double& K, const double& deltaT, size_t N, size_t seed) const
{
std::valarray<double> S = distributionAtMaturity(T,deltaT,N,seed).S();
std::valarray<double> payoff = partePositiva(S-K);
std::pair<double,double> stat = meanVariance(payoff*std::exp(-r*T));
stat.second = std::sqrt(stat.second/N);
return stat;

}
RandomVector distributionAtMaturity(const double& T, const double& deltaT, size_t N, size_t seed) const
{
RandomVector result(N);
boost::mt19937 motore(static_cast<boost::uint32_t>(seed)); // tutti i processi hanno lo stesso seed ed esiste almeno il processo 0
boost::normal_distribution<double> distribuzione;
boost::variate_generator<boost::mt19937,boost::normal_distribution<double> > rng(motore,distribuzione);
for(size_t n=0; n<N; ++n)
{
double S = S0;
double V = V0;
for(double t=0.0; std::abs(t-T)>deltaT/2; t += deltaT)
{
double epsS = rng();
double epsV = rng();
chol(epsS,epsV);
double driftS = r*S*deltaT;
double diffS = sqrt(V*deltaT)*epsS;
double driftV = (kappaTheta-kappa*V)*deltaT;
double diffV = lambda*sqrt(V*deltaT)*epsV;
S += driftS + diffS;
V += driftV + diffV;
if(V<0) V = -V;
//std::cout << n << ’ ’ << t << ’ ’ << T << ’ ’ << std::abs(t-T) << ’ ’ << S << ’ ’ << V << std::endl;
//system("PAUSE");

}
//std::cout << n << ’ ’ << S << ’ ’ << V << std::endl;
result[n] = StateVariable(S,V);

}
return result;

}
private:
const double r;
const double kappa;
const double theta;
const double lambda;
const double corr;
const double rad1MenoCorr2;
const double kappaTheta;
void chol(double& e1, double& e2) const
{
e2=corr*e1 + rad1MenoCorr2*e2;

}
};

int main()
{
double r = 0.05;
double kappa = 10.;
double theta = 0.16;
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double lambda = 0.10;
double corr = -0.8;
double S0 = 100;
double V0 = 0.16;
HestonModel hestonModel(r,kappa,theta,lambda,corr,S0,V0);
double deltaT = 1./(250);
size_t N = 10000;
size_t seed = 32421;
double T = 0.5;
double K = S0*0.8;
std::pair<double,double> priceEss = hestonModel.callMonteCarlo(T,K,deltaT,N,seed);
std::cout.precision(12);
int dec = int(std::log10(priceEss.first));
std::cout << "Prezzo = " << priceEss.first << std::endl;
std::cout << "Ess = ";
for(int i = 1; i<=dec; ++i) std::cout << ’ ’;
std::cout << priceEss.second << std::endl;
return 0;

}

A.4 Geometrical Approximation Code: Heston
function V_Hcall = C(S_t,E,nu_t,T,t,r)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Heston Model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc

t = 0;
n = 6;
T = n/12; %%%%% Maturity date %%%%%
r = 0.03; q=0.0; %%%%% Interest rate %%%%%

nu_t = 0.03;
B_t = exp(r*(T-t));

K = 1.15;
theta = 0.04;
alpha = 0.39;
rho = -0.64;

lambda = 0;
kappa = (K-lambda*alpha);
Theta = K*theta/(K-lambda*alpha);

var = (alphaˆ2/kappa)*(1-exp(-kappa*T))*[(nu_t-Theta/2)*exp(-kappa*T)+Theta/2]; %%%% Variance %%%%%%%%%%
var_infinity = alphaˆ2*Theta/2*kappa; %%%% Variance for T that goes to infinity %%%%%%%%%%

a = -(1/2-kappa*rho/alpha)ˆ2/(2*(1-rhoˆ2));
b = (1/2-kappa*rho/alpha)/(1-rhoˆ2);

V = ((nu_t-Theta)*exp(-kappa*(T-t))+Theta);
epsilon_t = (rho*nu_t/alpha);
epsilon_medio = ((rho/alpha)*((nu_t-Theta)*exp(-kappa*(T-t))+ Theta));
Stochastic_Err = (epsilon_medio-epsilon_t);

E = 100; %%%%% Stike Price %%%%%%%%
S_t = E;%*(1-0.1*sqrt(Theta*T)); %%%%% Underlying value %%%

(E*exp(Stochastic_Err+(rho/alpha)ˆ2*var));

d1 = [log(S_t*exp(Stochastic_Err)/E) + ((r-q-(kappa*rho*Theta/alpha))+(1-rhoˆ2)*(1-b)*nu_t)*(T-t)]/sqrt((1-rhoˆ2)*nu_t*(T-t));
d2 = d1 - sqrt((1-rhoˆ2)*nu_t*(T-t));

delta = -[(kappa*rho*Theta/alpha)-(a+(1-b)ˆ2*(1-rhoˆ2)/2)*nu_t]*(T-t);

%%%%%% Pricing Formula %%%%%%%

V_Hcall = (S_t*exp(Stochastic_Err + (rho/alpha)ˆ2*var))*exp(delta)*normcdf(d1,0,1)-E*(exp(-r*(T-t))*normcdf(d2,0,1)) + (E-E*exp(Stochastic_Err))*exp(r*(T-t));

if V_Hcall<0;
V_Hcall=0;

end

if (2*kappa*Theta/alphaˆ2) > 1 %%%%%%%%%%%%%%%%% Feller’s condition %%%%%%%%%%%%%%%%%%%%
V_Hcall=0;

end
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A.5 Generating volatility surfaces and skews
Prices of the European call options are calculated, using the Heston closed-form solution (Heston,1993), at different maturities and strikes.
These prices are then equated to the Black-Scholes-Merton (BSM) solution and the volatility that satisfies this equation is evaluated. The
function blsimpv returns the BSM implied volatility for a given set of parameters. The following script file, VolSmile.m generates the volatil-
ity surfaces of (Figures 4.3, 4.4, 4.5).

strikes = linspace(.8,1.2,11);
mats = linspace(.3,3,11);
for i = 1:11
for j = 1:11
price = HestonCallQuad(2,.04,.1,0.5,.04,.01,mats(i),1...,strikes(j));
prices(i,j) = price;
Volatility(i,j) = blsimpv(1, strikes(j), 0.01 , ...mats(i), price);
end
end

[strike mat] = meshgrid(strikes,mats);
surf(mat,strike,Volatility),xlabel(’Maturity(years)’), ... ylabel(’Strike’),Title(’\rho = 0.5’),zlabel(’Implied ...Volatility’);
figure;
for i = 1:11
for j = 1:11
price = HestonCallQuad(2,.04,.1,0,.04,.01,mats(i),1... ,strikes(j));
prices(i,j) = price;
Volatility(i,j) = blsimpv(1, strikes(j), 0.01 , ...mats(i), price);
end
end

surf(mat,strike,Volatility),xlabel(’Maturity(years)’),..ylabel(’Strike’),Title(’\rho = 0’),zlabel(’Implied ...Volatility’);
figure;
for i = 1:11
for j = 1:11
price = HestonCallQuad(2,.04,.1,-0.5,.04,.01,mats(i),...1,strikes(j));

prices(i,j) = price;
Volatility(i,j) = blsimpv(1, strikes(j), 0.01 ,...mats(i), price);
end
end

surf(mat,strike,Volatility),xlabel(’Maturity(years)’), ylabel(’Strike’),Title(’\rho = -0.5’),zlabel(’Implied... Volatility’);

A.6 Matlab Code for the Hagan method in the case of β = 1

function C_BS=SABR(sigma, F, E, t , alpha, beta, rho)
clc

t = 0;
n = 3;
T = n/12;
r = 0.03;

sigma_0 = 0.2;

E = 100*(1+0.1*sqrt(sigma_0*T));
F = 100;

zeta = alpha/sigma_0*log(F/E);
xi = log((sqrt(1-2*rho*zeta+zetaˆ2)+zeta-rho)/(1-rho));

sigma_t = sigma_0*(zeta/xi)*(1+(rho*sigma_0*alpha/4+(2-3*rhoˆ2)*(alphaˆ2)/24)*T)

d1 = (log(F/E)+(0.5*sigma_tˆ2))/sigma_t*sqrt(T-t);
d2 = d1-sigma_t*sqrt(T-t);

C_BS = exp(-r*(T-t))*F*normcdf(d1)-E*exp(-r*(T-t))*normcdf(d2);

A.7 Geometrical Approximation Code: SABR
function V_call = C(S_t,E,sigma_t,T,t,r, epsilon_t)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%% SABR Model %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% dF_t = sigma_tF_tdw_t %%%%%%%%%%%%%%%%%%
%%%%%%%%%%% dsigma_t = alphasigmadW_t %%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc

t = 0;
n = 1;
T = n/12; %%%%% Maturity date %%%%%%
r = 0.03; %%%%% Interest rate %%%%%
sigma_t = 0.2; %%%%% Variance %%%%%%%%%%%

E = 99.9999; %%%%% Stike Price %%%%%%%%
F_t = E;%*(1+0.1*sqrt(sigma_t*T) %%%%% Underlying value %%%

alpha = 0.29;
rho = -0.71;

epsilon_t = (rho/alpha)*sigma_t;
epsilon_medio = (rho/alpha)*(sigma_t*exp(0.5*alphaˆ2*(T-t)));
Stochastic_Err = (epsilon_medio-epsilon_t);
(E*exp(Stochastic_Err)-E)

d1 = [log(F_t*exp(Stochastic_Err)/E) + 0.5*(1-rhoˆ2)*(sigma_tˆ2)*(T-t)]/sqrt((1-rhoˆ2)*(sigma_tˆ2)*(T-t));
d2 = [log(F_t*exp(Stochastic_Err)/E) - 0.5*(sigma_tˆ2)*(T-t)]/sqrt((1-rhoˆ2)*(sigma_tˆ2)*(T-t));

delta_1 = -(r-(1-2*rhoˆ2)*(sigma_tˆ2)/8*(1-rhoˆ2))*(T-t);
delta_2 = -(r-(sigma_tˆ2)/8*(1-rhoˆ2))*(T-t);

%%%%%%%%% Pricing Formula %%%%%%%%%%%%
V_call = F_t*exp(Stochastic_Err)*exp(delta_1)*normcdf(d1,0,1)-E*exp(delta_2)*normcdf(d2,0,1);

if V_call<=0;
V_call=0;

end


