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Abstract

The study of learning models for direct processing complex data structures has gained an
increasing interest within the Machine Learning (ML) community during the last decades.
In this concern, efficiency, effectiveness and adaptivity of the ML models on large classes
of data structures represent challenging and open research issues.

The paradigm under consideration is Reservoir Computing (RC), a novel and extremely
efficient methodology for modeling Recurrent Neural Networks (RNN) for adaptive se-
quence processing. RC comprises a number of different neural models, among which the
Echo State Network (ESN) probably represents the most popular, used and studied one.
Another research area of interest is represented by Recursive Neural Networks (RecNNs),
constituting a class of neural network models recently proposed for dealing with hierar-
chical data structures directly.

In this thesis the RC paradigm is investigated and suitably generalized in order to
approach the problems arising from learning in structured domains. The research studies
described in this thesis cover classes of data structures characterized by increasing com-
plexity, from sequences, to trees and graphs structures. Accordingly, the research focus
goes progressively from the analysis of standard ESNs for sequence processing, to the de-
velopment of new models for trees and graphs structured domains. The analysis of ESNs
for sequence processing addresses the interesting problem of identifying and characteriz-
ing the relevant factors which influence the reservoir dynamics and the ESN performance.
Promising applications of ESNs in the emerging field of Ambient Assisted Living are also
presented and discussed. Moving towards highly structured data representations, the
ESN model is extended to deal with complex structures directly, resulting in the proposed
TreeESN, which is suitable for domains comprising hierarchical structures, and Graph-
ESN, which generalizes the approach to a large class of cyclic/acyclic directed/undirected
labeled graphs. TreeESNs and GraphESNs represent both novel RC models for structured
data and extremely efficient approaches for modeling RecNNs, eventually contributing
to the definition of an RC framework for learning in structured domains. The problem
of adaptively exploiting the state space in GraphESNs is also investigated, with specific
regard to tasks in which input graphs are required to be mapped into flat vectorial out-
puts, resulting in the GraphESN-wnn and GraphESN-NG models. As a further point, the
generalization performance of the proposed models is evaluated considering both artificial
and complex real-world tasks from different application domains, including Chemistry,
Toxicology and Document Processing.
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This thesis is dedicated to my family.
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And now you’re mine. Rest with your dream in my dream.
Love and pain and work should all sleep, now.
The night turns on its invisible wheels,
and you are pure beside me as a sleeping amber.

No one else, Love, will sleep in my dreams.
You will go, we will go together, over the waters of time.
No one else will travel through the shadows with me,
only you, evergreen, ever sun, ever moon.

Your hands have already opened their delicate fists
and let their soft drifting signs drop away,
your eyes closed like two gray wings,

and I move after, following the folding water you carry, that carries me away:
the night, the world, the wind spin out their destiny,
without you, I am your dream, only that, and that is all.

Pablo Neruda (Love Sonnet LXXXI)

(To every sunrise, and every sunset,

until you are mine, thesis).
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Chapter 1

Introduction

1.1 Motivations

Traditional Machine Learning (ML) models are suitable for dealing with flat data only,
such as vectors or matrices. However, in many real-world applicative domains, including
e.g. Cheminformatics, Molecular Biology, Document and Web processing, the information
of interest can be naturally represented by the means of structured data representations.
Structured data, such as sequences, trees and graphs, are indeed inherently able to de-
scribe the relations existing among the basic entities under consideration. Moreover, the
problems of interest can be modeled as regression or classification tasks on such struc-
tured domains. For instance, when dealing with Chemical information, molecules can be
suitably represented as graphs, where vertices stand for atoms and edges stand for bonds
between atoms. Accordingly, problems such as those in the field of toxicity prediction can
be modeled as classification tasks on such graph domains.
When approaching real-world problems, standard ML methods often need to resort to
fixed-size vectorial representations of the input data under consideration. This approach,
however, implies several drawbacks such as the possibility of loss of the relational infor-
mation within the original data and the necessity of domain experts to design such fixed
representations in an a-priori and task specific fashion.

In light of these considerations, it seems conceivable that the generalization of ML for
processing structured information directly, also known as learning in structured domains,
has increasingly attracted the interest of researchers in the last years. However, when
structured data are considered, along with a natural richness of applicative tasks that can
be approached in a more suitable and direct fashion, several research problems emerge,
mainly related to the increased complexity of the data domains to be treated. A number
of open issues still remain and motivate the investigations described in this thesis. First
of all, efficiency of the learning algorithms is identified as one of the most relevant aspects
deserving particular attention under both theoretical and practical points of view. More-
over, the generalization of the class of data structures that can be treated directly is of a
primary interest in order to extend the expressiveness and the applicability of the learning
models from sequences, to trees and graphs. Finally, when dealing with structured infor-
mation, adaptivity and generalization ability of the ML models represent further critical
points.

In this thesis we mainly deal with neural networks, which constitute a powerful class
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of ML models, characterized by desirable universal approximation properties and success-
fully applied in a wide range of real-world applications. In particular, Recurrent Neural
Networks (RNNs) [121, 178, 94] represent a widely known and used class of neural net-
work models for learning in sequential domains. Basically, the learning algorithms used for
training RNNs are extensions of the gradient descending methods devised for feed-forward
neural networks. Such algorithms, however, typically involve some known drawbacks such
as the possibility of getting stuck in local minima of the error surface, the difficulty in
learning long-term dependencies, the slow convergence and the high computational train-
ing costs (e.g. [89, 127]). An interesting characterization of RNN state dynamics is related
to standard contractive initialization conditions using small weights, resulting in a Marko-
vian architectural bias [90, 176, 175, 177] of the network dynamics. Recently, Reservoir
Computing (RC) [184, 127] models in general, and Echo State Networks (ESNs) [103, 108]
in particular, are becoming more and more popular as extremely efficient approaches for
RNN modeling. An ESN consists in a large non-linear reservoir hidden layer of sparsely
connected recurrent units and a linear readout layer. The striking characteristic of ESNs
is that the reservoir part can be left untrained after a random initialization under stability
constraints, so that the only trained component of the architecture is a linear recurrent-
free output layer, resulting in a very efficient approach. Very interestingly, in spite of their
extreme efficiency, ESNs achieved excellent results in many benchmark applications (often
outperforming state-of-the-art results [108, 103]), contributing to increase the appeal of
the approach. Despite its recent introduction, a large literature on the ESN model exists
(e.g. see [184, 127] for reviews), and a number of open problems are currently attracting
the research interest in this field. Among them, the most studied ones are related to the
optimization of reservoirs toward specific applications (e.g. [102, 163, 164]), the topologi-
cal organization of reservoirs (e.g. [195, 110]), possible simplifications and variants of the
reservoir architecture (e.g. [53, 29, 31, 157, 26]), stabilizing issues in presence of output
feedback connections (e.g. [156, 109, 193]) and the aspects concerning the short-term
memory capacity and non-linearity of the model (e.g. [183, 25, 98, 97]). However, a topic
which is often not much considered in the ESN literature regards the characterization
of the properties of the model which may influence its success in applications. Studies
in this direction are particularly worth of research interest as indeed they can lead to a
deeper understanding of the real intrinsic potentialities and limitations of the ESN ap-
proach, contributing to a more coherent placement of this model within the field of ML
for sequence domains processing. Moreover, although the performance of ESNs in many
benchmark problems resulted extremely promising, the effectiveness of ESN networks in
complex real-world applications is still considered a matter of investigation, and devising
effective solutions for real-world problems using ESNs is often a difficult task [151].
Recursive Neural Networks (RecNNs) [169, 55] are a generalization of RNNs for direct pro-
cessing hierarchical data structures, such as rooted trees and directed acyclic graphs. Rec-
NNs implement state transition systems on discrete structures, where the output is com-
puted by preliminarily encoding the structured input into an isomorphic structured feature
representation. RecNNs allowed to extend the applicability of neural models to a wide
range of real-world applicative domains, such as Cheminformatics (e.g. [20, 141, 46, 142]),
Natural Language Processing [36, 173] and Image Analysis [54, 39]. In addition to this,
a number of results about the capabilities of universal approximation of RecNNs on hier-
archical structures have been proved (see [86, 82]). However, the issues related to RNN
training continue to hold also for RecNNs [91], in which case the learning algorithms can
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be even more computationally expensive. Thereby, efficiency represents a very important
aspects related to RecNN modeling. Another relevant open topic concerns the class of
structures which can be treated by RecNNs, traditionally limited to hierarchical data. In-
deed, when dealing with more general structured information with RecNNs, the encoding
process in general is not ensured to converge to a stable solution [169]. More in general,
enlarging the class of data structures supported to general graphs is an relevant topic
in designing neural network models. Resorting to constructive static approaches [139],
preprocessing the input structures (e.g. by collapsing cyclic substructures into single ver-
tices, e.g. [142]), or constraining the dynamics of the RecNN to ensure stability [160] are
examples of interesting solutions provided in literature, confirming the significance of this
topic.

The development of novel solutions for learning in highly structured domains based
on the RC paradigm represents an exciting and promising research line. Indeed it would
allow us to combine the extreme approach to learning of the ESN model, with the richness
and the potential of complex data structures. More specifically, RC provides intrinsically
efficient solutions to sequence domains processing, and on the other hand it allows us to
envisage possible methods to exploit the stability properties of reservoir dynamics in order
to enlarge to general graphs the class of data structures supported.

Finally, another notable aspect is related to the problem of extracting the relevant
information from the structured state space obtained by the encoding process of recur-
sive models on structured data. This problem arises whenever the task at hand requires
to map input structures into unstructured vectorial outputs (e.g. in classification of re-
gression tasks on graphs), and assumes a particular relevance whenever we want to be
able to deal with variable size and topology input structures, without resorting to fixed
vertices alignments. If hierarchical data is considered (e.g. sequences or rooted trees),
the selection of the state associated to the supersource of the input structure often repre-
sents a meaningful solution. However, for classes of graphs in which the definition of the
supersource can be arbitrary, the study of approaches for relevant state information extrac-
tion is particularly interesting, also in relation to the other characteristics of the models.
Moreover, the development of flexible and adaptive methods for such state information
extraction/selection is of a great appeal.

1.2 Objectives of the Thesis

The main objective of this thesis consists in proposing and analyzing efficient RC models
for learning in structured domains. In light of their characteristics, the RC in general and
the ESN model in particular, are identified as suitable reference paradigms for approaching
the complexity and investigating the challenges of structured information processing.

Within the main goal, as more complex structured domains are taken into consider-
ation, the focus of the research gradually moves from the analysis of the basic models
for sequence domains, to the development of new models for tree and graph domains. In
particular, the investigations on the standard ESN focus on the problem of isolating and
properly characterizing the main aspects of the model design which define the proper-
ties and the limitations of reservoir dynamics and positively/negatively influence the ESN
performance in applications. When more complex data structures are considered, the
research interest is more prominently focused on devising novel analytical and modeling
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tools, based on the generalization of ESN to trees and graphs, in order to approach the
challenges arising from the increased data complexity. In this concern, an aspect deserving
attention is related to the possibility of developing adaptive methods for the extraction
of the state information from structured reservoir state spaces. This point is of special
interest when dealing with variable size and topology general graphs. At the same time,
in our research direction from sequences, to trees, to graphs, the most appropriate tools
developed for less general classes of structures are preserved and exploited also for dealing
with more general data structures.

Overall, the research studies described in this thesis aim at developing an RC frame-
work for learning with increasingly complex and general structured information, providing
a set of tools with more specific suitability for specific classes of structures.

Another objective consists in assessing the predictive performance of the proposed
models on both artificial and challenging real-world tasks, in order to confirm the ap-
propriateness and the effectiveness of the solutions introduced. Such applicative results
contribute to enlighten the characteristics and critical points of the approach, which are
properly investigated and analyzed.

1.3 Contributions of the Thesis

The main contributions of this thesis are discussed in the following.

Analysis of Markovian and architectural factors of ESNs

We provide investigations aimed at identifying and analyzing the factors of ESNs which
determine the characteristics of the approach and influence successful/unsuccessful appli-
cations. Such factors are related to both the initialization conditions of the reservoir and
to the architectural design of the model. In particular, the fixed contractive initialized
reservoir dynamics implies an intrinsic suffix-based Markovian nature of the state space
organization. The study of such Markovian organization of reservoir state spaces consti-
tutes a ground for the analysis of the RC models on structured domains proposed in the
following of the thesis. The role of Markovianity results of a particular relevance in defin-
ing the characteristics and the limitations of the ESN model, and positively/negatively
influences its applicative success. The effect of Markovianity in relation to the known is-
sue of redundancy of reservoir units activations is also studied. Other important aspects,
such as high dimensionality and non-linearity of the reservoir, are analyzed to isolate the
architectural sources of richness of ESN dynamics. Specifically, the roles of variability
on the input, on the time-scale dynamics implemented and on the interaction among the
reservoir units reveal relevant effects in terms of diversification among the reservoir units
activations. In addition, the possibility of applying a linear regression model in a high
dimensional reservoir state space is considered as another major factor in relation to the
usual high dimensionality of the reservoir. Architectural variants of the standard ESN
model are also accordingly introduced. Their predictive performance is experimentally
assessed in benchmark and complex real-world tasks, in order to highlight the effects of
the inclusion in the ESN design of single factors, of their combinations and their relative
importance.
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Tree Echo State Networks

We introduce the Tree Echo State Network (TreeESN) model, an extension of the
ESN for processing rooted tree domains. As such, TreeESN represents also an extremely
efficient approach for modeling RecNNs. The computational cost of TreeESN is properly
analyzed and discussed. The generalized reservoir of TreeESNs encodes each input tree
into a state representation whose structure is isomorphic to the structure of the input1.
The tree structured state computed by the reservoir is then used to feed the readout for
output computation.

We provide an analysis of the initialization conditions based on contractivity of the
dynamics of the state transition system implemented on tree patterns. The resulting
Markovian characterization of the reservoir dynamics represents an important aspect of
investigation, inherited from our studies on standard RC models, extended to the case
of tree suffixes. For applications in which a single vectorial output is required in corre-
spondence of each input tree (e.g. for classification of trees), we introduce the notion of
the state mapping function, which maps a structured state into a fixed-size feature state
representation to which the readout can be applied in order to compute the output. Two
choices for the state mapping function are proposed and investigated, namely we consider
a root state mapping (selecting the state of the root node) and a mean state mapping
(which averages the state information over all the nodes in an input tree). The effects of
the choice of the state mapping function are studied both theoretically and experimentally.
In particular, an aspect of great importance for applications of TreeESNs is the study of
the relations between the choice of the state mapping function and the characteristics of
the target task to approach.
The potential of the model in terms of applicative success is assessed through experiments
on a challenging real-world Document Processing task from an international competition,
showing that TreeESN, in spite of its efficiency, can represent an effective solution capable
of outperforming state-of-the-art approaches for tree domain processing.

Graph Echo State Networks

The Graph Echo State Network (GraphESN) model generalizes the RC paradigm for a
large class of cyclic/acyclic directed/undirected labeled graphs. GraphESNs are therefore
introduced according to the two aspects of efficiently designing RecNNs and enlarging the
class of data structures naturally supported by recursive neural models. A contractive
initialization condition is derived for GraphESN, representing a generalization of the anal-
ogous conditions for ESNs and TreeESNs. The role of contractivity in this case represents
also the basis for reservoir dynamics stabilization on general graph structures, even in
the case of cyclic and undirected graphs, resulting in an iterative encoding process whose
convergence to a unique solution is guaranteed. The Markovian organization of reser-
voir dynamics, implied by contractivity, is analyzed also for GraphESN, characterizing
its inherent ability to discriminate among different input graph patterns in a suffix-based
vertex-wise fashion. In this concern, the concept of suffix is also suitably generalized to
the case of graph processing. In this sense, the GraphESN model turns out to be an ar-
chitectural baseline for recursive models, especially for those based on trained contractive

1The notion of isomorphism here is related to the (variable) topological structure of the input tree.
This point is elaborated in Sections 2.2.1, 2.2.3 and 6.2 (see also [86]), and is inherited from the concept
of synchronous sequence transductions processing [55].
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state dynamics. The efficiency of GraphESN is studied through the analysis of its compu-
tational cost, which is also interestingly compared with those of state-of-the-art learning
models for structured data. The role of the state mapping function in GraphESNs is even
more relevant, in particular when dealing with classes of general graphs, for which a su-
persource or a topological order on the vertices cannot be defined.
Experiments on real-world tasks show the effectiveness of the GraphESN approach for
tasks on graph domains.

Adaptive and supervised extraction of information from structured state spaces:
GraphESN-wnn and GraphESN-NG

The study of recursive models on general graph domains highlights the problems related
to the fixed metrics adopted in the computation of state mapping functions, representing
an issue still little investigated in literature. Thereby, for tasks requiring to map input
graphs into fixed-size vectorial outputs, we study the problem of extracting the relevant
state information from structured reservoir state spaces. The relevance of this problem
is also related to the necessity of processing variable size and topology graph domains,
without resorting to fixed alignments of the vertices. We approach this problem by focus-
ing our research on flexible and adaptive implementations of the state mapping function,
making use of state-of-the-art ML methods. In the progressive modeling improvement of
GraphESN towards adaptivity of the state mapping function, we introduce the GraphESN-
wnn and the GraphESN-NG models. In particular, GraphESN-wnn uses a variant of the
distance-weighted nearest neighbor algorithm to extract the state information in a super-
vised but non-adaptive fashion. On the other hand, in GraphESN-NG the reservoir state
space is clustered using the Neural Gas algorithm, so that the state information is locally
decomposed and then combined based on the target information, realizing an adaptive
state mapping function.
The effectiveness of processing the state information in a flexible and target-dependent
way is experimentally shown on real-world tasks.

Real-world applications
Finally, in this thesis we also present interesting applications of RC models to real-

world tasks. In the context of sequence processing, we show an application of ESNs in
the innovative emergent field of Ambient Assisted Living. In this case the RC approach is
used to forecast the movements of users based on the localization information provided by
a Wireless Sensor Network. Moving to more complex data structures, we show the appli-
cation of TreeESN and GraphESN (including also GraphESN-wnn and GraphESN-NG) to
a number of real-world problems from Cheminformatics, Toxicology and Document Pro-
cessing domains. In this regard, it is worth stressing that despite the fact that TreeESN
and GraphESN are designed to cover increasingly general class of structures, each model is
specifically more suitable for specific classes of structures. In particular, when the informa-
tion of interest for the problem at hand can be coherently represented by rooted trees, the
TreeESN model provides an extremely efficient yet effective solution, with performance in
line with other state-of-the-art methods for tree domains. In other cases, when the data is
more appropriately representable by the means of general (possibly cyclic and undirected)
graphs, the GraphESN model, preserving the efficiency of the approach, represent the
natural RC solution.
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1.4 Plan of the Thesis

This thesis is organized in three parts.

In Part I (Chapter 2), we present a review of the basic notions of ML which are of
specific interest for this thesis. In Section 2.1 we briefly describe standard ML methods for
processing flat domains, with particular regard to neural network models for supervised
learning. Then, in Section 2.2, we focus the attention on ML for structured domains.
In particular, we introduce the general framework for recursive processing structured do-
mains that is referred in the rest of the thesis. The classes of RNNs and RecNNs, the RC
paradigm and the related approaches are described within such framework.

As specified in Section 1.2, in this thesis we consider classes of data structures of
progressive complexity and generality, from sequences, to trees and graphs, with a research
focus that consequently moves from analysis to development of new models.

For the sake of simplicity of the organization, although the studies described follow a
uniform line of research, the investigations on the standard ESN for sequence processing
are described in Part II, while the studies concerning the generalization of the RC paradigm
for highly structured domains are described in Part III.

More in detail, in Part II, Chapter 3 presents the analysis of the Markovian and ar-
chitectural factors of ESN design. In particular, the effect of the Markovian nature of
the reservoir state space organization is discussed, and relevant factors of ESN architec-
tural design are introduced along with corresponding variants to the standard ESN model.
Chapter 4 investigates the relations between Markovianity of ESN dynamics and the is-
sue of redundancy among reservoir units activations. Finally, Chapter 5 illustrates an
application of ESNs in the area of Ambient Assisted Living.

Part III presents the studies related to the generalization of the RC paradigm to highly
structured domains.
Chapter 6 introduces the TreeESN model. The study of Markovianity, inherited from the
investigations on sequence domains in Part II, is adopted as a useful tool for characteriz-
ing the properties of the proposed model. Chapter 6 also introduces the concept of state
mapping functions for structured domain processing within the RC approach, illustrating
its relations with the characteristics of the target task. Applications of TreeESNs in both
artificial and real-world problems are discussed in Chapter 6 as well.
The GraphESN model is presented in Chapter 7, illustrating the main features of the
approach and examples of applications on real-world tasks.
Chapter 8 focuses on the problem of extracting the relevant information from the reservoir
state space in GraphESN, introducing GraphESN-wnn and GraphESN-NG, which repre-
sent progressive modeling advancements in the direction of adaptive implementations of
state mapping functions. The effectiveness of the solutions proposed is assessed by com-
paring the performance of the proposed variants with the performance of basic GraphESNs
on real-world tasks.

Chapter 9 draws the conclusions and discusses future research works.

Finally, for the ease of reference, in Appendix A we provide a useful brief description
of the datasets used in this thesis.
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1.5 Origin of the Chapters

Many of the research studies described in this thesis have been already published in tech-
nical reports, conference proceedings or journal papers. In particular:

• The analysis of the ESN factors and the architectural variants to the standard model,
presented in Chapter 3, appears in a journal paper [62] and in [58].

• The analysis of the relations between Markovianity and redundancy in ESNs, dis-
cussed in Chapter 4, has been presented in [60].

• The applications of ESNs to the field of Ambient Assisted Living, illustrated in
Chapter 5, have been proposed in [68, 8, 67].

• The TreeESN model, presented in Chapter 6, has been proposed in [66], submit-
ted for journal publication. A preliminary empirical investigation concerning the
TreeESN model appears in [61].

• The GraphESN model, described in Chapter 7, has been presented in [59], and a
journal version is in preparation [64].

• The GraphESN-wnn model, introduced in Chapter 8 (Section 8.2), has been pre-
sented in [63].

• GraphESN-NG, discussed in Chapter 8 (Section 8.3), has been proposed in [65].



Chapter 2

Background and Related Works

In this Chapter we review the main background notions related to the research field of
Machine Learning for structured domains. With the exception of some mentions to kernel
methods, we deal mainly with neural network models. First, in Section 2.1 we briefly
describe traditional Machine Learning approaches for flat vectorial domains. Then, in
Section 2.2 we introduce the basic concepts of learning in structured domains, describing
the general framework for the recursive processing of structured data that will be referred
in the rest of this thesis. The Reservoir Computing paradigm is reviewed within the
introduced framework, as well as other standard Machine Learning approaches for struc-
tured data, with particular emphasis to those related to the Reservoir Computing models
proposed in Part III.
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2.1 Machine Learning for Flat Domains

This Section briefly reviews standard Machine Learning models for processing flat vectorial
domains, with a main focus on feed-forward neural networks for supervised tasks. Other
standard approaches and techniques for flat domains, which are considered in the rest of
the thesis, are briefly reviewed as well.

2.1.1 A Short Introduction to Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence which deals with the problem
of designing systems and algorithms which are able to learn from experience. The main
problem in ML is that one of inferring general functions on the basis of known data
sets. ML is particularly suitable in application domains for which there is still a lack
of understanding about the theory explaining the underlying processes, and thus a lack
of effective algorithms. The goal is to model observable systems or phenomenons whose
input-output behavior is described by a set of data (e.g. experimentally observed), but
whose precise characterization is still missing. In general, a ML model can be characterized
by the kind of data it is able to deal with, the kind of tasks it is able to face and the class
of functions it is able to compute.

Data can be roughly divided into structured and unstructured. An instance in an un-
structured domain is a flat collection of variables of a fixed size (e.g. vectors or matrices),
while an instance in a structured domain is made up of basic components which are in rela-
tion among each other (e.g. sequences, trees, graphs). Variables describing the information
content in a structured or unstructured piece of data can be numerical or categorical. A
numerical variable can range in a subset of a continuous or discrete set (e.g. the set of
real numbers R), while a categorical variable ranges in an alphabet of values where each
element has got a specific meaning. Symbolic models can deal with categorical informa-
tion, while sub-symbolic models can deal with sub-symbolic information, namely numbers.
We focus our research interest on sub-symbolic learning models, for a number of reasons.
Among them, notice that it is always possible to map any categorical domain D into an
equivalent numerical one D

′

by using an injective mapping. Thus sub-symbolic models are
generally able to treat both numerical and categorical variables. Secondly, sub-symbolic
models can manage noisy, partial and ambiguous information, while symbolic models are
usually are less suitable for that. In addition to this, the broad class of sub-symbolic
models considered in this thesis, namely neural networks, have been successfully applied
to solve several real-world problems coming from many application domains, such as web
and data mining, speech recognition, image analysis, medical diagnoses, Bioinformatics
and Cheminformatics, just to cite a few. However, one of the main traditional research
issues in the field of sub-symbolic learning machines is to make them capable of processing
structured data. In fact, while symbolic models are in general suitable at managing struc-
tured information, classical sub-symbolic models can naturally process flat data, such as
vectors, or very simply structured data, namely temporal sequences of data. This issue is
the core point of this thesis.

For our purposes two main learning paradigms can be distinguished, namely supervised
learning and unsupervised learning. Very roughly speaking, in the case of supervised
learning (also known as learning by examples), we assume the existence of a teacher (or
supervisor) which has a knowledge of the environment and is able to provide examples of
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the input-output relation which should be modeled by the learning machine. In practice,
in this case, we can equivalently say that each input example is labeled with a target
output. Common tasks in the context of supervised learning are classification, in which
the target output is the class membership of the corresponding input, and regression,
in which the target output is the output of an unknown function (e.g. with continuous
output domain) of the corresponding input. In the case of unsupervised learning, there is
no any target output associated to input examples, i.e. examples are unlabeled. Thus, the
learning machine has to deal with a set of input patterns from an input space, and its goal
consists in discovering how these data are organized. Examples of tasks for unsupervised
learning are clustering, dimensionality reduction and data visualization.

In this thesis, we mainly deal with ML models for learning in a supervised setting.
More formally, we consider a model of the supervised learning paradigm (e.g. see [181,
180]) comprising input data from an input space U , target output data from an output
space Y and a learning machine (or learning model). Input data come from a probability
distribution P (x), while target output data (modeled by the teacher’s response) come from
a conditional probability distribution P (ytarget|x). Both P (x) and P (ytarget|x) are fixed
but unknown. A learning machine is able to compute a function, or hypothesis, denoted by
hw(x) which depends on its input x ∈ U and on its free parametersw ∈ W, whereW is the
parameter space. The operation of a learning machine can be deterministic or stochastic.
In this thesis we specifically focus our attention on deterministic learning machines. Given
a precise choice for the parameters w, the learning machine computes a precise function
hw : U → Y from the input domain U to the output domain Y. The hypotheses space of a
learning model, denoted by H, is defined as the class of functions that can be computed
by the model, varying the values of the parameters w within the parameter space W,
i.e. H = {hw : U → Y|w ∈ W}. Learning is then necessary for properly selecting the
hypothesis hw ∈ H which better approximates the teacher’s response. This problem can
be viewed, equivalently, as a the problem of searching for the best parameters setting
w in the parameters space W. This search is based on a set of examples, denoted by
T, which is available for the particular target system in consideration. The elements of
the dataset T consist in independent identically distributed (i.i.d.) observations from the
joint probability distribution P (x,ytarget). In practice, each example in T is made up of
an input data and a corresponding target output data, i.e. (x(i),ytarget(i)), where x(i)
denotes the i-th observed input and ytarget(i) is the corresponding target output. The
algorithm responsible for searching the hypotheses space is called the learning algorithm.
It should be noted here, that the goal of learning is not to find the hypothesis which
best fits the available data samples, but to find the hypothesis that best generalizes the
input-output relation which is sampled by the available observations. This means that we
search the hypotheses space H for a function that behaves well not only for the observed
data, but also for new unseen examples taken from the same problem domain. In fact, a
good hypothesis for the observed data could perform poorly on unseen samples because
it is over-fitted to the data samples used for training (i.e. the training set). A principled
way to control the generalization performance is to limit the computational power of the
model by resorting to some measure of the complexity of the hypotheses space, like for
instance the Vapnik-Chervonenkis (VC) dimension (e.g. [181, 180]). A good performance
in generalization derives from a trade-off between fitting the training set and controlling
the complexity of the model. A deeper discussion about learning and generalization is
presented further in section 2.1.2.
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With the objective of generalization in mind, we do not use the whole data set of available
examples for training the learning model, instead the available data are usually divided
into two sets, a training set Ttrain, which is used to train the model, and a test set Ttest,
which is used to validate it. Accordingly, the learning machine usually undergoes two
main processes, a training process and a test process. In the former the hypotheses space
is searched for the hypothesis which best fits the training set, while in the latter the model
is tested for its generalization capability on the test set. The basic assumption here is
that the available data sets are large enough and representative enough of the respective
domains. When the generalization performance of the learning machine is found to be
satisfactory, it can be used with real-world data coming from the problem domain at hand
(operational phase).

In this thesis, we mainly focus the research attention on the class of neural network
models. Before introducing some basic notions about them, in the next Section 2.1.2, a
deeper insight is presented about the important topic of designing learning systems which
are able to generalize well from a set of known examples.

2.1.2 Learning and Generalization

Consider a supervised learning task which consists in finding the best approximation of
an unknown function f : U → Y, on the basis of a set of i.i.d. input-output examples,
Ttrain = {(x(i),ytarget(i))}

NTrain

i=1 , where x(i) is the i-th input pattern, ytarget(i) = f(x(i))
is the i-th target response and NTrain is the number of available training examples. As
introduced in Section 2.1.1, the hypotheses space of our learning model can be described
as H = {hw : U → Y|w ∈ W}, where W is the parameters space. Given the value w
for the parameters, the computed function is y(x) = hw(x). In order to evaluate the
discrepancy between the desired response and the actual response of the model, we use a
loss function L : Y × Y → R.
Our goal is to minimize the expected value of the loss function, or the risk functional

R(w) =

∫

L(ytarget, hw(x))dPx,ytarget(x,ytarget) (2.1)

where Px,ytarget(x,ytarget) is the joint cumulative distribution function for x and ytarget.
Minimizing R(w) directly is complicated because the distribution function Px,ytarget(x,
ytarget) is usually unknown. Everything we know about the unknown function f is the
training set of input-output examples Ttrain. Thus we need an inductive principle in order
to generalize from those examples. A very common inductive principle is the principle of
empirical risk minimization, which consists in minimizing a discrepancy measure between
the actual and the desired response on the training set. Specifically, instead of minimizing
equation 2.1 one could minimize an approximation of the risk functional R(w), namely

Remp(w) =
1

NTrain

NTrain
∑

i=1

L(ytarget(i), hw(x(i))) (2.2)

which is called the empirical risk functional. Remp(w) represents the empirical mean of
the loss function evaluated on the training samples in Ttrain. Because of the law of the
large numbers, as NTrain → ∞, the empirical risk functional evaluated at w, i.e. Remp(w),
approaches the risk functional evaluated at the same w, i.e. R(w). However, for small
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values of NTrain the difference between R(w) and Remp(w) could be non negligible. This
means that in general a small error on the training set does not guarantee a small error
on unseen examples (generalization error).

A possible principled way to improve the generalization performances of a learning
model consists in restricting its hypotheses space by limiting the complexity of the class
of functions it can compute. One way to do so is provided by the VC-theory [181, 180].
This theory is based on a measure of the power of a class of functions, namely the VC
dimension. By using a complexity measure like the VC dimension it is possible to provide
an upper bound to the functional risk:

R(w) ≤ Remp(w) + Φ(NTrain, V C(H), δ) (2.3)

where V C(H) is the VC dimension of the hypotheses space H. Equation 2.3 holds for
every NTrain > V C(H), with probability at least 1 − δ. The right hand side in (2.3) is
also called the guaranteed risk and it is the sum of the empirical risk functional Remp(w)
and the quantity Φ(NT , V C(H), δ), which is called the confidence term. If the number of
available samples NTrain is fixed, as the VC dimension of H increases, the confidence term
increases monotonically, whereas the empirical risk functional decreases monotonically.
This is illustrated in Figure 2.1. The right choice is the hypothesis that minimizes the

0

VC dimension

E
rr
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Confidence Term

Bound on the generalization error

Empirical Risk

Figure 2.1: The upper bound on the generalization error.

guaranteed risk, i.e. something in the middle between a highly complex model and a too
simple one. Minimizing the guaranteed risk is another inductive principle which is called
the principle of structural risk minimization. It suggests to select a model which realizes
the best trade-off between the minimization of the empirical error and the minimization
of the complexity of the model.
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2.1.3 Feed-forward Neural Networks

Feed-forward neural networks constitute a powerful class of learning machines which are
able to deal with flat numerical data, facing supervised and unsupervised tasks. Neural
networks are interesting for a number of reasons. In this context, we can appreciate the
possibility of processing both numerical and categorical information, and computing in
presence of noisy and partial data. Moreover, by adapting their free parameters based on
known data samples, feed-forward neural networks are featured by universal approximation
capabilities [38]. In addition to this, neural networks represent one of the most used and
known class of ML models, successfully applied in many real-world applications. A deeper
introduction to this class of learning machines can be found e.g. in [94, 28].

When computing with neural networks, the considered domains are numerical. In the
following, RU and R

Y are used to denote the input and output spaces, respectively. From
an architectural perspective, a feed-forward neural network is made up of simple units, also
called neurons. Considering a single neuron, let x ∈ R

U denote the input pattern, w ∈ R
U

a weight vector, and b ∈ R a bias. Then the output of the neuron is y = f(wTx+b) ∈ R
Y ,

where f is the activation function. The weight vector w and the bias b represent the
free parameters of the neuron. Note that very often the bias is treated as an additional
weight (with typically unitary associated input) and is therefore represented as an extra
component within the weight vector w. The activation function determining the output
of the neuron can be linear or non linear. Often the non-linear activation functions are of
a sigmoidal type, such as the logistic function or the hyperbolic tangent function. Typical
discrete output counterparts are the Heaviside or the sign threshold functions.

Neural networks can be designed by composing units according to a specific topology.
The most common topology provides for an organization of units in layers, where typically
each unit in each layer is fed by the output of the previous layer and feeds the units in
the following layer. Here we consider only feed-forward neural networks architectures, in
which the signal flow is propagated from the input layer towards the output layer without
feedback connections. In order to present an overview of the main characteristics of this
class of models, let us focus on a particularly simple yet effective class of feed-forward
neural networks, i.e. Multilayer Perceptrons (MLP). The architecture of a two-layered
MLP is depicted in Figure 2.2, consisting in an NU -dimensional input layer, an hidden
layer with NR units and an output layer with NY units. The function computed by the
network is given by

y(x) = fo(Wofh(Whx)) (2.4)

where x ∈ R
NU is the input pattern, y(x) ∈ R

NY is the corresponding output computed by
the MLP, Wh ∈ R

NR×NU and Wo ∈ R
NY ×NR are the weight matrices (possibly including

bias terms) for the connections from the input to the hidden and from the hidden to
the output layers, respectively, and fh and fo denote the element-wise applied activation
functions for hidden and output units, respectively. Note that fh(Whx) ∈ R

NR represents
the output of the hidden layer. MLPs are mainly used to approach supervised tasks on
flat domains, e.g. classification and regression from a real vector sub-space, and some kind
of unsupervised tasks, such as dimensionality reduction.

MLPs constitute a powerful class of learning machines, in fact a MLP with only one
hidden layer can approximate any continuous function defined on a compact set, up to
any arbitrary precision (e.g. see [38, 94]). Equation (2.4) describes the hypotheses class
associated to MLPs. The particular hypothesis is selected by choosing the weight values
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Figure 2.2: Architecture of an MLP with two layers.

in the weight matrices, i.e. the elements of matrices Wh and Wo, which represent the free
parameters of the model. Assuming a supervised learning setting and given the training
set Ttrain = {(x(i),ytarget(i))}

NTrain

i=1 , the learning algorithm should tune the free param-
eters of the model in order to reduce a discrepancy measure between the actual output of
the network and the desired one, for each example in the training set.
To this aim, the most known and used learning algorithm for MLPs is the Back-propagation
Algorithm, which is an iterative algorithm implementing an unconstrained minimization
of an averaged squared error measure, based on a gradient descent technique. The error
(loss) function to be minimized is

Emse =
1

NTrain

NTrain
∑

i=1

‖ytarget(i)− y(x(i))‖22. (2.5)

Note that equation 2.5 corresponds to the definition of the empirical risk in equation 2.2, by
using a quadratic loss function. Once the actual output of the network has been computed
for each input pattern in the training set, the averaged squared error is computed using
equation 2.5, and the weights can be adjusted in the direction of the gradient descent:

∆w
(l)
ji ∝ −

∂Emse

∂w
(l)
ji

(2.6)

where w
(l)
ji denotes the weight on i-th connection for neuron j in layer l, and ∂Emse/∂w

(l)
ji

is the gradient of the error with respect to the weight. The rule of equation 2.6 is applied
until the error measure Emse goes through a minimum. The error surface is typically
characterized by local minima, so the solution found by the Back-propagation Algorithm
is in general a suboptimal solution. Slow convergence is another known drawback of this
gradient descent method. Other training algorithms have been designed for multilayer per-
ceptrons, such as [48, 18, 128], just to cite a few. They try to overcome typical gradient
descent disadvantages by using other optimization methods, e.g. second-order information
or genetic algorithms.



30 CHAPTER 2. BACKGROUND AND RELATED WORKS

Another relevant issue about feed-forward neural networks concerns the optimum archi-
tectural design of MLPs. One solution to this problem is given by the Cascade Correlation
algorithm [47], which follows a constructive approach such that hidden neurons are pro-
gressively added to the network. Simply put, Cascade Correlation initializes a minimal
network with just an input layer and an output layer, and then adds new units as the
residual error of the network is too large. When the i-th hidden unit is added to the
network, it is fully connected to the input layer and to the i − 1 already present hidden
units. By using a gradient ascent method, the weights on these connections are trained to
maximize the correlation between the output of the inserted unit and the residual error
of the output units. After this phase, the trained connections are frozen, the i-th hidden
neuron is fully connected to the output layer and all the connections pointing to the out-
put layer are re-trained to minimize the training error. This approach is appealing for a
number of reasons. Among all, it provides a way to make the network decide its own size
and topology in a task dependent fashion, and secondly, in general, this algorithm learns
faster than other training algorithms such as Back-propagation. Moreover, the Cascade
Correlation approach has been extended to deal with structured data. Such extensions
are described in Sections 2.2.4, 2.2.6 and 2.2.7.

2.1.4 Support Vector Machines and Kernel Methods

Support Vector Machines (SVMs) (e.g. [181, 180]) represent a class of linear machines
implementing an approximation of the principle of structural risk minimization (Sec-
tion 2.1.2). SVMs deal with flat numerical data and can be used to approach both classi-
fication and regression problems. To introduce the SVM model, let consider a binary clas-
sification problem described by a set of training samples Ttrain = {(x(i), ytarget(i))}

NTrain

i=1 ,
where for every i = 1, . . . , Ntrain, x(i) ∈ R

NU and ytarget ∈ {−1, 1}. An SVM classifies an
input pattern x by using a linear decision surface, whose equation is:

wTx+ b = 0. (2.7)

which defines the hypotheses space: H = {y(x) = wTx+ b|w ∈ R
NU , b ∈ R}. A particular

hypothesis is selected by choosing the values for the free parameters of the linear model, i.e.
w ∈ R

NU and b ∈ R. The free parameters of the SVM are adjusted by a learning algorithm
in order to fit the training examples in Ttrain. If the points in Ttrain are linearly separable,
then an infinite number of separating linear hyperplanes exist. The idea behind SVMs is
to select the particular hyperplane which maximizes the separation margin between the
different classes. This is graphically illustrated in Figure 2.3. Maximizing the separation
margin can be shown to be equivalent to minimizing the norm of the weight vector w. This
approached is principled in the Vapnik’s theorem [181, 180], which roughly states that the
complexity of the class of linear separating hyperplanes is upper bounded by the squared
norm of w. Thus, the complexity of the hypotheses space of an SVM can be controlled by
controlling ‖w‖22. Thereby, training an SVM can be formulated in terms of a constrained
optimization problem, consisting in minimizing an objective function Φ(w) = 1/2‖w‖22
under the condition of fitting the training set Ttrain, i.e. ytarget(i)(w

Tx(i) + b) ≥ 1 for
every i = 1, . . . ,Ntrain.

If the classification problem is not linearly separable, then the objective function must
be properly modified, in order to relax the strict fitting condition on the training set,
through the use of a set of NTrain slack variables. The function to be minimized is
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Figure 2.3: An example of linearly separable classification problem and optimal separation
hyperplane.

Φ(w, ξ) = 1/2‖w‖22+C‖ξ‖22, where ξ = [ξ1, . . . , ξNTrain
]T is the vector comprising the slack

variables and C > 0 is a positive user specified parameter, which acts as trade-off between
the minimization of the complexity of the model and the minimization of the empirical
risk. The minimization of Φ(w, ξ) is constrained by the conditions ytarget(i)(w

Tx(i)+b) ≥
1 − ξi ∀i = 1, . . . , NTrain and ξi ≥ 0 ∀i = 1, . . . , NTrain. The optimization problem
is solved using the method of Lagrangian multipliers, leading to the formulation of a
Lagrangian function and then of a dual problem consisting in maximizing the function:

Q(α) =

NTrain
∑

i=1

αi −
1

2

NTrain
∑

i,j=1

αi αj ytarget(i) ytarget(j) x(i)
Tx(j) (2.8)

with respect to the set of Lagrangian multipliers {αi}
Ntrain

i=1 , subject to the constraints
∑NTrain

i=1 αiytarget(i) = 0 and 0 ≤ αi ≤ C ∀i = 1, . . . , NTrain. Note that maximizing Q(α)
is a problem that scales with the number of training samples. By solving the optimization
problem, all the Lagrangian multipliers are forced to 0, except for those corresponding
to particular training patterns called support vectors. In particular, a support vector

x(s) satisfies the condition y
(s)
target(w

Tx(s) + b) = 1− ξ(s). In the case of linearly separable
patterns, the support vectors are the closest training patterns to the separating hyperplane
(see Figure 2.3). Once the maximization problem has been solved, the optimum solution
for the weight vector w can be calculated as a weighted sum of the support vectors, namely
w =

∑NTrain

i=1 αiytarget(i)x(i). Note that in this sum, only the Lagrangian multipliers
corresponding to support vectors are non zero. The optimum bias b is computed in a
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similar way. The decision surface can therefore be computed as

NTrain
∑

i=1

αi ytarget(i) x
T
i x+ b = 0. (2.9)

Note that the previous equation 2.9, as well as the function Q in equation 2.8, depends
on the training patterns only in terms of inner products of support vectors.

Given a classification problem on the input space U , the Cover’s theorem about the
separability of patterns [181, 37] roughly states that the probability that such classification
problem is linearly separable is increased if it is non-linearly mapped into a higher dimen-
sional feature space. This principle is used in SVMs, by resorting to a non linear function
φ : U → X to map the problem from the original input space U into an higher dimensional
feature space X . The optimization problem is then solved in the feature space, where the
probability of linear separability is higher. The inner products in equations 2.8 and 2.9
can be applied in the feature space X without explicitly computing the mapping function
φ, by resorting to a symmetric kernel function k : U × U → R. The kernel function k
computes the inner product between its arguments in the feature space without explicitly
considering the feature space itself (kernel trick), i.e. for every x,x′ ∈ U :

k(x,x′) = φ(x)Tφ(x′). (2.10)

By using a kernel function, equations 2.8 and 2.9 can be redefined such that each occur-
rence of an inner product is replaced by the application of the kernel function. A kernel
function k can be considered as a similarity measure between its arguments, and therefore
the classification problem can be intended as defined on pairwise comparisons between the
input patterns.
For a kernel function k to be a valid kernel, i.e. to effectively correspond to an inner
product in some feature space, k must satisfy the Mercer’s condition [181], i.e. it has to
be a positive definite kernel. Positive definite kernels have nice closure properties. For
instance, they are closed under sum, multiplication by a scalar and product.
Wrapping up, a classification problem is indirectly cast in an higher feature space non-
linearly by defining a valid kernel function. A dual optimization problem consisting in max-
imizing the function Q(α) =

∑NTrain

i=1 αi − 1/2
∑NTrain

i,j=1 αiαjytarget(i)ytarget(j)k(x(i),x(j))

with respect to the variables {αi}
NTrain

n=1 , and subject to certain constraints, is solved and

the equation of the decisional surface is computed as
∑NTrain

i=1 αiytarget(i)k(x(i),x)+b = 0.
The kernel function k must be defined a-priori and in a task specific fashion, moreover

its proper design is of a central importance for the performance of the model. Two common
classes of kernels are the polynomial kernel (i.e. k(x,x′) = (xTx′ +1)p) and the Gaussian
kernel (i.e. k(x,x′) = exp(−(2σ2)−1‖x− x′‖22), which always yield valid kernels.

Kernel functions can be used to extend the applicability of any linear learning method
which exploits the inner product between input patterns to non linear problems. This can
be done by simply substituting each occurrence of an inner product with the application
of the kernel function. The family of learning models that resort to the use of a kernel
function is known as kernel methods. An advantage of kernel methods is that it is often
easier to define a similarity measure between the input patterns of a classification or
regression problem, instead of projecting them into a feature space in which to solve the
problem. Moreover, note that the feature space embedded into a valid kernel function
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can have infinite dimensions. On the other hand, the main drawback involved by kernel
methods is that each problem may require a specific a-priori definition of a suitable kernel
function, which is fixed and not learned from the training data. Another critical aspect of
kernel methods is related to the computational efficiency of the algorithm that computes
the kernel function, whose design often requires particular care.

2.1.5 Nearest Neighbor

The Nearest Neighbor algorithm implements an instance-based approach for classification
and regression tasks. Accordingly, the training phase simply consists in storing all the
training data, while the output function is computed (based on local information) only
when a new input pattern is presented. In this case the hypothesis is constructed at the
test phase and locally to each input pattern. The underlying assumption is that the target
output for an input pattern can be coherently computed to be more similar to the “closer”
training samples in the metric space considered.

Suppose we have a training set Ttrain = {(x(i),ytarget(i))}
NTrain

i=1 , where e.g. input
element are in an N -dimensional real sub-space, i.e. x(i) ∈ R

N ∀i = 1, . . . , NTrain, and
a test sample x ∈ R

N . The Nearest Neighbor algorithm associates to x the target output
corresponding to the training sample n1(x) ∈ {x(1), . . . ,x(NTrain)} which is closer to x
(using the Euclidean distance):

y(x) = ytarget(n1(x)). (2.11)

A generalization of equation 2.11 is represented by the K-Nearest Neighbor algorithm, in
which the K closest training input patterns to x, denoted as n1(x), . . . , nK(x), are used
to compute y(x). In particular, for classification tasks, y(x) can be computed as:

y(x) = argmax
y′

K
∑

i=1

δ(y′,ytarget(ni(x))). (2.12)

where δ(·, ·) is the Kronecker’s delta, and the classification of x is the most common
classification among the K closest training input patterns to x. For regression tasks, e.g.
when the output domain is a sub-set of R, the output for x can be computed as the average
target output over the K training nearest neighbors of x, i.e.

y(x) =
1

K

K
∑

i=1

ytarget(ni(x)). (2.13)

The distance-weighted K-Nearest Neighbor algorithm is a common variant of the stan-
dard K-Nearest Neighbor, aiming to alleviate the effect of possible noise in the training
input data. It consists in weighting the contributions of each nearest neighbor propor-
tionally to the reciprocal of the distance from the test input pattern. In this way, closer
neighbors have a stronger influence on the output, whilst very distant neighbors do not
affect much the output computation. Given an input pattern x, let denote by wi the
inverse square of the Euclidean distance between x and its i-th nearest neighbor ni(x),
i.e. wi = 1/‖x− ni(x)‖

2
2. For classification tasks, equation 2.12 is modified according to:

y(x) = argmax
y′

K
∑

i=1

wiδ(y
′,ytarget(ni(x))). (2.14)
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while, for regression tasks, equation 2.13 is modified such that

y(x) =

K
∑

i=1
wi ytarget(ni(x))

K
∑

i=1
wi

. (2.15)

2.1.6 Neural Gas

Neural Gas (NG) [136] is a clustering algorithm. In general, clustering algorithms are
used to partition a set of observations in groups, such that more similar observations tend
to fall within the same group. Considering a set S ∈ R

N , and a distance metric on S,
denoted as d(·, ·), the goal consists in finding K prototype vectors (or cluster centroids)
c1, . . . , cK ∈ R

N . Such vectors are used to encode the elements of S, such that each
x ∈ S is represented by the winner prototype c(x) which is “closer” (in some sense) to x
according to the metric d, i.e. typically d(x, c(x)) ≤ d(x, ci) ∀i = 1, . . . ,K. In this way
the set S is partitioned in into K Voronoi cells:

Si = {x ∈ S| d(x, ci) ≤ d(x, cj) ∀j = 1, . . . ,K} (2.16)

The prototype vectors are found by employing a training procedure aimed at minimizing
an error function E , given a training set Ttrain = {x(i) ∈ S}NTrain

i=1 . This often results
in the definition of an iterative stochastic gradient descent algorithm consisting in the
alternation of assignment and update steps. In the assignment step, each x ∈ Ttrain is
associated to the winner prototype, while the update step adjusts the prototype vectors
in order to decrease the error E .

In the NG algorithm, the Euclidean distance is typically used ad metric on R
N , and the

update of prototypes is accomplished using a “soft-max” adaptation rule. According to this
rule, after the presentation of each training sample x, all theK prototypes are modified. In
particular, for a given training point x, a neighborhood-ranking r(x, c) ∈ {0, 1, . . . ,K − 1}
is assigned to each prototype (where the value 0 indicates the closer prototype and the
value K − 1 indicates the most distant one). The adjustment for the i-th prototype is
therefore computed as:

∆ci = ǫ hλ(r(x, ci)) (x− ci) (2.17)

where ǫ ∈ [0, 1] is a learning rate parameter. Typically hλ(r(x, ci)) = exp (−r(x, ci)/λ),
where λ is a decay constant. In [136] it has been shown that the NG update rule in
equation 2.17 actually implements a stochastic gradient decent on the error measure:

ENG = (2C(λ))−1
K
∑

i=1

∫

dNxP (x)hλ(r(x, ci)) (x− ci)
2 (2.18)

where C(λ) =
∑K−1

k=0 hλ(k) is a normalization constant depending on λ and P (x) denotes
the probability distribution of the elements in S.

One the main advantages of the NG algorithm is its stability. Indeed, many clustering
algorithms, including the popular K-means1 [125, 131], often provide a clustering which

1Note that if λ → 0 in equation 2.17, then the K-means algorithm is obtained.
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is strongly dependent on the initialization conditions (i.e. the initial values for the pro-
totypes). By using the “soft-max” approach described above (equation 2.17), the NG
algorithm usually converges quickly to stable solutions (independent of the prototype ini-
tialization). Interestingly, the name of the algorithm is due to the observation that the
dynamics of the prototype vectors during the adaptation steps resemble the dynamics of
gas particles diffusing in a space [136].
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2.2 Neural Networks for Learning in Structured Domains

In this Section we give some basics of ML models for learning in structured domains,
focusing the attention on neural networks for structures. We introduce the general frame-
work for recursive processing structured data that is adopted in the rest of the thesis. The
classes of Recurrent and Recursive Neural Networks, as well as the Reservoir Computing
paradigm, are described within the introduced framework. Such framework is also used
to review some of the most relevant models in the field of learning in structured domains,
which represent related approaches to the Reservoir Computing framework for structured
data described in Part III.

2.2.1 A General Framework for Processing Structured Domains

In this Section we introduce the framework adopted in this thesis for describing and
characterizing data structures processing, especially by the means of neural networks.

Structured Domains

For structured data we mean some kind of information that can be described in terms
of basic component entities and relations among them. In the following, by adopting a
general perspective, as structured domain we will generally refer to a set of labeled graphs.
A graph g in a set of graphs G is a couple g = (V (g), E(g)), where V (g) denotes the set of
vertices of g and E(g) = {(u, v)|u, v ∈ V (g)} denotes the set of edges of g, representing a
binary relation on V (g). The number of vertices of g is denoted by |V (g)|. With a slight
abuse of notation, |V (g)| is also referred to as the size of g.
In a directed graph g, the set of the edges is a subset of the product space V (g) × V (g),
i.e. each edge has a direction. In this case, if (u, v) ∈ E(g) we say that (u, v) leaves (or
is incident from) vertex u and enters (or is incident to) vertex v. We also say that u is a
predecessor of v and that v is a successor of u. The set of all the predecessors of a vertex
v ∈ V (g) is denoted by P(v) = {u ∈ V (g)| ∃(u, v) ∈ E(g)}, whereas the set of all the
successors of v is denoted by S(v) = {u ∈ V (g)| ∃(v, u) ∈ E(g)}.
In an undirected graph g, the set of edges consists of unordered pairs of vertices, i.e. no
order is associated to the edges. In this case, if (u, v) ∈ E(g) we say that (u, v) is incident
on the vertices u and v, and that u and v are vertices adjacent to each other.
Given a graph g, a path of length l from vertex u to vertex v is a sequence of vertices
< v0, v1, . . . , vl > where vi ∈ V (g) ∀i = 0, . . . , l, (vi, vi+1) ∈ E(g) ∀i = 0, . . . , l − 1, v0 = u
and vl = v. If there exists a path from u to v, we say that v is reachable from u. In
particular, if g is a directed graph, we say that u is an ancestor of v and v is a descendant
of u. If g is an undirected graph and there exists a path from the vertex u to the vertex v,
we say that u and v are connected. An undirected graph g is said to be connected when-
ever each pair of vertices in V (g) are connected. For a graph g, if every vertex in V (g) is
reachable from the vertex v ∈ V (g), then we say that v is a supersource of g. Notice that
for a graph g a supersource could not be defined, or more than one supersource could be
present.
For a directed graph g, the neighborhood of a vertex v ∈ V (g), denoted by N (v), is
defined as the union of the set of predecessors and of the set of successors of v, i.e.
N (v) = P(v)

⋃

S(v). If g is undirected, the neighborhood of vertex v ∈ V (g) consists in
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the set of the vertices which are adjacent to v, i.e. N (v) = {u ∈ V (g)|∃(u, v) ∈ E(g)}.
In a directed positional graph g, for each vertex v ∈ V (g) a position is assigned to each
predecessor and successor of v: the i-th predecessor of v is denoted by pi(v), whereas the
i-th successor of v is represented as si(v). Analogously, in an undirected positional graph
g, a position is assigned to each neighbor of v ∈ V (g). In this case, the i-th neighbor of
v is denoted by Ni(v). Note that in case of a non positional graph g, for every vertex
v ∈ V (g) an arbitrary enumeration of its successors and predecessors (if g is directed) or
of its neighbors (if g is undirected) can be imposed (e.g. for the ease of notation). Note,
however, that in this case any semantic interpretation of the position of the successors and
predecessors (or of the neighbors) of a vertex is lost.
A directed graph g is cyclic if there exists a path < v0, . . . , vl > in g such that v0 = vl
and l > 0. Analogously, an undirected graph g is said to be cyclic if there exists a path
< v0, . . . , vl > such that v0 = vl, l > 0 and the vertices in the path are all distinct. A
graph g is said acyclic if it is not cyclic.
For a directed graph g, the in-degree of a vertex v ∈ V (g) is the number of edges that
enter v, i.e. the cardinality of P(v). Analogously, the out-degree of vertex v ∈ V (g) is the
number of edges that leave v, i.e. the cardinality of S(v). The maximum in-degree and
out-degree over the vertices in V (g) are referred to as the in-degree and the out-degree of
graph g, respectively. The maximum in-degree and out-degree over the set G of considered
graphs are denoted by kin and kout, respectively. For an undirected graph g, the degree
of each vertex v ∈ V (g) is the number of vertices incident on it, i.e. the cardinality of
N (v). The degree of g is the maximum degree over the set of its vertices V (g), whereas
the maximum degree over a set of considered graphs G is denoted as k. When dealing
with directed graphs, the term degree usually refers to the sum of the in-degree and the
out-degree, i.e. k = kin + kout.
Graphical representations of graphs are illustrated in Figure 2.4, which shows some exam-
ples of directed and undirected graphs.

g
3

g
2

g
1

supersource cycle

Figure 2.4: Examples of graphs. In particular g1 is a directed acyclic graph (the arrow
indicates the supersource), g2 is a directed cyclic graph and g3 is an undirected graph.

In a labeled graph g, each vertex v ∈ V (g) has a numerical vectorial label associated to
it. In general, assumed a vectorial label domain L, the label of a vertex v is usually denoted
by l(v), while the set of directed graphs with maximum in-degree kin and maximum out-
degree kout and vertices labels in L, is represented by L#(kin,kout). For undirected graphs
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with maximum degree k we use the analogous notation L#k. Whenever the degree is
not specified, L# is used. The skeleton of a labeled graph g, denoted by skel(g), is the
graph that is obtained by removing the label information associated to the vertices of g.
Two graphs g1 = (V (g1), E(g1)) and g2 = (V (g2), E(g2)) are isomorphic if there exists
a bijection f : V (g1) → V (g2) such that (u, v) ∈ E(g1) if and only if (f(u), f(v)) ∈
E(g2). Equivalently, g1 and g2 are isomorphic whenever their skeletons are the same, i.e.
skel(g1) = skel(g2), while the labels associated to pairs of corresponding vertices might
differ.

Wrapping up all these definitions, we can consider some particularly interesting classes
of data structures, e.g. sequences and trees, which can be viewed as special cases of labeled
graphs. In the following definitions, we assume that vertex labels are in the domain L.

A trivial graph is a graph with one vertex and no edges. As no any relation is de-
fined among the components of a trivial graph, it can be recognized as an instance of
an unstructured domain. Referring to the formalism introduced above, the set of trivial
graphs can be also denoted by L#(0,0). Examples of trivial graphs are fixed-size flat data
representations, such as vectors and matrices.

A sequence can be identified as a directed graph, with in-degree and out-degree equal
to 1, catching a sequential relation among its vertices. Accordingly, a sequence can be
considered as an instance in the structured domain L#(1,1), which corresponds to the set
of all finite length sequences over the alphabet L, i.e. L∗. A sequence over L∗ is generally
referred to using the symbol s(l), and the vertices of a sequence are usually called elements.
The concatenation between two sequences s1(l) and s2(l) is denoted by s1(l)· s2(l). The
binary relation represented by the set of the edges of a sequence s, is a total order over
the set of the elements in s. In the following, we assume that if the edge (u, v) exists, then
the element u follows the element v is the ordering. If a temporal dimension is involved
(temporal sequences), a discrete time step t ∈ N is usually associated to each element of a
sequence, and such elements can be indicated by referring to the value of the corresponding
time step, e.g. s(l) = [l(1), . . . , l(n)] denotes a sequence on L∗ with length n. Note that in
this case the temporal order is the opposite of the topological order of the structure (see
Figure 2.5).

.  .  . .  .  .

time

l l l l(n−1) l(n)(1) (2) (t)

Figure 2.5: An example of a temporal sequence.

A free tree is an undirected acyclic connected graph. In general, a tree is denoted
by t and its vertices are also called nodes. The set of the nodes of a tree t is denoted
by N(t). In particular, a rooted tree t is a free tree with one supersource node, called
root and denoted by root(t). Rooted trees are particularly suitable data organizations
for representing hierarchical relations among nodes. If a node n in a rooted tree has a
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predecessor u, i.e. the edge (u, n) exists, then we say that u is the parent of n, and that
n is a child of u. A k-ary rooted tree can be considered as an instance in the structured
domain L#(1,k), where k defines the out-degree of the structure. In this context, the root
is the only vertex with null in-degree, the leaf nodes have a null out-degree, while internal
nodes have positive in-degree and out-degree. The k children of a node n in a k-ary rooted
tree are represented by ch1(n), . . . , chk(n). Given a node n, by t(n) we denote the sub-tree
rooted at n, i.e. the tree induced by the descendants of n and rooted at n. The depth
of node n in the tree t is the length of the path from root(t) to n. The maximum over
the depths of the nodes in t is called the height of t. In the following, we restrict our
consideration to directed rooted trees. Thereby, when not differently specified, with the
term tree we will refer to a directed rooted tree. In general, a k-ary tree is positional,
i.e. for each node n it is possible to distinguish among the positions of its children. In a
non positional tree, the children of each node n can be enumerated, but their positions
cannot be distinguished. Figure 2.6 shows examples of binary trees, i.e. k-ary trees with
k = 2. Note that sequences can be considered as special cases of trees, with in-degree and
out-degree equal to 1.

root

leaf

Figure 2.6: Examples of binary trees.

Another relevant class of data structures is represented by directed acyclic graphs
(DAGs) and by directed positional acyclic graphs (DPAGs). Interestingly, DPAGs rep-
resent a generalization of positional trees, in which each node is allowed to have more
than one parent (see e.g. the graph g1 in Figure 2.4).

Transductions on Structured Domains

We are interested in computing structural transductions [55], i.e. functions whose input
and output domains are made up of graphs. The concept of structural transduction and the
extension of the input domain are the ground to extend Reservoir Computing approaches
for sequence (signal/series processes) to discrete hierarchical processing. Although new
in the context of Reservoir Computing, the description in this Section is rooted in the
previous framework for RecNN approaches for both supervised [169, 55, 86, 138] and
unsupervised learning [87].

In the following, for the sake of simplicity, we will refer to the notation established for
undirected graphs. Note, however, that the notions introduced can be easily re-stated for
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the case of directed graphs.
A structural transduction T is a function that maps an input graph domain U# into an
output graph domain Y#:

T : U# → Y# (2.19)

where U and Y respectively denote the input and output label spaces, and the output
graph corresponding to g ∈ U# is usually denoted by y(g).
Structural transductions can be qualified in different ways. We say that T is a structure-
to-structure transduction2 if it maps input graphs into isomorphic output graphs, i.e. for
every g ∈ U# it holds that skel(g) = skel(y(g)). Equivalently, T associates an output
vertex in correspondence of each input vertex. Note that when a specific class of structures
is under consideration this can be explicitly expressed. We can therefore have graph-to-
graph, tree-to-tree and sequence-to-sequence transductions3.
T is a structure-to-element transduction4 whenever it maps input graphs into flat (vec-
torial) outputs, i.e. for every g ∈ U# only one output element is produced. Equiva-
lently, the output domain of T is actually a trivially structured (vectorial) domain, i.e.
T : U# → Y. Also in this case, the class of structures can be made explicit, considering
e.g. graph-to-element transductions, tree-to-element transductions or sequence-to-element
transductions.
Whenever the structured input domain is made up of hierarchical structures, e.g. trees or
DPAGs, we say that the structural transduction T is causal if the function computed in
correspondence of a particular vertex v depends only on v itself and on the descendants
of v.
A structural transduction T is adaptive if it learned from observed data, whereas it is fixed
if it is a-priori defined.
T is a stationary transduction if the function it computes does not depend on the particu-
lar vertex to which it is applied. Note that if T is non-stationary, the output computed in
correspondence of each vertex in the input graph could be obtained by a different function.
In the following, we always assume stationarity of the considered transductions, which has
a specific relevant meaning in the case of learning in structured domains (as described in
Section 2.2.4).

A structural transduction T can be usefully decomposed as T : Tout◦Tenc, where Tenc is
the encoding transduction and Tout is the output transduction. The encoding transduction

Tenc : U
# → X# (2.20)

maps an input graph g ∈ U# into a graph structured feature isomorphic to g, i.e. Tenc(g) ∈
X#, where X denotes the feature label space. In the following, we use also the symbol
x(g) to denote the output of the encoding transduction Tenc applied to g. In addition, X
is also referred to as a state label space, and x(g) as the structured state associated to g.
The output transduction

Tout : X
# → Y# (2.21)

2The notion of struture-to-structure transduction has been referred to in literature also as input-output
isomorphic transduction (e.g. [86]) and as node-focused transduction (e.g. [160]).

3The notion of sequence-to-sequence transduction has been referred to in literature also as synchronous
sequential transduction (see [55]).

4The notion of struture-to-element transduction has been referred to in literature also as supersource

transduction e.g. in [86], with particular regard to hierarchical data processing, and as graph-focused

transduction e.g. in [160].
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maps the structured state representation of the input graph g, i.e. x(g), into the structured
output representation Tout(g) = y(g) ∈ Y#. In order to realize structure-to-element
transductions, we preliminarily resort to a state mapping function

χ : X# → X (2.22)

that maps a structured state x(g) into a flat (vectorial) state representation χ(x(g)). In
this case, T = Tout ◦ χ ◦ Tenc.
Figures 2.7 and 2.8 illustrate schematically through examples the computation of structure-
to-structure and structure-to-element transductions. In both cases, through the encoding
transduction Tenc (equation 2.20), the input graph g is mapped into the graph structured
feature representation x(g) isomorphic to g, i.e. x(g) has the same skeleton of g, but the
labels attached to the vertices of x(g) are in the state space X (this point is represented
by using different colors for the vertices of the graphs in Figures 2.7 and 2.8). Then, in
the case of structure-to-structure transductions (Figure 2.7) the structured output y(g) is
obtained by directly applying the output transduction Tout (equation 2.21) to x(g). Note
that in this case y(g) is isomorphic to both g and x(g). In the case of structure-to-element
transductions (Figure 2.8), the structured state x(g) is first mapped by the state mapping
function χ (equation 2.22) into a fixed-size vectorial state representation, i.e. χ(x(g)).
Then the output transduction is applied to χ(x(g)) in order to obtain the output vector
y(g).

T enc T out

g x(g y(g) )
Figure 2.7: A structure-to-structure transduction.

T outT enc

g (

χ

χx(g x(g y(g) )) )

Figure 2.8: A structure-to-element transduction.

In the context of a supervised learning paradigm, for a task involving a structure-to-
structure transduction, a training set can be described as Ttrain = {(gi,ytarget(gi))| gi ∈
U#, ytarget(gi) ∈ Y# ∀i = 1, . . . , Ntrain}, where gi and ytarget(gi) respectively denote the
i-th input and the i-th target output structure, and Ntrain is the number of samples in the
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dataset. For task involving structure-to-element transductions, the previous notation is
straightforwardly modified such that the target output associated to each input structure
is indeed a single flat element, i.e. Ttrain = {(gi,ytarget(gi))| gi ∈ U#, ytarget(gi) ∈
Y ∀i = 1, . . . , Ntrain}. In this concern, note that regression or classification tasks on
structures can be considered as special cases in which the target output associated to each
gi is a real number, i.e. y(gi) ∈ R, or a vector encoding a class label, e.g. for binary
classification y(gi) ∈ {−1,+1}.

In the following sub-sections, we discuss how structural transductions can be computed
in a recursive fashion. Recursive approaches, indeed, turn out to be particularly suitable
for processing such transductions by the means of neural networks models.
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2.2.2 Recursive Processing of Transductions on Sequences

Within the framework established in Section 2.2.1, here we describe a recursive approach
which is typically considered when processing causal and stationary transductions on se-
quence domains e.g. by using Recurrent Neural Networks.

In the following, we use the symbol s(u) to denote an input sequence in U∗. The
sequence s(u) can be either an empty sequence, denoted by s(u) = [], or a sequence of
length n > 0, i.e. s(u) = [u(1), . . . ,u(n)], in which case u(1) represents the oldest entry
and u(n) is the most recent one.

A transduction on sequence domains T : U∗ → Y∗ can be recursively computed by the
means of locally applied encoding and output functions.
In particular, the encoding transduction Tenc : U∗ → X ∗ is computed by resorting to a
local encoding function τ that provides a state representation x(t) ∈ X in correspondence
of each element of the input sequence u(t) ∈ U for t = 1, . . . , n:

τ : U × X → X

x(t) = τ(u(t),x(t− 1))
(2.23)

where an initial state x(0) ∈ X is defined. Note that equation 2.23 describes a state
transition system on sequences. In this regard, the function τ can be viewed as a local
state transition function. Corresponding to the extension to paths of the definition of
state transition functions in finite automata [99], we can introduce an iterated version of
τ , denoted by τ̂ :

τ̂ : U∗ ×X → X

τ̂(s(u),x(0)) =







x(0) if s(u) = []

τ(u(n), τ̂([u(1), . . . ,u(n− 1)],x(0))) if s(u) = [u(1), . . . ,u(n)]
(2.24)

where τ̂(s(u),x(0)) is the state obtained by applying the state transition τ recursively to
the input sequence s(u), starting from the initial state x(0). Function τ̂ in equation 2.24
represents a global state transition function on input sequences. Given an initial state
x(0) ∈ X , the computation of the encoding transduction Tenc(s(u)) can be therefore ob-
tained by applying the global state transition function τ̂ to s(u) and x(0), i.e. τ̂(s(u),x(0)).
In the following, the process consisting in the computation of the encoding transduction
Tenc is also referred to as the encoding process.
The output transduction Tout : X ∗ → Y∗ is computed by resorting to a locally applied
output function gout:

gout : X → Y

y(t) = gout(x(t))
(2.25)

where y(t) ∈ Y is the element of the output sequence s(y) ∈ Y∗ computed in corre-
spondence of the t-th element of the input. Note that equation 2.25 refers to the case of
sequence-to-sequence transductions. For the case of sequence-to-element transductions,
the output sequence degenerates into a single output element s(y) ∈ Y, obtained by ap-
plying the function gout only to the state corresponding to the last input element, i.e.
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s(y) = y(n) = gout(x(n)), where n > 0 is the length of the input sequence. This is equiv-
alent to using a state mapping function χ : X ∗ → X , such that for every s(x) of length
n > 0 it holds that χ(s(x)) = x(n).

2.2.3 Recursive Processing of Transductions on Trees

In this sub-section we generalize the recursive approach described in the previous sub-
section for the case of tree domains processing. To this aim, we find useful to introduce
a recursive definition of trees, as follows. A k-ary tree t ∈ U (1,k) can be defined as either
the empty tree, denoted by nil, or as the root node n and the k sub-trees rooted in its
children, denoted by n(t(ch1(n)), . . . , t(chk(n))). Note that in this recursive definition,
some of the k children of n could be absent (or missing), in which case the corresponding
sub-trees are empty. The suffix of height h ≥ 0 of a tree t, indicated as Sh(t), is the tree
obtained from t by removing every node whose depth is greater than h:

Sh(t) =















nil if h = 0 or t = nil

n(Sh−1(t(ch1(n))), . . . , Sh−1(t(chk(n))))
if h > 0 and t = n(t(ch1(n)), . . . ,

t(chk(n)))
(2.26)

Analogously to the case described for the recursive processing of sequences, causal and
stationary structural transductions on k-ary tree domains, such as T : U#(1,k) → Y#(1,k),
can be computed by resorting to local node-wise applied encoding and output functions,
where u(n) ∈ U , x(n) ∈ X and y(n) ∈ Y are used do denote input, state and output
labels for the node n, respectively. The encoding transduction Tenc : U#(1,k) → X#(1,k),
can be computed by using to a node-wise encoding function τ :

τ : U × X k → X

x(n) = τ(u(n),x(ch1(n)), . . . ,x(chk(n)))
(2.27)

where x(n) is the state representation computed for node n and x(ch1(n)), . . . ,x(chk(n))
are the states associated to the children of n. Equation 2.27 describes the relation between
the state corresponding to a node n and the states corresponding to its children. As such,
equation 2.27 defines a state transition system on trees and τ can be viewed as a local state
transition function. Note that if one of the children of n is absent, then a nil state, denoted
by x(nil), is used for it (analogously to the initial state x(0) used for sequence processing).
The node-wise encoding function τ of equation 2.27 induces a recursive function on trees,
denoted by τ̂ :

τ̂ : U#(1,k) ×X → X

τ̂(t,x(nil)) =















x(nil) if t = nil

τ(u(n), τ̂ (t(ch1(n)),x(nil)), . . . , τ̂(t(chk(n)),x(nil))))
if t = n(t(ch1(n)),

. . . , t(chk(n)))

x(root(t)) = τ̂(t,x(nil))
(2.28)
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where τ̂(t,x(nil)) is the state of the root of t, i.e. x(root(t)), given that the state for absent
nodes is x(nil). Notice that the recursive definition of τ̂ is given in equation 2.28 in analogy
with the extension to paths of the definition of transition functions in finite automata [99].
Equation 2.28 describes the relation between the state of a node n and the states computed
for the descendants of n, and can be viewed as a global state transition function. Thus,
the computation of the structured feature representation corresponding to an input tree t,
i.e. x(t) = Tenc(t), consists in the application of τ̂ to t. This implies the computation of
the state for each node n in t through the application of the node-wise encoding function
τ according to a bottom-up visit of t (i.e. starting from the leaf nodes and ending in the
root). According to the assumption of stationarity, function τ of equation 2.27 is applied
in correspondence of every visited node n, taking as inputs the label of n, i.e. u(n), and the
states already computed for the children of n, i.e. x(ch1(n)), . . . ,x(chk(n)). This bottom-
up recursive encoding process is shown in Figure 2.9 through two illustrative examples.
Note that, given an input tree t, the output of the encoding process x(t) = Tenc(t), can
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Figure 2.9: Bottom-up recursive encoding process on trees. Example (a) shows the process
of visit for the special case of sequential input (i.e. k = 1), while example (b) shows the
same process for the case of binary trees (i.e. k = 2).

be considered as a tree which is isomorphic to t (according to the definition provided
in Section 2.2.1) by construction. Indeed, while computing x(t), the recursive encoding
process preserves the skeleton of t, while for each node n ∈ N(x(t)) the corresponding
label x(n) is the state vector computed by the local state transition function τ . Note that
this characterization is inherited from the concept of synchronism in sequence processing,
generalized for the case of hierarchical structures processing (see [55, 86]).

The output transduction Tout is then used to map the structured state representation
of an input tree into its corresponding output. For tree-to-tree transductions T , the
output transduction Tout is also tree-to-tree, i.e. Tout : X

#(1,k) → Y#(1,k). Given an input
tree t ∈ U#(1,k) and its structured state x(t) ∈ X#(1,k) obtained through the recursive
encoding, the structured output associated to t is y(t) = Tout(x(t)) ∈ Y#(1,k). Tout can
be computed by resorting to a node-wise output function gout:

gout : X → Y

y(n) = gout(x(n))
(2.29)
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where y(n) ∈ Y is the (unstructured) output associated to node n. In this case y(t) is
computed by applying function gout to every node of t. For the case of tree-to-element
transductions, the state mapping function χ : X#(1,k) → X is used to map the structured
state x(t) into a flat feature representation χ(x(t)), which is representative for the whole
input tree. The unstructured fixed-size output y(t) ∈ Y is then computed by applying the
node-wise output function gout of equation 2.29 only to the output of the state mapping
function, i.e. y(t) = gout(χ(x(t))).

In the following, as label domains of interest, with particular regard to structure domain
processing using neural networks, we consider the NU -dimensional real input space R

NU ,
the NR-dimensional real state space RNR and the NY -dimensional real output space RNY .
Accordingly, the input, state and output structure domains are represented by (RNU )#,
(RNR)# and (RNY )# respectively.

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [121, 178, 94] represent a class of neural network
models that can compute causal, stationary and adaptive transductions on sequence do-
mains. RNNs are obtained by implementing the local encoding and output functions in
equations 2.23 and 2.25 (Section 2.2.2) by the means of neural networks. In the sim-
plest architectural setting, an RNN is composed of an NU -dimensional input layer, an
NR-dimensional recurrent hidden layer and an NY -dimensional feed-forward output layer.
The local encoding function is computed by the hidden layer, while the output function is
computed by the output layer. More specifically, the hidden layer computes the recurrent
state transition function τ : RNU × R

NR → R
NR , as follows:

x(t) = f(Winu(t) + Ŵx(t− 1)) (2.30)

where u(t) is the input for the network at pass t and x(t) is the state of the network,
i.e. the output of the hidden units, at pass t. The matrix Win ∈ R

NR×NU contains the
weights on the connections from the input to the hidden layer (and possibly a bias term).
The element-wise applied activation function f in equation 2.30 is usually a non-linearity
of a sigmoidal type, such as the logistic function or the hyperbolic tangent. The matrix
Ŵ ∈ R

NR×NR contains the recurrent weights for the feedback connections around the
hidden units. The output layer computes the output function gout : R

NR → R
NY , as

follows:

y(t) = fout(Woutx(t)) (2.31)

where y(t) is the output of the network at pass t and Wout ∈ R
NY ×NR contains the weights

of the connections from the hidden units to the output units (and possibly a bias term).
The function fout in equation 2.31 is the element-wise applied activation function for the
output units, and can be both a linear or a non-linear function.

In a RNN, the encoding process is carried out by unfolding the hidden layer architecture
on the input sequence. For sequence-to-sequence transductions the output layer computes
the output element at each pass, i.e. equation 2.31 is applied to every state x(t) obtained
by the hidden layer while the network is driven by the input sequence. For the case of
sequence-to-element transductions, equation 2.31 is applied only to the state computed by
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the hidden layer of the network in correspondence of the last element of the driving input
sequence.

The Cascade Correlation approach can be extended to RNNs as well [49]. In this case,
when a new hidden unit is added to the network architecture, it receives input connections
from the input layer and the state information coming from the already frozen hidden
neurons.

In a standard RNN, the parameters of both the encoding function and the output
function are learned from examples, i.e. the weight values in the matrices Win, Ŵ and
Wout are adjusted by a training algorithm. Concerning this aspect, it is worth to em-
phasize that the class of RNNs is theoretically very powerful, indeed through training
RNNs are characterized by universal computational properties (e.g. [167]). A number
of training algorithms for RNN models have been proposed in literature, sharing the ba-
sic idea of implementing a gradient descent method to back-propagate the error as in the
Back-propagation algorithm for feed-forward neural networks. Among all, the most known
are the Back-propagation Through Time (BPTT) algorithm [191] which is typically ap-
plied off-line, and the Real-Time Recurrent Learning (RTRL) algorithm [192], which is
used on-line. However, training algorithms for RNNs involve some known drawbacks (e.g.
[89, 127]). First, as other gradient descent methods they are characterized by high com-
putational training costs and slow convergence. Second, as the error function considered
by such algorithms is in general a non-convex function, they can get trapped in local min-
ima of the error surface. Third, learning long term dependencies by gradient descending
is known to be a difficult problem. This last point is also known as the problem of the
vanishing gradient [121, 19], i.e. for long temporal dependencies the gradient informa-
tion vanishes as it is back-propagated through time and the weights of the RNN are not
correctly adjusted to properly take into account inputs in a far past. Overall, designing
efficient yet effective training algorithms for RNNs still represents an open research issue
(e.g. see [7, 168]).
An interesting characterization of RNNs is provided by the study of the properties of
the state dynamics in the early stages of training. Indeed, typically used initializations of
network weights with small values (thus with contractive state dynamics) result in a archi-
tectural bias of the model ([90, 176, 175, 177]). Indeed RNNs initialized with contractive
state transition functions have been proved to discriminate among different (recent) input
histories even prior to learning ([90, 175]), according to a Markovian organization of the
state dynamics.

A recently proposed efficient alternative approach to RNN modeling is represented by
the Reservoir Computing paradigm, which described in the next Section.

2.2.5 Reservoir Computing and Echo State Networks

Reservoir Computing (RC) (e.g. [184, 127]) is a denomination for a RNN modeling
paradigm based on a conceptual and practical separation between a recurrent dynami-
cal part (the reservoir) and a simple non-recurrent output tool (the readout). Typically,
the reservoir is implemented by a large (high dimensional) and random layer of sparsely
connected recurrent hidden units, which is initialized according to some criterion and then
left untrained. The readout is implemented through a layer of (typically) linear units and
is adapted by using a simple and efficient training algorithm for feed-forward networks. RC
is also claimed to have a strong biological plausibility. Indeed several relationships have
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been discovered between the properties of animal brains and reservoir networks. Examples
of these relationships can be found in [148, 43, 44, 194, 73]. Moreover, it is interesting to
observe that some basic ideas of reservoir computation can be also viewed as an exten-
sion to the sequence processing case of the work on sparse distributed memories described
in [114].
Reservoir networks implement causal, stationary and partially adaptive sequence trans-
ductions in which the encoding function (the state transition function) is realized by a
fixed dynamical reservoir, and the output function is realized by the adaptive readout.
The key observation about reservoirs is that as long as they satisfy some very easy-to-
check properties, they are able to discriminate among different input histories even in the
absence of training. In this way it is possible to restrict the training just to a simple
recurrent-free linear readout. This eliminates the recurrent dependencies in the weight
adjusting process and leads to a very efficient RNN design.
RC comprises several classes of RNN models, including the popular Echo State Networks
(ESNs) ([103, 108]), Liquid State Machines (LSMs) (e.g. [129]) and other approaches such
as BackPropagation Decorrelation (BPDC) ([171, 172]) and Evolino (e.g. [163]). In this
thesis we focus on the ESN model.

An Echo State Network (ESN) ([103, 104, 105, 108]) is a RNN consisting in an input
layer of NU units, a large number of NR sparsely connected recurrent hidden units (the
reservoir) and an output layer ofNY typically linear and non-recurrent units (the readout).
As in standard RNNs, the recurrent hidden layer of the architecture, i.e. the reservoir,
implements the local encoding function τ of equation 2.23, while the feed-forward output
layer, i.e. the readout, implements the local output function gout of equation 2.25. The
basic equations 5 describing the computation carried out by an ESN are similar to the
equations 2.30 and 2.31:

x(t) = τ(u(t),x(t− 1)) = f(Winu(t) + Ŵx(t− 1))

y(t) = gout(x(t)) = Woutx(t)

(2.32)

where Win ∈ R
NR×NU is the input-to-reservoir weight matrix (possibly including a bias

term), Ŵ ∈ R
NR×NR is the recurrent reservoir weight matrix and Wout ∈ R

NY ×NR is
the reservoir-to-output weight matrix (possibly including a bias term). Equation 2.32
also describes the basic ESN architecture (illustrated in Figure 2.10), which hereafter is
referred to as the standard ESN. The hyperbolic tangent is typically used as activation
function of reservoir units (i.e. f ≡ tanh), while the output of the network is a linear
combination of the reservoir output. Referring to the framework of Section 2.2.1, we can
say that ESNs compute partially-adaptive sequence transductions in which the encoding
function is fixed and the output function is adapted from training data. This means that
Win and Ŵ are fixed and only Wout is adapted. Not every choice of Win and Ŵ leads
to a valid ESN. In a sense, the state of the network should be an echo of its input history
(i.e. the reservoir dynamics must asymptotically depend only on the driving input signal).

5Common variants to the proposed basic equations can be found in [103], in which connections from the
input layer to the readout are allowed as well as feedback connections from the readout to the reservoir.
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Figure 2.10: The architecture of an ESN.

Echo State Property

A valid ESN satisfies the so called Echo State Property (ESP) [103]. This says that
the state in which the network is after being driven by a long input sequence does only
depend on the input sequence itself. The dependence on the initial state of the network
is progressively lost, as the length of the input sequence goes to infinity. Equivalently, the
current state x(n) of the network is a function of its past input history independently of
initial state values. In formulas, the ESP may be expressed as follows:

∀s(u) = [u(1), . . . ,u(n)] ∈ (RNU )n input sequence of length n,
∀x,x′ ∈ R

NR :

‖τ̂(s(u),x)− τ̂(s(u),x′)‖ → 0 as n → ∞

(2.33)

which means that the distance between the states in which the network is driven by an
input sequence of length n approaches zero (for any choice of the initial states) as n goes
to infinity. In [103] two conditions have been provided as necessary and sufficient, respec-
tively, for an ESN (with tanh as activation function) having echo states. The necessary
condition is that the spectral radius (i.e. the largest eigenvalue in absolute value) of the
reservoir recurrent weight matrix Ŵ is less than one

ρ(Ŵ) < 1 (2.34)

If this condition is violated, the dynamical reservoir is locally asymptotically unstable at
the zero state 0 ∈ R

NR and echo states cannot be guaranteed if the null sequence is an
admissible input for the system. The sufficient condition for the presence of echo states is
that the largest singular value of Ŵ is less than unity:

σ(Ŵ) < 1 (2.35)

The Euclidean norm of Ŵ is equal to its largest singular value, thus the sufficient condition
can be restated as ‖Ŵ‖2 < 1. This condition ensures global stability of the system and
thus the presence of echo states. However, in practical application of ESNs, very often
only the necessary condition of equation 2.34 is checked, whereas the sufficient condition of
equation 2.35 is considered too restrictive (e.g. [103]). The condition for the initialization
of ESNs, and its effects on the network fixed dynamics, still represent object of research
(e.g. [24, 62]).
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Initialization and Training of ESNs

To build up a valid ESN it is possible to start with randomly generated input-to-reservoir
matrix, i.e. Win, and recurrent weight matrix, i.e. Ŵ, with values typically chosen
from a uniform distribution over a symmetric interval. In particular, for matrix Win an
input scaling parameter, denoted by win, is often considered such that the input weights
are chosen in the interval [−win, win]. Matrix Ŵ is then rescaled to satisfy the required
condition (equation 2.34 or 2.35). Note that, though not ensuring echo states, in most
of the ESN literature, the spectral radius of Ŵ is scaled to meet the necessary condition
of equation 2.34. If Ŵrandom is the randomly initialized reservoir recurrent matrix, such
scaling can be easily performed by setting the final reservoir recurrent weight matrix Ŵ
to:

Ŵ =
ρ

ρ(Ŵrandom)
Ŵrandom (2.36)

where ρ is the desired value of the spectral radius for Ŵ. Indeed, after such scaling, it
holds that ρ = ρ(Ŵ). In particular, values of ρ close to 1 are commonly used in practice,
leading to reservoir dynamics close to the edge of chaos [124], often resulting in the best
performance in applications (e.g. [103]). The typical ESN recipe [103] prescribes also
that Ŵ is a sparse matrix with a fixed (usually less than 20%) percentage of connectivity.
The intuition behind this is that a sparsely connected recurrent reservoir would ensure
a rich and loosely coupled pool of dynamics from which the readout should take advan-
tage. However, it has been noted (e.g. in [195]) that reservoir units (even with sparse
connectivity) may exhibit coupled behaviors, and thus the original intuition is probably
misleading. In addition, experimental evidence of the closeness of ESN performance with
full and sparse reservoir connectivity has been provided e.g. in [62]. Nonetheless, sparsely
connected reservoirs are in any case preferable to fully connected ones for computational
efficiency reasons.

Wrapping up, the main reservoir parameters which are generally considered as the
most important for the ESN initialization are the following:

• The reservoir dimension NR: in ESN literature, it is common to use very large
reservoirs (often in the order of several hundreds units). In general, a larger reservoir
increases the capacity of the model, often resulting in a better fitting of the training
data, with obvious possible consequences of better predictive performance of the
network as well as increased risk of overfitting (see Sections 3.1 and 3.3);

• The spectral radius ρ: it controls the ”speed” of reservoir dynamics and should be
accurately selected to properly match the target dynamics for the task at hand. As a
rule of thumb, larger values of ρ imply slower reservoir dynamics and longer memory;

• The input scaling win: this parameter has a direct influence on the degree of non-
linearity of the reservoir activation function, with small values of win constraining
such function into an almost linear region. In addition, as concerns the network
state update, the input scaling parameter represents a fixed trade-off between the
relevance of the external input and the relevance of the previous reservoir activation.

The only part of the ESN architecture whose free parameters are adapted is the linear
readout. This is typically accomplished in an off-line training process, which described
in the following. For a sequence-to-sequence transduction, a training set usually consists
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in an input sequence and a target output sequence both of a given length Ntrain, i.e.
Ttrain = {(u(t),ytarget(t))| u(t) ∈ R

NU , ytarget(t) ∈ R
NY ∀t = 1, . . . , Ntrain}. The

reservoir of the ESN is run with the driving input sequence, typically using a zero state
as initial state, i.e. x(0) = 0 ∈ R

NR , and the reservoir states corresponding to each input
element are computed, i.e. x(1), . . . ,x(Ntrain). If the reservoir is a valid reservoir, then
the ESP ensures that, after the presentation of a sufficiently long input sequence (called
the transient or washout), the reservoir state is a function of the input sequence only, and
any dependence on the initial conditions has died out. Accordingly, we can dismiss the
first Ntransient reservoir states, i.e. x(1), . . . ,x(Ntransient), which may still be affected by
the initial conditions and consider only the remaining states x(Ntransient+1), . . . ,x(Ntrain).
Such states can be collected as the columns of a matrix X. Analogously, the corresponding
targets ytarget(Ntransient+1), . . . ,ytarget(Ntrain) are arranged as the columns of the matrix
Ytarget. The problem of training the readout therefore consists in finding the values in
Wout that solve the following least squares linear regression problem:

min ‖WoutX−Ytarget‖
2
2 (2.37)

Usually, Moore-Penrose pseudo-inversion or ridge regression are used to solve the problem
in equation 2.37 [127]. In the former case, the output weights in Wout are computed as:

Wout = YtargetX
+ (2.38)

whereas in the latter case matrix Wout is computed as:

Wout = YtargetX
T (XXT + λrI)

−1 (2.39)

where λr is a regularization parameter.
In the case of sequence-to-element transductions, each sample in the training set con-

sists in a input sequence and a corresponding target vector, i.e. Ttrain = {(si(u),ytarget(i))|
si(u) ∈ (RNU )∗, ytarget(i) ∈ R

NY ∀i = 1, . . . , Ntrain}. In this case, each sequence in the
training set is given in input to the reservoir, considering a null initial state of the reservoir
before each presentation. To account for the initial transient, if input sequences are not
all long enough, it is possible to present each sequence to the reservoir consequently for
a prescribed number of Ntransient times. The final reservoir states corresponding to each
training sequence are arranged as the columns of X, while the columns of Ytrain contain
the target vectors for the sequences in the training set, i.e. ytarget(1), . . . ,ytarget(Ntrain).
The weight values in matrix Wout can then be computed as in the case described for
sequence-to-sequence transductions, i.e. solving the problem in equation 2.37 e.g. by
using equation 2.38 or 2.39.

Leaky Integrator ESNs

A variant of the standard ESN of particular relevance for the applications to Wireless
Sensor Networks problems described in this thesis in Chapter 5, is represented by the Leaky
Integrator Echo State Network (LI-ESN) [103, 109, 127]. Instead of standard reservoir
units, LI-ESNs use leaky integrator reservoir units. In this case, the state transition
function τ of equation 2.32 is replaced by the following:

x(t) = τ(u(t),x(t− 1))

= (1− a)x(t− 1) + af(Winu(t) + Ŵx(t− 1))
(2.40)
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where a ∈ [0, 1] is a leaking rate parameter, which is used to control the speed of the
reservoir dynamics, with small values of a resulting in reservoirs that react slowly to
the input signal [109, 127]. Compared to the standard ESN model, LI-ESN applies an
exponential moving average to the state values produced by the reservoir units (i.e. x(t)),
resulting in a low-pass filter of the reservoir activations that allows the network to better
handle input signals that change slowly with respect to the sampling frequency [127, 6].
As such, LI-ESN state dynamics could result to be more suitable for representing the
history of input signals, in particular in applications related e.g. to autonomous systems
modeling (e.g. [6, 187]) or to Wireless Sensor Networks data [68, 8]. Note that for a = 1,
the state transition function τ in equation 2.40 reduces to the state transition function in
equation 2.32, and standard ESNs are obtained.

The necessary and the sufficient conditions for the ESP can be re-stated for the case
of LI-ESNs [103, 109]. This is easily done by considering the matrix W̃ = (1− a)I+ aŴ
and scaling it like the matrix Ŵ is scaled in standard ESNs, according to equations 2.34
or 2.35.

Computational Cost of ESNs

The ESN approach to modeling RNNs is characterized by extreme efficiency. The encoding
process has a computational cost that scales linearly with both the reservoir dimension and
the input length. Indeed, the application of the state transition function τ in equation 2.32
(or in equation 2.40 for LI-ESNs) to an element of an input sequence requires a number
of O(RNR) operations, where R is used to denote the maximum number of connections
for every reservoir unit (with smaller R for sparser reservoirs) and NR is the dimension of
the reservoir. Hence, the total cost of the encoding for an input sequence of length N is
given by

O(NRNR). (2.41)

Remarkably, for training and testing, the cost of the encoding process in ESNs is the same,
as the parameters of the state transition function are not learned. In this regard, the ESNs
compares extremely well with competitive state-of-the-art learning models for sequence
domains, including standard RNNs (in which the dynamic recurrent part is trained, e.g.
[121, 178]), Hidden Markov Models (with the additional cost for the inference also at test
time, e.g. [152]) and Kernel Methods for sequences (whose cost can scale quadratically or
more with the length of the input, e.g. [69]).

Training the readout of an ESN requires to solve the linear regression problem in
equation 2.37, with a computational cost that depends on the algorithm used. This can
actually vary from iterative methods, for which the cost of each epoch scales linearly with
the length of the input, to direct methods (such as those described in equations 2.38 and
2.39) implemented using Singular Value Decomposition, whose cost scales as the cube of
the input length. All in all, the cost of training the linear readout in ESNs is generally lower
than the cost required for training other common readout implementations as Multi-layer
Perceptrons or Support Vector Machines.

2.2.6 Recursive Neural Networks

Recursive Neural Networks (RecNNs) [169, 55] represent a generalization of RNNs for
processing hierarchical structure domains (e.g. domains of trees). Referring to the re-
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cursive processing of tree transductions discussed in Section 2.2.3, RecNNs are obtained
by implementing through neural networks the node-wise encoding and output functions τ
and gout, respectively in equations 2.27 and 2.29. In the simplest architectural setting, a
RecNN consists in an input layer with NU units, an hidden layer with NR recursive units
and an output layer with NY feed-forward output units. The hidden layer is responsible
for the computation of τ , whereas the output layer is responsible for the computation of
gout. Considering as domain of interest a set of k-ary trees, the hidden layer implements
a recursive state transition function τ : RNU ×R

kNR → R
NR , whose application to node n

of an input tree is given by:

x(n) = τ(u(n),x(ch1(n)), . . . ,x(chk(n)))

= f(Winu(n) +
k

∑

i=1

Ŵix(chi(n)))
(2.42)

where u(n) ∈ R
NU is the vectorial input label associated to node n, x(n) ∈ R

NR is
the vectorial state label computed for node n, Win ∈ R

NR×NU is the weight matrix for
the connections from the input layer to the hidden layer (possibly containing also a bias
term), and Ŵi ∈ R

NR×NR is the weight matrix for the recursive connections relatively
to the i-th child state information. Function f in equation 2.42 is the component-wise
applied activation function, usually of sigmoidal type. A null state x(nil) = 0 ∈ R

NR is
typically used for absent nodes. Note that, whenever non-positional trees are considered,
distinguishing among the children of the node n is not possible, and the same recursive
weight matrix Ŵ is shared among the connections from the different children states, i.e.
x(n) = f(Winu(n) +

∑k
i=1 Ŵx(chi(n))). The output layer computes the output function

gout : R
NR → R

NY :

y(n) = fout(Woutx(n)) (2.43)

where y(n) is the vectorial output label computed for node n, Wout ∈ R
NY ×NR is the

weight matrix for the connections from the hidden layer to the output layer (possibly
containing a bias term), and fout is the activation function for the output units.

According to the recursive processing of trees described in Section 2.2.3, under an ar-
chitectural perspective, the encoding process is implemented by unfolding the hidden layer
on the input structure, giving the so called encoding network [169], following a bottom-up
visit of the input tree (from the leaves to the root) as in Figure 2.9. For computing tree-to-
tree transductions (which in the context of RecNN are traditionally known as input-output
isomorphic transductions), the output layer is applied in correspondence of each node in
the input tree. In the case of tree-to-element transductions (known also as supersource
transductions), the output layer is applied only in correspondence of the root node of the
input tree. This corresponds to using a state mapping function χroot that always selects
the state computed for the root node, which in the following is also referred to as the root
state mapping function, i.e. χroot(x(t)) = x(root(t)).

Structural transductions computed by RecNNs are characterized by causality, as in-
deed when processing the state of a node n, the only state information available (context
window) is constituted by the states of the descendants of n. Other characteristics of the
transductions computed by RecNNs are stationarity and adaptivity, as the parameters
of both the hidden and the output layers (i.e. the weight values in Win, Ŵ and Wout)
are trained from examples. Learning algorithms for RecNNs can be based on gradient
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descending approaches analogous to those used with RNNs, such as Back-propagation
Through Structure and Real-time Recurrent Learning [169]. Overall, the class of RecNN
provides a suitable tool for learning structural transductions on tree domains, indeed Rec-
NNs have been proved to be universal approximators for trees [82, 83, 86, 85]. In addition,
preliminary results on RecNNs initialized to implement contractive state transition func-
tions concerning the effects of the resulting Markovian bias on RecNN dynamics have
been proposed in [91]. Exploiting both the power of structure data representations of
real-world entities and the approximation capabilities or the models, the class of RecNNs
has been successfully applied in many applicative domains, including Cheminformatics
(e.g. [20, 141, 46, 142, 138]), Natural Language Processing [36, 173] and Image Analysis
[54, 39].

Although presented in the context of tree processing, note that RecNNs can be used
for learning in domains of more complex hierarchical graph structures such as DAGs and
DPAGs. In such cases, indeed, the encoding process described in this Section is not
changed and the recursive hidden layer of RecNN can be unfolded on the hierarchical
structure following a bottom-up approach similar to the one described in Section 2.2.3 for
tree patterns. However, the application of RecNN models to more general graph struc-
tures involves some known difficulties, such as the request of the existence of a unique
supersource vertex for the case of structure-to-element transductions. More importantly,
the RecNN encoding process results to be inappropriate for for cyclic or undirected input
structures, in which cases the well-formedness of neural representations and thus the con-
vergence of the encoding is not guaranteed [169]. This aspect is discussed in the following.
Consider the directed graph g1 in Figure 2.11a, presenting the cycle < v1, v2, v3, v4 >.
According to equation 2.42, the states for the vertices in g1 are computed as follows:

v1

v2

v3

v4

v5

g
1

g
2

v1

v3v2

v4

Figure 2.11: Examples of a directed cyclic graph (Figure 2.11a) and of an undirected
acyclic graph (Figure 2.11b).

x(v5) = f(Winu(v5) + Ŵx(nil))

∗ x(v2) = f(Winu(v2) + Ŵx(v3))

∗ x(v3) = f(Winu(v3) + Ŵx(v4))

∗ x(v4) = f(Winu(v4) + Ŵx(v1))

∗ x(v1) = f(Winu(v1) + Ŵx(v2))

(2.44)

where mutual dependencies among the states for the vertices in the cycle (indicated with
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stars in equation 2.44) are obtained, and a stable structured state x(g1) cannot be com-
puted. An analogous situation occurs in the case of undirected graphs. For example, let
take into consideration the graph g2 in Figure 2.11b. Note that for encoding undirected
structures, we cannot exploit a topological order of the vertices, and equation 2.42 must
be modified in order to express the dependence of x(v) from the set of states computed for
its neighbors, i.e. x(v) = f(Winu(v)+

∑k
i=1 Ŵx(Ni(v))), where k denotes the maximum

degree (k = 2 for g2 in Figure 2.11b). Although graph g2 is not cyclic, it can be easily
observed that we get mutual dependencies among its vertices states:

∗ x(v1) = f(Winu(v1) + Ŵ(x(v2) + x(v3)))

∗ x(v2) = f(Winu(v2) + Ŵ(x(nil) + x(nil))

∗ x(v3) = f(Winu(v3) + Ŵ(x(v1) + x(v4)))

∗ x(v4) = f(Winu(v4) + Ŵ(x(v3) + x(nil))

(2.45)

Note that when processing directed acyclic structures, the encoding network resulting
from unfolding the hidden layer on the input structure is a feed-forward network. However,
in cases of cyclic or undirected structures as those described by the examples in Figure 2.11,
the resulting encoding network is actually a recurrent network, whose convergence to an
equilibrium state is not generally ensured [169].

Recursive Cascade Correlation

The Recursive Cascade Correlation (RCC) [169] extends the cascade Correlation algorithm
(see Section 2.1.3), implementing a constructive approach for modeling RecNNs. Through
RCC, the neural network model is able by itself to select a proper dimension for the
state space representation of each node in the input structures, i.e. the model adapts the
number NR of hidden units used.

Considering the application to a vertex v of an input graph g, the l-th hidden recursive
unit, which is added to the RecNN architecture, receives in input the label u(v) and the
set of the states for the successors of v computed by the l-th unit itself and by the already
frozen hidden units. This corresponds to the implementation of a local state transition
function τ : RNU × R

koutl → R
l , where l is the actual size of the hidden layer (i.e. the

actual dimensionality of the state space), computed as:

xl(v) = f(Winu(v) +
l

∑

j=1

kout
∑

i=1

ŵ
(i)
lj xj(si(v))) (2.46)

where ŵ
(i)
lj is the weight for the recurrent connection from hidden unit j to hidden unit l

corresponding to the i-th successor of v. In RCC, the output function is implemented by
a layer of output units as in the standard RecNN (see Section 2.2.6, equation 2.43).

Implementing an incremental approach for the design of a RecNN, the RCC model can
be applied to process structural transductions on tree (and DPAG) domains, featured by
causality, adaptivity and stationarity.
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2.2.7 Related Approaches

Contextual Recursive Cascade Correlation

The Contextual Recursive Cascade Correlation (CRCC) [141] model is an extension of the
RCC which partially removes the causality assumption in the RecNN encoding process.
The basic idea consists in observing that when a new hidden unit is added to the network
architecture, the output of the already frozen units corresponding to every vertex in the
input structure is already available. Such state information is only partially exploited by
RCC, as only the states computed for the successors of a vertex v are actually used in the
computation of the state x(v), whereas in CRCC, the state x(v) depends also on the state
computed for the predecessors of v. If the hidden layer contains l recursive neurons, the
local state transition functions τ is defined such that τ : RNU × R

koutl × R
kin(l−1) → R

l,
and the output of the l-th hidden unit, i.e. the l-th state variable, is computed according
to:

xl(v) = f(Winu(v) +
l

∑

j=1

kout
∑

i=1

ŵ
(i)
lj xj(si(v)) +

l−1
∑

j=1

kin
∑

i=1

w̃
(i)
lj xj(pi(v))) (2.47)

where the third addend in the right hand side of equation 2.47 is included in order to
exploit the state information coming from the predecessors of vertex v. In equation 2.47,

w̃
(i)
lj denotes the weight on the connection between units j and l corresponding to the state

of the i-th predecessor of v.

While computing the state for vertex v, the contextual state information (context
window) is incrementally increased as new hidden units are added to the network. Indeed,
when a new hidden unit is added, the context window is extended to include all the sub-
trees rooted in the predecessors of the vertices in the old context window. Thereby, the
context window can eventually cover the whole input structure, allowing the model to
distinguish among different occurrences of the same sub-tree in different contexts. As
such, CRCC has been proved to be more powerful than causal RecNN models. Indeed,
universal approximation capabilities of CRCC for functions on a fairly general subclass of
DPAGs has been proved in [86, 85]. Applications of the CRCC models, e.g. on tasks from
Cheminformatics can be found in [141], showing that the results obtained with CRCC
actually improve the results obtained by causal models.

Neural Network for Graphs

The Neural Network for Graphs (NN4G) model [139] is a recently proposed model for
processing general classes of graphs. NN4G computes adaptive, stationary transductions
on graph domains, overcoming the causal assumption by resorting to a non-recursive ap-
proach for encoding input structures. As in the case of RecNNs, the encoding transduction
Tenc is computed using a vertex-applied local encoding function τ , which however is non-
recursive in its definition, allowing to deal with both cyclic/acyclic directed/undirected
graphs. In particular, τ is implemented by the hidden layer of the NN4G architecture,
by adopting a constructive approach such as the Cascade Correlation algorithm. Consid-
ering a set of undirected graphs with degree k, if the hidden layer contains l units, then
τ : RNU ×R

k l → R
l, such that the output of the l-th hidden unit, for vertex v, is computed
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as:

xl(v) =



















f(Winu(v)) if l = 1

f(Winu(v) +
l−1
∑

j=1

∑

v′∈N (v)

ŵlj xj(v
′)) otherwise

(2.48)

The encoding is indeed non recursive and can be computed without any stability issue
also in case of cyclic or undirected structures. The context window considered when
computing the state information for each vertex in the input structure is incrementally
extended as the number of hidden units is increased, eventually enclosing the whole graph
structure in a very simple and effective way [139]. The output function gout is typically
implemented by a single layer of output units. For structure-to-structure transductions,
the output architecture is applied in correspondence of every input vertex. In case of
structure-to-element transductions, a state mapping function χ must be used.

The effectiveness of the NN4G model has been tested on real-world task [139], outper-
forming the results achieved by contextual models and CRCC.

Graph Neural Networks

The Graph Neural Network model (GNN) [160] is a recently proposed interesting RecNN
model. Basically, referring to our notation, a GNN computes adaptive stationary struc-
tural transductions using a recursive approach, being able to deal also with cyclic and
undirected graphs. Structural transdutions are computed as for standard RecNN (see
Section 2.2.6) by resorting to a local encoding function τ , which encodes the input ver-
tices, and to a local output function gout, for output computation. In the case of GNN,
the local state transition function τ is typically extended to consider a larger amount of
information (with respect to standard RecNNs) when applied to a vertex v, including the
labels on the edges incident on v and the input labels of the vertices in the neighborhood
of v

τ : RNU × R
kNE × R

kNR × R
kNU → R

NR (2.49)

where R
NE denotes the space of the edge labels. A global state transition function τ̂ is

defined by concatenating the applications of equation 2.49 to every vertex in the input
graph. The local output function gout takes in input the input label and the state of each
vertex v:

gout : R
NU × R

NR → R
NY (2.50)

As in standard RecNNs, for structure-to-structure transductions gout is applied in corre-
spondence of every vertex in the input graph. However, for processing structure-to-element
transductions, a supervised vertex vs is randomly chosen for each input graph and the local
output function is applied only in correspondence of vs.

Functions τ and gout are implemented by neural networks. In particular, the output
function gout is typically implemented as a MLP, whilst different neural implementations
are possible for τ (positional and non-positional forms) [160].

The basic idea behind GNN consists in implementing contractive global state transition
functions τ̂ , in order to ensure stability of the encoding process. This is realized by defining
a gradient descent learning algorithm in which the error function to minimize includes a
penalty term in order to penalize non-contractive τ̂ . The learning algorithm therefore
consist in alternating phases of state relaxation, in which a stable global state of the
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network is computed, and phases of gradient computation, until a stopping criterion is
met.

The GNN model is characterized by very interesting computational properties, investi-
gated in [161], although the effect of contractivity of GNN state dynamics, in particular in
relation to the Markovian bias of RecNNs [91], deserves further investigations, representing
a possible basis for comparison with the RC models proposed in Part III.

The GNN model has been successfully applied to a large variety of real-world tasks
from different domains, including Chemistry [179, 160, 11], Web Processing [160, 42, 162],
Document and Text Processing [145, 33, 196], Image Processing [143, 41], and Relational
Learning [179].

Recursive Neural Models for Unsupervised Learning

Although supervised learning represents the main focus of this thesis, several recursive
neural network approaches have been devised in the past years also in the context of
unsupervised learning. Tasks of interest, in this context, can be modeled as structural
transductions T for which no output mapping is required, and the state space X can be
identified also as the output domain:

T : U# → X# (2.51)

Equivalently, T = Tenc in the previous equation 2.20.

Recursive neural approaches for unsupervised learning turn out to be useful for numer-
ous applications e.g. in the fields of document and web processing [78, 117, 77, 198, 79],
data visualization [71, 9] and image processing [80, 2]. A successful approach in this con-
text is the generalization of the Self-Organizing Map (SOM) [120] for processing structured
information [87, 88]. For tasks involving sequence processing, the Temporal Kohonen Map
[32] and the recursive SOM [186] represents examples of such generalizations. The SOM
for structure data (SOM-SD) [74] allows to extend the SOM approach to processing of
hierarchical (tree) data structures. SOM-SDs can process causal and stationary transduc-
tions as in equation 2.51. The encoding process in SOM networks for structured data is
essentially based on the same process described in Section 2.2.3, in which a local encoding
function τ (equation 2.27) is applied recursively to the nodes of an input tree, according
to a bottom-up visit of the structure. Also in the unsupervised case, the state of a node
n, i.e. x(n), is a function of its input label u(v) and of the states already computed for its
children, i.e. x(ch1(n)), . . . ,x(chk(n)). However, in this case the state space X is a discrete
space, where each element correspond to one unit of the topological map of the SOM, and
the state corresponding to a node n, i.e. x(n), represents the coordinate of the projection
of n on the map. SOM-SD networks are typically trained using Hebbian learning (e.g.
[87, 88]). In order to alleviate the causal assumption, several variants of the SOM-SD
have been proposed, enlarging the class of data structures that can directly treated: the
Contextual SOM-SD (CSOM-SD) [75, 76, 2], the GraphSOM model [78, 77, 80] and the
Probability Measure GraphSOM (PMGraphSOM) [198].

Other emerging approaches are represented by probabilistic methods based on exten-
sions of the Generative Topographic Map (GTM) [22]. For instance, the GTM Through
Time [21] extends the algorithm to sequence domains, while in [71] GTMs are used for
visualization of tree structures. In [9], based on a bottom-up visiting approach, a GTM for
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structured data (GTMSD) model is proposed for topographic mapping of trees in which
contextual information can be efficiently exploited.

Kernel Methods for Structured Domains

Kernel methods (see Section 2.1.4) can be extended to deal with structured information
directly [69, 165, 84]. The basic idea is to define a kernel function on the product space
of structured domains

k : U# × U# → R (2.52)

which is equivalent to define a similarity measure on couples of instances in the structured
input domain U#. Valid kernels on structured domains embed in their definition a non-
linear mapping ϕ, which encodes each input structure into a (possibly infinite-dimensional)
feature space X :

ϕ : U# → X (2.53)

Therefore, in the case of kernel methods for structures, the encoding transduction is not
computed by resorting to a vertex-wise applied encoding function, instead it is implicitly
computed by the kernel function, i.e. Tenc ≡ ϕ. Encoding transductions computed by
kernel methods are non-adaptive and must be specfically designed (through the design of
the kernel function) for the specific problem at hand. As in kernel for flat data, the output
is computed using an SVM, i.e. Tout is implemented using an SVM.
In general, one of the main drawbacks involved by kernel methods for structures is the
fact that they are typically very expensive in terms of the required computational cost for
the kernel computation (possibly involving a quadratic or even a cubic cost in the number
of input vertices) and for training the SVM.

One of the most relevant class of kernel functions for structures is represented by the
convolution kernels [93]. The basic idea behind convolution kernels is that a kernel function
on structured objects can be defined in terms of kernels functions defined on parts of the
objects. The advantage of this approach is that convolution kernels are very general and
can be applied to many classes of structures and transductions.
Although not representing a direct research object, for the sake of performance comparison
on real-world tasks in this thesis we refer to a number of kernels for trees and graphs. In
particular, the Partial Tree [144], Subset Tree [35], Subtree [185], Route [2], Activation
Mask [1] and Activation Maskπ [3] kernels are considered for tree domain processing (see
Chapter 6). Moreover, the Marginalized [115], Optimal Assignment and Expected Match
[57] kernels are examples of relevant kernels for graphs (see Chapter 7).

Other Approaches

Learning in structured domains is an increasingly growing research area, including a va-
riety of approaches from different ML paradigms. Inductive Logic Programming (ILP)
methods [123], and Statistical Relational Learning (e.g. [70, 147]), more in general, repre-
sent examples of relevant emerging research fields, exploiting relational data and statistical
information to learn accurate models for applications in various domains. Although such
approaches are not immediately related with the RC models for structured data processing
introduced in this thesis, the investigation of possible interactions could be interesting in
particular for delineating future research lines.
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Part II

Analysis and Applications of
Reservoir Computing for Sequence

Domains





Chapter 3

Markovian and Architectural
Factors of ESN dynamics

3.1 Introduction

Beside the widespread applicative success of the ESN, some doubts still remain e.g. con-
cerning applications on practical real-world tasks, with particular regard to problems for
which standard RNNs have achieved good performance [151]. Moreover a number of more
theoretical open issues still remain and motivate the research effort in the ESN area. Under
a general perspective, the main research topics on ESNs [107] focus on the optimization
of reservoirs towards specific problems (e.g. [102, 163, 164]), the role of topological orga-
nization of reservoirs (e.g. [195, 110]) and the properties of reservoirs that are responsible
for successful or unsuccessful applications (e.g. [150, 81]). In particular, this last topic,
considered in relation to the reservoir architecture and its (usually) high dimensionality,
is of a special interest for the aims of our investigations.
Other aspects concerning the optimal design of ESNs involving the setting of hyper-
parameters of the reservoir, such as the input scaling, the bias, the spectral radius and the
settling time (see e.g. [182, 183]) lie out of the aims of the Chapter and are not specifically
investigated.

An important feature of ESNs is contractivity of reservoir state transition function,
which always guarantees stability of the network state dynamics (regardless of other ini-
tialization aspects) and the Echo State Property (therefore valid reservoirs). Moreover,
under a contractive setting, the network state dynamics is bounded into a region of the
state space with interesting properties. The characteristics of state contracting map-
pings have already been investigated in the contexts of Iterated Function Systems (IFSs),
variable memory length predictive models, fractal theory and for describing the bias of
trainable RNNs initialized with small weights ([90, 176, 175, 177]). It is a known fact
that RNNs initialized with contractive state transition functions are able to discriminate
among different (recent) input histories even prior to learning ([90, 175]), according to
a Markovian organization of the state dynamics. Such characterization also applies to
ESNs (e.g. [177]), although in this context it has still not been completely clarified, and
investigations about possibilities and limitations of the ESN approach due to a Markovian
nature of state dynamics are needed.

In particular, ESNs exploit the consequences of Markovianity of state dynamics in
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combination with a typically high dimensionality and non-linearity of the recurrent reser-
voir. The importance of a richly varied ESN state dynamics within a large number of
reservoir units has been theoretically and experimentally pointed out in ESN literature
(e.g. [103, 108, 177, 184]), although neither completely analyzed nor empirically evaluated.
Moreover, a high dimensional reservoir constitutes the basis to argue a universal approx-
imation property with bounded memory of ESNs, even in presence of a linear readout
layer ([177]). Indeed, although the Markovian organization of the reservoir state space
rules the dynamics of ESNs, it is known (e.g.[184, 133, 106]) that large reservoirs show
a goodness of predictive results on sequence tasks which is almost proportional to the
number of reservoir units. The Markovian characterization of the reservoir state space
seems therefore not sufficient to completely explain the performances of the model.

These points open interesting issues, motivating our investigation on the factors which
may influence the model behavior and on the assessment of their relative importance. In
particular, adopting a critical perspective as in [151], we are interested in the complemen-
tary investigation of characterizing (and not only of identifying) classes of tasks to which
ESNs can be successfully/unsuccessfully applied.

To approach the mentioned investigations still lacking in the ESN literature, Marko-
vianity of reservoir dynamics is directly considered in relation to the issue of identifying
relevant factors which might determine success and limitations of the ESN model and is
specifically studied in relation to other architectural factors of network design.

Under a complementary perspective, on tasks for which ESNs show good results, we
pose the question of identifying the sources of richness in reservoir dynamics that can be
fruitfully exploited in terms of predictive performance of the model. The aspects of high
dimensionality and non-linearity of reservoirs are studied by asking to which extent per-
formance improvements obtained by increasing the number of recurrent reservoir units is
due to a larger number of non-linear recurrent dynamics or to the effect of the possibility
to regress an augmented feature space. We also propose a study of different architectural
factors of ESN design which allow the reservoir units to effectively diversify their activa-
tions and lead to an enrichment of the state dynamics. This is done by measuring and
comparing the effects on the performance due to the inclusion of individual factors and
combination of factors in the design of ESNs. This study also investigates the effectiveness
on ESNs performance of the characteristic of sparsity among reservoir units connections,
which is commonly claimed to be a crucial feature of ESN modeling.

Recently, there has been a growing interest in studying architectural variants and
simplifications of the standard ESN model. In particular, a number of reservoir models
with an even simpler architecture than ESN have been proposed. A model with self-
recurrent connections only, linear reservoir neurons and unitary input-to-reservoir weights,
the so called “Simple ESN” (SESN) was presented in [53]. A feed-forward variant of
ESN, the “Feed-Forward ESN” (FFESN), was introduced in [29], while in [31] a further
simplification of the model with reservoir units organized into a tapped delay line was
proposed. Very promising results, more recently, were achieved using a deterministically
initialized reservoir architecture, with units connected in a cycle and only two absolute
values for the input and recurrent weights connections [157]. The work described in this
Chapter, being directed towards a deeper understanding of the comparative predictive
performance effects of different architectural factors of ESN design, can also be intended
in this research direction as well.

According to the motivations described above, in short, the aims of this Chapter
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can be summarized as follows. We outline complementary cases of the ESN behavior.
First, independently of the architectural network design (and reservoir dimensionality),
we provide a characterization of contractive ESNs, captured by the concept of Markovian
factor. Then, we identify relevant factors of architectural ESN design that allow a larger
dimensional reservoir to be effective in terms of network predictive performance. The
existence of such cases and the relative relevance of the proposed factors are concretely
assessed by specific instances where the effect can be empirically evaluated.

The rest of the Chapter is organized as follows. Section 3.2 discusses the relations
between the Echo State Property and the contractive setting of reservoir state dynamics.
Section 3.3 focuses on the Markovian organization of reservoir state dynamics. Section 3.4
introduces the identified architectural factors of ESN design and the corresponding archi-
tectural variants proposed to the standard ESN model. Experimental results are illustrated
in Section 3.5, by firstly discussing the influence of Markovianity on ESN performance, and
then by assessing the relevance of the proposed architectural factors on tasks of common
consideration in the ESN literature, showing a significant effect of the reservoir dimen-
sionality. Finally, Section 3.6 summarizes the main general results.

3.2 Echo State Property and Contractivity

An ESN must be initialized such that the Echo State Property (ESP) of equation 2.33
holds. When the ESP is satisfied, the reservoir state asymptotically depends only on the
history of the input which feeds the ESN and any dependence on initial conditions pro-
gressively fades out. The initialization conditions for the ESP, described in equations 2.34
and 2.35, interestingly relate to another very important characteristic of ESNs, which
is contractivity of state dynamics. The state transition function τ implemented by the
reservoir (see equation 2.32) is said to be contractive if it satisfies the following condition:

∃C ∈ R, 0 ≤ C < 1, ∀u ∈ R
NU , ∀x,x′ ∈ R

NR :

‖τ(u,x)− τ(u,x′)‖ ≤ C‖x− x′‖
(3.1)

where ‖ · ‖ denotes a norm on the state space R
NR . In other words, τ must be Lipschitz

continuous with parameter C less than unity. Contractivity of the state transition function
τ ensures the ESP of equation 2.33. Indeed, if τ is contractive with parameter C < 1,
then for every input sequence of length n, [u(1), . . . ,u(n)], and for every initial states x
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and x′:

‖τ̂([u(1), . . . ,u(n)],x)− τ̂([u(1), . . . ,u(n)],x′)‖

= ‖τ(u(n), τ̂([u(1), . . . ,u(n− 1)],x))− τ(u(n), τ̂([u(1), . . . ,u(n− 1)],x′))‖

≤ C‖τ̂([u(1), . . . ,u(n− 1)],x)− τ̂([u(1), . . . ,u(n− 1)],x′)‖

≤ . . .

≤ Cn−1‖τ̂([u(1)],x)− τ̂([u(1)],x′)‖

= Cn−1‖τ(u(1), τ̂([ ],x))− τ(u(1), τ̂([ ],x′))‖

= Cn−1‖τ(u(1),x)− τ(u(1),x′)‖

≤ Cn‖x− x′‖

(3.2)

which clearly approaches 0 as n approaches ∞. Note that this argumentation is valid for
any norm in which τ is a contraction, hence contractivity of the state transition function
in any norm is a sufficient condition for the ESP 1. On the other hand, a contractive
setting of τ is not strictly necessary for the ESP, which therefore can possibly hold also
for non-contractive reservoirs.

For networks using the hyperbolic tangent as activation function, contractivity in the
Euclidean norm is very easily ensured if the condition σ(Ŵ) = ‖Ŵ‖2 < 1 holds. Indeed,
in this case τ is always a contraction in this norm:

‖τ(u,x)− τ(u,x′)‖2

= ‖tanh(Winu+ Ŵx)− tanh(Winu+ Ŵx′)‖2

≤ max(|tanh′|)‖Ŵ(x− x′)‖2

≤ ‖Ŵ‖2‖x− x′‖2

(3.3)

This leads to the sufficient condition of equation 2.35 proposed in [103]. Note that even if
τ is not contractive in the Euclidean norm, it could be contractive in another norm, and
in this case the ESP would hold anyway2.

In the following, the Euclidean norm is always assumed and the symbol σ is used to
refer the Euclidean norm of the recurrent weight matrix Ŵ. Referring to the sufficient
initialization condition for the ESP of equation 2.35, the parameter σ is also called the
contraction coefficient of the network, as it governs the contractivity (at least in the

1In the original definition of the ESP in [103], the Euclidean norm ‖ · ‖2 is used. However, as finite-
dimensional norms are all equivalent, if the ESP holds for any given norm, then it also holds for the
Euclidean norm, and the original ESP is satisfied.

2In [24], a different norm (D-norm) is introduced for which the contraction condition of the state
transition function is less restrictive than the condition in equation 2.35. For simplicity, however, in this
Chapter we consider only contractivity in the Euclidean norm.
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Euclidean norm) of the state transition function. As a consequence, the value of σ should
be properly set to match the target system dynamics. As a rule of thumb, a larger σ
corresponds to slower dynamics and longer memory of the target system and a smaller σ
corresponds to faster dynamics and smaller memory ([103]).

3.3 Markovian Factor of ESNs

We say that a state model on sequence domains has a state space organization of a Marko-
vian nature whenever the states assumed in correspondence of two different input se-
quences sharing a common suffix are close to each other proportionally to the length of
the common suffix. This Markovian characterization of the state space dynamics is re-
ferred hereafter as the Markovian factor. A class of models on sequences on which the
concept of Markovian factor applies is represented by Variable Memory Length Markov
Models (VLMMs) ([158]), in which the state depends on a suffix of the input sequence
whose length might vary with the input sequence itself.

Relations between contraction mappings and Markovianity have been investigated in
several contexts, including IFSs, fractal theory and the architectural bias of RNN models
([90, 176, 175, 177]). In particular, for what concerns this last point, contractivity of the
state transition function is responsible for setting a Markovian bias on the theoretical
computational capabilities of RNNs. Indeed, it has been shown in [90, 175] that the class
of RNNs constrained to have contractive state transition function and bounded state space
can be approximated arbitrarily well by the class of models on sequences with Markovian
state dynamics. RNNs states corresponding to input sequences sharing a common suffix
are naturally clustered together even prior to learning.

Such constrained state organization also applies to ESNs, in which the state space is
bounded under very mild assumptions (e.g. for bounded reservoir activation functions,
such is tanh) and the state transition function τ is a fixed map characterized by contrac-
tivity. To clarify the Markovian characterization of ESNs state space, let first assume a
continuous reservoir state space with infinite precision computations. Consider an ESN
with recurrent state transition function τ implementing a contraction mapping with pa-
rameter C with respect to the state space R

NR . Suppose that the subset of states which
are assumed by the reservoir of the ESN is bounded with diameter denoted by diam.
Then, for every suffix length n > 0, two input prefixes s(v), s(w) ∈ (RNU )∗, common in-
put suffix of length n [u(1), . . . ,u(n)] and couple of initial states x,x′ ∈ R

NR , the distance
between the states computed by the reservoir for the two sequences s(v)· [u(1), . . . ,u(n)]
and s(w)· [u(1), . . . ,u(n)], with initial states x and x′ respectively, is upper bounded by
a factor proportional to Cn:

‖τ̂(s(v)· [u(1), . . . ,u(n)],x)− τ̂(s(w)· [u(1), . . . ,u(n)],x′)‖ ≤ Cndiam (3.4)
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In fact,

‖τ̂(s(v)· [u(1), . . . ,u(n)],x)− τ̂(s(w)· [u(1), . . . ,u(n)],x′)‖

≤ C‖τ̂(s(v)· [u(1), . . . ,u(n− 1)],x)− τ̂(s(w)· [u(1), . . . ,u(n− 1)],x′)‖

≤ . . .

≤ Cn‖τ̂(s(v),x)− τ̂(s(w),x′)‖

≤ Cn diam

(3.5)

The Markovian characterization of ESNs implies the fact that older input symbols
have an exponentially decreasing influence on the reservoir state. Therefore the distance
between the states corresponding to input sequences which differ only before a common
suffix of length n, is anyhow bounded by a term which exponentially decreases with n.
In this way, the reservoir of an ESN is able to differentiate different input sequences
in a Markovian suffix-based way even in the absence of learning of the recurrent state
transition function. Such state space organization makes the model more suitable for tasks
for which more similar targets are associated to input sequences sharing longer suffixes.
This is graphically illustrated in Figure 3.1, showing different (symbolic) input sequences
and corresponding states computed by a model respecting the suffix-based Markovian
organized dynamics. In the simplified example of Figure 3.1, the states corresponding to
different input sequences cluster together in a suffix-based fashion. The two sequences
”cbaaba” and ”baaaba”, sharing the suffix ”aaba”, are mapped into close states, whereas
the state corresponding to ”cbbaab” is quite distant. Thereby, the readout naturally
performs better if the task at hand requires to associate similar outputs to ”cbaaba” and
”baaaba” and a different one to ”cbbaab”. On the contrary, the model is less appropriate
whenever the task requires similar outputs for ”cbaaba” and ”cbbaab” and a different one
for ”baaaba”. To concretely show the effect of the Markovian factor on possible classes of
tasks, in Section 3.5.1 we design two ad-hoc target functions that match and un-match,
respectively, the Markovian characterization of state dynamics, thereby characterizing
suitable (easy) and un-suitable (hard) tasks for the ESN approach.

When we move to a more realistic setting of finite precision computations, the differ-
ences between reservoir states corresponding to input sequences with long common suffixes
can be appreciated up to a maximum suffix length, depending on both the precision of
computation and the degree of contractivity of the state transition function. Input se-
quences with differences occurring only before a suffix of the maximum length are mapped
into the same state. Thereby, finiteness of memory in reservoir computation arises, which
is also supported by the results on the ”fading memory” property of reservoirs ([103])
and has been investigated in the context of the short-term memory capacity of ESNs (e.g.
[105, 23]). However, note that even within the framework of finite memory computation,
the Markovian nature of the reservoir space organization of equation 3.4, continues to
hold. Such characterization determines the decreasing relative influence on the network
state due to older elements of the input sequence and, differently from what is usual in
ESN literature, shifts the focus on the properties of input sequences and corresponding
targets, independently of the features of reservoirs and readouts.
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Figure 3.1: Graphical illustration of the Markovian nature of reservoir state space or-
ganization. Input sequences with similar suffix drive the model into close points in the
reservoir state space R

NR (see equation 3.4).

Hence, independently of the architectural design, ESNs with contractive state dynamics
are characterized by the Markovian factor. In [90] it has been shown that the architecture
of RNNs with small recurrent weights is biased toward Markovian models. Therefore,
during training standard RNNs initially explore regions of the state space within such
Markovian characterization, before possibly moving towards more complex state dynamics
[90]. In this concern, note that in the case of ESNs, the recurrent reservoir weights are
never trained after the contractive initialization (see Sections 2.2.5 and 3.2). Thereby,
for ESNs, Markovianity of the state space organization (as described in [90]) represents
a strict and fixed characterization of the model [62]. However, note that the question
whether contractivity of state transition functions is strictly necessary for the ESP to
hold still represents an open problem, and in general the Markovian characterization is
assured only when the contractivity is enforced. Therefore, in this Chapter the contraction
coefficient σ is used to scale the reservoir weight matrix and to control the Markovian
factor, with a smaller σ corresponding to a more prominent Markovianity of reservoir
dynamics.

There is another interesting question arising from the observation that the class of
contractive ESNs is equivalent to the class of models with state space organization of
Markovian nature. As contractivity seems to be the ruling characteristic of reservoirs, then
one could expect that even a smaller contractive reservoir, or a contractive reservoir of
neurons with any possible architecture of connectivity (e.g. only self recurrent connections)
would perform well on suitable tasks just as standard ESNs would do. If this intuition were
true, then even a single-unit reservoir (even a linear one) could be used to solve any such
task as long as it is characterized by a contractive state dynamics. However, several works
have reported that larger reservoirs of neurons have better predictive performances than
smaller ones on different non-linear tasks (e.g. see [184]). Increasing the dimensionality of
reservoirs seems to be the simplest way to get better performances. Moreover, as pointed
out in [150], different reservoir instances, obtained with the same scaling settings of the
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recurrent weight matrix, may result in different performances on the same task.
Our investigation about the key architectural factors which may improve large reser-

voirs performance stems from these observations. Accordingly, several architectural vari-
ants of the standard ESN model are introduced in Section 3.4.

3.4 Architectural Factors of ESN Design

Even though reservoirs dynamics are governed by the Markovian factor, there still are
several other factors, related to the architectural design, which might influence the richness
of the Markovian dynamics and thus the performance of ESNs. Indeed ESNs with the
same contractive coefficient but different topologies can lead to different results on the
same task. At the same time, the richness of the dynamics is related to the growth of the
number of units (reservoir dimensionality). It is therefore interesting to investigate the
factors determining the differentiation among the units.

We identified four architectural factors which may have an impact on ESNs perfor-
mance, namely: input variability, multiple time-scale dynamics, non-linear interactions
among units and regression in an augmented feature space. Each factor is described more
extensively in the following:

Input Variability. This refers to the possibility for different reservoir units of looking at
each element of the input sequence under different points of view. The configuration
without input variability is obtained by fixing the same values of the input weights
for all the reservoir units. Input variability is implemented through a random ini-
tialization of the input-to-reservoir weight matrix Win with different values among
units.

Multiple Time-Scale Dynamics. This refers to the possibility for the reservoir units
to behave as dynamical systems with different time-scale dynamics. Supporting mul-
tiple time-scales is equivalent to a reservoir having individual neurons with different
contractive dynamics. We implement this possibility by controlling the reservoir
recurrent weight matrix Ŵ. As said in Section 3.2, the contractive dynamics of
the reservoir is governed by the contraction coefficient of the state transition func-
tion, which in the Euclidean norm is σ = ‖Ŵ‖2. However, individual reservoir
neurons may exhibit different contractive dynamics if Ŵ is arranged in a proper
way. In particular, we study the case in which Ŵ is a diagonal matrix. In this case
σ = maxi=1,...,NR

σi, where σi is the contraction coefficient of each single unit i. This
situation is equivalent to a RNN with self-recurrent connections only in the hidden
layer. If different self-recurrent weights are used, then each neuron is able to show
different contractive dynamics while being driven by the same input sequence. The
Markovian behavior of the ESN does not only depend on the global value of σ but
on the whole set of dynamics determined by the single values σi, ∀i = 1, . . . , NR.
We conjecture that this architectural factor is crucial to achieve a rich dynamics of
the global transition function corresponding to good predictive performance.

Non-linear Interactions among Units. This factor refers to the presence of non-linear
interactions among unit activations in a reservoir. It is implemented by using a Ŵ
matrix with non-zero extra-diagonal values, i.e. the reservoir units are mutually
connected. Note that using mutually and self-recurrent connectivity (including also
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non-zero diagonal values), the different units dynamics due to the multiple time-scale
factor are enriched by a non-linear recurrent combination of the dynamics of each
unit.

We consider both the cases of a dense recurrent matrix (fully connected reservoir)
and a sparse recurrent matrix (sparsely connected reservoir). Note that since the
very first work on ESNs ([103]) this architectural factor is one of those that are
claimed to be responsible for producing “rich” reservoir dynamics, and thus good
predictive performance. We propose to study this point in comparison to the other
three identified and to show how it really influences the performance of reservoirs.
Moreover, through a comparison between the sparsely and the fully connected ar-
chitectures we intend to investigate if a full connectivity among neurons is actually
needed to observe an influence of the non-linear interactions among units factor or
if a small number of recurrent connections among neurons is sufficient.

Regression in an Augmented Feature Space This factor refers to the influence that
having a high dimensional non-linear reservoir may have in the performance of an
ESN. This last point has actually much to do with the readout part of ESNs. The
conjecture here is that a linear readout might perform much better in a high dimen-
sional (non-linear) feature state space. To assess and to measure the effect of this
factor we introduce a particular reservoir variant which is called ϕ-ESN, in which
a smaller number of recurrent reservoir units (thus a smaller number of network
recurrent dynamics) is projected into an higher dimensional space by a non-linear
mapping. This study should give some insight on how much of the goodness of ESN
performance is due to a sufficient number of non-linear recurrent reservoir dynamics
and how much of it is due to the possibility of discriminating input patterns in an
augmented feature space (even with a linear readout).

We propose to investigate how the identified factors influence the reservoir dynam-
ics by studying architectural variants on the standard ESN model of equation 2.32 (see
Figure 3.2). In particular, we consider the following architectures:

Win

x (t )

W
^

Wout
...

...u(t ) y (t )

ReservoirInput Readout

Figure 3.2: Basic architecture of an ESN with a number of NU = 3 input units, NR = 4
reservoir units and NY = 2 output units.
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• ESN full . This corresponds to the standard ESN model described in Section 2.2.5,
where Ŵ is characterized by full connectivity.

• ESN sparse . As above, but Ŵ is a sparse matrix. This distinction is useful to
study the effects of non-linear interactions among reservoir units even in presence of
a very small number of such interactions.

• DESN3. Stands for Diagonal Echo State Network, in which Ŵ is a diagonal matrix4

whose diagonal entries w11, w22, . . . , wNRNR
are all the same and such that |wii| =

σ, ∀i = 1, 2, . . . , NR (see Figure 3.3). In this case σ is also equal to the spectral
radius of Ŵ. A particular case is when wii = σ, ∀i = 1, . . . , NR, that corresponds
to a reservoir having only positive self-recurrent connections:

xi(t) = f(Winu(t) + σxi(t− 1)) ∀i = 1, 2, . . . , NR (3.6)

The individual neurons of a DESN implement dynamical systems which are all gov-
erned by the same contractivity properties (the same Markovianity), but which may
look at the same input sequence elements through different input weights depending
on the presence or absence of input variability. In particular, in the absence of input
variability, all neurons in the reservoir of a DESN are identical, and the dynamics of
a DESN is the same as the dynamics of a single neuron reservoir. If input variability
is added, every reservoir neuron may differentiate its dynamics and thus performance
prediction is expected to be better in this latter case.

• RDESN. Stands for Random Diagonal Echo State Network, which consists in a
DESN with possibly different self-recurrent weights. If σ is the contraction coefficient
of the reservoir, then the diagonal weights of Ŵ are chosen according to a uniform
distribution in [−σ, σ] (see Figure 3.3).

xi(t) = f(Winu(t) + wiixi(t− 1)) ∀i = 1, 2, . . . , NR (3.7)

Also in this case the contractivity coefficient σ is equal to the spectral radius of
Ŵ. The reservoir of a RDESN has NR self recurrent units, each of which is char-
acterized by contractive dynamics with different time-scales. This variant is mainly
used to evaluate the influence that multiple time-scale dynamics might have on the
model performance, in particular when compared with the DESN architecture. An
architectural variant very similar to this one is known in the ESN literature as the
Simple ESN (SESN) model by [53]. However, in the standard SESN setting the input
weights to the reservoir are always fixed to 1.0 and the recurrent units are typically
linear.

• ϕ-ESN. This variant accounts for the last architectural factor, and its underlying
idea can be traced back to the Cover’s theorem on the separability of patterns ([37]),

3In literature the acronym DESN is also used to refer a different approach called Decoupled ESN model,
introduced in [195]

4Although the architectural differences between RNN models characterized by recurrent hidden units
with full connectivity (i.e. fully connected Ŵ) and with self-recurrent connections only (i.e. diagonal Ŵ)
are known to have an impact on the approximation capabilities of RNN networks [167, 121], here a diagonal
reservoir architecture is introduced with the aim of evaluating, isolating and comparing the quantitative
influence on the ESN performance due to the identified architectural factors.
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Figure 3.3: Diagonal ESN architectures with a number of NU = 3 input units, NR = 4
reservoir units and NY = 2 output units. The same recurrent weight is shared by every
reservoir unit for a DESN, while different recurrent weights are possible in an RDESN.

stating that a pattern-classification problem is more likely to be linearly separable
if it is projected non-linearly into a higher dimensional feature space. Accordingly,
in ϕ-ESNs, the recurrent reservoir state space is projected into a higher dimensional
feature space through a fixed non-linear random mapping. The state transition
function τ computed by the reservoir of the ESN is decomposed into an encoding
function τ ′ and a feature mapping ϕ:

τ = ϕ ◦ τ ′ (3.8)

where ϕ : RNR → R
Nϕ , and R

Nϕ is the new augmented reservoir state space. The
reservoir is accordingly subdivided into a recurrent part, which implements τ ′ and
acts as a standard dynamic reservoir, and a feed-forward (static) part, which imple-
ments the function ϕ:

ϕ(x(n)) = fϕ(Wϕx(n)) (3.9)

where Wϕ ∈ R
Nϕ×NR is the weight matrix (possibly including the bias) for the

connections from the recurrent part to the feed-forward part of the reservoir. Wϕ

is set with random values in a bounded range and is left untrained. In our settings,
the hyperbolic tangent is used as non-linear activation function fϕ. As the feature
state space is now R

Nϕ , the matrix Wout (of equation 2.32) is a NY ×Nϕ+1 matrix.
Figure 3.4 illustrates the architecture of a ϕ-ESN. Note that the recurrent part of a
ϕ-ESN may be arranged according to one of the previously described architectures.
We can thus have ϕ-ESN full, ϕ-ESN sparse, ϕ-DESN and ϕ-RDESN.

The non-linear map ϕ implemented by the feed-forward part of the reservoir increases
the non-linearity (and the dimensionality) of the state mapping τ , thereby facilitating
the readout for tasks that require high non-linear mapping capabilities in a richer
space. Higher dimensionality of ϕ-ESN therefore comes with an augmented non-
linearity of reservoir dynamics. However, note that ϕ-ESN does not introduce in the
architecture either non-linear recurrent dynamics (as the recurrent part is unchanged
and the architecture is augmented with a static feed-forward layer) or a non-linear
learner (as the adapted readout is still linear).
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Figure 3.4: Architecture of a ϕ-ESN, with a number of NU = 3 input units and NY = 2
output units. The dynamic part of the reservoir contains NR = 4 recurrent units, while
the static part is implemented through a layer of Nϕ = 10 feed-forward units.

The effects of improved non-linearity in reservoirs have more recently been addressed
also in [26, 27], in which an RC architecture similar to ϕ-ESN, called Reservoir
with Random Static Projections (R2SP), has been proposed. An R2SP architecture
represents a hybrid between Extreme Learning Machines (ELMs) ([100]) and ESNs,
and consists of a recurrent reservoir plus two static feed-forward layers, studied with
regard to the trade-off between memory and non-linearity in RC. Differently from
R2SP, the ϕ-ESN architecture is introduced to directly study the relations between
the augmented state space and the richness of ESN dynamics. Our analysis is indeed
focused on investigating why a larger reservoir can lead to better ESN performances.
In particular, we question whether to obtain the required diversification and richness
in the feature state space (where the linear readout is applied) a large number of
recurrent reservoir dynamics is really necessary, or a smaller number of them is
sufficient when amplified through a static non-linear random mapping into a higher
dimensional feature space.

3.5 Experimental Results

The experiments presented in the following aim at testing the empirical effects of the
factors introduced in Section 3.3 and 3.4. Firstly, in Section 3.5.2, we use two tasks
to show the condition underlying the ESN state space organization, i.e. the Markovian
assumption. Under such extreme condition we show that the Markovian factor dominates
the behavior of the model and then complex architectures are even not necessary. In
particular, the Markovian task is designed to be an easy task that can be solved by a 1-
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unit model, while the anti-Markovian task is conceived to be an hard task independently of
the architectural design. This analysis clearly points out the characterization and intrinsic
limitations of ESN models. Such limitations are also enlightened in Section 3.5.2, on a
task of practical importance, i.e. the Engine misfire detection problem, used to show
a real-world example for which the performance of the ESN does not depend directly
on the architectural design. Then, in the complementary case, we consider three tasks
for which large reservoir architectures turn out to be useful to achieve higher predictive
accuracies, showing that a 1-unit ESN is not sufficient independently of the value of the
contractive coefficient. Such tasks are the well known Mackey-Glass time series, the 10-th
order NARMA system, to which ESNs have been successfully applied in literature, and the
Santa Fe Laser dataset, which is representative for real-world chaotic time series problems
for which a suitable ESN approach can be more involving ([108, 126, 151]). On these three
last tasks, where the architectural design has a relevant role, in Section 3.5.3 we show and
evaluate the progressive positive influence on the ESN performance of the architectural
factors introduced in Section 3.4. For the sake of completeness, we tested the effects of
the architectural factors also on the Markovian and anti-Markovian tasks, allowing us to
provide a further support to the result of Section 3.5.2 concerning the major role of the
Markovian factor.

Section 3.5.1 introduces details and experimental conditions on the tasks used in the
experiments.

3.5.1 Tasks

To evaluate the performance of ESN variants we computed the mean squared and the
standard deviation of errors for every task with the exception of the Engine problem,
for which we used a mean misclassification error measure. A number of Ntrials = 10
independent repetitions 5 of each experiment has been carried out and the average results
are reported in the following.

Markovian/Anti-Markovian Symbolic Sequences

For this task we consider symbolic sequences on an input alphabet of 10 symbols, A =
{a, . . . , j}. Each element in a sequence is selected according to a uniform distribution
over A. The length of the sequence s is denoted by |s|. The symbols in s are denoted
by s(1), s(2), . . . , s(|s|), where s(1) is the oldest symbol and s(|s|) is the most recent one.
A mapping function M : A → {0.1, . . . , 1.0} is defined, such that M(a) = 0.1,M(b) =
0.2, . . . ,M(j) = 1.0. Hence, each input element is defined by u(t) = M(s(t)). On such
sequences we define two kind of tasks with a Markovian nature.
A first kind of Markovian tasks can be obtained by associating to each sequence a target
defined by the equation

ytarget(s) =

|s|
∑

t=1

u(t)

λ|s|−t
(3.10)

where λ > 1 is a real number that controls the degree of Markovianity of the task. Indeed
the target value associated to a string s depends on each symbol s(t), weighted by a
value which exponentially decreases with decreasing t, i.e. recent entries have a greater

5This number turned out to be sufficient as explained in Section 3.5.3.
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influence on the target than older ones. The distance among target values reflects the
length of common suffix of the input sequences, i.e. sequences with similar suffixes lead
to similar target values, whereas the closeness of targets is proportional to length of the
similar suffix. Hence, this task is an instance in the class of Markovian processes (in
particular those related to positive feedback systems). It would provide an example of
easy task for ESNs, for which we expect an excellent performance. Every target value
obtained by applying the equation 3.10 was then rescaled to the range [−1, 1].

The second task is an anti-Markovian task, in which the target value associated to s
is computed as

ytarget(s) =

|s|
∑

t=1

u(t)

λt−1
(3.11)

where λ > 1 controls the degree of anti-Markovianity, and in this case the weight associated
to each input entry is greater for older entries and smaller for more recent ones. It is
designed to be a hard task for ESNs, which are supposed to be unsuitable for it because of
the Markovian state space organization. Also for this task, the target values are rescaled
to the range [−1, 1].

A number of Ntrain = 500 and Ntest = 100 input sequences, of length between 50 and
100, were used for training and testing, respectively, while each input sequence was fed
three consequently times to the networks to account for the transient. For both the tasks,
we used a value of the parameter λ = 2.

An important point to stress is that the Markovian and the anti-Markovian tasks have
been specifically designed to respectively match/un-match the Markovian nature of the
reservoir space, to show how the Markovian factor can dominate every other factor of ESN
design.

Engine Misfire Detection Problem

This is a classification task consisting in predicting misfire events in a 10-cylinder internal
combustion engine. For each time step t, a 4-dimensional input u(t) provides information
about the state of the engine (i.e. cylinder identifier, engine crankshaft, engine speed,
engine load), whereas the output ytarget(t) is a class label for time step t, namely −1
for normal firing and +1 for misfire. The Engine misfire detection problem has been
introduced in [134] and used in the IJCNN 2001 challenge. It is representative for a class
of real-world problems with heterogeneous and long time series, for which good solutions
have been found using more traditional RNNs (e.g. [151, 50]). Moreover, it is characterized
by a complex input-output relationship (due to the system dynamics) and a difficulty
in obtaining good generalization performance (one reason is the very high frequency of
normal firing, ≈ 90% over the total number of events). This task has been previously
approached with ESNs in [151] with unsuccessful results. In our experiments, we used a
reduced version of the original dataset 6, containing Ntrain = 11000 samples for training
and Ntest = 11000 samples for testing (from the test set 1 of the original dataset). For
both training and testing, we considered an initial transient of length Ntransient = 5000.
Note that classifying every sample as normal (i.e. y(t) = −1 for every t) gives a mean
misclassification error of 0.0991 on the training set and of 0.1017 on the test set.

6The original dataset for the Engine misfire detection problem has been kindly provided by Danil
Prokhorov.
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Mackey-Glass Time Series

The Mackey-Glass time series [130] is a standard benchmark for chaotic time series pre-
diction models, on which ESNs have been successfully applied (e.g. [103, 108]) showing a
very good performance. The time series is defined by the following differential equation:

∂u(t)

∂t
=

0.2u(t− α)

1 + u(t− α)10
− 0.1u(t) (3.12)

The most used values for α are 17 and 30, where for α > 16.8 the system has a chaotic
attractor. We used α = 17. The task consists in a next-step prediction of a discrete
version of the equation 3.12. For each repetition of the experiments, we generated 10000
time steps of the series, of which the first Ntrain = 5000 were used for training and the
last Ntest = 5000 were used for testing. An initial transient of Ntransient = 1000 time steps
was discarded before training the readout. Every element of the Mackey-Glass sequence
was shifted by −1 and passed through the tanh function as in [103, 108].

10th Order NARMA System

This task consists in predicting the output of a 10-th order non-linear autoregressive
moving average (NARMA) system. The task has been introduced in [7] and has been
tackled by ESN models in [104] and in [31]. The input of the system is a sequence of
elements u(t) randomly chosen according to a uniform distribution over [0, 0.5]. The
output of the target system is computed as:

ytarget(t) = 0.3ytarget(t−1)+0.05ytarget(t−1)(

10
∑

i=1

ytarget(t− i))+1.5u(t−10)u(t−1)+0.1

(3.13)
Given the input value u(n), the task is to predict the corresponding value of ytarget(t). The
training set was made up ofNtrain = 2200 input-target examples, of whichNtransient = 200
were used as initial transient. A sequence of length Ntest = 2000 was used for testing.

Santa Fe Laser Time Series

The Laser time series task [189] is from the Santa Fe Competition and consists in a one-
step prediction on a time series obtained by sampling the intensity of a far-infrared laser
in a chaotic regime (see Figure 3.5). Applications of ESN models to this task are reported
e.g. in [108] and in [30]. The task is characterized by some known difficulties, including
numerical round off noise and the presence of different time-scales in the time series, whose
prediction is particularly hard in correspondence of breakdown events [108]. We used the
complete row dataset of 10093 time steps 7, of which Ntrain = 5000 were used for training,
with a transient of length Ntransient = 1000, and the remaining Ntest = 5093 were used for
testing. The elements of the time series were normalized in the interval [−1, 1]. Moreover,
due to the specific difficulties of the task, a form of regularization was adopted in training
the ESN variants, consisting in adding a normal noise of size 10−4 to the input for the
readout.

7The Laser dataset is available as data set A at the webpage
http://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html
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Figure 3.5: A fragment of the Laser time series.

3.5.2 Markovian Factor Results

We tested ESNs with one single (self-recurrent) unit versus ESNs with a number of 100
reservoir units (NR = 1 or 100) and contractive dynamics ruled by the same value of σ
ranging in the interval [0.1, 0.9] with a step size of 0.1. Reservoirs with multiple units
possessed full connectivity, and were initialized according to Sections 2.2.5 and 3.2. In
particular, weight values in Ŵ were drawn from a uniform distribution over [−1, 1] and
then Ŵ was rescaled to the specific contraction coefficient σ. Reservoirs with one single
unit were actually unidimensional DESNs, where for the Markovian sequences task the
setting was done according to the simplest case, i.e. equation 3.6, and using a linear
activation function. Weights for the input-to-reservoir connections in Win were initialized
according to a uniform distribution over [−0.1, 0.1].

Markovian/Anti-Markovian Tasks

Figure 3.6 shows the results of this experiment obtained for the Markovian sequences
task. It is evident that for the appropriate value of the contraction coefficient the single
unit model with linear activation function is able to reproduce the target dynamics with
almost no error, beating models with larger reservoirs. The point of best performance
is actually due to the particular choice of the parameter λ = 2 in the definition of the
task (see equation 3.10), which indeed corresponds to a value of σ = 0.5 in the linear
unit dynamics. These results enlighten the relevance that Markovianity might have over
other factors of ESN design. Indeed, when the task at hand is characterized by such a
strong Markovian nature, the Markovian factor of ESNs is the one with higher influence
on the performance of the model, and complex reservoir architectures might even be not
necessary: none of the architectural factor included in the ESN full could improve the
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Figure 3.6: Mean squared test errors on the Markovian sequences task for reservoirs of
1 linear unit (DESN) and 100 units (ESN full), with linear and non-linear activation
functions. Results are reported for increasing values of the contraction coefficient σ.

ad-hoc solution fitted by the single neuron with appropriate setting of parameters.

The results obtained for the anti-Markovian sequences task are reported in Figure 3.7.
As expected, none of the tested architectures is able to solve this task with a satisfactory
accuracy. Through a comparison between Figures 3.6 and 3.7, it is indeed apparent that
the error on the anti-Markovian sequences task is several orders of magnitude higher than
the error on the Markovian sequences one. For a further comparison, we also report
in the same figure the results obtained with the null model, i.e. a trivial model whose
output is always equal to the mean target value of the training set. In particular, single
unit models perform just as the null model for every choice of the contraction coefficient.
Moreover, larger reservoirs lead to even poorer results, especially for a non-linear activation
function. None of the architectural factors included in the ESN full could help to face
the task. These observations further remark the importance of the Markovian factor,
showing that independently of the choice of the contraction coefficient and of other factors
of network design, ESN models are not suitable for anti-Markovian tasks. Note also that
such task, being related to the Markovian constrained state space organization over the
input sequences, shows a more general result than the known evidences related to finiteness
of memory computation of ESN.

Here we find useful to further stress the point that the target functions of the Marko-
vian and anti-Markovian sequences tasks have been conceived to represent extreme con-
ditions for the properties of reservoir computation in ESNs by construction. Moreover,
with particular regard to the Markovian task, note that the qualitative outcomes of our
experimental analysis do not depend on the specific value of the degree of Markovianity
used (i.e. λ = 2). Indeed, observe that designing a target function in equation 3.10 which
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Figure 3.7: Mean squared test errors on the anti-Markovian sequences task for reservoirs
with 1 unit and 100 units, with linear and non-linear activation functions. Results are
reported for increasing values of the contraction coefficient σ. The error obtained by a
null model is also reported for a further comparison.

results to be closely related to the dynamics of a 1-unit linear reservoir with σ = 0.5, is
just a way to implement a simple instance in the class of Markovian processes, which is
useful to enlighten the potential influence of the Markovian factor on ESN performance.
These points are also discussed in Sections 3.1, 3.5, and 3.6. The proposed experimental
analysis allowed to enlighten the Markovian characterization and the related properties
and limitations of the ESN model. However, a general comparison on Markovianity and
anti-Markovianity of ESNs is out of the aims of the experiments on the two tasks. Note
that the Markovian and anti-Markovian tasks have not been designed to represent typical
ESN tasks, instead they can entail characteristics which can occur at different levels in
practical applications of ESNs.

Engine, Mackey-Glass, NARMA System and Laser Tasks

Figure 3.8 shows the results for the Engine misfire detection problem, where the null model
refers to the classification of all time steps as normal (i.e. y(t) = −1 for every t). Results
on this task are quite similar to those obtained for the anti-Markovian one. Indeed,
by increasing the complexity of the architectural ESN design (using a larger reservoir)
the performance of the model is not improved, rather it gets worse. In particular, the
performance of the larger reservoir ESN full is always outperformed by the performance
of the simpler model with single unit reservoir, which behaves as the null model for every
value of σ, indicating that the ESN is not able to learn how to generalize the input-
output target relationship. This case exemplifies the problems that can be encountered
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Figure 3.8: Mean misclassification test errors on the Engine misfire detection task for
reservoirs of 1 unit and 100 units (ESN full), with non-linear activation function. Results
are reported for increasing values of the contraction coefficient σ. The error obtained by
the null model is reported for comparison.

when ESNs are used to approach difficult real-world tasks for which an increased reservoir
dimensionality is not effective.

Figures 3.9, 3.10 and 3.11 provide the results for the Mackey-Glass, the NARMA
system and the Laser tasks, respectively, for the 1 unit versus 100 units setting. As results
show, independently of the contraction coefficient, on both these tasks the multiple units
architecture outperforms the single unit one. Even though the Markovian factor continues
to characterize the reservoir dynamics, it is evident that larger architectures can exploit
the increased dimensionality to obtain better performances, especially for large values of
σ.

Remarks on Markovian Factor Results

As explained in Section 3.3, contractivity of state transition functions is the key feature
of valid reservoirs and allows ESNs to solve Markovian tasks even without training the
recurrent connections. However, the results presented in this section pointed out that just
Markovianity is not enough.

On the one hand, the Markovian factor might be the ruling factor of network design,
such that independently of the choices related to other architectural aspects (factors), its
influence on the performance of the model can be the strongest. This has been illustrated
on two ad-hoc designed tasks. In particular, on the Markovian task we showed that a
simpler ESN with the right degree of Markovianity is able to outperform more complex
architectures, while on the anti-Markovian task none of the architectural factors could help
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Figure 3.9: Mean squared test errors on the Mackey-Glass task for reservoirs of 1 unit
and 100 units (ESN full), with non-linear activation function. Results are reported for
increasing values of the contraction coefficient σ.
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Figure 3.10: Mean squared test errors on the NARMA system task for reservoirs of 1 unit
and 100 units, with non-linear activation function. Results are reported for increasing
values of the contraction coefficient σ.
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Figure 3.11: Mean squared test errors on the Laser task for reservoirs of 1 unit and 100
units, with non-linear activation function. Results are reported for increasing values of
the contraction coefficient σ.

to overcome the un-suitableness of ESNs for the task. Analogous results to those for the
anti-Markovian task were found for the Engine task, that therefore can represent a class
of real-world tasks for which the ESN model is inherently unable to exploit an augmented
complexity of reservoir architecture corresponding to a larger number of reservoir units.

On the other hand, for tasks of common consideration in the ESN literature, on which
higher dimensional reservoirs are useful to achieve better performances, the Markovian
characterization of the reservoir state space turned out to be not sufficient by itself to ex-
plain the performance of the model. The arising issue therefore consists in understanding
the features of reservoirs that enable ESNs with fixed recurrent state dynamics to suc-
cessfully approach highly non-linear tasks for which an augmented state dimensionality is
effective. This motivates the following investigation on the main architectural factors of
ESN design.

In Section 3.4 we identified four possible key architectural factors that may improve the
performance of fixed reservoirs. The results concerning the effects of these architectural
factors on the performance of ESNs are reported in Section 3.5.3.

3.5.3 Architectural Factors Results

We tested the proposed architectural variants on the Mackey-Glass, the NARMA sys-
tem, the Laser and the Markovian/anti-Markovian tasks, using the same experimental
framework of Section 3.5.2. The reported results present the performances and relative
standard deviations of the tested models for increasing reservoir dimensionality, allow-
ing us to show the progressive effect of differentiation introduced among units due to
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each architectural factor. The recurrent reservoir dimensionality considered varied in
NR = 1, 10, 100, 300, 500, while for the ϕ-ESN model we used a number of recurrent reser-
voir units varying as NR = 1, 5, 10, 100, 200, with a projection into a Nϕ = 500 dimensional
feature space. Weight values in matrix Wϕ were randomly chosen according to a uniform
distribution over [−1.0, 1.0]. For the case of sparse reservoirs, we used a percentage of con-
nectivity equal to 5%. For the Markovian/anti-Markovian tasks, a value of σ = 0.5 was
used, while for every other task, we tested networks with the same value of the contraction
coefficient σ = 0.9 (which provides the best setting found in Section 3.5.2).

In addition, notice that also the scaling of the input-to-reservoir weight values, i.e.
the maximum absolute value of the elements in Win, might have an influence on the
absolute performance of ESN models. In fact, input scaling modifies the working region
of the activation function of reservoir units, therefore affecting the degree of non-linearity
of state dynamics and the level of saturation. As for the case of the contraction coefficient
σ, in our experiments we fixed a constant value for the input scaling, namely 0.1. Such
common settings allowed us to make a uniform qualitative analysis of the relative effects
of the factors among the tasks.

The predictive performance of DESNs, RDESNs and ESNs with and without input
variability is provided in Figures 3.12, 3.13, 3.14, 3.15 and 3.16 for Mackey-Glass, NARMA
system, Laser, Markovian and anti-Markovian tasks, respectively. Tables 3.1, 3.2, 3.3, 3.4
and 3.5 report the averaged errors and standard deviations in correspondence of NR = 500
for the same tasks.

As a first general result, the graphs show that the test error initially dramatically
decreases 8 as the number of units in the reservoir is increased, i.e. along with the in-
creasing diversification on the reservoir dynamics induced by the architectural factors.
(An expected exception is due to the anti-Markovian task where no choice of architectural
factors can satisfactorily solve the task and the more complex models overfitted the data).
Note also that the influence of the factors led to a saturation effect approaching the max-
imum number of units.
As expected, for the DESN model without input variability (corresponding to a single
unit dynamics) we found the same error value for every reservoir dimensionality, except
for small statistical fluctuations due to the random nature of the experimental settings. In
general, the standard deviation of test errors in our experiments (compared to the value
of the mean) turned out to be not significant to affect the comparison among the perfor-
mance of different architectural variants. This is particularly true for the Markovian and
anti-Markovian tasks, for which, for the sake of simplicity, the performance variability is
not reported. However, an exception is observed for DESN without input variability and
NR = 500 for which the distribution of mean squared errors on the Mackey-Glass task is
skewed (due to few outliers with higher mean value).

The discussion regarding the effect of each architectural factor, based on the order
introduced in Section 3.4, is detailed in the following. The comparison between the pre-
dictive performance of ESNs with full connectivity and ESNs with sparse connectivity is
discussed in the specific sub-section Non-linear Interactions Among Units. For this reason,
the performance of ESN sparse is not reported in the comparative figures referred in the
other sub-sections.

8Note that the test errors in the plots are reported in logarithmic scale.
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Figure 3.12: Mean squared test errors on the Mackey-Glass task for DESNs, RDESNs,
ESNs full, with and without input variability. Errors are reported for increasing reservoir
dimension and a constant value of the contraction coefficient σ = 0.9.

no input var. input var.

DESN 1.0619× 10−2(±1.1899× 10−2) 2.9994× 10−7(±2.5398× 10−7)

RDESN 1.0112× 10−8(±1.1571× 10−9) 1.5195× 10−9(±1.4900× 10−10)

ESN full 2.2556× 10−9(±1.8481× 10−9) 3.9408× 10−10(±2.2745× 10−11)

ESN sparse 2.8331× 10−9(±2.3293× 10−9) 4.2421× 10−10(±3.7400× 10−11)

Table 3.1: Mean squared test errors and standard deviations on the Mackey-Glass task for
DESNs, RDESNs, ESNs full and ESNs sparse, with and without input variability. Errors
are reported for a number of reservoir units of NR = 500 and a constant value of the
contraction coefficient σ = 0.9.

no input var. input var.

DESN 1.0503× 10−2(±1.8391× 10−3) 7.5553× 10−3(±3.9160× 10−3)

RDESN 1.5352× 10−3(±2.3146× 10−5) 1.6236× 10−3(±5.0810× 10−5)

ESN full 2.6440× 10−4(±3.1448× 10−5) 3.1413× 10−4(±1.4197× 10−5)

ESN sparse 2.8160× 10−4(±3.4147× 10−5) 3.2208× 10−4(±1.3743× 10−5)

Table 3.2: Mean squared test errors and standard deviations on the NARMA system task
for DESNs, RDESNs, ESNs full and ESNs sparse, with and without input variability.
Errors are reported for a number of reservoir units of NR = 500 and a constant value of
the contraction coefficient σ = 0.9.
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Figure 3.13: Mean squared test errors on the NARMA system task for DESNs, RDESNs,
ESNs full, with and without input variability. Errors are reported for increasing reservoir
dimension and a constant value of the contraction coefficient σ = 0.9.
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Figure 3.14: Mean squared test errors on the Laser task for DESNs, RDESNs, ESNs full,
with and without input variability. Errors are reported for increasing reservoir dimension
and a constant value of the contraction coefficient σ = 0.9.
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no input var. input var.

DESN 7.0188× 10−2(±1.7282× 10−2) 4.9086× 10−2(±7.8910× 10−3)

RDESN 3.1601× 10−2(±1.7376× 10−3) 1.1594× 10−2(±8.6841× 10−4)

ESN full 2.3251× 10−2(±2.6322× 10−3) 5.3734× 10−3(±2.0920× 10−4)

ESN sparse 2.5143× 10−2(±2.6169× 10−3) 5.6018× 10−3(±2.1988× 10−4)

Table 3.3: Mean squared test errors and standard deviations on the Laser task for DESNs,
RDESNs, ESNs full and ESNs sparse, with and without input variability. Errors are re-
ported for a number of reservoir units of NR = 500 and a constant value of the contraction
coefficient σ = 0.9.
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Figure 3.15: Mean squared test errors on the Markovian sequences task for DESNs,
RDESNs, ESNs full, with and without input variability. Errors are reported for increasing
reservoir dimensions and a constant value of the contraction coefficient σ = 0.5.

no input var. input var.

DESN 1.3656× 10−4 7.6448× 10−12

RDESN 2.3728× 10−6 2.1435× 10−11

ESN full 6.8621× 10−8 2.0681× 10−9

ESN sparse 9.0994× 10−8 1.6285× 10−9

Table 3.4: Mean squared test errors on the Markovian sequences task for DESNs, RDESNs,
ESNs full and ESNs sparse, with and without input variability. Errors are reported for a
number of reservoir units of NR = 500 and a constant value of the contraction coefficient
σ = 0.5.
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Figure 3.16: Mean squared test errors on the anti-Markovian sequences task for DESNs,
RDESNs, ESNs full, with and without input variability. Errors are reported for increasing
reservoir dimension and a constant value of the contraction coefficient σ = 0.5.

no input var. input var.

DESN 1.4149× 10−1 1.7555× 10−1

RDESN 1.4289× 10−1 2.4279× 10−1

ESN full 9.8374× 10−1 1.5496× 10

ESN sparse 1.0527 9.4444

Table 3.5: Mean squared test errors on the anti-Markovian sequences task for DESNs,
RDESNs, ESNs full and ESNs sparse, with and without input variability. Errors are re-
ported for a number of reservoir units of NR = 500 and a constant value of the contraction
coefficient σ = 0.5.
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no input var. input var.

DESN 2.4661× 10−30 8.0326× 10−32

RDESN 1.2328× 10−12 2.6542× 10−12

ESN full 8.0427× 10−12 6.4403× 10−12

ESN sparse 8.0515× 10−12 2.5100× 10−12

Table 3.6: Mean squared test errors on the Markovian sequences task for linear variants
of DESN, RDESN, ESN full and ESN sparse, with and without input variability. Errors
are reported for a number of reservoir units of NR = 500 and a constant value of the
contraction coefficient σ = 0.5.

Input Variability

The effect of the input variability factor on the predictive performance can be firstly evalu-
ated by a comparison between the test errors of the DESN model with and without input
variability. Results show that the presence of input variability improves the predictive
performance of the DESN model. In particular, for the Mackey-Glass task, for NR = 500,
this architectural factor alone is able to enhance the predictive performance of five orders
of magnitude (see Table 3.1). The improvement is more limited for the NARMA system
(Table 3.2) and the Laser (Table 3.3) datasets. The improvement is also noteworthy for
the Markovian sequences task (Table 3.4), while for the anti-Markovian one we observed a
negative influence of this architectural factor, which in fact led to worse results (Table 3.5).

As a second aspect, the impact on the performance due to input variability in presence
of other architectural factors (RDESNs and ESNs with and without input variability)
might decrease with respect to the absolute amount of the improvement for the DESN
model. However, it still provides an enhancement effect on the performance, as detailed
in the following sub-sections.

Note that the best result on the Markovian sequences task is obtained by the DESN
model (initialized according to the setting of equation 3.6) with input variability. This
remarks the importance and prevalence of this architectural factor on this last task. For
the specificity of the task (and especially because of the linearity of the target), we found
that linear variants of the models proposed outperformed the non linear ones. This is
illustrated in Figure 3.17 and Table 3.6. From a comparison between Tables 3.4 and 3.6,
we can see that for every variant the linear versions of the model beat the non-linear
counterparts. In particular it is very striking the result obtained with DESN without
input variability. Indeed this architecture functionally correspond to one single neuron
with a fixed self-recurrent weight and a fixed input weight. This model outperformed
every other model with a greater number of functionally different neurons, except for the
DESN variant with input variability. As said in Section 3.5.2, the reason for this great
performance is in the fact that the dynamics of the target to be learned is actually very
well fitted by the dynamics of one single neuron if its parameters are properly set.

For the anti-Markovian sequences task, by contrast, input variability increased the test
errors for both RDESNs and ESNs (Figure 3.16). Moreover, note that the performance
prediction on the anti-Markovian sequences task worsened for every choice of the architec-
tural ESN variant. ESN models were not able to satisfactorily face this task, as expected.
The averaged test errors increased as the reservoir dimensionality was increased, and mean
error values greater than four (corresponding to output values out of the target range)
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Figure 3.17: Mean squared test errors on the Markovian sequences task for ESN variants
with linear activation function. Errors are reported for increasing reservoir dimension and
a constant value of the contraction coefficient σ = 0.5.

were found for NR = 500, which is a clear signal that the readout overfitted the training
data (see Table 3.5).

Multiple Time-Scale Dynamics

The influence of multiple time-scales dynamics can be observed by comparing the perfor-
mance of DESN, which does not support it, with the performance of RDESN, which does.
Again, an inspection of Figures 3.12, 3.13, 3.14 and 3.15, and Tables 3.1, 3.2, 3.3 and 3.4
reveals that the presence of multiple time-scales support is helpful for reservoirs.

For NR = 500 the improvement is of almost six orders of magnitude for the Mackey-
Glass task (Table 3.1), of one order of magnitude for the NARMA system task (Table 3.2)
and a bit less than one order of magnitude for the Laser task (Table 3.3), for which,
however, the range of squared error values is smaller than the other two tasks. On the
Markovian sequences task, the improvement is of two orders of magnitude (Table 3.4),
however note that on this task the improvement due to input variability alone outper-
formed the improvement due to multiple time-scales alone.

Moreover, note that the combined effect of this factor together with input variability
can lead to better performances. This can be appreciated especially for the Mackey-
Glass task (see Table 3.1), for which the RDESN with input variability variant leads to an
increase in performance of almost seven orders of magnitude with respect to DESN without
input variability, of two orders of magnitude with respect to DESN with input variability
and of one order of magnitude with respect to RDESN with no input variability (for a
reservoir dimensionality of NR = 500). We can say that for the Mackey-Glass dataset the
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interaction between input variability and multiple time-scales actually combines the single
factor improvements, and leads to a performance which is worse than the best recorded
(ESNs full with input variability) of less than one order of magnitude. Even within the
smaller range of performance, the influence of the combination between input variability
and multiple time-scales dynamics is also observed for the Laser dataset, for which the
RDESN variant with input variability outperforms RDESN without input variability and
both the DESN variants. For the NARMA system task the results of RDESNs with or
without input variability are the same (Table 3.2), suggesting that in this case supporting
both multiple time-scales and input variability is actually equivalent as supporting multiple
time-scales only. For the Markovian sequences task we found an appreciable effect of the
combination of the two architectural factors. In fact, the performance of the RDESN
model with input variability was five orders of magnitude better than the performance of
the same model without input variability. However, the combination of input variability
and multiple time-scales led to a result which was worse than what obtained with input
variability only (Table 3.4).
For the anti-Markovian task, the RDESN architecture without input variability performed
like the DESN model without input variability, which correspond to the best performance
obtained for this task. The interaction between input variability and multiple time-scales
support worsened the result a little more than input variability alone (Table 3.5).

As a further remark, note that DESN and RDESN models provide reservoir dynamics
originating from a set of single units dynamics only. Even though the global reservoir
dynamics is ruled by a unique value of the contraction coefficient, the variety introduced
by input variability and multiple time-scales dynamics for increasing reservoir dimension is
able to differentiate the single Markovian dynamics. This actually results in an enrichment
of the reservoir dynamics sufficient to produce the significant performance improvement
observed here and in the previous sub-section.

Non-linear Interactions Among Units

Results of Figures 3.12, 3.13 and 3.14 show that the presence of non-linear interactions
among reservoir units can be very effective in terms of performance improvement of ESNs.
This is particularly evident in the case of the NARMA system task, for which the presence
of this factor is determinant to exploit the increasing dimension of the reservoir (no appre-
ciable improvement is observable for DESN/RDESN variants with NR larger than 100).
More in general, non-linear interactions among reservoir units, when considered alone,
results to be the most influent architectural factor on the predictive accuracy of ESNs,
with the exception of the Markovian/anti-Markovian tasks (Tables 3.4 and 3.5). With
respect to the DESN variant with no input variability, the improvement brought about by
this factor alone is of seven orders of magnitude for the Mackey-Glass task, of two orders
of magnitude for the NARMA system task and of almost one order of magnitude for the
Laser task. For the Markovian sequences task, the improvement is of almost four orders
of magnitude.

The combination between non-linear interactions and input variability factors might
be decisive to achieve the best performance on the task considered, with the exception of
the NARMA system, in which case (as observed also in the previous sub-section Multiple
Time-Scale Dynamics with regard to the multiple time-scales factor) the presence of input
variability does not have an improvement effect whenever non-linear interactions among
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reservoir units are already implemented in the ESN architecture. The improvement corre-
sponding to ESN full with input variability with respect to the analogous variant without
input variability is of one order of magnitude for the Mackey-Glass, Laser and Markovian
sequences tasks. From Figure 3.16 it is clearly apparent that for the anti-Markovian task,
including non-linear interactions among reservoir neurons led to a worsening of the re-
sults. The combined effect of units interactions and input variability mad the predictive
performance even poorer.

Another remarkable fact is that ESNs with full connectivity and ESNs with sparse con-
nectivity lead to almost the same results (see Tables 3.1, 3.2, 3.3), 3.4 and 3.5). Figure 3.18
illustrates the averaged test errors for ESN full and ESN sparse on the tasks considered,
with and without input variability. Even a relatively small number of interconnections
inside the reservoir (5% in our experimental setting) has nearly the same impact on the
predictive performance as the presence of connections among all neurons. Our results sup-
port the idea that the original intuition of sparsity as a feature to obtain reservoirs with
rich dynamics is actually misleading. The effective enrichment of reservoir state dynamics
is due to the presence of the architectural factors which may produce diversification among
units, as illustrated in this Chapter by experiments. The sparse setting of the reservoir
weight matrix is only an efficient way to include such factors in the design of ESNs, but
it is not responsible by itself for this enrichment.

Regression in an Augmented Feature Space

To investigate the benefit of having a high dimensional non-linear feature space for re-
gression, we tested the ϕ-ESN architectures varying the model used for the recurrent part
of the reservoir. Figures 3.19, 3.20, 3.21 3.22 and 3.23 provide the results for the tasks
considered.

The predictive performance of ϕ-ESN variants results to be sensible to the three other
architectural factors described so far. The relevance of single factors and of composition
of factors on ϕ-ESN performance roughly reflects what was found for the ESN variants in
the previous sub-sections Input Variability, Multiple Time-Scale Dynamics and Non-linear
Interactions Among Units, with a few differences. For the Mackey-Glass dataset we notice
that RDESNs outperforms ESNs full for both the cases of presence and absence of input
variability (Figure 3.19). Also observe that the ϕ-DESN variant with input variability
overfits the training data for the NARMA system task (Figure 3.20). As regards the Laser
dataset, the positive effect on the model performance due to non-linear interactions among
units is more evident also in the absence of input variability, and ϕ-ESNs full without input
variability are comparable to ϕ-RDESNs with input variability.

What is more interesting is the comparison between the class of ϕ-ESN variants and
the class of ESN variants (representable in the following by the variant providing the
best result, i.e. ESN full). As shown in Figures 3.24, 3.25, 3.26, 3.27 and 3.28, and Ta-
bles 3.7, 3.8 and 3.9, ϕ-ESN architectures compare well with standard ESNs. In fact, for
the Mackey-Glass task (Figure 3.24 and Table 3.7), ϕ-ESNs full and ϕ-RDESNs with only
10 reservoir recurrent units achieve comparable results with ESNs full with 100 reservoir
recurrent units, while ϕ-ESNs and ϕ-RDESNs with 100 recurrent units are better than
ESNs full with 500 recurrent units (see Table 3.7). The best result on this task is obtained
by ϕ-RDESN with input variability and NR = 200, which outperforms the best standard
ESN result (i.e. ESN full with input variability and NR = 500) by almost two orders of
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Figure 3.18: Averaged squared test errors for ESN full and ESN sparse architectures on
the Mackey-Glass, NARMA system, Laser, Markovian and anti-Markovian tasks (from
top to bottom, from left to right). Errors are reported for increasing reservoir dimension
and a constant value of the contraction coefficient (σ = 0.9 for the Mackey-Glass, NARMA
System and Laser tasks, while σ = 0.5 for the Markovian/anti-Markovian sequences tasks).
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Figure 3.19: Averaged squared test errors for ϕ-ESN variants on the Mackey-Glass task.
Errors are reported for increasing recurrent reservoir dimension, a constant dimension
Nϕ = 500 of the static part of the reservoir, and for a constant value of the contraction
coefficient σ = 0.9.

magnitude. This remarks the fact that a sufficient diversification of state dynamics can be
produced even by reservoirs with a simple organization of the recurrent part and a limited
number of recurrent units. For the Mackey-Glass task, a number of 100 recurrent units
turned out to be sufficient for producing this diversification. Thereby, the extra reservoir
dimensions of the recurrent part represent a facility for the readout, but are not strictly
necessary for the enrichment of the state dynamics. Moreover, the necessary non-linearity
of the feature state representations, that could be required by the task, can actually be
achieved without resorting to a higher number of recurrent dynamics. Analogous consid-
erations can be done for the NARMA system and the Laser tasks. In particular, for the
NARMA system (Figure 3.25 and Table 3.8), ϕ-ESNs and ϕ-RDESNs with input vari-
ability beat the best ESNs full for a number of recurrent reservoir units of NR = 100.
For larger recurrent reservoirs the ESN full model achieved a performance which is only
slightly better than the best one obtained with ϕ-ESNs (Table 3.8).
For the Laser task (Figure 3.26 and Table 3.9), a very low dimensional recurrent reservoir,
with NR = 5 and NR = 10 for ϕ-ESN full and ϕ-RDESN, respectively, is sufficient to ob-
tain a comparable performance with the standard ESN full with NR = 500. Even better
performances are achieved by ϕ-ESN full and ϕ-RDESN for higher numbers of recurrent
units. For the Markovian sequences task the effect of the augmented reservoir dimension-
ality is much less evident (see Figure 3.27). In general, we found no any relevant difference
in the performance of standard ESNs and ϕ-ESN variants. It is apparent that ϕ-DESN
and ϕ-RDESN with input variability produced nearly the same results as the best DESN
model with input variability, while ϕ-ESN (both fully and sparsely connected) lowered the
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Figure 3.20: Averaged squared test errors for ϕ-ESN variants on the NARMA system task.
Errors are reported for increasing recurrent reservoir dimension, a constant dimension
Nϕ = 500 of the static part of the reservoir, and for a constant value of the contraction
coefficient σ = 0.9.

performance of two orders of magnitude. However, we can note that these results are again
mainly due to the peculiarity of the task, which is of a pronounced Markovian nature and,
what is arguably more important, of linear dynamics. Therefore it seems quite likely that
a non-linear augment of the reservoir state space is not the architectural factor which can
determine a critical improvement in the predictive performance.
If we turn now to the anti-Markovian task, we can note from Figure 3.28 that the overfitting
problem is contained by augmenting the reservoir dimensionality. However, for recurrent
reservoirs organized in a more complex way than simple DESN with no input variability
(which is functionally equivalent to one single unit) we obtained worse results. ϕ-ESN
variants were not able to solve this anti-Markovian task just as the ESN counterparts
were.

As an additional remark, note that the performance improvement achieved by using
the additional random layer of static units in the reservoir architecture of ϕ-ESNs is not
obtained at the cost of an increased performance variability. In fact, as can be seen in
Tables 3.7, 3.8 and 3.9, the standard deviations of the performances reported for ϕ-ESN
variants are in line with those reported for ESN variants in correspondence of analogous
mean test errors.

A Note on the Predictive Performance of ϕ-ESNs

Performances of ϕ-ESN variants are also consistent with the best results reported in lit-
erature. For instance, we tested the ϕ-ESN model on a variant of the Mackey-Glass task
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Figure 3.21: Averaged squared test errors for ϕ-ESN variants on the Laser task. Errors
are reported for increasing recurrent reservoir dimension, a constant dimension Nϕ = 500
of the static part of the reservoir, and for a constant value of the contraction coefficient
σ = 0.9.

considered in [108]. For each repetition of the experiment, Ntrain = 3000 time steps of the
series were generated for training, Ntransient = 1000 of which were used as initial transient.
After the training process, the network was driven by a number of Nteacher = 3000 time
steps of the correct continuation of the training series. The network was then left run
freely, driven by its own output for a number of Nfreerun = 84 time steps, after which the
discrepancy between the network output and the correct continuation of the time series
was evaluated. A number of Ntrials = 100 independent repetitions of the experiment has
been carried out, in order to compute the normalized root-mean squared error after 84
passes (NRMSE84), as in [108]:

NRMSE84 =

√

√

√

√

√

Ntrials
∑

n=1
(y(84)− ytarget(84))2

Ntrials V arsignal
(3.14)

where y(84) and ytarget(84) are respectively the network output and the correct value of
the time series after the free-run period, while V arsignal ≈ 0.046 is the variance of the
Mackey-Glass time series signal.
ESNs achieved the best result known in literature on this task, with NRMSE84 ≈
10−4.2(= 6.3096× 10−5) for a reservoir dimensionality equal to NR = 1000, a sparse con-
nectivity of 1% and a fixed value of the spectral radius ρ = 0.8, as reported in [108]. In our
experiments, network settings similar to those specified in [108] were adopted. Input-to-
output connections were added to the basic model of equation 2.32, a constant input bias
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Figure 3.22: Averaged squared test errors for ϕ-ESN variants on the Markovian sequences
task. Errors are reported for increasing recurrent reservoir dimension, a constant dimen-
sion Nϕ = 500 of the static part of the reservoir, and for a constant value of the contraction
coefficient σ = 0.5.

for reservoir units equal to 0.2 was used, and normal noise of size 10−10 was added to the
input for the readout before training. Reservoir weight matrices were scaled to have a fixed
spectral radius of value ρ = 0.9 and input-to-reservoir weight values were randomly se-
lected from a uniform distribution over [−1, 1]. For ESNs sparse with NR = 1000 reservoir
units and 1% of connectivity, we obtained an error value9 of NRMSE84 = 3.9034× 10−5.
For ϕ-ESNs we considered reservoirs with a number of NR = 200 units in the recurrent
part, with a projection into a feature space of size Nϕ = 5000. Weight values in matrix
Wϕ were randomly chosen according to a uniform distribution over [−0.1, 0.1]. For a
sparse connectivity of 10% we obtained an error value of NRMSE84 = 3.73066 × 10−5,
while for a connectivity equal to 25% the error was NRMSE84 = 2.7589× 10−5.

Note that both these results outperformed the performance of the standard ESN model
by using only one fifth of the recurrent reservoir units. Moreover, compared to the standard
ESN tested in this experiment, the ϕ-ESN model with 10% of sparse connectivity had on
average a smaller number of recurrent reservoir connections, while for the ϕ-ESN model
with 25% of connectivity the averaged number of recurrent connections was the same 10.

9The fact that the NRMSE84 we found is smaller than what reported in [108] might depend on the
different value of the spectral radius adopted and on the different method used for the Mackey-Glass time
series discretization (see [58]).

10The averaged number of recurrent connections for the standard ESN model and the ϕ-ESN model
with 25% of connectivity was 10000, while for the ϕ-ESN model with 10% of connectivity it was 4000.
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Figure 3.23: Averaged squared test errors for ϕ-ESN variants on the anti-Markovian
sequences task. Errors are reported for increasing recurrent reservoir dimension, a constant
dimension Nϕ = 500 of the static part of the reservoir, and for a constant value of the
contraction coefficient σ = 0.5.

3.6 Conclusions

Markovianity and high dimensionality (along with non-linearity) of the reservoir state
space representation have revealed a relevant influence on the behavior and performance
of the ESN model. Such factors have a complementary role and characterize distinct
classes of tasks, for which we have provided representative instances. In the following the
findings are detailed distinguishing the case for which Markovianity has a prominent role
independent of the architectural design, and the complementary case for which the effects
of high dimensionality of the reservoir have been decomposed into architectural factors.

First, we have observed that the contractivity of the state transition function leads
ESN states to suffix-based Markovian representations of input sequences. This intrinsic
Markovian organization of the reservoir state space has been called the Markovian fac-
tor. The role of the Markovian factor delineates the basic ESN property (allowing the
state to be independent of the initial conditions) and allows to approach tasks within the
Markovian bias of contractive RNNs without any adaptation of the recurrent dynamics.
However, Markovianity of state dynamics has much deeper implications. In particular,
we have outlined a class of tasks on symbolic sequences for which, over any other choice
of model design, the Markovian factor is the most influent on the ESN performance and
characterizes successful and unsuccessful ESN applications. Indeed, on the one hand, on
tasks characterized by a distinct Markovian nature, the desired target behavior can be
synthesized by the value of the contraction coefficient of the network and single unit reser-
voir models may result in the best performance, such that more complex architectures are



3.6. CONCLUSIONS 99

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

 5  10 100 200 300 500

T
es

t E
rr

or

Reservoir Dimension 

ESN full
ϕ-DESN without Input Variability

ϕ-DESN with Input Variability
ϕ-RDESN with Input Variability
ϕ-ESN full with Input Variability

ϕ-ESN sparse with Input Variability

Figure 3.24: Averaged squared test errors for ϕ-ESN variants and the best ESN archi-
tecture for the Mackey-Glass task. Errors are reported for increasing recurrent reservoir
dimension, a constant dimension Nϕ = 500 of the static part of the reservoir, and for a
constant value of the contraction coefficient σ = 0.9.

even not necessary. This has been illustrated on the Markovian task on sequence domains.
On the other hand, the Markovian factor defines a major inherent limitation of ESNs, as
it intrinsically constraints the reservoir state dynamics, therefore making the ESN ap-
proach less suitable for tasks characterized by non-Markovian conditions. This point has
been shown on the anti-Markovian task on sequences, specifically designed to un-match
the Markovianity of ESN state spaces, and for which more complex and larger reservoir
architectures are not useful to overcome the inappropriateness of the model for the task.
This ineffectiveness of the increased reservoir dimensionality has also been shown on a
real-world task related to the firing events in an internal combustion engine.

Our subsequent investigations have risen from these base cases and have resulted in
the identification and evaluation of architectural factors of ESN design that can be useful
to approach problems commonly referred in the ESN literature and for which an increased
reservoir dimensionality is effective. In this Chapter, we have considered the Mackey-Glass
time series, the 10-th order NARMA system and the Laser time series tasks as represen-
tatives for this class of problems. For such tasks, the Markovian factor has shown to be
not sufficient to completely characterize the behavior of ESN models and the architectural
design has revealed a major role.

The effect of dimensionality has been experimentally analyzed firstly by considering
the richness of dynamics introduced by differentiating the units activations of reservoirs
with the same degree of contractivity, through few basic architectural factors, namely
variability on the input, variability on the contractivity of units (multiple time-scales dy-
namics) and variability on the interaction among units. Accordingly, we have introduced
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Test Error

ESN full (NR = 100) 1.9690× 10−9(±2.3655× 10−10)

ESN full (NR = 500) 3.9408× 10−10(±2.2745× 10−11)

ϕ-ESN full (NR = 10) 2.2203× 10−9(±5.8804× 10−10)

ϕ-RDESN (NR = 10) 1.8430× 10−9(±1.1938× 10−9)

ϕ-ESN full (NR = 100) 1.0218× 10−10(±3.6621× 10−11)

ϕ-RDESN (NR = 100) 1.4548× 10−11(±7.4599× 10−12)

ϕ-ESN full (NR = 200) 4.7595× 10−11(±9.4570× 10−12)

ϕ-RDESN (NR = 200) 6.1120× 10−12(±1.1168× 10−12)

Table 3.7: Mean squared test errors and standard deviations on the Mackey-Glass task
for ESNs and ϕ-ESN variants (with input variability). NR = 100, 500 for ESN with full
connectivity. NR = 10, 100, 200 and Nϕ = 500 for ϕ-ESN variants. Contraction coefficient
σ = 0.9 for every model.

Test Error

ESN full (NR = 100) 1.7967× 10−3(±1.1875× 10−4)

ESN full (NR = 500) 3.1413× 10−4(±1.4197× 10−5)

ϕ-ESN full (NR = 100) 4.9291× 10−4(±5.9868× 10−5)

ϕ-RDESN (NR = 100) 1.4637× 10−3(±1.6130× 10−4)

ϕ-ESN full (NR = 200) 4.8569× 10−4(±3.1842× 10−5)

ϕ-RDESN (NR = 200) 1.6815× 10−3(±1.6792× 10−4)

Table 3.8: Mean squared test errors and standard deviations on the NARMA system task
for ESNs and ϕ-ESN variants (with input variability). NR = 100, 500 for ESN with full
connectivity. NR = 100, 200 and Nϕ = 500 for ϕ-ESN variants. Contraction coefficient
σ = 0.9 for every model.

two variants on the standard ESN model: the DESN model, which only supports input
variability, and the RDESN model, in which multiple time-scales may be implemented
as well. The identified architectural factors have individually shown an influence in pro-
gressively improving ESN performance (with increasing reservoir dimension). Moreover,
their combination can sum the individual effects generally resulting in a further improve-
ment of the performance. For what concerns the assessment of the relative importance
of these three factors, we have found that the different dynamics ruled by the multiple
time-scales dynamics and non-linear interactions factors have shown the major empirical
effects. Nevertheless, input variability among reservoir units can show by itself a signifi-
cant, thought inferior, impact on performance, as for the Mackey-Glass task. Interactions
among reservoir units have been observed to be more influent in the case of the NARMA
system task, and, more in general, have shown to be necessary to get the best perfor-
mances on the tasks considered, by allowing the reservoir to better exploit the increased
state dimensionality. Moreover, this last factor has shown to express a clear influence on
model performance even in presence of a small number of units interactions, corresponding
to a sparse reservoir connectivity.

As a global result, the general dependence of the ESN performance on the reservoir
dimensionality has thus been decomposed and traced back to the dependence on the
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Figure 3.25: Averaged squared test errors for ϕ-ESN variants and the best ESN architec-
ture for the NARMA system task. Errors are reported for increasing recurrent reservoir
dimension, a constant dimension Nϕ = 500 of the static part of the reservoir, and for a
constant value of the contraction coefficient σ = 0.9.

Test Error

ESN full (NR = 100) 1.0481× 10−2(±1.1109× 10−3)

ESN full (NR = 500) 5.3734× 10−3(±2.0920× 10−4)

ϕ-ESN full (NR = 5) 5.6386× 10−3(±1.6926× 10−3)

ϕ-RDESN (NR = 10) 5.0203× 10−3(±5.4529× 10−4)

ϕ-ESN full (NR = 200) 1.3291× 10−3(±6.1825× 10−5)

ϕ-RDESN (NR = 200) 2.3554× 10−3(±2.5438× 10−4)

Table 3.9: Mean squared test errors and standard deviations on the Laser task for ESNs
and ϕ-ESN variants (with input variability). NR = 100, 500 for ESN with full connectivity.
NR = 5, 10, 200 and Nϕ = 500 for ϕ-ESN variants. Contraction coefficient σ = 0.9 for
every model.
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Figure 3.26: Averaged squared test errors for ϕ-ESN variants and the best ESN architec-
ture for the Laser task. Errors are reported for increasing recurrent reservoir dimension, a
constant dimension Nϕ = 500 of the static part of the reservoir, and for a constant value
of the contraction coefficient σ = 0.9.

architectural factors that differentiate the reservoir dynamics. Increasing the reservoir
dimensionality is then a way to allow a better expression of the units diversification due
to the presence of such factors.

The other aspect is related to the effect of high reservoir dimensionality and non-
linearity in making the readout regression easier. High dimensional representations of the
input sequences have been constructed by a non-linear static random projection of the
recurrent reservoir activation into a higher dimensional feature space. This corresponds
to the introduced ϕ-ESN model. The effects of this state dimensionality and non-linearity
amplification have been compared with standard ESN models in terms of predictive perfor-
mance, showing that actually a modest number of recurrent units is sufficient to produce
the necessary diversification in the reservoir state. Extra recurrent units in the reser-
voir have found to be a facility for the linear readout tool due to the introduction of an
augmented feature space that can be reproduced by a static mapping as well. Since the
possibility of regressing an augmented reservoir state space has revealed a relevant role
in determining the performance of ESNs, it has been identified as a distinct architectural
factor.

Although the aim of this Chapter has been focused on analyzing and assessing the
properties of Markovianity and of other relevant reservoir architectural factors to con-
stitute a ground for future (possibly theoretical) studies, a number of simple and useful
outcomes can be derived for practical use of ESNs.

First, Markovianity can greatly help in characterizing a successful or unsuccessful use
of ESNs. A simple architectural design is convenient when the target task has a strongly
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Figure 3.27: Averaged squared test errors for ϕ-ESN variants and the best ESN archi-
tecture for the Markovian sequences task. Errors are reported for increasing recurrent
reservoir dimension, a constant dimension Nϕ = 500 of the static part of the reservoir,
and for a constant value of the contraction coefficient σ = 0.5.

Markovian nature. On the other hand, in correspondence of tasks with anti-Markovian
properties the presence of architectural factors in the ESN design does not positively
influence the model performance, as evidenced by the ineffectiveness of larger reservoirs,
and poor results are to be expected. ESNs are not suitable for anti-Markovian processing.

Second, despite the ESN literature claims from the very beginning ([103, 108]), sparse
connectivity has not shown a major role in contributing to the richness of reservoir dynam-
ics, which is ruled by the identified architectural factors. Indeed, a sparse configuration of
the reservoir weight matrix has not affected the performance of the different architectures.
However, whenever the identified architectural factors are included in the ESN design, a
sparse connectivity among reservoir units provides an efficient solution.

Third, variability, non-linearity and high dimensionality of the reservoir state dynam-
ics are essential features in searching the best architectural configuration. The provided
architectural factors define some possible architectural variants with different relevances:
according to the suitable trade-off between efficiency and performance for the task at
hand, different combinations can be exploited. For ESNs with a fixed global contractive
parameter, a better performance can be achieved whenever reservoir units can activate
multiple time-scales dynamics by differentiating their self-recurrent weights. If efficiency
is important, then the simple diagonal reservoir architecture (i.e. RDESN), with a number
of recurrent weights that is linear (instead of quadratic) in the number of units, should
be tried. Moreover, this factor together with a ϕ-ESN architecture may lead to a high
performance model.

Finally, although further studies seem to be needed beyond the empirical evidences
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Figure 3.28: Averaged squared test errors for ϕ-ESN variants and the best ESN archi-
tecture for the Markovian sequences task. Errors are reported for increasing recurrent
reservoir dimension, a constant dimension Nϕ = 500 of the static part of the reservoir,
and for a constant value of the contraction coefficient σ = 0.5.

provided in this Chapter, the introduction of simple key factor analysis of reservoirs can
contribute to a critical positioning of the ESN model in the area of Machine Learning for
sequence processing.



Chapter 4

A Markovian Characterization of
Redundancy in ESNs by PCA

4.1 Introduction

High correlation among reservoir units activations is a well known fact in ESN modeling
(e.g.[127, 195, 107]), making the approach to complex tasks more difficult. Several mea-
sures for reservoir goodness have been proposed in ESN literature, although simple tools
still lack to be exploited. The pairwise correlation among reservoir units and the entropy
of state distributions are two of the most popular metrics [127, 107], leading to alternative
ESN architectures, such as the Decoupled ESN (DESN) [195], and to methods for opti-
mizing reservoirs by using Intrinsic Plasticity (IP) (e.g. [164, 188]) or maximization of a
time-averaged entropy of echo states [150]. However, simple tools still lack to be exploited.

As described in Chapter 3, the contractive initialized ESN dynamics allow the network
to inherently discriminate among different (recent) input histories in a Markovian flavor
without requiring any training of the recurrent reservoir connections [62, 177]. Moreover,
Markovianity has also revealed a major role in determining the success and limitations of
ESNs in predictive applications [62].

In this Chapter, the issue of redundancy (intended as high pairwise correlation) among
reservoir units activations is put in relation to the Markovian organization of ESNs dynam-
ics. Markovianity rules both the global behavior of the network and the local behaviors
of each state unit. It is therefore likely to expect that this characterization leads to sim-
ilar activations among reservoir units and thus to redundancy, with higher redundancy
induced by stronger degrees of Markovianity. Our investigation exploits Principal Com-
ponent Analysis (PCA) [112] as a simple and useful tool to analyze ESN dynamics, by
isolating interesting orthogonal directions of variability in the original reservoir state space.
The relevance of principal components of reservoir states and their relations with suffix
elements of the input sequence, ground our analysis and allow us to trace redundancy back
to the Markovian nature of ESN dynamics.

4.2 Principal Component Analysis of Echo State Networks

In the following, we will refer to simple symbolic input sequences without covariance
among input elements to feed the networks in experiments. The considered sequences
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were constructed as the input sequences in the Markovian/anti-Markovian task described
in Section 3.5.1 and proposed in [62]. For each experiment, an input sequence of length
100 was used as initial transient, while a 1000-long sequence was used to collect reservoir
states. For every time step n = 1, . . . , 1000, the network state x(n) was computed and
stored as a column in a matrix X, with a number of rows equal to the reservoir dimension
and a number of columns equal to the number of time steps. PCA was then applied to
matrix X.

ESNs with different reservoir dimensions and degree of contractivity σ were considered,
while the sparse connectivity among reservoir units was kept fixed to 10%. Input-to-
reservoir weight values in Win were randomly chosen according to a uniform distribution
over [−0.1, 0.1].

Redundancy of reservoir units activations can be clearly shown by the relevance of
principal components of ESN states (i.e. the eigenvalues of the covariance matrix of X).
This study can be used as a simple tool to assess the richness of ESN dynamics. As
principal components represent orthogonal directions of variability in the state space, a
greater number of relevant principal components indicates a richer set of state dynamics
and reservoir units able to better diversify their behavior. We collected the relative rele-
vance of principal components of reservoir states with varying the degree of contractivity
of the state transition function (i.e. σ) and the reservoir dimension. Results, averaged
over 10 independent trials and scaled in [0, 1], are presented in Figure 4.1. A first general
observation is that, since we used a semi-log scale, the relevance of principal components
shows an exponential decay with the associated principal components ranking, with val-
ues eventually falling under machine precision. A small number of principal components
represent almost all the variability in the state space, confirming the expected high re-
dundancy. For σ = 0.9 and reservoir dimension equal to 100, the first three principal
components collected on average the 99.4% of the total relevance.

More in detail, Figure 4.1a reports the relative relevance of principal components for
ESNs with 100 reservoir units, varying σ from 0.1 to 1.9 (corresponding to mean spectral
radius values from 0.05 to 0.98). It is evident that decreasing the value of σ (i.e. increasing
the Markovianity of the state transition function) leads to lower relative relevances of
PCs with smaller variance. More contractive ESN dynamics present a smaller number of
orthogonal directions with non-negligible relevance and thus are characterized by higher
redundancy. This observation is coherent with the Markovian nature of the ESN dynamics.
Indeed, the range of behaviors of each state unit shrinks towards the global Markovian
dynamics as σ decreases.

Figure 4.1b shows the relative relevance of principal components for ESNs with σ = 1.9
and with varying reservoir dimension from 10 to 800 units. The application of PCA
graphically shows how much increasing the reservoir dimension can be effective in allowing
a differentiation of the state dynamics. From Figure 4.1b we may also observe that the
enhancement of the richness of ESN dynamics is attenuated as the reservoir dimension
gets larger. While a great difference can be noted between the 10 units case and the 100
units case, a much less evident difference emerges from a comparison between the 500
units case and the 800 units one, suggesting that for a given degree of Markovianity there
exists a saturation effect in the number of units.

The following investigation on the meaning of the principal components of the reservoir
states can enlighten the Markovian organization of ESN state space and eventually its
relationships with the richness of the dynamics.
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Figure 4.1: Relevance of principal components of reservoir states. For each principal com-
ponent, the ratio between its variance and the total variance in the principal component
space is reported. (a): σ varying in [0.1, 1.9] and reservoir dimension fixed to 100. (b):
Reservoir dimension varying between 10 and 800 (σ = 1.9). The relevance dimension is in
log scale.

We considered a 100 units reservoir with σ = 0.3. In Figure 4.2 we plotted the
projections of the reservoir states into the first two principal components space (principal
component scores). Each point represents a state of the network and is labeled with the
suffix of length 2, i.e. the couple (next-to-last, last), of the input sequence which drove the
network in that state. Figure 4.2 clearly reveals that the first two principal components
contain sufficient information to reconstruct the input sequence suffix of length 2. In
particular, the first principal component groups states according to the last input symbol,
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while the second principal component groups them according to the 2nd-last input symbol.
The influence of the previous parts of the input sequence is not graphically appreciable.
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Figure 4.2: Markovian organization (suffix based clusters) resulting on the first two prin-
cipal components space of reservoir states. Note the different scales between the two
axes.

The relation between symbols of the input suffix and the principal components of
reservoir states is further and explicitly enlightened in Figure 4.3, referring to the same
ESN setting introduced for Figure 4.2. A nearly linear relation between the last input
symbol and the first principal component can be seen from Figure 4.3a. The first principal
component, i.e. the direction of greater variance in the reservoir space, may be almost
identified by the variability on the last input symbol and the symbols are discriminable
on intervals of the principal component values. Even more noteworthy is the presence
of analogous relations among other suffix elements of the input sequence and subsequent
principal components with decreasing variance. While the dynamics of each unit is ruled by
the same type of Markovian behavior, well represented by the first principal component,
the differences among the Markovian dynamics of the state units activate orthogonal
directions of variability. In particular, being isolated from the first principal component,
the second principal component reveals its nature mainly related to the second element in
the Markovian ranking of relevance. Such relations were found up to the 4th-last input
element and the fourth principal component (Figure 4.3b, 4.3c, 4.3d), whereas the strength
of the relationship rapidly decreases in the past temporal direction.

These relations revealed the nature of ESN state space organization, enlightening its
Markovian flavor: most recent input symbols directly influenced most relevant directions
of variance in reservoir state spaces, with dramatically decreasing strength for older input
entries. Moreover, although the dynamics of each unit is Markovian, and hence dominated
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Figure 4.3: Suffix input symbols vs most relevant principal components of reservoir states.
(a): Last input symbol vs first principal component. (b): 2nd-last input symbol vs
second principal component. (c): 3rd-last input symbol vs third principal component.
(d): 4th-last input symbol vs fourth principal component.

by the last observed input element, the PCA of the reservoir states reveals a nice spectral
property on older input elements (up to a certain order).

4.3 Conclusions

The study of relative relevances of principal components has been used as simple tool
to assess the richness of network dynamics. In fact, the effect of diversification among
the Markovian dynamics of each single unit has been revealed by showing the increas-
ing relevance of principal components with increasing reservoir dimension. The main
result concerns the strong relation between redundancy of reservoir units activations and
Markovianity of ESN dynamics. PCA have revealed high redundancy of reservoir units,
and stronger Markovian characterizations of state transition functions have resulted in
higher redundant reservoirs. Markovian ordering on the suffix elements of the input se-
quence has shown a tight relation to the most relevant principal components, providing
also an insight on the order of Markovianity involved. Therefore, we can conclude that
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main redundancy effects in ESNs follows from the inherent Markovian nature of reservoir
state space organization. As a final remark, notice that, due to the characteristics of the
PCA tool adopted, the actual richness of the reservoir dynamics can be even smaller than
what is pointed out by our analysis1.

Especially because of the simplicity of the exploited tool, the investigation proposed
in this Chapter can contribute to an easier understanding of features and limitations of
the ESN class of neural network models.

1The redundancy among the reservoir units activations could be even greater. Indeed, the state space
in which the reservoir units activations actually take values can be a folded lower dimensional sub-space
of the ESN state space.



Chapter 5

Applications of ESNs for Ambient
Assisted Living

5.1 Introduction

Ambient Assisted Living (AAL) [45] is an innovation funding program issued by the Euro-
pean Commission. AAL seeks for solutions integrating different technologies suitable for
the improvement of the quality of life of elders and disabled in the environments where
these people live (primarily in their houses) and work. Wireless Sensor Networks (WSN)
[12] are a recent development for unattended monitoring, which resulted particularly use-
ful in many different application fields. In a typical deployment, a WSN is composed by
a number of wireless sensors: small micro-systems that embed a radio transceiver and a
set of transducers suitable to monitor different environmental parameters. In many ap-
plications sensors are battery powered. In AAL spaces WSN play an important role as
they are generally the primary source of context information about the user. For example
WSN can monitor physiological parameter of the user, the environmental conditions and
his/her movements and activities [34]. In most cases, raw data acquired by the WSN is
given in input to software components that refine this information and that forecast the
behavior or needs of the user in order to supply the user with appropriate services.

In our investigations, we take into consideration testbed scenarios related to forecast-
ing of user movements. In such scenarios the user is localized in real time by a WSN
(composed by low cost, low power sensors such as those of mote class [101]), and localiza-
tion information is used to predict (with a short advance) whether the user will enter in a
room or not, in order to timely supply the user with some services available in the room
where the user is entering in. To this purpose the user wears a sensor, whose position is
computed by a number of static sensors (also called anchors) deployed in the house. The
sensor on the user and the environmental sensors exchange packets in order to compute
the Received Signal Strength (RSS) for each packet, and use this information to evaluate
the position of the user in real time. Although simple, this prototype scenario involves two
main problems. The first is that indoor user localization is not sufficient by itself, since
the current user position is not sufficient to predict the future behavior of the user. The
second is that RSS measurements in indoor environments are rather noisy and this fact
makes localization information imprecise. This latter problem is due both to multi-path
effects of indoor environments, and to the fact that the body of the user affects the radio
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signal propagation with irregular patterns, depending on the orientation of the user, ori-
entation of the antenna, etc. Overall, the considered scenario requires an approach which
is adaptive, efficient and robust to the input noise. For these reasons, in order to overcome
the fact that the current user position does not provide enough information, we take into
consideration RNNs, allowing us to take into account also past RSS measurements that
reflect the history of previous movements. In particular, we consider the extremely effi-
cient RC approach for modeling RNNs. Indeed, featured by extreme efficiency, RC models
represent ideal candidates for approaching the problem in the considered scenarios. Effi-
ciency of the learning model used is in fact a critical factor, in particular in view of its
deployment within the sensors themselves.

The experiments presented in this Chapter aim at showing the suitability of RC sys-
tems for AAL applications, constituting an initial work within the goals of the RUBICON
project [174]. First, in Section 5.3 we apply the ESN approach to a simpler scenario,
featured by a homogeneous ambient configuration. Such experiments, already presented
in [68, 67], represent a first approach to the problem, allowing us to evaluate the appro-
priateness and coherence of the ESN models with respect to the nature of the RSS input
signals. Moreover, the experiments in Section 5.3 are useful to investigate the relation-
ships between the performance of the RC system and the cost of the deployment of the
WSN used. In particular, we show that our approach provides optimal accuracy with
4 anchors (representing the maximum number of anchors available), but it can already
provide a good accuracy even with a single anchor. Furthermore, our approach scales
with the number of anchors, hence it can be easily tuned in order to attain the desired
trade-off between accuracy and cost of the solution. Finally, from a RC modeling per-
spective, the experiments in Section 5.3 provide an experimental comparison between the
standard ESN model and the LI-ESN variant [103, 109, 127] (see Section 2.2.5), whose
reservoir dynamics are better suitable for slowly changing input signals (with respect to
the sampling frequency) [127, 6].
Then in Section 5.4, we experimentally evaluate the ability of the RC system (using
LI-ESNs) to generalize its predictive performance to unseen ambient configuration, com-
prising external test scenarios collected in environments which were not included in the
training set. Such experimental assessment, presented in [8], is intended to show that
the proposed technology has a strong potential to be deployed in real-life situations. In
this regard, we expect that the proposed solution will increase the level of service person-
alization by making accurate predictions of the user spatial context, while yielding to a
reduction of the setup and installation costs thanks to its generalization capability.

The rest of this Chapter is organized as follows. Section 5.2 provides a brief review
of the related works. The experiments related to the homogeneous environmental setting
are described in Section 5.3, while the experiments referring to the heterogeneous settings
are reported in Section 5.4.

5.2 Related work

In the past years, many developed indoor positioning systems extract the location-dependent
parameters such as time of arrival, time difference of arrival and angle of arrival [72] from
the received radio signal transmitted by the mobile station. Such a measurement needs
to be estimated accurately and it requires line of sight (LOS) between the transmitter
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and the receiver. Furthermore, it requires specialized and expensive hardware integrated
into the existing equipments. Due to the high implementation cost, the indoor positioning
system based on the use of RSS thus gets more and more interests. Since the deployments
of WLAN infrastructures are widespread and the RSS sensor function is available in ev-
ery 802.11 interface, the RSS-based positioning system is obviously a more cost-effective
solution.

The model-based positioning approach is one of the most widely used technology seen
in the literature since it expresses the radio frequency signal attenuation using a path loss
model [15, 17, 16]. From an observed RSS, these methods triangulate the person based
on a distance calculation from multiple access points. However, the relationship between
position and RSS relationship is highly complex due to multi-path, metal reflection, and
interference noise. Thus, the RSS propagation may not be adequately captured by a
fixed invariant model. In contrast to model-based positioning, fingerprinting based RSS
approaches are used [10, 197, 122, 111]. Fingerprints are generated during an offline
training phase, where RSS data is collected at a set of marked training locations. The most
challenging aspect of the fingerprinting based method is to formulate a distance calculation
that can measure similarity between the observed RSS and the known RSS fingerprints.
Various Machine Learning techniques can be applied to the location estimation problem
[119]. Probabilistic method [132], k-nearest-neighbor [10], neural networks [137], and
Support Vector Machines [122] are exploited in popular positioning techniques based on
the location fingerprinting. Euclidean distance based calculation has been used in [113] to
measure the minimum distance between the observed RSS and the mean of the fingerprints
collected at each training point. RADAR [10] uses a k-nearest-neighbors method in order
to find the closest match between fingerprints and RSS observation. Recently, research
efforts have concentrated on developing a better distance measure that can take into
account the variability of the RSS training vectors. These methods estimate probability
density for the training RSS and then compute likelihood/a posteriori estimates during the
tracking phase using the observed RSS and the estimated densities [197]. User localization
is then performed using a maximum-likelihood (ML) or maximum a posteriori (MAP)
estimate of position. All these location determination methods do not solve the problem to
forecast the user behaviors leveraging on empirical RSS measures. The Machine Learning
approach can take advantage of training RSS data to capture characteristics of interest of
their unknown underlying probability distribution.

In this Chapter, we apply ESNs to the problem of user movement forecasting. Despite
the extreme efficiency of the approach, ESNs have been successfully applied to many
common tasks in the area of sequence processing, often outperforming other state-of-the-
art learning models for sequence domains (e.g. [108, 103]). In particular, in the last years
ESN models have shown good potentialities in a range of tasks related to autonomous
systems modeling. Examples of such tasks include event detection and localization in
autonomous robot navigation [6, 5], multiple robot behavior modeling and switching [4,
187], robot behavior acquisition [92] and robot control [149]. However, such applications
are mostly focused on modeling robot behaviors and often use artificial data obtained by
simulators (e.g. [6, 5, 4, 187]). Here we apply the ESN approach to a real-world scenario
for user indoor movements forecasting, characterized by real and noisy RSS input data,
paving the way for potential applications in the field of AAL.
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5.3 Experiments in Homogeneous Indoor Environment

We carried out a measurement campaign on the first floor of the the ISTI institute of CNR
in the Pisa Research Area, in Italy. The environment is composed of 2 rooms (namely
Room 1 and Room 2), which are typical office environments with overall dimensions of
approximately 12 m by 5 m divided by an hallway. The rooms contain typical office
furniture: desks, chairs, cabinets, monitors that are asymmetrically arranged. This is a
harsh environment for wireless communications because of multi-path reflections due to
walls and interference due to electronic devices. For the experiments we used a sensor
network of 5 IRIS nodes [101] (4 sensors, in the following anchors, and one sensor placed
on the user, hereafter mobile), embedding a Chipcon AT86RF230 radio subsystem that
implements the IEEE 802.15.4 standard. The experiments consisted in a set of measures
between anchors and mobile. Figure 5.1 shows the anchors deployed in the environment as
well as the movements of the user. The height of the anchors was 1.5 m from the ground
and the mobile was worn on the chest. The measurements were carried out in empty
rooms to facilitate a constant speed of the user of about 1 m/s. Each measure collected
about 200 RSS samples (integer values ranging from 0 to 100), where every sample was
obtained by sending a beacon packet from the anchors to the mobile at regular intervals,
10 times per second, using the full transmission power of the IRIS. During the measures
the user performs two types of movements: straight and curved, for a total of 6 paths (2
of which straight) that are shown in Figure 5.1 with arrows numbered from 1 to 6. The
straight movement runs from Room 1 to Room 2 or vice versa (paths 1 and 5 in Figure
5.1) for 50 times in total. The curved movement is executed 25 times in Room 1 and
25 times in Room 2 (paths 2, 3, 4 and 6 in Figure 5.1). Each path produces a trace of
RSS measurements that begins from the corresponding arrow and that is marked when
the user reaches a point (denoted with M in Figure 5.1) located at 60 cm from the door.
Overall, the experiment produced about 5000 RSS samples from each of the 4 anchors.
The marker M is the same for all the movements, therefore the different path can not
be only distinguished from the RSS values collected in M. The scenario and the collected
RSS measures described so far can naturally lead to the definition of a binary classification
task on time series for movements forecasting. The RSS samples from the four anchors
are organized in 100 input sequences, corresponding to the conducted measures until the
marker (M) is reached. The RSS traces can be freely downloaded in [14]. Each single trace
is stored in a separate file that contains one row for each RSS measurement. Each row
has 4 columns corresponding to: anchor ID, sequence number of the beacon packet, RSS
value, and the boolean marker (1 if that measurement is done in point M, 0 otherwise).

The resulting input sequences have length varying between 16 and 101. A target
classification label is then associated to each input sequence, namely +1 for entering
movements (paths 1 and 5 in Figure 5.1) and −1 for non-entering ones (paths 2, 3, 4 and 6
in Figure 5.1). The constructed dataset is therefore balanced, i.e. the number of sequences
with positive classification is equal to the number of sequences with negative classification.

5.3.1 Slow Fading Analysis

The wireless channel is affected by multipath fading that causes fluctuations in the receiver
signals amplitude and phase. The sum of the signals can be constructive or destructive.
This phenomenon, together with the shadowing effect, may strongly limit the performance
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Figure 5.1: Test-bed environment where the measurements for the experiments in the
homogeneous ambient setting have been done. The positions of the anchors, and the 6
user movements are shown.

of wireless communication systems and makes the RSS values unstable. Most of the re-
cent research works in wireless sensor networks, modeled wireless channel with Rayleigh
fading channel model [166, 190], which is suitable channel model for wireless communi-
cations in urban areas where dense and large buildings act as rich scatterers. In indoor
environments Nakagami or Ricean fading channel model works well, because it contains
both non-LOS and LOS components. But Nakagami-m distribution function, proposed
by Nakagami [146], is a more versatile statistical representation that can model a variety
of fading scenarios including those modeled by Rayleigh and one-sided Gaussian distri-
butions. Furthermore, in [159] the authors demonstrated that Nakagami-m distribution
is more flexible and fits more accurately with experimental data for many propagation
channels than the other distributions. We observe that the received signal envelope is
modulated by a slow fading process that produce an oscillation of RSS with respect its
mean. This is due to multipath effects caused by scattering of the radio waves on office fur-
niture. In order to verify this hypothesis, we look for the signature of multipath fading, by
considering the distribution of the received power. The fading distribution approximates a
Nakagami-m distribution around the mean received power. The Nakagami-m distribution
has two parameters: a shape parameter m and a controlling spread ω. ω and m, lie in
the range from 17 to 50 and from 0.5 to 0.8 for most of the measurements, respectively.
The distribution observed on measured data (Figure 5.2 shows an example for the same
measurement as above and for the anchor A4) are consistent with what is observed in
[159]. As far as the dependence of the fading statistics on measurement parameters is
concerned, we observe that the power spectrum is similar for all the measurements. In
fact, m and ω are similar for all the measurements. For the arc movements, the Nakagami
parameters are more widely spread, as shown in Figure 5.3 with respect to the straight
ones. As highlighted in Figure 5.3 all the paths produce similar RSS traces, making it
hard to forecasting the user behavior. Despite the similar RSS distributions, in Section
5.3.2 we will show that the proposed system is able to forecast the user behavior. It is also
interesting to note that the traces collected in Room 1 can be modeled with m parameter
values more close together with respect to the traces collected in Room 2. Consequently,
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Figure 5.2: Distribution of received power level from the anchor A4 and Nakagami-m
distribution with µ = 0.58 and ω = 17.22.

we expect that the proposed system will mis-classify these paths more frequently.

5.3.2 Computational Experiments

Experimental Settings

Accordingly to the classification task defined in Section 5.3, the t-th element u(t) of
an input sequence s consists in the t-th set of RSS samples from the different anchors
considered in the corresponding measure, rescaled into the real interval [−1, 1]. Each
input sequence was presented Ntransient = 3 times to account for the initial transient. For
our purposes, we considered different experimental settings in which the RSS from one or
more of the four anchors is non-available. Therefore, the dimension of each u(t) can vary
from 1 to 4 depending on the setting considered, i.e. on the number Nanchors of anchors
used.

In our experiments, we used reservoirs with NR = 500 units and 10% of connectivity,
spectral radius ρ = 0.99 and input weights scaled in the interval [−1, 1]. For LI-ESNs, we
used the leaking rate a = 0.1. A number of 10 independent (random guessed) reservoirs was
considered for each experiment (and the results presented are averaged over the 10 guesses).
The performances of ESNs and LI-ESNs were evaluated by 5-fold cross validation, with
stratification on the movement types, resulting in a test set of 20 sequences for each
fold. For model selection, in each fold the training sequences were split into a training
and a (33%) validation set. To train the readout, we considered both pseudo-inversion
and ridge regression with regularization parameter λr ∈ {10−3, 10−5, 10−7}. The readout
regularization was chosen by model selection on the validation set.
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Figure 5.3: Nakagami parameters of the different user paths.

Experimental Results

Number of Anchors.
In this subsection we present the performance results obtained by ESNs and LI-ESNs
corresponding to the different experimental settings considered, with a number of anchors
Nanchors varying from 1 to 4. For every value of Nanchors, the results are averaged (and
standard deviations are computed) over the possible configurations of the anchors. The
accuracies on the test set achieved by ESNs and LI-ESNs are graphically shown in Fig-
ure 5.4. It is evident that the performances of both ESNs and LI-ESNs scale gracefully
(and almost linearly) with the number of anchors used, i.e. with the cost of the WSN. The
accuracy of ESNs varies from 0.53 (for Nanchors = 1) to 0.66 (for Nanchors = 4), whereas
the accuracy of LI-ESNs varies from 0.81 (for Nanchors = 1) to 0.96 (for Nanchors = 4).
Thus, the performance of the LI-ESN model is excellent for Nanchors = 4, scaling to ac-
ceptable values even for Nanchors = 1. In this regard it is also interesting that ESNs are
consistently outperformed by LI-ESNs for every value of Nanchors. This result enlightens
the better suitability of LI-ESNs for appropriately emphasizing the overall input history of
the RSS signals considered with respect to the noise. The ROC plot in Figure 5.5 provides
a further graphical comparison of the test performances of ESNs and LI-ESNs.

Tables 5.1, 5.2, 5.3 and 5.4 detail the mean accuracy, sensitivity and specificity of ESNs
and LI-ESNs, respectively, on the training and test sets, for increasing Nanchors. For both
ESNs and LI-ESNs, sensitivity is slightly higher than specificity on the test set.

The nice scaling behavior of the performance with the decreasing number of anchors
used, thus with the decreasing cost of the WSN, is also apparent from Tables 5.5 and 5.6,
which provide the confusion matrices for ESNs and LI-ESNs, respectively, averaged over
all the test set folds, with 20 sequences each (10 with positive target, 10 with negative
target).
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Figure 5.4: Mean accuracy of ESNs and LI-ESNs on the test set, varying the number of
anchors considered.

Nanchors Accuracy Sensitivity Specificity

1 0.96(±0.01) 0.96(±0.02) 0.97(±0.01)
2 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)
3 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)
4 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)

Table 5.1: Mean training accuracy, sensitivity and specificity of ESNs, varying the number
of anchors considered.

The distribution of LI-ESN classification errors occurring in correspondence of each
of the path types (see Figure 5.1) is provided in Table 5.7, for the case of Nanchors = 4.
Interestingly, the classification errors mainly occur for input sequences which correspond
to movements in the Room 1, i.e. paths 1, 2 and 3 in Figure 5.1. This actually confirms
the coherence of the LI-ESN model with respect to the RSS input signals. Indeed (see
Section 5.3), the movement paths in Room 1 are very similar and more hardly distinguish-
able among each other (in particular paths 1 and 2, see Figure 5.1) than the path types
in Room 2.

Actual Deployment of the Anchors.
In this sub-section, we detail the performance results of ESNs and LI-ESNs for each
possible configuration of the set of anchors used, with Nanchors varying from 1 to 4. For
each configuration considered, the results are averaged (and the standard deviations are
computed) over the 10 reservoir guesses. Tables 5.8 and 5.9 show the mean test accuracy,
sensitivity and specificity for ESNs and LI-ESNs, respectively, in correspondence of every
configuration of the anchors. Although the performances achieved in correspondence of



5.3. EXPERIMENTS IN HOMOGENEOUS INDOOR ENVIRONMENT 119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1

2
3

4

2

3

4

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

LI−ESN
ESN

Figure 5.5: ROC plot of ESNs and LI-ESNs on the test set, varying the number of anchors
considered (indicated beside each point in the graph).

Nanchors Accuracy Sensitivity Specificity

1 0.53(±0.05) 0.53(±0.05) 0.53(±0.06)
2 0.55(±0.04) 0.55(±0.06) 0.56(±0.02)
3 0.59(±0.03) 0.59(±0.04) 0.58(±0.02)
4 0.66(±0.00) 0.69(±0.00) 0.63(±0.00)

Table 5.2: Mean test accuracy, sensitivity and specificity of ESNs, varying the number of
anchors considered.

the different choices for the same value of Nanchors are quite similar, Tables 5.8 and 5.9
indicate that specific configurations can result in better performances. Despite the fact
that different combination of anchors could give different performance was expected (since
the disturbance and quality of signal is clearly affected by the position of the anchors in the
environment), we observe from the tables that the accuracy of the prediction is reasonably
robust to the position of the available anchors, which means that the deployment of the
anchors does not need to be extremely accurate (thus reducing deployment costs). On
the other hand, the results show clearly that it is better to distribute the anchors as much
as possible, e.g. in Table 5.9 the worse results are obtained when the available anchors are
in the same room, while with two anchors displaced in different rooms the system already
achieves accuracy in the range 87% - 93%.
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Nanchors Accuracy Sensitivity Specificity

1 0.92(±0.02) 0.97(±0.01) 0.87(±0.04)
2 0.99(±0.01) 1.00(±0.00) 0.98(±0.02)
3 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)
4 1.00(±0.00) 1.00(±0.00) 1.00(±0.00)

Table 5.3: Mean training accuracy, sensitivity and specificity of LI-ESNs, varying the
number of anchors considered.

Nanchors Accuracy Sensitivity Specificity

1 0.81(±0.02) 0.86(±0.04) 0.76(±0.02)
2 0.86(±0.04) 0.88(±0.05) 0.85(±0.04)
3 0.92(±0.04) 0.93(±0.04) 0.90(±0.04)
4 0.96(±0.00) 0.98(±0.00) 0.93(±0.00)

Table 5.4: Mean test accuracy, sensitivity and specificity of LI-ESNs, varying the number
of anchors considered.

Nanchors True Positives True Negatives False Positives False Negatives

1 5.29(±0.52) 5.28(±0.57) 4.73(±0.57) 4.71(±0.52)
2 5.46(±0.59) 5.60(±0.24) 4.40(±0.24) 4.54(±0.59)
3 5.90(±0.42) 5.84(±0.22) 4.17(±0.22) 4.10(±0.42)
4 6.90(±0.00) 6.30(±0.00) 3.70(±0.00) 3.10(±0.00)

Table 5.5: Averaged confusion matrix on the test set (with 10 positive samples and 10
negative samples for each fold) for ESNs, varying the number of anchors considered.

Nanchors True Positives True Negatives False Positives False Negatives

1 8.57(±0.40) 7.60(±0.15) 2.40(±0.15) 1.43(±0.40)
2 8.80(±0.52) 8.47(±0.43) 1.53(±0.43) 1.20(±0.52)
3 9.31(±0.45) 9.01(±0.40) 0.99(±0.40) 0.69(±0.45)
4 9.84(±0.00) 9.26(±0.00) 0.74(±0.00) 0.16(±0.00)

Table 5.6: Averaged confusion matrix on the test set (with 10 positive samples and 10
negative samples for each fold) for LI-ESNs, varying the number of anchors considered.

Test Error (%)
Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

10.76% 51.86% 32.52% 1.43% 3.43% 0%

Table 5.7: Distribution of test errors for LI-ESNs in the case Nanchors = 4 (with a total
test error of 4%) occurring for each of the path types in Figure 5.1.
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Anchors Accuracy Sensitivity Specificity

A1 0.49(±0.06) 0.51(±0.10) 0.47(±0.09)
A2 0.47(±0.05) 0.45(±0.08) 0.48(±0.08)
A3 0.59(±0.06) 0.58(±0.10) 0.61(±0.07)
A4 0.57(±0.06) 0.57(±0.08) 0.56(±0.10)

A1, A2 0.52(±0.06) 0.47(±0.10) 0.56(±0.08)
A1, A3 0.51(±0.07) 0.50(±0.11) 0.52(±0.08)
A1, A4 0.58(±0.07) 0.60(±0.08) 0.57(±0.09)
A2, A3 0.61(±0.07) 0.62(±0.09) 0.60(±0.08)
A2, A4 0.53(±0.06) 0.50(±0.11) 0.55(±0.08)
A3, A4 0.58(±0.06) 0.60(±0.08) 0.56(±0.10)

A1, A2, A3 0.57(±0.07) 0.57(±0.10) 0.56(±0.10)
A1, A2, A4 0.58(±0.06) 0.57(±0.08) 0.59(±0.08)
A1, A3, A4 0.57(±0.06) 0.56(±0.09) 0.57(±0.08)
A2, A3, A4 0.64(±0.06) 0.66(±0.08) 0.62(±0.08)

A1, A2, A3, A4 0.66(±0.07) 0.69(±0.10) 0.63(±0.09)

Table 5.8: Mean test accuracy, sensitivity and specificity of ESNs for the possible config-
urations of the considered anchors.

Anchors Accuracy Sensitivity Specificity

A1 0.84(±0.01) 0.90(±0.01) 0.77(±0.01)
A2 0.80(±0.03) 0.85(±0.06) 0.75(±0.03)
A3 0.81(±0.03) 0.88(±0.03) 0.74(±0.02)
A4 0.78(±0.03) 0.79(±0.06) 0.78(±0.03)

A1, A2 0.83(±0.03) 0.87(±0.06) 0.78(±0.02)
A1, A3 0.87(±0.03) 0.89(±0.04) 0.85(±0.05)
A1, A4 0.88(±0.02) 0.91(±0.02) 0.85(±0.02)
A2, A3 0.89(±0.02) 0.89(±0.03) 0.88(±0.03)
A2, A4 0.93(±0.01) 0.95(±0.02) 0.91(±0.02)
A3, A4 0.79(±0.03) 0.78(±0.04) 0.80(±0.05)

A1, A2, A3 0.87(±0.03) 0.89(±0.04) 0.86(±0.04)
A1, A2, A4 0.94(±0.03) 0.96(±0.04) 0.92(±0.03)
A1, A3, A4 0.88(±0.03) 0.89(±0.04) 0.87(±0.03)
A2, A3, A4 0.98(±0.02) 0.99(±0.01) 0.96(±0.03)

A1, A2, A3, A4 0.96(±0.03) 0.98(±0.03) 0.93(±0.03)

Table 5.9: Mean test accuracy, sensitivity and specificity of LI-ESNs for the possible
configurations of the considered anchors.
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5.4 Experiments in Heterogeneous Indoor Environments

The datasets for the experiments in heterogeneous indoor environments were obtained
similarly to the one for homogeneous environments described in Section 5.3. In particular,
a different measurement campaign has been performed on the first floor of the the ISTI
institute of CNR in the Pisa Research Area, in Italy. The scenario comprises typical
office environments with 6 rooms with different geometry, arranged into pairs such that
coupled rooms (referred as Room 1 and Room 2 in the following) have fronting doors
divided by an hallway, similarly to the experimental setup described in Section 5.3 (see
Figure 5.1). Rooms contain typical office furniture: desks, chairs, cabinets, monitors that
are asymmetrically arranged.

The measurement campaign comprises experiments on three different couple of rooms
with a total surface spanning from 50 m2 to about 60 m2. Table 5.10 details the envi-
ronment dimensions for the three couple of rooms, hereby referred as dataset 1, dataset 2
and dataset 3. Differently from the setup referred to in Section 5.3, the RSS signals were
sampled at the frequency of 8Hz.

Dataset Number length (m) width (m)

1 4.5 12.6

2 4.5 13.2

3 4 12.6

Table 5.10: Physical layout of the 3 room couples for the datasets in the heterogeneous
setting.

As for the dataset in Section 5.3, the user moved according 6 possible prototypical
paths (the same as in Figure 5.1). Table 5.11 summarizes the statistics of the collected
movement types for each dataset: due to physical constraints, dataset 1 does not have
a curved movement in Room 1 (path 3). The number of trajectories leading to a room
change, with respect to those that preserve the spatial context, is indicated in Table 5.11 as
”Tot. Positives” and ”Tot. Negatives”, respectively. Also in this case, each path produces
a trace of RSS measurements that begins from the corresponding arrow and that is marked
when the user reaches a point (denoted with M in Figure 5.1) located at 0.6m from the
door. Overall, the experiment produced about 5000 RSS samples from each of the 4
anchors and for each dataset. Again, the marker M is the same for all the movements,
therefore different paths cannot be distinguished based only on the RSS values collected
at M.

Analogously to the case of the homogeneous setup in Section 5.3, the collected RSS
measurements were used to define a binary classification task on time series for move-
ments forecasting. The RSS values from the four anchors were organized into sequences of
varying length (see Table 5.11) corresponding to trajectory measurements from the start-
ing point until marker M. A target classification label +1 was associated to movements
corresponding to a room change (i.e. paths 1 and 5 in Figure 5.1), while label −1 was
used to denote location preserving trajectories (i.e. paths 2, 3, 4 and 6 in Figure 5.1). The
resulting dataset is made publicly available for download [13].
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Path Type Dataset 1 Dataset 2 Dataset 3

1 26 26 27
2 26 13 12
3 - 13 12
4 13 14 13
5 26 26 27
6 13 14 13

Tot. Positives 52 52 54
Tot. Negatives 52 54 50

Lengths min-max 19-32 34-119 29-129

Table 5.11: Statistics of the collected user movements on the three datasets for the het-
erogeneous indoor experiments.

5.4.1 Computational Experiments

Experimental Settings

We assessed the ability of the proposed RC approach to generalize its prediction to unseen
indoor environments, which is a fundamental property for the deployment as a move-
ment prediction system in real-life applications. To this end, we defined an experimental
evaluation setup where RC training is performed on RSS measurements corresponding to
only 4 out of 6 rooms of the scenario, while the remaining 2 rooms are used to test the
generalization capability of the RC model.

In particular, we limited our consideration to the LI-ESN model, which has been shown
to be better suited than standard ESNs for dealing with the characteristics of the RSS
signals [68] (see Section 5.3). The reservoir hyper-parameters of the LI-ESNs were set as
in 5.3.2. The readout (NY = 1) was trained using pseudo-inversion and ridge regression
with regularization parameter λr ∈ {10−i|i = 1, 3, 5, 7}.

Experimental Results

We have defined 2 experimental situations (ES) that are intended to assess the predictive
performance of the LI-ESNs when training/test data comes from both uniform (ES1) and
previously unseen ambient configurations (ES2), i.e. providing an external test set. To this
aim, in ES1, we have merged datasets 1 and 2 to form a single dataset of 210 sequences.
A training set of size 168 and a test set of size 42 have been obtained for the ES1, with
stratification on the path types. The readout regularization parameter λr = 10−1 has
been selected in the ES1, on a (33%) validation set extracted from the training samples.
In ES2, we have used the LI-ESN with the readout regularization selected in the ES1, and
we have trained it on the union of datasets 1 and 2 (i.e. 4 rooms), using dataset 3 as an
external test set (with measurements from 2 unknown environments). Table 5.12 reports
the mean test accuracy for both the ESs. An excellent predictive performance is achieved
for ES1, which is coherent with the results reported in [68] (Section 5.3.2). Such an
outcome is noteworthy, also in light of the fact that the measurements in Section 5.3 have
been obtained in a much simpler experimental setup, referring to RSS measurements from
a single pair of rooms. This seems to indicate that the LI-ESN approach, on the one hand,
scales well as the number of training environments increases while, on the other hand,



124 CHAPTER 5. APPLICATIONS OF ESNS FOR AMBIENT ASSISTED LIVING

ES 1 ES 2

95.95%(±3.54) 89.52%(±4.48)

Table 5.12: Mean test accuracy (and standard deviation) of LI-ESNs for the two ESs.

LI-ESN Prediction
+1 -1

Actual
+1 44.04%(±5.17) 7.88%(±5.17)
-1 2.60%(±2.06) 45.48%(±2.06)

Table 5.13: Mean confusion matrix (expressed in % over the number of samples) on the
ES2 external test set.

it is robust to changes to the training room configurations. Note that RSS trajectories
for different rooms were, typically, consistently different and, as such, the addition of
novel rooms strongly exercises the short-term memory of the reservoirs and their ability
to encode complex dynamical signals

The result on the ES2 setting is more significant, as it shows a notable generalization
performance for the LI-ESN model, that reaches a predictive accuracy close to 90% on the
external test comprising unseen ambient configurations. Table 5.13 describes the confusion
matrix of the external test set in ES2, averaged over the reservoir guesses and expressed as
percentages over the number of test samples. This allows appreciating the equilibrium of
the predictive performance, that has comparable values for both classes. Note that total
accuracy is obtained as the sum over the diagonal, while error is computed from the sum
of the off-diagonal elements.

5.5 Conclusions

We have discussed the problem of forecasting the user movements in indoor environments.
In our approach we have combined localization information obtained by a WSN of MicaZ
sensors with an ESN that takes in input a stream of RSS data produced by the sensors
and detects when the user is about to enter in/exit from a given room. The problem is
also made complex due to the intrinsic difficulty of localization in indoor environments,
since presence of walls and objects disturb the radio propagation and makes RSS data
imprecise.

We have first considered a simpler homogeneous scenario in which a user enters in and
exits from two rooms according to different paths, which intersect in a marker point at
the time in which the ESN is requested to make the prediction. We also have considered
different numbers and combinations of anchors in order to investigate the trade-off between
the cost of the WSN, the cost of deployment (that is dependent on the sensibility of the
solution to the position of the anchors) and accuracy of prediction. The results on such
scenario confirmed the potentiality of our approach. In particular we have observed that
our solution obtains good precisions also with a single anchor, and it scales gracefully with
the number of anchors (with 4 anchors it reaches a test accuracy of 96%). Furthermore
it is reasonably robust to the position of the anchors, although the experiments gave a
clear indication that the anchors should be placed as distant from each other as possible,
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in order to guarantee a better coverage. Concerning the ESN models considered, we have
shown that LI-ESNs consistently lead to better performances than standard ESNs for
every experimental condition (i.e. for varying the number and the deployment of the used
anchors). The bias of in the LI-ESN model, acting as a low-pass filter of the reservoir states,
has therefore revealed to be suitable for approaching the characteristics of the problem
considered. LI-ESNs have indeed shown a good ability to appropriately represent the
history of the noisy RSS input signals used in experiments. Standard ESNs, on the other
hand, would need a larger dataset and less noise in the input signals in order to achieve
better generalization performances. Moreover, the experimental results have enlightened
the coherence of the learning models used with respect to the known difficulties of the
problem. In fact, the great part of the classification errors of LI-ESNs (for the 4 anchors
setting) has occurred in correspondence of movements in Room 1, where the possible path
types are much more similar among each other than the corresponding paths in Room 2.

Through experiments referring to a second, heterogeneous scenario, we have shown
that the LI-ESN approach is capable of generalizing its predictive performance to training
information related to multiple setups. More importantly, it can effectively generalize
movement forecasting to previously unseen environments, as shown by the external test set
assessment. Such flexibility is of great importance for the development of practical smart-
home solutions, as it allows to consistently reduce the installation and setup costs. For
instance, we envisage a scenario in which an ESN-based localization system is trained off-
line (e.g. in laboratory/factory) on RSS measurements captured on a (small) set of sample
rooms. Then, the system is deployed and put into operation into its target environment,
reducing the need of an expensive fine tuning phase.

In addition to accuracy and generalization, a successful context-forecasting technology
has also to possess sufficient reactivity, so that predictions are delivered timely to the high-
level control components. In this sense, the ESN approach is a good candidate to optimize
the trade-off between accuracy, generalization and computational requirements among
ML models for sequential data. Such potential can be further exploited by developing
a distributed system that embeds the ESN learning modules directly into the nodes of
the wireless networks. By virtue of ESN limited computational requirements, we envisage
that such solution could be cost-effectively realized on WSNs using simple computationally
constrained devices (e.g. see the objectives of the EU FP7 RUBICON project [174]).

As final remark, we stress that the datasets used in our experiments are openly available
for download [14, 13].
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Part III

Reservoir Computing for Highly
Structured Domains





Chapter 6

Tree Echo State Networks

6.1 Introduction

The design of neural network models for treating structured information raises several
research issues. Among them, the efficiency of learning algorithms deserves particular
attention under both theoretical and practical points of view. RecNNs [169, 55] (see Sec-
tion 2.2.6), generalizing the applicability of neural network models to treat tree domains
directly, are typically trained using learning algorithms which suffer from analogous prob-
lems to those occurring when training RNNs [91]. In addition to this, training RecNNs can
be even more computationally expensive that training RNNs. Another widely used class of
learning models for tree structured domains is represented by the kernel methods for trees
(see e.g. [69, 84]), among which a common approach is represented by the convolution tree
kernels (e.g. [93, 144, 185, 35, 2]). Such approaches, however, are typically very expensive
in terms of the required computational cost for the kernel computation (possibly implying
a quadratic cost in the number of input nodes) and for training the SVM. Thereby, the
investigation of possible efficient approaches for the adaptive processing of tree structured
data represents a very appealing and worth of interest open research problem.

In this Chapter we present the Tree Echo State Network (TreeESN) model to ex-
tend the applicability of the ESN approach to tree structured data and to allow for an
extremely efficient modeling of RecNNs. As for standard ESNs, the architecture of a
TreeESN is composed of an untrained recurrent non-linear reservoir and a linear readout
that can be trained by efficient linear methods. In a TreeESN input trees are processed in
a bottom-up recursive fashion, from leaves to the root by the application of the generalized
reservoir architecture to each node, and hence building a structured state representation.
For modeling functions in which input structures are mapped into unstructured output
vectors (e.g. for classification or regression tasks on trees), the structured state computed
by the reservoir can be mapped into a fixed-size feature representation according to differ-
ent state mapping functions. A contractive setting of the reservoir dynamics is inherited
from ESN for sequences. Beside ensuring stability of state dynamics, contractivity allows
us also to study an interesting region of the state space of recursive models characterized
by Markovian nature, generalized to the case of tree structure processing [91]. Moreover,
based on the ability of inherently discriminating among input structures in absence of
learning of recurrent connections, TreeESNs represent both an architectural and an ex-
perimental performance baseline for RecNN models with trained recurrent dynamics.



130 CHAPTER 6. TREE ECHO STATE NETWORKS

Although the framework of recursive structural transduction is not new, its modeling
through reservoir computing introduces interesting advantage concerning the efficiency. It
also opens experimental challenging issues in terms of the effectiveness in comparison to
more complex approaches and in terms of the evaluation of the effects of Markovianity
and of state mapping functions.

In particular, the role of the state mapping function in relation to Markovianity has a
relevant impact on the organization of the feature space and on the predictive performance
of TreeESNs, that we investigate through experiments on artificial and real-world tasks.

This Chapter is organized as follows. The TreeESN model is presented in Section 6.2,
describing the novelties concerning the architecture, the initialization conditions, the
Markovian characterization of reservoir dynamics and the computational complexity (ef-
ficiency) of the model. Section 6.3 presents experimental applications of TreeESNs on
tasks on tree domains of different nature, to show the potentiality of the model in terms
of performance and to analyze the characteristics and limitations of the approach related
to the state mapping function and Markovianity. Finally, conclusions are discussed in
Section 6.4.

6.2 TreeESN Model

TreeESNs are RecNNs implementing causal, stationary and partially adaptive transduc-
tions on tree structured domains. A TreeESN is composed of an untrained hidden layer
of recursive non-linear units (a generalized reservoir) and of a trained output layer of
feed-forward linear units (the readout). The reservoir implements a fixed encoding trans-
duction, whereas the readout implements an adaptive output transduction. For tree-to-
element transductions, a state mapping function is used to obtain a single fixed-size feature
representation. The following sub-sections describe the components of a TreeESN model.

6.2.1 Reservoir of TreeESN

The reservoir consists in NR recursive (typically) non-linear units, which are responsible
for computing the encoding of a tree transduction by implementing the node-wise encoding
function τ of equation 2.27, which takes the role of a recursive state transition function.
Accordingly, the state corresponding to node n of a tree t is computed as follows:

x(n) = f(Winu(n) +
k

∑

i=1

Ŵx(chi(n))) (6.1)

where Win ∈ R
NR×NU is the input-to-reservoir weight matrix (which might also contain

a bias term), Ŵ ∈ R
NR×NR is the recurrent reservoir weight matrix and f is the element-

wise applied activation function of the reservoir units (we use tanh). In correspondence
of absent children of node n, a null state xnil = 0 ∈ R

NR is used. As in standard
ESNs, a sparse pattern of connectivity among the reservoir units is adopted, i.e. Ŵ is
a sparse matrix. Notice that if the input structures reduce to sequences, i.e. for k = 1,
the generalized reservoir of a TreeESN (whose dynamics are described in equation 6.1)
reduces to a standard reservoir of an ESN.
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Note that equation 6.1 is customized for non-positional trees, whereas in the case of
positional trees it can be modified so that different recurrent weight matrices are used in
correspondence of different child positions.

Figure 6.1 depicts the application of the generalized reservoir architecture to a node
n of an input tree. The reservoir units are fed with an external input consisting in the

W^W^Win W^

...

x (ch1(n)) x (ch2(n)) x (chk (n))

( )x n

u n( )

τ

Node Label States of Children

Reservoir
Units

Figure 6.1: The application of the generalized reservoir architecture of a TreeESN to node
n of an input tree.

numerical label attached to node n, i.e. u(n), weighted by the input-to-reservoir weights
in Win. Each reservoir unit receives in input also the activation of the reservoir units
computed for each child of node n, weighted by the weights in Ŵ. Note that not every
couple of reservoir units is connected, according to the sparse pattern of connectivity within
the reservoir (see Figure 6.2). Moreover, a connection between two reservoir units carries
all the corresponding state information computed for the children of the node n. This is
illustrated in Figure 6.2, showing that a connection from unit B to unit A in the generalized
reservoir architecture carries to unit A the whole set of activations of unit B computed in
correspondence of every child of n, i.e. xB(ch1(n)), . . . , xB(chk(n)). Assuming a number of

x
B (ch1(n))

x
B (ch2(n))

x
B (ch (n))k

...
W^

τ

A

B

Reservoir Units

Figure 6.2: The generalized reservoir architecture of a TreeESN.

R < NR recurrent connections for each reservoir unit (sparse connectivity of the reservoir),
the total number of recurrent weights in the TreeESN architecture is given by kRNR.
The number of different recurrent reservoir weights then reduces to RNR because of the
assumption of stationarity for processing the states of the children (see equation 6.1).

The generalized reservoir architecture described in Figure 6.1 is unfolded on an input
tree t according to the bottom-up recursive encoding process described in Section 2.2.3
and corresponding to the application to t of the function τ̂ (equation 2.28) induced by
the reservoir implementation (equation 6.1) of function τ (equation 2.27). In practice, the
same reservoir architecture is recursively applied to each node of t, following the topology
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of t. Note that this encoding process entails an information flow that is isomorphic to the
structure of the input tree t itself. Equivalently, the tree structured state x(t), obtained
as a result of the recursive encoding process implemented by the reservoir, is isomorphic
to t according to the definition in Section 2.2.1. Indeed, the skeletons of t and x(t) are the
same, while for each node n in x(t) the label is computed as the output of the reservoir
units applied to n (see also Section 2.2.3 and [55]). An example of this encoding process
is shown in Figure 6.3. The discrete input space {a, b, c, d, e} is encoded using a 1-of-5
binary encoding such that a is encoded as 10000, b as 01000 and so on up to e encoded
as 00001, i.e. NU = 5. The reservoir states for the leaf nodes in t (i.e. for nodes labeled
by a, b and c in Figure 6.3) are computed first, given the encoding of the corresponding
labels and the null state for absent children. The reservoir state for the node with label d
is then computed, given the encoding of the corresponding label and the reservoir states
computed for the nodes labeled by a and b. Finally, the state for the root of t (with label
e) is computed, given the encoding for its label and the reservoir states computed for the
nodes with labels d and c. If a different tree structure is given in input, the encoding

x(t)
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...
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Win Win
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Figure 6.3: Example of the encoding process computed by the reservoir of a TreeESN.
Symbolic node labels are encoded using a 1-of-m binary encoding.

process changes according to a topology which is isomorphic to the topology of the input
structure (see Section 2.2.3). Note that the number of nodes (i.e. |N(t)|) and the topology
of the input tree are independent of the number of units (i.e. NR) and the topology of the
reservoir architecture.

A further point to remark is that, differently from the standard ESN approach (that
is specifically designed for signals/time series processing), the reservoir of a TreeESN is
run only once on each finite input structure (see Figure 6.3), without any initial transient
to discard. This aspect of reservoir computation is related to the different nature of the
data under consideration. In fact, the purpose of reservoir computation in TreeESNs is to
encode a set of discrete finite input structures, rather than to build an high dimensional
non-linear dynamical representation of a (single, possibly infinite) input signal stream.

As in the standard ESN model, the parameters of the reservoir of a TreeESN are
left untrained after initialization. In particular, matrices Win and Ŵ in equation 6.1 are
randomly chosen and then Ŵ is scaled to implement a contractive state transition function
τ . The contractive setting of the reservoir state transition function has the twofold effect
of ensuring stability of reservoir dynamics (regardless of other initialization aspects) and
of bounding such dynamics into a region of the state space characterized by a Markovian
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flavor organization [91]. Section 6.2.4 details the initialization setting and the resulting
Markovian characterization of TreeESN reservoir dynamics.

6.2.2 State Mapping Function: TreeESN-R and TreeESN-M

When processing tree-to-element transductions with variable size (and topology) input
trees, the feed-forward readout architecture cannot be applied to the structured reser-
voir state directly. Such structured state is indeed isomorphic to the variable size input,
whereas the number of readout parameters (i.e. the weights in Wout) is fixed. Thereby,
in order to implement tree-to-element transductions, the structured state representation
computed for an input tree t, i.e. x(t), is mapped into a fixed-size NR dimensional feature
representation through the state mapping function χ of equation 2.22. We consider two
possible choices for the state mapping function, namely a root state mapping and a mean
state mapping.

The root state mapping consists in selecting the state of the root of t:

χ(x(t)) = x(root(t)) (6.2)

The root state mapping is used in standard RecNNs, in which the state of the root is
always used as representative of the whole input structure. Note that when a TreeESN
with root state mapping is used to process sequential inputs, the standard ESN model
arises.

The mean state mapping computes the mean over the states of the nodes in t:

χ(x(t)) =
1

|N(t)|

∑

n∈N(t)

x(n) (6.3)

By using the mean state mapping, the fixed-size feature representation χ(x(t)) depends
(to the same extent) on the state of every node in the input structure t, rather than
depending only on the state of a particular node.

In the following, TreeESN-R and TreeESN-M are respectively used to refer to a
TreeESN with root state mapping and to a TreeESN with mean state mapping.

6.2.3 Readout of TreeESN

The readout consists in NY feed-forward linear units and is used to process the adaptive
output of a tree transduction by implementing the node-wise output function gout of
equation 2.29.
For tree-to-tree transductions, the readout is applied to the state of each node n in the
input structure:

y(n) = Woutx(n) (6.4)

where Wout ∈ R
NY ×NR is the reservoir-to-readout weight matrix (possibly including a

bias term). For tree-to-element transductions, the readout is applied only to the output
of the state mapping function:

y(t) = Woutχ(x(t)) (6.5)

Figure 6.4 shows an example of the application of the mean state mapping and of the
output function for processing tree-to-element transductions with TreeESNs, referring to
the same input tree as in Figure 6.3.
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Figure 6.4: Example of mean state mapping and output functions computed by TreeESNs.
The notation x(< a >) is used here to denote the state computed for the node with label
”a” in the input tree.

As for standard ESNs, (off-line) training of the readout is performed by adjusting
the weight values in Wout to solve a linear regression problem (see Section 2.2.5). Let
us consider a training set Ttrain containing a number of P patterns. For tree-to-tree
transductions, input patterns in Ttrain correspond to nodes and the corresponding states
computed by the reservoir are column-wise arranged into a state matrix X ∈ R

NR×P .
Analogously, the target outputs for the patterns in Ttrain are column-wise arranged into
a target matrix Ytarget ∈ R

NY ×P . For tree-to-element transductions, input patterns in
Ttrain correspond to trees and the columns of matrix X contain the states obtained by
applying the state mapping function to the corresponding structured states computed by
the reservoir. Matrix Wout is therefore selected to solve the least squares linear regression
problem:

min ‖WoutX−Ytarget‖
2
2 (6.6)

In this Chapter, to solve equation 6.6 we use Moore-Penrose pseudo inversion of matrix
X:

Wout = YtargetX
+ (6.7)

where X+ denotes the pseudo-inverse of X.

6.2.4 Markovian Characterization and Initialization of Reservoir Dy-
namics

In the context of sequence processing it is a known fact that state models implementing
contraction mappings are characterized by a Markovian nature of the state dynamics.
Relations between contractions and Markovianity have been investigated in the contexts of
Iterated Function Systems (IFS), variable memory length predictive models, fractal theory
and for describing the bias of trainable RNNs initialized with small weights [90, 176, 175,
177]. In fact, it has been shown in [90, 175] that RNNs initialized to implement contractive
state transition functions are architecturally biased towards Markovian process modeling,
being able to discriminate among different input histories in a suffix-based Markovian flavor
even prior to training of the recurrent connections. ESNs, through a fixed contractive
setting of the state transition function, directly exploit the Markovian nature of state
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dynamics for efficiently approaching tasks within the architectural bias of RNNs, without
any adaptation of the recurrent state transition function parameters [177, 62].

Preliminary results on a similar architectural bias towards Markovian models on tree
domains for RecNNs initialized with contractive recursive state transition functions have
been presented in [91]. In particular, in [91] it has been proved that the class of RecNNs
with contractive state transition function and bounded state space is equivalent to (can
be approximated arbitrarily well by) the class of models on tree domains with state space
organization of Markovian nature. Advantages of the RC approach therefore naturally
extend to RecNN modeling through TreeESNs, implementing fixed contractive recursive
state transition functions.

Markovianity of TreeESN dynamics

We say that a state model on tree domains is characterized by a state space organization
of a Markovian nature whenever the states it assumes in correspondence of different input
trees sharing a common suffix are close to each other proportionally to the height of the
common suffix [91].

In TreeESNs, the contractive setting of the state transition function implies a Marko-
vian characterization of the reservoir state space. For our purposes, the definition of
contractivity of the node-wise encoding function τ (equation 2.27) implemented by the
recursive state transition function of the reservoir (equation 6.1) is given as follows. The
node-wise encoding function τ : RNU × R

kNR → R
NR is a contraction with respect to

the state space R
NR if there exists a non-negative parameter C < 1 such that for every

u ∈ R
NU and for every x1, . . . ,xk,x

′
1, . . . ,x

′
k ∈ R

NR it holds that

‖τ(u,x1, . . . ,xk)− τ(u,x′
1, . . . ,x

′
k)‖ ≤ C max

i=1,...,k
‖xi − x′

i‖ (6.8)

Whenever the state transition function of a TreeESN is contractive according to equa-
tion 6.8 and the network state space is bounded, the nature of the reservoir dynamics is
characterized by Markovianity. Intuitively, the roots of different input trees sharing a com-
mon suffix are mapped into reservoir states which are close to each other proportionally
to the height of the common suffix. More formally, the Markovian property of a TreeESN
reservoir space can be described in the following way. Consider a TreeESN with recursive
state transition function τ implementing a contraction with parameter C with respect to
the state space RNR . Suppose that the subset of states which are assumed by the reservoir
of the TreeESN is bounded with diameter denoted by diam. Then, for every height h > 0,
any two input trees t, t′ ∈ (RNU )# sharing the same suffix of height h, i.e. Sh(t) = Sh(t

′),
and any states x,x′ ∈ R

NR , the distance between the states computed by the reservoir for
the root of the two input trees t and t′, with null states x and x′ respectively, is upper
bounded by a term proportional to Ch:

‖τ̂(t,x)− τ̂(t′,x′)‖ ≤ Ch diam (6.9)
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In fact:

‖τ̂(t,x)− τ̂(t′,x′)‖ =

‖τ(u(root(t)), τ̂(t(ch1(root(t))),x), . . . , τ̂(t(chk(root(t))),x))−
τ(u(root(t)), τ̂(t(ch1(root(t

′))),x′), . . . , τ̂(t(chk(root(t
′))),x′))‖ ≤

C max
i1=1,...,k

‖τ̂(t(chi1(root(t))),x)− τ̂(t(chi1(root(t
′))),x′‖ ≤

C2 max
i1,i2=1,...,k

‖τ̂(t(chi2(chi1(root(t)))),x)− τ̂(t(chi2(chi1(root(t
′)))),x′‖ ≤

Ch max
i1,...,ih=1,...,k

‖τ̂(t(chih(. . . (chi1(root(t))) . . .)),x)−

τ̂(t(chih(. . . (chi1(root(t
′))) . . .)),x′)‖ ≤

Chdiam

(6.10)

As a consequence of this Markovian property, the distance between the reservoir states
computed for nodes whose induced sub-trees are different only before a common suffix of
height h is anyhow bounded by a term which exponentially decreases for increasing h.
Equivalently, the influence on the reservoir state computed for node n (i.e. x(n)) due to
nodes at depth d in the sub-tree rooted at n (i.e. t(n)) is exponentially decreasing for
increasing d. Hence, the reservoir of a TreeESN is able to discriminate between different
input trees in a Markovian tree suffix-based way without any adaptation of its parameters.
A straightforward consequence is that TreeESNs result in a very efficient RecNN approach
particularly suitable for tasks in which the target characterization is compatible with such
Markovian state space organization.

The Markovian nature of TreeESN reservoir state space organization is also graphically
illustrated in Figure 6.5, which shows different input trees and corresponding states for
their root nodes, computed by a model obeying Markovian organized dynamics. The
states computed for the roots of the different input trees cluster together in a tree suffix-
based fashion. In particular, the roots of trees A and B are mapped into very close state
representations with respect to the state representation of the root of C and D. Thereby,
the readout of the network can naturally perform better whenever the target of the task
at hand requires to assign similar outputs for the roots of A and B and a different one for
the root of C and D. On the contrary, the Markovian constrained state space turns out
to be less appropriate e.g. for targets requiring similar outputs for the roots of A and C
and a different one for the root of B.

The example in Figure 6.5 corresponds to the case of tree-to-element transductions
computed using root state mapping (and to the case of tree-to-tree transductions). How-
ever, note that in general, for tree-to-element transductions, the Markovian characteri-
zation of reservoir dynamics, holding locally in correspondence of each node of an input
tree, can be mitigated as a global property of the feature representation used to feed the
readout, according to the state mapping function adopted.
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Figure 6.5: Graphical illustration of the Markovian nature of reservoir state space organi-
zation in TreeESNs. The root of input trees with shared suffix correspond to close points
in the reservoir state space R

NR (see equation 6.9).

Reservoir Initialization

The recursive state transition function (equation 6.1) of a TreeESN is initialized to im-
plement a contraction mapping (equation 6.8) with a bounded state space. Under such
conditions, the reservoir state dynamics are stable and characterized by Markovianity, as
discussed in the previous sub-section.

The condition on the bounded reservoir state space is ensured under very mild as-
sumptions, e.g. for a bounded reservoir activation function such is tanh.
As regards the contractivity of the reservoir state transition function, we provide a con-
dition assuming the Euclidean distance as metric on R

NR and tanh as activation function
of the reservoir units1. For every input label u ∈ R

NU and children states x1, . . . ,xk,
x′
1, . . . ,x

′
k ∈ R

NR :

‖τ(u,x1, . . . ,xk)− τ(u,x′
1, . . . ,x

′
k)‖2 =

‖tanh(Winu+
k
∑

i=1
Ŵxi)− tanh(Winu+

k
∑

i=1
Ŵx′

i)‖2 ≤

‖Ŵ
k
∑

i=1
(xi − x′

i)‖2 ≤

‖Ŵ‖2
k
∑

i=1
‖xi − x′

i‖2 ≤

k‖Ŵ‖2 max
i=1,...,k

‖xi − x′
i‖2

(6.11)

1In [91] a similar condition is provided assuming the maximum norm as metric on the state space.
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Contractivity of the state transition function is hence guaranteed by the condition:

σ = k‖Ŵ‖2 < 1 (6.12)

where k is the maximum degree over the set of trees considered and σ is called the con-
traction coefficient of the TreeESN, governing the degree of contractivity of the reservoir
dynamics. A straightforward initialization procedure for TreeESNs then consists in a ran-
dom setting of both the input-to-reservoir weight matrix Win and the recurrent reservoir
weight matrix Ŵ, after which Ŵ is scaled such that σ < 1 (equation 6.12) holds. Elements
in Win can be chosen according to a uniform distribution over the interval [−win, win] as
in standard ESNs, where win determines the size of the input scaling.

Equation 6.12 generalizes the sufficient condition (on the maximum singular value
of the reservoir recurrent matrix) for the ESP in standard ESN processing [103], that
corresponds to the case k = 1 in equation 6.12. As for the sufficient condition for the
initialization of standard ESNs, equation 6.12 is quite restrictive. Actually, even though
the recursive state transition function τ is not contractive in the Euclidean norm, it could
still be a contraction in another norm and the argumentation in equations 6.9 and 6.10
would hold anyway. For this reason, we also consider values of the contraction coefficient
σ slightly greater than 1.

Markovian Characterization and Tree-to-element Transductions

For TreeESNs implementing tree-to-element transductions, the influence on the output of
the network due to the Markovian characterization of state dynamics is influenced by the
state mapping function adopted.

When the root state mapping is used, the only state information considered for the
computation of the output corresponding to an input tree is the state computed for its
root. In fact, the strong assumption underlying the application of the root state mapping
with TreeESNs is that the (fixed) dynamics of interest to be caught for properly tackle the
task at hand can be centered in the root of the input structure. In this case, the relevant
Markovian characterization of reservoir dynamics is centered only in the root node as well.
Accordingly, the suitability of TreeESN-R is limited to those tasks whose target dynamics
is compatible with this root-focused Markovian characterization.

In the case of mean state mapping, the Markovian characterization of reservoir dy-
namics is mitigated by the use of the mean operator. Indeed, the state information used
to feed the readout depends to the same extent on the states computed for every node
in the input tree. This choice for the state mapping function might therefore result in a
less restricting model, in particular for applications to tree-to-element tasks whose target
dynamics is not suitable for any specific node-focused Markovianity.

The effects and limitations of the two proposed state mapping functions are analyzed
through experiments on two ad-hoc defined target functions on trees with explicit Marko-
vian and anti-Markovian characterization in Section 6.3.2, and further investigated on
real-world tasks in Sections 6.3.3 and 6.3.4.

6.2.5 Computational Complexity of TreeESNs

In this section we provide an analysis of the computational complexity of the TreeESN
model. For each input tree t, the encoding process consists in the computation of the
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state for each node in N(t) using equation 6.1. It is straightforward to see that the
application of equation 6.1 to a node n requires a number of O(kRNR) operations, where
k is the maximum degree over the set of trees considered, R is the maximum number
of connections for each reservoir unit (R is smaller for sparser reservoirs) and NR is the
dimension of the reservoir. The total cost of the encoding process on tree t is

O(|N(t)|kRNR) (6.13)

which scales linearly with both the number of nodes in the input tree and the number of
units in the reservoir. Note that the cost of the encoding in TreeESNs is the same for
training and testing, resulting in a very efficient approach. For the sake of comparison,
training the recurrent connections in standard RecNNs, even using efficient learning algo-
rithms such as the Back-propagation Through Structure [169, 121], requires the extra cost
(both in memory and in time) for the gradient computations for each training epoch. The
TreeESN model compares well also with state-of-the-art kernel methods for tree structured
data. Here we limit our discussion to the kernels considered in this Chapter for perfor-
mance comparison, and make the assumption of a bounded maximum degree k. The cost
of the encoding (considered with respect to the number of nodes) scales quadratically for
the Partial Tree (PT) [144], Subset Tree (SST) [35] and Route [2] kernels, log-linearly
for the Subtree (ST) [185] kernel. In the cases of the Activation Mask (AM) [1] and of
the AMπ [3] kernels, the encoding includes a stage involving a preliminary training of a
Self-Organizing Map for structured data (SOM-SD) [74], possibly requiring hundreds of
learning iterations.

As regards the state mapping function for TreeESNs implementing tree-to-element
transdutions, note that its cost is constant for the root state mapping and linear in the
number of nodes and reservoir units for the mean state mapping.

The cost of training the linear readout in a TreeESN depends on the method used to
solve the linear least squares problem of equation 6.6. This can range from a direct method
e.g. using Moore-Penrose pseudo-inversion computed by singular value decomposition,
whose cost is cubic in the number of training patterns, to efficient iterative approaches
for which the cost of each epoch is linear in the number of training patterns. Note that
the cost of training the extremely simple readout tool in TreeESNs, i.e. a single layer
of feed-forward linear units, is in general inferior to the cost of training more complex
readout implementations, such as MLPs or SVMs, used in kernel methods.

6.3 Experiments

In this Section we present the application of the TreeESN model to tasks on domains
of different nature related to tree-to-element transductions. The aim is to support with
empirical evidences the different characteristics of the approach. First, in Section 6.3.1 we
evaluate the potentiality of such efficient approach considering the predictive performance
on a real-world challenging task featured by a very large dataset and derived from the
INEX 2006 competition [40], which has been tackled by other model for trees. Then,
in Sections 6.3.2, 6.3.3 and 6.3.4 we focus on the analyses of the characteristics and of
the limitations of the TreeESN approach due to the relation between the state mapping
function and the Markovianity of the target. To this aim we take into consideration
artificial Markovian/anti-Markovian tasks on trees and two tasks from a Chemical domain,
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already treated as tree domains by RecNN and kernel approaches, for which we can have
a tight control of the target and data meaning (specifically in terms of Markovianity) or
by construction (artificial data) or by know previous characteristic/results (e.g. [139, 46]).

In the experiments described in the following, TreeESN-R and TreeESN-M are obtained
by applying the different state mapping functions to the structured state representations
computed by the same reservoirs. Since the focus is on the empirical analysis of TreeESN
general characteristics, we generally assume the simplest/basic instance of the model (e.g.
with full stationary condition of equation 6.1, linear readout), excluding standard ESN
reservoir optimization techniques and also specific optimization approaches for ESN hyper-
parameters aimed to performance improvements.

6.3.1 INEX2006 Task

INEX2006 is a real-world challenging multi-classification task coming from the INEX 2006
international competition [40]. The dataset is derived from the IEEE corpus and is com-
posed of XML formatted documents from 18 different journals. The journal corresponding
to each document is used as target classification for the task.

The task is characterized by a large dataset containing the tree representations of
12107 documents, where each tree is obtained according to the XML structure of the
corresponding document (for details see e.g. [2, 1] and references therein). The degree
of the set of trees is k = 66 and the number of nodes in each tree varies from 3 to 115.
Node labels are composed of 65 bits, only one of which is set to 1, identifying the XML
tag corresponding to the node. An example of tree representation of an XML document
in the INEX2006 dataset is shown in Figure 6.6. The INEX2006 task is a 18-class multi-
classification task, accordingly the target output for each input tree is an 18-dimensional
binary vector, where the unique bit equal to 1 identifies the correct classification.

<tagID2>

<tagID41>

<tagID5>
<tagID10>

<tagID121>
<tagID121>

XML Representation

<tagID2>

<tagID121>

<tagID121>

<tagID5> <tagID10>

<tagID41>

Tree Representation

label [1000...000]

[0000...0001]

[00..010..00][000000010...0]

[00...010...00]

[0000...0001]

Figure 6.6: Example of tree representation of XML documents in the INEX2006 dataset.

The INEX2006 task has been approached by a variety of learning models, and rep-
resents a difficult task on which the base misclassification error achieved by a random
classifier is very high, i.e. 94.44%. This task is particularly meaningful because it allows
us a performance comparison with a RecNN model extending the Self-Organizing Map
(SOM) [120], called the SOM for structured data (SOM-SD) [74], whose performance in
the INEX 2006 competition turned out to be very competitive with respect to the other
approaches proposed [40, 117], and a comparison with state-of-the-art kernel models re-
lated to the same approach. Details on the application of SOM-SD to the INEX2006
classification task can be found in [1, 3]. We also take into consideration kernels for trees
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based on SOM-SD, namely the AM [1] and the AMπ kernel [3]. The application to the
same task of other state-of-the-art kernels for tree domains, such as the PT kernel (PT)
[144], the ST kernel [185], the SST kernel [35] and the Route kernel [2], is considered as
well for a further significant comparison on the performance.

The performance of RC models is known to depend on the reservoir hyper parametriza-
tion (e.g. [182, 184, 107, 183]), including the reservoir dimension and the scaling of the
matrices collecting input-to-reservoir and internal recurrent reservoir connections weights.
For the sake of a basic evaluation, we applied a simple model selection procedure to
roughly select the values of reservoir hyper-parameters from a very small set of possible
values. In particular, we considered reservoirs with NR ∈ {200, 500} units and 40% of
connectivity, contraction coefficient σ ∈ {0.5, 1.0, 2.0} and input scaling win ∈ {0.5, 1}.
For every setting of the hyper-parametrization we independently generated a number of
10 random guessed reservoirs of TreeESNs. The multi-classification task was approached
by training an 18-dimensional linear readout, with the output classification for a given
input tree corresponding to the index of the readout unit with the largest activation.
Training, validation and test sets contained 4237, 1816 and 6054 documents, respectively,
as in [1, 2]. The TreeESN hyper-parametrization yielding the minimum classification error
on the validation set (averaged over the 10 guesses) was selected, trained on the union of
the training and validation sets and tested on the test set. Two distinct model selection
procedures were applied for the two possible choices of the state mapping function, i.e.
for TreeESN-R and TreeESN-M. Table 6.1 shows the classification test error of TreeESNs
in correspondence of the selected hyper-parametrization. In the same table the errors ob-
tained by the SOM-SD and the kernels are presented for comparison. Classification errors
for SOM-SD, AM and AMπ correspond to different settings of the SOM-SD map (see [3]),
while the errors reported for the Route kernel correspond to alternative definitions for the
kernel function (see [2]). The selected TreeESN hyper-parametrization was the same for
TreeESN-R and TreeESN-M, namely NR = 500, σ = 2 and win = 0.5.

Model Test Error %

SOM-SD
mean 64.02
min-max 60.77-67.66

AM
mean 61.178
min-max 59.93-61.77

AMπ
mean 60.06
min-max 59.26-61.73

PT 58.87

ST 67.98

SST 59.56

Route
mean 59.02
min-max 58.09-59.94

TreeESN-R 57.87

TreeESN-M 57.93

Table 6.1: Classification error on the test set for TreeESNs, SOM-SD and kernels for trees
on the INEX2006 task.

Results show that TreeESNs outperform all the state-of-the-art models considered
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on the INEX2006 task for both the choices of the state mapping function, achieving a
classification error of 57.87% with standard deviation (among the guesses) of 0.14 for
TreeESN-R and 57.93% with standard deviation of 0.25 for TreeESN-M. What is really
noteworthy is that such performance is obtained by an extremely efficient model, whose
computational cost (linear in the input size) compares well with the other approaches
considered here (see Section 6.2.5), which include training of the recursive connections
(SOM-SD), a super-linear kernel computation and the training of a SVM.

Another observation from Table 6.1 is that the performances on this task obtained by
TreeESNs in correspondence of the two different state mapping functions are very close
to each other. In this regard, TreeESN-R and TreeESN-M revealed a loose decoupling of
classification outputs. We therefore tested an ensemble model in which the classification
is computed by averaging the readout activations of TreeESN-R and TreeESN-M trained
individually. For the same values of the reservoir hyper-parameters corresponding to the
results in Table 6.1, the ensemble led to a further performance improvement of 0.31%
and 0.37% with respect to TreeESN-R and TreeESN-M, respectively, achieving a test
classification error of 57.56% with standard deviation of 0.19.

6.3.2 Markovian/anti-Markovian Tasks

In order to have a tight control of the Markovian conditions, we introduce two new artificial
regression tasks on tree structures with target functions characterized respectively by a
distinct Markovian and anti-Markovian nature, designed to extend to tree domains the
analogous tasks on sequences used in [61, 62].

The trees in the dataset have height between 3 and 15, and degree equal to 3. The
skeleton of every tree was randomly generated in a top-down fashion, starting from the
root and such that for every node the probability of an absent child is 0.4 for the first
child and 0.7 for the other children. Symbolic node labels were assigned randomly using
a uniform distribution over the alphabet A = {a, b, . . . , j} and then mapped into the
numerical set {0.1, 0.2, . . . , 1.0}, such that a is represented by 0.1, b is represented by 0.2
and so on up to j represented by 1.0. The numerical label associated to node n is denoted
by u(n). Two examples of input trees in this dataset are reported in Figure 6.7. The
number of trees in the dataset is 1000, of which 800 were used for training and 200 for
testing. The number of nodes in the trees is highly variable between 4 and 478.

The two different tasks were obtained by associating different target outputs with
Markovian or anti-Markovian flavor to the same trees in the dataset, using a parameter
λ > 1 to control the degree of Markovianity/anti-Markovianity of the task.

For the Markovian task, the target associated to each tree t was computed as follows:

ytarget(t) =
∑

n∈N(t)

u(n)

λdepth(n,t)
(6.14)

such that the contribution of each node n to the target value for t exponentially decreases
with the depth of n.

For the anti-Markovian task, the target function is defined as:

ytarget(t) =
∑

n∈N(t)

u(n)

λ(h(t)−depth(n,t))
(6.15)
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Figure 6.7: Two examples of input trees in the Markovian/anti-Markovian dataset.

in which case the contribution of node n to the target ytarget(t) exponentially increases
with the depth of n.

The target values computed for both the tasks, according to equations 6.14 or 6.15,
respectively, were normalized in [−1, 1]. In our experiments, we used the value of λ = 2
for both the tasks.

On the Markovian/anti-Markovian tasks, we tested TreeESNs with 200-dimensional
sparse reservoirs with 40% of connectivity, input scaling win = 1 and contraction coefficient
σ ∈ {0.5, 1, 1.5, 2, 2.5}. For each value of σ, the results are averaged over 30 independently
generated random guessed reservoirs.

Figures 6.8 and 6.9 show the Mean Absolute Error (MAE) and the standard deviation
(among the 30 guesses) on the Markovian and anti-Markovian tasks, respectively, obtained
by TreeESNs in correspondence of both the choices for the state mapping function. For
the sake of comparison, in the same figures we also report the error obtained by the null
model whose output is always equal to the target output value averaged on the training
set.

The errors of TreeESNs on both the tasks are only slightly influenced by the value of σ,
while the choice of the state mapping function reveals a deep impact on the performance.
Indeed TreeESN-R outperforms TreeESN-M on the Markovian task for every value of σ,
while on the anti-Markovian task the performance of TreeESN-M is always better than
that of TreeESN-R, which in turn is worse than the result obtained by the null model.
These results enlighten the effects of the different organizations of the feature spaces
corresponding to the different state mapping functions considered. In particular, TreeESN-
R has a good performance on the Markovian task, whose target is designed to match the
nature of reservoir dynamics, with a specific reference to the root-focused Markovianity
(see Section 6.2.4), whereas a poorer performance than the null model is obtained on the
anti-Markovian task, whose target has an opposite characterization. On the other hand,
the use of the mean state mapping function has the effect of merging the states computed
for all the nodes in the input tree such that the relevance of suffixes and prefixes on the
feature state that feeds the readout is the same. Accordingly, the characterization of the
resulting TreeESN-M model can be considered as the middle between Markovianity and
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Figure 6.8: MAEs and standard deviations on the test set of the Markovian task for
TreeESN-R, TreeESN-M and a null model.
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Figure 6.9: MAEs and standard deviations on the test set of the anti-Markovian task for
TreeESN-R, TreeESN-M and a null model.
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anti-Markovianity. Compared to the case of TreeESN-R, the feature space in TreeESN-M
is less suitable for the Markovian task and worse results are obtained (thought it improves
the null model). TreeESN-M clearly leads to better results than TreeESN-R on the anti-
Markovian task. Nevertheless, we note that resorting to the mean operator is not sufficient
by itself to appropriately overcome the unsuitability of reservoir dynamics for the task.
This can be observed by comparing the scale of the performance of TreeESN-R on the
Markovian task (Figure 6.8) with the scale of the performance of TreeESN-M on the
anti-Markovian one (Figure 6.9). However, it is worth noticing that TreeESN-M achieves
rather better performances on the anti-Markovian task than on the Markovian one. This
is interestingly related to the nature of the concept of anti-Markovianity on tree domains.
On tree domains prefixes and suffixes are not symmetric as for sequences. Indeed for
anti-Markovian target functions on trees, the relevance of each node on the target output
exponentially increases with the depth of the node. As the number of high-depth nodes
(constituting the prefixes) increases by construction with the depth, the average of the
states over all the nodes in the input tree is more strongly influenced by the states of higher
depth nodes, further enhancing the suitability of TreeESN-M for tree anti-Markovian tasks.

6.3.3 Alkanes Task

This is a regression task related to a Quantitative Structure Property Relationship (QSPR)
analysis of alkanes [20, 139], consisting in predicting the boiling point (measured in Celsius
degrees, oC) of such molecules on the basis of their tree structure representation.

The dataset consists in 150 alkanes. The dataset is fully reported in [20] and is also
available at http://www.di.unipi.it/∼micheli/dataset, with target boiling temperatures
varying from −164 oC to 174 oC. As introduced in [20], every molecule is represented
by a tree in which nodes stand for atoms and edges between nodes stand for bonds.
In particular, since only carbon atoms are considered in the molecular descriptions (i.e.
hydrogens are suppressed), the node labels used are 1-dimensional and all equal to 1.0.
Figure 6.10 shows an example of tree representation for an alkane molecule. The degree
of the set of trees considered in this dataset is k = 3 and the maximum number of nodes
in a tree is 10.

Tree Representation
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C
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[1.0]

[1.0]

[1.0]

[1.0]
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CH3

Chemical Representation

CH3 CH

Figure 6.10: Tree representation (hydrogens are suppressed) of the 3-methylpentane
molecule in the Alkanes dataset.

RecNNs and other state-of-the-art learning models for tree domains have been ap-
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plied to this dataset and could represent good bases for performance comparisons. More
specifically, we take into consideration the application to this task of Recursive Cascade
Correlation (RCC) [20], Contextual Recursive Cascade Correlation (CRCC) [141], a vari-
ant of the SST kernel [140] and Neural Networks for Graphs (NN4G) [139].

Most importantly, for our analysis aim alkanes represent a class of molecules with
rather uniform and systematic structure, including all the possible configurations up to
10 carbon atoms. Moreover, the target boiling point temperature is known to be related
to global molecular properties such as the number of atoms of the main chain (molecular
size) and the pattern of atom branching (molecular shape). The fact that such global
characteristics do not depend on the suffixes of the alkanes trees suggest us that the target
does not agree to Markovian assumptions, as we will detail in the following, making this
task particularly useful to distinguish the role of TreeESN-R TreeESN-M models in a
real-world task.

On the Alkanes dataset we tested TreeESNs with reservoir dimension varying between
10 and 70 (with a step of 5) and with 40% of connectivity among reservoir units. Input
scaling was set to win = 0.5 and the values of the contraction coefficient considered were
σ ∈ {1, 2}. For every parametrization of the reservoir, we averaged the results over 30
independently generated reservoirs. Results presented here were obtained by using a 10-
fold cross validation procedure.

Figures 6.11 and 6.12 show the MAE and standard deviation (averaged over the 10
folds) on the test set obtained by TreeESN-R and TreeESN-M in correspondence of the
two different value of the contraction coefficient σ. It is evident that the performance
of the model is sensible to the choice of the state mapping function. The unsatisfactory
result on TreeESN-R provides the empirical evidence on the possible non-Markovian char-
acterization of the target. For both the values of σ, TreeESN-M outperforms TreeESN-R
for every reservoir dimension and value of σ, with a smaller performance variance as well.
The best result achieved by TreeESN-M, in correspondence of NR = 40 and σ = 2, is
2.78 oC.
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Figure 6.11: MAE and standard deviatio on the test set of the Alkanes dataset for
TreeESN-R and TreeESN-M with σ = 1.

We also observed the influence of the value of the contraction coefficient σ (σ = 2,
Figure 6.12, leads to better performances than σ = 1, Figure 6.11) and the reservoir
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Figure 6.12: MAE and standard deviation on the test set of the Alkanes dataset for
TreeESN-R and TreeESN-M with σ = 2.

dimensionality (with underfitting and overfitting behaviors observed for too small and
too large reservoirs, respectively) on the performance. It clearly results that, in case
of performance optimization, the values of these parameters would therefore be carefully
selected e.g. through a model selection procedure such as the one described in Section 6.3.1.

The gap between TreeESN-R and TreeESN-M can be further observed in Table 6.2,
showing that only TreeESN-M achieves reasonable results with respect to the state-of-the-
art. In fact, although the experiments on the Alkanes dataset were conceived for analysis
purposes only, we anyway also compare in Table 6.2 the results otained by TreeESNs with
those obtained by RCC, CRCC, SST kernel and NN4G under similar fitting conditions
on the training set. In particular, in analogy to [141], we report the test errors in cor-
respondence of σ = 2 for the smallest reservoir dimension yielding a maximum absolute
error on the training set below the threshold ǫt = 8 oC. For the sake of comparison with
NN4G [139], we also provide the results corresponding to ǫt = 5oC. In addition, to show
the possible range of performances on this task, the best TreeESNs results (corresponding
to the minimum MAE on the test set) are reported in Table 6.2 as well.

Note that the performance of TreeESN-M, although obtained by an extremely efficient
model with fixed causal encoding and linear readout, is in line with those achieved by
more complex learning models for structured data. In addition, the largest test errors
of TreeESNs are observed in correspondence of the smallest alkanes, which are in a high
non-linear relation with their target boiling point.

In order to clarify the role of the Markovianity in the reported results, it is interesting
to directly analyze the organization of the feature spaces arising from the application of
the different state mapping functions in TreeESNs. To this aim we refer in particular three
examples of alkane molecules in Figure 6.13, whose respective tree representations share
the same suffix of height 3, but are associated to very different values of the target boiling
point, corresponding to different molecular size and shape. Such cases well represent a
frequent occurrence of the known characteristic of this dataset, as mentioned above.
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Model ǫt Test Set MAE

TreeESN-R best 8.09(±3.91)
TreeESN-R 8oC 15.01(±9.24)
TreeESN-R 5oC 13.18(±8.58)

TreeESN-M best 2.78(±0.90)
TreeESN-M 8oC 3.09(±0.93)
TreeESN-M 5oC 3.05(±1.05)

RCC 8oC 2.87(±0.91)

CRCC 8oC 2.56(±0.80)

SST 8oC 2.93(±0.92)

NN4G 8oC 2.34(±0.31)
NN4G 5oC 1.74(±0.23)

Table 6.2: MAE on the test set (expressed in oC degrees) and corresponding standard
deviation for TreeESNs (σ = 2) and other learning models for tree domains on the Alkanes
dataset.

For visualization aim, we applied Principal Component Analysis (PCA) to the feature
representations of the alkanes computed by TreeESNs. Figure 6.14 shows the plot of the
first two principal components of the feature space for a TreeESN-R and for a TreeESN-M
in correspondence of NR = 50 and σ = 2.

According to the Markovian organization of the reservoir dynamics preserved by the
the root state mapping function (TreeESN-R), Figure 6.14(a) clearly shows that the fea-
ture states computed for the molecules in the dataset are clustered together according to
the suffix of the input structures (represented in the same figure under the corresponding
cluster). In particular, the trees in Figure 6.13 sharing a long common suffix are mapped
into very close states (see the A, B, C labels). Since the target values of A, B, C molecules
are very different, this Markovian organization is very unsuitable for the task.
The use of the mean state mapping function (TreeESN-M) influences the feature space
organization such that Markovianity of reservoir dynamics is no longer preserved. In this
case, the feature space results organized according to the size and shape of the input
structures. In Figure 6.14(b), the first principal component distributes the feature repre-
sentations according to the number of carbon atoms in the main chain of the corresponding
molecule, whereas the second principal component distributes them on the basis of the
pattern of atom branching. Considering the trees in Figure 6.13, we can indeed observe
that the states corresponding to molecules B and C, having the same number of atoms
in the main chain, are mapped into close values of the first principal component. Analo-
gously, the states for molecules A and B, with the same pattern of branching, are mapped
into close values of the second principal component. Thus, this organization matches the
known characteristics of the target. In particular, molecules such are A, B, C with very
different target label result in well distinguished positions in the plot, which is more suit-
able for the task with respect to the case in Figure 6.14(a). For the general case, the
arrow in Figure 6.14(b) approximatively shows the direction of increasing target values
for all the molecules in the plot, that agrees with the distribution of their corresponding
feature representations. Hence, the organization arising with TreeESN-M fits better the
characteristics of the target, resulting in a facilitation for the linear readout tool and then
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3,4−dimethylhexane3−methylpentane

Target = 63.3 °C

3−methylhexane

Target = 117.7 °C

Figure 6.13: Examples of tree representations of molecules in the Alkanes dataset with
common suffix of height 3 and different target values. Molecule A has target 63.3 oC,
molecule B has target 92.0 oC and molecule C has target 117.7 oC.

in better predictive performances.

6.3.4 Polymers Task

The polymers dataset contains the representation of (meth)acrylic polymers along with
the information about their glass transition temperature, which represents a challenging
regression task for QSPR methods [46].

The total number of polymers in the dataset is 95, where 80 of them were used for
training and the remaining 15 for testing. The target value of the glass transition tem-
perature is expressed in Kelvin degrees (K) and ranges between 197 K and 501 K. As
introduced in [46], each polymer is described by a tree representation of its repeating
unit. Node labels are 19-dimensional numerical information, where the first 18 positions
are 0/1 values and the last one is a real number. An example of tree representation of
the repeating unit of a polymer is shown in Figure 6.15. The maximum degree over the
dataset is 3 and the maximum number of nodes in a tree is 18. Additional information
concerning the dataset can be found in [46].

It is interesting to stress that this dataset is rather different from the Alkanes one
under several aspects. Such differences contribute to provide a richness of complementary
evidence in the analysis of TreeESNs. In particular, the Polymers dataset is characterized
by the presence of noisy data (up to around 50 K) and multi-dimensional node labels,
corresponding to atoms/groups of different type (C,O,CH2, . . .). Moreover, the polymers
considered have a molecular structure which is not as systematic as in the Alkanes dataset,
and there is no clear characterization of the target property in terms of topological features
of molecules, such was the case of the boiling point target.

An application of the RCC model to the prediction of the glass transition temperature
of polymers is described in [46], in which according to the noise in the data, learning
was stopped when the maximum absolute error on the training set was below ǫt = 60 K.
Since the training of RCC on this dataset required only a small number of units and
learning iterations, we could argue that the learning algorithm does not move the RecNN
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Figure 6.14: Plots of the first two principal components of the reservoir state space com-
puted by TreeESNs for the Alkanes dataset. The labels A, B and C refer to the molecules
in Figure 6.13. Plot (a): TreeESN-R, the shared suffixes of height 2 of the molecules are
represented below each cluster. Plot (b): TreeESN-M, the arrow on the top shows the
distribution of the increasing target values.
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Figure 6.15: Tree representation of the repeating unit of Poly(butyl chloroacrylate) in the
Polymers dataset.

state dynamics too much from the initial contractive Markovian biased one resulting from
initialization with small weights. Hence, it is interesting to investigate through TreeESN-R
and TreeESN-M, the soundness of the possible, at least partial, Markovian characterization
of the task.

For the experiments on the Polymers dataset we adopted the same settings used for the
Alkanes dataset, considering reservoir dimensions up to 50 units (larger reservoirs resulted
in extreme overfitting). Figures 6.16 and 6.17 show the MAE (and relative standard
deviation) on the test set for TreeESN-R and TreeESN-M in correspondence of σ = 1 and
σ = 2, respectively. The performance of the model results to only slightly depend on the
value of σ, with minimum MAE for TreeESN-M ranging from 10.8 K for σ = 2 to 9.8 K
for σ = 1.

The MAE, the Root Mean Squared Error (RMSE) and the Correlation Coefficient
(R) for RCC, TreeESN-R and TreeESN-M corresponding to the same fitting conditions
on the training set as in [46] (i.e. ǫt = 60 K) are reported for σ = 1 in Table 6.3. The
performance of TreeESN-R, preserving the Markovian nature of the state dynamics, is
sufficiently good for the task (considering the admissible tolerance on the data). This
confirms the argued possible partial Markovian nature of the task. However, we find
that using the mean state mapping function gives a better performance, comparable to
state-of-the-art learning approaches for structured domains (RCC), accounting for a more
complex nature of the task and confirming the utility of the TreeESN-M approach is such
real-world intermediate situations.

For the sake of completeness, in Table 6.3 we also report the performance achieved by
TreeESN-M for the (best) reservoir dimension yielding the minimum MAE on the test set
(i.e. NR = 35), although obtained at the cost of a worse ratio between training and test
errors.
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Figure 6.16: MAEs and standard deviations on the test set of the Polymers dataset for
TreeESN-R and TreeESN-M with σ = 1.
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Figure 6.17: MAEs and standard deviations on the test set of the Polymers dataset for
TreeESN-R and TreeESN-M with σ = 2.
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Model Training Set Test Set
MAE RMSE R MAE RMSE R

TreeESN-R 7.5 12.1 0.9858 15.4 22.0 0.8802

TreeESN-M 6.7 10.2 0.9900 10.8 13.6 0.9558
TreeESN-M (best) 3.3 4.6 0.9979 9.8 12.9 0.9601

RCC 7.5 10.3 0.9899 10.3 12.9 0.9604

Table 6.3: Training and test MAE, RMSE and R for RCC and TreeESNs (σ = 1) on the
Polymers dataset. MAE and RMSE are expressed in K degrees.

6.4 Conclusions

We have presented a generalization of the ESN approach to tree structured data processing,
named the TreeESN model. The presented analysis would characterize the proposed RC
approach in the area of tree structured domain learning. TreeESNs effectively exploit the
Markovian nature of contractive RecNN state dynamics, being able to discriminate among
different input trees in a suffix-based fashion without any adaptation of the recurrent
connections. As such, TreeESNs represent both an architectural and experimental baseline
for RecNN models with trained state dynamics, and a very efficient model able to compete
with more complex approaches, particularly when Markovian conditions are met in the
task at hand.

For tree-to-element transductions, a fixed state mapping function is used to map the
tree structured state computed by the reservoir into a vectorial feature representation
that feeds the readout. In this regard we have proposed two possible choices, namely
a root state mapping and a mean state mapping, which have strict relations with the
Markovian properties. The effects of such relationship have been investigated through
experiments on artificial ad-hoc designed and real-world tasks from chemical domains,
with different grade of Markovianity of the target function. In particular, the TreeESN-
R, which preserves the Markovian organization of the reservoir dynamics, has effectively
found to achieve a performance proportional to the degree of Markovianity of the task.
More interestingly, TreeESN-M achieved promising results on complementary tasks with
non-Markovian characterization: in particular, the anti-Markovian and the Alkanes tasks.
TreeESN-M reveal to be an useful tool for such cases and for real-world tasks without a
clear Markovian characterization. In this sense, TreeESN-M can be a proper choice as an
alternative to root state mapping function for recursive approaches, which was the only
state mapping function used up to now for RecNN.

More in general, interestingly, although depending on the reservoir hyper-parametrization
used, the performances of TreeESNs have resulted comparable with those of other more
complex learning models, including RecNN with trained recurrent connections and kernel
methods for trees. In particular, the application of TreeESNs to a challenging real-world
task from the INEX 2006 international competition [40], has revealed that TreeESNs can
be very competitive in terms of predictive performance with respect to state-of-the-art
learning models for trees.

The issue addressed in this Chapter would stimulate further research in the study
of effective and efficient models for learning in structured domain, and of their critical
theoretical characterization. In particular, the study of TreeESN-R and TreeESN-M would
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open further research directions aimed at the proper extraction of state information (state
mapping functions) from RC models. However, especially due to their simplicity and
efficiency, the proposed models already reveal to be useful tools to approach real-world
problems with complex data.



Chapter 7

Graph Echo State Networks

7.1 Introduction

Learning in graph structured domains involves challenging issues, among which efficiency
of the learning algorithms plays an important role. Indeed, dealing with general graphs,
along with the increased intrinsic complexity and expressive potential of data representa-
tions, often implies an explosion of the required computational cost with respect to the
size of the input data. The study of efficient RC models for effectively dealing with general
graph domains therefore represents an appealing and worth of interest research topic.

The class of RecNNs is naturally suitable for dealing with domains comprising hier-
archical data (e.g. rooted trees and DPAGs), while in case of cyclic dependencies in the
state computations (which may occur e.g. in the case of directed cyclic graphs or undi-
rected graphs processing) the stability of the encoding process is not guaranteed [169] (see
Section 2.2.6). Recently, two different approaches have been proposed to overcome this
limitation. The Neural Networks for Graphs (NN4G) model [139] is based on a construc-
tive feed-forward architecture that eliminates the need of cyclic dependencies among state
variables. On the other hand, the Graph Neural Network (GNN) [160] (see Section 2.2.7)
is a RecNN model trained using a gradient descent-based learning algorithm in which a
phase of state relaxation and a phase of gradient computation are alternated. In this
case, stability of the encoding process (and consequently convergence of the relaxation
phase) is obtained by constraining the cost function in order to achieve a condition of
contractivity on the state transition function. In this regard, it is interesting to observe
that the contractive setting of the state transition function in RecNN models has been
shown to imply a Markovian characterization [91] of state dynamics (which applies to
TreeESNs, as well, as discussed in Section 6.2.4). Accordingly, different input structures
sharing a common suffix (extended to the concept of top sub-tree starting from the root)
are mapped into states which are similar to each other proportionally to the similarity
of such suffix. A Markovian characterization of global state dynamics therefore follows
for GNNs as well and opens the issue of investigating efficient alternatives that explicitly
exploits the Markovian characterization. Indeed, using the strategy adopted by GNN, the
processing of cyclic graphs is paid in terms of efficiency of the learning algorithm.

In this Chapter we propose an extension to graphs of ESNs (and TreeESNs), named
the Graph Echo State Network (GraphESN) model, representing an efficient approach
for modeling RecNNs in order to process general graph structured domains. GraphESNs
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consist in a hidden reservoir layer of non-linear recursive units, responsible for the encod-
ing process, plus a readout layer of linear feed-forward units. The reservoir is initialized
to implement a contractive state transition function and then is left untrained, while the
readout may be trained e.g. by using efficient linear models. The condition of contractiv-
ity, inherited from ESNs and TreeESNs, assumes in this case a relevant specific meaning
in terms of the extension of the class of data structures supported. Indeed, contractivity
of GraphESN dynamics implies stability of state computation also in case of cyclic depen-
dencies and thus allows us to extend the applicability of the efficient RC approach to a
large class of cyclic/acyclic, directed/undirected, labeled graphs. Moreover, being charac-
terized by fixed contractive state dynamics, the GraphESN may represent an architectural
baseline for other RecNNs implementing adaptive contractive state transition functions,
such as GNNs. In this concern, it is interesting to empirically evaluate the effective dis-
tance occurring between the performance of methods based on fixed or adaptive encoding
under the contractivity constraint. On the other hand, experimental results of Graph-
ESNs, based on the inherent ability to discriminate among graph structures in absence of
learning of recurrent connections, represent a baseline performance for the class of RecNN
models with trained recurrent connections.

This Chapter is organized as follows. In Section 7.2 we present the GraphESN model,
describing its architecture, encoding process, reservoir initialization condition, resulting
Markovian characterization of state dynamics and computational cost. Section 7.3 illus-
trates experimental applications of GraphESNs to tasks from Chemical domains. Finally,
Section 7.4 discusses the conclusions.

7.2 GraphESN Model

The GraphESN is a novel RC model which is able to compute transductions on graph
structured domains.
For the sake of readability, Figure 7.1 summarizes the process of computation of structural
transductions on graph domains, already described in Section 2.2.1 (to which the reader
is referred for a deeper description). In particular, Figure 7.1 shows the decomposition of
a structural transduction T into the encoding transduction Tenc, which maps the input
graph g into a structured state x(g) isomorphic to g1, and the output transduction Tout,
which is used to compute the output y(g). For structure-to-structure transductions, the
output y(g) is a graph isomorphic to g. For structure-to-element transductions, a state
mapping function χ is first applied to x(g) (in order to obtain a fixed-size vectorial feature
representative for the whole input graph g), then the output transduction is applied to
χ(x(g)).

As outlined in Section 2.2.6, the application of RecNN models for processing transduc-
tions on graph domains requires to extend the approach described in equation 2.42, by
including in the computation the state information relative to the neighborhood of each
vertex. Considering an input graph g is a set of graphs G (where we assume that the
maximum degree is k), the output of the encoding process Tenc applied to g, i.e. x(g), is

1The structured state x(g) = Tenc(g) is a graph isomorphic to g according to the definition provided
in Section 2.2.1.
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Figure 7.1: Computation of a structural transduction T by the means of its decomposi-
tion into an encoding transduction Tenc and an output transduction Tout. In the case of
structure-to-structure transductions T = Tout ◦ Tenc. In the case of structure-to-element
transductions, a state mapping function χ is preliminary applied to the output of the
encoding, i.e. T = Tout ◦ χ ◦ Tenc.

obtained by applying to every vertex v ∈ V (g) the local encoding function τ :

τ : RNU × R
k NR → R

NR

x(v) = τ(u(v),x(N1(v)), . . . ,x(Nk(v)))
(7.1)

where u(v) ∈ R
NU is the label attached to vertex v and N1(v), . . . ,Nk(v) are the neighbors

of v. Unfortunately, in case of mutual dependencies among states of different vertices,
which might occur for directed cyclic graphs and for undirected graphs as input domains
(as shown in Section 2.2.6), the existence of a solution of equation 7.1 for every vertex
v ∈ V (g) might not be guaranteed. However, the Banach Contraction Principle [135]
ensures the existence and uniqueness of a solution of equation 7.1 whenever τ is contractive
with respect to the state. Under such hypothesis, the dynamical system ruled by τ will
always converge, under any initial condition, to the fixed point of equation 7.1 for every
v ∈ V (g). One simple way to compute a stable encoding x(g), therefore relies on the
application of an iterative version of equation 7.1 to every vertex in the input graph,
under the condition of contractivity of τ . This is easily and efficiently implemented in the
GraphESN model.

A GraphESN computes stationary partially adaptive transductions on graph struc-
tured domains. It consists in an input layer of NU units, a hidden layer of NR non-linear
recursive units (the generalized reservoir), and an output layer of NY linear feed-forward
units (the readout).

The reservoir is responsible for computing a fixed recurrent encoding function, while
the readout computes an adaptive feed-forward output function. For structure-to-element
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transductions, a state mapping function is used to obtain a single fixed-size state informa-
tion. The following sub-sections describe these components more in depth.

7.2.1 Reservoir of GraphESN

The encoding transduction Tenc is computed by the reservoir of a GraphESN implementing
an iterative version of the local encoding function τ (equation 7.1), which plays the role of
the reservoir recursive state transition function and is subject to a contractivity constraint.
For an input graph g, at pass t of the encoding process the reservoir computes a state
value for every vertex v ∈ V (g), denoted as xt(v) and according to the equation:

xt(v) = τ(u(v),xt−1(N1(v)), . . . ,xt−1(Nk(v)))

= f(Winu(v) +
∑

v′∈N (v)

Ŵxt−1(v
′))

(7.2)

where Win ∈ R
NR×NU is the input-to-reservoir weight matrix (possibly including a bias

term), Ŵ ∈ R
NR×NR is the recurrent weight matrix for the states of the neighbors of v and

f is the component-wise applied activation function of the reservoir units (we use tanh).
The initial state for each v ∈ V (g) is defined as the null state: x0(v) = 0 ∈ R

NR . The
structured state representation for graph g at pass t of the encoding process, composed of
the states computed by the reservoir for every vertex in V (g) at pass t, is denoted as xt(g).
As in standard ESNs, the matrices Win and Ŵ are left untrained after initialization. In
particular, to ensure convergence of the encoding process, Ŵ is scaled such that the state
transition function τ of equation 7.2 is a contraction. In addition, as in standard ESNs,
matrix Ŵ is sparse.

Remark 1 Equation 7.2 is customized for undirected graphs, whereas in the case of di-
rected graphs different reservoir recurrent weight matrices, denoted by Ŵp and Ŵs, can
be used in correspondence of predecessors and successors of vertex v, respectively. In this
case, the state transition function of the reservoir is given by:

xt(v) = f(Winu(v) +
∑

v′∈P(v)

Ŵpxt−1(v
′) +

∑

v′∈S(v)

Ŵsxt−1(v
′)) (7.3)

In this regard, notice that when the structured input domain reduces to a set of rooted trees,
and adopting a null reservoir recurrent matrix for predecessors (i.e. Ŵp = 0 ∈ R

NR×NR),
equation 7.3 corresponds to the case of reservoirs in TreeESNs. In addition, when the
input structures reduce to sequences, we get the standard reservoir dynamics of an ESN.
In the following, for the sake of simplicity, we will refer to the case of undirected graphs,
i.e. equation 7.2, when discussing the architecture, application and properties of reservoirs
in GraphESNs. However, such discussions can be extended to the case of directed graph
structures by referring to equation 7.3. �

Remark 2 In standard ESNs, used to process sequential input patterns, a time step index,
usually denoted by t, is associated to each element (i.e. vertex) of the input sequence. The
serial ordered application of the state transition function for each time step t defines a
visit of the input sequence. For GraphESNs the visiting process of the input graph is ruled
by the variable v denoting the vertex. Note also that the index t is used here to denote
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the t-th iterate of the computation of the same x(v), i.e. it is the index used to rule the
relaxation of the equation 7.1 and it is not related to the input data. �

The application of the generalized reservoir architecture to vertex v of an input graph
g, at pass t of the encoding process, is depicted in Figure 7.2. The reservoir units are fed
with the external input, consisting in the vertex label attached to v, i.e. u(v), through
connections weighted by the matrix Win. Note that, generalizing the TreeESN approach,
each reservoir units is fed also by the activations of the reservoir units already computed
for the neighbors of v at the previous encoding step, i.e. xt−1(N1(v)), . . . ,xt−1(Nk(v)),
weighted by the recurrent weight matrix Ŵ and according to the pattern of connectivity
within the reservoir. Note that a connection from unit B to unit A in the generalized
reservoir architecture (illustrated in Figure 7.3), applied at pass t to vertex v, brings all
the activations of unit B computed in correspondence of the neighbors of vertex v at the

previous encoding pass, i.e. x
(B)
t−1(N1(v)), . . . , x

(B)
t−1(Nk(v)).
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Figure 7.2: The application of the generalized reservoir of a GraphESN to vertex v at pass
t of the encoding process.
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Figure 7.3: The generalized reservoir architecture of a GraphESN applied to vertex v at
pass t of the encoding process.

According to the stationary assumption, at each pass t of the encoding process, the
same generalized reservoir architecture (Figure 7.3), implementing the local encoding func-
tion τ (equation 7.1), is applied to every vertex v of an input graph g (according to any
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visiting order of the vertices in g). To build a stable state representation for the input
graph g, i.e. x(g), the encoding process is iterated until convergence of the state for each
vertex of g, which is always guaranteed by the contractivity constraint on τ . In practice,
it is possible to use a small threshold ǫ > 0 to stop the encoding process when the distance
between xt(v) and xt−1(v) is smaller or equal to ǫ for every v ∈ V (g). The processes
of visit of a graph and of convergence of the encoding process for a GraphESN are sum-
marized in the algorithm described in Figure 7.4. An example of the encoding process
is depicted in Figure 7.5, showing an input graph and one pass of the encoding process
towards the stable graph structured state representation isomorphic to the input.

- For each g ∈ G
- Initialize t = 0
- For each v ∈ V (g)
- Initialize x0(v) = 0 ∈ R

NR

- Repeat
- t = t+ 1
- For each v ∈ V (g) [any visiting order]
- Compute xt(v) = equation 7.2
- Until ∀v ∈ V (g) : ‖xt(v)− xt−1(v)‖2 ≤ ǫ
- [convergence of every x(v), see text]

Figure 7.4: Algorithm for the iterative computation of the encoding process in a Graph-
ESN.
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Figure 7.5: Graphical illustration of one pass of the encoding process computed by the
reservoir of a GraphESN.
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For the reader’s convenience, a further example of the encoding process is reported
in Figure 7.6, showing the application of the reservoir architecture of a GraphESN to
the vertices of an input graph g for the computation of the state labels at pass t of the
encoding process. For each vertex v ∈ V (g), the state label xt(v) is computed according
to equation 7.3, hence on the basis of the input label attached to v, i.e. u(v), and of the
state labels for the neighbors of v computed at the previous pass t − 1 of the encoding
process, i.e. xt−1(N1(v)), . . . ,xt−1(Nk(v)) (note that in the example in Figure 7.6, the
maximum degree k is equal to 2).
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Figure 7.6: Example showing the application of the reservoir architecture of a GraphESN
to the vertices of an input graph, for the computation of the structured state at pass t of
the encoding process, i.e. xt(g) (reported in the lower part of the Figure), given an input
graph g and the structured state at the previous encoding pass xt−1(g) (depicted in the
upper part of the Figure).

Notice that the number of vertices (i.e. |V (g)|) and the topology of the input graph
are independent of the number of units (i.e. NR) and the topology of the reservoir,
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respectively. In the following, x(g) and x(v) are respectively used to denote the structured
state associated to g and the state associated to vertex v after the convergence of the
encoding process.

It is interesting to observe that the contractivity constraint imposed on the reservoir
initialization characterizes the GraphESN dynamics under several aspects. First, cyclic
dependencies in the local state computations (equation 7.2), which represent a problem
for standard RecNN models [169], can naturally be managed by GraphESNs because of
the stability of the network state representations guaranteed by the contractivity of the
state transition function. Second, stability of the encoding process for every input graph
g also implies a property of reservoir dynamics which is similar to the ESP for standard
ESNs. Namely, for every input graph g, the structured state computed for g by the
reservoir at pass t of the encoding process, i.e. xt(g), definitely depends on g itself, and
any dependency on the initial states x0(v), for every v ∈ V (g), is progressively lost. In this
case, the transient period simply consists in the iterative application of the state transition
function until convergence. Third, contractivity of the reservoir state transition function
bounds the GraphESN dynamics into a region characterized by interesting Markovian
properties. This extends to graph domains the possibility of discriminating among different
input structures in a suffix-based fashion, which is well known for sequence processing (e.g.
[90, 175, 177]) and has been investigated also for tree domains [91, 66] (see Section 6.2.4).
The Markovian analysis can be relevant to characterize the behavior and the limitations
of models for graph domains based on recursive contractive dynamics, both for fixed and
adaptive state encodings, i.e. for both the cases of models in which learning of the state
transition function is implemented (like GNN) or not (like GraphESN). In particular,
we hypothesize that the assumption of contractivity can have a major role beyond the
architectural details. In the following, the effect of fixed contractive state dynamics are
also empirically evaluated on real-world tasks with graph patterns. This allows us to assess
the relevance of the assumption of contractivity on such tasks and to investigate the use
of GraphESNs as reliable baseline of the class of recursive models.

Reservoir Initialization

In this section we provide a condition for the reservoir initialization in GraphESNs by
imposing a contractivity constraint on the state transition function τ , which ensures the
convergence of the encoding process according to the Banach Contraction Principle. For
our aims, we say that function τ of equation 7.1 is a contraction with respect to the state
whenever the following condition holds:

∃C ∈ [0, 1) such that ∀u ∈ R
NU , ∀x1, . . . ,xk,x

′
1, . . . ,x

′
k ∈ R

NR :

‖τ(u,x1, . . . ,xk)− τ(u,x′
1, . . . ,x

′
k)‖ ≤ C max

i=1,...,k
‖xi − x′

i‖
(7.4)

where ‖ · ‖ is a norm on R
NR , maxi=1,...,k ‖xi − x′

i‖ defines a valid metric on R
kNR and

we say that τ implements a contraction mapping (with respect to the state space) with
parameter C.

Let now consider the implementation of τ by the reservoir recursive state transition
function of equation 7.2. Assuming the Euclidean distance as metric in R

NR and tanh as
activation function of the reservoir units, ∀u ∈ R

NU and ∀x1, . . . ,xk,x
′
1, . . . ,x

′
k ∈ R

NR we
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have:
‖τ(u,x1, . . . ,xk)− τ(u,x′

1, . . . ,x
′
k)‖2 =

‖tanh(Winu+
k
∑

i=1
Ŵxi)− tanh(Winu+

k
∑

i=1
Ŵx′

i)‖2 ≤

‖
k
∑

i=1
Ŵ(xi − x′

i)‖2 ≤

‖Ŵ‖2‖
k
∑

i=1
(xi − x′

i)‖2 ≤

‖Ŵ‖2
k
∑

i=1
‖xi − x′

i‖2 ≤

‖Ŵ‖2k max
i=1,...,k

‖xi − x′
i‖2

(7.5)

Thus, contractivity of the state transition function is guaranteed whenever

σ = ‖Ŵ‖2k < 1 (7.6)

holds, where k is the maximum degree over the set of graphs considered and σ is called
the contraction coefficient of the GraphESN, controlling the degree of contractivity of
the reservoir dynamics. Therefore a very simple (and standard ESN-like) initialization
procedure for the reservoir of a GraphESN consists in a random setting of both Win

and Ŵ, after which Ŵ is scaled to meet the condition in equation 7.6. As in standard
ESNs, the weight values in Win can be chosen according to a uniform distribution over
the interval [−win, win], with win representing an input scaling parameter. In addition, a
sparse pattern of connectivity among the reservoir units is used, i.e. Ŵ is a sparse matrix.

Remark 3 Note that equation 7.6 represents a generalization of the contractivity condi-
tion for reservoirs in TreeESNs and of the sufficient condition for the ESP in standard
ESNs (referring to the setting described in Remark 1). As for such conditions, also equa-
tion 7.6 is quite restrictive. Indeed, even though the recursive state transition function τ is
not contractive in the Euclidean norm, it could still be a contraction in another norm, and
the Banach Contraction Principle would ensure the convergence of the encoding process
anyway. For this reason, we consider also values of σ slightly greater than 1.

Markovian Characterization of Reservoir Dynamics

The Markovian characterization of contractive state dynamics [90, 176, 175, 177] has been
investigated throughout this thesis for the cases of sequence and tree domains processing
(see Sections 3.3 and 6.2.4). Here, we extend the concept of Markovianity to the case of
graph processing. To this aim, we first need to generalize the notion of suffix (commonly
defined for sequences and trees) to the case of graphs, through the following definition. For
every vertex v of a graph g, we denote by N (d)(v) the (closed) neighborhood of maximum
distance d of v (or d-neighborhood of v), i.e. the sub-graph induced by v by considering
all the vertices in V (g) that are reachable from v via a path of length h ≤ d in the undi-
rected version of g (note that v ∈ N (d)(v)). Accordingly, we say that a state model on
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graph domains is characterized by a state space with Markovian nature when the states
it assumes in correspondence of two vertices sharing a common d-neighborhood are close
to each other proportionally to the maximum distance d. It is possible to show that
whenever the reservoir state transition function of a GraphESN is contractive according
to equation 7.4 and the state space is bounded, the reservoir dynamics is characterized
by Markovianity. The Markovian property of GraphESNs can be formally described as
follows. Consider a GraphESN with recursive state transition function τ implementing
a contraction mapping with parameter C ∈ [0, 1) according to equation 7.4. Suppose
that the subset of the states assumed by the reservoir of the GraphESN is bounded
with diameter denoted by diam. Then, for every maximum distance d, every two in-
put graphs g,g′ ∈ (RNU )#k and every vertices v ∈ V (g) and v′ ∈ V (g′) sharing the same
d-neighborhood, i.e. N (d)(v) = N (d)(v′), the distance between the states computed by the
reservoir (at the end of the encoding process) in correspondence of the vertices v and v′,
i.e. x(v) and x(v′) , is bounded by a term which exponentially decreases with d:

‖x(v)− x(v′)‖ ≤ Cd diam (7.7)

In fact:

‖x(v)− x(v′)‖ =

‖τ(u(v),x(N1(v)), . . . ,x(Nk(v)))− τ(u(v′),x(N1(v
′)), . . . ,x(Nk(v

′)))‖ ≤

C max
i1=1,...,k

‖x(Ni1(v))− x(Ni1(v
′))‖ ≤

C2 max
i1,i2=1,...,k

‖x(Ni2(Ni1(v)))− x(Ni2(Ni1(v
′)))‖ ≤

Cd max
i1,...,id=1,...,k

‖x(Nid(. . . (Ni1(v)) . . .))− x(Nid(. . . (Ni1(v
′)) . . .))‖ ≤

Cddiam

(7.8)

An example of a d-neighborhood of a vertex v is represented in Figure 7.7 (for d = 2).
Figure 7.7 also illustrates the state information flow over the structured state representa-
tion corresponding to an input graph, showing the states in (RNR)#k which are indirectly
involved through the encoding process, up to an incremental distance d = 2 from v.

Note that such Markovian characterization naturally arises from the standard contrac-
tive initialization of reservoirs of GraphESNs described in the previous sub-section, i.e. by
assuming contractivity in the Euclidean norm and tanh as activation function (which en-
sures a bounded set of assumed states). For GraphESNs, the Markovian characterization
of the state dynamics implies that the reservoir is inherently able to discriminate among
graph patterns (locally to each vertex) in a suffix-based fashion without adaptation of
its parameters. Thus GraphESNs result in a very efficient approach for processing graph
structured domains, particularly suitable for tasks in which the target is compatible (lo-
cally to each vertex) with Markovianity. Note that when GraphESNs are used to process
structure-to-element transductions, the Markovian characterization local to each vertex of
an input graph is attenuated by the state mapping function adopted.

The effectiveness of the fixed Markovian characterization in the GraphESN encoding
process is empirically shown through experiments on real-world tasks in Section 6.3.
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Figure 7.7: The 2-neighborhood of vertex v and the state information flow over (RNR)#k

to compute the state x(v).

7.2.2 State Mapping Function

When the task of interest involves structure-to-element transductions, a fixed-size feature
representation for the whole input graph is obtained by the means of a state mapping
function, inherited from our studies on TreeESNs (see Chapter 6). More specifically, given
an input graph g and the corresponding structured state x(g) (obtained after the conver-
gence of the encoding process computed by the reservoir), the state mapping function χ is
applied to x(g) to get an NR dimensional state representation, i.e. χ(x(g)) ∈ R

NR , which
is used to feed the readout. Here we consider two choices for the computation of the state
mapping function.

A supersource state mapping (also known as root state mapping for TreeESNs [61, 66])
consists in mapping x(g) into the state of the supersource of g. Using the supersource
state mapping is equivalent to standard RecNN processing, in which the state computed
for the supersource is always used to represent the whole input structure. Note that the
supersource state mapping can be applied only to structures for which a supersource is
defined. Otherwise a preprocessing of the input structures is required, e.g. as in [169].

A mean state mapping computes χ(x(g)) as the mean of the states computed for the
vertices of g:

χ(x(g)) =
1

|V (g)|

∑

v∈V (g)

x(v) (7.9)

By using the mean state mapping, the fixed-size feature representation χ(x(g)) depends
to the same extent on the state of every vertex v in the input structure g, rather than
depending only on the state computed for a particular vertex.

7.2.3 Readout of GraphESN

The readout of a GraphESN is composed of a layer of NY feed-forward linear units and
is used to compute the adaptive output of a structured transduction by implementing the
vertex-wise output function gout (equation 2.29).

For structure-to-structure transductions, after the convergence of the reservoir com-
putation, the readout is applied to the state of each vertex v ∈ V (g):

y(v) = gout(x(v)) = Woutx(v) (7.10)
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where y(v) ∈ R
NY is the output (vectorial) value computed for vertex v and Wout ∈

R
NY ×NR is the reservoir-to-readout weight matrix (possibly including a bias term).

For structure-to-element transduction, the fixed-size output for the whole input graph
g, i.e. y(g), is obtained by applying the readout only to the state returned by the state
mapping function χ:

y(g) = gout(χ(x(g))) = Woutχ(x(g)) (7.11)

Figure 7.8 shows an example of the application of the mean state mapping (equation 7.9)
and of the output function computed by the readout (equation 7.11) for structure-to-
element transductions processing with GraphESNs.

NR1/ |V g( ) |

1/ |V g( ) |

1/ |V g( ) |

1/ |V g( ) |

y (g )x (g )
1/ |V g( ) |

g

Encoding

(Reservoir)

Output

(Readout)

State Mapping Function

x (g )( )χ
Figure 7.8: Graphical representation of structure-to-element transduction computation
using GraphESNs.

As for standard ESNs, (off-line) training of the readout is performed by adjusting the
weight values in Wout to solve a linear regression problem. Let us consider a training
set Ttrain containing a number of P patterns. For structure-to-structure transductions,
input patterns in Ttrain correspond to vertices and the corresponding states computed by
the reservoir are column-wise arranged into a state matrix X ∈ R

NR×P . Analogously, the
target outputs for the patterns in Ttrain are column-wise arranged into a target matrix
Ytarget ∈ R

NY ×P . For structure-to-element transductions, input patterns in Ttrain corre-
spond to trees and the columns of matrix X contain the states obtained by applying the
state mapping function to the corresponding structured states computed by the reservoir.
Matrix Wout is therefore selected to solve the same least squares linear regression problem
as in equation 6.6:

min ‖WoutX−Ytarget‖
2
2 (7.12)

Both Moore-Penrose pseudo-inversion (equation 2.38) of matrix X and ridge regression
(equation 2.39) can be used to solve equation 7.12.

7.2.4 Computational Complexity of GraphESNs

In this Section we analyze the computational complexity of the GraphESN model.

For each input graph g, one step of the encoding process consists in the application of
equation 7.2 for each vertex v ∈ V (g). This requires a time complexity given by

O(|V (g)| k R NR) (7.13)
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where k is the maximum degree2 and R is the maximum number of connections for each
reservoir unit (R is smaller for sparser reservoirs). Note that such computational cost scales
linearly with both the number of vertices in the input graph and the number of units in
the reservoir. The Banach Contraction Principle ensures the convergence of the encoding
process is fast and in practice a maximum number of iterations could be fixed. Note that
the cost of the encoding process in GraphESNs is the same for both the training and the
test phase, resulting in a very efficient strategy. For the sake of comparison, the encoding
process in GNNs [160] during training may require several hundreds or thousands epochs,
and for each epoch the computational cost is given by the sum of the cost of the convergent
iterative computation of the stable state (i.e. the whole encoding process in a GraphESN)
and the cost of the gradient computation. The computational cost of the encoding process
in GraphESNs compares well also with kernel-based methods for structured domains. For
instance, under the same assumption of a bounded maximum degree k, the cost of the
Optimal Assignment (OA) kernel and the Expected Match (EM) kernel, proposed in [57]
and considered in Section 7.3 for comparison of experimental results, is respectively cubic
and quadratic in the number of vertices of the input graph.

As regards the application of the state mapping function for GraphESNs implementing
structure-to-element transductions, note that its cost is constant for the supersource state
mapping and linear in both the number of vertices and the reservoir units for the mean
state mapping.

The cost of training the linear readout in a GraphESN depends on the method used to
solve the linear regression problem of equation 7.12. By applying the same considerations
done in the case of TreeESN (see Section 6.2.5), training the readout can be accomplished
by using algorithms ranging from direct methods e.g. using singular value decomposition
of matrix X, whose cost is cubic in the number of patterns, to efficient iterative approaches
in which case the cost of each epoch is linear with the number of patterns. As the output
function in GraphESNs is implemented through an extremely simple readout, i.e. just a
layer of feed-forward linear units, the cost of its training procedure is typically inferior to
the cost of training more complex readout implementations, such as MLPs (as in GNN
[160]) or SVMs (as in kernel methods, e.g. in [57, 56, 154]).

7.3 Experiments

In this Section we report the experimental results, already presented in [59], obtained
by the GraphESN on tasks from two Chemical datasets. Note that the contractivity
condition for reservoir initialization which was used in such experiments (see [59]) is slightly
different from the one reported in equation 7.6. Further experimental investigations of the
GraphESN model on a different Chemical dataset, referring to the reservoir initialization
of equation 7.6, are proposed in [65] and also illustrated in Chapter 8.

We applied the GraphESN model on two tasks from a Chemical domain related to the
analysis of toxicity of chemical compounds. We considered the well known Mutagenesis
dataset [170] and the Predictive Toxicology Challenge (PTC) dataset [96], on which the
results of GraphESN may represent a baseline performance for other approaches with
learning. In particular, the Mutagenesis dataset allows us to empirically evaluate the

2In typical cases of learning with graph structured data, e.g. in Chemical domains, graphs are sparse
and often with a fixed small value of k.
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effective distance occurring between the performance of methods based on a fixed or
adaptive contractive encoding. Moreover, this dataset allows a comparison with some ILP
methods for structured data. On the other hand, the PTC dataset allows comparisons with
a large class of learning models including kernel-based methods for structured domains.

Mutagenesis Dataset. The well known Mutagenesis dataset [170] contains a description
of 230 nitroaromatic molecules and the goal consists in recognizing the mutagenic com-
pounds. We considered the whole Mutagenesis dataset. Each molecule is described by its
atom-bond structure (AB), two chemical measurements (C) and two precoded structural
attributes (PS). We considered the three possible descriptions AB, AB+C and AB+C+PS.
For each atom in a molecule, the AB description specifies element, atom type and partial
charge. Measurements in C are the lowest unoccupied molecule orbital and hydrophobicity,
while attributes in PS indicate the presence of specific functional groups. The maximum
number of atoms in a molecule is 40 and the maximum degree is 4.
In our experiments, each molecule is represented as an undirected graph in which vertices
correspond to atoms and edges correspond to bonds. Each vertex label contains a 1-of-m
bipolar encoding of the element of the corresponding atom, its partial charge, its atom
type normalized in [−1, 1], and global C and PS attributes (when considered). The total
dimension of the label was 11, 13 and 15 for the AB, AB+C, AB+C+PS descriptions,
respectively. The task consists in a binary classification, where the target of each graph
is 1 if the corresponding molecule is mutagenic and −1 otherwise.

PTC Dataset. The PTC dataset [96] reports the carcinogenicity of 417 chemical com-
pounds relatively to four types of rodents: male rats (MR), female rats (FR), male mice
(MM) and female mice (FM). Each compound in the dataset is classified in one of the
categories CE, SE, P, EE, NE, IS, E, N for each type of rodents, according to its carcino-
genicity. Compounds classified as CE, SE or P are considered as active, while compounds
classified as N or NE are considered inactive. Compounds assigned to other classes are
not considered. Each molecule is represented as an undirected graph, with vertices corre-
sponding to atoms and edges corresponding to bonds. The label attached to each vertex
contains a 1-of-m binary encoding of the element of the corresponding atom and its partial
charge, yielding a total dimension of the label of 24. The maximum number of atoms in
a molecule is 109 and the maximum degree is 4. A binary classification task is defined
for each type of rodents, i.e. MR, FR, MM and FM, and such that for each of the four
classification tasks, the target class of each graph is 1 if the corresponding molecule is
active and −1 otherwise, according to the schema in [57]. The number of molecules for
which a target class is defined is 344 for MR, 351 for FR, 336 for MM and 349 for FM.

7.3.1 Experimental Settings

GraphESNs considered in experiments were initialized as follows. The reservoir weight
matrix was initialized with values from a uniform distribution over [−1, 1] and then rescaled
to the desired value of the contraction coefficient σ. We considered GraphESNs with full
connected reservoirs with 20, 30 and 50 units and a contraction coefficient σ varying from
0.5 to 2.1 (with step 0.4). To initialize the input-to-reservoir matrix Win, we considered
different values of the input scaling parameter win, namely 1.0, 0.1 and 0.01. For every
setting of the hyper-parametrization we independently generated a number of 100 random
(guessed) reservoirs of GraphESNs.

As both the datasets are related to structure-to-element transductions, we used a mean
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state mapping function to obtain a fixed-size state vector after the reservoir encoding
process. For the sake of comparison with the GNN model, for the Mutagenesis dataset we
considered also a supersource state mapping in which the supersource is arbitrarily selected
as the first vertex in the AB description, as in [179, 160]. However, note that generally
using a mean state mapping function represents a choice of more general applicability than
the arbitrary selection of one vertex to represent the whole input structure as in [160, 179].

For these experiments, the readout was trained using pseudo-inversion (equation 2.38).
The encoding process was terminated using a value of ǫ = 10−15 for the termination
condition in encoding algorithm of Figure 7.4.

The accuracy of the model was evaluated using cross-fold validation, with a number of
10 and 5 folds for Mutagenesis and PTC datasets, respectively, for the sake of comparison
with results in [160, 57]. For hyper-parameters (model) selection, each training fold was
split into a training and a validation set, with the selection of the hyper-parametrization
corresponding to the best validation accuracy, averaged over the 100 random guesses. As
no further optimization was implemented, the best results over the selected 100 guesses are
reported merely as an upper bound and an indication of the variance among the possible
behaviors of the contractive fixed encoding model with linear readout. As obtained by
using random guessing on the weight values of the fixed reservoir, such results might be
interesting also as upper bounds for possible adaptive encoding approaches constrained
by contractivity.

7.3.2 Results

The averaged and best accuracies (in %) of GraphESNs on the Mutagenesis dataset with
mean state mapping and supersource state mapping are reported in Table 7.1 and Ta-
ble 7.2, respectively, for the three possible descriptions of the compounds. With AB
description only, the averaged accuracy of GraphESNs using mean state mapping is su-
perior to the one obtained using supersource state mapping. For the other descriptions,
AB+C and AB+C+PS, the averaged accuracies are very close, with supersource state
mapping yielding a slightly better result.

AB AB+C AB+C+PS

Average TS 76% (±9%) 80% (±6%) 80%(±6%)
Best TS 86% (±7%) 88% (±8%) 87% (±6%)

Table 7.1: Averaged and Best Test Accuracy (and Standard Deviation) of GraphESN with
Mean State mapping on Mutagenesis.

Table 7.3 shows the averaged accuracy on the test set achieved by GNN and a selec-
tion of ILP methods for structured domains presented in [179, 155, 118, 153]. Table 7.3
allows a direct preliminary comparison with the averaged accuracy of GNNs, for which
GraphESNs represent an architectural baseline (hence the goal was not to outperform the
state-of-the-art results). The averaged accuracy of GraphESNs is inferior to the accuracy
of GNNs, which to our knowledge is the best result in literature on this dataset. It is
also worth noting that the accuracy of trained GNNs is very similar to the averaged best
accuracy of GraphESNs, which is confirmed to represent a bound to the potential results
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AB AB+C AB+C+PS

Average TS 72% (±4%) 82% (±7%) 82% (±7%)
Best TS 81% (±3%) 89% (±7%) 88% (±8%)

Table 7.2: Averaged and Best Test Accuracy (and Standard Deviation) of GraphESN with
Supersource State mapping on Mutag.

Model AB AB+C AB+C+PS

GNN 79% 86% 86%
1nn(dm) 81% 88%
TILDE 77% 82%
RDBC 83% 82%

Table 7.3: Averaged Test Accuracies of GNNs and ILP methods on Mutag.

of approaches based on contractive encoding processes 3. However, the comparison should
take into account some differences among the two approaches, including the different im-
plementations of the output function (GNNs use MLPs, while GraphESNs use a single
layer of linear units) and the different nature of the information used (in GNNs different
bond types in the AB description are distinguished by considering different edge labels
in the corresponding graph representations). Moreover, the validation procedure used in
[179] is slightly less strict than the one used in our experiments. The accuracy of the
GraphESN model, however, turns out to be even competitive with the results obtained by
the ILP methods in Table 7.3.
As a general result, the variance of the GraphESNs reported in Tables 7.1 and 7.2, ef-
fectively provides a reliable interval of the performance for models based on contractive
dynamics.

Table 7.4 reports the averaged and best test accuracy of GraphESNs on the four
tasks of the PTC dataset. The accuracy on the same tasks obtained by three kernel-based
methods for graphs domains, reported in [57], i.e. Marginalized (MG), OA and EM kernels,
is shown in Table 7.5. Results of GraphESNs are loosely comparable with those of the
kernel methods, also considering that the standard deviation seems relevant with respect to
the differences among the accuracies and that results reported in Table 7.5 were obtained
by selecting the best kernel settings (on the test set) after model selection (on a validation
set) of the SVM parameters only [57]. Even though the averaged accuracy of GraphESNs is
inferior, the overlapping among the ranges of the accuracies seems significant, in particular
for the MM and the FR tasks. Results of GraphESNs on the PTC dataset are also coherent
with those obtained by other kernel-based methods on the same dataset (e.g. [56, 154]),
although obtained using different validation procedures.

3Note that the cost of running the 100 GraphESN guesses is much less than the cost of thousands
epochs in the training of GNN [160, 179].
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MR FR MM FM

Average TS 57% 65% 67% 58%
(± 4%) (± 3% ) (± 5% ) (± 4% )

Best TS 63% 70% 73% 65%
(± 4% ) (± 2% ) (± 5% ) (± 5% )

Table 7.4: Averaged and Best Test Accuracy (and Standard Deviation) of GraphESN with
Mean State Mapping on PTC

Method MR FR MM FM

MG-Kernel 63% 70% 69.0% 65%
(±1%) (±1%) (±1%) (±1%)

OA-Kernel 63% 70% 68% 65%
(±2%) (±1%) (±2%) (±1%)

EM-Kernel 61% 69% 67% 65%
(±2%) (±1%) (±1%) (±1%)

Table 7.5: Averaged Test Accuracy (and Standard Deviation) of Kernel-based Methods
on PTC

7.4 Conclusions

In this Chapter we have presented a generalization of RC to structured domains processing,
named the GraphESN. Exploiting the fixed contractive state dynamics typical of the ESN
models, convergence of the encoding process is ensured for a large class of structured data
including cyclic and undirected graphs, which entails mutual dependencies among state
variables in the recursive approaches.

Efficiency is one of the key characteristics of the proposed model, as learning is re-
stricted to a readout layer of feedforward linear units. The encoding of the GraphESN has
a computational cost that linearly scales with the dimension of the input graphs. As an
example, for the sake of comparison, the cost of the encoding process of a GraphESN in
the training phase is just equivalent to the cost of the encoding process in the test phase
of a GNN [160].

Through experiments we have shown that even in the absence of training of recurrent
connections, GraphESN is inherently able to discriminate among different graph struc-
tures. On two benchmark graph datasets we have shown that the performance achieved
by state-of-the-art (more sophisticated) approaches are substantially within the range of
variance of GraphESN results. Hence, such inherent prior discriminative capability repre-
sents a significant baseline for recursive models, especially for models based on contractive
state dynamics, and we could empirically confirm the relevance of the assumption of con-
tractivity over other possible architectural aspects. As for standard ESNs, the encoding
capability can be even sufficient to achieve good predictive results according to the match-
ing between the Markovian characterization of the state dynamics and the task at hand.

Overall, GraphESN represents a simple and appealing approach to learning in graph
structured domains, paving the way for further studies on possible model developments.
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In this regard, our investigations aimed at modeling adaptive/flexible state mapping func-
tions are presented in Chapter 8. However, especially because of its simplicity, the Graph-
ESN model, already in its standard version, represents a useful practical and analytical
tool for complex relational applications. For instance, following the line of the presented
applications, the emerging challenges in the toxicity field, concerning the aim of a first
screening in the analysis of toxicity of potentially large collections of chemical compounds,
can benefit from new efficient approaches for graphs.



Chapter 8

Adaptivity of State Mappings for
GraphESN

8.1 Introduction

State transition systems on structured data, such as TreeESNs and GraphESNs, are nat-
urally suitable for producing one output in correspondence of each vertex of the input
structure. However, many interesting real-world applications (e.g. in the field of Chemin-
formatics) involve classification or regression tasks on structured domains in which input
structures of different size and topology are mapped into unstructured vectorial outputs.
The arising problem then consists in developing suitable approaches to extract the rel-
evant information from structured state spaces, weighting the influence of the different
vertices for the output computation. A general approach in this concern should be able
to deal with graphs of different size and topologies, without forcing vertices alignments.
In order to cope with this problem, we have introduced the notion of state mapping func-
tion, which is used to map a structured state representation into a fixed-size feature state,
representative of the entire input structure. State mapping functions have been initially
introduced for TreeESNs [61, 66] (see Chapter 6), and then extended to the case of graph-
to-element transduction processing with GraphESNs [59] (see Chapter 7). In particular,
we have introduced a root/supersource state mapping, i.e. χ(x(g)) = x(supersource(g))
(see equation 6.2), selecting the state of the root/supersource of the input structure, and a
mean state mapping , i.e. χ(x(g)) = (1/|V (g)|)

∑

v∈V (g) x(v) (see equations 6.3 and 7.9),
averaging the state information over the vertices of the input structure. For the reader’s
convenience, a graphical illustration of the computation of the root/supersource state
mapping and of the mean state mapping functions is shown in Figure 8.1.

The choice of the state mapping function has revealed a critical role in relation to the
properties of the target task, showing the relevant effect of the extraction of information
from the reservoir space [61, 66] (e.g. see the experiments in Section 6.3). Although
the fixed metrics of root/supersource state mapping and mean state mapping turned
out to be effective in applications [61, 66, 59], the study of more flexible solutions to
implement a map from the set of vertices states into a single output still represents an
issue in designing neural networks for processing structured information. This topic is of
a particular relevance especially when sets of general graphs are considered as structured
input domains of interest.
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Figure 8.1: Graphical illustration of the computation of the root/supersource state map-
ping and of the mean state mapping in GraphESNs.

In this Chapter we introduce two recently proposed approaches which represent pro-
gressive improvements of the standard GraphESN model towards adaptive state mapping
function implementations, namely the GraphESN-wnn [63] and the GraphESN-NG [65]
models. In particular, the GraphESN-wnn, described in Section 8.2, represents a first
modeling step, in which the relevance of each vertex state in the output computation is
weighted using a variant of the distance-weighted nearest neighbor algorithm (see Sec-
tion 2.1.5). On the other hand, the GraphESN-NG, described in Section 8.3, implements
an adaptive state mapping function by exploiting a partitioning of the reservoir state space
in clusters obtained by using the Neural Gas algorithm [136] (see Section 2.1.6).

The rest of this Chapter is organized in the following way. Section 8.2 presents the
GraphESN-wnn model, while Section 8.3 describes the GraphESN-NG model. Finally,
conclusions are discussed in Section 8.4.

8.2 GraphESN-wnn: Exploiting Vertices Information Using
Weighted K-NN

Suppose we have a training set of graphs

Ttrain = {(g,ytarget(g))| g ∈ G,ytarget(g) ∈ R
NY } (8.1)

where G is a finite of graphs with input labels in the domain R
NU and maximum degree

k, i.e. G ⊂ (RNU )#k. Given the set of reservoir states computed by the GraphESN for
the training graphs, we associate to every training vertex state in the reservoir space the
target information of the corresponding graph, i.e. we define a target for every vertex
ytarget(v) ≡ ytarget(g), ∀v ∈ V (g), ∀g ∈ G. Thereby, given an unseen input graph g and
the reservoir states for its vertices, i.e. x(v) ∀v ∈ V (g), an output value y(v) is computed
for every vertex of g. This is realized by resorting to a distance-weighted K-NN algorithm,
according to the following equation:

y(v) =

∑K
i=1w

(v)
i ytarget(v

N
i )

∑K
i=1w

(v)
i

(8.2)

where vN1 , . . . , vNK are the training vertices corresponding to theK closest training reservoir

states to x(v), and w
(v)
i = (‖x(v) − x(vNi )‖22)

−1 is the inverse square of the Euclidean
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distance between x(v) and x(vNi ). The final output of the model is then computed by a
weighted sum of the output computed for its vertices, according to:

y(g) =

∑

v∈V (g) αr(v)y(v)
∑

v∈V (g) αr(v)
(8.3)

where αr(v) represents the relative relevance of vertex v on the model output. Such rel-
evance is assumed to be stronger for vertices whose states are in a region of the reservoir
space corresponding to rather uniform training target values. This insight can be par-
ticularly appreciated e.g. in the context of predictive toxicology, where atoms of specific
elements within a specific topology (e.g. halogens) could consistently have a stronger in-
fluence than others (e.g. hydrogens) on the toxicity of a molecule. Rather than treating
in the same way the information from different atoms, modeling their relevance would
result in a more suitable approach. Accordingly, the relevance of each vertex v ∈ V (g) is
computed as:

αr(v) =

∑K
i=1w

(v)
i

∑K
i=1w

(v)
i (y(v)− ytg(vNi ))2

(8.4)

i.e. the inverse distance-weighted variance of the target associated to the vertices of the K
neighbors of x(v). The computation of the output of a GraphESN in which the readout
is implemented using K-NN with the weighting scheme described here (equations 8.2, 8.3
and 8.4), denoted by GraphESN-wnn [63], is shown in Figure 8.2. Such readout implemen-
tation would combine in a flexible approach the Markovian organization of the reservoir
space and the properties of the target task. For the sake of comparison, in Figure 8.2 we
illustrate also the standard output computation in GraphESN using mean state mapping.

Σ (g)x( )X

y( )v4

y( )v3

y( )v1

(g)yΣ
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Figure 8.2: Reservoir space of states computed for vertices of training graphs, and output
processing for a test graph in GraphESN and GraphESN-wnn.
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8.2.1 Experimental Results

We applied GraphESN and GraphESN-wnn to the four tasks from the PTC dataset [96].
The PTC dataset (see also Section 7.3) contains the description of 417 chemicals, along
with carcinogenicity information corresponding to four type of rodents, used to define the
four tasks MM, FM, MR and FR.

We considered reservoirs with 40% of connectivity, contractivity coefficient σ ∈ {0.5,
1, 2, 3} and input scaling win ∈ {1, 0.1, 0.01}. For standard GraphESNs we used NR = 100,
mean state mapping function, and readout trained using pseudo-inversion (equation 2.38)
and ridge regression (equation 2.39) with regularization parameter λr ∈ {10−i|1 ≤ i ≤ 7}.
For GraphESN-wnn we used NR = 10, with K ∈ {1, 5, 15, 30, 50}. For both GraphESN
and GraphESN-wnn, the reservoir was initialized according to the standard contractivity
constraint reported in equation 6.12. For computational efficiency, the K-NN search was
implemented using kd-trees (reducing the cost up to O(log

∑

g∈G |V (g)|) for each vertex)
and approximating the reservoir (search) space of the training patterns with the space of
its first three principal components. Such approximation is particularly meaningful in light
of the Markovian characterization of reservoir spaces due to contractive dynamics, with
the first principal components collecting almost all the signal [60] (see Chapter 4). The
performance accuracy was evaluated by 5-fold stratified cross-validation as in [57], with 5
independent (random guessed) reservoirs for every reservoir hyper-parametrization. For
model selection, in each fold the training samples were split into a training and a (20%)
validation set. Reservoir hyper-parametrizations yielding non convergent encodings were
discarded. Table 8.1 compares the mean test performance of GraphESN and GraphESN-
wnn after model selection on the validation set of the reservoir hyper-parameters and
readout regularization. GraphESN-wnn outperform GraphESN on every PTC task with
the exception of MR. The distance between the performances is particularly noteworthy
for FM and FR. A comparison with state-of-the-art kernels for graphs is provided in

Model MM FM MR FR

GraphESN 62.87(±1.2) 60.40(±1.7) 59.43(±1.9) 64.44(±0.9)
GraphESN-wnn 63.04(±2.7) 63.32(±2.6) 58.02(±2.1) 67.37(±2.5)

Table 8.1: Mean test accuracies (%) on PTC for GraphESN and GraphESN-wnn, after
model selection on reservoir and readout.

Table 8.2. We considered the performance of Marginalized (MG), Optimal Assignment
(OA) and Expected Match (EM) kernels on the same tasks [57]. By adopting a model
selection criterion similar to [57], Table 8.2 reports the ‘best classification’ results (for
reservoir guesses) after model selection of the readout regularization only. GraphESN-
wnn compares well with all the kernels, with significantly better results in particular for
FM and MR.

8.3 GraphESN-NG: Adaptive Supervised State Mapping

Typically, in applications involving structure-to-element transductions, standard Graph-
ESNs use a fixed mean operator for state mapping computation. Although the GraphESN-
wnn model described in Section 8.2 represents a first approach to the problem of intro-
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Model MM FM MR FR

GraphESN 68.45(±2.4) 64.77(±3.5) 65.99(±2.6) 68.95(±2.2)
GraphESN-wnn 69.65(±2.7) 67.91(±4.8) 67.43(±4.5) 69.25(±3.1)

MG-Kernel 69.05(±1.5) 64.76(±1.2) 62.50(±1.2) 70.09(±0.6)
OA-Kernel 67.87(±1.7) 65.33(±0.9) 63.39(±2.1) 70.37(±1.1)
EM-Kernel 66.97(±1.1) 64.47(±1.2) 60.84(±1.7) 68.95(±0.7)

Table 8.2: Mean best test accuracies (%) on PTC for GraphESN, GraphESN-wnn and
kernels for graphs after model selection on the readout.

ducing supervision in the extraction of information from the reservoir state space, it still
resorts to a fixed, non-adaptive (though target dependent) algorithm to weight the influ-
ence on the final output of local outputs computed for the vertices of each input graph.
In this Section we introduce a novel scheme, based on local state averages, which allows
to fully adaptively weight, through the readout learning, the relevance of the states of the
vertices in the input graphs in the state mapping function computation.

Given a training set Ttrain as in equation 8.1, consider the sub-set of the state space
R
NR consisting in the reservoir states computed for every vertex in the training input

graphs, i.e.
R = {x(v)|g ∈ G, v ∈ V (g)}

Using the Neural Gas (NG) [136] algorithm, featured by robustness of convergence, the
set R is clustered into K clusters, obtaining the codebook vectors c1, . . . , cK ∈ R

NR .
Accordingly, the reservoir state space R

NR is partitioned into the K Voronoi cells

R(i) = {x ∈ R
NR | ‖x− ci‖2 ≤ ‖x− cj‖2 ∀j = 1, . . . ,K} ∀i = 1, . . . ,K

For each graph g ∈ G, the computation of the adaptive state mapping function is illustrated
in Figure 8.3. We denote by V (i)(x(g)) the sub-set of the vertices of x(g) corresponding
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Figure 8.3: Adaptive state mapping function for GraphESN-NG with K = 3.

to vertices states within the i-th cluster, i.e.

V (i)(x(g)) = {v ∈ V (x(g))| x(v) ∈ R(i)}
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Hence we can compute a set of state averages local to each cluster, denoted by χ(i)(x(g)) ∈
R
NR for i = 1, . . . ,K, as follows:

χ(i)(x(g)) =







1
|V (i)(x(g))|

∑

v∈V (i)(x(g))

x(v) if |V (i)(x(g))| > 0

0 ∈ R
NR otherwise

(8.5)

The output of the state mapping function is then obtained by a weighted sum of the
cluster state averages:

χ(x(g)) =

K
∑

i=1

W(i)
s χ(i)(x(g))

where W
(i)
s ∈ R

NR×NR is the weight matrix associated to the i-th cluster state average.
The output y(g) is finally computed by applying the readout as in standard GraphESN
(equation 7.11). The reservoir state information relative to the vertices of each graph g is
therefore averaged locally to each cluster and then combined with free parameters for the

output computation. Weights in matrices W
(1)
s , . . . ,W

(K)
s and Wout are learned from the

training examples in Ttrain, resulting in a supervised approach for the adaptation of the
state mapping function computation.

Learning can be implemented in a direct ESN-like fashion by observing that

y(g) = Woutχ(x(g)) = Wout

∑K
i=1W

(i)
s χ(i)(x(g)) =

∑K
i=1WoutW

(i)
s χ(i)(x(g)) =

∑K
i=1W

(i)
outχ

(i)(x(g)) =

Wc
outχ

c(x(g))

where W
(i)
out = WoutW

(i)
s , Wc

out = [W
(1)
out, . . . ,W

(K)
out ] ∈ R

NY ×KNR is a concatenated
readout weight matrix, and χc(x(g)) = [χ(1)(x(g))T , . . . , χ(K)(x(g))T ]T ∈ R

KNR is the
concatenation of the K cluster state averages. The training of the state mapping function

parameters in W
(1)
s , . . . ,W

(K)
s can be thus computationally included in the training of the

readout parameters in Wc
out, e.g. using pseudo-inversion or ridge regression as in standard

GraphESNs.
A GraphESN in which the state mapping function is computed according to the adap-

tive approach described here is denoted by GraphESN-NG [65]. Note that for a number
of clusters K = 1, equation 8.5 reduces to equation 7.9 and GraphESN-NG reduces to
GraphESN.

An interesting consideration can be done here regarding the comparison between the
computational efficiency of GraphESN-NG and GraphESN-wnn. Indeed, although in
GraphESN-wnn no extra computational cost is required for training after the encoding
process1, in the test phase the output computation has a complexity which is dominated by
the K-NN search in the space of reservoir states for the vertices in the training graphs. For
each graph g, this computational cost can vary from O(|V (g)| NR

∑

g′∈G |V (g′)|) (which
entails a quadratic dependence on the graph size) to O(|V (g)| NR log(

∑

g′∈G |V (g′)|)) (by

1Note, in this regard, that the K-NN algorithm requires to store in memory all the reservoir states
computed for the vertices in the training graphs. This can result in demanding memory requirements in
applications.
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resorting to algorithmic techniques to reduce the computational burden of this operation,
such as using kd-trees as reported in Section 8.2.1). On the other hand, in GraphESN-NG
the preliminary clustering of the space of reservoir states for the vertices in the training
graphs is run only once in the training phase, with a computational cost that scales (for
each epoch) linearly with the number of vertices in the training graphs. Then, in the test
phase, the output computation for a graph g has a complexity which is dominated by the
assignment of each vertex state x(v), ∀v ∈ |V (g)| to the corresponding cluster, and the
cost of this operation scales as O(|V (g)| NR K). Note that in practical applications, such
as those in the toxicology field considered here, the value of log(

∑

g′∈G |V (g′)|) can be
much greater than the number of clusters K, hence the GraphESN-NG model typically
results in a more efficient approach than GraphESN-wnn.

8.3.1 Experimental Results

The effectiveness of the adaptive approach for the SMF computation was experimentally
assessed by applying GraphESN-NG to 5 real-world classification tasks from Chemical
domains. The first 4 tasks come from the PTC dataset [96]. The last task comes from the
Bursi mutagenicity dataset [116, 51], used for its data quality, describing the mutagenicity
of 4204 molecules. The Bursi dataset is originally split into a training set and a test set
containing 3367 and 837 molecules, respectively. For both PTC and Bursi, molecules are
represented as undirected labeled graphs. The maximum degree is k = 4, while vertex
labels consist in 1-of-m encodings of the atom element and atom properties, with label
dimension of 24 and 14 for PTC and Bursi, respectively. Classification tasks are defined
by assigning a target +1 to active molecules and −1 to non active ones.

We considered reservoirs with NR = 100 units and 40% of connectivity, input scaling
win = 0.01 and contractivity coefficient σ ∈ {1, 2} (referring to the standard Graph-
ESN initialization condition of equation 6.12) For each parametrization, the performance
was averaged over 5 independent (random guessed) reservoirs. The number of clus-
ters considered was K = 1, 5, 10, 30. The parameters of the NG algorithm were cho-
sen similarly to [136], using 100 epochs2. The readout was trained by using pseudo-
inversion (equation 2.38) and ridge-regression (equation 2.39) with regularization param-
eter λr ∈ {10−i}7i=1. The performance accuracy was evaluated by a stratified 5-fold cross
validation for PTC and on the test set for Bursi. Reservoir parametrization and readout
regularization were selected on a validation set by an extra level of stratified 5-fold cross
validation on each training fold for PTC and on the training set for Bursi.

Tables 8.3 and 8.4 show the mean test accuracies achieved by GraphESN-NG on PTC
and Bursi, respectively, varying the number of clusters K. Note that for K = 1 the
performance corresponds to standard GraphESN. We see that GraphESN-NG with K > 1
leads to an (absolute) improvement of the test accuracy of almost 4% and 2% for the
PTC tasks MR (for K = 30) and FM (for K = 5), respectively. For the FR and MM
tasks the performance of GraphESN is largely within the range of performance variance of
GraphESN-NG and the difference between the test accuracies is not significant (less than
0.5% on the best results). On the Bursi task, GraphESN is outperformed by GraphESN-
NG for every K > 1. The test accuracy improvement of GraphESN-NG over the standard
GraphESN is of more than 3% for K = 30.

2Such number was found to be sufficient for the convergence of the NG algorithm.
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As a general reference (though a complete literature comparison is beyond the aims
of our experiments), we note that on the PTC tasks the performance of GraphESN-NG
is comparable with those achieved by the MG and OA Kernels in [56]. On the Bursi
dataset, the test accuracy of GraphESN-NG for K = 30, i.e. 79.24%, is close to the 85%
of reliability of laboratory tests [51]. Moreover, GraphESN-NG outperforms both lazar
[95] and Benigni/Bossa structural alerts [51], whose test accuracy is respectively 69.41%
and 78.30%, whereas the accuracy achieved using SVM in [52] is 83.20%. Notice, however,
that the performance of the SVM, using a large set of molecular descriptors (27), was
obtained at the cost of a worse ratio between training and test accuracies.

Task K = 1 K = 5 K = 10 K = 30

MR 57.27(±3.33) 59.24(±2.88) 60.00(±3.13) 61.18(±2.20)
FR 67.12(±0.14) 66.76(±1.67) 64.44(±1.76) 65.06(±2.10)
MM 65.00(±0.66) 64.86(±1.38) 62.67(±2.26) 64.40(±3.13)
FM 60.42(±0.86) 62.49(±1.71) 60.75(±3.57) 57.38(±2.16)

Table 8.3: Mean test accuracy (in %) and standard deviation on the 4 PTC tasks for
GraphESN-NG and GraphESN (for K = 1).

K = 1 K = 5 K = 10 K = 30

75.82(±0.55) 77.20(±0.58) 78.11(±0.72) 79.24(±0.64)

Table 8.4: Mean test accuracy (in %) and standard deviation on the Bursi task for
GraphESN-NG and GraphESN (for K = 1).

8.4 Conclusions

In this Chapter we have presented two novel approaches aiming at a flexible computa-
tion of the state mapping function for variable size graph processing with GraphESNs,
respectively named GraphESN-wnn and GraphESN-NG. The GraphESN-wnn is based
on weighting the contribution of different vertices states, implementing an instance-based
readout. Based on a fixed but target-dependent algorithm, GraphESN-wnn represents a
first step in the direction of adaptivity, introducing supervision in the computation of the
state mapping function. The GraphESN-NG uses the NG clustering algorithm to par-
tition the reservoir state space, with a number of clusters that does not depend on the
different/variable sizes of the input graphs. For each input graph, a set of state averages
is computed locally to each cluster and then adaptively combined in a supervised fashion.
This approach realizes an adaptive state mapping function and generalizes the mean state
mapping computation.

The potential of the models proposed has been assessed through experiments on real-
world tasks for toxicity prediction. In particular, the effectiveness of GraphESN-wnn and
GraphESN-NG has been shown by individually comparing their predictive performance
with standard GraphESNs. In this regard, it is worth to note that the GraphESN-NG,
actually implementing adaptive state mapping computation, represents a step forward in
our investigations, thereby deserving more interest under both experimental and modeling
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points of view. Moreover, the extra computational cost with respect to standard Graph-
ESN required by GraphESN-NG is smaller than the extra cost involved by GraphESN-wnn
(which also increases the overfitting risk due to the nearest neighbor approach, possibly
resulting in more highly variable results). Finally, GraphESN-NG can be also interestingly
considered as a direct generalization of the GraphESN model (with a number of clusters
K = 1).

Overall, the investigations described in this Chapter would open the way for further
studies on adaptivity of the state mapping function for the whole class of neural network
models for graph domains.
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Chapter 9

Conclusions and Future Works

In this thesis we have proposed and investigated RC models for learning in structured
domains. The main research issues which guided our studies were the efficiency, the
possibility of dealing with large classes of data structures, the effectiveness (expressed
in terms of generalization performance) and the adaptivity of the learning models. The
extremely efficient RC methodology, and in particular the ESN model, representing an
extreme and stimulating approach to learning in sequence domains, has been considered as
reference paradigm and as starting point for our research studies towards highly structured
information processing. In this thesis, we have progressively considered classes of data
structures characterized by increasing complexity and generality, from sequences, to trees,
to graphs. The main focus of our research has consequently moved from analysis of the
standard ESN model for sequence processing, to the development of novel RC models for
highly structured domains. In this regard, with the increasing generality of the structures
under consideration, we have progressively developed suitable modeling and analytical
tools in order to cope with the issues involved by the peculiarities and the increased
complexity of the data. At the same time, some of the methodologies already introduced
for less general classes of structures, have been preserved in our study.

The analysis of the standard ESN model for sequence processing has concerned the
identification and study of the main factors of network design which characterize the
model and influence successful/unsuccessful applications. The contractive initialization of
the reservoir dynamics has turned out to constrain the ESN states within a region char-
acterized by Markovian properties, contributing to delineate the basic ESN property and
allowing us to approach tasks within the Markovian bias of contractive RNNs without
requiring any adaptation of the recurrent weights. As a consequence, Markovianity has
revealed a strong influence on the applicative success of ESNs. The Markovian nature of
the reservoir state space organization has also revealed a relevant influence in relation to
the known problem of redundancy among reservoir units activations. However, for tasks
on which the ESN exhibits excellent performance, Markovianity has turned out to be not
sufficient to completely characterize the sources of richness of the network dynamics with
increasing reservoir dimension. In this context, we have isolated a number of architectural
factors of ESN design which allow for a diversification of the reservoir units dynamics,
progressively resulting in improved predictive performances. Our analysis has been con-
ducted also through the introduction of a number of architectural variants to the standard
ESN, in order to experimentally assess the impact of the inclusion in the network design
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of single factors, of combination of factors and their relative importance.
We have also presented interesting real-world applications of ESNs to the emerging

and challenging field of Ambient Assisted Living (AAL). Such applications can be also
considered as initial works within the RUBICON [174] project. The characteristics of our
RC solution can effectively reduce installation and setup costs of the system. The AAL
applications of RC models has also allowed us to experimentally compare the appropriate-
ness of the ESN and LI-ESN models for the nature of the input data at hand, constituting
a further aspect of critical analysis in the area of RC models for learning in sequence
domains.

Moving to highly structured domains, we have introduced the TreeESN, a novel RC
model that generalizes the standard ESN for processing tree domains. TreeESN can be
also considered as an extremely efficient approach for modeling RecNNs, with a compu-
tational cost which has been analyzed and shown to compare extremely well with respect
to state-of-the-art learning models for trees. We have provided a contractive initialization
condition for the reservoir of TreeESN, ensuring the stability of the network dynamics and
implying a Markovian (tree suffix-based) nature of the reservoir state space organization.
The analysis of the Markovian characterization of TreeESNs, inherited from our investi-
gations on RC for sequence domains, has been used to characterize the properties and
the limitations of the model. In particular, the Markovian organized dynamics on tree
patterns, even in the absence of training of the reservoir parameters, allows TreeESN to
inherently discriminate among different input structures in a tree suffix-based fashion. As
such, TreeESN represents also a baseline architecture for RecNNs with trained recurrent
connections. Another important point of our study on TreeESNs has been related to the
notion of state mapping function, that we have introduced in order to approach tree-to-
element tasks. We have proposed two choices for the state mapping function, namely a
root state mapping function and a mean state mapping function. Interestingly, the choice
of the state mapping function has revealed a tight relationship with the Markovian organi-
zation of the reservoir state space. As TreeESN is based on non-adaptive state dynamics,
the properties of the fixed state mapping function to use should match the properties of
the target task to approach. Although TreeESN represents a baseline model for learning
in tree structured domains, we have shown on a challenging real-world Document Process-
ing task that its performance is very competitive and even outperforms state-of-the-art
approaches for trees, including RecNNs with trained dynamics and kernel methods for
tree domains.

The RC paradigm has been further extended to deal with general graphs, by the
introduction of the GraphESN model. We have provided an initialization condition for the
reservoir of GraphESN, based on a contractive constraint and representing a generalization
of the analogous conditions for ESN and TreeESN. For GraphESNs, contractivity has
shown specific relevant significance under different aspects. In particular, it implies stable
network state dynamics even in the cases of cyclic and undirected structures, therefore
allowing us to extend the class of data structures that can be treated by RecNNs to
cyclic/acyclic directed/undirected graphs in a very natural fashion. As a consequence,
differently from the case of TreeESNs, the encoding in GraphESNs is implemented by
an iterative process. The contractive reservoir initialization ensures the convergence of
such iterative encoding. Moreover, analogously to the cases of ESNs and TreeESNs, the
contractive initialization has been shown to bound the GraphESN reservoir dynamics
in a region of the state space organized in a Markovian way. In this case, the concept of
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Markovianity has been suitably extended to the case of graph processing, with the notion of
suffix which has been accordingly generalized to the notion of d-neighborhood of a vertex.
The Markovian characterization of GraphESNs has been formally described. In light of
such characterization, the GraphESN model is able to distinguish among graph patterns
without adapting the recurrent weights of the reservoir. Thereby GraphESN represents
an efficient approach for learning in graph domains, whose computational cost, comparing
extremely well with respect to alternative state-of-the-art methods for graph domains, has
been derived and discussed in detail. The notion of the state mapping function, coming
from our analysis on the TreeESN model, has been applied also to GraphESNs in order
to compute graph-to-element transductions. In this context, in light of the possibility of
processing structured domains comprising general graphs, the notion of state mapping
function assumes a particularly relevant role. Finally, in spite of the efficiency of the
GraphESN approach, experiments on real-world tasks from Chemical domains have shown
that the predictive performance of GraphESN is comparable with those of state-of-the-art
more complex models for graphs.

In the relation to the implementation of structure-to-element transductions, we have
also investigated the problem of the extraction of the relevant information from structured
reservoir state spaces. Standard implementations of the state mapping function, based on
fixed metrics, are indeed intrinsically limited. We have approached this issue by proposing
progressive improvements of the state mapping function computation in the direction of
adaptivity. To this aim, considering state-of-the-art ML solutions, we have introduced the
GraphESN-wnn and the GraphESN-NG models. The GraphESN-wnn uses the distance-
weighted nearest neighbor algorithm in order to weight the relevance of each vertex on
the output. In GraphESN-NG, which represents a step forward in our investigations, the
reservoir state space is clustered using the Neural Gas algorithm, such that the structured
state resulting from the encoding process is decomposed locally to each cluster and then
combined in a supervised fashion for the output computation. The effectiveness of the
possibility of extracting the state information from reservoir state spaces in a flexible,
target-dependent way has been experimentally shown on real-world tasks from Chemical
domains. As a further observation, notice that our studies and the proposed solutions nat-
urally apply also in general for the class of recursive models implementing state transition
systems on graph structures.

Overall, the investigations and the models proposed in this thesis eventually consti-
tute an RC framework for learning in structured domains. Such framework comprises
a number of tools which extend the extremely efficient approach to learning of the RC
paradigm to deal with the increased complexity of structured information processing. In
general, from an architectural perspective, a recurrent reservoir component is used to en-
code the input structures (generalizing the information processing of standard ESNs), and
is left untrained after a contractive initialization, whereas a simple linear readout tool is
the only trained part. Characterized by the ability to discriminate input structures in a
suffix-based way, the proposed models represent architectural and experimental baselines
for more complex and computationally expensive techniques, e.g. RecNNs with trained
dynamics. Very interestingly, the efficiency of the proposed models is not always balanced
by a poor predictive performance. On a number of real-world tasks from different do-
mains, TreeESN and GraphESN (including its modeling improvements) have been shown
to achieve competitive results, sometimes even outperforming state-of-the-art models for
structured domains. A final note is worth mentioning in this concern. Despite the fact
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that our studies have covered structures of increasing complexity and generality, resulting
in the introduction of TreeESN for tree domains and GraphESN for general graph do-
mains, note that each model is particularly more suitable to deal with specific classes of
data. In particular, if the information to be considered is reasonably representable by the
means of tree structures, the TreeESN model provides an extremely efficient yet effective
solution. The GraphESN model, on the other hand, is more suitable for applications in
which the input data can be better represented through non-hierarchical (possibly cyclic
or undirected) structures. According to the desired trade-off between efficiency and gener-
alization performance, the modeling improvements of the GraphESN, i.e. GraphESN-wnn
and GraphESN-NG, might represent interesting possibilities.
Generally, the analytical and modeling tools proposed in this thesis have resulted in both
effective and efficient solutions, at the same time rising stimulating questions in the area
of structured domains learning.

Our studies have paved the way for further investigations and future works. From a
general perspective, an interesting and promising point to investigate concerns the rela-
tionships and the interactions of the proposed RC framework with other approaches in
the field of learning for structured domains, such as Relational Learning and kernel meth-
ods. On the other hand, a number of future research lines is more closely related to the
RC models presented in this thesis. A first point concerns the nature of the information
processing in RC for structured domains, with particular regard to the Markovian nature
of the organization of reservoir state spaces. Although a Markovian characterization of
the proposed models has been formally described and discussed in this thesis, it certainly
needs deeper investigations. Such studies could help in providing more rigorous theoret-
ical foundations for characterizing the RC approaches and their properties/limitations.
Related to this aspect, another point worth of interest concerns the relations between
Markovianity and state mapping functions. In particular, choices such as the mean state
mapping have resulted in state space organization that do not preserve Markovianity,
being able, in a sense, to overcome the limitations of the contractively constrained reser-
voir state dynamics. A formal characterization of the computational properties of the
proposed models using the mean state mapping (and the more flexible solutions intro-
duced) for structure-to-element processing would therefore represent an example of an
appealing theoretical line of research. Further adaptive improvements of the GraphESN
model towards adaptive computations of state mapping functions can be also considered
for future research, including the possibility of exploiting different clustering methods such
as SOM, hierarchical or supervised clustering. This point is also interestingly related to
the topics of visualization and interpretability of the proposed models. The possibility
of assessing the relevance of different sub-structures within graph patterns based on the
target information is indeed of a great appeal, e.g. in the field of toxicity prediction.
The adaptivity of the GraphESN model can be also enhanced by devising proper meth-
ods to introduce supervision within the encoding process. Preserving the efficiency of the
learning algorithm, a suitable ground to approach this problem could be based e.g. on
studies pertaining to the stabilization of reservoir dynamics in standard RC with readout-
to-reservoir feedback connections. Finally, from an applicative perspective, the TreeESN
and the GraphESN models, in particular because of their efficiency, definitely open the
way for possible applications to very large collections of structured data, e.g. in the field
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of Cheminformatics. Moreover, the exploitation of LI-ESNs models in AAL tasks, within
the RUBICON project [174], surely represents a matter of future work. In this regard,
with the aim of embedding the RC systems within the sensors of WSNs directly, interest-
ing studies on particularly efficient implementations of reservoir networks, based on both
theoretical and practical studies, would represent another stimulating research direction.
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Appendix A

Datasets

In this Appendix, for the ease of data reference, we provide a brief schematic description
of the datasets (and the corresponding tasks) used in this thesis.

A.1 Markovian/Anti-Markovian Symbolic Sequences

• Data Type: Sequences.

• Nature of the Data: Artificial.

• Task Type: Regression.

• Target Transduction Type: Sequence-to-element.

• Brief Description: Input sequences consist in elements with associated symbolic
label randomly drawn from the finite alphabet A = {a, b, . . . , j}. Two tasks are
defined corresponding to Markovian or anti-Markovian target (with possible variable
degrees of Markovianity).

• Main Reference: [62]

• Available at: The C++ source code for generating the dataset is available at
http://www.di.unipi.it/~gallicch/sources/.

• Number of Structures: Training and test set contain 500 and 100 sequences,
respectively. The length of the sequences varies from 50 to 100.

• Notes:

A constant degree of Markovianity/anti-Markovianity is used: λ = 2.

• In this Thesis:

Defined in Section 3.5.1. Applications of ESNs in Sections 3.5.2, 3.5.3 and 4.2.
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A.2 Engine Misfire Detection Problem

• Data Type: Sequences.

• Nature of the Data: Real-world.

• Task Type: Binary classification.

• Target Transduction Type: Sequence-to-sequence.

• Brief Description: The task consist in predicting misfire events in a 10-cylinder
internal combustion engine. The 4-dimensional input provides information about
the state of the engine. The classification output refers to normal firing or misfire
events.

• Main References: [134, 151, 50]

• Dataset Dimension: We considered a reduced version of the original dataset, with
11000 training samples and 11000 test samples (from the test set 1 of the original
dataset).

• Notes:

Used in the IJCNN 2001 challenge.

• In this Thesis:

Defined in Section 3.5.1. Applications of ESNs in Sections 3.5.2 and 3.5.3.

A.3 Mackey-Glass Time Series

• Data Type: Sequences.

• Nature of the Data: Artificial.

• Task Type: Regression.

• Target Transduction Type: Sequence-to-sequence.

• Brief Description: This is a benchmark dataset obtained by discretization of the
Mackey-Glass differential equation. The task consists in a next step prediction of
the resulting chaotic time series.

• Main Reference: [130]

• Available at: The C++ source code for generating the dataset is available at
http://www.di.unipi.it/~gallicch/sources/.

• Dataset Dimension: We used 5000 steps of the series for training and other 5000
steps for test.

• In this Thesis:

Defined in Section 3.5.1. Applications of ESNs in Sections 3.5.2 and 3.5.3.
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A.4 10-th Order NARMA System

• Data Type: Sequences.

• Nature of the Data: Artificial.

• Task Type: Regression.

• Target Transduction Type: Sequence-to-sequence.

• Brief Description:

The input is a sequence of elements randomly drawn from a uniform distribution
over [0, 0.5] The task consists in predicting the output of a 10-th order non-linear
autoregressive moving average (NARMA) system.

• Main Reference: [7]

• Available at: The C++ source code for generating the dataset is available at
http://www.di.unipi.it/~gallicch/sources/.

• Dataset Dimension: We used 2200 examples for the training set and 2000 for the
test set.

• In this Thesis:

Defined in Section 3.5.1. Applications of ESNs in Sections 3.5.2 and 3.5.3.

A.5 Santa Fe Laser Time Series

• Data Type: Sequences.

• Nature of the Data: Real-world.

• Task Type: Regression.

• Target Transduction Type: Sequence-to-sequence.

• Brief Description: The dataset contains samples of the intensity of a far-infrared
laser in a chaotic regime. The task consists in a one-step prediction on the corre-
sponding time series.

• Main Reference: [189]

• Available at: Available as data set A at the webpage http://www-psych.stanford.
edu/$\sim$andreas/Time-Series/SantaFe.html.

• Dataset Dimension: We used the complete row dataset of 10093 time steps. 5000
steps were used for training and the remaining 5093 were used for test.

• Notes:

Used in the Santa Fe Competition.

• In this Thesis:

Defined in Section 3.5.1. Applications of ESNs in Sections 3.5.2 and 3.5.3.
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A.6 AAL - Homogeneous Indoor Environment

• Data Type: Sequences.

• Nature of the Data: Real-world.

• Task Type: Binary classification.

• Target Transduction Type: Sequence-to-element.

• Brief Description: The dataset contains the measurements pertaining to the sim-
plest experimental setup for the Ambient Assisted Living experiments. The task
consists in forecasting the movements of a user moving in an environment composed
of 2 rooms. Input data contains the normalized RSS measurements coming from
the 4 anchors in the rooms (2 anchors for each room). Each 4-dimensional input
sequence describes a movement of the user in the environment (according to 6 pos-
sible path types), until she/he reaches a distance of about 60 cm from the door. A
positive target class is assigned to sequences representing movements that will lead
to a room change. A negative target class is assigned to sequences corresponding to
movements in which the room will not change.

• Main Reference: [68]

• Available at: The dataset is available at http://wnlab.isti.cnr.it/paolo/

index.php/dataset/forecasting.

• Number of Structures: The dataset contains 100 samples.

• In this Thesis:

Described in Section 5.3. Applications of ESNs and LI-ESNs are reported in Sec-
tion 5.3.2.
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A.7 AAL - Heterogeneous Indoor Environments

• Data Type: Sequences.

• Nature of the Data: Real-world.

• Task Type: Binary classification.

• Target Transduction Type: Sequence-to-element.

• Brief Description: There are 3 datasets. Each dataset refers to a different couple
of rooms, and is organized as the dataset in Section A.6.

• Main Reference: [8]

• Available at: The datasets is available at http://wnlab.isti.cnr.it/paolo/

index.php/dataset/6rooms.

• Number of Structures:
Dataset 1 contains 104 samples.
Dataset 2 contains 106 samples.
Dataset 3 contains 104 samples.

• Notes: In our experiments, for the experimental setting 1 training and test samples
come from the union of datasets 1 and 2. For the experimental setting 2 the training
set is the union of datasets 1 and 2, while the test set is the dataset 3.

• In this Thesis:

Described in Section 5.4. Applications of LI-ESNs are reported in Section 5.4.1.
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A.8 INEX2006

• Data Type: Trees.

• Nature of the Data: Real-world.

• Task Type: 18-class classification.

• Target Transduction Type: Tree-to-element.

• Brief Description: The dataset is derived from the IEEE corpus and is composed
of XML formatted documents from 18 different journals. The journal corresponding
to each document is used as target classification for the task.

• Main Reference: [40]

• Info at: http://xmlmining.lip6.fr/pmwiki.php

• Number of Structures: The dataset contains the description of 12107 documents.

• Notes: INEX2006 is a real-world challenging multi-classification task coming from
the INEX 2006 international competition.

• In this Thesis: Section 6.3.1 describes the dataset and the application of the
TreeESN model to it.
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A.9 Markovian/anti-Markovian Symbolic Trees

• Data Type: Trees.

• Nature of the Data: Artificial.

• Task Type: Regression.

• Target Transduction Type: Tree-to-element.

• Brief Description: Extension to 3-ary trees of the analogous dataset on sequences
in Section A.1. The skeleton of each tree is randomly generated in a top-down
fashion, starting from the root and such that for every node the probability of an
absent child is 0.4 for the first child and 0.7 for the other children. Each node has a
symbolic labels randomly drawn from a uniform distribution over the alphabet A =
{a, b, . . . , j}. Two tasks are defined by associating target outputs with Markovian or
anti-Markovian flavor (whose strength is synthesized by a parameter λ > 1) to the
same trees in the dataset.

• Main Reference: [66]

• Number of Structures: The number of trees in the dataset is 1000, of which 800
form the training set and the remaining 200 form the test set.

• Notes: A constant degree of Markovianity/anti-Markovianity was used for our ex-
periments: λ = 2.

• In this Thesis: The dataset and the corresponding tasks are defined in Sec-
tion 6.3.2. The experimental application of TreeESNs on the Markovian/anti-Markovian
tasks is reported in Section 6.3.2 as well.
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A.10 Alkanes

• Data Type: Trees.

• Nature of the Data: Real-world.

• Task Type: Regression.

• Target Transduction Type: Tree-to-element.

• Brief Description: The dataset contains the tree representation of the alkanes
(up to 10 carbon atoms). The task consists in predicting the target boiling point
temperature of the molecules, expressed in Celsius degrees.

• Main Reference: [20]

• Available at: http://www.di.unipi.it/~micheli/dataset/

• Number of Structures: The dataset contains 150 molecules.

• Notes: Target values represent the boiling point temperatures divided by 100.

• In this Thesis: The dataset is described in Section 6.3.3, in which the experiments
using the TreeESN model are reported as well.
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A.11 Polymers

• Data Type: Trees.

• Nature of the Data: Real-world.

• Task Type: Regression.

• Target Transduction Type: Tree-to-element.

• Brief Description: The dataset contains the tree representations of (meth)acrylic
polymers. The task consists in predicting the glass transition temperature of such
compounds (expressed in Kelvin degrees).

• Main Reference: [46]

• Number of Structures: The dataset contains 95 trees, 80 of which are used for
training and 15 for test.

• Notes: Target values representing the glass transition temperatures are divided by
10.

• In this Thesis: The dataset is described in Section 6.3.4. Experiments using
TreeESNs on this dataset are illustrated in the same Section 6.3.4.
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A.12 Mutagenesis

• Data Type: Undirected graphs.

• Nature of the Data: Real-world.

• Task Type: Binary classification.

• Target Transduction Type: Graph-to-element.

• Brief Description: The dataset contains the description as undirected graphs of
nitroaromatic molecules. The task is to recognize the mutagenic compounds. Three
possible descriptions of the data are usually considered: AB, AB+C and AB+C+PS.
For each molecule, AB describes only the atom-bond structure, AB+C considers
also two chemical global measurements and AB+C+PS adds the information of two
precoded structural attributes.

• Main Reference: [170]

• Available at:
ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/mutagenesis/progol/

mutagenesis.tar.Z.
Other info at http://www-ai.ijs.si/~ilpnet2/apps/pm.html.

• Number of Structures: The dataset contains 230 molecules.

• Notes: The dataset is in Progol format.

• In this Thesis: The Mutagenesis dataset is introduced in Section 7.3. The experi-
mental results obtained by the GraphESN model are presented in Section 7.3.2.
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A.13 Predictive Toxicology Challenge (PTC)

• Data Type: Undirected graphs.

• Nature of the Data: Real-world.

• Task Type: Binary classification.

• Target Transduction Type: Graph-to-element.

• Brief Description: The dataset reports the undirected graph representations of
several chemical compounds, along with their carcinogenicity relatively to four types
of rodents: male rats (MR), female rats (FR), male mice (MM) and female mice
(FM).

• Main Reference: [96]

• Available at: http://www.predictive-toxicology.org/ptc/index.html

• Number of Structures: The dataset contains 417 structures. The number of
molecules with target defined (for the different tasks) is 344 for MR, 351 for FR, 336
for MM and 349 for FM.

• In this Thesis: The PTC dataset is described in Section 7.3. Experiments using
GraphESN are reported in Sections 7.3.2, 8.2.1 and 8.3.1 (referring to different ex-
perimental conditions). Sections 8.2.1 and 8.3.1 reports also the experiments using
GraphESN-wnn and GraphESN-NG, respectively.

A.14 Bursi

• Data Type: Undirected graphs.

• Nature of the Data: Real-world.

• Task Type: Binary classification.

• Target Transduction Type: Graph-to-element.

• Brief Description: The Bursi dataset contains graph representations for a large
set of molecules. The target task consists in predicting the mutagenicity of the
compounds in the dataset.

• Main References: [116, 51]

• Available at:
http://www.cheminformatics.org/datasets/bursi/

http://www.springerlink.com/content/w48h66621193r0l7/13065_2010_Article_

260_ESM.html

• Number of Structures: The total number of structures is 4204. The dataset is
coherently split into a training set of 3367 molecules and a test set of 837 molecules.

• In this Thesis: The Bursi dataset is introduced in Section 8.3.1. Experimental
results achieved by GraphESN and GraphESN-NG are reported in the same Section.
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[177] P. Tiňo, B. Hammer, and M. Bodén. Markovian bias of neural-based architectures
with feedback connections. In Perspectives of Neural-Symbolic Integration, pages
95–133. Springer-Verlag, 2007.



214 APPENDIX A. BIBLIOGRAPHY

[178] A. C. Tsoi and A. D. Back. Discrete time recurrent neural network architectures: A
unifying review. Neurocomputing, 15(3-4):183–223, 1997.

[179] W. Uwents, G. Monfardini, H. Blockeel, M. Gori, and F. Scarselli. Neural networks
for relational learning: an experimental comparison. Machine Learning, 82:315–349,
2011.

[180] V. Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural
Networks, 10(5):988–999, 1999.

[181] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[182] G. K. Venayagamoorthy and B. Shishir. Effects of spectral radius and settling time
in the performance of echo state networks. Neural Networks, 22(7):861 – 863, 2009.

[183] D. Verstraeten, J. Dambre, X. Dutoit, and B. Schrauwen. Memory versus non-
linearity in reservoirs. In Proceedings of the IEEE International Joint Conference
on Neural Networks (IJCNN) 2010, pages 2669 – 2676. IEEE, 2010.

[184] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental
unification of reservoir computing methods. Neural Networks, 20(3):391–403, 2007.

[185] S.V.N. Viswanathan and A. J. Smola. Fast kernels for string and tree matching. In
Advances in Neural Information Processing Systems 15, pages 569–576. MIT Press,
Cambridge, MA, 2003.

[186] T. Voegtlin. Recursive self-organizing maps. Neural Networks, 15(8-9):979 – 991,
2002.

[187] T. Waegeman, E. Antonelo, F. Wyffels, and B. Schrauwen. Modular reservoir com-
puting networks for imitation learning of multiple robot behaviors. In IEEE In-
ternational Symposium on Computational Intelligence in Robotics and Automation,
8th, Proceedings, pages 27–32. IEEE, 2009.

[188] M. Wardermann and J. Steil. Intrinsic plasticity for reservoir learning algorithms.
In Proceedings of the European Symposium on Artificial Neural Networks (ESANN)
2007, pages 513–518. d-side, 2007.

[189] A.S. Weigend and N.A. Gershenfeld. Time Series Prediction: Forecasting the Future
and Understanding the Past. Addison-Wesley, 1994.

[190] L. Wenyu, L. Xiaohua, and C. Mo. Energy efficiency of mimo transmissions in wire-
less sensor networks with diversity and multiplexing gains. In IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2005, volume 4,
pages iv/897 – iv/900, March 2005.

[191] P.J. Werbos. Backpropagation through time: what it does and how to do it. Pro-
ceedings of the IEEE, 78(10):1550–1560, 1990.

[192] R.J. Williams and D. Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1:270–280, 1989.



A.14. BIBLIOGRAPHY 215

[193] F. Wyffels, B. Schrauwen, and D. Stroobandt. Stable output feedback in reservoir
computing using ridge regression. In V. Kurkov, R. Neruda, and J. Koutnk, editors,
Artificial Neural Networks - ICANN 2008, volume 5163 of Lecture Notes in Computer
Science, pages 808–817. Springer Berlin / Heidelberg, 2008.

[194] T. Yamazaki and S. Tanaka. The cerebellum as a liquid state machine. Neural
Networks, 20(3):290 – 297, 2007.

[195] X. Yanbo, Y. Le, and S. Haykin. Decoupled echo state networks with lateral inhibi-
tion. Neural Networks, 20(3):365–376, 2007.

[196] S.L. Yong, M. Hagenbuchner, A.C. Tsoi, F. Scarselli, and M. Gori. Document mining
using graph neural network. In N. Fuhr, M. Lalmas, and A. Trotman, editors,
Comparative Evaluation of XML Information Retrieval Systems, volume 4518 of
Lecture Notes in Computer Science, pages 458–472. Springer Berlin / Heidelberg,
2007.

[197] M. Youssef and A. Agrawala. The horus wlan location determination system. In
Proceedings of the 3rd international conference on Mobile systems, applications, and
services (MobiSys) 2005, pages 205–218. ACM, 2005.

[198] S. Zhang, M. Hagenbuchner, A.C. Tsoi, and A. Sperduti. Self organizing maps for
the clustering of large sets of labeled graphs. In S. Geva, J. Kamps, and A. Trotman,
editors, Advances in Focused Retrieval, volume 5631 of Lecture Notes in Computer
Science, pages 469–481. Springer Berlin / Heidelberg, 2009.


