
Università degli Studi di Pisa

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Discovery of Unconventional Patterns for
SequenceAnalysis: TheoryandAlgorithms

(SSD) INF 01

Giovanni Battaglia

Supervisor

Prof. Roberto Grossi

December 3, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14703544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The pattern discovery task (or equivalently motif inference) is the knowledge dis-
covery process that, given a dataset and some constrains either on the combinatorial
pattern structure or on the occurrence lists, returns all the patterns satisfying the
given constraints.

In this thesis, we consider the problem of discovering patterns in sequential data,
such as texts, biological sequences, access logs, etc. When it comes to defining what
is a pattern, several classes have been proposed in literature. For example, rigid
patterns like p = c◦tc where the don’t care symbol ◦ matches any single character
of the input alphabet Σ, or gapped patterns like p = ctt− 2, 3 − tc where the gap
represents either a sequence of 2 or 3 don’t cares (we refer to [154] for a thorough
discussion of the above classes of patterns).

The adjective “unconventional” in the title of this thesis is referred to the un-
usual combinatorial structure of the patterns we are going to investigate. In fact,
while the classic literature of this field focus on string patterns (maybe with wild-
cards), our line of research explores three different kind of patterns: mask patterns,
where each pattern represents a set of string patterns with wildcards, permutation
patterns where each pattern is a multiset of characters, and the order of the con-
tained symbols doesn’t matter, and transposons which, roughly speaking, represent
the non-conserved regions of a global alignment.

4

To everyone that has believed and still believes in me.

Acknowledgments

I would like to thank everyone that has believed in me for making this work possible.
In particular, I am very grateful to my advisor Professor Roberto Grossi for his guid-
ance, and to my co-authors Nadia Pisanti, Roberto Marangoni and Giulia Menconi
for their invaluable contribution. I am thankful to my parents for their uncondi-
tional support, and to every teacher, classmate, friend that I met in my life, who
have invested one hour of their time in me. Last but not least, I would like to thank
Chiara. This work would not be possible without her continuous encouragements
and her belief in me.

4

Contents

Introduction 7

1 Structure of the Genome 11
1.1 Introduction to the Genome Structure 12
1.2 Genes: the Units of Heredity . 15
1.3 Gene Distribution in the Genome . 17
1.4 Intergenic Regions and Repeats . 17

2 Mask Motif Discovery 21
2.1 Introduction . 21
2.2 Related Problems and State of the Art 24
2.3 A New Class of Motifs . 25

2.3.1 Masks and patterns . 25
2.3.2 Partial order of masks and maximality 27
2.3.3 Maximal Masks Problem (MMP) 28

2.4 The KMR Approach for Masks with Quorum 29
2.4.1 Partition construction and generation of masks 30
2.4.2 Equivalent masks . 33
2.4.3 Algorithm KMR for masks . 35

2.5 Adaptive KMR for Maximal Masks 36
2.5.1 Lattice traversal . 36
2.5.2 Implementation . 37
2.5.3 Safe masks . 39
2.5.4 More efficient implementation 40
2.5.5 Complexity . 41

2.6 Conclusions and Future Work . 42

3 π-pattern Discovery 45
3.1 Introduction to π-patterns . 45

3.1.1 Gene clusters in permutations 46
3.1.2 Gene clusters in strings with multiplicities 50

3.2 Fixed Length π-patterns . 51
3.2.1 Preliminary definitions . 52

6 CHAPTER 0. CONTENTS

3.2.2 Ranking π-patterns: the idea 53
3.2.3 Two phase approach for ranked π-pattern discovery 55

3.3 π-pattern Discovery: First Phase . 55
3.3.1 π-pattern discovery by binary tagging tree 56
3.3.2 π-pattern discovery by levelwise binary tagging tree 59

3.4 Ranking π-patterns with No Repeated Symbols 65
3.5 Ranking π-patterns with Repeated Symbols 67

3.5.1 Introduction to C1P . 68
3.5.2 Testing the C1P: related work 70
3.5.3 Definitions and terminology 71
3.5.4 Hardness results for #FRONT 73
3.5.5 Hardness results for #FMO . 77

3.6 Conclusions and Future Work . 85

4 Mobilomics in S. cerevisiæ 89
4.1 Transposons in Yeast Genomes . 92
4.2 Dataset Statistics . 94
4.3 The Limitations of the Pattern Search Approach 96
4.4 Transposons Detection by Global Pairwise Alignment 98
4.5 Anchor-Based Alignment . 99

4.5.1 Fragment generation . 100
4.5.2 Anchor selection . 102

4.6 Regender . 105
4.6.1 Preliminary data analysis . 107
4.6.2 Two phases approach . 108
4.6.3 Algorithm and implementation 109

4.7 Experimental Results . 112
4.7.1 Regender performance . 113
4.7.2 Regender output quality . 115
4.7.3 Transposons and mobile segments 116

4.8 Conclusions and Future Work . 120

Conclusions 127

Bibliography 129

Introduction

The biology community is collecting a large amount of raw data, such as the genome
sequences of organisms, microarray data, interaction data such as gene-protein in-
teractions, protein-protein interactions, etc. This amount is rapidly increasing and
the process of understanding the data is lagging behind the process of acquiring it.
An inevitable first step towards making sense of the data is to study their regulari-
ties focusing on the non-random structures appearing surprisingly often in the input
sequences: patterns.

It is not easy to define precisely what is a pattern, since several classes of pat-
terns have been proposed in literature, and each one of them is characterized by its
combinatorial structure (a string, a string with wildcards, a set/multiset, etc) and
a notion of occurrence that specifies when the pattern occurs at a specific position
of the input dataset (see [154] for an overview of some classes of patterns).

The pattern discovery task (or equivalently motif inference) is the knowledge
discovery process that, given a dataset and some constrains either on the combina-
torial pattern structure or on the occurrence lists, returns all the patterns satisfying
the given constraints.

In the following chapters we will focus on the frequency constrain, defining the
minimum number of times a pattern must occur but, for example, we could also
constraint the returned patterns to have at most d wildcards, or limit the maximum
distance in a pattern between two consecutive identical characters to be smaller than
a given threshold l, etc.

At this point, it should be clear the difference between pattern matching and
pattern discovery. While in the former, a pattern p (or a set of patterns) is given
in input together with a dataset and the task is to return all the occurrences of p
in the input dataset, in the latter no pattern is provided in input but the reverse
task is to be performed: a pattern discovery algorithm must return all the patterns
satisfying the input constraints, together with their occurrence lists.

The following chapters are devoted to three different kinds of patterns: mask
patterns, where each pattern represents a set of string patterns with wildcards,
permutation patterns where each pattern is a multiset of characters, and transposons
which, roughly speaking, represent the non-conserved regions of a global alignment.
However, before describing in detail these pattern discovery problems, Chapter 1
gives some preliminary definitions, introducing the basic biological concepts about

8 CHAPTER . INTRODUCTION

genome structure and organization that will be used in the following chapters.
Chapter 2 is devoted to mask patterns (parts of our contributions have been

published in [14] and [15]).
In this chapter, we follow a new approach based on modeling motifs by using

simple binary patterns, called masks, that implicitly represent families of patterns
in the input text T (instead of individual patterns). For example, mask 101001

represents both a◦t◦◦c and t◦g◦◦a: each 1 represents a solid symbol while each 0

represents the don’t care symbol ◦, matching all the symbols of the alphabet. A
mask has quorum if at least one of its represented patterns occurs q or more times
in the given sequence T .

As it should be clear from the above informal definition, we can describe interest-
ing repetitions in a sequence, using a description (mask) that is more succinct than
before. Therefore, we aim at giving rise to a smaller set of output motifs. Intuitively,
consider some patterns that occur at least q times each and that also share the same
structure, meant as a certain concatenation of solid and don’t care symbols. Since
they originate from the same mask, we take this mask as a motif. Moreover, any two
patterns sharing the same structure but having a different number of occurrences in
T (still at least q in number), which were previously considered as different motifs,
are now giving rise to the same motif by our definition of mask. Since each mask
can be seen as a binary string, we have potentially 2L masks of size L, instead of
(|Σ| + 1)L classical motifs.

The topic of Chapter 3 is a different kind of pattern, that is defined by merely
its symbol content, ignoring the order in which the symbols appear. For example, if
we are given in input the two strings T1 = . . . abcdefg . . . and T2 = . . . mebdcma . . .,
it is of interest to note that the symbols in set S = {b, c, d, e} are consecutive in
both strings, although they do not occur in the same order.

The above set of symbols is often called a gene cluster (if symbols are genes) or
π-pattern in general, since the first pattern can be numbered 1 to 4 and every other
occurrence is a permutation of {1, 2, 3, 4}.

Several genome models formalizing the notion of gene cluster have been proposed
in literature in the last two decades. In Chapter 3, we formally recall the notion
of π-pattern, discussing how to detect the π-patterns satisfying a given quorum
threshold q, selecting the π-patterns that show a highly-conserved structure across
their occurrences. (Parts of this chapter have been published in [17] and [16].)

The last chapter of this thesis is devoted to the transposon detection problem.
(Parts of this chapter have been published in [26, 78, 79].)

Transposons are sequences in the genome that are mobile, namely they are able
to transport themselves to other locations of the genome, without using any extra-
chromosomal vector (such as viruses), autonomously moving from one site of the
genome to another.

In the past, transposons have been considered to be “genomic parasites” but
more recently, significant beneficial attributes for facilitating evolution have been
recognized [67]. In fact, transposons act to increase the evolvability of their host

.0. INTRODUCTION 9

genome and provide a means of generating genomic modifications. In some sense,
they can be thought as generators of variations upon which natural selection can
act, and represent one of the main engines of genome evolution [31].

Traditional approaches for transposon detection are mainly based on consensus-
like pattern search, that scan the investigated genome against an already identified
library of known transposons. These approaches mainly suffer two limitations. First,
since the transposons to be searched must be given in input together with the
genome to be analyzed, we must know a priori all the classes of transposons that
occur in the given genome. Moreover, these approaches can only detect transposons
that are highly similar to the input ones, but they fail in identifying previously
unknown classes of transposons. This is not an issue in species where the structure
of transposable elements is well characterized (for example in yeasts), but it is
unapplicable where transposons show a much more variable structure, as for example
in the human genome [84].

The second issue of the pattern search approach concern the noisy nature of the
analyzed genomes. In fact, modern sequencing technologies reduced the cost of the
sequencing process, but the released genomic sequences usually have a low-coverage,
and they are rich of unresolved bases.

To overcome the above limitations, in Chapter 4 we describe an alternative
approach that can be applied when multiple copies of the input genome are available.
The core idea is simple. Our alternative approach relies neither on homology nor
structural features of transposons, but on their behavior. Recall that transposons
are mobile elements. Hence, if we align the given genome with its copies, we can
detect transposition events by detecting large insertions or deletions in the global
alignment of the input sequences. In other words, our approach recasts a pattern
search problem where the transposons to be searched are part of the input, as a
pattern discovery problem. In Chapter 4, we assess the precision and the recall of
our pattern discovery approach by a case study where we analyzed the dataset of
38 strains of the S. cerevisiæ yeast that has been recently released in [130].

10 CHAPTER . INTRODUCTION

Chapter 1

Structure of the Genome

Before discussing the pattern discovery algorithm presented in the following chap-
ters, in the current chapter we recall some basic biological definitions as the concept
of gene cluster, repeat, and transposon, that are essential to better understand the
biological relevance of the problems discussed in the following chapters. A compre-
hensive discussion of the genome structure at a molecular level is beyond the scope
of the current chapter, and we omit all the biochemical details that are not strictly
necessary for our purposes. We address the interested reader to [128] for a rigorous
and detailed description of all the contents of the following sections.

This chapter is organized as follows. After describing the structure of the genome
in Section 1.1, we focus on the basic unit of heredity: genes. More precisely, while in
Section 1.2 we recall the notion of gene, briefly describing the gene expression pro-
cess, in Section 1.3 we focus on the distribution of genes across the genome. In fact,
genes are not randomly distributed across genomes. Genes that are functionally
related tend to be clustered in group of physically adjacent genes, in order to facili-
tate the control of their expression [30]. Until recent years such group of genes were
thought to exist solely in prokaryotes, since much more complicated mechanisms
for gene regulation were known in eukaryotes. However, the discovery of the first
group of genes in eukaryotes in the early 1990s radically changed the scenario [30],
creating a new exciting field of investigation.

We conclude this chapter focusing on the intergenic regions of the genomes,
which are the parts of the genome that fall between genes. Although the role of
the intergenic regions is not fully understood, it is clear that they are not useless
“junk-DNA” regions, since mutations occurring to these regions are responsible of
severe genetic diseases such as cancer and Huntington’s disease [175]. On the other
hand, while the structure of the coding regions of the genome containing genes is well
understood, this is not the case of intergenic regions, whose structure is much more
complicated and rich in repeated sequences. In recent years, given the repetitive
nature of these regions, the identification of such repeated sequences has attracted
a lot of interest in the algorithmic community, specifically in the pattern discovery
field. In Section 1.4, we briefly describe the main biochemical properties of the

12 CHAPTER 1. STRUCTURE OF THE GENOME

Figure 1.1: Double-stranded structure of the DNA molecule. (Redrawn from
en.wikipedia.org/wiki/Dna.)

intergenic regions, presenting the most important families of repeats that have been
discovered.

1.1 Introduction to the Genome Structure

Living organisms are categorized in two main categories: cellular and non-cellular.
While the former includes all living organisms that are made up of cells, the non-
cellular life forms, namely viruses, are merely genetic material surrounded by a
protein membrane, that are most often considered replicators rather than forms of
life, since they can replicate by creating multiple copies of themselves, but only
inside a host cell.

Cellular organisms are further classified in prokaryotes, that lack a cell nucleus
and any other membrane-bound organelles, and eukaryotes that are structurally
more complex than prokaryotes because they have a cell nucleus containing the
genetic materials, and several other organelles that are responsible for the cell
metabolism. For example, S. cerevisiæ, which will be the subject of our investi-
gation in Chapter 4, is an eukaryotic organism (more precisely a fungus), while E.

en.wikipedia.org/wiki/Dna

1.1. INTRODUCTION TO THE GENOME STRUCTURE 13

Coli is a prokaryotic organism (more precisely a bacteria). Both in prokaryotes and
in eukaryotes the biological information needed for the organism existence and re-
production is encoded by the genome. The genomes of all the cellular organisms are
made of DNA while the genomes of many viruses are made up of RNA. DNA consists
of two long chains of nucleotides twisted into a double helix and joined by hydrogen
bonds between the complementary bases. As shown in Figure 1.1, each nucleotide
is composed by a five-carbon sugar (represented as a pentagon), a phosphate group
(P), and one of four nitrogenous bases: Adenine (A), Thymine (T), Cytosine (C),
and Guanine (G). Each nucleotide on one strand forms a bond with just one type
of base on the other strand. Purines form hydrogen bonds to pyrimidines, with A

bonding only to T, and C bonding only to G. This arrangement of two nucleotides
binding together across the double helix is called a base pair, while the linear order
in which the nucleotides are arranged is called the DNA sequence.

In the double-stranded DNA molecule, each strand has a direction and the di-
rection of the nucleotides in one strand is opposite to their direction in the other
strand. As we can see in Figure 1.1 the asymmetric ends of DNA strands are called
the 5’ (five prime) and 3’ (three prime) ends, with the 5’ end having a terminal
phosphate group and the 3’ end a terminal hydroxyl group (OH). It follows that,
the relative positions of structures along a strand of nucleic acid, including genes
and protein binding sites, are usually noted as being either upstream (towards the
5’ end) or downstream (towards the 3’ end). The DNA strand orientation is by
convention 5’→3’, hence the 5’→3’ DNA strand is designated, for a given gene, as
sense (or positive) strand, while the 3’→5’ strand is referred as the antisense (or
minus) strand. Because of this convention, the DNA sequence in the 5’→3’ strand
in Figure 1.1 is x = ACTG, while the negative strand encodes the string −x = CAGT

representing the reverse complement of x.
Differently from DNA, RNA is a single-stranded polymeric molecule. RNA nu-

cleotides are made up of ribose sugar, and have the same nitrogenous bases of DNA
except that the Thymine (T) is replaced with Uracil (U). As with DNA, also RNA
nucleotides are paired: A pairs with U, and G pairs with C.

The size of the genome varies significantly in eukaryotes organisms. In general,
the size of the genome increases with the complexity of the organism, in fact the
simplest eukaryotes, such as fungi, have the smallest genomes, while the higher
ones, such as vertebrates and plants, have the largest ones. However, there are some
notable exceptions. For example, while the human genome (3 billion bases) is much
larger than the yeast genome (12 million bases), it is much smaller than that of
the Amoeba dubia (200 billion bases), that is a unicellular organism as simple as
yeast. In recent years, this surprising phenomenon has been explained by proving
that these large genomes contain a large amount of repetitions, that have undergone
a massive proliferation in the genome of certain species. As we will discuss later,
the identification of such repeated genomic sequences, is one of the main motivation
behind pattern discovery.

In eukaryotic organisms the genomic materials are distributed in three organelles:

14 CHAPTER 1. STRUCTURE OF THE GENOME

Figure 1.2: Schematization of the structure of a chromosome during the cell division
process, when the two chromatin are attached by the centromere. Telomeres at the
ends of the chromosome protect the chromosome from deterioration. (Redrawn from
www.accessexcellence.org.)

nucleus, mitochondrion, and chloroplast (that are preset in photosynthetic organ-
isms only). While the nuclear genome is the “general-purpose” genome that codes
for proteins which are used by all types of cells of the organism, the mitochondria
and chloroplast genomes essentially code for proteins that are used in mitochondria
to produce energy, and in chloroplasts in the photosynthesis process. The nuclear
genome is much different from the mitochondria and chloroplast genomes. In gen-
eral, the nuclear genome is much longer (the human nuclear genome is 3 billion bases
long, while the human mitochondrial genome has 16k bases), it is split into atomic
units called chromosomes (the non-nuclear genomes are organized as several copies
of a single, circular molecule), and also the “semantic” of its parts is different from
that of the non-nuclear genomes (the same DNA triplet can encode a different amino
acid in nuclear and non-nuclear genome). Although the non-nuclear genomes play
a fundamental role in eukaryotic organisms, and its mutation can yield to severe
genetic diseases, in the rest of this thesis the word genome will only refer to nuclear
genome.

The nuclear genome is packaged into atomic units of coiled DNA called chromo-
somes. Chromosomes vary widely between different organisms, both in shape (al-
though there are many exceptions to this rule, in general eukaryotic cells have large
linear chromosomes, while prokaryotic cells have smaller circular chromosomes),

www.accessexcellence.org

1.2. GENES: THE UNITS OF HEREDITY 15

and in their size, that can range from thousands to billions of bases. In eukaryotes,
nuclear chromosomes are packaged by proteins into a condensed structure called
chromatin, that allows the very long DNA molecules to fit into the cell nucleus. The
structure of chromosomes and chromatin varies through the cell cycle. Chromosomes
may exist as either duplicated or unduplicated. Unduplicated chromosomes are sin-
gle linear strands, whereas duplicated chromosomes (copied during synthesis phase)
contain two copies joined by a centromere, as shown in Figure 1.2. The number of
chromosomes differs significantly across different organisms, and it is neither related
to the genome size, nor to the organism complexity. For example, the human nuclear
genome contains 46 chromosomes: two sex chromosomes (X and Y), and 22 pairs
of homologous chromosomes (one paternal and one maternal copy). They have not
equal sizes, and if the smallest one is chromosome 21 (45 million bases), the largest
one is chromosome 1 (279 million bases). On the other hand, S. cerevisiæ genome,
which will be analyzed in Chapter 4, has 16 chromosomes whose size range over 200
thousand to 1.5 million bases.

Figure 1.2 shows the structure of an eukaryotic chromosome during the cell
division process. It is composed of two parts: centromere and telomeres. The
centromere is the region near the middle of the chromosome, that is used during
cell division as the attachment point for the spindle fibers. The telomeres are the
regions of repetitive DNA sequence at the end of a chromosome, that protect the
end of the chromosome from deterioration or from fusion with other chromosomes.
The remaining part of the chromosome encodes the genetic information.

1.2 Genes: the Units of Heredity

Inside each chromosome the genetic information is organized in genes that are seg-
ments of the chromosomes that code for a type of protein or for an RNA chain that
has a function in the organism. In fact, genes are usually distinguished in coding
and non-coding genes. Coding genes are transcribed to RNA and eventually trans-
lated to proteins. Non-coding genes are also transcribed to RNA but they are not
translated to proteins. In fact, their products are other RNA molecules that are
used in the protein synthesis process.

Genes in eukaryotes are not a continuous sequence of nucleotides. As shown
in Figure 1.3, the coding segments containing the genetic information, exons, are
interrupted by segments, called introns, that do not code for a protein, and whose
function is still an argument of debate in the biological community. Figure 1.3
shows the role played by exons and introns in the gene expression process. Gene
expression is the most fundamental level at which the genotype of a living organism
gives rise to the phenotype. The genetic code stored in DNA is “interpreted” by
gene expression, and the properties of the expression give rise to the phenotype (the
observable characteristics) of the organism. More specifically, gene expression is the
process by which the information contained in a gene is used in the synthesis of a

16 CHAPTER 1. STRUCTURE OF THE GENOME

Figure 1.3: Schematization of the three main steps involved in the gene ex-
pression process: transcription, splicing, and translation. (Redrawn from
www.accessexcellence.org.)

functional gene product, which is a protein in the case of coding genes, or an RNA
molecule in the case of non-coding genes. As shown in Figure 1.3, it consists of three
steps: transcription, splicing, and translation. During the transcription process, the
segment of DNA encoding for the gene of interest is transcribed to a RNA molecule
known as precursor messenger RNA (pre-mRNA). The pre-mRNA sequence encodes
the reverse complement of the 3’→5’ DNA strand, hence it is identical to the 5’→3’
strand of DNA, but Thymine (T) is substituted by Uracil (U). After the transcription,
during the splicing step, the introns are removed from the pre-mRNA sequence and
a subset of exons is assembled to produce a messenger RNA molecule (mRNA)
that will be the blueprint of the produced protein. Different subset of exons can be
selected from the same pre-mRNA, producing different proteins from the same gene.
This alternative splicing process is called alternative splicing, and it explains why the
number of human protein is more than twice the estimated number of human genes.
After a “maturation” period inside the nucleus where the mRNA can be further
modified by enzymes by removing some parts of the sequence and by adding new
sequences, the mature mRNA is exported to the cytoplasm, where the translation
step takes place. In the translation phase, the mRNA sequence of nucleotide is used
to produce the sequence of amino acids coding for the target protein by mapping
each triplet of nucleotides (codon) in the mRNA to a specific amino acid. In the
case of non-coding genes the translation phase is skipped, since the mature mRNA

www.accessexcellence.org

1.3. GENE DISTRIBUTION IN THE GENOME 17

is the final gene product that is released from the cell.

The analysis of the human genome, together with that of the other sequenced
eukaryotes, answered to several open questions about genome and its structure.
However, there are several points that are still argument of debate in the scientific
community. Two fundamental aspects that are not fully understood are the gene
distribution inside a genome and the function of intergenic regions. They are the
topics of Section 1.3 and 1.4, respectively.

1.3 Gene Distribution in the Genome

Genes are not uniformly distributed along the genome, but there are some regions
that are richer of genes than others. Moreover, it frequently happens that function-
ally related genes are clustered in groups of physically adjacent genes (although there
are some notably exceptions to this rule). For example, this is the case of gene fam-
ilies, which are groups of structurally identical genes, that usually have very similar
biochemical functions because they have been originated by duplication of a single
ancestral gene. One such family is the family of the genes for human haemoglobin
subunits. The 10 genes are clustered in two different groups on different chromo-
somes, called the α-globin and β-globin loci, that are located in chromosome 16 and
11, respectively. Rearrangements of genes inside one of these clusters are possible,
but in this case the gene products are expressed at improper stages of development.

Another example of genes that are physically adjacent in the genome are operons.
An operon is a functional unit of genomic material containing a cluster of genes that
are controlled by a single regulatory promoter. Operons are an atomic transcription
unit. Namely, the physical adjacency of the cluster of genes in the operon allows the
transcription process to be regulated by one regulator promoter gene only, which
is physically located in the genomic sequence preceding the gene cluster. Such
shared regulatory mechanism easily allows either to transcribe all the genes of the
cluster or none of them by “switching on/off” one regulatory promoter only. Until
recent years, operons were thought to exist solely in prokaryotes since much more
complicated mechanisms for gene regulation were known in eukaryotes. However,
the discovery of the first operons in eukaryotes in the early 1990s radically changed
this scenario [30]. Also in the case of operons, the genes inside the cluster can be
rearranged, affecting the operon functionality. In Chapter 3, we define the problem
of detecting the above gene clusters as a pattern discovery problem, discussing a
novel approach to select the most conserved of them.

1.4 Intergenic Regions and Repeats

One of the surprising facts revealed by the human genome project is that just 1.5%
of the human genome is made of exons (belonging to both coding and non-coding

18 CHAPTER 1. STRUCTURE OF THE GENOME

genes), about 32.5% of the genome contains exons, while the remaining two thirds
of intergenic regions have an unknown function and are rich in repeated DNA se-
quences. This is one of the main structural differences between human genomes
(but also eukaryotic genomes), and the genomes of prokaryotes, which are much
more compact, and have very short intergenic regions.

Intergenic regions are the parts of the genome that fall between genes. Although
they do not code for proteins or other RNA products, some of their parts are involved
in the gene expression, while the function of some other parts is not fully understood.
Schematically, we can categorize the segments that occur in the intergenic regions
as: pseudogene, gene fragments, regulatory elements, and repeated sequences (repeats
for short).

A pseudogene is a dysfunctional relative of a known gene that has lost its protein-
coding ability and is no longer expressed in the cell. In the same way that Darwin
thought of two species as possibly having a shared common ancestry followed by mil-
lions of years of evolutionary divergence, a pseudogene and its associated functional
gene also share a common ancestor and have diverged as separate genetic entities
over millions of years. Roughly speaking, pseudogenes are considered as the last
stop for genomic material that is going to be removed from the genome, hence they
are often referred to as junk DNA. Several factors can alter the gene functionality.
As we briefly discussed in the previous sections, a gene undergoes several steps in
going from a genetic DNA sequence to a fully-functional protein (transcription, pre-
mRNA processing, translation, etc). All of these steps are performed by enzymes
and proteins that recognize and bind to some specific DNA/mRNA subsequence.
For example, during the translation phase, the ribosome starts the translation of
the mature mRNA sequence from the start codon AUG, ending at the stop codon UAG

(or at one of its variants). If the start or the stop codon are missing, because they
are not encoded in the gene, the translation process fails. If any of these steps fails,
then the sequence may be considered non-functional.

Another example of dysfunctional gene are the so-called gene fragments, that
are short segments of existing genes that have been copied from an existing gene to
an intergenic region.

A regulatory sequence is a segment of DNA where regulatory proteins such as
transcription factors bind preferentially. Regulatory sequences are appropriately
positioned in the genome, usually a short distance before the gene being regulated.
An example is the TATA-box which contains the TATAAA DNA sequence or a variant.
It is usually located 25 base pairs before the gene transcription site that signals
the start of the coding DNA sequence. During the transcription phase it is bound
by the TATA binding protein, which unwinds the DNA molecule, facilitating the
transcription process.

The last type of segments occurring in the intergenic regions is that of repeats,
which are repetitive DNA sequences occurring multiple times inside the genome.
About 50% of the 3 billion bases of the human genome is composed by repeats [45].
Repeats are usually categorized with respect to their position, size, and content in

1.4. INTERGENIC REGIONS AND REPEATS 19

two main categories: tandem repeats, and dispersed repeats.
In the case of tandem repeats, the occurrences of the repeated sequences are

adjacent, or separated by very few bases. When between 10 to 60 nucleotides are
repeated, the repeat is referred to as a minisatellite, smaller repeats are known as
microsatellites or short tandem repeats. The repeats can vary in number depending
on the specific tandem repeat, and host individual. In fact, some tandem repeats
can occur in multiple “forms” presenting a different number of repeats (Variable
Number Tandem Repeats). Since intergenic regions are well-conserved across gener-
ations, some tandem repeats are used as genetic marker in genealogical DNA tests.
Although the role of tandem repeat in intergenic regions has not been fully under-
stood, it has been proved that variation in the number of repetitions is associated
with genetic diseases as Huntington’s disease and muscular dystrophy [175].

Differently than tandem repeats where the repeated genomic sequences are ad-
jacent in the DNA sequence, in the case of dispersed repetitions the occurrences of
the repeats are not located in continuous region of the DNA sequence, but spread
the whole chromosome (chromosome-specific repeats), or even the whole genome
(interchromosomal repeats). Genome-wide interspersed repeats are believed to be
derived from transposable elements (transposons for short), who are able to move
from one DNA location to another. Transposons are usually classified based upon the
mechanism of transposition in DNA-transposons, and retrotransposons. While DNA-
transposons have an autonomous cut-and-paste transposition mechanisms, that does
not involve any RNA intermediate molecule, retrotransposons, instead, copy them-
selves in two stages. First from DNA to RNA by transcription, then from RNA back
to DNA by reverse transcription (a process used by some RNA-viruses to transform
their RNA genomes into DNA which is then integrated into the host genome and
replicated along with it). The DNA copy is then inserted into the genome in a
new position. According to their structural properties, retrotransposons are further
classified in SINEs (short interspersed nuclear elements) that are about 300 bases
long, LINEs (long interspersed nuclear elements) which reaches a size of 6000 bases,
and LTR-retrotransposon which have the structure described in Figure 4.1 with two
LTR sequences of about 300 bases, flanking the central sequence.

Nowadays, it is currently believed that repeats (and in particular those originated
by transposons), have played a fundamental role in eukaryotes evolution, generating
a large number of genetic and phenotypical variations upon which natural selection
worked. However, because of the accumulation of mutations, the identification of
the repeats is not a simple task. Chapter 2 discusses a new class of approximated
motifs (masks) that aim at modeling short fixed length repetitions, showing a high
conservation of the contents at certain positions, while the content of the other
positions do not matter at all.

The problem of transposon detection is the topic of Chapter 4. In this chap-
ter we propose a novel approach to detect transposons, which can benefit from the
availability of population genomic datasets containing the genomes of different indi-
viduals of the same species. We will assess the precision and the recall of our pattern

20 CHAPTER 1. STRUCTURE OF THE GENOME

discovery approach by a case study where we analyzed the dataset of 38 strains of
S. cerevisiæ recently released in [130].

Chapter 2

Mask Motif Discovery

2.1 Introduction

In this chapter we introduce a new class of motifs with don’t cares, motivated by
sequence analysis in biological data and data mining on sequences. Motifs are re-
peated patterns, where a pattern is an intermixed sequence of alphabet symbols
(solid symbols) and special symbols ◦ (don’t care symbols). The don’t care symbol,
found in a position of the pattern, specifies that the position may contain any alpha-
bet symbol. For example, pattern a◦t◦◦c repeats twice in the input text sequence
T = aaaattaccccatagt at positions 2 and 3 (starting from 0), and matches the two
corresponding strings aattac and attacc of T .

Informally, motifs represent frequent patterns, which occur at least q times, for
a user defined integer q ≥ 2 called the quorum. Given an input text sequence T
of length n, a quorum q, and a motif length L, we consider the problem of motif
discovery : find the motifs of quorum q and length L in the text T . Each motif
may have associated the list of the starting positions of its occurrences in the given
sequence T . Unfortunately, due to the don’t cares, the number of motifs can be
exponentially large for increasing values of L. Potentially, there can be as many as
Θ

(

(|Σ|+ 1)L
)

motifs, where Σ is the alphabet of the distinct symbols in the text T .
Even though this number can be smaller for some particular instances, the known
algorithms discovering these motifs still require, in the worst case, exponential time
and space for increasing values of L.

A lot of research has investigated these issues in order to mitigate the combina-
torial explosion of motifs [66, 139, 156, 159, 180]. We follow a new approach based
on modeling motifs by using simple binary patterns, called masks, that implicitly
represent families of patterns in T (instead of individual patterns). For example,
mask 101001 represents both a◦t◦◦c and t◦g◦◦a: each 1 represents a solid symbol,
while each 0 represents a don’t care symbol. A mask is a motif if at least one of its
represented patterns occurs q or more times in the given sequence T .

As it should be clear from the above informal definition, we aim at describing

22 CHAPTER 2. MASK MOTIF DISCOVERY

interesting repetitions in a sequence, using a succinct description (mask) that gives
rise to a smaller set of output motifs. Intuitively, consider some patterns that
occur at least q times each and that also share the same structure, meant as a
certain concatenation of solid and don’t care symbols. Since they originate from
the same mask, we take this mask as a motif. Moreover, any two patterns sharing
the same structure but having a different number of occurrences in T (still at least
q in number), which were previously considered as different motifs, are now giving
rise to the same motif by our definition of mask. Since each mask can be seen as a
binary string, we have potentially 2L masks to examine instead of (|Σ|+1)L frequent
patterns with don’t cares.

We study the problem of detecting maximal masks, namely, the most specific ones
(maximal number of 1s) such that at least one of its represented patterns occurs
q times or more (see Section 2.3 for a formal definition). For example, given the
text T = aaaattaccccatagt, fixing L = 4 and q = 2, we obtain the maximal masks
1110, 0111, and 1101. Notice that 1110 and 0111 are equivalent since they originate
the same patterns (three consecutive solid symbols) ignoring border effects, so we
can treat them as the same mask. Therefore, the patterns that are represented by
the maximal masks are aaa, ccc, and aa◦t, and so the parameter L can equivalently
be read as an upper bound on their length.

Specifically, we intend to solve the following motif discovery problem. We are
given an input text sequence T over alphabet Σ, an integer length L ≥ 1, and a
quorum q ≥ 2. We want to infer the set M of all motifs µ such that

1. µ is composed of L bits;

2. at least one of the patterns implicitly represented by µ occurs q or more times
in T ;

3. µ is maximal, namely, flipping any of its 0s into a 1 violates condition 2 above.

It is worth noting that motif discovery has many applications in the investigation
of properties of biological sequences. In such applications, it is a must to allow
distinct occurrences of a motif to show some differences. In other words, we actually
infer approximated motifs. This approximation can be realized in several ways,
according to the kind of application one has in mind. Motifs of limited length
with don’t cares can typically model biological object such as transcription factors
binding sites, which are characterized by a short length, and a high conservation
of their structure. Also, they present a high conservation of the contents in certain
positions while for others it does not matter at all. The don’t care symbols of our
masks indeed aim at masking the latter, while the solid character should unmask
the former.

Moreover, our masks could also be employed as building blocks for longer and
flexible motifs, of different kinds, allowing also indels. In recent years, there has
been a growing interest in seeds for several applications (preprocessing filtration

2.1. INTRODUCTION 23

prior to a multiple alignment, approximate search task, data base search, BLAST
like homology search, profile search, probe design) in bioinformatics [68, 100, 119,
120, 118, 177]. Among them, many have focused the attention on gapped seeds, or
spaced seeds [36, 40, 43, 57, 110, 176]. It turns out that gapped seeds can be found
using the masks, and thus using the algorithms introduced in this chapter.

Finding motifs with don’t cares could help to detect structural similarities, with
a suitable input sequence. Possible applications involve the detection of structural
motifs in alpha helices, of conserved positions in channeling trans-membrane pro-
teins, and repeated structures that are involved in the DNA folding process. In fact,
when investigating the folding of a DNA sequence, it can be interesting to rewrite
the sequence itself into the alphabet {w, s} replacing each A and T with w (weak),
and each C and G with s (strong). The motivation is that in the base pairing that
assists in stabilizing the DNA structures, Adenine (A) binds to Thymine (T) via two
hydrogen bonds, while Cytosine (C) forms three hydrogen bonds with Guanine (G).
Hence, the latter bond is stronger than the former, and this has an influence on the
actual structure of the molecule. Here, a motif on such sequence could represent a
repeated structure, regardless of the actual DNA bases that form it.

In the following sections we show conceptually how to associate a pruned trie
of height L with each mask µ. Since the text positions of the occurrences of the
patterns implicitly represented by µ cannot overlap (while the patterns themselves
can), we store the corresponding partition of the text positions into the trie, where
the positions corresponding to the occurrences of the same pattern share a common
leaf.

Our algorithm refers to the above pruned tries for the masks but it does not
actually need to store them explicitly. Indeed, it extends the Karp-Miller-Rosenberg
doubling scheme [105] and applies it to the masks, of length an increasing sequence
of powers of 2 up to L. Our algorithm avoids to actually create the tries and just
performs scanning and sorting of some suitable lists of consecutive pairs and triplets
of integers.

However, the above method still generates the set Q of all the (maximal and
not) masks having quorum q for the given sequence T , where Q ⊇ M . A post-
processing that filters from Q the masks that are not maximal, may increase the
time complexity: precisely, it may take Θ(|Q|2L) time in the worst case (e.g. [80]),
yielding an additional cost of Ω(22L L) time.

We therefore introduce the crucial notion of safe masks, which includes the max-
imal masks as a special case. We show how to explore the lattice of 2L masks of
length L by examining only safe masks, so that maximal masks can be efficiently
detected. In this way, we avoid the above postprocessing and obtain our final bound
of O(2Ln) time and space in the worst case, for discovering all the masks belonging
to M , which is our main result.

In order to compare the time complexity of our proposed algorithm, consider
the following scenario. After a preprocessing phase of the text T in polynomial
time O(nc), for a constant c ≥ 1, consider the following checking phase: for each

24 CHAPTER 2. MASK MOTIF DISCOVERY

of the (|Σ| + 1)L candidate patterns, verify if the given pattern has quorum and
is maximal, taking just constant time (which is the best we can hope for, once a
candidate pattern is given). An algorithm based on this ideal strategy would cost
O(nc + (|Σ| + 1)L) time. When the latter is compared to the O(2Ln) time cost
of our algorithm, we observe that 2Ln ≤ nc when L ≤ (c − 1) log2 n and that
2Ln ≤ (|Σ| + 1)L when L ≥ log2 n/(log2(|Σ| + 1) − 1). Hence, our cost O(2L)
is better than the ideal bound O(nc + (|Σ| + 1)L) except for few degenerate cases
(namely, when c < 1 + (log2(|Σ| + 1) − 1)−1). In general, we can establish an
upper bound 2Ln = O

(

nΘ(1+1/ log2 |Σ|) + min{2Ln, (|Σ| + 1)L}
)

. In other terms, our
algorithm performs better than virtually constant-time enumerating and checking
all the potential (|Σ| + 1)L candidate patterns in T . In the above discussion for
the complexity, we assume that the word size of w bits in the standard RAM is
sufficiently large, so that L = O(w). When L is much larger, the time complexity
of our algorithm must be multiplied by a factor of O(L/w).

This chapter is organized as follows. After reviewing the state of the art in
Section 2.2, in Section 2.3 we give a formal definition of our motifs based on masks.
We then present efficient algorithms to compute these motifs, reviewing also basic
notions as that of maximality in the light of this new class of motifs. More precisely,
in Section 2.4, we show how to discover the motifs of length L in O(2Ln) time by
extending the Karp-Miller-Rosenberg approach to the masks. In Section 2.5, we
represent the space of all possible 2L masks of length L as a lattice and introduce
the notion of safe masks. We also describe how to traverse implicitly this lattice for
discovering maximal masks in it, querying the oracle only for safe masks. Finally,
we draw our conclusions in Section 2.6.

2.2 Related Problems and State of the Art

We are not aware of any previous work introducing our class of motifs. Hence, we
relate our results in motif discovery to those of mining frequent itemsets, where more
sophisticated techniques have been found over the years [4, 5, 81]. The notion of
masks comes naturally into play when performing data mining for frequent itemsets,
where the “apriori” algorithm is intensively employed [91]. Here, a set of L items is
given, and each transaction (basket) corresponds to a subset of these items, which
can be represented as a binary sequence in which the ith symbol is 1 if and only if
the ith item is chosen for the basket. A set of baskets can be therefore represented
as a set of masks in our terminology. For the lattice of all possible 2L masks, all
possible itemsets should be examined. Note that, instead, our definition of masks
has the goal of condensing patterns that have the same sequence of solid and don’t
care symbols. Moreover, our traversal of the lattice is different from the apriori
algorithm, since we start from the top and generate candidates in a different way,
namely, using safe masks (see Section 2.5 for details).

As far as we know, the “dualize and advance” algorithm [86, 87] is the best

2.3. A NEW CLASS OF MOTIFS 25

theoretical approach that can be obtained in terms of running time. It sets up
an interesting connection between mining itemsets in the lattice of 2L masks and
finding hypergraph traversals [21]. In our terminology, suppose to have incrementally
found some of the maximal masks, say µ1, µ2, . . . , µk. We build the corresponding
hypergraph as follows: there are L nodes numbered from 1 to L, and there is one
hyperedge per mask, where the jth bit in the mask is 0 if and only if the node j is
incident to the corresponding hyperedge (1 ≤ j ≤ L). In general, the ith hyperedge
connects the nodes that correspond to the 0s in the ith mask µi (1 ≤ i ≤ k). In
order to find additional maximal masks (and hence add hyperedges), it suffices to
find all the hypergraph traversals as starting points for upward paths in the lattice,
where each traversal is a minimal hitting set for the current set of k hyperedges [21].

The problem of finding hypergraph traversals is intimately related to the dualiza-
tion of monotone Boolean functions [62]. The known algorithms required O(2L) time
in the worst case [21, 108] until the seminal result in [72, 113] showing a subexpo-
nential bound proportional to t(k) = kO(log k) time, when the number of hyperedges
k is o(2L). This algorithm is plugged into the scheme of the “dualize and advance”
algorithm, giving a bound of O (n × t(|M | + |Bd−(M)|)) as shown in [86], where
we include the cost O(n) of verifying the quorum, and Bd−(M) is the set of masks
not satisfying the quorum constraint, such that all the predecessors of the masks
satisfy the quorum, and all the successor do not. While |M | can be subexponential,
there are cases in which |M |+ |Bd−(M)| = Θ(2L) [86], and so the final bound can
be Ω(2L2

n).
Surprisingly, this and other approaches based on hypergraph traversals, which

are the state of the art theoretically, are slower than our solution in the worst case.

2.3 A New Class of Motifs

In this section, we introduce our new class of motifs with don’t cares. Starting
from some basic notions, we describe some features of this class that will then be
exploited by the algorithms in the rest of this chapter. Let T be an input text of size
n drawn over the alphabet Σ. The sequence T can be seen as an array T [0 . . . n− 1]
of symbols, where symbol T [i] ∈ Σ is stored into position i, for 0 ≤ i ≤ n − 1. A
substring T [i]T [i + 1] · · ·T [j] is represented as T [i . . . j].

2.3.1 Masks and patterns

Given a positive integer L, we call mask any binary sequence in {0, 1}L; hence, L
is the length of the mask. For a given mask µ = µ[0 . . . L − 1], we define Sµ =
{i | µ[i] = 1, for 0 ≤ i ≤ L − 1} as the set of its solid positions, and Dµ = {i |
µ[i] = 0, for 0 ≤ i ≤ L− 1} as the set of its don’t care positions. For example, mask
µ = 1010 has Sµ = {0, 2} and Dµ = {1, 3}.

A pattern is a regular expression m ∈ (Σ∪{◦})L, where ◦ is the don’t care symbol

26 CHAPTER 2. MASK MOTIF DISCOVERY

that matches any symbol in Σ. We say that a pattern m is an instance of a mask
µ when, for each position 0 ≤ k ≤ L − 1, it is m[k] = ◦ if and only if µ[k] = 0.
For example, given Σ = {a, c}, the mask µ = 1010 has four instances, namely,
m1 = a◦a◦, m2 = c◦a◦, m3 = a◦c◦, and m4 = c◦c◦.

By exploiting the fact that a mask µ implicitly represents the patterns that are
its instances, we define a new relation among the text substrings according to µ, as
follows.

Definition 1 (≡µ relation). Given a mask µ of length L, a text T of length n,
and two text positions 0 ≤ i, j ≤ n − L + 1, we say that i ≡µ j if and only if
T [i + k] = T [j + k] for each solid position k ∈ Sµ in the mask.

Definition 1 relates any two text substrings of length L, appearing at positions i
and j, when these substrings match in each solid position specified by the mask µ.
For example, given T [i . . . i+L−1] = actact and T [j . . . j+L−1] = agttct, consider
the two masks µ = 101011 and µ′ = 110111. It holds i ≡µ j because a◦t◦ct occurs
both at positions i and j of T , while i 6≡µ′ j because the two substrings actact and
agttct mismatch at solid positions 1, 3 ∈ Sµ′ .

It is easy to see that the relation ≡µ is an equivalence relation. Therefore, for a
given mask µ, the relation ≡µ induces a partition of the first n − L + 1 positions in
T . Namely, for each equivalence class C in the partition, we have that i, j ∈ C if
and only if i ≡µ j. Hence, each text position i (for 0 ≤ i ≤ n − L + 1) belongs to
exactly one equivalence class. We denote the partition resulting from µ by πµ. We
use |πµ| to indicate the number of equivalence classes in it, and |C| to indicate the
number of elements in a class C ∈ πµ.

Given an equivalence class C of a partition πµ, we can associate a pattern mC

of length L with C. Specifically, symbol mC [k] = ◦ if k is a don’t care position of
the mask µ (k ∈ Dµ) while mC [k] = T [i + k] if k is a solid position (k ∈ Sµ and for
any arbitrary i ∈ C).

In order to better illustrate the properties of the partition πµ and the corre-
sponding patterns mC where C ∈ πµ, we can use a trie (digital search tree [115])
built on the set of strings {mC | C ∈ πµ}. In this trie, the special symbol ◦ can be
treated as an ordinary symbol, since all the patterns share the same mask µ. We
can arrange the strings in this way since the arcs found on the same level of the trie
are either all labeled with a solid symbol or all labeled with a don’t care symbol.
Each root-to-leaf path spells out a distinct pattern mC , and the corresponding leaf
stores the text positions in class C of the partition πµ.

Example 1. Consider the alphabet ΣDNA = {a, t, c, g} and the text
T = aaaattaccccatagt of length n = 16. For a mask µ = 1100 of length L = 4,
the partition induced by µ is πµ = {C0C1 · · ·C6}, where C0 = {4}, C1 = {5, 12},
. . ., C6 = {0, 1, 2} are the classes labeling the leaves of the trie shown in Figure 2.1.
The instances of µ are the patterns mC0

= tt◦◦, mC1
= ta◦◦, . . ., mC6

= aa◦◦.

2.3. A NEW CLASS OF MOTIFS 27

0,1,2

°

°

5,12

T

ACT A

A

A
CT

° °

° °°

°°

°

°

°

°

°

C

4 7,8,9 10 3,11 6

Figure 2.1: Trie for ≡µ where µ = 1100.

2.3.2 Partial order of masks and maximality

We now draw our attention to the masks µ that have the maximum number of solid
symbols while inducing a partition πµ which contains at least one class C such that
|C| ≥ q for the given quorum q. For this, we need to introduce a partial order on
the masks.

Definition 2 (� relation). Given two masks µ and µ′ of length L, we say that µ is
less specific than µ′ (denoted by µ � µ′) if and only if µ[i] ≤ µ′[i] for 0 ≤ i ≤ L− 1.

When Definition 2 holds, we also say that µ′ is more specific than µ, and that µ
is a predecessor of µ′, and µ′ is a successor of µ. For example, 0001 � 1101, while
0001 6� 0010. The mask µ is an immediate predecessor of µ′ if µ � µ′ and they differ
in exactly one symbol (e.g. 1001 and 1101). We can define the immediate successor
analogously.

Relation � is a partial order among the masks because it is reflexive, antisym-
metric (1001 � 1101, but 1101 6� 1001) and transitive. Hence, it gives rise to the
partially ordered set L = 〈{1, 0}L,�〉, which is a finite lattice of 2L masks. The top
mask of L is 1 . . . 1 and the bottom mask is 0 . . . 0. The lattice L is isomorphic to
the power set lattice P = 〈P({0, . . . , L− 1}),⊆〉 because each mask represents the
characteristic vector of a set in the powerset P({0, . . . , L − 1}), and µ � µ′ if and
only if Sµ ⊆ Sµ′ .

Analogously, we can define the � relation between patterns. Given two patterns
m and m′ of length L, we say that m is less specific than m′ (written m � m′) if and
only if either m[i] = m′[i] or m[i] = ◦ for 0 ≤ i ≤ L − 1. For example, ◦◦◦a � at◦a
while ◦◦◦a 6� at◦c and ◦c◦a 6� a◦◦a. Note that � is a partial order also for the
patterns. However, it gives rise to a lattice of (|Σ|+ 1)L patterns, and so in the rest
of this chapter we prefer to adopt the binary lattice L of 2L masks.

At this point, we may wonder what is the connection between the partitions
induced by the masks (Section 2.3.1) and the lattice L formed by the masks.

Lemma 1. For any two masks µ and µ′ such that µ � µ′, πµ′ is a refinement of πµ.
Namely:

(i) For each class C ∈ πµ, there exists classes C0, C1, . . . , Cs−1 ∈ πµ′ which form
a partition of C.

28 CHAPTER 2. MASK MOTIF DISCOVERY

0

T

ACT A

C
A

A

° ° °

C

CT

T C

°

A

°

A G CC A T

°

A

°

T

104 12 5 7 8 9 3 11 6 1,2

Figure 2.2: Trie for ≡µ′ where µ′ = 1101.

(ii) For each class C ′ ∈ πµ′, there exists a class C ∈ πµ such that C ′ ⊆ C.

Example 2 (continued). Consider mask µ′ = 1101, for which µ � µ′, where µ =
1100. Consider the equivalence classes of πµ (Figure 2.1) and πµ′ (Figure 2.2). We
have that C0 = {4} = C ′

0, C1 = {5, 12} = {12} ∪ {5} = C ′
1 ∪ C ′

2, C2 = {7, 8, 9} =
{7}∪{8}∪{9} = C ′

3∪C ′
4∪C ′

5, C3 = {10} = C ′
6, C4 = {3, 11} = {3}∪{11} = C ′

7∪C ′
8,

C5 = {6} = C ′
9, and C7 = {0, 1, 2} = {1, 2} ∪ {0} = C ′

10 ∪ C ′
11. Therefore, both

properties (i) and (ii) hold.

2.3.3 Maximal Masks Problem (MMP)

We are given a text T of length n and a length L ≥ 1 for the masks, along with a
quorum q ≥ 2. We say that a mask µ has quorum if there is an equivalence class C
in the partition πµ such that |C| ≥ q. The relation � and the quorum q are the key
ingredients to find interesting masks.

Let Q(L, T, q) be the set of all masks of length L that have quorum q. A mask
µ is maximal if it has quorum and no other mask µ′ of the same length has quorum
and is more specific than µ (i.e. µ � µ′). We denote by M (L, T, q) ⊆ Q(L, T, q)
the set of all maximal masks (M and Q for short, respectively), and address the
following problem in this chapter.

Problem 1 (MMP= Maximal Masks Problem). Input: a mask length L, a text T ,
and a quorum q. Output: the set M ≡ M (L, T, q) of all the maximal masks.

Example 3 (continued). Using T = aaaattaccccatagt, for L = 4 and q = 2,
the set of masks with quorum is Q(4, T, 2) = {0000, 0001, 0010, 0011, 0100, 0101,
0110, 0111, 1000, 1001, 1010, 1100, 1101, 1110}, while the maximal masks are only
those of the set M (4, T, 2) = {0111, 1101, 1110}. The patterns that are instances
of the maximal masks are ◦aaa, aa◦t, and ◦ccc. Notice that masks 0111 and 1110,
which are both in M , actually represent the same patterns, except possibly border
effects, because one is the shift of the other obtained by only changing the number of
◦s at the sides. We will show in Section 2.4 how to remove this sort of redundancy,
which will actually obtain a reduction of the search space, as a positive side effect.

2.4. THE KMR APPROACH FOR MASKS WITH QUORUM 29

We can see that checking whether a mask µ has quorum q corresponds to eval-
uating a Boolean predicate PT (µ) which returns true if and only if there exists a
pattern m that is an instance of µ and that has at least q matches in T . Note that
PT (µ) is anti-monotone.1 Hence, MMP can be equivalently restated as checking an
anti-monotone predicate PT (µ) on a binary lattice of 2L masks, to discover all the
maximal masks where the predicate holds. In the following sections, we will describe
how to solve this equivalent problem for sequences, and we will make use of this view
of MMP.

2.4 The KMR Approach for Masks with Quorum

We now describe our first algorithm to solve MMP by building the sets Q and M .
Conceptually, we want to build the partition πµ for each mask µ ∈ {0, 1}L, check
whether µ has quorum (i.e. there exists a class C ∈ πµ such that |C| ≥ q), and
verify that no mask µ′ with µ � µ′ has quorum. Note that a straightforward way
of checking whether a mask has quorum requires to scan the text T and build a
trie like that shown in Figure 2.2, in Θ(Ln) time. This would give a total cost of
Ω(L2Ln) time since there are Ω(2L) masks to check.

We reduce the above cost to O(2Ln) time using a different and simple approach
that avoids explicitly building the trie for each mask. Our idea is to maintain the
partitions induced by the masks as follows. Assuming without loss of generality that
L is a power of 2, we first compute the partitions induced by the masks of length 1;
inductively, given the partitions induced by the masks of length 2i, we show how
to compute the partitions induced by the masks of length 2i+1 in a way that does
not explicitly need the tries, even though we will implicitly refer to them during the
description of our algorithm.

We implement our idea using the approach proposed by Karp, Miller and Rosen-
berg [105], hereafter called kmr. The kmr approach addresses the problem of
identifying exact repeated substructures of fixed size in a given combinatorial struc-
ture. It applies to finding repeated substrings in strings, repeated subtrees in trees,
and repeated segments in arrays [48]. For strings, kmr uses a relation Ek according
to which two substrings of length k beginning at positions i and j of the text T are
k-equivalent, written i Ek j, if and only if they are identical in every position. Given
this, kmr provides a characterization of Ek+k′ in terms of Ek and Ek′ , so that it
constructs inductively the sets {E2, E4, E8, . . . , EL} by setting k = k′. That is, it
doubles the length of the substrings by means of a concatenation of two substrings
from the previous iteration. kmr starts out from the set E1 (obtained by a simple
scan of the input sequence T), and ends at the required length L. Each iteration
takes time O(n), where n is the length of the text T . Since the number of iterations

1We recall that, given a partial order �, a predicate p is anti-monotone if, for any x and y such
that x � y, we have that p(y) = true implies p(x) = true. Conversely, p is monotone if p(x) = true

implies p(y) = true.

30 CHAPTER 2. MASK MOTIF DISCOVERY

is O(log L), the overall complexity of kmr is O(n log L) time.
In our case, MMP differs from the problem solved by kmr since we use masks

as one further level of abstraction. We do not apply kmr directly to the text
substrings; instead, we double the length of the masks and, as a side effect, we
double the length of the induced equivalent substrings in the text (i.e. they match
on all the solid positions of the given mask). In this way, the original kmr can be
seen as a special case of our approach when the mask is made by all solid symbols
11 · · ·1.

We observe that, for any given mask, we can employ kmr when the relation
Ek is replaced by the ≡µ relation introduced in Definition 1. We also replace the
concatenation performed by kmr at each iteration by the concatenation operation
among masks. Given two masks µ and µ′, we indicate their concatenation by µµ′.
The following result relates the ≡µ equivalence relation to the mask concatenation
operation, showing how the kmr paradigm can be generalized to our case.

Lemma 2. Given a string T of length n, two masks µ, µ′, two positions i, j in T
then i ≡µµ′ j if and only if i ≡µ j and (i + |µ|) ≡µ′ (j + |µ|).

Proof. We start by showing how i ≡µµ′ j implies i ≡µ j and (i + |µ|) ≡µ′ (j + |µ|).
If i ≡µµ′ j, then by definition we have that

T [i + k] = T [j + k] for all k ∈ Sµµ′ . (2.1)

Notice that Sµµ′ = Sµ ∪ (Sµ′ + |µ|). Hence, (2.1) implies that (i) T [i + k] = T [j + k]
for all k ∈ Sµ, and (ii) T [i + k] = T [j + k] for all k ∈ (S ′

µ + |µ|). Observe that (i)
exactly matches the definition of i ≡µ j, which is then proved. On the other hand,
(ii) implies that T [i+k] = T [j+k] holds for k = |µ|+k′ for all k′ ∈ Sµ′ , that is to say
T [i + |µ|+ k′] = T [j + |µ|+ k′] for all k′ ∈ Sµ′ , and hence that (i + |µ|) ≡µ′ (j + |µ|).
In order to show that if i ≡µ j and (i + |µ|) ≡µ′ (j + |µ|), then i ≡µµ′ j, it is enough
to observe that all steps above can be inverted, and hence the result is proved.

2.4.1 Partition construction and generation of masks

Using Lemma 2 requires an efficient procedure that computes all the related equiva-
lence classes in a partition. In this section we describe an algorithm that solves this
problem.

Given a quorum q ≥ 2 and two partitions πµ and πµ′ , where µ is not necessarily
different from µ′, the algorithm returns a new partition πµµ′ built according to
Lemma 2, possibly filtered in order to satisfy the quorum constraint. The key point
is illustrated in Figure 2.3, where we are given two partitions πµ and πµ′ and we
want to obtain the new partition πµµ′ shown in Figure 2.2. (Note that the text
is the same as before T = aaaattaccccatagt, that q = 2, and that the tries are
shown for the sake of presentation since we do not actually employ them in our
implementation.) In order to concatenate two masks µ and µ′ of length `, the main

2.4. THE KMR APPROACH FOR MASKS WITH QUORUM 31

0,1,2

A

T C

C T A

A

5,12 7,8,9 3,11

T C
A

o

6,7,8,9 1,2,5,10,123,4,11,14

Figure 2.3: Partitions for masks µ = 11 (left) and µ′ = 01 (right).

steps can be summarized as follows (we refer to Figure 2.2 and Figure 2.3 as an
example).

1. We are given masks µ and µ′ and their induced partitions πµ and πµ′ . We
consider only the equivalence classes C such that |C| ≥ q, and number these
classes so that each class has its own class name inside its partition. (In our ex-
ample, πµ = [{5, 12}0, {7, 8, 9}1, {3, 11}2, {0, 1, 2}3] and πµ′ = [{3, 4, 11, 14}0,
{6, 7, 8, 9}1, {1, 2, 5, 10, 12}2], where we ignore classes with less than q elements
and report the numbering of each relevant class as its subscript.)

2. We create a (multiset) list LP of pairs as follows. First, for each class C ∈ πµ,
we add the pairs 〈i, nC〉 to LP for all positions i ∈ C, where nC is the number
assigned to C in step 1. Second, for each class C ′ ∈ πµ′ , we add the pairs
〈i′ − |µ|, nC′〉 to LP for all positions i′ ∈ C ′ such that i′ ≥ |µ′|, where nC′ is
the number assigned to C ′ in step 1. (In our example, we obtain LP = [〈5, 0〉,
〈12, 0〉, 〈7, 1〉, 〈8, 1〉, 〈9, 1〉, 〈3, 2〉, 〈11, 2〉, 〈0, 3〉, 〈1, 3〉, 〈2, 3〉, 〈1, 0〉, 〈2, 0〉,
〈9, 0〉, 〈12, 0〉, 〈4, 1〉, 〈5, 1〉, 〈6, 1〉, 〈7, 1〉, 〈3, 2〉, 〈8, 2〉, 〈10, 2〉] since |µ′| = 2.)

3. We sort the list LP in a stable way according to the first component of each pair
in it. We drop from the list the pairs 〈i, j〉 such that no other pair has i as its
first component in the list. (We obtain LP = [〈1, 3〉, 〈1, 0〉, 〈2, 3〉, 〈2, 0〉, 〈3, 2〉,
〈3, 2〉, 〈5, 0〉, 〈5, 1〉, 〈7, 1〉, 〈7, 1〉, 〈8, 1〉, 〈8, 2〉, 〈9, 1〉, 〈9, 0〉, 〈12, 0〉, 〈12, 0〉].)

4. The actual concatenation between µ and µ′ takes place. Indeed, there is an
occurrence of a pattern m (instance of mask µµ′) in position i if and only if
〈i, j〉 and 〈i, j′〉 are consecutive pairs in LP for some 0 ≤ j, j′ ≤ n− 1. Hence,
we generate a triplet 〈j, j′, i〉 from these two pairs (note that 〈i, j〉 precedes
〈i, j′〉 in LP), thus forming a list LT of triplets. (We obtain LT = [〈3, 0, 1〉,
〈3, 0, 2〉, 〈2, 2, 3〉, 〈0, 1, 5〉, 〈1, 1, 7〉, 〈1, 2, 8〉, 〈1, 0, 9〉 〈0, 0, 12〉].)

5. We lexicographically sort the list LT according to the first two components of
each triplet in it. We drop from the list the triplets 〈j, j′, i〉 such that there are
less than q triplets in the list having j and j′ as their first component in the
list, since they do not reach the quorum. (We obtain LT = [〈3, 0, 1〉, 〈3, 0, 2〉].)

32 CHAPTER 2. MASK MOTIF DISCOVERY

6. We start from an empty partition πµµ′ . For each maximal run of consecu-
tive triplets 〈i, j, k1〉, 〈i, j, k2〉, . . . 〈i, j, kr〉 in LT (r ≥ q), we add the class
{k1, k2, . . . , kr} to πµµ′ . We return πµµ′ after completing the scan of LT . (In
our example, πµµ′ = [{1, 2}] since only one class contains at least q elements
in Figure 2.2.)

For the sake of simplicity, we described steps 3 and 5 as sorting steps, but it
suffices a stable grouping of the input, meaning that pairs (triplets) having the
same first (two) component(s) should be consecutive in the resulting list.

Lemma 3. Given partitions πµ and πµ′ and a quorum threshold q ≥ 2, steps 1–6
correctly compute the set {C ∈ πµµ′ | |C| ≥ q} in O(n) time and space.

Proof. We begin by proving the method to be correct. Given two partitions πµ and
πµ′ , in step 1, we label each class C of theirs, by a distinct class name nC , while in
step 2 we rewrite each occurrence of a µ’s instance (i.e. a text position i in a class
C ∈ πµ) as a pair 〈i, nC〉 and each occurrence j′ of an instance of µ′ as a pair 〈j, nC′〉
where j = j′ − |µ|. In this way, given two pairs 〈i, nC〉 and 〈j, nC′〉, if i is equal to j
then i ≡µ j (since i belongs to an equivalence class in πµ) and (i + |µ|) ≡µ′ (j + |µ|)
(since j′ belongs to an equivalence class in πµ′). In order to detect pairs having the
same first component, in step 3 we sort them in a stable way, discarding all pairs that
do not share the first value with any other. At step 4 for each couple of consecutive
pairs 〈i, nC〉, 〈i, nC′〉 the triplets 〈nC , nC′, i〉 representing the text position i of a new
equivalence class in πµµ′ is created. At this point, all the new classes with strictly less
than q text positions are discarded and the partition πµµ′ containing the remaining
classes is finally returned. Detecting equivalence classes having more than q text
positions is easy by the sorting of step 5: triplets representing text positions in the
same class C ′′ ∈ πµµ′ are now grouped as they agree on their first two components
nC and nC′ .

We prove that steps 1–6 take O(n) time and space. Since there can be at most
O(n) positions, the list generated at step 1 has size in O(n). Its sorting in step 2 can
be done in O(n), for example, using radix sort since the integers are small. After
sorting, the detection of pairs to be dropped at step 2, as well as that of triplets
to be generated at step 3 can also be done in linear time, because pairs that start
with the same position are now consecutive. Each newly generated list is either a
permutation of the previous one, or even a subset of it, and thus the size remains
in O(n). Therefore, the sorting of step 5 can be done in linear time using radix sort
because the number of distinct classes cannot be larger than n. This sorting allows
us to detect in linear time the triplets to be dropped at the same step. Similarly,
it permits the final detection of maximal runs to be done in linear time as well.
Therefore, the overall time and space complexity is O(n).

Notice that the elimination, at each iteration, of masks that do not satisfy the
quorum actually results in a practical important reduction of the search space. No-
tice also that if we build the classes of a new mask obtained by the overlapping of

2.4. THE KMR APPROACH FOR MASKS WITH QUORUM 33

0,1

T

ACT A

A

A
CGT

° ° °° ° °°

°

°

C

4,113 6,7,8 9 2,10 12 5

Figure 2.4: Trie for πµ′ where µ′ = 0110.

0

T

ACT A
T

G
A

A
CGT

°

C

°

2 3,10 12 5,6,7 8 1,9 11 4

Figure 2.5: Trie for πµ′′ where µ′′ = 0011.

two shorter masks (rather than their concatenation), then the very same procedure
can be applied (having the same complexity) with the only difference that Step 2
should build pairs 〈i′ − δ, nC′〉 instead of 〈i′ − |µ|, nC′〉, where δ is the size of the
overlap.

2.4.2 Equivalent masks

We now list some interesting properties that allow us to generate half of all possible
2L masks. Although these properties do not improve over the worst-case complexity,
they are useful optimizations for the practical behavior of our algorithms.

We first need to introduce some notation. Intuitively, consider the partitions
shown in Figures 2.1, 2.4, and 2.5, respectively, for masks µ = 1100, µ′ = 0110, and
µ′′ = 0011. The classes in these partitions are reported in Table 2.1, so that their
mutual dependence is highlighted. Ignoring border effects in the first and the last
L− 1 positions of the text, we can say that µ, µ′, and µ′′ conceptually represent the
same set of patterns: those that have only two solid and adjacent symbols. Each row
of Table 2.1 puts the classes of different partitions into a one-to-one correspondence,
in which a class can be obtained from another by adding an integer d to the positions,
such that |d| is exactly the amount of shifted symbols in their masks needed to make
them equal. For example, class {5, 6, 7} can be obtained from {7, 8, 9} by adding
the integer −2 to the positions of the latter, since µ′′ can be transformed into µ
shifting its symbols by 2 positions to the left.

Given two masks µ and µ′ of the same length, we say that they are equivalent if

34 CHAPTER 2. MASK MOTIF DISCOVERY

Figure 2.1 Figure 2.4 Figure 2.5
{4} {3} {2}

{5,12} {4,11} {3,10}
- - {12}

{7,8,9} {6,7,8} {5,6,7}
{10} {9} {8}
{3,11} {2,10} {1,9}

- {12} {11}
{6} {5} {4}

{0,1,2} {0,1} {0}

Table 2.1: The partitions shown in Figures 2.1, 2.4, and 2.5.

they have the same number of 1s and µ can be obtained from µ′ by a shift of the
symbols, as long as only 0s exceed the mask border and the empty positions are
filled with 0s (also the inverse holds). We define the following notations for sets of
positions. Given two sets C and C ′ of text positions in [0 . . . n − 1], we say that
C ≡d C ′ for an integer d if two conditions hold:

1. for each i′ ∈ C ′ such that 0 ≤ i′ + d ≤ n − 1, we have that i′ + d ∈ C;

2. for each i ∈ C such that 0 ≤ i − d ≤ n − 1, we have that i − d ∈ C ′.

It is easy to see that, removing border effects, there is a one-to-one correspon-
dence between the classes of the partitions induced by two equivalent masks that
actually coincides with the relation ≡d, where d is the size of the shift. In other
words, the following result clearly holds.

Lemma 4. For any two equivalent masks µ and µ′, there exists an integer d inducing
a one-to-one correspondence between the classes of the partitions πµ and πµ′ as
follows: for each class C ∈ πµ, we have a unique class C ′ ∈ πµ′ such that C ≡d C ′

(and vice versa).

It is worth noting that, ignoring the first and the last L − 1 text positions, πµ

and πµ′ have the same number of equivalence classes, the same number of elements,
and any position shifted by an integer d > 0. Alternatively, we can extend the text
with L− 1 endmarker symbols to its left and its right. In this way, Lemma 4 makes
partitions πµ′ redundant with respect to πµ.

Consequently, for each group of equivalent masks, we choose as representative
the one having 1 as its first symbol. (Such a mask always exists except for the mask
00 · · ·0, which forms a trivial singleton group whose partition contains just one class
made up of all the text positions.) We then eliminate the other masks in the class
from our computation (steps 1–6), since we can always recover their partitions by
adding a suitable integer d. For example, with L = 4, we now build explicitly only
the representative masks when applying Lemma 3, which illustrates the fact that

2.4. THE KMR APPROACH FOR MASKS WITH QUORUM 35

the number of representatives is at most half the number of equivalent masks: only
those that start with a 1. The masks of length ` = 1, 2, 4 examined are those in the
sets F` below:

F1 = {1},
F2 = {11, 10},
F4 = {1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000}.

2.4.3 Algorithm KMR for masks

We now have all the ingredients for describing our algorithm that applies kmr to
solve MMP. Given a string T , a length L and a quorum q, we first compute the
partition for F1 = {1} (since that for the mask 0 is trivial). Next, we compute F2,
F4 and so on, as described in Sections 2.4.1–2.4.2. In particular, we just compute
the representative for each equivalent class of masks, when running steps 1–6: for
each pair of (not necessarily distinct) masks µ, µ′ ∈ F`, we build F2` by processing
the concatenation of µ with all possible shifts of µ′ (whose partitions we can quickly
recover from that of µ′). Summing up, we actually perform the following two steps:

1. Scan T to construct the partition induced by relations ≡1 and build F1.

2. Use Lemmas 2–4 to construct, successively, F2, F4, F8, . . . , F2r , and FL, where
r is the largest value such that 2r < L.

Theorem 5. Using the kmr approach, we can build the set Q(L, T, q) of masks for
MMP, along with their induced partitions, in O(2Ln) time and space.

Proof. Given a length L, we have at most
∑r

`=1 2` + 2L < 2L+1 different masks µ
to consider, and so as many equivalence relations ≡µ, during the execution of the
procedure referred to by Lemma 3. Since this latter guarantees that such execution
takes O(n) per mask, we have that kmr requires a total of O(2Ln) time and space.

In order to fully solve MMP, we need to select the maximal masks that will
form the set M (L, T, q) ⊆ Q(L, T, q). This maximality check on the set Q(L, T, q)
computed in Theorem 5 can be done a posteriori using the less algorithm proposed
in [80], with a cost that is linear on the average and quadratic in the worst-case with
the size of the input. In our case, we need to apply it to Q in O(L|Q|2) worst-case
time. Given that we have up to 2L masks of length L in Q, this method has O(L2L)
average time complexity, and O(L22L) worst-case time complexity.

Corollary 6. Using the kmr approach, we can solve MMP in O(L2Ln) average
time and space, and O(L22Ln) worst-case time and space.

One drawback of the algorithm behind the result stated in Corollary 6 is that if
a maximal mask µ is discovered and has a certain number k of 1s in it, we have to

36 CHAPTER 2. MASK MOTIF DISCOVERY

Figure 2.6: Two binomial (spanning) trees BL, rooted at the top and at the bottom
of lattice L .

generate nevertheless all the Θ(2k) masks µ′ such that µ′ � µ. In Section 2.5, we
define a hybrid approach using kmr to evaluate the PT (µ) predicate and a branch-
and-bound strategy that exploits the anti-monotonicity of the above predicate, in
order to obtain a better O(2Ln) algorithm for MMP (see Theorem 8).

2.5 Adaptive KMR for Maximal Masks

In this section, we describe how to improve the worst-case complexity O(L22Ln)
of Corollary 6. The reason for this bound is that, when using the kmr approach
described in Section 2.4, we first generate all the masks of length L having quorum
and, then, perform a postprocessing to select those being maximal too. Our task can
be better viewed in terms of the lattice L = 〈{1, 0}L,�〉 of 2L masks, introduced
in Section 2.3.2 and illustrated in Figure 2.6. Given a mask µ having quorum, we
would like to avoid to compute the partitions for mask µ′, such that µ′ � µ. Recall
that µ′ is called predecessor of µ, and the latter is called successor of µ′. In general,
given a mask, its successors are those masks that are reachable going upward in the
lattice L and its predecessors are those reachable going downward.

2.5.1 Lattice traversal

Our idea can be summarized as follows. Suppose that we compute the set Q(L/2, T, q)
of all masks of length L/2 that have quorum q, using Theorem 5, in O(2L/2n) time
and space. We store these masks using perfect hashing [50], so each can be retrieved
in O(1) worst-case time. Instead of considering all O(2L/2) ×O(2L/2) possible con-
catenations of two masks in Q(L/2, T, q), we perform concatenation on demand,

2.5. ADAPTIVE KMR FOR MAXIMAL MASKS 37

thus obtaining an adaptive kmr approach. The masks of length L/2, which we de-
cide to concatenate in O(n) time using Lemma 3, are chosen according to a suitable
traversal of the lattice L . We can employ two different pruning strategies, analo-
gously to the apriori algorithm [91], where µ is the current mask of length L in a
traversal of L :

1. if µ has the quorum, we do not check its predecessors in L since they have
quorum but cannot be maximal (since they are less specific);

2. if µ has not the quorum, we do not check its successors because they cannot
have quorum either (since having quorum is an anti–monotone property).

In the former case, we simulate the traversal of L by enumerating the masks
of length L starting from 1 . . . 1 and proceeding to less specific masks, which are
downward in L , while in the latter case we start from 0 . . . 0 and go upward looking
for more specific masks. In both cases, whenever we need to build the partition πµ

for the current mask µ, we split it as µ = µ1µ2 such that |µ1| = |µ2| = L/2 (if
L is not a multiple of 2, we can proceed with an overlap of µ1 and µ2). If both
µ1, µ2 ∈ Q(L/2, T, q), we apply Lemma 3 to them to check whether µ has quorum
and compute its partition πµ. Otherwise, we declare that µ does not have quorum
in T . We denote this checking operation by the predicate PT (µ).

Since we apply Lemma 3 to at most 2L masks of length L, the complexity of the
algorithm is O(2Ln). It remains to see how to enumerate the masks avoiding those
that are non-maximal.

Since the mask lattice L is isomorphic to the powerset P({0, . . . , L − 1}) (see
Section 2.3.2), our implicit traversal of L can be obtained by enumerating all the
subsets of {0, . . . , L − 1} visiting the corresponding binomial tree [185], which is
also a spanning tree for L . We recall that a binomial tree Bk is an ordered tree
representing the set P({0, . . . , k− 1}), and can be defined recursively as follows: B0

consists of a single node and, for k > 0, Bk consists of two binomial trees Bk−1,
where the root of the former is added as the rightmost child to the root of the
latter. Figure 2.6 shows two possible binomial trees BL, both spanning L . The
first tree, shown on the left, is rooted at the top of the lattice and can be employed
to implement the first pruning strategy, avoiding to visit the predecessors of the
mask µ (downward in the lattice). The second tree, shown on the right, is rooted
at the bottom of the lattice and can be employed to implement the second pruning
strategy, avoiding to visit the successors of µ. Since we want to identify the maximal
masks, we opt for the first tree, starting from the top of the lattice L .

2.5.2 Implementation

Algorithm 1 shows the main steps when starting on top. Line 2 checks if mask
1 . . . 1 has quorum and, if this is so, that mask is the only one returned since any
other masks would be less specific. Otherwise, create a queue D containing mask

38 CHAPTER 2. MASK MOTIF DISCOVERY

Algorithm 1 Top-down binomial-tree traversal of the lattice L

Input: The predicate PT (µ) for checking if µ has quorum q in text T .
Out: The set M (L, T, q) of all maximal masks with quorum q in T .
1: M := ∅

2: if PT (1 . . . 1) then
3: return {1 . . . 1}
4: end if
5: Queue D := {1 . . . 1}
6: while not empty(D) do
7: µ := head(D)
8: µ′ := next immediate predecessor(µ)
9: if µ′ = null then

10: dequeue(D)
11: else
12: if PT (µ′) then
13: if M does not contains µ′′ s.t. µ′ � µ′′ then
14: M := M ∪ {µ′}
15: end if
16: else
17: enqueue(µ′, D)
18: end if
19: end if
20: end while
21: return M

1 . . . 1. As long as D is not empty, the main loop on line 6 selects a mask µ and
generates one of its immediate predecessors µ′ that are not yet visited. (In order to
obtain µ′, function next immediate predecessor systematically switches a 1 into 0 in
µ at a time, so µ′ � µ and they differ in one bit.) If µ′ does not exist, then it means
that all of µ predecessors have been already visited and µ is dequeued; otherwise,
line 12 checks if µ′ has quorum. If this is so, µ′ is added to M if and only if a
more specific mask is not already in it (lines 13–14). Otherwise, µ′ is not enqueued,
because the anti-monotonicity of PT (µ) guarantees that all of its predecessors have
also quorum but they are less specific. Instead, if µ′ has not quorum, it is enqueued
because one of its predecessors could have quorum.

Implementing D as a queue actually leads to a breadth-first visit of the binomial
tree, because we visit a node of level i + 1 when all the node of level i have been
removed from the queue. Conversely, implementing D as a stack leads to a depth
first visit of the tree, but we have to pay more attention when adding a new mask
to M (i.e. all of the predecessors of the mask must be removed).

Although in the worst case scenario almost all the masks of L must be checked,
the pruning strategies can affect heavily the performance of the algorithms. Pro-

2.5. ADAPTIVE KMR FOR MAXIMAL MASKS 39

ceeding top-down with Algorithm 1, if all the interesting masks are close to the
top, they are quickly found visiting only a small fraction of the 2L masks of the
lattice. For example, if only 1 . . . 1 has quorum, PT (µ) is evaluated once. (Similar
considerations hold for the bottom-up traversal of L .)

Unfortunately, Algorithm 1 cannot yet obtain O(2Ln) time, since checking the
condition in line 13 can take time O(L |M |) = O(L2L) per mask, thus giving a
total cost of O(2L(n + L2L)). We therefore discuss how to refine the breadth-first
traversal of Algorithm 1 to get O(2Ln) time.

2.5.3 Safe masks

Consider the lattice L and call level 0 the top mask 1 . . . 1, level 1 its predecessors,
and so on, up to level L, which is the bottom mask 0 . . . 0. Also, consider the
maximal masks in L (for the given predicate PT (µ)) and their predecessors.

Definition 3. We call a mask µ on level i safe, where 0 ≤ i ≤ L, if µ is not
predecessor of any maximal mask on levels 0, 1, . . . , i − 1.

Note that a safe mask µ itself can be maximal (i.e. PT (µ) holds), which is con-
sistent with our definition of safeness.

Our goal is to modify Algorithm 1, so that it runs PT (µ) only for safe masks µ
on each level i = 0, 1, . . . , L. The rationale is that, having traversed the first i levels
of the lattice L and having found the maximal masks on these levels, we cannot
eliminate a priori any safe mask µ on level i without first testing PT (µ) on it. We
show how to find safe masks on each level. Initially, for i = 0, the mask 1 . . . 1 is
trivially safe.

During the top-down (breadth-first) traversal of L , let us call Si the set of safe
masks on level i. We enforce the invariant that Si is indeed the set of masks that
are in queue D on level i. The other masks on level i are not of interest to us, since
they surely have a maximal successor. We show how to produce Si+1, so that the
traversal can insert the masks from Si+1 into queue D for the next level i + 1. We
need the crucial lemma below.

Lemma 7. Let Mi be the set of maximal masks on level i, where 0 ≤ i ≤ L. Then,
the following properties hold for each mask µ:

(i) µ ∈ Mi if and only if µ ∈ Si and PT (µ) holds (hence, Mi ⊆ Si).

(ii) µ ∈ Si+1 if and only if all the immediate successors of µ are in Si − Mi.

Proof. We consider the two properties in order. (i) Since µ is maximal, it has quorum
while none of its successors can have the quorum, hence it is safe. The converse also
holds because if µ has quorum and none of its successors is maximal (hence has
quorum), then it is maximal by definition.

40 CHAPTER 2. MASK MOTIF DISCOVERY

(ii) A mask µ on level i either is maximal (µ ∈ Mi), or it has quorum but is
not maximal, or it is safe but not maximal (µ ∈ Si − Mi), since no other cases are
possible. (In particular if µ is not safe, then it must have quorum since it is the
predecessor of a maximal mask.) The first implication (⇒) is equivalent to say that
if there exists µ′ immediate successor of µ such that µ′ 6∈ Si − Mi then µ 6∈ Si+1.
From the above observation, it follows that µ′ 6∈ Si−Mi implies that µ′ has quorum;
hence, either µ′ or one of its successors must be maximal, and µ cannot be safe
having a maximal mask among its successors. To prove the second implication (⇐)
it suffices to observe that if all the immediate successors µ′ of µ are in Si −Mi, they
all do not have the quorum and, by the anti-monotonicity of PT (µ), none of their
successors upward in the lattice can have the quorum. Hence, µ is safe.

2.5.4 More efficient implementation

We now show how to exploit Lemma 7 during the traversal. First, since the queue
D stores the set Si, we examine the masks µ ∈ Si and perform the check with PT (µ)
by Lemma 7(i). Second, we remove Mi from the queue D, which now stores the
set Si − Mi. In order to apply Lemma 7(ii), we recall that each of the immediate
predecessors and immediate successors of a mask µ differs from µ in exactly one
position. We generate all immediate predecessors of the masks in the queue D =
Si − Mi. In this way, we create a superset of Si+1 from which we select only the
masks that have all their immediate successors in the queue.

We detail more this task. Recall that D denotes the set Si − Mi (this is indeed
the content of the queue after the removal of the maximal motifs in it). We generate
all the immediate predecessors of the masks in D as follows. Given a mask µ ∈ D of
arbitrary length L, for any position j of a symbol 1 in µ, we generate the immediate
predecessors of µ that have all symbols equal to those in µ except that it contains
symbol 0 in position j. Let PD be the multiset of immediate predecessors so built,
which represent the predecessors of the masks in D. By Lemma 7, we have that PD

is a superset of Si+1 and a mask µ ∈ Si+1 if and only if µ has multiplicity i+1, that
is, µ occurs i + 1 times in the multiset PD. For example, supposing S2 = {10011,
11001, 10101}, we have S3 = {10001} since it appears three times in PD = {00011,
10001, 10010, 01001, 10001, 11000, 00101, 10001, 10100}.

We can proceed in several ways for this checking. Either we sort the multiset PD

and output the masks that appear (consecutively) i + 1 times in the sorted multiset
or we build a trie on the strings in PD and output those stored in the leaves with
multiplicity i + 1. From a theoretical point of view, we can build a perfect hash
function f on the distinct values in PD in O(|PD|) time and space [50]. In this way,
given any two masks µ and µ′, we have that f(µ) = f(µ′) implies µ = µ′. We
then use an array of counters C initially set to zero. For each mask µ ∈ PD, we
increment C[f(µ)] by one. At the end, with a further scan of PD, for each mask µ,
if C[f(µ)] = i + 1 then we output µ and reset C[f(µ)] to zero.

2.5. ADAPTIVE KMR FOR MAXIMAL MASKS 41

2.5.5 Complexity

The overall cost for finding the sets Si for all levels i can be bounded by O(
∑L−1

i=0 (|Si|L))
time since |PD| ≤ |Si| (L− i) for level i+1. Using the fact the |Si| ≤

(

L
i

)

, we obtain

a cost of O(
∑L−1

i=0

(

L
i

)

L) = O(L2L) for all the masks (instead of paying this cost for
a single mask as before).

We can now apply Algorithm 1 in which we do not run the test in line 13 but,
rather, we follow the traversal indicate by sets Si on each level i of the lattice of
L . In this way, the cost is dominated by O(2Ln) due to checking PT (µ) for the
masks µ ∈ ∪L

i=0Si, since the cost of generating the sets Si is O(2L L) = O(2Ln). The
required space depends on the chosen visit strategy. Since we use the breadth-first
traversal, the queue D can contain all the

(

L
i

)

masks on level i (i.e. it may happen

|Si| =
(

L
i

)

). We have thus proved our main result.

Theorem 8. Using the adaptive kmr approach, we can solve MMP computing
M (L, T, q) in O(2Ln) worst-case time and space.

As previously discussed in Section 2.1, the cost in Theorem 8 can be upper
bounded by O(nΘ(1+1/ log2 |Σ|) + min{2Ln, (|Σ| + 1)L}). The latter is always better
than the ideal bound of O(nΘ(1)+(|Σ|+1)L), that is, than constant-time enumerating
and checking all the potential (|Σ| + 1)L patterns in T . As previously mentioned,
more sophisticated techniques that are the state of the art cannot improve, in the
worst case, over the bound given in Theorem 8.

We conclude this section by observing that our bounds hold also for the case in
which MMP has the additional requirement of reporting one representative mask for
each equivalence class of masks. We recall from Section 2.4.2 that any two masks
µ and µ′ of the same length are equivalent if they have the same number of 1s
and µ can be obtained from µ′ by a shift of the symbols (and vice versa). In our
introductory example, 1110 and 0111 are equivalent and we take the leftmost shift
as the representative. We can implement this extension with minor variations in
our algorithms. In particular, we append L − 1 copies of a new special symbol $
that is an endmarker for the text T , and so it does not belong Σ. We then run our
algorithms on the resulting text T$$ · · ·$ and traverse the lattice L by considering
only the masks having 1 as first symbol (see the subtree induced by these masks in
each of the binomial trees shown in Figure 2.6). In this way, whenever we consider
a mask, it is always the leftmost shift of its equivalence class, and we cover all these
kinds of masks.

Corollary 9. Using the adaptive kmr approach, we can solve MMP modulo the
equivalence between the masks, by selecting the leftmost shifts of the maximal masks
in M (L, T, q) in O(2Ln) worst-case time and space.

42 CHAPTER 2. MASK MOTIF DISCOVERY

2.6 Conclusions and Future Work

In this chapter we introduced a new notion of motifs, called masks, that succinctly
represent the repeated patterns for an input sequence T of n symbols drawn from
an alphabet Σ. We have shown how to build the set of all frequent maximal masks
of length L in O(2Ln) time and space in the worst case, using a variant of the Karp-
Miller-Rosenberg approach, proving that our algorithm performs better than the
method based on constant-time enumerating and checking all the potential (|Σ|+1)L

candidate patterns in T , after a polynomial-time preprocessing of T . In the rest of
this section we discuss some interesting lines of research that can be subject of
further investigation.

Output sensitive mask discovery. In the worst case, the number of output
maximal masks can be exponential in the mask size L. Obviously in this case
there is no hope to enumerate all the maximal masks in polynomial time, because
exponential time is required just to output all the maximal masks that have been
computed. However, also when the number of returned maximal masks is polynomial
in the input size, the adaptive kmr approach does not guarantee that the time
required to enumerate the output masks is polynomial in the input size, because
during the visit of the mask lattice L , the number of visited non-maximal masks
can be exponentially large.

It would be of interest to design an algorithm whose time complexity is poly-
nomial in both the input and output sizes. More precisely, let A an enumeration
algorithm for an enumeration problem Π, that takes in input an instance I, and
outputs all solutions in the answer set S(I) without duplicates. Let n the input
size, m the size of the answer set, and T (I) be the total running time of A to com-
pute all solutions in S(I). The algorithm A is output-polynomial if T (I) is bounded
by a polynomial q(n, m) [10]. Probably, to achieve this goal a different lattice visit
strategy is required.

Improving the lattice visit strategy. In Section 2.3 we introduced the mask
lattice L together with the partial order relation µ � µ′, formally defining the
MMP problem as the problem of finding all maximal masks in L , satisfying the
quorum constraint q. This problem is well-known in the data mining community,
as the problem of mining maximal frequent itemsets [91]. In fact, as explained in
Section 2.2, the notion of mask comes naturally into play when performing data
mining for frequent itemsets.

As far as we know, the “dualize and advance” algorithm [86, 87] is the best the-
oretical approach that can be obtained in terms of running time (although dozens
of practical approaches have been proposed in recent years [81]). It sets up an in-
teresting connection between mining itemsets in the lattice of 2L masks and finding
hypergraph traversals [21]. Suppose to have incrementally found some of the max-
imal masks, say µ1, µ2, . . . , µk. We build the corresponding hypergraph as follows:

2.6. CONCLUSIONS AND FUTURE WORK 43

there are L nodes numbered from 1 to L, and there is one hyperedge per mask,
where the jth bit in the mask is 0 if and only if the node j is incident to the corre-
sponding hyperedge (1 ≤ j ≤ L). In general, the ith hyperedge connects the nodes
that correspond to the 0s in the ith mask µi (1 ≤ i ≤ k). In order to find additional
maximal masks (and hence add hyperedges), it suffices to find all the hypergraph
traversals as starting points for upward paths in the lattice, where each traversal is
a minimal hitting set for the current set of k hyperedges [21].

Following the above idea, we implemented an alternative version of the adaptive
kmr approach that is based on the “dualize and advance” lattice visit strategy.
However, our preliminary tests are not satisfactory, showing that the adaptive kmr

approach is much faster than “dualize and advance” in practice, with respect to the
number of masks that are queried for checking their quorum. In other words, the
“dualize and advance” method needs to query many more masks than our safe masks,
and it is more time-consuming due to the slow hypergraph traversals generation step,
that is at the core of the algorithm.

Although the “dualize and advance” approach has shown to be inefficient for our
purposes, maybe we can benefit from other approaches that have been successfully
applied in the field of frequent itemsets mining, as that discussed in [81]. We plan
to explore alternative solutions, based on different and more practical lattice visit
strategies.

Cache friendly pattern discovery. In the previous sections we focused on the
worst-case complexity of the adaptive kmr algorithm. However, given the scan-
and-sort nature of our algorithm, we naturally obtain a cache-friendly solution to
our problem as a byproduct. Indeed, our algorithm works also in the ideal cache
model, introduced by Frigo et al. [73] to generalize the two-level memory model of
Aggarwal and Vitter [3] and to deal with such a situation, where M is the size of
the fast memory, and B is the size of the block in each transfer between fast and
slow memories. The goal is to minimize the number of block transfers. For example,
scanning n consecutive elements has a complexity of Θ(n/B) block transfers while
the optimal complexity of sorting is sort(n) = Θ

(

n
B

logM/B
n
B

)

block transfers [37,
71, 73, 184].

In order to get a cache-friendly solution, note that both the construction of the
safe masks and the concatenation of two masks of length L/2 needed to check PT (µ)
on each safe mask, require scanning and sorting. Since scanning of consecutive
elements is trivially cache-friendly, it suffices to employ a cache-oblivious sorting
algorithm, whose cost is sort(n) = Θ

(

n
B

logM/B
n
B

)

block transfers [37, 71, 73]. Note
that the sorting cost is the dominating cost for each mask. We can easily see
that using the adaptive kmr approach and a cache-oblivious sorting, we can build
Q(L, T, q) and M (L, T, q) with O(2L sort(n)) block transfers, where sort(n) is the
cache complexity of sorting n items.

To our knowledge, this is the first cache friendly solution for a motif discovery

44 CHAPTER 2. MASK MOTIF DISCOVERY

problem. It remains an open issue to design an algorithm that is both cache-friendly
and output sensitive.

Chapter 3

π-pattern Discovery

3.1 Introduction to π-patterns

Genomes evolve both through small-scale events, like single nucleotide mutations,
and large-scale events, that reorganize the genetic materials inside the chromo-
somes [60]. Examples of the aforementioned large-scale events are mutations of
a single gene due to the accumulation of single base mutations, gene loss, large
scale deletion events, short and large reversals, and even whole-genome duplica-
tions [165, 179]. As observed on primates [171], and in bacteria strains [162], the
results of these evolutionary events are that, when two or more genomes are com-
pared in terms of gene order, it is unlikely that genes occur in the same order in all
the compared genomes.

However, genes are not randomly shuffled across genomes. Nowadays, it is a
common understanding in the scientific community that genes that occur together
across genomes are functionally related, since they often code for interacting pro-
teins [134].

In recent years, the investigation of these groups of genes that are called conserved
gene clusters (gene clusters for short), has become a fertile field of investigation
in comparative genomics. The most widely studied gene clusters are the operons.
An operon is a functional unit of genomic material containing a cluster of genes
that is controlled by a single regulatory promoter [128]. Operons are an atomic
transcription unit. Namely, the physical adjacency of the genes in the operon, allow
the transcription process to be regulated by one regulator promoter gene only, that
is physically located in the genomic sequence preceding the gene cluster. This shared
regulatory mechanism easily allow either to transcribe all the genes of the cluster
or none of them by “switching on/off” one regulatory promoter only. Examples
of operons are the lac operon that is responsible for transport and metabolism
of lactose in E. Coli and some other bacteria [128], the gal operon that encodes
enzymes necessary for galactose metabolism [189], and the trp operon that codes for
the proteins that are responsible for the production of tryptophan [190].

46 CHAPTER 3. π-PATTERN DISCOVERY

Until recent years, operons were thought to exist solely in prokaryotes, since
much more complicated mechanisms for gene regulation were known in eukaryotes
(the three above mentioned operons have all been discovered in E. Coli and other
bacteria). However, the discovery of the first operon in eukaryotes in the early 1990s
radically changed the scenario [30]. Moreover, the availability of a large number of
sequenced eukaryotic genomes has made the comparative approach, based on the
discovery of operons through the detection of conserved gene clusters, competitive
with previous approaches based on expensive in vitro analysis, attracting the interest
of the algorithmic community.

Several genome models formalizing the notion of gene cluster have been proposed
in literature in the last two decades. Different modeling choices and assumptions
about input data yield to very different models, with different expressive power, and
algorithms for cluster discovery having very different time complexities.

For example, genomes can be represented as permutations, where there is a one-
to-one correspondence between genes of different genomes, or strings, where the
same gene can occur multiple times inside a genome, and the number of occurrences
in one string are not the same as the number of occurrences in another string.
Moreover, we can consider the case of two input genomes, or the most general
case of k input genomes, the case of exact or approximate gene clusters, etc. In
Section 3.1.1 and 3.1.2, we review the main frameworks that have been proposed in
literature, pointing out the main limitations of these models.

To overcome the above limitations in Section 3.2, we introduce a new model
of gene cluster, fixed length π-patterns, discussing its relationship with the other
models that have been proposed in literature.

The following sections discuss the two main computational steps that are involved
in fixed length π-pattern discovery. More precisely, in Section 3.3 we show how to
detect the π-patterns satisfying a given quorum threshold q, while in Section 3.4 we
discuss how to select the most significant of them in the case of π-patterns with no
repeated symbols.

Section 3.5 discusses the problem of selecting the most significant frequent π-
patterns in the case of repeated symbols, proving the problem to be hard.

Finally, we draw our conclusions in Section 3.6.

3.1.1 Gene clusters in permutations

The simplest model of gene cluster is the conserved segments model [28]. Conserved
segments model the idea of a set of genes that occurs in the same order and same
orientation in the input sequences. More formally, a signed string x (a string where
a positive or negative sign, representing the orientation of the gene, is associated
to each symbol) is an occurrence of a set of symbols S ⊆ Σ, if it contains all and
only the symbols of S (signs do not matter). Two signed strings x = x1 . . . xl and
y = y1 . . . yl are equal either if xi = yi for 1 ≤ i ≤ l, or xi = −yl−i+1. In other words,
each string is equal to itself, or to its reverse complement.

3.1. INTRODUCTION TO π-PATTERNS 47

Let C = {π1, . . . , πk} be a set of signed permutations drawn on the alphabet Σ.
A subset of Σ is a conserved segment if it has an occurrence in each permutation,
and all the occurrences are equal. For example, given π1 = 1 2 −3 4 5 6 and π2 =
1−6 −5 2−3 4, the non-singleton conserved segments are sets {5, 6}, {2, 3}, {3, 4},
and {2, 3, 4}.

Given two set of symbols S1, S2 ⊆ Σ, and a set of permutations C, S2 is an
extension of S1 if and only if S1 ⊆ S2, and each occurrence of S1 in a permutation
of C is a substring of an occurrence of S2. A maximal conserved segments is a con-
served segments having no extension. In the above example, the maximal conserved
segments are {1}, {5, 6}, and {2, 3, 4}.

Given k input permutations on the alphabet Σ, all the maximal conserved seg-
ments can be detected in O(k |Σ|) time complexity [23].

For large sets of permutations, we can relax the constraint that a conserved
segment has to occur in all the input permutations, asking the occurrence in at least
q permutations. In [27], this technique has been used to perform an investigation of
animal phylogeny through the gene order on mitochondrial genomes.

The definition of conserved segments can be extended to strings and multisets,
but most of the proprieties do not hold anymore when the input strings contain
repeated symbols [29].

Common intervals are a generalization of conserved segments, where the symbols
of the interval are required to be consecutive in all the input permutations, but they
are not required to occur in the same order, or in the same orientation [181]. For
example, given the two input permutations π1 = 123456789, and π2 = 765924138,
where π1 is the identity permutation, the set of symbols S1 = {1, 2, 3, 4} is a common
interval of π1 and π2, while S2 = {8, 9} is not, since its symbols are not consecutive
in π2. Differently from the case of conserved segments, in the above example we
omitted the signs of the input permutations, since the common intervals framework
ignores the signs in the input permutations. Note that, when the first permutation
is the identity permutation, all the common intervals are sets of consecutive integers.

Given a pair of permutations drawn from an alphabet Σ, the algorithm proposed
in [181] requires O(|Σ|+N) time for extracting all the N common intervals. In [93],
this result has been generalized to k permutations, designing a O(|Σ|k + N) time
algorithm, for extracting all the N common intervals of the input k permutations.
A simpler algorithm having the same time complexity is discussed in [22].

The maximum number of common intervals of a pair of permutations of |Σ| sym-
bols is O(|Σ|2). For instance, if we compare two equal permutations, each substring

represents a common interval, yielding |Σ| (|Σ|+1)
2

common intervals.

One approach to reduce the number of returned common intervals consists in
computing for each common interval its statistical significance, returning only the
most significant ones [155].

A different approach uses the rich combinatorial properties of common intervals
to select a small set of common intervals (whose size is linear in |Σ|) as a basis

48 CHAPTER 3. π-PATTERN DISCOVERY

generating all common intervals of the input set of permutations. This is the strategy
pursued in [22], where strong common intervals are used as basis, and in [93], where
irreducible common intervals are used instead.

A detailed description of strong common intervals and irreducible common in-
tervals is beyond the scope of this section, and we refer the interested reader to
the aforementioned papers. However, since both strong common intervals and irre-
ducible common intervals can be hierarchically organized in the PQ-tree data struc-
ture that will be one of the main topics of the following sections, in the following
we sketch the main idea of this hierarchical organization through an example.

5 6

5,..,7

7

9 1,..,4

1,..,9

8

1 2 3 4

7 6 5 9 2 4 1 3 8

Figure 3.1: Non-singleton common intervals of π1 = 123456789, and π2 =
765924138. On the right, the PQ-tree of the strong common intervals.

Figure 3.1 shows all the 5 non-singleton common intervals of π1 = 123456789,
and π2 = 765924138. As we can see, some of these intervals seem to be related. For
example, {5, 6} and {6, 7} are subsets of {5, 6, 7}.

Let C = {π1, . . . , πk} be the input set of permutations drawn from an alphabet
Σ. A strong common interval is a common interval of C that does not overlap with
any other common interval of C (a set S1 overlaps with S2 if their intersection is not
empty and neither S1 is contained in S2, nor viceversa). For example, in the above
example {5, 6, 7} is a strong common interval, while {5, 6} is not, since it overlaps
with {6, 7}. More precisely, all the non-singleton strong common intervals of π1 and
π2 are S = {{1, 2, 3, 4, 5, 6, 7, 8, 9}, {5, 6, 7}, {1, 2, 3, 4}}.

Since two strong common intervals are either disjoint or one is contained in
the other, in the PQ-tree where each strong common interval is the child of the
smallest strong common interval that properly contains it, each node has at least
two children. If |Σ| is the number of symbols in each permutation, it follows that the
number of internal nodes of the tree, representing the non-trivial common intervals
is O(|Σ|).

The ordered tree of strong common intervals for π1 and π2 is represented on the
right of Figure 3.1. The root of the tree is the set {1, . . . , 9}, while the leaves are the
singletons. Figure 3.1 shows that the internal nodes of the tree are classified into
two types of node. Given a node u of the tree, if any union of consecutive children
is a common interval, u is a Q-node (represented by rectangles). Otherwise, if no
union of consecutive children of the node u is a common interval, except the union
of all of its children, u is a P -node (represented by ellipsis). For example, the node
representing the strong common interval {5, 6, 7} is a Q-node, since both {5, 6} and

3.1. INTRODUCTION TO π-PATTERNS 49

T1 = 1 ∗ 2 3 4 ∗ 5 ∗ ∗ 6 7 8

T2 = 5 ∗ ∗ 2 ∗ 3 4 6 1 8 7

Figure 3.2: Occurrences of the three gene teams {1, 2, 3, 4}, {5}, and {6, 7, 8} in the
input strings T1 and T2. The gap threshold is δ = 1.

{6, 7} are common intervals, while the node representing {1, 2, 3, 4} is a P -node,
since neither {1, 2}, nor {2, 3}, nor {3, 4}, nor {1, 2, 3}, nor {2, 3, 4} are common
intervals.

This tree is an example of a general structure, known as PQ-tree [33], that has
been introduced to represent sets of permutations (we will discuss the PQ-tree data
structure in more detail in Section 3.2). Given the PQ-tree of the strong common
intervals of the set of permutations C, in [22], the authors proved that a set S is
a common interval of C if and only if it is the union of consecutive children of a
Q-node, or the union of all the children of a P -node.

Irreducible common intervals are defined differently. A common interval is
irreducible if it is not the union of two overlapping common intervals. In the example
in Figure 3.1, the set of non-singleton irreducible intervals is I = {{1, 2, 3, 4, 5, 6, 7, 8, 9},
{5, 6}, {6, 7}, {1, 2, 3, 4}}. The set {5, 6, 7} is not irreducible since it is the union
of the two overlapping intervals {5, 6} and {6, 7}. As proved in [93], irreducible
intervals form a basis of size O(|Σ|), that generates all common intervals by unions
of overlapping irreducible intervals.

The most general model of gene cluster on permutations is that of gapped common
intervals. A gap inside the occurrence of common intervals S is a substring of
the occurrence, which does not contain symbols in S. For example, the string
x = 1743892 is an occurrence of S = {1, 2, 3, 4} containing the gaps y1 = 7 and
y2 = 89 of size 1 and 2, respectively.

The notion of gapped common interval has been formalized in [19, 24], under
the name of gene teams (for a complete dissertation of the more relevant properties
of gene teams, and the variants that have been analyzed in literature, the reader
can refer to [96], where they are referred as max-gap clusters). Given a collection
of strings C drawn from an alphabet Σ ∪ {∗}, such that each string of C is a
permutation of Σ, when the symbols {∗} are removed, and a non-negative gap
threshold δ ≥ 0, a subset of Σ is a gene team if it has an occurrence with maximum
gap size δ in each string of C, and the occurrences cannot be extended. For example,
given the two input strings T1 = 1 ∗ 234 ∗ 5 ∗ ∗ 678, and T2 = 5 ∗ ∗ 2 ∗ 346187,
Figure 3.1.1 highlights the occurrences of the three gene teams found for δ = 1.
Note that {2, 3, 4} is not a gene team, since it is not maximal. It can be extended
both in T1 and T2 to {1, 2, 3, 4}. Also note that, differently from ungapped common
intervals, gene team occurrences can overlap. However, as proved in [24], their
number is O(|Σ|), and, given k input strings, they can be detected in O(k|Σ| log2 |Σ|)
time.

50 CHAPTER 3. π-PATTERN DISCOVERY

3.1.2 Gene clusters in strings with multiplicities

The constraint that the input sequences of the dataset must be permutations, with
no repeated symbols, can be too stringent when modeling real world genomic se-
quences. More frequently, genes are found in several copies within the genome of a
species. Some approaches have been proposed in literature to eliminate the dupli-
cates, transforming the input strings into permutations [122, 164]. However, when
repeated symbols inside the same string represent paralogous genes (genes sharing a
structural similarity because they have been derived from a common ancestral gene),
the removal of repeated genes, can result in an unacceptable loss of information.

The notion of common intervals that we have discussed in Section 3.1.1 can
be generalized to strings with repeated symbols [55, 56]. Given a set of strings
C = {s1, . . . , sk}, drawn from alphabet Σ, a set S ⊆ Σ is a common interval if
it has an occurrence in each string of C. The multiplicities of the symbols inside
an occurrence do not matter. For example, although the strings x1 = abaac, and
x2 = bac contain a different number of a symbols, they are both valid occurrences
of the common interval S = {a, b, c}.

Let n the sum of the lengths of the strings in C. The maximum number of
common intervals in C is bounded by O(n2). However, differently from the case of
common intervals in permutations, where strong common intervals and irreducible
common intervals form a linear space basis for all the common intervals, in the case
of strings no such basis is known in literature.

The algorithms to detect common intervals in strings rely on the concept of
fingerprint of a string [9]. A fingerprint of a string is the set of symbols that occurs
in the string. For example, in the previous example both the string x1 = abaac,
and x2 = bac have the same fingerprint {a, b, c}.

As proved in [9], given an input collection of strings drawn from Σ, by using
string fingerprint, the set of common intervals, together with their occurrences can
be computed in time O(|Σ| log |Σ|n log(n)), where n is the sum of the length of
the input strings. In [56] the above fingerprint naming technique has been improved
to O(|Σ| log |Σ|n), while in [116] an O((occ+n) log(|Σ|)) time algorithm is discussed,
where occ is the total number of occurrences of the fingerprints of C. A different
approach not based on the above fingerprint naming technique, initiated in [55],
and improved in [166, 56], allows for computing the common intervals of C in time
O(n2).

Gapped common intervals on strings are the most general formal model of com-
mon intervals [157, 92]. They are the string counterpart of the gapped common
intervals, which we described in Section 3.1.1 for the case of permutations. How-
ever, differently from the case of permutations where efficient algorithms have been
described in literature, in the case of input string with repeated symbols, the number
of gapped common intervals on strings can be exponential in the size of the alphabet
|Σ| [23]. For this reason, efficient algorithms are only known when some additional
hypothesis on the common interval structure are given. For the comparison of ex-

3.2. FIXED LENGTH π-PATTERNS 51

actly two input genomes, a polynomial time algorithm is described in [92], while
if the maximum gap size is bounded by a constant, a practical solution that has
allowed the computation of gapped common intervals for genomes with thousands
of genes is described in [157].

3.2 Fixed Length π-patterns

In Section 3.1.2, we observed that when strings with repeated symbols are given in
input, instead of permutations, the rich set of combinatorial properties that char-
acterizes the gene cluster model on permutations does not hold. To overcome this
limitation, in the following sections we focus on different kinds of patterns, which
are known in literature as permutation patterns or π-patterns [65].

However, our approach differs from that in [65] in two fundamental aspects. First,
we focus on fixed length π-patterns. More precisely, we assume that the maximum
size of the patterns to be discovered is part of the input. Although at first sight this
assumption can appear too restrictive, since it requires additional information about
the maximum size of π-patterns in the input dataset, this is not the case of gene
clusters that are usually small with respect to the size of the dataset. For example, in
Section 3.1 we recall that operons prediction is one of the main applications of gene
cluster discovery. In this context, although the input strings of genes can contain
thousands, or even millions of genes, the largest known operons contain no more
than 5–10 genes [128]. Hence, it is of interest to design an algorithm whose time
complexity depends on the maximum size of the π-patterns, and not only on the
size of the input strings.

The second difference between our approach and that in [65] is that we do not
rely on a notion of maximality to reduce the number of output π-patterns. Instead,
we aim at defining a scoring function score(p,L(p)), by which we rank higher π-
patterns showing a highly-conserved structure in terms of common intervals of the
pattern occurrences, than π-patterns whose structure is less conserved.

A final comment on one of the major phenomenons in genome evolution, namely
gene duplication. Although our model is more general than the models based on
permutations that cannot handle duplicated genes, we are aware that modeling
duplicated genes as duplicated symbols is not a completely satisfactory choice. In
fact, on the biological side, the outcome of a duplication event is not to maintain
two (or more) isofunctional copies of the same gene (i.e. symbol), but to have genes
sharing the same main bio-physical properties, but with different functions.

Although arguable, our selection of modeling duplicated genes as duplicated
symbols is fair enough to model a broad range of situations, and the vast majority
of works in the literature rely on the same assumption [122, 23, 19]. In defining the π-
pattern discovery problem we are going to make the above simplifying assumption,
assuming that duplicated copies of the same gene are isofunctional, and that can
be modeled by multiple copies of the same symbol. However, before formalizing the

52 CHAPTER 3. π-PATTERN DISCOVERY

π-pattern discovery problem, we need some preliminary definitions.

3.2.1 Preliminary definitions

Figure 3.3: On the left, the three π-patterns p1 = {a, b, c, d}, p2 = {a, b, c, e},
p3 = {a, b, c, f}, together with their occurrence lists. On the right, the correspond-
ing minimal PQ-trees. Ranking π-patterns by increasing values of count(Ti), we
rank higher π-patterns showing a highly-conserved structure (in terms of common
intervals of the occurrences of the pattern), than π-patterns whose structure is less
conserved.

Let T a string drawn from an alphabet Σ = {σ1, . . . , σ|Σ|}. The fingerprint of
the string T , fing(T), is the vector in {0, 1}|Σ| such that fing(T)[i] = 1 if σi occurs
in T , and fing(T)[i] = 0 otherwise. Its signature, sign(T), is the vector in N

|Σ| such
that its i-th component represents the number of times the character σi occurs in T .
A π-pattern p of size m is a multiset of symbols drawn from Σ such that the sum of
the multiplicities of the symbols in p is m. The π-pattern p occurs in the position
i of T if sign(p) = sign(T [i . . . i + m− 1]) (i.e. T [i . . . i + m− 1] is a permutation of
p). The occurrence list of the π-pattern p, L(p), is the list of all the occurrences of
p in the string T . For example, the π-pattern p = {a, b(2), c} occurs twice in the
text T = cabbca, and its occurrence list is L(p)={0,1}.

Sets of permutations can be represented by the PQ-tree data structure that has
been introduced by Booth and Lueker in [33]. Specifically, a PQ-tree is a rooted
tree whose internal nodes are of two types: P-nodes that do not define any specific
ordering among their children; Q-nodes whose children can appear either in left-
to-right order or in right-to-left order. Each leaf of a PQ-tree T is labeled with a
symbol of the input alphabet Σ, and the frontier of T , denoted by front(T), is the
sequence of the symbols obtained by reading the labels of the leaves from left to right.
For example, Figure 3.3 shows three PQ-trees, having frontiers front(T1) = abcd,
front(T2) = abce, and front(T3) = abcf, respectively. In the following sections we

3.2. FIXED LENGTH π-PATTERNS 53

represent a PQ-tree in textual form as a parenthesized string, where the children of
a P-node are represented between curly brackets, while the children of a Q-node are
represented between round brackets. For example, the second PQ-tree in Figure 3.3
is represented as T2 = (a, {b, c, e}).

Given two PQ-trees T and T ′, we say that T is equivalent to T ′ (written T ≡ T ′)
if one tree can be obtained from the other by permuting the children of one or more
P-nodes, and by reversing the children of some Q-nodes. The set of the frontiers of all
the trees that are equivalent to T is denoted by Fr(T), and we say that T represents
all the frontiers in Fr(T). Moreover, we denote the size of the set of the frontiers of
T as count(T). For example, the tree T ′

2 = ({c, b, e}, a) obtained by swapping the
left subtree of T2 in Figure 3.3 with the right subtree, and permuting the leaves c, b,
and e is equivalent to T2. It represents the same set of permutations as T2, namely
Fr(T ′

2) = {abce, abec, acbe, aceb, aebc, aecb, bcea, beca, cbea, ceba, ebca, ecba}.

Since a P-node (or a Q-node) having one child can be removed from T without
changing Fr(T), and a P-node with two children can be replaced by a Q-node (it rep-
resents the left-to-right and right-to-left permutations only), we define the canonical
form of a PQ-tree by constraining each Q-node to have at least two children, and
each P-node to have at least three children. In the following sections, we assume
that each PQ-tree is in canonical form.

Given a set of permutations drawn from an alphabet Σ, C = {π1, . . . , πk}, the
minimal consensus PQ-tree [122], provides a succinct representation of the permuta-
tion set C, that highlights which are the subsets of symbols appearing consecutively
in all the permutations. In other words, it highlights which are all the common
intervals of C. More precisely, the minimal consensus PQ-tree of C (minimal PQ-
tree for short), is the PQ-tree T such that C ⊆ Fr(T), and there exists no T ′ 6≡ T
such that C ⊆ Fr(T ′) and |Fr(T ′)| ≤ |Fr(T)|. In other words, T represents all the
permutations in C, and the number of permutations represented by T that are not
in C is minimal. Figure 3.3 shows for each occurrence list on the left the correspond-
ing minimal PQ-tree. For example, the minimal PQ-tree of the second pattern in
Figure 3.3, p2 = {a, b, c, e}, that has occurrence list L(p2) = {abce, ebca, abec},
is T2 = (a, {b, c, e}). In fact, L(p2) ⊆ Fr(T2), and each other PQ-tree T ′

2 repre-
senting all the permutations in L(p2) represents a higher number of frontiers (i.e.
count(T ′

2) ≥ count(T2)).

3.2.2 Ranking π-patterns: the idea

We are now ready to define the π-pattern discovery problem.

Problem 2 (π-pattern Discovery Problem). Input: a text T = [0 . . . n] drawn from
an alphabet Σ, the maximum size L of the π-patterns, and the quorum threshold q.
Output: the set P≤L containing all the π-patterns of maximum size L, occurring at
least q times in T , together with their occurrence lists.

54 CHAPTER 3. π-PATTERN DISCOVERY

In the following, we do not consider π-patterns of size 1 because it is trivial
to detect the symbols of the alphabet occurring at least q times in T (i.e. P≤L =
P2 ∪ . . . ∪ PL). The number of π-patterns of any size, Pn = P2 ∪ . . . ∪ Pn−1,
obviously depends on the input quorum q, but in the worst case it can be O(n2),
because each π-pattern can start at an arbitrary position i of T , ending at an
arbitrary position j > i.

Differently than previous approaches where the information about symbol mul-
tiplicities is discarded, and some notion of maximality is used to reduce the number
of output patterns, we pursue a different approach that aims at defining a scor-
ing function score(p,L(p)), by which we rank higher π-patterns showing a highly-
conserved structure across their occurrences in terms of common intervals, than
π-patterns whose structure is less conserved. The idea is simple. In [122], the au-
thors show that higher the number of common intervals of C, the more structured
is the minimal PQ-tree T for C, and lower is the number of frontiers represented
by T . Consider the example in Figure 3.3, and the two π-patterns p1 = {a, b, c, d}
and p2 = {a, b, c, e} together with their occurrence lists L(p1) and L(p2). The set of
non-singleton common intervals in L(p1) is S1 = {{a, b, c, d}} because {a, b, c, d} is
the only set whose symbols occur consecutively in all the occurrences of L(p1), while
the set of non-singleton common intervals in L(p2) is S2 = {{a, b, c, d}, {b, c, e}}
because symbols b, c, and e occur consecutively in all the occurrences of L(p2). It
follows that, while the minimal PQ-tree for L(p1) is T1 = {a, b, c, d} that represents
count(T1) = 4 ! = 24 frontiers (all the permutations of symbols a, b, c, and d),
the minimal PQ-tree for L(p2) is T2 = {a, (b, c, e)}, where symbols of the common
interval {b, c, e} label the leaves of the subtree T ′

2 = (b, c, e) (highlighted in red in
Figure 3.3). The number of frontiers represented by T2 is smaller than that of T1.
In fact, since T2 represents all the permutations of symbols a, b, c, and e where
symbols b, c, and e are consecutive, we have that count(T2) = 12. Notice that,
by our approach, although p1 and p2 are not the same set of symbols, and the set
of common intervals of L(p1) is different from that of L(p2), we can compare the
structure of L(p1) and L(p2) by looking at the number of frontiers represented by
their minimal PQ-trees.

From above it follows that we can set score(p,L(p)) = count(T), where T is the
minimal PQ-tree for L(p), restating Problem 2 as follows:

Problem 3 (Ranked π-pattern Discovery Problem). Input: a text T = [0 . . . n]
drawn from an alphabet Σ, the maximum size L of the π-patterns, the quorum thresh-
old q, and the number of π-patterns, k, that must be returned. Output: the top-k
π-patterns of maximum size L, occurring at least q times in T sorted by increasing
value of the score(p,L(p)) function, together with their occurrence lists.

Figure 3.3 clarifies the idea. Here, the three π-patterns are sorted (bottom-up)
by increasing value of score(pi,L(pi)) = count(Ti), where Ti is the minimal PQ-
tree for the occurrence list of the pattern pi. This ordering agrees with the fact
that the non-singleton common intervals of L(p3) are {a, b}, {b, c}, {c, f}, {a, b, c},

3.3. π-PATTERN DISCOVERY: FIRST PHASE 55

{b, c, f}, and {a, b, c, f}, the non-singleton common intervals of L(p2) are {a, b, c, e},
and {b, c, e}, while the only non-singleton common intervals of L(p1) is {a, b, c, d}.

3.2.3 Two phase approach for ranked π-pattern discovery

Algorithm 2 Ranked π-pattern discovery algorithm.

Input: The input string S, the maximum π-patterns size L, the quorum threshold
q, and the number of π-patterns that must be returned k.

Out: Top-k π-patterns P≤L.
1: Compute the set of π-patterns of maximum size L occurring at least q times in

S, together with their occurrence lists.
2: For each occurrence list L(p) compute the minimum PQ-tree T and count(T).
3: Rank the patterns by increasing value of count(T).
4: Return the top-k π-patterns and their occurrence lists.

Algorithm 2 formalizes the idea described in Section 3.2.2, describing the main
conceptual steps to compute the top-k π-patterns of the required maximum size,
satisfying the input quorum threshold. First, we compute the set of π-patterns of
maximum size L occurring at least q times in the input string S. For each π-
pattern p (that can contain repeated symbols) we also compute its occurrence list
L(p). Then, for each π-pattern p detected during the first step, we compute the
minimum PQ-tree T for its occurrence list L(p) and count(T), ranking the patterns
by increasing value of count(T). We finally return the top-k patterns.

At this point the main idea should be clear. The following sections present in
more details the main steps of Algorithm 2. First, in Section 3.3 we discuss the first
phase of Algorithm 2, showing how the fingerprinting algorithm presented in [9, 65]
can be improved by saving a log(n) time factor. Then, in Section 3.4 and 3.5 we
analyze the problem of constructing the minimal PQ-tree T , counting the number
of frontiers represented by the tree. As discussed in Section 3.4, if the input π-
pattern contains no repeated symbols (i.e. it is a set), both the minimal PQ-tree and
the number of frontiers represented by the tree can be computed in polynomial
time. However, what about in the case of π-patterns with repeated symbols? In
Section 3.5 we discuss the hardness of this more general case, highlighting the strong
connection between this problem and the generalization of the classic consecutive
ones problem [33].

3.3 π-pattern Discovery: First Phase

The first phase of Algorithm 2 consists in computing the set of π-patterns of max-
imum size L occurring at least q times in T , together with their occurrence lists.
First, in Section 3.3.1 we describe how the algorithm proposed in [9] can be extended

56 CHAPTER 3. π-PATTERN DISCOVERY

to take into account symbol multiplicities. Then, in Section 3.3.2 we show how to
improve the algorithm by saving a log(n) time factor.

3.3.1 π-pattern discovery by binary tagging tree

In [9] a simple and elegant algorithm has been proposed to compute the set Pl of
the π-patterns of fixed size l having quorum. The algorithm has been originally
proposed to group substrings of variable lengths having the same fingerprint (i.e.
symbols multiplicities do not count), but it can be easily extended to the case of
signatures.The key observation is that two substrings of size l contain the same
characters with exactly the same multiplicities if and only if they have the same
signatures. For example, T [i1 . . . j1] = abcc and T [i2 . . . j2] = cabc drawn from
Σ = {a, b, c, d} have the same signature [1, 1, 2, 0].

The above idea suggests that the patterns of size l can be grouped together
moving a sliding window of size l over the input text T , computing for each substring
T [i . . . i + l− 1] its signature, hashing the signature into a fingerprint h, and adding
the pair (h, i) to an auxiliary data structure mapping fingerprints into occurrence
lists (in the following the term fingerprint is not used with the meaning of Section 3.2,
but as synonymous of tag).

Although at iteration i > 1 of the sliding-window approach, at most two com-
ponents of the signature vector are changed with respect to the signature of the
previous iteration (the component corresponding to the character T [i + l − 1] is in-
creased by one, while the component corresponding to T [i−1] is decreased by one),
the naive algorithm computes the signature fingerprint of the current substring from
scratch, paying Ω(l) at each iteration.

The algorithm proposed in [9] overcomes the above limitation by making use
of the binary tagging tree data structure to compute a perfect hash of the given
signature (each signature is assigned a unique fingerprint), as shown in Figure 3.4.

Assume, for the sake of simplicity, that |Σ| is power of 2, if this is not the case
add some null characters making its size power of 2: notice that the size of the
new alphabet Σ′ is no more than twice the size of Σ, hence its size is O(|Σ|) (the
maximum number of null symbols, 2k − 1, is added when |Σ| = 2k + 1 for some k,
obtaining a new alphabet of size 2k+1).

The binary tagging tree is a complete binary tree, whose leaves are labeled with
the |Σ′| components of the signature vector of the current text window (i.e. the first
leaf is labeled with the number of occurrence of a in the current window, the second
with the number of b, etc). Each internal node u is labeled by a fingerprint computed
by the fingerprints of its left and right child hl and hr. If the pair (hl, hr) has been
already encountered in some previous iteration and in that case the father node has
been tagged with hf , then u is labeled with hf . (This is the case, in Figure 3.4, of the
root node during the third iteration, where the pair of child fingerprints (9, 10) was
already encountered during the previous iteration.) Otherwise, if the pair (hl, hr)
has not been encountered so far a new fingerprint is assigned to u, as in the case

3.3. π-PATTERN DISCOVERY: FIRST PHASE 57

baac faab c

13

12 10

1 3 8 −

2 1 0 0 0 1 − −

a b c d e f − −

ba acfa abc

11

9 10

7 2 8 −

2 0 1 0 0 1 − −

a b c d e f − −

baac faabc

6

4 5

1 2 3 −

2 1 1 0 0 0 − −

a b c d e f − −

baa cfaa bc

11

9 10

7 2 8 −

2 0 1 0 0 1 − −

a b c d e f − −

baacf aabc

11

9 10

7 2 8 −

2 0 1 0 0 1 − −

a b c d e f − −

baacf aabc

6

4 5
1 2 3 −

2 1 1 0 0 0 − −

a b c d e f − −

(1) (2)

(4)(3)

(5) (6)

Figure 3.4: The binary tagging tree algorithm for π-pattern discovery, executed
on T = baacfaabc with l = 4 and q = 2 returns the patterns p1 = {a(2), c, f},
and p2 = {a(2), b, c} together with their occurrence lists L(p1) = {1, 2, 3}, and
L(p2) = {0, 5}.

of the root node during the second iteration, when (9, 10) is processed for the first
time. The fingerprint of the current substring is the fingerprint of the root of the
tagging tree.

It is easy to see that the above “labeling rule” assigns the same fingerprint to
two different substrings having the same signature, since all the nodes of the tree are
labeled in the same way (see for example the second and the third tree in Figure 3.4),
and that it is not possible for two different signatures to be mapped to the same
fingerprint.

Figure 3.4 simulates the algorithm on the input text T = baacfaabc with l = 4
and q = 2. During the first iteration the sliding window contains the substring s1 =
T [0 . . . 3] = baac, the leaves of the first tagging tree are labeled by the components of

58 CHAPTER 3. π-PATTERN DISCOVERY

v1 = sign(s1), which is computed from scratch, while the labels of the other nodes
are all fresh fingerprints, who are assigned bottom up, left to right in increasing
order: the fingerprint 6 is assigned to the root and the fingerprint-text position pair
(6, 0) is saved into an auxiliary data structure mapping fingerprints in lists of text
positions.

At the second iteration the sliding window moves one position to the right,
popping out the leftmost b and pushing in a new f: the new signatures v2 can be
computed by difference from v1, since only the number of b and the number of f
need to be updated, while the other counters stay the same. Obviously after this
update the labels of some nodes need to be changed (they are highlighted in bold),
but the number of these labels are at most logarithmic in the number of leaves, since
in the worst case it is the number of nodes of two paths from the root to the two
different leaves labeled with the updated counters.

The above steps are iterated for each substring in T of size l and in the end
the fingerprints occurring at least q times in T are returned together with their
occurrence lists. The algorithm has to be repeated L− 1 times to compute P≤L for
all the substring sizes in [2, . . . , L].

The time complexity of the algorithm depends on the maximum number of dif-
ferent fingerprints that can be created scanning the input text, and how much does
it cost, given a pair of children fingerprints (hl, hr), to decide if it has been already
encountered at some previous iteration.

Theorem 10 ([9]). Given an input text T of size n drawn on the alphabet Σ, and
the size l of the π-patterns to compute:

1. The maximum number of fingerprints generated by the algorithm is
t = O(|Σ| + n log |Σ|).

2. The maximum number of fingerprints generated at each level is O(n).

3. Given a pair of fingerprints (hl, hr) the lookup operation can be implemented
in O(log n) time.

4. The time complexity of the algorithm is O(n log n log |Σ|).

5. The space complexity of the algorithm is O(n log |Σ|).

By running the binary tagging tree algorithm independently for each π-pattern size
l ≤ L we have that:

Theorem 11. By using the binary tagging tree algorithm in [9], the π-pattern discovery
problem can be solved in O(Ln log n log |Σ|) time, and O(n log |Σ|) space.

3.3. π-PATTERN DISCOVERY: FIRST PHASE 59

3.3.2 π-pattern discovery by levelwise binary tagging tree

In Section 3.3.1 we showed how P≤L can be computed in O(L log |Σ|n logn) time,
and O(n log |Σ|) space. In this section we improve the algorithm based on binary
tagging trees, by saving a log(n) time factor.

The idea behind the new algorithm is simple. The algorithm described in Sec-
tion 3.3.1 works in a “depth-first” fashion. In fact, in the running example de-
scribed in Figure 3.4 first we compute the binary tagging tree for the substring
T [0 . . . 3] = baac from its leaves to its root, then we move to the next substring
T [1 . . . 4], and so on. The fingerprint of each internal node u is computed by looking
at the already computed fingerprints of its left and right children (hl, hr). If the pair
has already been encountered in the previous iteration, then u is labeled with the
old fingerprint, otherwise a fresh fingerprint is assigned to u. This lookup operation
can be implemented in O(log n) time, by using an array of balanced binary search
trees indexed by the first fingerprint of the pair (see [65] for details), and must be
repeated O(log |Σ′|) times for each window shift.

The new algorithm rely on a simple observation. Multiple nodes of different
binary tagging trees (or even in the same tree) can be labeled with the same fin-
gerprint, but they always occur in the same level. For example, in Figure 3.4, the
fingerprint 6 occurs both in the first binary tagging tree, and in the last one. How-
ever, in both cases it occurs at level three of the tagging trees (in the following we
number the level of the binary tagging tree from the leaves to the root starting from
level 0).

This observation suggests that, fixed the substring size l, all the binary tagging
trees for the substrings of size l, occurring in the input text T can be computed in
parallel, by computing the fingerprints of their nodes levelwise. In other words, first
we compute the fingerprints of all the leaves of all the binary tagging trees that are
at level one, then the fingerprints for the nodes at level 1, up to the fingerprints of
the roots of the trees.

A similar approach has been pioneered in [56] for the problem of detecting all the
maximal locations of a given character set S ⊆ Σ. However, the algorithm described
in this section differs from that in [56] in three relevant aspects.

First, while the algorithm in [56] has been designed to handle sets of symbols,
our algorithm handle multisets of symbols, where the equality between multiset
must take into account not only the symbols that occur in the set, but also their
multiplicities.

Second, in [56] the authors are interested in maximal locations of each character
set. For example, given the set S = {a, b} and the input text T = baaca, the
prefix baa is a maximal occurrence of S, while the prefix ba is not, since it could be
extended one symbol to the right, without changing the set of symbols contained in
the string. As we discussed in Section 3.2, we do not make use of any notion of max-
imality to reduce the number of output patterns, but we pursue a different approach
that aims at ranking the output patterns, returning the top-k π-patterns only (note

60 CHAPTER 3. π-PATTERN DISCOVERY

the drawback of the notion of maximality in [56], that sacrifices the information
about the symbol multiplicities).

Finally, while the algorithm in [56] (but also the original algorithm in [9]), han-
dles each substring size l ∈ [2, . . . , L] independently, our algorithm handles all the
substring size in the range [2, . . . , L] at once.

b a a c f a a b c

b t
0
=(1,1,0,0) a t

4
=(1,0,1,1) a t

8
=(1,0,2,2) c t

12
=(1,2,3,3) f t

16
=(1,5,4,4) a t

20
=(1,0,5,5) a t

24
=(1,0,6,6) b t

27
=(1,1,7,7) c t

29
=(1,2,8,8)

a t
1
=(1,0,0,1) a t

5
=(2,0,1,2) c t

9
=(1,2,2,3) f t

13
=(1,5,3,4) a t

17
=(1,0,4,5) a t

21
=(2,0,5,6) b t

25
=(1,1,6,7) c t

28
=(1,2,7,8)

a t
2
=(2,0,0,2) c t

6
=(1,2,1,3) f t

10
=(1,5,2,4) a t

14
=(1,0,3,5) a t

18
=(2,0,4,6) b t

22
=(1,1,5,7) c t

26
=(1,2,6,8)

c t
3
=(1,2,0,3) f t

7
=(1,5,1,4) a t

11
=(2,0,2,5) a t

15
=(2,0,3,6) b t

19
=(1,1,4,7) c t

23
=(1,2,5,8)

0,0−>0 0,1−>1 1,0−>2 1,1−>3 2,0−>4 2,1−>5
M

1

b a a c f a a b c

b (0,1,0,0,0) a (1,0,0,1,1) a (1,0,0,2,2) c (1,0,1,3,3) f (0,1,2,4,4) a (1,0,0,5,5) a (1,0,0,6,6) b (0,1,0,7,7) c (1,0,1,8,8)

a (1,1,0,0,1) a (2,0,0,1,2) c (1,0,1,2,3) f (0,1,2,3,4) a (1,0,0,4,5) a (2,0,0,5,6) b (1,1,0,6,7) c (1,0,1,7,8)

a (2,1,0,0,2) c (1,0,1,1,3) f (0,1,2,2,4) a (1,0,0,3,5) a (2,0,0,4,6) b (2,1,0,5,7) c (1,0,1,6,8)

c (1,0,1,0,3) f (0,1,2,1,4) a (2,0,0,2,5) a (2,0,0,3,6) b (2,1,0,4,7) c (1,0,1,5,8)

P
1

L
0

b a a c f a a b c

(1,0,0,0) (2,0,1,1) (2,0,2,2) (2,1,3,3) (1,2,4,4) (2,0,5,5) (2,0,6,6) (1,0,7,7) (2,1,8,8)

(3,0,0,1) (4,0,1,2) (2,1,2,3) (1,2,3,4) (2,0,4,5) (4,0,5,6) (3,0,6,7) (2,1,7,8)

(5,0,0,2) (2,1,1,3) (1,2,2,4) (2,0,3,5) (4,0,4,6) (5,0,5,7) (2,1,6,8)

(2,1,0,3) (1,2,1,4) (4,0,2,5) (4,0,3,6) (5,0,4,7) (2,1,5,8)

L
1

0,0 −>0 0,2−>1 1,0−>2 1,2−>3 2,0−>4 2,2−>5
3,0−>6 3,2−>7 4,0−>8 4,2−>9 5,0−>10 5,2−>11

b a a c f a a b c

(1,0,0,0,0) (2,0,0,1,1) (2,0,0,2,2) (0,2,0,3,3) (1,0,1,4,4) (2,0,0,5,5) (2,0,0,6,6) (1,0,0,7,7) (0,2,0,8,8)

(3,0,0,0,1) (4,0,0,1,2) (2,2,0,2,3) (1,0,1,3,4) (2,0,0,4,5) (4,0,0,5,6) (3,0,0,6,7) (1,2,0,7,8)

(5,0,0,0,2) (4,2,0,1,3) (1,0,1,2,4) (2,2,0,3,5) (4,0,0,4,6) (5,0,0,5,7) (3,2,0,6,8)

(5,2,0,0,3) (1,0,1,1,4) (4,2,0,2,5) (4,2,0,3,6) (5,0,0,4,7) (5,2,0,5,8)

P
2

b a a c f a a b c

(2,0,0,0) (4,0,1,1) (4,0,2,2) (1,0,3,3) (2,1,4,4) (4,0,5,5) (4,0,6,6) (2,0,7,7) (1,0,8,8)

(6,0,0,1) (8,0,1,2) (5,0,2,3) (2,1,3,4) (4,0,4,5) (8,0,5,6) (6,0,6,7) (3,0,7,8)

(10,0,0,2) (9,0,1,3) (2,1,2,4) (5,0,3,5) (8,0,4,6) (10,0,5,7) (7,0,6,8)

(11,0,0,3) (2,1,1,4) (9,0,2,5) (9,0,3,6) (10,0,4,7) (11,1,5,8)

L
2

M
2

0,2−>0 1,0−>1 1,2−>2 2,0−>3 3,0−>4 4,0−>5 4,2−>6
5,0−>7 5,2−>8 6,0−>9 7,0−>10 8,0−>11 8,2−>12
9,0−>13 9,2−>14 10,0−>15 10,2−>16 11,0−>17

b a a c f a a b c

(2,0,0,0,0) (4,0,0,1,1) (4,0,0,2,2) (1,0,0,3,3) (0,2,0,4,4) (4,0,0,5,5) (4,0,0,6,6) (2,0,0,7,7) (1,0,0,8,8)

(6,0,0,0,1) (8,0,0,1,2) (5,0,0,2,3) (1,2,0,3,4) (4,2,0,4,5) (8,0,0,5,6) (6,0,0,6,7) (3,0,0,7,8)

(10,0,0,0,2) (9,0,0,1,3) (5,2,0,2,4) (5,2,0,3,5) (8,2,0,4,6) (10,0,0,5,7) (7,0,0,6,8)

(11,0,0,0,3) (9,2,0,1,4) (9,2,0,2,5) (9,2,0,3,6) (10,2,0,4,7) (11,0,0,5,8)

P
3

b a a c f a a b c

(3,0,0,0) (5,0,1,1) (5,0,2,2) (1,0,3,3) (0,0,4,4) (5,0,5,5) (5,0,6,6) (3,0,7,7) (1,0,8,8)

(9,0,0,1) (11,0,1,2) (7,0,2,3) (2,0,3,4) (6,0,4,5) (11,0,5,6) (9,0,6,7) (4,0,7,8)

(15,0,0,2) (13,0,1,3) (8,0,2,4) (8,0,3,5) (12,0,4,6) (15,0,5,7) (10,0,6,8)

(17,0,0,3) (14,0,1,4) (14,0,2,5) (14,0,3,6) (16,0,4,7) (17,0,5,8)

L
3

M
3

Figure 3.5: The levelwise binary tagging tree algorithm for π-patterns discovery,
executed on T = baacfaabc, setting L = 4 and q = 2 returns the patterns
p1 = {a(2), c, f}, and p2 = {a(2), b, c} together with their occurrence lists L(p1) =
{1, 2, 3}, and L(p2) = {0, 5}.

Before going in details, formally describing the algorithm, for π-pattern discovery,
we describe the main idea of the algorithm by the running example in Figure 3.5.

3.3. π-PATTERN DISCOVERY: FIRST PHASE 61

Given the input text T = baacfaabc we compute the set of π-patterns having
maximal size L = 4, occurring at least q = 2 times in T as follows. We make use of
an auxiliary array A, called signature array, having size |Σ′| = 8 (see Section 3.3.1
for the definition of Σ′), that stores the signature of the current string, and that is
initialized to [0, 0, 0, 0, 0, 0, 0, 0].

In the first step we compute the fingerprints for the leaves of the binary tag-
ging trees. They represent the multiplicities of the current symbol in the current
substring, and are represented as quadruplets in the list L0. More precisely, each
quadruplet tj = (nc, c, i, r) represents the multiplicity nc of the c-th symbol of the
alphabet (zero based), in the substring T [i . . . r]. For example, in Figure 3.5 the first
quadruplet t0 encodes that only one b occurs in the substring T [0 . . . 0], t1 encodes
that only one a occurs in T [0 . . . 1], t2 that two a symbols occur in T [0 . . . 2], t3
encodes that one c occurs in T [0 . . . 3], etc.

After L0 has been initialized, we read each quadruplet (nc, c, i, r) ∈ L0, updating
the corresponding element in position c of the signature array A. We append to
the list P1 a quintuplet uj = (hl, hr, m, i, r) whose first two components represent
the pair (A[c − 1], A[c]) if c is odd, (A[c], A[c + 1]) otherwise. In other words, hl

and hr are the fingerprints of the left and the right children, which are used to
compute the fingerprint of the father node u. The other values of the quintuplet
represent the index of the pair encoded by the quintuplet (m), and the indices in
T where the corresponding string start and end. For example, in Figure 3.5 the
first quadruplet being read from L0 is t0 = (1, 1, 0, 0). The signature array A is
modified into A0 = [0, 1, 0, 0, 0, 0, 0, 0], by updating the value in position 1 (note
that, A0 represents the signature of T [0 . . . 0] = b). At this point we append the
first quintuplet u0 = (0, 1, 0, 0, 0) representing the pair of values (A0[0], A0[1]) to P1

(the values are highlighted in bold in A0). This pair of values will be used in the
next iteration of the algorithm to assign the fingerprint of the father node in the
binary tagging tree.

After t0, we read t1 = (1, 0, 0, 1), updating the signature array to
A1 = [1, 1, 0, 0, 0, 0, 0, 0] and appending the quintuplet u1 = (1, 1, 0, 0, 1) to P1. We
repeat the same steps for t2 and t3, that correspond to the substring T [0 . . . 2] and
T [0 . . . 3], respectively, appending u2 = (2, 1, 0, 0, 2) and u3 = (1, 0, 1, 0, 3) to P1.
Since the substring T [0 . . . 3] is the string of maximal size starting at position 0 (we
recall that L = 4), we conceptually shift the sliding window one position to the
right, resetting the signature array to [0, 0, 0, 0, 0, 0, 0, 0] before processing t4.

We repeat the above steps for each quintuplet in L0, resetting the signature
array every time that the sliding window is moved one position to the right (i.e.
after reading t3, t7, t11, t15, t19, t23, t26, t28, t29).

The quintuplets in P1, represent the consecutive pairs of fingerprints tagging the
leaves of all the binary tagging trees of all the substrings of T having size 1, 2, 3, 4. We
conceptually follow the idea described in Section 3.3.1 by grouping the quintuplets
in P1 by their first two values hl and hr, assigning a unique name to each pair (hl, hr)
in uj = (hl, hr, m, i, r). The new names are shown in Figure 3.5 in M1, while L1 is

62 CHAPTER 3. π-PATTERN DISCOVERY

the new list of quadruplet obtained from P1, by substituting the first two values of
each quintuplet with the fresh fingerprint associated with this pair by the mapping
M1.

This is the main difference between the algorithm described in Section 3.3.1 and
this levelwise variant. While in the former we compute the fingerprints of the binary
tagging tree associated with the first sliding window before that of the nodes of the
tree of the second sliding window, in the latter we compute the fingerprints levelwise,
by assigning the fingerprints to the leaves of all the binary tagging trees, then to
their fathers, and so on, up to the roots of the trees.

The quadruplets in L1 represent the fingerprints labeling the nodes at level 1 of
all the binary tagging trees. Hence, we perform the same steps as above, by reading
each quadruplet in L1, updating the signature array A, appending the correspond-
ing quintuplet to P2, and when all the quadruplets in L1 have been processed, by
grouping all the quintuplets in P2 by the first two values, computing the list L2.

One more iteration is required to compute the list L3. Each quadruplet in L3

corresponds to one substring of size [1, . . . , 4] of T , while the first value of each
quadruplet represents the fingerprint of the root of the binary tagging tree associated
with the string.

Hence, by grouping the quadruplets in L3 by their first value, we group together
the substrings of size [1, . . . , 4] of T having the same signature. A final scan of
the groups, filtering the groups corresponding to strings of size one, and groups
containing strictly less than q = 2 strings, yield the π-patterns having size l = 2, 3, 4,
occurring at least q = 2 times in T .

Algorithm 3 formalizes the main computational steps that we discussed in the
running example above. To compute the set of π-patterns of size [2, . . . , L] occurring
at least q times in the input text T , together with their occurrence lists the algorithm
makes use of the auxiliary signature array A having size |Σ′| (|Σ′| = 2dlog2 |Σ|e).
Lines 1–8 initialize the L0 list of quadruplets. The quadruplets in L0 represent
how the signature array A is modified (the value of the modified element, and its
position in A), every time that we read a symbol of T . More precisely, by scanning
each substring T [i . . . r] of size [1, . . . , L], we append to L0 one quadruplet (nc, c, i, r)
for each substring. The first value of the quadruplet represents the number of
occurrences of the symbol T [r] inside the substring T [i . . . r] (occs(T [r], T [i . . . r])).
Note that we assumed that each symbol in T is representable as an integer through
the function int(T [r]).

After that L0 has been initialized, the main loop of lines 9–32, performs log |Σ′|
iterations to compute the fingerprints of the roots of all the binary tagging trees
corresponding to the strings of T of size [1, . . . , L]. The computation proceeds
levelwise. The k-th iteration computes the list of fingeprints Lk of level k by assigning
a unique fingerprint to the pair of fingerprints of level k that are contained in Lk−1

(we recall that level 0 is that of the leaves, while level log |Σ′| is that of the roots of
the binary tagging tree).

This computation is organized in two steps. First in lines 13–24 we construct

3.3. π-PATTERN DISCOVERY: FIRST PHASE 63

Algorithm 3 Levelwise binary tagging tree.

Input: The input string T of size n, the maximum π-patterns size L, the quorum
threshold q.

Out: The set of π-patterns of size [2, . . . , L] occurring at least q times in T , together
with their occurrence lists.

1: L0 = []
2: for i in 0, . . . , n − 1 do
3: for r in i, . . . , min{n − 1, i + L − 1} do
4: c = int(T [r])
5: nc = occs(T [r], T [i . . . r])
6: append(L0, (nc, c, i, r))
7: end for
8: end for
9: for k in 1, . . . , log |Σ′| do

10: A = [0, . . . , 0]
11: Pk = []
12: j = i
13: for (h, c, i, r) in Lk−1 do
14: A[c] = h
15: if odd(c) then
16: append(Pk, (A[c − 1], A[c], c−1

2
, i, r))

17: else
18: append(Pk, (A[c], A[c + 1], c

2
, i, r))

19: end if
20: if j − i + 1 == L or j == n − 1 then
21: reset(A)
22: end if
23: j + +
24: end for
25: Group Pk = [(hl, hr, c, i, r)] by the pair (hl, hr).
26: Assign to each group a new name.
27: Lk = []
28: for (hl, hr, c, i, r) in Pk do
29: Let hf the name of the group for the pair (hl, hr)
30: append(Lk, (hf , c, i, r))
31: end for
32: end for
33: Group Llog |Σ′| = [(h, c, i, r)] by the fingerprint h.
34: Discard the groups corresponding to strings of size 1.
35: Discard groups with less than q quadruplets.
36: return remaining groups.

64 CHAPTER 3. π-PATTERN DISCOVERY

the list Pk of all non-overlapping consecutive fingerprints that occur in the signature
array A, by storing each pair of consecutive fingerprint A[c− 1] and A[c] as the first
two elements of a quintuplet of Pk (if the index c is even, the consecutive fingerprints
are A[c] and A[c+1]). In line 20 the signature array A is reset to [0, . . . , 0], when the
sliding window that we are conceptually moving across the input text T is moved
one position to the right. This happens when the current substring T [i . . . j] has
reached the maximum size L, or when it cannot be extended to the right because j
point to the last symbol of T . In Figure 3.5, this is required after the quadruplet of
Lk in positions 3, 7, 11, 15, 19, 23, 26, 28, 29 have been processed.

After the list Pk has been computed, we group its quintuplets by their first two
components, assigning to each group a new fingerprint. These new fingerprints are
used in lines 28–31 to rename the quintuplets in Pk, by creating the list Lk of the
fingerprints at level k.

After log |Σ′| iterations, the list Llog |Σ′| contains the fingerprints of all the sub-
strings of size [1, . . . , L] in the string T . Substrings have the same fingerprint, if and
only if they have the same signature.

By grouping the quadruplets in Llog |Σ′| by their fingerprint (the first component),
and successively filtering the strings having size 1, and the groups containing less
than q quadruplets, we obtain the set of π-patterns of size [2, . . . , L] occurring at
least q times in T , together with their occurrence lists.

Since Algorithm 3.5 mimics the steps of the algorithm in Section 3.3.1, by com-
puting the fingerprints of the node of the binary tagging trees levelwise, the correct-
ness of the algorithm follows from that of the algorithm in Section 3.3.1.

Theorem 12. Algorithm 3 correctly computes the set of π-patterns of size [2, . . . , L]
occurring at least q times in T [0 . . . n − 1], together with their occurrence lists.

The complexity of the algorithm is analyzed in the following theorem.

Theorem 13. Algorithm 3 requires O(L log |Σ|n) time and O(Ln) space.

Proof. In the following we assume that |Σ| < n, recalling that Σ′ is at most twice
larger than Σ. The initialization of L0 can be implemented in O(nL) time, by using
an auxiliary array of size Σ′ to implement the function occs(−). To prove that
the time complexity of the algorithm is O(L log |Σ|n) we prove that each iteration
requires O(Ln) time. First, we observe that all the lists Lk and Pk have size Ln,
because this is by construction the size of L0, and all the other lists have one tuple
for each quadruplet in L0. Then we observe that, the value of the fingerprints in
the first two components of the quintuplets in Pk is bounded by O(n). In fact,
in each quintuplet (hl, hr, c, i, r) ∈ Pk, hl and hr are fingerprints that have been
generated at the previous iteration. Theorem 10 guarantees that the number of
distinct fingerprints at each level is O(n). Hence, the grouping step in Line 25, and
the following initialization of the list Lk, can be implemented in O(Ln) time by
lexicographically sorting the quintuplets in Pk by radix sort.

3.4. RANKING π-PATTERNS WITH NO REPEATED SYMBOLS 65

Some care is required in Line 20 to reset the signature array A every time that
the sliding window is moved one position to the right. We do not reset all the
components of A, but only the L components (at most) that have been updated from
the last reset operation, paying one operation for each one of the Ln quadruplet in
Lk.

Both the final grouping step in line 33 (that can be implemented by radix sort),
and the final filtering step, require time linear in the size of the list Llog Σ′, namely
O(Ln). It follows that the overall time complexity of the algorithm is O(L log |Σ|n).

The O(Ln) space complexity follows from the fact that all the Lk and Pk lists
have O(Ln) size, and that the number of distinct fingerprints for a fixed substring
length l ∈ [1, . . . , L] at each level is O(n). From above, it follows that the initial-
ization step at Lines 1–8, each grouping step at Line 25, together with the final
grouping step at Line 33 can be performed in O(Ln) space. Since we assumed
that the size of the auxiliary signature array A is |Σ′| ≤ n, we have that the space
complexity of the algorithm is O(Ln).

3.4 Ranking π-patterns with No Repeated Sym-

bols

In Section 3.3.2 we improved the algorithm in [9], to compute the set of π-patterns of
size [2, . . . , L] occurring at least q times in the input text T , together with their
occurrence lists, in O(L log |Σ|n) time, and O(Ln) space, by saving a log(n) time
factor. This shows that the π-patterns discovery task can be efficiently performed,
still preserving the information about the symbol multiplicities occurring inside each
pattern.

We now discuss the second step of Algorithm 2. Namely, given a π-pattern p,
together with its occurrence list L(p), we have to compute the minimal PQ-tree T
for its occurrence list, counting the number of frontiers represented by T , count(T) =
|Fr(T)|, because, as discussed in Section 3.2, they are a clear measure of how much
conserved p is across its occurrences.

More precisely, in the current section we discuss the case when no symbol in
p is repeated (i.e. p is a set). We discuss the more general case of multisets in
Section 3.5.4, where we also discuss the relationship between these problems, and
the generalization of the classic consecutive ones problem to the case of multisets.

Under the assumption that each leaf of the given PQ-tree T is labeled with a
distinct symbol of Σ, the computation of count(T) is simple. In fact, if all the leaves
are labeled with distinct symbols there is a one-to-one correspondence between the
number of frontiers count(T), and the number of PQ-trees equivalent to T , that
can be obtained by permuting the children of a P -node, or reversing the order of
the children of a Q-node.

We count the number of equivalent PQ-trees inductively. A leaf is only equiv-

66 CHAPTER 3. π-PATTERN DISCOVERY

alent to itself. In the case of a Q-node with l children u1, . . . , ul, since we have
to select one of the possible rearrangements for each one of the l subtrees and then
concatenating their frontiers either left-to-right or right-to-left, the number of equiv-
alent trees is 2 × count(u1) × . . . × count(ul). In the case of a P -node each one of
the l ! possible permutations of the subtrees is suitable. It follows that the count(u)
function can be defined as:

count(u) =

1 if u is a leaf
2 × count(u1) × . . . × count(ul) if u is a Q node
l ! × count(u1) × . . . × count(ul) if u is a P node

Theorem 14. If the leaves of the PQ-tree T are labeled with distinct symbols, then
count(T) can be computed in time linear in the number of nodes of T .

If the π-pattern p contains no repeated symbols, then the computation of the
minimal PQ-tree for L(p) is simple. Note that since no symbol is repeated in p,
L(p) is a list of permutations of the symbols in p.

In [33], Booth and Leuker defined an efficient algorithm to compute the function
reduce(T ′, C), that given a collection C of subsets of Σ, and a PQ-tree T ′ whose
leaves are labeled with the symbols of Σ, builds a PQ-tree T such that s ∈ Fr(T)
iff s ∈ Fr(T ′) and each subset in C occurs as a consecutive substring of s. In
other words, the function reduce(−,−) transforms the tree T ′, in a new tree T , such
that the strings belonging to Fr(T) satisfy all the consecutiveness constraints in the
collection C (i.e. {a, c, d} ∈ C means that the symbols a, c, and d are required to
be consecutive in the frontiers of T).

This function can be used as the main building block to compute the minimal
PQ-tree for the occurrence list L(p), starting from the universal PQ-tree TU that
represents the set of all the permutations of the symbols in Σ (TU consists of a
single P -node with |Σ| children that are the leaves labeled with the symbols of
|Σ|). For example, in Figure 3.3, the PQ-tree T2 represent all the permutations of
S = {a, b, c, e} where the symbols b,c, and e are consecutive. It can be constructed
starting from the universal tree TU = {a, b, c, e}, which represents all the permu-
tations of the symbols a, b, c, e, by constraining, through the reduce function, the
symbols b,c, and e to be consecutive (i.e. T2 = reduce(TU , {{b, c, e}})).

The idea behind Algorithm 4, that given L(p) computes the minimum PQ-tree, is
to transform TU , into the tree whose frontiers satisfy all the consecutive constraints
represented by the common intervals of L(p). The algorithm can be formalized as
follows.

Since the common intervals of L(p) can be succinctly represented by the set of
irreducible intervals [93], Algorithm 4 uses this set instead of the common intervals,
due to its linear size in |p|.

The correctness of the algorithm is discussed in [122], where it is also shown that
its time complexity is O(|L(p)||p|+ |Σ|2), while O(|p|) space is required. In the same

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 67

Algorithm 4 Computation of the minimal PQ-tree.

Input: The π-pattern p with no repeated symbol, and its occurrence list L(p).
Out: The minimal PQ-tree T for L(p).
1: Compute the set of Irreducible Intervals I for L(p) [93].
2: Compute T = reduce(TU , I) [33].
3: return T

paper a more involved algorithm running in O(|L(p)||p|) time and O(|p|) space is
also presented.

From above, it follows that:

Theorem 15. Given a π-pattern p with no repeated symbols, together with its oc-
currence list L(p), the minimum PQ-tree T for L(p), and the number of frontiers
represented by T , count(T), can be computed in O(|L(p)||p|) time and O(|p|) space.

3.5 Ranking π-patterns with Repeated Symbols

In Section 3.4 we discussed the complexity of constructing the minimal PQ-tree T
for the occurrence list L(p) of the π-pattern p with no repeated symbols, and the
complexity of counting the number of frontiers represented by T , count(T). We
showed that in the restricted case when the π-pattern p is a set of symbols (i.e.
no symbol is repeated) the above tasks can be performed in O(|L(p)||p|) time, and
O(|p|) space.

We now discuss the case of π-patterns with repeated symbols (i.e. p is a multi-
set). The results presented in the following sections wipe out the possibility of an
efficiently implementation of the score(p,L(p)) function introduced in Section 3.2,
also in the case of π-patterns with repeated symbols.

More precisely, in Section 3.4 we described the main conceptual steps involved
in the computation of the minimal PQ-tree T given the occurrence list L(p), of
the π-pattern p. First, we compute the set of common intervals of L(p) (that is
succinctly represented by the set I of the irreducible intervals). Then, given the set
of irreducible intervals we compute the minimal PQ-tree T . Finally, we count the
number of frontiers represented by the PQ-tree T , count(T).

In Section 3.5.4, our first result is to prove that the problem (denoted #FRONT)
of counting the frontiers of a PQ-tree whose leaves are labeled with the (repeated)
symbols of a multiset is #P-complete. We recall that, the complexity of this problem
has been left as an open issue in [155].

One could hope that a polynomial solution to compute count(T) might exist
without relying on PQ-trees. In other words, given the set of irreducible intervals of
L(p), can we directly compute the number of frontiers represented by the minimal
PQ-tree without computing the tree itself?

68 CHAPTER 3. π-PATTERN DISCOVERY

To answer to this question we introduced the #FMO problem: given a multiset
of symbols R, and a family of multisets F = {Q1, . . . , Qm} such that Qi ⊂ R for
1 ≤ i ≤ m, how many strings x can be drawn from all symbols in R, respecting the
multiplicities of the symbols in R, so that each Qi occurs as a consecutive substring
in x?

Note that the problem of computing the number of frontiers of the minimal
PQ-tree given the set of irreducible intervals is a particular instance of the #FMO

problem, where R = p, and F is the family of the irreducible intervals of L(p).
Note also that in the #FMO problem, both R and Qis are multisets. This is the
fundamental difference between the classic consecutive ones property (C1P), and
#FMO, which is a generalization of C1P to multisets.

A family of sets F = {Q1, . . . , Qm}, where each Qi is a subset of the alphabet
Σ, satisfies the C1P if the symbols in Σ can be permuted such that the elements
of each set Qi ∈ F occur consecutively as a contiguous segment of the permuta-
tion. The counting version of the problem consists in counting the number of such
permutations.

Booth and Leuker [32, 33] showed how to enumerate and count all the solution
permutations of a given C1P instance in time linear in the sum of the sizes of the Qi

sets (see Section 3.5.2 for alternative approaches). Can we also do the same in the
case of multisets?

Our second result is that #FMO is #P-complete. We refer the reader to Sec-
tion 3.5.5 for a discussion.

An interesting implication of our findings is the relation with the well-known
counting version #HAM of the Hamiltonian path problem [75]. As previously men-
tioned, a direct mapping of the orderings for the C1P in multisets into the frontiers of
PQ-trees has some intrinsic ambiguity. On the other hand, we can prove that both
the counting problems #FRONT and #FMO are #P-complete using a reduction from
#HAM. By the completeness properties, it follows that there must exist a relation
between the latter two problems. However, simply composing the reductions does
not immediately produce a single PQ-tree, having the same properties as the input
instance, which is an open problem. Our approach is of independent interest, and
the counting nature of the problems emphasizes the combinatorial properties of the
strings (orderings) thus generated by the reductions.

However, before discussing the complexity of #FRONT and #FMO, in Section 3.5.1
and 3.5.2 we formally define the consecutive ones problem, showing its relationship
with other well known problems and the PQ-tree data structure. The terminology
that will be used in the following sections will be introduced in Section 3.5.3.

3.5.1 Introduction to C1P

A binary matrix M of size m× n satisfies the consecutive ones property (C1P) if its
n columns can be permuted such that the 1s in each row of the resulting matrix
are consecutive. An equivalent definition holds for the columns by permuting the

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 69

rows. The property is often formulated in terms of sets. A family of sets F =
{Q1, . . . , Qm}, where each Qi is a subset of the universe of symbols R = {r1, . . . , rn},
satisfies the C1P if the symbols in R can be permuted such that the elements of each
set Qi ∈ F occur consecutively as a contiguous segment of the permutation of the
symbols in R.

For example, consider the universe R = {a, b, c, d, e}. The C1P is not satisfied by
the family F = {{a, b}, {b, c}, {b, d}}, since b can have at most two adjacent symbols
in any permutation of R. On the other hand, the family F = {{b, c}, {b, d}} satisfies
the C1P: one feasible permutation of R is x = eacbd, but not all permutations of R
are feasible (e.g. y = abcde is not, because the symbols {b, d} are not consecutive
in y).

The C1P on sets can be formulated as a C1P problem on the binary matrix M
obtained by associating row i with set Qi ∈ F , and column j with element rj ∈ R.
Specifically, Mij = 1 iff rj ∈ Qi, as shown below for our example.

a b c d e e a c b d

{b, c} 0 1 1 0 0 0 0 1 1 0

{b, d} 0 1 0 1 0 0 0 0 1 1

The problem of finding the orderings, namely, the permutations of R that are
generated by the C1P, arises in several situations. It was first solved efficiently by
Fulkerson and Gross [74] in their study on the incidence matrix of interval graphs,
using an O(mn2) time algorithm. Ghosh [76] applied the problem to information
retrieval, where R is the set of input records and each Qi is the set of records
satisfying a query: for each Qi, the C1P guarantees that the corresponding records
can be retrieved from consecutive storage locations. Booth and Leuker [32, 33]
showed how to find any such ordering in linear time, with respect to the number
of 1s in M , with applications to some graph problems such as planarity testing.
They employed the PQ-tree data structure to represent compactly all the orderings
yielding the C1P for the given matrix M .

The PQ-tree corresponding to our example is denoted by T1 in Figure 3.6. The
leaves of the PQ-tree contain the symbols of R: when reading these symbols by
traversing the leaves in preorder, we obtain a string that is one of the frontiers of
the PQ-tree. As it can be seen, the frontier is one of the orderings yielding the
C1P in our example tree T1. Further orderings can be obtained by rearranging the
children of the nodes of the PQ-tree, since they implicitly encode the sets in F .

By conceptually performing all the feasible rearrangements of the nodes in the
PQ-tree as discussed in Section 3.2, we obtain the set of frontiers that are generated
by the PQ-tree. These frontiers are in one-to-one correspondence with all the order-
ings yielding the C1P for matrix M , as it can be verified by inspecting our example
for T1: we can represent them as the strings x1 = acbde, x2 = adbce, x3 = aecbd,
x4 = aedbc, x5 = cbdae, x6 = dbcae, x7 = cbdea, x8 = dbcea, x9 = ecbda,
x10 = edbca, x11 = eacbd, and x12 = eadbc.

70 CHAPTER 3. π-PATTERN DISCOVERY

T1 T2 T3

a aa b

b bbb c cc d dd

e

Figure 3.6: Some examples of PQ-trees.

Since its inception, the C1P has found many applications under several incarna-
tions. Recent fields of application are stringology and bioinformatics. Motivated
by the combinatorial aspects of sequences with repeated symbols, we consider the
scenario for the C1P in which the symbols in the input set R are not necessarily
distinct.

We investigate the problem of how to satisfy the C1P when R and the Qis are
multisets. To get the flavor of the problem, consider the universe R = {a, b, b, c, d}
and the family F = {{b, c}, {b, d}}. The situation arises from the fact that the
symbol b in both Q1 = {b, c} and Q2 = {b, d} can either match the same occurrence
of b in R or not. The former case gives rise to the PQ-tree T2 in Figure 3.6, while the
latter gives rise to the PQ-tree T3. The set of frontiers are now strings with repeated
symbols: the set of frontiers generated by one PQ-tree is not contained in the set of
the other PQ-tree. However, the two occurrences of b in R are indistinguishable.

In the following sections, we consider problems arising from repeated symbols,
and show that dealing with the C1P on multisets is hard. Specifically, we study the
problem of counting the number of orderings. This is “simpler” than listing all the
orderings. As discussed in Section 3.2 the counting problem using standard PQ-
trees on sets takes polynomial time, since we can use the aforementioned one-to-one
correspondence between the orderings and the frontiers.

3.5.2 Testing the C1P: related work

Testing the C1P can be done using variants of the PQ-tree data structure. Although
optimal from a theoretical viewpoint, Booth and Leuker’s algorithm [33] is quite
difficult to implement since it builds the PQ-tree by induction on the number of
rows of the matrix. For each row, it performs a second induction from the leaves
towards the root, using one of nine templates at each node encountered in order to
understand how the other nodes must be restructured.

The PC-tree is an alternative data structure introduced by Shih and Hsu in [174]
to address these difficulties, which can also be used to check the C1P as shown in [99].
Both the above tree structures have remarkably simple definitions as mathematical
objects applying previously-known theorems on set families to this domain. Also,
the PC-tree gives a representation of the circular ones orderings of the matrix M
just as the PQ-tree gives a representation of all the C1P orderings.

The PQR-tree is another alternative data structure introduced by Meidanis et

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 71

al. [138] to devise a tree also for the case when the input does not satisfy the C1P.
In particular, the R-node is like the P -node, except that it captures the portion of
the frontier that violates the C1P.

As previously mentioned, the C1P has several interesting applications since sev-
eral apparently unreleated problems reduce to it. One of such problems is to decide
if a given graph G is an interval graph: in [74] the authors proved that a graph G
is an interval graph if and only if its clique matrix has the C1P by rows.

Another important application is in graph planarity testing : given a graph G
return a planar embedding for G and if it does not exist return a Kuratowski sub-
graph isolator [121]. In this case, the C1P is used as a step in the Booth and Lueker
algorithm [33] to check planarity in linear time: this approach adds one vertex at
a time, updating the PQ-tree to keep track of possible embeddings of the subgraph
induced by vertices so far. (A much more simpler approach based on PC-tree has
been developed in [174].)

However not all pairs of F and R enjoy the C1P. In that case, either duplication
of symbols, or “breaking” some set in F into subsets, must be allowed in order to
arrange linearly the input symbols. The former scenario gives rise to the problem
of minimizing duplication of symbols. The latter gives rise to the problem of min-
imizing the number of subsets the input sets are splitted into (sometimes referred
in literature as the consecutive block minimization problem). Both problems, in
their decision version, have been proved in [117] to be NP-complete (an 1.5 approx
algorithm for the block minimization problem is described in [89]). For example,
the C1P instance where R = {a, b, c, d} and F = {{a, b, c}, {a, c, d}, {b, d}} has no
solution. If we allow duplication of symbols, two strings satisfying the constraints
in F are x = bacdb and y = dbacd (where b and d are repeated twice in x and
y respectively), while if we allow some constraints not being satisfied an optimal
solution is z = bacd where only the set {b, d} is broken into two subsets {b} and
{d}.

3.5.3 Definitions and terminology

We consider a class of strings defined over multisets, where the usual notions of
inclusion, equality, and union, take into account the multiplicities of the elements
in the multisets. We say that a string s ≡ s1s2 · · · sn is drawn from a multiset R of
symbols if and only if the multiset S = {s1, s2, . . . , sn} satisfies the condition S ⊆ R,
where si denotes the symbol stored into position i of s, for 1 ≤ i ≤ n.

We also say that a multiset P occurs in a string s (or equivalently P is contained
in s), if there is a substring sisi+1 · · · sj of s, where 1 ≤ i, j ≤ n, such that P =
{si, si+1, . . . , sj}.1 In the latter case, we say that P occurs at position i in s (and

1In order to simplify the notation, we will always assume that an index i is well defined, without
explicitly writing its range when it can be deduced from the context. For example, a nonempty
substring sisi+1 · · · sj has 1 ≤ i ≤ j ≤ n.

72 CHAPTER 3. π-PATTERN DISCOVERY

P is called π-pattern [9]). For example, P = {a, c, a} occurs at position i = 1 in
s = aacb, while P is not contained in s2 = aabc.

In the following sections we also use the notion of Sperner collection [63]. A
collection of multisets Q1, Q2, . . . , Qm ⊂ R is a Sperner Collection (or Sperner
Family, or Sperner System) if it is an anti-chain in the inclusion lattice over the
powerset of R; namely, no multiset Qi is contained in any other multiset Qj of the
collection (i 6= j). If no set Qi is contained in the union of the others, ∪j 6=iQj, then
the Sperner Collection is said to be strict.

Given a decision problem A, we will denote by #A its counting version, where we
are required to count the number of the solutions of A [182]. A formal description
of the #P class is beyond the scope of this section, and we refer the interested
reader to the textbooks in [11, 75, 153]. However, we are going to use the notion of
#P-completeness to address the difficulty of our combinatorial problems, and so we
recall some basic definitions.

Let f be an integral function defined over strings in Σ∗, for a given alphabet Σ.
We say that f ∈ #P if there exists a binary relation T (−,−) such that:

• There exists a polynomial p such that, if (y, x) ∈ T , then |x| ≤ p(|y|).

• It can be verified in polynomial time that a pair (y, x) belongs to T .

• For every input y ∈ Σ∗, f(y) = |{x : (y, x) ∈ T}| is the number of solutions
for y.

Given two integral functions f, g defined over Σ∗, we say that there exists a
polynomial Turing reduction from g to f if the function g can be computed in
polynomial time by using a (polynomial) number of calls to an oracle for f . The
reduction is parsimonious if it preserves the number of solutions.2 A function f is
#P-hard if for every g ∈ #P there is a polynomial reduction from g to f . As usual,
a function is #P-complete if it is both #P-hard and in #P .

We are now ready to introduce the #FMO problem, which formalizes the problem
of extending the Booth-Leuker approach [33] for the C1P to multisets.

Problem 4 (#FMO = Counting Full Multiset Orderings). Input: an instance 〈R, F 〉,
where R is a multiset of symbols, and F = {Q1, . . . , Qm} is a family of multisets
Qi ⊂ R. Output: how many strings x can be drawn from all symbols in R (|x| = |R|),
so that each Qi is contained in x?

For example, given R = {a, b, b, c, d} and F = {{b, c}, {b, d}}, x = abcbd, is
one of the feasible solutions of the 〈R, F 〉 #FMO instance.

We now introduce our second problem, related to Problem 4, where we are
required to count the number of strings represented by the input PQ-tree.

2Hence it allows for non-emptiness testing in the decisional version of the problems.

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 73

Problem 5 (#FRONT = Counting PQ-trees Frontiers). Input: a PQ-tree T , where
its leaves are labeled with symbols that are not necessarily distinct. Output: what is
the size of the set of frontiers Fr(T) of T?

3.5.4 Hardness results for #FRONT

We begin by discussing the completeness of the #FRONT problem. We use a re-
duction from the well-known counting version of Hamiltonian Path (#HAM). We
are given an undirected graph G, a source vertex w ∈ G, and a destination vertex
s ∈ G. We want to know how many paths H in G start in w and end in s, such
that all the vertices in G are traversed exactly once by each H . For example, one
such path is H = 〈1, 3, 2, 4, 5〉 in the graph G shown in Figure 3.7. In the following
sections, we assume that G is connected, w and s have degree at least one, and the
other vertices have degree at least two (otherwise there is no Hamiltonian path).
We also assume that there are no multiple edges between the same pair of vertices
and no self-loops.

Construction of the PQ-trees

The main idea is to code the structure of the given graph G in three suitable PQ-
trees, TG, TV , and TE , such that each Hamiltonian path H is in one-to-many corre-
spondence with a suitable set of strings from their frontiers. We now describe our
reduction from G = 〈V, E〉 to TG, TV , and TE , using Figure 3.7 as an illustrative
example.

The root of TG is a Q-node having two PQ-trees TV and TE as children.
Tree TE encodes all the feasible permutations of the edges in E. The root of TE

is a P-node having |E| + 2 children. Two of them are special “endmarkers,” and
are labeled with $ and #. Each of the remaining children is a Q-node that encodes
an edge e = {i, j} by two leaves labeled with i and j, respectively, as children. In
our example, TE has |E| = 7 Q-nodes with children labeled by {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, {3, 4}, and {4, 5}, plus the endmarkers $ and #.

Tree TV enforces a classification of the edges as “coding” a Hamiltonian path, or
“non-coding” otherwise. Specifically, the root of TV is a Q-node with four children:
one leaf labeled with $, a PQ-tree TC for the coding edges, one more leaf labeled
with #, and a PQ-tree TN for the non-coding edges. The root of TC is a Q-node
with three children. The first child is a leaf labeled with the source w and the last
is a leaf labeled with the destination s. The middle child is a P-node with |V | − 2
children, each of which is a Q-node with two leaves labeled with the same symbol
i, for i ∈ V \ {w, s}. In our example w = 1, s = 5, and |V | = 5. The root of the
non-coding tree TN is a P-node having 2(|E| − |V | + 1) leaves as children. Letting
di denote the degree of vertex i, there are dw −1 leaves labeled with w, ds −1 leaves
labeled with s, and di − 2 leaves labeled with i 6= w, s. In our example, the leaves
are labeled with 1, 1, 2, 3, 4, 4, where 2(|E| − |V | + 1) = 6.

74 CHAPTER 3. π-PATTERN DISCOVERY

1 2 3 4 5

$ #

22 33 44

1 5 1 1 2 3 4 4

4221 31 41 32 43 54

$ #

G

TG

TV

TE

TV TE

TC TN

Figure 3.7: The PQ-tree TG associated with the input graph G, where the source and
the destination vertices are w = 1 and s = 5, and TV and TE are shown individually.

The above construction requires polynomial time, and the rationale will be given
in Section 3.5.4.

Lemma 16. Given an undirected graph G = 〈V, E〉, its corresponding PQ-trees TG,
TV , and TE can be built in O(|V | + |E|) time.

Properties of the PQ-trees

Consider the Hamiltonian path H = 〈1, 3, 2, 4, 5〉 in our example. (Observe that
the reversal of H , namely 〈5, 4, 2, 3, 1〉, is also a Hamiltonian path, but we consider
it to be different from H for counting purposes.) The corresponding strings αH

belonging to the frontiers Fr(TG) are characterized as follows. First of all, each αH

is a square, namely, the concatenation αH = α α of two equal strings α, where α
belongs to both the frontiers Fr(TV) and Fr(TE), and is of length 2|E| + 2. For
example, α = $13322445#121434 is one such feasible string. We can characterize
the general structure of the strings α by observing that they match one of the
following two patterns. Let π denote an arbitrarily chosen permutation of the pairs
in {1, 2}, {1, 4}, {3, 4}, which represents the edges not traversed by H . (That is, π
belongs to the frontiers of the PQ-tree resulting from {{1, 2}, {1, 4}, {3, 4}}.) The
former pattern for α is $ 13322445 #π, where the initial symbols are fixed and
only π may vary; analogously, the latter is π # 13322445 $. For example, α =
413421 # 13322445 $ matches the latter pattern.

Having introduced the structure of αH = α α in our example, we show how to
make α satisfy the implicit conditions encoded in TV and TE . Indeed, TE guarantees

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 75

that the two integers in each of the pairs corresponding to the edges in E always
occur consecutively in α. Moreover, the subtree TC in TV constraints each vertex
i ∈ V \ {w, s} to appear exactly twice in the chosen subset of edges, while w and s
are required to appear just once. Note that the purpose of the subtree TN is that
of “padding” the edges in E that are not traversed by H , since we do not know a
priori which ones will be touched by H .

We now generalize the above observations on α. In the following we can restrict
our focus on paths of the form i1, i2, . . . , i|V |, that are permutations of {1, 2, . . . , |V |}
with i1 = w and i|V | = s (otherwise they cannot be Hamiltonian paths from w to
s). Moreover, we introduce the notation Perm(Q) for a set Q = {{a1, b1}, {a2, b2},
. . . , {ar, br}} of unordered pairs. It represents the set of all the permutations of
a1, b1, a2, b2, . . . , ar, br such that al and bl occupy contiguous positions for 1 ≤ l ≤
r. For example, given Q = {{1, 2}, {1, 4}, {3, 4}}, we have that 413421 is a valid
permutation in Perm(Q), while 413241 is not.

We now show in Lemmas 17–19 that there exists a one-to-many correspondence
between the Hamiltonian path H in G and the strings α ∈ Fr(TV) ∩ Fr(TE).

Lemma 17. Let G = 〈V, E〉 be an undirected graph, and TG, TV , and TE be its
corresponding PQ-trees. For any string α ∈ Fr(TV) ∩ Fr(TE), there exists a corre-
sponding Hamiltonian path H of G from w to s.

Proof. Consider a string α ∈ Fr(TV)∩Fr(TE). We first show that the symbols in α
follow a special pattern.

Since α ∈ Fr(TV), the symbols $ and # in it match those in the leaves of TV by
construction. Assume w.l.o.g. that the first symbol of α is $. (The other case in
which $ is the last symbol of α is analogous.) Then, α is of the form α = $ τ # π by
construction, where τ = τ1τ2 · · · τ2|V |−2 and π should follow the patterns described
next. First, τ = wτ ′s where τ ′ ∈ Perm({i, i}i6=w,s), since τ ′ ∈ Fr(TC): hence,
τi = τi+1 for even values of i ∈ [2 . . . 2|V | − 4]. Second, π is a permutation of the
symbols in the multiset obtained by removing the symbols of τ from

⋃

{i,j}∈E{i, j}.

Now, the fact that α belongs also to Fr(TE) puts additional constraints on τ
and π. Indeed, the Q-nodes in TE guarantee that τ1 and τ2 are children of the same
Q-node, τ3 and τ4 are children of the next Q-node, and so on. Thus in general,
τi, τi + 1 for odd i belong to the same Q-node: hence, {τi, τi + 1} ∈ E, for even
values of i ∈ [2 . . . 2|V | − 4]. Combining the latter with the fact that τi = τi+1 for
odd values of i, we obtain that H = 〈w, τ2, . . . , τ2|V |−4, s〉 is a Hamiltonian path.

Note that the rest of the Q-nodes in TE induce also some contiguity constraints
on π, which will be relevant later for the counting argument (see Lemma 20). The
case α = π # τ $ is analogous.

Lemma 18. Let G = 〈V, E〉 be an undirected graph, and TG, TV , and TE be its
corresponding PQ-trees. For any Hamiltonian path H of G from w to s, there exists
at least one corresponding string α ∈ Fr(TV) ∩ Fr(TE).

76 CHAPTER 3. π-PATTERN DISCOVERY

Proof. Let H = 〈i1, i2, . . . , i|V |〉 be a Hamiltonian path, where i1 = w and i|V | = s.
We define α = $ τ # π where τ and π are as follows. First, we choose τ =
i1i2i2 · · · i|V |−1i|V |−1i|V |, so that τ ∈ Fr(TC). Second, let E ′ = E\{{ij, ij+1}}1≤j≤|V |−1

be the set of edges not traversed by H . Let list the edges of E ′ as {a1, b1}, . . . , {ar, br}.
Then we choose π = a1b1 · · ·arbr, so that π ∈ Fr(TN).

Consequently, α should belong to Fr(TV). It remains to see that α belongs also
to Fr(TE). Note that the $ and # symbols in α clearly match the two endmarker
leaves in TE. Also, by our construction of τ and π, for any edge {i, j} in E, we have
that i and j appear in consecutive positions of either τ or π. This concludes the
proof implying that α ∈ Fr(TV) ∩ Fr(TE).

Lemma 19. Let ΣH ⊆ Fr(TV)∩Fr(TE) denote the set of all the strings correspond-
ing to a given Hamiltonian path H, as stated in Lemma 18. Then, for any two
Hamiltonian paths H 6= H ′ of G from vertex w to vertex s, it is ΣH ∩ ΣH′ = ∅.

Proof. For any α ∈ ΣH and α′ ∈ ΣH′ , we show that α 6= α′. If one of the strings
begins with the $ symbol, while the other does not, they are different since neither
τ or π contains any endmarker (e.g. α = $ τ # π is different from α′ = π′ # τ ′ $).
Hence, consider the case when both α and α′ begin with $. Since the corresponding
Hamiltonian paths H and H ′ are different, also the corresponding “coding” strings
τ and τ ′ will be different by construction, implying that α 6= α′.

Reduction from #HAM to #FRONT

We now show how to reduce the problem #HAM of counting the Hamiltonian paths
in G = 〈V, E〉, to the problem #FRONT of counting the frontiers of PQ-trees, namely,
TG, TV , and TE . We denote the number of frontiers for a PQ-tree T by |Fr(T)|.
Here is the polynomial time reduction for the input graph G and its two vertices w
and s:

• Build the PQ-trees TG, TV , and TE (see Lemma 16).

• Return the following integer as the number of Hamiltonian paths from w to s
in G:

|Fr(TV) ∩ Fr(TE)|

|ΣH |
=

2 |Fr(TV)| × |Fr(TE)| − |Fr(TG)|

2 (|E| − |V | + 1)! × 2|E|−|V |+1
(3.1)

Clearly, the formula in (3.1) can be computed in polynomial time. We now show
its correctness.

Lemma 20. Let ΣH ⊆ Fr(TV) ∩ Fr(TE) denote the set of strings corresponding to
a Hamiltonian path H. Then, for any Hamiltonian path H from w to s, we have
|ΣH | = 2 (|E| − |V | + 1)! × 2|E|−|V |+1.

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 77

Proof. Consider a string α ∈ ΣH . As previously mentioned in the proof of Lemma 17,
α matches either the pattern $ τ # π or π # τ $. Note that the string τ is uniquely
determined by construction of TC , and the contiguity condition imposed by TE , for
the given H . Hence, |ΣH | is twice the number of strings π that we can obtain from
TN , under the contiguity condition imposed by TE . Therefore, |ΣH | = 2 |Perm(E ′)|,
where E ′ ⊆ E is the set of edges not traversed by H . Since |E ′| is p = |E| − |V |+1,
we have p! permutations of these edges and, for each of them, we have two ways
to permute every {i, j} ∈ E ′. This gives a total of p! 2p strings π. Note that we
cannot generate twice the same string in this way, because the edges are distinct
as unordered pairs and, for each pair {i, j} ∈ E ′, it is i 6= j. Hence the result
follows.

Lemma 21. |Fr(TG)| = 2 |Fr(TV)| × |Fr(TE)| − |Fr(TV) ∩ Fr(TE)|

Proof. Let LV = Fr(TV), LE = Fr(TE), and LG = Fr(TG). Consider LV E =
Fr(TV) ∩ Fr(TE), so that we can rewrite LV = L′

V ∪ LV E and LE = L′
E ∪ LV E .

Now, by construction of TG, we know that LG = LV · LE ∪ LE · LV , where the
standard operation “·” denotes the extension of the string concatenation to sets of
strings (i.e. A · B = {ab | a ∈ A, b ∈ B}). By expanding LV and LE , we obtain
that LG = (L′

V ∪ LV E) · (L′
E ∪ LV E) ∪ (L′

E ∪ LV E) · (L′
V ∪LV E). By simple algebra,

we have that |LG| = |LV · LE| + |LE · LV | − |LE ∩ LV |. The result follows, since
|LV · LE| = |LE · LV | = |LE| × |LV |.

We now have all the ingredients to prove the #P-completeness of the #FRONT

problem.

Theorem 22. #FRONT is #P-complete.

Proof. The membership to #P trivially holds. In order to prove that the formula
in (3.1) is correct, observe that the sets ΣH for all the Hamiltonian paths H from w
to s, are a partition of I = Fr(TV) ∩ Fr(TE). To see why, note that for each string
in I, there is a Hamiltonian path by Lemma 17. Moreover, ΣH ⊆ I by Lemma 18.
Finally, the sets ΣH are pairwise disjoint by Lemma 19.

Formula (3.1) is based on the fact that |I| can be obtained from |TG|, |TV |, and
|TE| by using Lemma 21. Moreover, sets ΣH have all the same size, as stated in
Lemma 20. Hence, dividing these two quantities gives an integer as a result, which
is the number of Hamiltonian paths as in (3.1). Note that our reduction requires
polynomial time.

3.5.5 Hardness results for #FMO

We now show how to reduce the #HAM problem to the counting version of the Full
Multiset Problem (#FMO). For the given undirected graph G = 〈V, E〉, together with
the source and the destination vertices, w and s, we make the same assumptions
as in Section 3.5.4. In Section 3.5.5, we walk through the example in Figure 3.8 to

78 CHAPTER 3. π-PATTERN DISCOVERY

1 2

43

G

Q1 = {1, d12, d13, d14, 2, 3, 4, c1}

Q2 = {2, d21, d24, 1, 4, c2}

Q3 = {3, 3, d31, d34, 1, 4}

Q4 = {4, 4, d41, d42, d43, 1, 2, 3}

R1 = {c1, c
′
1}

R2 = {c2, c
′
2}

Q12 = {d12, 2}

Q13 = {d13, 3}

Q14 = {d14, 4}

Q24 = {d24, 4}

Q34 = {d34, 4}

Q21 = {d21, 1}

Q31 = {d31, 1}

Q41 = {d41, 1}

Q42 = {d42, 2}

Q43 = {d43, 3}

F = { Q1, Q2, Q3, Q4, R1, R2, Q12, Q21, Q13, Q31, Q14, Q41, Q24, Q42, Q34, Q43 }

R = { d12, d21, d13, d31, d14, d41, d24, d42, d34, d43, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, c1, c′1, c2, c′2 }

x = c′1 c1 d12 2 d14 4 d13 3 1 d31 d34 4 3 d43 d41 1 d42 2 4 d24 d21 1 c2 c′
2

R1

Q1

Q3

Q4

Q2

R2

Figure 3.8: Example of reduction from a Hamiltonian Path instance for a graph G,
where the source and the destination vertices are w = 1 and s = 2, into a #FMO

instance 〈R, F 〉. Sets Qij are shown boxed in string x.

describe the reduction. In Section 3.5.5, we characterize the structure of each string
satisfying the constraints in the #FMO instance. In Section 3.5.5, we prove our
hardness result on counting how many strings correspond to the same Hamiltonian
path H in G.

Instance construction

Consider the example in Figure 3.8. On the left we show the input undirected
graph G, where the source and the destination vertices w = 1 and s = 2 are in
boldface. The corresponding #FMO instance 〈R, F 〉 is reported on the right, while
one of the solution string x, corresponding to the Hamiltonian path H = 〈1, 3, 4, 2〉
is represented at the bottom.

We build an instance of #FMO as follows. For each vertex i, we construct
the multiset Qi containing two occurrences of the symbol i (if i 6= w, s), or one
occurrence of i and one of the special symbol ci (if i = w, s). We also add symbols
dij and j to Qi, for every incident edge {i, j}. As a result, each undirected edge
{i, j} is represented by two different symbols dij ∈ Qi and dji ∈ Qj. Formally,

Qi =

{
⋃

{i,j}∈E{dij, j} ∪ {i, ci} i = w, s
⋃

{i,j}∈E{dij, j} ∪ {i, i}, i 6= w, s

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 79

To guarantee the condition that w and s are the source and the destination
vertices, respectively, we introduce two symbols c′w and c′s, and two sets Rw =
{cw, c′w} and Rs = {cs, c

′
s}, which do not correspond to any vertex of the input

graph. They are used to guarantee that Qw and Qs will always occur as the first
and the last multiset of any solution string x for our #FMO instance.

In general, the intersection between two multisets Qi and Qj can contain more
symbols than just i and j. For example, the intersection between Q1 and Q4 is
I14 = {1, 4, 2, 3} because it contains also 2 and 3, each of them corresponding to the
vertex forming a triangle with 1 and 4, respectively. To avoid this situation, 2 |E|
auxiliary multisets Qij = {dij, j} are used to constraint the intersection between the
multisets inside each solution string x, such that it contains exactly two symbols.
Observe that each edge {i, j} ∈ E gives rise to two multisets Qij and Qji. In the
string x shown in Figure 3.8, the purpose of the multisets Qij and Qji is to enforce
the intersection between Q1 and Q3 inside x to be {1, 3}, between Q3 and Q4 to be
{3, 4}, and so on.

We finally choose the multiset R = Q \ R′ where Q =
⋃

i Qi ∪ {c′w, c′s} and
R′ =

⋃

i6=w,s{i, i} ∪ {w, s}. We also choose F = {Q1, . . . , Q|V |} ∪ {Rw, Rs} ∪
{Qij , Qji}{i,j}∈E. The idea behind the construction of R and F is illustrated in
our example. Each Hamiltonian path H from w = 1 to s = 2 contains only one
edge incident to w ({1, 3} in our example), one edge incident to s ({2, 4}), and two
edges incident to each of the other vertices in H ({1, 3} and {3, 4} incident to 3, and
{3, 4} and {2, 4} incident to 4). The path H can always be represented by a string
x having size |R|. The multisets Qi occur inside x in the same order as that of the
vertices i inside H . The intersection between consecutive Qi and Qj is now guar-
anteed to contain just i, j in consecutive positions of x. For example, Q1, Q3, Q4,
and Q2 correspond to the vertices in H = 〈1, 3, 4, 2〉, while their intersections corre-
spond to the edges used in H . Here is the role of R′: since we do not know a priori
which edges will be traversed by H , we can rely just on the multiset given by their
endpoints, thus giving rise to R′. Even if we have to remove R′ from Q to obtain
R, we still guarantee that 〈R, F 〉 is a valid #FMO instance.

Lemma 23. Each multiset M ∈ F is contained in R.

Proof. We recall that F = {Q1, . . . , Q|V |} ∪ {Rw, Rs} ∪ {Qij , Qji}{i,j}∈E, and that
R = Q \ R′ where Q =

⋃

i Qi ∪ {c′w, c′s} and R′ =
⋃

i6=w,s{i, i} ∪ {w, s}. Since we
assumed that the degree of w is at least one, w has at least one incident edge {w, j}.
By construction of the Qi multisets, it follows that the symbol w has at least two
occurrences in Q: one occurrence belongs to Qw, while the second occurrence belongs
to the multiset Qj associated to the vertex j. Same as above for the destination
vertex s, which occurs at least two times in Q. Since we assumed each one of the
remaining vertex i 6= w, s, to have at least two neighbors in G, (let say j, l,) it follows
that the symbol i has at least four occurrences in Q: two occurrences belong to Qi,
the third occurrence belongs to Qj, while the fourth one belongs to Ql.

80 CHAPTER 3. π-PATTERN DISCOVERY

Rw Rs

Qi1

Qi2

Qi3

Qin−1

Qin

c′
w

cw c′
s

csdi2i1
di1i2

di2i3
di3i2

din−1in
dinin−1

i1 i2i2 i3 in−1in

Figure 3.9: The string x coding the Hamiltonian path H = 〈i1, . . . , in〉 of G. Inter-
sections between Qi and Qj have size 2 in x and are constrained to be {i, j}.

From the above, it follows that R = Q \ R′ contains at least one occurrence of
w, one occurrence of s, and two occurrences of each i 6= w, s.

At this point, we have all the ingredients to prove that Qw ⊆ R. The multiset
Qw contains exactly one occurrence of w, and at most one occurrence for every other
symbol i 6= w. Moreover, for each dij ∈ Qw, it holds that dij ∈ R, since R ⊆ Q,
and no one dij is in R′. Also the symbol cw is contained in R, since cw ∈ Qw, but
cw 6∈ R′. Same as above for Qs, and the remaining Qi multisets, with i 6= w, s. In
the case of the Qi multisets, the symbol i occurs two times inside each Qi, but this
is not an issue since, as discussed above, R contains at least two occurrences of each
symbol i 6= w, s.

To prove that each Qij = {dij , j} and Qij = {dji, i} is contained in R, it is
enough to note that dij , dji ∈ Q, but dij, dji 6∈ R′, and that for every symbol i or j
there is at least one occurrence in R.

Finally, we observe that Rw = {cw, c′w} and Rs = {cs, c
′
s} are contained in R,

since the symbols cw, cs, c
′
w, c′s are in Q, but they are not in R′.

Lemma 24. Given an undirected graph G = 〈V, E〉, together with a source and a
destination vertex, w and s, the corresponding instance 〈R, F 〉 of #FMO, can be built
in O(|V | + |E|) time.

Characterization of the solutions

We need some technical lemmas, as in Section 3.5.4. In particular, Lemmas 25–27
follow the same route as that traced in Lemmas 17–19 for #FRONT.

Lemma 25. Let G = 〈V, E〉 be an undirected graph, and 〈R, F 〉 be its corresponding
#FMO instance. For any string x that is solution of 〈R, F 〉, there exists a corre-
sponding Hamiltonian path H of G from w to s.

Lemma 26. Let G = 〈V, E〉 be an undirected graph, and 〈R, F 〉 be its corresponding
#FMO instance. For any Hamiltonian path H of G from w to s, there exists at least
one corresponding solution x of 〈R, F 〉.

Lemma 27. Let ΣH denote the set of all the solutions of 〈R, F 〉 corresponding to a
given Hamiltonian path H, as stated in Lemma 26. Then, for any two Hamiltonian
paths H 6= H ′ of G from vertex w to vertex s, it is ΣH ∩ ΣH′ = ∅.

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 81

We now prove Lemma 25, leaving the proof of Lemmas 26–27 at the end of the
section. We consider a solution x of 〈R, F 〉, and make three conceptual steps.

(a) We prove that the multisets Qi follow a total order ≺x induced by x.

(b) We show that each Qi occurs exactly once in x.

(c) For any two consecutive Qi and Qj in the total order ≺x, we demonstrate that
their intersection in x corresponds to edge {i, j} ∈ E.

Observe that steps (a) and (b) select all possible permutations of the vertices in
V , while step (c) selects only those permutations (if any) that correspond to paths
in G. Putting (a)–(c) together, we can see that the Hamiltonian path corresponding
to x is H = 〈i1, i2 . . . , i|V |〉, where Qi1 ≺x Qi2 ≺x · · · ≺x Qi|V |

is the total order
induced by x.

We show a slightly more general property than that stated in (a), using the
following lemma.

Lemma 28 (Strict Sperner Property). The collection of multisets C = {Rw, Rs, Q1,
. . . , Q|V |}, is a Strict Sperner collection: no multiset is contained in the union of
the others. Hence, there exists a total order ≺x on the multisets in C.

Proof. First of all, we observe that each Qi ∈ C contains at least one symbol dij

that is unique in x and does not belong to any other multiset. Hence, Qi cannot be
contained in the union of the other multisets. Also the multisets Rw and Rs contain
unique symbols, namely, c′w and c′s. Hence, C is a strict Sperner collection: this
property, combined with the fact that each multiset in C occurs in x, implies that a
left-to-right scan of x provides a total order of the multisets in C. That is, for any
pair Qi and Qj either Qi ≺x Qj or Qj ≺x Qi.

We prove the property stated in step (c) by the following lemma.

Lemma 29 (Intersection Size). Let x be a string of size |R|, drawn from all the
symbols in R, and containing all the multisets in C2 = {Rw, Rs, Qi, Qij}. Let
Iij = Qi ∩ Qj denote the intersection between two multisets Qi and Qj that occur
consecutively in x. Then, (i) |Iij | = 2; (ii) Iij = {i, j}; (iii) {i, j} ∈ E.

Proof. (i) First, let l1, l2, . . . denote some generic vertices that are adjacent to both
i and j. By construction of the multisets Qi, note that Iij can only contain the
symbols i, j or lp for p = 1, 2, Formally:

Qi ∩ Qj =

{

{i, j} ∪
⋃

{i,lp},{lp,j}∈E{lp} {i, j} ∈ E
⋃

{i,lp},{lp,j}∈E{lp} otherwise
(3.2)

Assume that |Iij| = 3. Then, four cases are possible when considering the sets
Qfg where f, g ∈ {i, j, l1, l2, . . .} and f 6= g:

82 CHAPTER 3. π-PATTERN DISCOVERY

d i j j l i d j i

 Q
j

 Q
i

d i l d j l11

1 d i l l l l d j l

 Q
j

 Q
i

d i l

11

2

2 33

d i l l l i d j i

 Q
j

 Q
i

d j l

11

2

2 d i j j l l d j l

 Q
j

 Q
i

d i l1

1 22

Figure 3.10: The four possible cases if Iij = 3. From left to right, top-down, the
case where Iij = {i, j, l1}, Iij = {l1, l2, l3}, Iij = {i, l1, l2}, or Iij = {j, l1, l2}.

1. Iij = {i, j, l1}

2. Iij = {i, l1, l2}

3. Iij = {j, l1, l2}

4. Iij = {l1, l2, l3}

We discuss case 1 (since cases 2–4 are similar), which is represented on the top
left of Figure 3.10. Here, it is shown that the symbols in the four multiset Qij ,
Qji, Qil1 and Qjl1, corresponding to the three edges {i, j}, {i, l1} and {j, l1}, cannot
occur inside Qi or Qj , because each symbol dij only belongs to Qi (hence it cannot
be a member of the intersection Iij), and we only have one occurrence of l1 inside
Qi and one occurrence inside Qj .

The cases where the intersection has size larger than 3 are similar. In these cases
we can always select from Iij a subset of three symbols, reducing to one of the above
cases: if |Iij | > 3, we can apply the above argument to i, j and an arbitrary vertex
in Iij \ {i, j}.

Given the above upper bound on the size of an intersection, we now prove that
|Iij| cannot be smaller than 2. By Lemma 28 we know that each multiset Qi cannot
be contained in the union of the other multisets, hence in order to construct a string
x of size |R| containing all the multisets in C2, the combined size of the intersections
between the Qi multisets must be 2(|V | − 1). Assuming that at least one of such
intersections has size 1, then some other intersection would have size 3, contradicting
the previous upper bound. From the previous upper and lower bounds it follows
that each intersection must have size |Iij| = 2.

(ii) To prove that Iij = {i, j}, let us assume by contradiction that Iij = {i, l},
where l 6= j is a vertex forming a triangle in the input graph G together with i and j.

3.5. RANKING π-PATTERNS WITH REPEATED SYMBOLS 83

As in point (i), it is easy to prove that the two sets Qil = {dil, l}, Qjl = {djl, l} cannot
occur inside the solution string x, since Qj and Qi only contain one occurrence of
the symbol l each. The djl symbol cannot be contained in the intersection Iij since
only the symbols i and l are inside.

The proofs for the other cases Iij = {j, l1} and Iij = {l1, l2} are identical to this
one.

(iii) The conclusion follows from the point (ii) and from the intersection property
highlighted in Equation (3.2), stating that if {i, j} ⊆ Iij , then {i, j} ∈ E.

Finally, the property stated in step (b) is based on the lemma below.

Lemma 30 (Occurrence Uniqueness). Given a solution x of 〈R, F 〉, each multiset
Qi ∈ F occurs exactly once inside x.

Proof. We recall that each Qi occurs at least once inside x since the latter is a valid
solution. Suppose by contradiction that there exists a multiset Qi∗ which occurs
twice or more inside x.

First, we show that all the occurrences of Qi∗ form a run, that is, any two such
occurrences must overlap and there is no occurrence of Qk (k 6= i∗) between them.
This is easy to see, since each di∗j occurs only once in x.

Second, consider all the runs in x, where a multiset occurring once is seen as a
degenerate run. If two runs intersect, their intersection contains exactly two symbols
by Lemma 29.

Third, the run of Qi∗ must be degenerate, thus contradicting the hypothesis that
there are at least two occurrences. Indeed, if the run of Qi∗ is not degenerate, then
|x| > |R|, which is not possible. To see why, we recall that a valid solution x of
〈R, F 〉 is required to have size |x| = |R| = 4|E|+4. Since q = |

⋃

i Qi| = 4|E|+2|V |,
some overlaps between consecutive runs are required. As previously mentioned, the
intersection of two consecutive runs contains two elements. Hence, r = 2|V | − 2 is
the number of symbols in the overlaps between pairs of consecutive runs in x. In
order to fit the required length |R|, the first run must also intersect Rw in cw, while
the last one must intersect Rs in cs. We also should add to these q elements, the
two special symbols c′w and c′s, totalizing |x| = |R| = (q + 2)− r elements in x (and
so many in R as well). If the run of Qi∗ is non-degenerate, then its size will be at
least |Qi∗| + 1, implying that there are at least (q + 2 + 1) − r > |R| symbols in x.
Consequently, |x| would be strictly larger than |R|, contradicting the validity of x
as solution of 〈R, F 〉.

It remains to prove Lemma 26 and Lemma 27.
Let us discuss Lemma 26. Given a Hamiltonian path H = 〈i1, i2, . . . , i|V |〉 of G,

where i1 = w and i|V | = s, in order to construct a solution x of the corresponding
#FMO instance 〈R, F 〉, we arrange the multisets Qi in the same order as the cor-
responding vertices in H , as shown in Figure 3.9. The first symbol of x is c′w and
the last one is c′s. Between them, Qi1 , Qi1 , . . . , Qi|V |

appears in x, where the first

84 CHAPTER 3. π-PATTERN DISCOVERY

symbol of Qi1 is cw, and the last symbol is i1, and the first symbol of Qi|V |
is i|V |

and the last symbol is cs. For the remaining Qil, the first three symbols are il,il−1,
and dilil−1

, and the first two of them overlap with Qil−1
by Lemma 29. Analogously,

the last three symbols are dilil+1
, il+1 and il, and the last two of them overlap with

Qil+1
. The remaining symbols in Qil are dilj, j for all edges {il, j} ∈ E, such that

j 6= il−1, il+1.
Each multiset Qil intersects Qil+1

in {il, il+1} ∈ E. Note that, since H is a
Hamiltonian path, the symbols belonging to the union of all the intersections are
R′ =

⋃

i6=w,s{i, i} ∪ {w, s}. To prove that x is a solution of 〈R, F 〉, note that x
contains each multiset Qi, Rw, Rs by construction. As for each Qij = {dij, j}, we
observe that its occurrence is contained in the occurrence of Qi in x. Moreover,
x contains the multiset R and x has size |R|, since x is drawn from the multiset
⋃

i Qi ∪ {c′w, c′s} \ R′, which is exactly the way R is defined in 〈R, F 〉. The above
discussion proves Lemma 26.

To prove Lemma 27, consider a string x ∈ ΣH , and x′ ∈ ΣH′ where H ′ =
〈i′1, i

′
2, . . . , i

′
|V |〉. Since H 6= H ′, they must differ in at least one position l (i.e.

il 6= i′l). Assume w.l.o.g. that |Qil | ≤ |Qi′
l
|, and select the position k of the leftmost

symbol dilj ∈ Qil occurring in x for some j. Since the order of the multisets in x is
the same as that of the vertices in the Hamiltonian paths, Qil 6= Qi′

l
(since il 6= i′l).

By construction of the multisets, we have dij 6∈ Qi′
l
, then the k-th symbol in x and

x′ differs, thus proving the claim.

Reduction from #HAM to #FMO

The #FMO problem is clearly in #P , since we can take a solution string x as a
certificate. Therefore, we focus on its completeness.

We are given an undirected graph G = 〈V, E〉, along with its source w and its
destination s. The reduction goes as follows.

• Build an instance 〈R, F 〉 as described in Section 3.5.5.

• Let z be the number of solutions for the instance 〈R, F 〉.

• Let a =
∏|V |

i=1 αi 6= 0, where αi is defined as follows for a vertex i of degree di:

αi =

{

2(di−1) (di − 1)! i = w, s
2(di−2) (di − 2)! i 6= w, s

• Return the integer z/a.

The above reduction takes polynomial time. To see its correctness, it suffices to
show that |ΣH | = a for every Hamiltonian path H = 〈i1, i2, . . . , i|V |〉 in G.

We already proved in Section 3.5.5 that each solution x ∈ ΣH has the form
reported in Figure 3.9. Here, the occurrence of each Qi is a sequence of pairs

3.6. CONCLUSIONS AND FUTURE WORK 85

Qij = {dij, j} except the first and the last symbol of Qi. If i 6= w, s, the first and the
last pairs always stay the same, while the remaining di−2 pairs can be permuted in
(di−2)! ways. For each such a way, we can permute each pair internally, thus giving
an extra factor of 2di−2. If i = w, s, we have d1 − 1 pairs that can be permuted,
yielding 2(di−1) (di − 1)! permutations.

Theorem 31. #FMO is #P-complete.

Corollary 32. Testing the C1P on multisets is NP-complete.

3.6 Conclusions and Future Work

In recent years, the investigation of conserved gene clusters has become a fertile field
of investigation in comparative genomics. However, modeling the input sequence of
the dataset as permutations, with no repeated symbols, can be too stringent for real
world genomic sequences.

The generalization of the common intervals frameworks that have been proposed
in literature for the case of permutations to the case of strings with multiplicities
is not straightforward, and all the combinatorial properties that are known in the
case of permutations do not hold anymore in the case of strings. In particular, while
in the case of permutations several notion of maximality have been proposed in
literature to reduce the number of returned patterns, this is not the case of strings.

In the current chapter we explored a different approach, that does not rely on
any notion of maximality, and that without sacrificing the information about the
symbol multiplicities, ranks the π-patterns according to the conserved subpatterns
detected in their occurrence lists. This approach has been formalized in Prob-
lem 3, and in Section 3.2 a two-phase approach has been proposed to solve it.
The π-pattern detection phase has been deeply analyzed in Section 3.3.1 and in
Section 3.3.2, where we proposed a novel O(L log |Σ|n) time, and O(Ln) space
algorithm, that improves the state of the art algorithm by a log(n) time factor.

While the π-pattern detection phase can be efficiently performed even in the
case of repeated symbols, the complexity of the ranking phase heavily depends on
the presence of repeated symbols in the pattern p to rank.

In fact, while in Section 3.4 we showed that given a π-pattern p, together with its
occurrence list L(p), if p is a set of symbols then the number of frontiers represented
by its minimum PQ-tree can be computed in O(|L(p)||p|) time and O(|p|) space. In
Section 3.5.4, we proved that even the computation of the number of the frontiers
of a given PQ-tree where the label of the leaves are not necessarily distinct is #P-
complete.

In general, the above hardness result is an issue for biological applications where
the number of repeated symbols in a pattern is high. However, there are some
concrete cases where the small number of repeated symbols make the computation
feasible. For example in the case study discussed in [122], the authors show how

86 CHAPTER 3. π-PATTERN DISCOVERY

to construct the minimum PQ-trees for patterns containing thousands of symbols,
with few repetitions, by a brute force solution. Given the small number of nodes in
the above trees, and the small number of repeated symbols, the computation of the
number of frontiers is feasible, and can be easily performed by slightly modifying the
algorithm that counts the number of frontiers in the case of no repeated symbols.
Defining a practical algorithm that can efficiently count the number of frontiers of a
PQ-tree at least in the case where the number of repeated symbols is small, is the
main open problem that we planned to investigate in the future.

The above open issue together with some other interesting lines of research that
can be the subject of further investigations, is detailed in the rest of this section.

Improving the π-pattern discovery phase. In Section 3.3.2 we proposed a
novel O(L log |Σ|n) time algorithm to detect all the π-patterns in the input text T ,
together with their occurrence lists.

However, this algorithm cannot take advantage on the quorum threshold, because
the lists of tuples constructed at each iteration by the algorithm cannot be pruned
by removing the non-frequent tuples. It would be of interest to design an algorithm
whose time complexity depends not only on the size of the input text n, on the
maximum size of the searched π-patterns L, and the size of the alphabet Σ, but
also on the value of the quorum threshold q.

T
1
= T

3

e f

e

a b c d

a b c d

e

f e

T
2

a b c d

e

f e

T
4

abcdefe eabcdfe efeabcd

(1) 1234567 5123467 5671234

(2) 1234567 5123467 7651234

(3) 1234567 7123465 5671234

(4) 1234567 7123465 7651234

Figure 3.11: The PQ-trees corresponding to the four possible relabeling of
the occurrence list L(p) = {abcdefe, eabcdfe, efeabcd} of the pattern p =
{a, b, c, d, e(2), f}. T2 and T4 are both minimal.

Construction of the minimal PQ-tree in the case of repeated symbols.
In Section 3.4 we showed that given a π-pattern p, together with its occurrence list

3.6. CONCLUSIONS AND FUTURE WORK 87

L(p), if p is a set of symbols, then the minimum PQ-tree for L(p) can be computed
in O(|L(p)||p|) time and O(|p|) space

The problem when the input pattern p is a multiset and L(p) is no more a
list of permutations of p but it is a list of strings with repetitions, is that the
minimal PQ-tree is no more unique, as showed in Figure 3.11, where the pat-
tern is the multiset p = {a, b, c, d, e(2), f}, that has three occurrences L(p) =
{abcdefe, eabcdfe, efeabcd}, and that in the following we refers as s1, s2, and
s3.

Relabeling each character of the first occurrence with a distinct integer and
accordingly the other occurrences in the other strings we obtain s1 = 1234567,
s2 = [57]12346[57], s3 = [57]6[57]1234, where [57] means that the corresponding e

can be either relabeled with 5 if it is considered as an occurrence of the first e in s1

or with 7 if it is considered an occurrence of the second e.

As shown in Figure 3.11 these possible relabeling choices lead to 4 different cases,
and 3 different PQ-trees. In fact, the tree constructed in the first case is equivalent
to the tree constructed in the third case (i.e. T1 ≡ T3). The trees T2 and T4, are
both minimal, since they both represent 8 strings, although they are not equivalent.

Taking into account this problem the second step of algorithm 2 should consider
all the possible relabelings of the occurrences of p, constructing for each of them the
corresponding minimum PQ-tree. Remembering that sign(p)[i] is the multiplicity
of the symbol σi in the pattern p, if the occurrence list of p is L(p) = {s1, . . . , sk},

then the number of possible relabeling cases is (
∏|Σ|

i=1 sign(p)[i]!)k−1, since we have
to relabel each string si but the first, which is labeled by the identity function,
assigning to the occurrences of the symbol σi in si a permutation of the sign(p)[i]
integers relabeling the occurrences of σi in s1. In the above example, since the first
occurrence of e in s1 is labeled with 5 and the second with 7, the occurrences of e
in s2 and s3 are labeled with a permutation of {5, 7}.

This naive algorithm obviously requires exponential time in the multiplicities of
the repeated symbols. Can we do better? What is the complexity of the problem of
constructing the minimal PQ-tree given a list of strings with repeated symbols?

Counting the number of frontiers. While in Section 3.4 we described a simple
recursive procedure to compute the size of the set of frontiers represented by a PQ-
tree T whose leaves are labeled with distinct symbols, Theorem 22 in Section 3.5.4
proves that counting the number of frontiers represented by a PQ-tree whose leaves
are not labeled with distinct symbols is #P-complete.

Although in the general case of repeated symbols, counting the number of fron-
tiers of a given PQ-tree T is hard, it would be interesting to design an algorithm
that can approximate this count, at least in the case when there are few repeated
symbols, and most of the symbols are unique.

88 CHAPTER 3. π-PATTERN DISCOVERY

#HAM

13.5.5
��

13.5.4// #FRONT

#FMO
ww

77
7w

7w
7w

7w
7w

7w
7w

Figure 3.12: Relation between the counting problems described in Section 3.5.5
and 3.5.4.

Orderings for the C1P in multisets and PQ-tree frontiers. An interesting
implication of our findings in Section 3.5.5 is the one illustrated in Figure 3.12
where #HAM denotes the counting version of the Hamiltonian path problem. As
previously mentioned, a direct mapping of the orderings for the C1P in multisets
into the frontiers of PQ-trees has some intrinsic ambiguity. On the other hand,
we proved in Section 3.5.4 and 3.5.5 that both the counting problems #FRONT

and #FMO are #P-complete using a reduction from #HAM. By the completeness
properties, it follows that there must exist an indirect mapping between the latter
two problems, but we do not know how to build it explicitly and directly (apart from
the obvious composition). It would be interesting to find a direct and “natural”
reduction between the two problems, without using the counting version of the
Hamiltonian path as an intermediate problem.

Chapter 4

Mobilomics in S. cerevisiæ: a
Concrete Example of Pattern
Discovery

For a long time the mainstream view of genome evolution has associated organism
complexity with the number of protein coding genes. More recently, the sequencing
of the human genome has shown that the number of genes in the human genome
is only twice the number of genes in Drosophila [123], highlighting the relevance of
non-protein coding gene pathways in controlling the differentiation and diversity of
organisms [178]. In [82, 45] the authors write that only 2% of the human genome
codes for proteins, while the function of the rest of the genome is still unknown.
However, some of these non-coding regions are well conserved across species, as
shown in recent large-scale studies [20]. The empirical fact that in the human genome
42% of these well conserved non protein-coding regions are built by transposable
elements (transposons for short), raises some questions about the role of transposons
in genome evolution [45].

In the past, it has been thought that the genome was a static entity, not be-
ing subject to the movements of any of its parts. The revolutionary idea that
genomes contain segments of mobile genetic material, has been formalized in the
1950s, thanks to the work of McClintock, that discovered the first transposon in
maize genome [136, 137]. Roughly speaking, transposons are DNA sequences that
are able to move from one genome location to another. A complete transposons
classification is difficult, since the transposon structure show a high variability in
different species, new transposons are reported every day, and even the transposi-
tion mechanism can change from one class of transposons to another (for a up to
date classification the interested reader can refer to [104, 187], while an alternative
classification based on the transposition mechanism can be found in [70]).

Although transposons are universal, since they have been detected in all the
sequenced prokaryotic and eukaryotic species, their abundance and their effects on
genome stability widely vary among different organisms, and it is still argument

90 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

of debate in the scientific community. For example, in the human genome retro-
transposons (one class of transposons whose behavior resemble that of retroviruses)
constitute almost one half of the human genome, but they are responsible for only
0.2% of spontaneous mutation [109], while in Drosophila, they are the source of more
than 50% of mutations having a phenotypic effect [61].

The effects of transposon movements depend on the insertion site. If the inser-
tion disrupts a gene, affecting the fitness of the organism, with high probability the
natural selection will eliminate the mutation, whereas if the insertion is in a non-
coding region, we may expect it to be maintained if it has no impact on host fitness.
Furthermore, insertion of transposons in proximity of a gene can modify the regula-
tory pathways and the expression patterns the gene is involved into [158]. Tracking
the movements of a genome transposons, and forecasting their future transpositions
is a fascinating and intriguing challenge, that is crucial to better understand the
genome evolution and dynamics. In recent years, it has has become the main topic
of a new research field of genomics: the mobilomics.

An inevitable first step towards understanding the transposon dynamic consists
in the identification of all the transposons that occur in a given genome. So far,
this task has been approached by the bioinformatics community mainly by using
consensus-like searches, by searching an already identified set of transposons in the
given genome (see [25] for a survey of the mainstream methodologies).

This approach mainly suffers of two limitations. First, since the transposons to
be searched must be given in input together with the genome to be analyzed, we
must know a priori all the classes of transposons that occur in the given genome.
Moreover, this approach can only detect transposons that are highly similar to the
input ones, but it fails in identifying a previously unknown class of transposons.
This is not an issue in species, where the structure of transposable elements is well
characterized (for example in yeasts), but it is unapplicable where transposons show
a much more variable structure, as for example in the human genome [84].

The second issue of the pattern search approach concerns the noisy nature of the
analyzed genomes. In fact, modern sequencing technologies reduced the cost of the
sequencing process, but the released genomic sequences usually have a low-coverage,
and they are rich of unresolved bases. Namely, some locations of the released DNA
sequence do not contain A, C, G, or T, but N, meaning that the sequencing pro-
cess failed to identify that base. The presence of unresolved bases, which from a
stringology point of view can be thought as wildcard symbols, makes the tradi-
tional approaches based on pattern search largely uneffective, since the occurrence
of a given transposon can be “masked” by the presence of unresolved bases in the
genomic sequence.

To overcome the above limitation, we describe an alternative approach that can
be applied when multiple copies of the input genome are available. This is not a
futuristic scenario. In recent years the new sequencing technologies are dramatically
reducing the cost of the sequencing process. Hence, an increasing number of popu-
lation genomic datasets, containing the genomes of different organisms of the same

91

species (or strongly correlated species) are becoming available [130, 58].
Our alternative approach relies neither on homology nor structural features of

transposons, but on their behavior. Transposons are mobile elements. Hence, if we
align the given genome with the other copies, we can detect transposition event by
detecting large insertion or deletion observed in the global alignment of the input
sequences [146, 88].

This approach has two major advantages when compared with the traditional
pattern search approaches. First, since it does not require transposons in input, it
can detect a new class of transposons, whose structure is different from the known
one. The second advantage is the applicability of our approach to low coverage
genomes, which are rich of unresolved bases, where the traditional approaches are
largely uneffective (this issue will be discussed in details in Section 4.4).

Notice the different perspective we are looking the transposon detection problem
at. We recast a pattern search problem where the transposons to be searched are
part of the input, as a pattern discovery problem where only some constraints char-
acterizing the combinatorial structure and the occurrence list of the patterns that
must be returned are given in input. More precisely, the pattern discovery problem
can be formalized as follow. Given two copies of the same genomic sequence, T1

and T2, a substring s of T1 is conserved in T2 if all of its symbols are matching
symbols in the optimal global alignment of T1 and T2. Otherwise, the substring s is
non-conserved (or mobile).

Definition 4 (Mobile Element Discovery Problem). Given two copies of the same
genomic sequence, T1 and T2, find all the mobile substrings occurring in T1 and T2.

While all the transposons are mobile elements (by definition), the converse does
not hold, since not all the mobile elements are transposons. In the following sections
we will assess the precision and the recall of our pattern discovery approach by a
case study where we analyzed the dataset of 38 strains of the S. cerevisiæ yeast
that has been recently released in [130]. As a reference strain, we choose the s288c

strain, that has been fully sequenced and its transposons were annoted in the SGD
database [170]. To avoid ambiguity, in the following we refer to this strain as RefSeq
to indicate the fully sequenced release at the SGD database, which does not contain
any unresolved base. The low-coverage assembly released in [130] will be referred as
s288c.

Different motivations have suggested to choose the S. cerevisiæ yeast to perform
this experimental study. First, although the S. cerevisiæ dataset in [130] has a
low-coverage (one-to-fourfold), and it is rich of unresolved bases, to the best of our
knowledge, S. cerevisiæ is the only organism having 39 sequenced strains. Second,
yeast is probably one of the most intensively studied eukaryotic model in molecular
and cell biology, and a deeply understood organism at molecular viewpoint. Finally,
the RefSeq genome is accurately annoted and its transposons are described in the
SGD database [170]. Although our pattern discovery approach, differently than the
traditional pattern search approach, does not require any information about known

92 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

transposons already detected in the input sequences, these annotations will be used
to validate the results of our approach. To our knowledge, this is the first time that
such a large dataset is analyzed to detect transposons.

The following sections are organized as follows. Section 4.1 introduces the essen-
tial biological concepts about transposons, discussing their importance in evolving
genomes. After describing in Section 4.2 the S. cerevisiæ dataset that we used in
our experimental study, we analyzed the limitations of the existing approach in Sec-
tion 4.3, where we show the difficulties of the pattern search approach in handling
low coverage sequences, and in Section 4.4, where an alternative sequence alignment
approach is analyzed.

In Section 4.5 we describe the anchor-based approach for sequence alignment,
which can overcome the inefficiency of the global sequence alignment method. Sec-
tion 4.6 describes the Regender approach for transposon discovery, describing how
the anchor-based approach can be modified in order to exploit the high similarity
of the input sequences in a typical population genomic dataset.

In the last sections, we experimentally compared Regender with other 9 state of
the art global alignment tools. To our knowledge it is the first time that such a large
scale investigation is performed on a complete population genomic dataset. First, in
Section 4.7.1, we evaluate the computational efficiency of the Regender approach.
Then, in Section 4.7.2 we compared the quality of the output obtained by Regender

with the output of the other tools. Finally, in Section 4.7.3 we validate the results
computed by Regender through the transposon annotations that are available for
RefSeq at SGD database [170].

In Section 4.8 we draw our conclusions, also discussing some promising lines of
research.

4.1 Transposons in Yeast Genomes

4k − 6k

LTR LTR

300 300

Figure 4.1: Structure of a yeast transposon (TY element). All the known yeast
transposons show this structure. The size of the whole transposon range over 4000–
6000 bases. The leading Long Terminal Repeat sequence is about 300 bases long,
and it is repeated at the end of the transposon.

Genomes evolve both by acquiring new sequences and by rearranging existing
sequences. The introduction of new sequences results from the ability of vectors
to carry genetic information between genomes. Extrachromosomal elements move
information horizontally by mediating the transfer of genetic material. For example,

4.1. TRANSPOSONS IN YEAST GENOMES 93

in eukaryotes, some viruses, notably the retroviruses, can transfer genetic informa-
tion during an infective cycle. Rearrangements, instead, are promoted by processes
that are internal to the genome. For example, duplication of sequences within a
genome provides a major source of new sequences. One copy of the sequence can
retain its original function, while the other may evolve by acquiring a new function.

Another major cause of variation is provided by transposable elements (trans-
posons for short). In some sense they can be thought as the internal counterpart to
the vectors that can horizontally transport sequences between genomes. Transposons
are sequences in the genome that are mobile, namely they are able to transport them-
selves to other locations of the genome, without using any extrachromosomal vector
(such as viruses), autonomously moving from one site of the genome to another.

A complete description of all the known types of transposable elements, and their
role in the evolution of genomes is beyond the scope of this thesis and we address
the interested reader to [151, 140, 34, 114]. However, in the rest of this section
we briefly summarize the reasons why transposable elements are believed to have a
prominent role in influencing the evolution of complexity of eukaryotes.

Since their discovery in [136], transposable elements (transposons for short) are
believed to have the capacity to repattern genomes [137]. More recently, numerous
papers have supported this idea by characterizing transposable elements, as gener-
ator of variations upon which natural selection can act [67, 31]. Transposons act
to increase the evolvability of their host genome and provide a means of generating
genomic modifications.

In the past, all the categories of transposons have been considered as “genomic
parasites” [152, 94], but more recently, significant beneficial attributes for facilitating
evolution have been recognized [67, 31].

It is now generally accepted that the emergence of increasingly complex eukary-
otic life forms was accompanied by an increase in genome complexity characterized
by an increase of gene number, and more elaborate gene regulation [150, 41]. Punc-
tual modification of genetic sequences in the form of single base insertion, deletion,
and substitutions cannot explain this deep evolution. Only DNA recombination in
the form of gene or segmental duplications, insertions and deletions can account for
this massive increase in gene number and the complexity of their regulation [150, 41].

Different types of transposons in different organisms show different structures.
In the following sections we focus on yeasts, in particular S. cerevisiæ, that is one
of the most extensively studied eukaryotic model organisms in molecular and cell
biology [128]. All the transposons of S. cerevisiæ that have been identified and their
annotations are available online at the SGD database [170].

Yeast transposons are usually referred as TYs (abbreviation of “transposon yeast”).
All the known TY elements share the same general structure, illustrated in Fig-
ure 4.1 [128]. The size of each TY element ranges over 4000–6000 bases. The last
300 bases at each end are called Long Terminal Repeat (LTR). The two LTR elements
of an individual TY element are likely to be identical or at least very closely related.

However, the annotations in the SGD database [170] show several relevant vari-

94 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

ations of the above structure. In fact, the size of the TY elements shows a high
variability (see Table 4.2). The trailing LTR sequence can be structurally different
from the leading one, and in some cases one of the two terminal repeat can be miss-
ing. Moreover, the dataset in [170] shows an abundant number of solo-LTR elements,
which are single LTR elements.

These empirical observations suggest that we cannot rely on the structure of
transposable elements only to identify them (another issue related to the “noisy”
nature of datasets is discussed in Section 4.3).

4.2 Dataset Statistics

Chrm Chrm Len. Unres. Bases (%) Non Tel. Unres. Bases (%) Unres. Seg. Unres. Seg. Len.
1 245,970 269,662 256,777 14.45 33.03 26.08 0 5.09 1.55 31.79 1 24,820 2,113.22
2 796,583 829,582 809,904 0.32 5.25 2.58 0.11 3.51 1.31 12.66 1 10,438 1,654.10
3 318,126 350,787 336,516 3.96 15.09 9.42 3.08 11.52 7.43 16.87 1 15,047 1,892.71
4 1,493,070 1,552,866 1,528,192 1.12 6.11 4.41 0.73 4.36 2.97 44.87 1 20,189 1,505.67
5 572,021 609,362 592,993 1.92 12.07 7.53 0.05 7.75 4.31 18.47 1 16,536 2,430.67
6 273,660 299,532 288,771 2.35 16.09 11.13 0 8.18 4.60 21.03 1 16,793 1,541.48
7 1,099,952 1,133,555 1,116,038 2.75 8.68 6.54 2.11 6.64 4.56 37.29 1 20,166 1,960.68
8 560,052 581,929 568,868 2.37 10.95 6.57 0 2.15 0.89 21.03 1 14,663 1,781.86
9 446,596 482,241 469,020 2.31 16.27 11.96 0.80 7.84 5.18 32.29 1 29,293 1,747.14
10 758,004 789,108 774,498 3.65 13.07 9.92 1.37 6.50 4.38 32.71 1 30,673 2,352.38
11 676,435 707,470 696,323 0.81 7.92 4.49 0.12 4.40 2.59 26.11 1 14,769 1,202.81
12 1,067,059 1,112,810 1,088,492 2.53 9.55 7.03 1.44 6.64 4.08 28.87 1 21,358 2,655.13
13 914,484 940,352 925,395 1.78 5.92 3.65 0.27 3.50 1.83 22.34 1 16,388 1,513.10
14 781,629 833,923 813,182 1.74 9.86 6.80 1.07 7.02 4.48 24.87 1 21,893 2,231.49
15 1,095,496 1,129,663 1,115,167 1.73 7.76 5.82 0.75 4.17 2.97 29.13 1 19,764 2,233.89
16 933,498 974,582 955,289 1.35 7.11 4.93 0.32 5.31 3.28 18 1 16,842 2,626.35

Table 4.1: Statistics reporting the min/max/average length of each chromosome in
the 38 strains of the dataset containing unresolved symbols, their min/max/average
percentage of unresolved bases (both in the whole chromosomes and in the
non-telomeric region only), the average number of unresolved segments, and
min/max/average length of the unresolved segments.

As explained in the previous sections, our comparative approach for transposon
discovery can only be applied when multiple copies of the input genome are available.

Recently, a dataset suitable for our purposes has been made available: 38 differ-
ent strains of S. cerevisiæ have been sequenced, and the relative genomes published
without annotations [130]. The dataset is not only important since it is the first
time that such a large number of genomes of the same species is made available
to the scientific community, but also because it is a typical example of a popula-
tion genomic dataset, whose genomic sequences are obtained by the new sequencing
technologies (see [130] for the details of the sequencing process).

The coverage of the dataset is relatively low (one-to-fourfold), and the genomic
sequences contain a relevant fraction of unresolved bases (i.e. some locations of the
DNA sequence do not contain A, C, G or T, but N). Each strain is composed by 16
chromosomes. Due to the presence of unresolved bases, the chromosomes do not
have the same length in all the strains. Table 4.1 reports for each chromosome the
min/max/average length of each chromosome in each of the 38 S. cerevisiæ strains.

4.2. DATASET STATISTICS 95

The average length of the chromosomes is quite variable, since the longest chromo-
some, Chr 4, is about six times longer than Chr 1 that is the shortest one, while the
aggregate size of the size of chromosomes in each strain is about 12 Mbases. The
percentage of unresolved bases due to the relatively low coverage is not negligible,
and as reported in Table 4.1 it ranges from 2.5% in Chr 8 to 26% in Chr 1. Unre-
solved bases are not uniformly distributed along the chromosomes, but tend to be
clustered in the telomeric regions of each chromosome (telomeres are the leading
and the trailing part of each chromosomic sequence, that protects the end of the
chromosome from deterioration). In fact, as shown in Table 4.1, if we compare the
percentage of unresolved bases found in the non-telomeric regions, with the overall
number of unresolved bases, we discover that, on average, the 51% of the unresolved
bases are contained in the telomeric regions of the chromosomes.

Table 4.1 also reports the average number of segments of unresolved bases, that
are substrings of consecutive unresolved bases (i.e. “NN. . . N”). The number of
unresolved segments is small, between 10 and 50 segments per chromosome, while the
average length of an unresolved segment is about 2, 000 bases. In other words, this
means that unresolved bases are not uniformly interspersed along the chromosomes,
but they tend to be clustered in the telomeric regions, and are clustered in long
unresolved segments.

This is a big issue in processing the dataset. In fact, if we search a sequence
against one such chromosome, a single unresolved base can be handled by using
standard wildcard pattern matching techniques [145, 49, 47, 88]. Nothing can be
done for an unresolved segment of 2, 000 bases which completely masks a large
substring of the chromosome (we will analyze this issue in more details, discussing
the limits of the pattern search approach in Section 4.3).

Chrm TYs LTRs Max/Min/Avg. TY Len. Max/Min/Avg. LTR Len.
1 1 7 5,925 5,925 5,925 340 133 279.14
2 3 16 5,959 5,916 5,930.67 371 79 256.25
3 2 16 5,959 3,144 4,551.50 361 89 287.13
4 8 22 5,959 5,493 5,880.38 679 28 299
5 2 28 5,924 5,727 5,825.50 715 67 310.79
6 1 9 5,959 5,959 5,959 332 76 255.22
7 6 32 5,961 5,351 5,836.83 371 62 276.50
8 2 20 6,223 6,028 6,125.50 341 92 250.75
9 1 8 5,428 5,428 5,428 371 190 308.13
10 3 19 6,226 5,922 6,023.33 667 92 266.79
11 0 14 - - - 340 131 301
12 5 22 5,959 5,443 5,832.40 344 171 297.73
13 4 16 5,926 5,903 5,914.25 371 127 286.81
14 3 12 5,914 5,297 5,703.67 371 69 279.67
15 4 24 5,961 5,914 5,940 342 84 268.54
16 5 22 6,223 5,918 5,984 344 43 256.82

Table 4.2: Statistics of the TYs and LTRs annotations downloaded from the SGD
web site [170]. Each row reports the number of TYs and LTRs annoted in a specific
chromosome, and the most relevant statistics about their lengths. Statistics about
TYs in Chr 11 is omitted since no TY is annotated in that chromosome.

Table 4.2 shows the most significant statistics about the TYs and LTRs elements
that are annoted in the RefSeq strain. These annotations will be used to assess the

96 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

accuracy of our tool Regender (see Section 4.7.2). The annotations are publically
available and can be downloaded from the SGD web site [170]. Note the different
lengths between TY and LTR elements. While the average length of a TY is about
5, 000 bases, LTR elements are much shorter: their average length is about 300
bases. The above statistics agree with the literature of yeast transposons [128],
and they will play a prominent role in designing a methodology to overcome the
unresolved bases issue, discriminating between TY and LTR elements.

4.3 The Limitations of the Pattern Search Ap-

proach

Figure 4.2: Global alignment of the Chr 1 of the s288c strain (on bottom) with
the homologous chromosome of the RefSeq strain (on top). Green regions represent
aligned segments, while the white regions represent non-aligned segments. The black
rectangles on bottom represents segments of unresolved bases. The green rectangles
on top represent the YARCdelta3 and YARCTy1-1 transposable elements, that are
annoted on the RefSeq chomosome at the SGD database [170]. The global alignment
shows that both the transposable elements are conserved in the s288c strain, but
they are partially masked by the unresolved bases. Searching by Blast results in a
false negative.

The mainstream approach to detect transposable elements uses Blast [8] or

4.3. THE LIMITATIONS OF THE PATTERN SEARCH APPROACH 97

some other search tool [147, 111, 103] to search a known transposon TY in the input
genomic sequences [25].

This approach suffers of several drawbacks. First, in order to search a query
sequence TY in a target sequence, TY must be provided in input. Hence, this ap-
proach is only applicable if we know a priori all the transposons that are present
in the input dataset. Moreover, this approach can only detect transposons that
are highly similar to the input ones, but it fails in identifying previously unknown
type of transposons. This is reasonable for genomes, as yeast, where the structure of
transposable elements is well characterized, but it is unapplicable where transposons
show a much more variable structure, as for example in the human genome [84].

The second issue of the pattern search approach concerns the structure of our
dataset, which has been deeply analyzed in Section 4.2.

As we know from Section 4.2, the percentage of unresolved bases in our dataset
is not negligible (see Table 4.1 for details). The presence of a consistent number
of unresolved bases is not a feature of our dataset only. It characterizes all the
datasets that are obtained by next generation sequencing technology [135, 172],
hence we must tackle this issue to better analyze these datasets.

To understand why the pattern search approach fails in detecting transposable
elements in low-coverage datasets, let us consider the example in Figure 4.2. Fig-
ure 4.2 shows part of the global alignment of the Chr 1 s288c strain (on bottom)
with the homologous chromosome of the RefSeq strain (on top). We recall that
RefSeq and s288c are supposed to be equal since they are the results of two dif-
ferent sequencing processes applied to the same input genome. The main difference
is that RefSeq has been sequenced at higher coverage and it does not contain any
unresolved base. In Figure 4.2, green regions represent conserved regions, while the
white regions represent non-conserved segments. As expected, the global alignment
clearly shows that both YARCdelta3 and YARCTy1-1 are conserved in the s288c

strain, although the occurrence of YARCTy1-1 in the s288c strain is interleaved
with three segments of unresolved bases. Now we pose the following questions,
what if we search the YARCTy1-1 transposons in the s288c strain? Does Blast find
them?

Since we are interested in finding the whole YARCTy1-1 TY we have to discard
all the matches such that the ratio between the length of the matching segment in
the s288c strain, and the length of the whole transposons is too small, below the
90% (otherwise, the number of small substring of YARCdelta3 found in the s288c

strain would generate a high number of false positive matches).

Given the situation in Figure 4.2, since YARCTy1-1 is interleaved in the s288c

strain by three long segments of unresolved bases, Blast returns four matches
(among the others), corresponding to the four substrings that are in between the
unresolved segments. Each one of these matches is too short to meet the aforemen-
tioned length threshold and it is discarded, so the Blast search results in a false
negative claiming that YARCTy1-1 does not occur in the s288c strain.

98 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

4.4 Transposons Detection by Global Pairwise Align-

ment

Size Time
1000 0.33s
2000 0.39s
4000 0.73s
8000 1.95s
10000 2.78s
20000 10.84s
40000 47.63s
80000 3.28m
100000 5.16m
200000 20.90m
400000 84.77m
800000 > 5h

Table 4.3: Time required to globally align a prefix of the Chr 4 of the RefSeq strain
with a prefix of the same size of the Chr 4 of the Y55 strain. The size of the prefix
is reported in the first column, while the alignment time in seconds (or minutes)
is reported in the second column. To compute the global alignment we used the
Stretcher tool, that is part of the EMBOSS suite [163]. We run Stretcher with
the default parameters for DNA sequences. Tests have been performed on an Intel
Core 2 Duo T5500 notebook, with 2GB of RAM. Missing values indicate that the
computation has not been completed in 5 hours.

As discussed in Section 4.3, transposon detection methods that rely on the struc-
ture of the transposons are sensitive to the presence of unresolved bases in the ge-
nomic sequences. A simple idea consists in relying on the behavior of the transposons
instead that on their structure. Transposons are mobile by definition, hence we can
detect transposition event by detecting large insertions or deletions observed in the
global alignment of the input sequences [146, 88]. In other words, given a pair of
homologous chromosomes ChrNA and ChrNB, if we align the two input sequences,
by identifying the non conserved regions that are subject to large scale insertion or
deletion that are compatible in size with the length of a transposon, we can easily
detect the mobile elements of the two chromosomes.

However, although the quadratic space cost of the standard dynamic program-
ming algorithm for global alignment can be attenuated [95], the quadratic time cost
makes global alignment unpractical for long sequences. In state of the art implemen-
tations of global alignment algorithms several variations of the standard dynamic
programming algorithm and heuristics are used to speedup the computation [88].
However, how fast are state of the art implementations in practice?

Table 4.3 shows the time required to align a prefix of the Chr 4 of the RefSeq

strain with a prefix of the same size of the homologous chromosome of the Y55 strain.
The size of the prefix is reported in the first column, while the alignment time in

4.5. ANCHOR-BASED ALIGNMENT 99

seconds is reported in the second column. To compute the alignment we used the
Stretcher tool, that implements the algorithm described in [143, 83], and that is
part of the EMBOSS suite [163]. We run Stretcher with the default parameters for
DNA sequences. Tests have been performed on an Intel Core 2 Duo T5500 notebook,
with 2GB of RAM.

As we can see from this table, the computation is feasible for sequences up to
400 Kbases, while in the case of longer sequences the tool has been stopped after 5
hours without producing any output. Since the longest chromosome of our dataset
is about 1.4 Mbases long, while the aggregate size of all the chromosomes of each
strain is 12 Mbases, it follows that a different approach is required to detect the
mobile segments of the dataset.

4.5 Anchor-Based Alignment

Alignment algorithms based on dynamic programming are invaluable tools for the
analysis of short sequences. However, there are many reasons that limit their use
for comparing complete chromosome (or genome).

The first issue, which was already discussed in Section 4.4, is their quadratic
running time that makes them unsuitable when long sequences are compared [95,
143]. This weakness was first observed in the 1990s when the first complete genomes
were sequenced [52].

The second issue comes from the nature of the sequences that we compare: com-
paring whole chromosomes/genomes differs fundamentally from comparing short
sequences such as genes or proteins. Besides mutation events, large segments of
a genome can be inserted, deleted, inverted, or change location. These large-scale
modification events require the introduction of large gaps of thousands of base pairs
or more. Even with the affine gap cost model (a variant of the standard dynamic
programming algorithm that favors the extension of gaps more than matching char-
acters in between and opening a new one), such large gaps are not tolerated [88, 112].
In fact, scoring schemes on the character level imply that long gaps are less likely to
occur than short gaps. This is true for short related sequences, but it is far from re-
ality for genomic sequences representing whole chromosomes and genomes in which
longer gaps are often observed [143].

The unfeasible running time and the limitations in accommodating large gaps
motivated researchers to develop different methods for comparing long genomic se-
quences. Nowadays, the strategy of choice for comparing whole chromosomes or
complete genomes is the so called anchor-based alignment strategy [149].

The anchor-based strategy consists in three main phases:

1. Detecting a set of fragments shared by all the input genomic sequences (sub-
string occurring highly conserved in all the input sequences).

100 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

2. Select a subset of fragments, called anchors, that will be the “matching” re-
gions of the returned alignment.

3. Apply a standard dynamic programming technique to align the regions sur-
rounding the anchors.

The anchor-based strategy has become the strategy of choice due to its efficiency,
running in subquadratic time, and to its ability to overcome the limitations of tra-
ditional alignment algorithms. A complete description of the anchor-based strategy
is beyond the scope of this section, and we refer the interested reader to [149]. How-
ever, understanding the basic idea is necessary to understand the way the Regender
tool works, since it is going to be described in Section 4.6. Hence, in Section 4.5.1 we
formally define what is a fragment and how to compute them, while in Section 4.5.2
we describe how to select a subset of anchors from the given set of fragments. For
an introduction to the sequence alignment problem, we refer the interested reader
to [88].

4.5.1 Fragment generation

Let Ti, 1 ≤ i ≤ k, be an input text of size ni drawn over the alphabet Σ. The
sequence Ti can be seen as an array T [0 . . . n−1] of symbols, where symbol Ti[h] ∈ Σ
is stored into position h, for 0 ≤ h ≤ n − 1. A substring T [li]T [li + 1] · · ·T [ri] is
represented as T [li . . . ri]. A fragment f consists of two pairs beg(f) = (l1, . . . , lk)
and end(f) = (r1, . . . , rk) such that the substrings T1[l1 . . . r1], . . . , Tk[lk . . . rk] are
equal. In other words, a fragment is a substring occurring in all the input strings. A
fragment is called exact, or multiple exact match, if it is composed of exact matches
(i.e. T1[l1 . . . r1] = · · · = Tk[lk . . . rk]). If the equality T1[l1−1] = · · · = Tk[lk−1] does
not hold, then the multiple exact match is called left maximal (i.e. it cannot extend
to the left in the input sequences). Similarly if the equality T1[r1 + 1] = · · · =
Tk[rk + 1] does not hold, then the multiple exact match is called right maximal.
The multiple exact math is called maximal, also referred as multi MEM in literature,
if it is both left and right maximal. If only two sequences are given in input, then
multi MEMs are referred as maximal exact matches, and they are abbreviated as MEMs.
Moreover, if the substrings composing a fragment are restricted to be unique in the
input sequence they belong, then they compose a maximal multiple unique match,
abbreviated by multi MUM. In the case of two input sequences, then multi MUMs are
referred to as maximal unique matches, and they are abbreviated as MUMs.

If the size of the substrings is fixed to a certain length L, then the substrings are
called L-grams.

Examples of exact fragments are the exact L-grams as used in Blastz [168],
maximal exact matches (MEMs) in Avid [35], the maximal multiple exact matches
(multi MEMs) that are used in Mga [97], the maximal unique matches (MUMs) that are
used in Mummer [52, 53], and the maximal multiple unique matches (multi MUMs) that
are used in Emagen [54] and Mauve [51].

4.5. ANCHOR-BASED ALIGNMENT 101

A fragment is non-exact, if it is composed of non-exact matches that allow charac-
ter substitutions, insertions and deletions. Examples of non-exact fragments are the
non-exact L-grams as used in the recent version of Blastz [168], and the extended
seeds of Glass [18].

A comprehensive dissertation of all the techniques that are used by existing tools
to detect fragments in the input sequences is beyond the scope of this section (the
interested reader can refer to [42]). However, all the techniques for computing frag-
ments in comparative genomics falls in one of the following three categories: hashing
techniques, automata-based techniques, and suffix trees/suffix arrays techniques.

In the hashing techniques, a hash table is constructed to store the locations
of all the L-grams in one of the input sequences. Then, all the other sequences
are streamed against the table to locate common L-grams, by looking-up in the
table each L-gram. The hashing technique, due to its simplicity, and practical
efficiency, is widely used in software tools such as Blastz [168], PipMaker [169],
multiPipMaker [167], Blat [111], Glass [18].

The hash table can also be used to compute non-exact fixed size L-grams and
multi MEM. If we allow the mismatching characters to occur only at some fixed po-
sition of the L-gram, we can represent the non-exact fragment by a binary mask of
ones and zeros, specifying the positions where mismatches are not allowed, ones,
and where they are (zeros). For example, if we are interested in the 8-grams
such that the third and the fifth characters do not care, the corresponding mask
is 11010111. These fragments can be easily computed by modifying the streaming
phase of the hashing technique. This kind of non-exact L-grams has been first used
in PatternHunter [131, 129], and later in a recent version of Blastz [168]. The hash-
ing technique has also been used to generate multi MEM and multi MUM [127, 51], when
the suffix trees/suffix arrays were not so popular in bioinformatics, but nowadays
they are no more employed.

Also automata can be used to compute exact and non-exact L-grams. Instead of
constructing a hash table for the first sequence, we can construct the Aho-Corasick
automaton [6] for its L-grams, matching each L-grams of the sequences against the
automaton. A modified version of the automaton is used, for example, in Chaos [39].

Although hashing technique is still used when fixed size L-grams are required due
to its simplicity and practical efficiency, if multi MEM or multi MUM are required, suffix
tree [186, 88] is the reference choice. It allows to compute multi MEM and multi MUMin
linear time and space. Although suffix tree has been used in tools as Mummer [52, 53],
its large space consumption (20 bytes per character), makes it impractical for very
large sequences. Enhanced suffix array [1, 2] is a more space efficient data structure,
that can compute multi MEM or multi MUM with the same time complexity as suffix
tree. Recent versions of Mga [97] and Emagen [54] use this approach to compute
fragments.

102 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

f1 f2

f3

f1

f3

T2

T2

T1

T1

f1

f2

f3

0

t
T2

T1

Figure 4.3: On top, the input set of fragments. The optimal global chain of fragments
is reported on bottom. On the right, the geometric representation of the input set
of fragments.

4.5.2 Anchor selection

After that fragments have been generated, the second step of the anchor-based
alignment approach consists in selecting a subset of them, the so called anchors,
which will be the “pivots” of the returned alignment.

A fragment f of k genomes can be represented by a hyper-rectangle in R
k with

the two extreme corner points beg(f) and end(f). For any point p ∈ R
k, let

p.x1, p.x2, . . . , p.xk its coordinates. A hyper-rectangle [161] is the Cartesian product
of intervals on distinct coordinate axes. Let p = (l1, . . . , lk) and q = (r1, . . . , rk),
we denote by R(p, q) the hyper-rectangle [l1 . . . r1]× . . .× [lk . . . rk] with li ≤ ri for all
1 ≤ i ≤ k. Figure 4.3 shows an example in R

2. The upper left figure shows a set of
fragments in two input sequences, while on the right we reported their representation
as rectangles.

We associate a non-negative weight, f.weight ∈ R, with each fragment. The
weight can be the length of the fragment in the case of exact fragments, but different
choices based on the statistical significance of the fragments are also possible. In
the following sections, when clear from the context, we identify the point beg(f)
or end(f) with the fragment f , also assuming that the length of the fragment is
selected as its weight.

Given a set of fragments, as showed in Figure 4.3, we add the points 0 =
(0, . . . , 0) and t = (|S1|, . . . , |Sk|) as the origin and the terminus fragment, having
null weight. For these fragments, we define beg(0) = −∞, end(0) = 0, beg(t) = t,
end(t) = ∞. Two fragments are colinear if the order of their respective segments
is the same in all the input sequences. Two fragments overlap if their segments
overlap in one of the input sequences. More formally, we say that f precedes f ′,
f � f ′, if and only if end(f).xi < beg(f ′).xi for all 1 ≤ i ≤ k. If f � f ′ then they
are colinear and non-overlapping. For example, in Figure 4.3 f1 and f3 are colinear
and non-overlapping, while f1 and f2 are not, since the occurrence of f1 precedes
the occurrence of f2 in the first sequence, but follows the occurrence of f2 in the

4.5. ANCHOR-BASED ALIGNMENT 103

second sequence.
A chain of colinear and non-overlapping fragments (chain for short), is a sequence

of fragments C = (f1, . . . , fl) such that fi � fi+1 for all 1 ≤ i < l. The score
of the chain C is defined as the sum of the weights of its fragments minus the
cost of connecting pairs of consecutive fragments. More precisely, score(C) =
∑l

i=1 fi.weight −
∑l−1

i=1 g(fi, fi+1), where g(fi, fi+1) is the gap cost of connecting
fragment fi to fi+1 in the chain. At this point we have all the ingredients to define
the global chaining problem:

Definition 5 (Global Chaining Problem). Given m weighted fragments and a gap
cost function, the global chaining problem is to determine an optimal global chain
having maximum score, starting at the origin fragment 0 and ending at the terminus
fragment t.

The global chaining problem is also called fragment alignment problem [64, 188],
since the final alignments of certain programs are sometimes delivered in terms of
these fragments, as in the case of Dialign [141, 142], or just chaining [88].

Several apparently unreleated problems reduce or are strongly correlated to the
chaining problem. In the 1-dimensional chaining problem discussed in [88], the
fragments are 1-dimensional intervals, and the optimal global chain is a chain of
non-overlapping intervals. If we ignore gap cost, and set the weight of each fragment
to its length, the 1-dimensional chaining problem is nothing more than the chaining
problem in 1 dimension. In this case colinearity does not matter, because any two
non-overlapping 1-dimensional fragments are also colinear.

Also the single coverage problem introduced in [169] reduces to the chaining prob-
lem. Given a set of 2-dimensional fragments, the single coverage problem consists
in finding a set of fragments of maximum coverage with respect to one sequence
without overlaps in the other sequence. The resulting fragments are not necessary
colinear and their segments can overlap in the second sequence, but not in the first
one. It can be be proved that the optimal solution of the single coverage problem
can be found by solving the 1-dimensional chaining problem for the set of intervals
that represent the projections of the 2-dimensional fragments on the x-axis [149].

In [183] the transformation distance is introduced to address the question of how
a sequence T2 can be derived from the sequence T1 with the minimum number of
segment-based genome rearrangement operations (segment-copy, reverse-copy, and
insertion). As shown in [183], computing the transformation distance reduces to
solve the 1-dimensional global chaining problem, where the gap between the frag-
ments are properly penalized.

Two other problems, apparently unreleated with the global chaining problem are
the longest increasing subsequence problem, LIS for short, and the heaviest increasing
subsequence problem, HIS for short. In this context “subsequence” is not synonymous
of “substring”, because while the characters of a substring are required to occur
contiguously in the input string, the characters of a subsequence can be interspersed
with characters that are not in the subsequence. Let T a sequence of n integers,

104 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

not necessarily distinct. An increasing subsequence of T is a subsequence of T
whose values strictly increase from left to right [88]. Given T , the longest increasing
subsequence problem consists in finding the increasing subsequence of the longest
size. If every number T [i] has a weight T [i].weight, and the weight of a subsequence
is the sum of the weights of its character, then the heaviest increasing subsequence
problem consists in finding the increasing subsequence having maximal weight [101].
Clearly, the LIS problem is a special case of the HIS problem where the weight of
all the integers is 1. The HIS problem is a special case of the 2-dimensional global
chaining problem. In fact, given the sequence T , if we construct the set of fragments
F = {(1, T [1]), . . . , (n−1, T [n−1])} where the i-th fragment has weight T [i].weight,
each optimal 2-dimensional global chain of F corresponds to a heaviest increasing
subsequence in T .

Given two (possibly incomplete) genomic sequences of two related organisms, one
frequent question is that of computing how much of one sequence is not represented
in the other sequence, under the restriction that positions in each sequence can be
involved in at most one selected match [90]. In other words, we want to find a
set of non-overlapping fragments such that the amount of sequence covered by the
fragment is maximized. The fragments are not required to be colinear.

In the terminology of graph theory, this problem is to find a maximum weight
independent set, MWIS for short, in a particular type of intersection graph where
for each input fragment fi there is a vertex having weight fi.weight. The vertices
corresponding to fi and fj are connected by an edge, if fi and fj overlap. If in
the input graph a weight is associated with each vertex, the maximum weight in-
dependent set problem is to find an independent set of maximum weight. In [12] it
has been showed that MWIS problem for fragments is NP-complete. Even worse,
this problem was recently shown to be APX -hard in [13], although some idea for
approximation algorithms are also discussed in the same paper.

An interesting variation of the MWIS, that is called maximal matched sequence
problem (MMSP), has been studied in [90]. Given a set of fragments, the MMSP consists
in computing a set non-overlapping set of sub-fragments such that the amount of
covered sequence is maximized. The authors of [90] showed that this problem can
be optimally solved in polynomial time.

Two are the main computational approaches to solve the global chaining problem:
the graph-based approach and the geometric approach.

A comprehensive description of these algorithms is beyond the scope of the cur-
rent section, and we refer the interested reader to [46, 126] for the description of the
graph-based approach, and to [149, 88, 102] for the geometric approach. However,
in the rest of this section we briefly sketch the ideas behind these computational
approaches.

Given the input set of weighted fragments S = {f1, . . . , fm}, in the graph-based
approach we construct a weighted directed acyclic graph G = (V, E), where the
set V of vertices consists of all fragments, including 0 and t, and there is an edge
(i, j) ∈ E with weight wij = fj.weight − g(fi, fj) if fi � fj . An optimal global

4.6. REGENDER 105

chain of fragments corresponds to a path of maximum score from 0 to t in the
graph. Let fi.score the maximum score of all the chains starting at 0 that end at
fi. Given the graph acyclicity, fi.score can be computed by the formula fi.score =
fi.weight + max{fj.score − g(fi, fj) : fj � fi} (we also set 0.score = 0).

If computing gap costs takes constant time, a dynamic programming algorithm
based on the above recurrence takes O(m2) time and O(m) space. This graph-based
solution can work for multiple input sequences, and for any kind of gap cost.

In the geometric approach the O(m2) time bound is improved by exploiting the
geometric nature of the problem. As explained above a fragment f of k genomes
can be represented by a hyper-rectangle in R

k with the two extreme corner points
beg(f) and end(f). For example, in Figure 4.3 there are two input sequences, hence
the fragments are represented as 2-dimensional rectangles.

The main ingredients of the geometric approach to global chaining, are range
maximum queries. Given a set S of points in R

2, with a score associated with
each point, a range maximum query (RMQ) asks for a point of maximum score in a
rectangle R(p, q).

If the gap cost function is the constant function 0, the recurrence fi.score =
fi.weight + max{fj .score − g(fi, fj) : fj � fi} can be rewritten as fi.score =
fi.weight + fj .weight where fj is the fragment whose end point is returned by

RMQ(R(0, beg(fi)−
−→
1)). For example, consider Figure 4.3. The score of the top-

scoring chain ending at f3, is computed by adding f3.weight to the score of the

top-scoring chain that is contained in the rectangle R(0, beg(f3))−
−→
1) (highlighted

in dashed lines). As discussed in [149], given m input fragments, this algorithm
requires O(m log m) time and O(m) space to compute the optimal global chain of
fragments.

An ad-hoc variant of the above algorithm, having the same complexity bounds
of the above algorithm, which only works with two input sequences, is described
in [88].

The geometric approach to global chaining can be generalized to k dimensions
by using range trees and kd-tree geometric data structures to answer to the RMQ

queries, and can also be generalized to handle different gap cost functions [149].
However, the O(m logk−2 m log log m) time complexity of the geometric approach in
the general case of k input sequences, even without gap costs, makes it impractical,
even for a moderate number of input sequences.

4.6 Regender

Differently than previous tools cited in Section 4.5, which are general-purpose, in
the sense that they do not perform any assumption about the input data, we would
like to exploit the structural properties of the sequences of our dataset, described in
Section 4.2.

As we know from Section 4.2 our dataset contains 38 low-coverage strains, each

106 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

one with 16 chromosomes. While the coverage of 38 strains in [130] is low (one-to-
fourfold), and the fraction of unresolved bases in these chromosomes is relevant (see
Section 4.2 for details), the RefSeq chromosomes, that are available at the SGD
database [170] have been sequenced at high coverage, and contain no unresolved
bases at all. It follows that, while the alignment between two (or more) of the 38
low coverage strains can be very difficult, if at least one of the input sequences to be
compared does not contain unresolved bases, we can handle the unresolved segments
in the other strain. Consider the example in Figure 4.2. Although, the occurrence
of YARCTy1-1 is masked in the s288c strain by three unresolved segments, the fact
that the regions preceding and following the YARCTy1-1 transposon in RefSeq are
conserved, the two conserved segments inside the transposon, and the “parallelogram
shape” of the three non-conserved white regions inside the transposon suggesting
that no insertion or deletion occurred, are all evidences of the conservation of the
transposons in the s288c strain. In some sense, the global alignment suggests
that the content of the unresolved segments in s288c is the same as that of the
corresponding segments in RefSeq.

Due to their exponential time dependency on the number of input sequences,
multiple alignments/chaining algorithms cannot be applied to dataset containing
more than few sequences (our dataset contains 38 strains, plus RefSeq !). Although
Section 4.4 discusses the limit of the global alignment even in the case of two se-
quences, Section 4.5 shows how we can overcome the above limitations through
chaining algorithms, which can be used to efficiently compare a pair of sequences.
Hence, we chose a “star” comparison strategy. We performed a pairwise comparison
between the chromosomes of the RefSeq strain and the homologous chromosomes
of the other 38 low-coverage strains.

When comparing a RefSeq chromosome with the homologous chromosome of
another strain (e.g. Chr 1 of RefSeq with Chr 1 of Y55, Chr 2 with Chr 2, etc), the
assumption that the number of substitutions, insertions, deletions of one or few
bases is small sounds realistic, due to the high similarity of the compared strains.
Under this assumption, the choice of exact L-grams, instead of more flexible motifs
as basic building blocks of the output alignment is a reasonable tradeoff between
computational efficiency, and accuracy of the output alignment. Moreover, if few
large scale rearrangement events occurred in the input pair of chromosomes, we
can aggregate consecutive L-grams in a linear time greedy fashion, instead of using
a chaining algorithm requiring O(r log r) time, where r is the number of common
L-grams detected during the first step of the algorithm.

Although the above assumptions seem to be realistic (we are not comparing
mouse and human chromosomes, but we are comparing different strains of S. cere-
visiæ), only an empirical data analysis of the input dataset can prove the validity
of these assumptions.

4.6. REGENDER 107

4.6.1 Preliminary data analysis

Our approach is driven by data analysis. We performed a preliminary study to
understand how to grasp the high similarity in our dataset. Consider the pair of
homologous chromosomes (ChrNA, ChrNB) where A is RefSeq B is one of the other
38 low-coverge strains, and 1 ≤ N ≤ 16 ranges over one of the 16 chromosomes of
the S. cerevisiæ dataset. Examine all the possible (overlapping) L-grams of ChrNB

as candidates, where an L-gram is a segment of L consecutive bases.
Assuming that ChrNB contains m bases, there are m−L+1 L-grams, accounting

for possible duplicates. Call valid the L-grams that do not contain any symbol N.
The common L-grams are the valid L-grams that occur exactly (i.e. fully conserved
with no mutation) both in ChrNA and ChrNB.

N bases (a) (b) (c) N bases (a) (b) (c)
1 248 261 81.32 59.92 0.43 9 467 776 89.53 74.02 0.29
2 800 992 98.54 82.55 0.14 10 770 597 94.60 76.43 0.62
3 321 691 93.82 83.74 2.13 11 693 726 97.64 78.98 0.11
4 1 522 688 96.24 77.38 0.89 12 1 067 059 95.12 78.66 2.15
5 577 152 96.33 77.66 0.39 13 923 317 96.96 84.35 0.52
6 273 660 97.56 76.05 0.19 14 781 629 98.20 82.46 0.15
7 1 113 452 95.05 78.63 0.73 15 1 105 914 95.67 81.07 0.33
8 566 494 95.47 78.70 0.84 16 946 183 96.53 83.55 0.65

Table 4.4: Statistics (%) for the L-grams (L = 32) satisfying properties (a)–(c). The
length of each chromosome in Y55 is also given.

In our experiments, L = 32 resulted to be a good choice, leading to the fol-
lowing empirical facts that were observed for chromosomes N = 2, 3, . . . , 16, with
chromosome N = 1 (whose percentages are shown inside parentheses below) being
an outlier. The reported percentages are absolute, as they are obtained by dividing
the number of wanted L-grams by m − L + 1.

(a) The valid L-grams are numerous: they are in the range 89.53%–98.54% in Y55

(81.32% for Chr 1).

(b) The common L-grams are also numerous: they are between 74.02%–84.35%
in Y55 (59.92% for Chr 1).

(c) The common L-grams that occurs once in each genome are the vast majority:
indeed, those occurring two or more times are very few, between 0.11%–2.15%
in Y55.

A summary reporting the above percentages for the L-grams in the 16 chromo-
somes of the Y55 strain is shown in Table 4.4 (the results for the other strains are
almost identical). This high similarity can be biologically explained recalling that we

108 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

are not comparing chromosomes of different species, but instead we are comparing
homologous chromosomes of different strains of the same species.

The implication of (a)–(c) is that due to the high similarity between RefSeq

chromosomes and the homologous ones of the other strains, the localization of the
conserved regions can be performed by using the common L-grams instead of the
more flexible and inefficient approaches based on approximate L-grams described in
Section 4.5.

4.6.2 Two phases approach

Our algorithm for the rapid detection of large highly-conserved segments, called
Regender (resident genome detector), is driven by the above data analysis. It per-
forms a two-phase processing of all the possible pair of chromosomes (ChrNA, ChrNB)
in our dataset (we recall that the dataset contains 39 strains, and each strain has
16 chromosomes).

In the first phase, Regender finds the common L-grams between ChrNA and
ChrNB. In the second phase, Regender aggregates consecutive L-grams in a greedy
fashion using some user-defined parameters that control when the next conserved
region begins in both ChrNA and ChrNB. We provide the details of the algorithm in
Section 4.6.3.

Regender is related to the anchor-based algorithms [149] that circumvent the
quadratic costs (time and space) of the traditional algorithms for sequence align-
ment [88]). As discussed in Section 4.5, these algorithms after detecting the frag-
ments that are common to both ChrNA and ChrNB, select a subset of colinear frag-
ments that will be the matching regions of the output alignment, and finally apply
an expensive dynamic programming scheme to the regions of ChrNA and ChrNB that
are left uncovered by the anchors.

Driven by our data analysis, Regender can go simpler. First, the L-grams of
ChrNA are stored in a hash table, and those of ChrNB are searched in the table
during a scan of ChrNB. The high similarity of ChrNA and ChrNB justifies our choice
of exact L-grams as fragments. Second, our dataset gives almost surprisingly a
natural set of anchors: contrarily to the anchor-based algorithms, we do not need
any dynamic programming or chaining techniques to enforce the colinearity and the
non-overlapping property, since there is almost a one-to-one mapping between the
occurrences of the L-grams (see Section 4.6.1). Actually, we take advantage of the
fact the L-grams overlap and, if they are not colinear, we get a hint for a possible
translocation. As a result, Regender performs just a scan of ChrNA and ChrNB.
One execution of Regender takes less than a second on a standard PC with limited
amount of memory. This is a major requirement, since we need to execute Regender
for all pairs of homologous chromosomes of ChrNA and ChrNB. Third, we remark
that we do not need a complete alignment of ChrNA or ChrNB for the purposes of
the analysis performed in this chapter. A high-quality alignment of the conserved
regions in ChrNA or ChrNB is unnecessary in our case, as illustrated by the clear

4.6. REGENDER 109

patterns emerging in Figure 4.4, where although the occurrence of the transposon T

is masked by unresolved bases in the Y55 strain (on bottom), the transposition of the
transposon T is detected by the insertion and the deletion events in the Y55 strain.
What we really care about is the description of the dynamics of the mobilome,
identifying and locating all the mobile elements in the input sequences, together
with the genomic rearrangements they are involved into. A merit of our approach
is that of being able to select a small set of candidates for the latter investigation,
as discussed next.

Figure 4.4: A plot of the common L-grams for Chr 4 (1,095,000–1,155,000) of RefSeq
(top sequence), and Y55 (bottom sequence), where L = 32. Each line connects
the starting positions of a common L-gram. Thus, the empty triangles or trape-
zoids represent non-conserved regions. Annotated mobile elements are represented
by the green rectangles just below the top line. Unresolved sequences are the
black rectangles just above the bottom line. High resolution plots are available
at www.di.unipi.it/~gbattag/regender.

4.6.3 Algorithm and implementation

As previously mentioned, we exploit the high similarity between genomes of differ-
ent strains by running a massive computation involving all the chromosome pairs
(ChrNA, ChrNB), where the first is a RefSeq chromosome, while the second is one of
the other 38 low-coverage strains of the dataset.

We follow a two-phase approach for Regender, whose inputs are two chromo-
somes ChrNA and ChrNB, the length L of the grams, and two user-defined parame-
ters δ1 and δ2 to be used in the second phase. First, we find all the common L-grams
between ChrNA and ChrNB. Second, we detect highly conserved regions by aggre-
gating consecutive L-grams. Finally, we inspect the non-conserved regions that are
found by Regender, so as to infer mobilome elements.

www.di.unipi.it/~gbattag/regender

110 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

Phase 1 of Regender: common L-grams. We aim at finding which L-grams of
ChrNB occur inside ChrNA, where an L-gram is any sequence of L consecutive bases.
First, we construct a dictionary for all the L-grams in ChrNA and, then, we search for
the L-grams of ChrNB inside the dictionary. This task can be performed in expected
linear time by employing a rolling hash approach based on cyclic polynomial, as
described in [44]. Note that using a general purpose hash function would be more
expensive by a multiplicative factor of L. Also, using a trie-based dictionary instead
of hashing would guarantee a linear-time worst-case performance, but hashing is
faster in practice.

A detailed description of the rolling hashing is beyond the scope of the current
section. However, the main idea behind this approach is simple. Let assume that
each of the four bases, say c, is mapped into a 32-bit integer hc. Moreover, let
us denote the bit-wise exclusive or by ⊕. Let s(−) be the cyclic binary rotation
function, which shifts the input bit string to the left, moving the leftmost bit in the
rightmost position. For example, s(10110) = 01101. We use si(−) to indicate s(−)
iterated i times on the input value. For example, s2(10110) = s(01101) = 11010.

Given the input L-gram t = t[1]t[2] · · · t[L], its hash value is h(t) = sL−1(ht[1]) ⊕
sL−2(ht[2]) ⊕ . . . ⊕ s(ht[L−1]) ⊕ ht[L]. The resulting value is represented by a 32-bits
integer. Computing the hash values in a rolling fashion is done as follows. Suppose
t′ = t[2] . . . t[L+1] is the L-gram following t. To quickly compute h(t′) from h(t), we
only need to remove the base t[1] and add the new base t[L+1]. First, the previous
hash value is rotated one position to the left, obtaining h′′ = s(h(t)). Then, the new
hash value is h(t′) = h′′ ⊕ sL(ht[1]) ⊕ ht[L+1].

Some care is required in handling “unresolved” bases, denoted by N, in the input
chromosomes. Since the rolling hash approach cannot handle them, when moving
the sliding window of length L from left to right, we consider the maximal runs
of consecutive bases different from N, provided that they are of length at least L
(otherwise, they cannot contain any valid L-gram inside). In this way, we can
amortize the O(L) initialization cost for the rolling hash, with the run length. The
linear average-case cost justifies our choice of the rolling hash approach. In fact,
assuming that the lookup operation takes constant time, the cost to create the hash
table becomes predominant in the time complexity.

Lemma 33. The first phase of the algorithm Regender requires O(|ChrNA|+|ChrNB|)
time on average.

The output of the first phase is a mapping M , associating each L-gram s2 of
ChrNB, with its occurrence list occs(s2) in ChrNA. If s2 does not occur in ChrNA,
occs(s2) is empty. Although not optimal in the worst case, our hash based approach
turned out to be effective on our datasets, yielding few collisions, and allowing us
to compare two entire chromosomes in few seconds.

Phase 2 of Regender: conserved regions. During the second phase, the infor-
mation about the L-gram occurrences, stored in the mapping M computed in the

4.6. REGENDER 111

first phase, is used to establish a correspondence between segments of consecutive
bases in ChrNB and ChrNA, mapping a segment I2 = ChrNB[l2, r2] into a correspond-
ing segment I1 = ChrNA[l1, r1]. This information is represented by the mapping M2,
and it is graphically shown with green lines in Fig. 4.4.

We perform a left-to-right scan of ChrNA and ChrNB, according to the following
greedy rule. Initially, I1 and I2 are empty. During the scan, the current segments
I1 and I2 are extended when the following conditions are met:

• There exists a common L-gram s, which occurs both to the right of I1 and I2,
and no other L-gram with this property can be found between I1 and s, and
I2 and s;

• Letting d1 be the number of bases between I1 and s, and d2 be the number of
bases between I2 and s, it is |d1 − d2| ≤ δ2 and d2 ≤ δ1 (hence, d1 ≤ δ1 + δ2).

To describe the main steps, assume that the first j − 1 bases of ChrNB have
already been processed, and that M ′

2 is the mapping constructed so far. To add the
next pair of intervals to M ′

2, the main steps are as follows:
(1) Starting point search. The starting point of the next segment is set to the

coordinate of the leftmost L-gram (say j1) that does not belong to any previously
mapped interval in M ′

2, and that occurs at least once in ChrNA (i.e. M(ChrNB[j1 . . . j1+
L − 1]) 6= ∅). Let L1 = {i1, . . . , ip} be the nonempty occurrence list occs(s2) in
ChrNA, where s2 = ChrNB[j1 . . . j1 + L− 1]. Among all the identical L-grams in L1,
we map s2 into the nearest one. Namely, we select i∗ = argmini∈L1

{|j1 − i|}. Note
that L1 is a singleton list in the majority of cases in our dataset. In the rest of the
current section, i∗ will be referred as the image of j1. If s2 and its corresponding
occurrence at coordinate i∗ of ChrNA cannot be found, all the segments have been
already reported, and the mapping M ′

2 is returned.
(2) Segment extension. Once a starting point j1 together with its image i∗ has

been selected, the first L-gram s2 = ChrNB[j1 . . . j1 + L − 1] is added to the new
segment. At this point, the next L-gram s′2 = ChrNB[j2 . . . j2 + L − 1] is examined,
along with its occurrence list L2 = {k1, . . . , kl} mapped by M . An occurrence k∗ that
satisfies the following conditions is selected from L2. First, the maximum number of
bases between s2 and s′2, must be less than or equal to the user-defined threshold δ1.
In other words, it must be d2 ≤ δ1 where d2 = j2 − j1 −L. Second, since s2 precedes
s′2 in ChrNB, we require that the image of s2 in ChrNA, namely s1 = ChrNA[i

∗ . . . i∗ +
L− 1], precedes the image of s′2 in ChrNA, s′1 = ChrNA[k

∗ . . . k∗ + L− 1]. Hence, we
require that i∗ < k∗. Finally, we aim at mapping two L-grams that occur closely
into ChrNB, into L-grams occurring closely in ChrNA. We constraint the difference
of their distance to be within the user-defined threshold δ2: it must be |d1−d2| ≤ δ2,
where d2 = j2 − j1 − L, and d1 = k∗ − i∗ − L.

If an occurrence of s′2 satisfying the above conditions is found, the L-gram s′2
is added as an extension to the current segment. The above steps are repeated to

112 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

find a new L-gram following s′2 in ChrNB, and satisfying the above conditions. On
the other hand, if s′2 does not satisfy the above conditions, then the next L-gram,
s′′2, mapped by M into a nonempty occurrence list is selected, and an occurrence
satisfying the above conditions is looked for. If such an L-gram cannot be found,
the extension phase terminates.

(3) Mapping update. Let s2 = ChrNB[j1 . . . j1 + L− 1] and s′2 = ChrNB[j2 . . . j2 +
L−1] be the first and the last L-gram of the current segment, and s1 = ChrNB[j

∗ . . . j∗+
L− 1] and s′1 = ChrNB[k

∗ . . . k∗ +L− 1] be their corresponding occurrences selected
in the previous two steps (where it can be s1 = s2). The current mapping M ′

2 is
updated by adding the correspondence between segments ChrNB[j1, j2 + L− 1] and
ChrNA[i

∗, k∗ + L − 1].

Steps (1)–(3) are repeated until a new segment is found. At the end, the whole
mapping M2 for the conserved regions (anchors) is returned.

To compute the time complexity of the second phase of Regender algorithm, we
observe that the sum of the sizes of the occurrence lists in M is upper bounded by
|ChrNA|−L+1. In other words, the size of the mapping M is O(|ChrNA|+ |ChrNB|).
Steps (1)–(3) can be implemented by a left-to-right scan of the chromosomes.

Lemma 34. The second phase of the algorithm Regender requires O(|ChrNA| +
|ChrNB|) time.

Theorem 35. Algorithm Regender requires O(|ChrNA|+ |ChrNB|) time on average.

4.7 Experimental Results

To show the correctness of the idea of identifying the transposons by detecting non-
conserved mobile elements we implemented a prototype of the Regender tool, and
we analyze the dataset of 38 strains of S. cerevisiæ described in [130].

Due to the size of the dataset (the genome of each strain is long about 12 Mb,
while the whole dataset is about 500 Mb), the selected technique is required to be
efficient. We already discussed in Section 4.6 the time complexity of Regender.
Section 4.7.1 empirically compares Regender with the state of the art tools that are
reported in Table 4.5.

The second issue that we investigated is the output quality. It is worth nothing
that Regender is fast in returning a poor quality output where few conserved seg-
ments are found, or non conserved segments are tagged as conserved. Section 4.7.2
compares the output of Regender with the output of the other tools, to investigate
how much the choice of exact L-grams penalizes the quality of the output.

The remaining section is intended to validate our methodology for transposon
detection by using the known transposons annotations that are available at the
SGD database [170]. In Section 4.7.3, we discuss what is the relationship between
the non-conserved (mobile) part of each chromosome, and its transposons.

4.7. EXPERIMENTAL RESULTS 113

Tool Frag. Detection Anchor Selection Align. Completion
Avid [35] MEM/Suff. Tree Variant of Smith-Waterman Dyn. Progr.

GS-Aligner [173] Hashing Heuristic Dyn. Progr.
Lagan [38] Aho-Corasick Longest Incr. Subseq Dyn. Progr.
Lastz [168] Hashing See [168] Dyn. Progr.
Mga [97] MUM/Suff. Tree Longest Incr. Subseq Dyn. Progr.

Mummer [53] MUM/Suff. Tree Longest Incr. Subseq Dyn. Progr.
Ssaha [147] Hashing – –

Murasaki [160] Hashing Heuristic –
Blastn [7] Hashing – –
Regender Hashing Heuristic –

Table 4.5: Summary of the tools Regender is compared with. The second column
reports the type of fragments generated by the tool, and the technique used to
compute them. The third column reports the techniques used to select the anchors,
while the fourth column reports the techniques used to close the gaps in between
the selected anchors. Not all the tools perform the anchor selection step, and the
final step.

4.7.1 Regender performance

To asses the efficiency of Regender, we compared our tool with the state of the art
genome comparison tools reported in Table 4.5.

The tools reported in Table 4.5 are a small part of all the tool/libraries available
for whole genome alignment/comparison. However, the tools that we selected for
our experimental comparison have to satisfy some requirements:

• The tool must be available online, at the site referred in the paper describing
the tools (in the case of broken links, we contacted the authors).

• Free of charge: no proprietary software is took into account.

• If available, we used the executable. Otherwise, we also accepted the source
code. However, in case of non trivial compile-time errors the tool is not taken
into account.

• The tools must be well documented. We adopted a black-box approach, so
we are not interested in the tool internals, but the input parameters and the
output format must be properly described.

• Software security is a fundamental aspect in software development. We aim at
comparing mature and robust software tools, hence we do not consider tools
crashing at runtime, or running out of memory due to the size of the input
dataset.

Table 4.5 lists the tools that are part of our experimental investigation. Not
all the tools reported in Table 4.5, perform all the three computational steps de-
scribed in Section 4.5. More precisely, while Avid [35], GS-Aligner [173], Lagan [38],
Lastz [168], Mga [97], Mummer [52] performs all the three steps, Murasaki [160] and

114 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

Regender skip the final step. Blastn [7] and Ssaha [147] only compute the set of
fragments of the input sequences. However, we included these tools in our com-
parison because of their relevance to the bioinformatics community. To compare
the output of these tools with the other, we implemented a 2-dimensional global
chaining algorithm, that is a modified version of that in [88], computing an optimal
global chain given an input set of 2-dimensional fragments.

Chrm. Avid GS-Aligner Lagan Lastz Mga Mummer Ssaha Murasaki Blastn Regender

1 6.32 3.51 20.69 3.40 0.68 0.69 1.05 8.14 0.55 0.72
2 24.27 21.71 35.94 11.31 4.01 1.55 2.27 14.02 1.39 2.31
3 9.21 5.26 12.11 4.65 1.91 0.71 1.12 9.18 0.70 1.02
4 58.85 60.64 73.44 36.36 5.41 3.47 4.69 22.88 2.93 4.88
5 28.76 12.73 28.31 9.73 3.98 1.14 1.67 11.65 1.14 1.60
6 7.42 4.64 10.77 3.52 0.99 0.65 1.01 8.48 0.57 0.89
7 35.60 34.99 55.76 21.76 4.44 2.27 3.04 17.35 2.08 3.32
8 26.43 11.65 24.78 8.52 1.88 1.15 1.65 11.32 1.03 1.57
9 15.76 8.21 21.70 5.77 3.21 0.88 1.47 10.22 0.81 1.24
10 71.79 18.46 43.59 9.51 4.18 1.46 2.01 13.08 1.33 2.20
11 53.92 15.86 26.44 9.92 1.70 1.38 1.93 12.66 1.22 2.07
12 34.37 32.43 67.83 16.62 3.74 2.42 2.97 17.22 2.04 3.23
13 28.20 26.12 46 16.16 8.50 1.81 2.42 15.14 1.68 2.96
14 35.48 18.91 36.88 7.21 5.65 1.53 2.10 13.63 1.37 2.28
15 35.34 33.65 59.48 18.88 2.82 2.16 2.95 17.05 2.01 3.31
16 28.76 26 70.61 16.29 3.20 1.87 2.45 15.38 1.70 2.95

Table 4.6: Time comparison between all the tools reported in Table 4.5. Each
value is the average running time (in seconds) of all the 38 pairwise comparisons
between a RefSeq chromosome and the homologous chromosomes of the other 38
low coverage strains. The experiments have been performed on an Intel Core 2 Duo
P8400 notebook, with 4GB of RAM. The maximum amount of RAM available for
the first phase of Regender has been set to 200MB. The size of the L-grams has
been set to 32, while δ1 and δ2 have been set to 100.

Table 4.6 reports the results obtained by running the tools in Table 4.5 on all
the chromosomes of the S. cerevisiæ dataset in [130]. More precisely, we adopted
a star comparison strategy, by performing a pairwise comparison between each one
of the chromosome of the RefSeq strain with the homologous chromosomes of the
other 38 low-coverage strains. In other words, we compared Chr 1 of RefSeq strain,
with the Chr 1 of the Y55 strain, with the Chr 1 of the YPS128 strain, etc.

Table 4.6 shows the results aggregated by chromosome. Each value is the average
running time (in seconds) of all the 38 pairwise comparisons between a RefSeq chro-
mosome and the homologous chromosomes of the other 38 low-coverage strains. As
we can see from the table, although the Regender prototype has been implemented
in Python and Java, and the code has not been fine tuned or engineered at all, it is
competitive with the other tools. Two tools are only faster than Regender: Mummer,
who on average needs the 70% of the time required by Regender, and Blastn which
is the faster tool and requires 63% of Regender time. Among the remaining tools
only Ssaha can compete with Regender requiring almost the same amount of time
(100.35%). The other tools shows poorer performances, and are five (Lastz) to sev-
enteen (Lagan) times slower than Regender. This is not surprising, since Regender

4.7. EXPERIMENTAL RESULTS 115

does not require to perform a high-quality alignment of the input chromosomes as
the other tools do (as explained in Section 4.6.1 this is not necessary in identifying
and locating the mobile elements in the input sequences).

4.7.2 Regender output quality

Chrm. Avid GS-Aligner Lagan Lastz Mga Mummer Ssaha Murasaki Blastn Regender

1 81.49 68.86 81.32 75.15 24.56 75.89 77.29 68.72 77.10 78.33
2 96.81 77.50 96.78 72.76 31.58 73.29 95.56 70.61 95.27 96.40
3 95.47 74.48 95.23 75.44 40.03 74.07 90.14 69.90 90.25 94.66
4 94.98 77.67 94.64 78.24 35.55 78.99 93.77 69.27 92.96 94.31
5 94.59 75.81 94.32 76 36.08 66.24 92.71 68.35 90.55 93.97
6 93.71 81.85 93.82 64.89 26.25 63.88 91.17 66.86 89.25 92.25
7 94.94 79.86 94.93 84.05 33.78 84.45 93.41 69.74 92.44 94.34
8 93.85 78.67 94.08 79.78 34.49 78.72 91.56 66.17 92.02 92.52
9 93.07 80.07 93.52 83.79 28.98 83.34 91.15 70.75 90.02 92.02
10 93.16 75.93 92.94 86.43 30.52 81.12 91.97 69.04 89.67 92.45
11 98.26 81.45 98.35 77.25 25.72 76.58 94.73 71.73 93.72 96.96
12 93.42 75.07 93.37 70.30 30.28 73.05 92.16 69.51 91.25 92.69
13 96.04 75.61 95.37 82.41 37.81 80.34 94.77 69.18 94.30 95.57
14 96.31 72.68 96.37 87.64 40.82 85.36 94.75 72.46 94.03 95.76
15 95.81 77.85 95.74 81.66 27.66 79.01 94.36 69.99 94.40 95.28
16 95.35 74.43 94.75 81.79 38.72 74.17 93.16 68.26 92.79 94.99

Table 4.7: Percentages of bases tagged as conserved in each RefSeq chromosome.
Each value is the average of all the 38 pairwise comparisons between a chromosome
of RefSeq and the homologous chromosome of the other 38 low-coverage strains.

In Section 4.7.1, we showed that Regender is competitive with the other tool
with respect to the execution time. What about the output quality?

For our purposes, we are not interested in comparing the alignment quality, but
since we have to distinguish between conserved regions and non-conserved regions to
detect the mobile elements, we are primarily interested in which bases are tagged as
conserved and which are not. In other words, we are only interested in the matching
character of each global alignment, which are the conserved bases, while all the
other characters (insertions, deletions, mismatches) are considered as non-conserved
characters.

In the current section, we compare the set of bases that are tagged as conserved
by Regender with the set of conserved bases identified by the other tools.

First, we investigate how many bases are tagged as conserved by each tool.
Table 4.7 report the percentages of bases tagged as conserved in each chromosome.
Each value is the average on all the 38 pairwise comparisons between a chromosome
of RefSeq and the homologous chromosome of the other 38 low-coverage strains.
Values are aggregated by chromosome.

As we can see, on average, all the tools but Mga and Murasaki report a per-
centage of conserved bases that is comparable with that of Regender. Only Avid

and Lagan, on average, identify a higher number of conserved bases than Regender,
101% and 100.9% respectively. Ssaha and Blastn report almost the same number
of conserved bases as Regender (99% and 98% respectively), while the number of

116 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

conserved bases reported by GS-Aligner, Lastz, Mummer is about the 83% of that
reported by Regender.

While Murasaki tagging 75% of bases as conserved, it seems to show a lower
sensitivity than the other tools, but still agrees on the high percentage of conserved
bases, Mga completely disagrees with the other tools tagging on average only the 35%
of the bases as conserved. Probably, this phenomenon is caused by the inadequacy
of the default Mga parameters to our computational tasks (we recall that in all
of our experiments we used the default parameters of each tool). However, the
concordance of all the other tools in tagging more than 83% of bases as conserved
suggests a scenario where the conserved bases are the vast majority of the bases, and
the large-scale genomic rearrangement events are not frequent. (Recall that about
8% of bases are unresolved bases, so the true percentage of conserved bases could
be even higher than 83%.)

From above, it follows that the number of conserved bases identified as conserved
is almost the same for all the tools but Mga. But, do the tools identify the same set
of conserved bases, or not? The answer to this question comes from Table 4.8 and
Table 4.9, where we reported for each tool the percentage of bases that are tagged
as conserved by Regender and also by the considered tool, the percentage of bases
that are tagged as conserved by the tool but not by Regender, and the percentage
of bases that are tagged as conserved by Regender but not by the tool. Also in this
case the results are aggregated by chromosome.

As we can see the situation is similar to that in Table 4.7. Also Table 4.8 and
Table 4.9 shows an almost perfect agreement between the set of conserved bases com-
puted by Regender and Avid (99%), Lagan (98%), Ssaha (97%), and Blastn (97%).
A good agreement is also shown when comparing Regender with GS-Aligner,
Lastz, and Mummer. In all of these cases, the percentage of bases that is tagged
as conserved by both tools is above 80%, on average. A poor agreement is shown
with Murasaki (70%), but in particular with Mga (35%). This is a consequence of
the small number of conserved bases detected by Murasaki and Mga.

These experimental results shows that Regender is not only fast, but also accu-
rate. The Regender choice of exact L-gram, and the greedy heuristic used in the
second step, suggested by the high-similarity of the input sequences, do not decrease
the output quality of the tool.

4.7.3 Transposons and mobile segments

The results discussed in Section 4.7.2 shows a scenario where the large majority of
bases is conserved (on average, more than 93%), and few large-scale rearrangement
events occur in the chromosomes of the 38 strains that we compared with RefSeq.
In the previous sections, we conjectured that the non-conserved segments of RefSeq
are good candidates to be transposons. In the current section, we investigate this
issue by comparing the set of bases that are tagged as non-conserved by Regender

with the set of bases that are annoted as transposons in the SGD database [170].

4.7. EXPERIMENTAL RESULTS 117

Chrm Avid GS-Aligner Lagan Lastz Mga

1 95.67 4.10 0.22 79.80 4.27 15.94 94.90 4.39 0.71 86.46 4.84 8.70 30.63 0.10 69.27
2 99.47 0.48 0.05 79.60 0.45 19.95 99.33 0.53 0.14 74.95 0.29 24.75 32.65 0 67.35
3 98.67 1.09 0.24 76.77 1.10 22.13 98.32 1.14 0.54 78.32 0.79 20.89 41.96 0.02 58.02
4 98.78 0.97 0.26 80.71 0.91 18.38 98.12 1.11 0.76 81.33 0.90 17.78 37.59 0.06 62.35
5 98.97 0.84 0.18 79.44 0.72 19.83 98.56 0.90 0.54 79.05 0.97 19.98 38.14 0.04 61.82
6 98.04 1.76 0.20 85.60 1.65 12.75 98.10 1.78 0.12 68.32 1.28 30.40 28.36 0.01 71.63
7 98.97 0.84 0.20 83.39 0.69 15.92 98.60 1.01 0.39 87.97 0.63 11.41 35.74 0.03 64.23
8 98.22 1.60 0.18 82.49 1.40 16.11 98.16 1.75 0.09 83.97 1.24 14.79 37.19 0.05 62.76
9 98.30 1.41 0.28 84.72 1.21 14.07 98.24 1.68 0.08 89.04 1.08 9.89 31.30 0.03 68.67
10 98.94 0.91 0.15 80.90 0.69 18.41 98.28 1.12 0.60 92.27 0.62 7.10 32.80 0.04 67.16
11 98.55 1.39 0.06 81.68 1.26 17.06 98.50 1.46 0.04 78.80 0.52 20.68 26.39 0.11 73.50
12 98.65 1.06 0.28 79.56 0.80 19.64 98.36 1.19 0.46 74.21 0.90 24.88 32.70 0.01 67.29
13 99.31 0.59 0.10 78.30 0.47 21.22 98.49 0.65 0.86 85.51 0.37 14.11 39.38 0.02 60.60
14 99.23 0.67 0.10 74.83 0.60 24.57 99.21 0.71 0.08 90.50 0.52 8.97 42.50 0.02 57.48
15 99.14 0.71 0.16 80.59 0.62 18.79 98.95 0.77 0.29 84.63 0.58 14.80 29.04 0.01 70.95
16 99.33 0.52 0.15 77.59 0.43 21.99 98.64 0.55 0.80 85.25 0.44 14.31 40.77 0.01 59.22

Table 4.8: Comparison between Regender and Avid, GS-Aligner, Lagan, Lastz,
Mga. For each tool, the percentage of bases that are tagged as conserved by Regender

and also by the tool (the first column in each group of columns), the percentage of
bases that are tagged as conserved by the tool but not by Regender (the second
row in each group), and the percentage of bases that are tagged as conserved by
Regender but not by the other tool (the third row in each group). Each value is the
average on all the 38 pairwise comparisons between a chromosome of RefSeq and
the homologous chromosomes of the other 38 low-coverage strains.

Chrm Mummer Ssaha Murasaki Blastn

1 92.66 2.16 5.18 95.18 1.76 3.05 66.58 11.20 22.23 93.82 2.34 3.85
2 75.60 0.25 24.15 98.48 0.33 1.19 72.19 0.61 27.20 98.15 0.34 1.51
3 77.53 0.46 22.01 94.01 0.64 5.34 69.45 2.52 28.03 94.03 0.68 5.28
4 82.82 0.50 16.68 98.06 0.69 1.25 70.31 1.81 27.88 97.11 0.74 2.15
5 69.66 0.45 29.89 97.60 0.53 1.87 69.71 1.74 28.55 95.23 0.56 4.20
6 67.66 1.01 31.32 97.12 0.87 2.01 68.29 2.43 29.27 94.59 1.11 4.30
7 88.72 0.45 10.83 98.07 0.48 1.45 71.23 1.55 27.22 97.04 0.48 2.48
8 83.30 0.96 15.74 97.06 0.95 1.99 67.81 2.16 30.03 97.42 1.02 1.56
9 89.21 0.70 10.09 97.49 0.80 1.70 71.04 3.33 25.63 96.17 0.83 2.99
10 86.93 0.41 12.66 98.64 0.42 0.93 68.88 3.30 27.82 96.07 0.46 3.47
11 78.27 0.42 21.32 95.71 1.01 3.28 71.31 1.54 27.15 95.29 0.69 4.02
12 77.91 0.48 21.60 98.16 0.64 1.20 70.34 2.66 27 97.16 0.65 2.19
13 83.55 0.27 16.17 98.49 0.34 1.17 70.94 0.85 28.22 98 0.34 1.66
14 88.29 0.44 11.27 98.02 0.46 1.52 72.93 1.55 25.52 97.20 0.50 2.30
15 82.18 0.40 17.42 98.09 0.48 1.44 71.11 1.35 27.54 98.13 0.47 1.40
16 77.62 0.23 22.14 97.46 0.31 2.23 69.77 1.21 29.02 97.07 0.31 2.63

Table 4.9: Comparison between Regender and Mummer, Ssaha, Murasaki, Blastn.
The statistics are the same as that in Table 4.8.

118 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

Chrm Ann. Bases Cons. Bases Ann. and Cons. Cons. and Ann.
1 6,220 130,089 4.66 0.22
2 21,216 752,938 11.65 0.33
3 10,553 273,337 25.95 1.00
4 53,289 1,399,072 8.57 0.33
5 19,415 477,475 49.14 2.00
6 8,256 104,934 17.45 1.37
7 43,622 945,080 12.57 0.58
8 10,674 452,179 28.86 0.68
9 7,893 352,702 12.50 0.28
10 22,473 588,669 63.81 2.44
11 3,975 510,221 46.94 0.37
12 35,712 987,072 30.02 1.09
13 28,246 860,357 11.32 0.37
14 20,465 699,772 5.09 0.15
15 29,428 933,192 14.23 0.45
16 35,560 877,694 28.43 1.15

Table 4.10: Overlaps between the transposons and the conserved regions in the
RefSeq chromosomes. The second and the third column report the number of
annoted RefSeq bases and the number of RefSeq conserved bases. The last two
columns of the table, report the percentage of bases that are annoted as transposons,
but that are also tagged as conserved, and, viceversa, the percentage of conserved
bases that are also annoted as transposons. Each base is tagged as conserved, if it
is conserved in at least 20 strains.

Chrm Ann. Bases Non-Cons. Bases Ann. and Non-Cons. Non-Cons. and Ann.
1 6,220 6,071 95.31 97.64
2 21,216 19,158 88.35 97.84
3 10,553 9,032 67.46 78.82
4 53,289 54,033 90.41 89.17
5 19,415 10,892 44.52 79.35
6 8,256 6,637 74.26 92.38
7 43,622 42,592 86.04 88.12
8 10,674 8,507 64.93 81.47
9 7,893 9,927 83.92 66.73
10 22,473 8,886 34.78 87.95
11 3,975 2,997 46.62 61.83
12 35,712 31,898 68.41 76.58
13 28,246 26,009 87.88 95.44
14 20,465 19,791 91.00 94.10
15 29,428 26,574 85.44 94.61
16 35,560 25,306 69.61 97.81

Table 4.11: Overlaps between transposons and non-conserved regions in the RefSeq

chromosomes. The second and the third column report the number of annoted bases
and the number of non-conserved bases. The last two columns of the table, report
the percentage of bases that are annoted as transposons, but that are also tagged as
non-conserved, and, viceversa, the percentage of non-conserved bases that are also
annoted as transposons. Each base is tagged as non-conserved, if it is non-conserved
in at least 20 strains.

In the rest of this section, we refer to the bases annoted as transposons, simply as
annoted bases.

In Table 4.10 each row refers to one of the 16 chromosomes of the dataset. The
second and the third column report the number of annoted RefSeq bases (we do
not distinguish in this context between TY and LTR elements), and the number of

4.7. EXPERIMENTAL RESULTS 119

RefSeq conserved bases. A RefSeq base is tagged as conserved if it is conserved
in at least 20 of the 38 pairwise comparisons between a chromosome of the RefSeq

strain and the homologous chromosomes of the other strains. The last two columns
of the table report the percentage of bases that are annoted as transposons, but also
tagged as conserved, and, viceversa, the percentage of conserved bases that are also
annoted as transposons. Table 4.11 reports the same statistics, but instead of the
conserved RefSeq bases, the non-conserved RefSeq bases are considered.

Table 4.10 shows that both the percentage of annoted bases that are also tagged
as conserved, and the percentage of conserved bases that are also annoted are very
low, on average: 23% and 0.8% respectively. These percentages, clearly show that
the overlap between annoted bases and conserved bases is small. In other words, few
transposons are contained in the conserved segments of the RefSeq chromosomes.

Completely different is the situation depicted in Table 4.11. In this case, on
average, the 86% of the RefSeq annoted bases are also non-conserved bases, while
the percentage of the non-conserved bases that are also annoted is above 74%, on
average. This fact suggests that the correlation between the non-conserved bases
detected by Regender and the bases that are annoted as transposons is strong, and
that our idea of detecting transposable elements by non-conserved mobile segments
works.

Ann. Name Chr Ann. Name Chr

YBLCdelta7 2 YHRWdelta9 8
YBRWdelta17 2 YILCdelta5 9
YBRWdelta16 2 YJLWdelta8 10
YBRCdelta14 2 YLRCtau1 12
YBLWdelta8 2 YLRWdelta20 12
YBRWdelta15 2 YMRWdelta17 13
YCRWdelta11 3 YMRCdelta11 13
YCRWdelta9 3 YMRCtau1 13
YCRCtau1 3 YMRWdelta16 13

YDRWdelta10 4 YNLWsigma2 14
YDRCdelta2 4 YORCdelta11 15

YDRWdelta12 4 YOLCdelta7 15
YGLWdelta4 7 YOLCdelta8 15
YGRWsigma7 7 YORCdelta9 15
YGRCdelta12 7 YPRWdelta16 16
YGRWdelta26 7 YPLWdelta7 16
YGRWdelta31 7 YPRWdelta14 16

YHRCtau4 8 YPRCdelta15 16

Table 4.12: List of transposons conserved in all the 39 strains of the dataset.

However, the fact that not all the annoted bases have been tagged as conserved
in at least one strain poses an intriguing question. Is it possible that some of the
TY/LTR elements are conserved in all the strains, not being subject to any genomic
rearrangements?

Given the results of the pairwise comparisons between RefSeq chromosomes and
the homologous chromosomes of the other 38 low-coverage strains of the dataset, it
is easy to answer to the above question. Table 4.12 reports all the transposons that
are conserved in all the strains. It can be observed that no TY is listed in the table,
while the 13% of LTR elements are conserved in all the 38 strains of the dataset. This

120 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

surprising phenomenon clearly shows that some of the transposable elements that
have been identified on the RefSeq strain due to their structure, are not subject to
any rearrangement event in any of the strain of the dataset. In other words, they
look like transposable elements which at some point of the S. cerevisiæ evolution
have settled on a specific position of the genome. In some sense they preserved their
structure, but they lost their mobility.

What about the 26% of bases that have been tagged as non-conserved, but that
are not annoted as TY or LTR in the RefSeq strain?

Even more interesting is the size distribution of the above non-conserved seg-
ments. About 35% of them is very small (less than 300 bases), 30% range over 300
and 600 bases, while the remaining 35% is very large (more than 6000 bases long).

Some of these segments can be part of mobile and repetitive DNA sequences that
are not related with transposable elements, others could be transposons that have
not been annoted in RefSeq(in particular the short segments can be LTR elements
that have not been identified by traditional methods due to their unusual struc-
ture). However, only a structural analysis of these segments based on traditional
techniques [25] can distinguish between true TY and LTR elements and false positive.
The interested reader can download the precise coordinates of all the not-conserved
segments at www.di.unipi.it/~gbattag/regender.

4.8 Conclusions and Future Work

In the previous sections we have discussed a concrete example of pattern discov-
ery, showing how pattern discovery can overcome the limitations of the traditional
pattern search approaches in detecting transposons. Although in our case study we
analyzed a S. cerevisiæ dataset, our approach is not restricted to yeast genomes,
since it does not rely on the structure of the transposons but on their behavior (being
mobile). However, our approach is not intended to be an alternative to the tradi-
tional approaches. The identification of new classes of transposons is a multistep
process and only by detecting the presence of specific repeats and specific promoters
that are associated with known transposon classes inside a non-conserved segment,
we can declare a DNA segment to be a transposon. Our alignment-based pattern
discovery methodology is intended to help the user to filter a whole input genome
that can be several Mb long, focusing on few non-conserved DNA segments that, as
we discussed in Section 4.7.3, are good transposon candidates.

The analysis that we performed in the previous sections is only the first step of
a more ambitious project that aim at identifying all the transposable elements in a
given population genomic dataset, tracking their movements, and forecasting their
future rearrangements. In the rest of this section we discuss some interesting lines
of research that can be the subject of further investigations.

www.di.unipi.it/~gbattag/regender

4.8. CONCLUSIONS AND FUTURE WORK 121

Improving the fragment generation phase. So far, the emphasis has been
on the methodological aspect of transposons detection rather than on the efficiency
of the proposed approach. We have shown the advantages of a transposon struc-
ture agnostic approach, based on alignment, over the traditional pattern search
approaches.

Although the Regender prototype has not been designed with the efficiency in
mind, as discussed in Section 4.7.1, its simplicity and its ability of exploiting the
high-similarity of the compared sequences makes it competitive with other state of
the art tools, and even with Blast.

Moreover, in Section 4.7.2 we have shown through a massive experimentation
comparing RefSeq chromosomes with the homologous chromosomes of the other 38
low-coverage S. cerevisiæ strains of [130], that our choice of exact L-grams does not
decrease the output quality. To our knowledge, this is the first time that such a
massive experimental analysis is performed on a large population genomic dataset.

The rolling hash technique used by Regender is not the only available technique
that can be used to detect exact L-grams, shared by a set of input sequences. Suffix
tree [186, 88] can accomplish this task in time and space linear in the aggregate
size of the input sequences. However, its high memory consumption that in practice
can range from 9 to 11 times the size of the string to be indexed [77], makes it
inapplicable to a large dataset.

Several approaches have been proposed in literature to overcome this limitation.
Suffix arrays provide a more space-efficient alternative to suffix trees [133]. In [106, 2]
it has been showed that every algorithm that uses a suffix tree can systematically be
replaced with an algorithm, which uses an enhanced version of suffix arrays, having
the same time complexity as the original algorithm. In practice, enhanced suffix
arrays requires about 8 bytes per character [2, 98].

Since Regender has been designed with modularity in mind, the rolling hash
fragment generation component can easily be replaced by a different implementation
based on suffix array. It would be of interest to compare the efficiency of our rolling
hash approach, with different approaches based on suffix trees/arrays.

Massive Datasets. In our experimental investigation we compared each chro-
mosome of the RefSeq strain, with the homologous chromosome of the other 38
S. cerevisiæ strains of the dataset. In this way we can detect large scale intra-
chromosomic rearrangements where a transposons of chromosome 4 has transposed
into a different location of the same chromosome.

However, [128] shows that transposons are not only involved in intra-chromosomic
rearrangements, but they can also be involved in inter-chromosomic rearrangements,
transposing from one chromosome to another. To detect these inter-chromosomic
rearrangements, the comparison of pairs of homologous chromosome is not enough,
but the whole RefSeq genome must be compared with that of the other strains.

If this is feasible in the case of S. cerevisiæ, whose complete genome is about

122 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

12 Mbases, the analysis of different organisms can be much more challenging (the
human genome, for example, is about 2.9 Gbases long).

As discussed in Section 4.7.1, we used a pairwise star comparison strategy, where
a pairwise comparison is performed between the chromosome of the RefSeq strain,
and the homologous chromosome of the other 38 strains.

However, we would like to go beyond, by simultaneously comparing all the 39
strain genomes. This task is challenging with the S. cerevisiæ dataset that we
analyzed, which is about 468 Mb, but it is impossible with other datasets as that
in www.1000genomes.org, that contains 1000 human genomes.

However, our experiments clearly show that such population genomic datasets
are a clear example of repetitive sequence collection, because the difference between
the RefSeq genome and the genome of the other strains can be expressed by a short
lists of basic edit operations, together with few large scale rearrangement operations.
Data analysis on such massive dataset is unfeasible with traditional suffix tree or
suffix array approaches, due to the memory consumption.

Recent advances in full-text indexing reduce the space occupation of the suffix
tree to that of the compressed sequences, while maintaining the same functional-
ity with only a polylogarithmic slowdown [144, 85, 69]. However, the underlying
compression model considers only the predictability of the next sequence symbol
given the k previous ones, where k is a small integer, hence it is unable to represent
longer-term repetitiveness.

In [132], the authors develop new static and dynamic full-text indexes that can
capture the high repetitiveness of the input sequences, requiring a space that is
proportional to the length of one sequence, plus the total number of edit operations,
that represents the other sequences. We believe that this approach can be refined
also to take into account large-scale rearrangement events together with single base
modifications.

Multiple Alignment. As discussed in Section 4.7.1, in our experiments we used
a pairwise star comparison strategy, where a pairwise comparison is performed be-
tween the chromosomes of the RefSeq strain, and the homologous chromosomes of
the other 38 strains.

A natural extension of this method, that is also discussed in [25], is multiple
alignment. If pairwise global alignment, as discussed in Section 4.4, is impractical
on large sequences, multiple sequence alignment is referred in [88] as the “holy
grail” of the bioinformatics. Although several efficient multiple sequence alignment
tools [124, 59, 148, 107, 125] are publicly available, they are only applicable if the
input sequences are a few Kb long.

In Section 4.5.2 we presented the global chaining problem. As discussed in [149],
the generalization of the geometric approach to k input sequences of average size n,
is feasible but the resulting algorithm, whose precise time complexity depends on
the selected gap cost function, has a logk(n) factor that makes it impractical on a

www.1000genomes.org

4.8. CONCLUSIONS AND FUTURE WORK 123

dataset containing more than few sequences.

Differently from the geometric approach, the graph-based approach, referred in
Section 4.5.2, works for any number of input sequences and for any kind of gap
cost function. Its quadratic time complexity in the number of fragments identified
in the input sequences make it the reference choice for multiple sequence global
chaining [97, 54].

We followed an alternative approach, which follows the spirit of the well known
progressive alignment technique that is used for multiple sequence alignment [88].
We started by performing a pairwise comparison between one chromosome of the
RefSeq strain with its homologous in a different strain, by Regender. Then, a third
homologous chromosome is selected. It is compared with the RefSeq chromosome,
and the resulting alignment is “merged” to the first one. This process is iterated until
all the homologous chromosome have been aligned. The output multiple alignment,
together with the high resolution plots for all the 16 chromosomes are available
online at www.di.unipi.it/~gbattag/regender.

Also in the case of these multiple alignments we plan to perform a complete
experimental investigation, by comparing our approach with other state of the art
tools.

Analysis of mobile elements. In Section 4.7.2 we have empirically shown the
correctness of our idea: transposons can be identified by looking at the non-conserved
elements of the RefSeq strain who are involved in large scale insertion or deletion
events. More precisely, we discovered that, on average, more than 86% of the bases
that are annoted as transposons are non-conserved, while more than 74% of non-
conserved bases is annoted as transposable elements.

Moreover, by investigating why a relevant part of the RefSeq bases that are
tagged as conserved by Regender are annoted as transposons, we discovered that
there exists a non negligible number of inactive LTR elements, that are conserved
in all the strains of the dataset (see Table 4.12 for details). A traditional pattern
search approach would make this kind of analysis impossible, since the above LTRs
are masked by unresolved bases in some strains.

However, if only the 74% of non-conserved bases is annoted as transposable
elements, what about the remaining 26% of bases that have been tagged as non-
conserved, but that are not annoted as TY or LTR in the RefSeq strain? Some of these
bases can be part of mobile and repetitive DNA sequences who are not related with
transposable elements. Others could be transposons that have not been annoted in
RefSeq. However, only a structural analysis of these segments based on traditional
techniques [25] can match the structure of these “candidate” transposons against
the known transposon families that are reported in literature (see [34] for a survey),
distinguishing between true transposable elements and false positive.

www.di.unipi.it/~gbattag/regender

124 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

Figure 4.5: Redrawn of the phylogenetic tree constructed in [130], based on the SNPs
detected in the S. cerevisiæ dataset (on the left). On the right, the mobilome tree
constructed by using the information about the non-conserved segments detected in
the multiple alignment of all the 38 strains of the same dataset by Regender. Groups
of strains that are clustered together in both trees are highlighted in rectangles.

From Mobilome to Mobilome Tree. A phylogenetic tree (sometimes referred
as evolutionary tree), is a tree showing the evolutionary relationships among various
species or other entities that are believed to have a common ancestor. Phylogenetic
trees may be either rooted or unrooted. In rooted trees, there is a unique node,
called the root, representing a common ancestor, from which a unique path leads
to any other node. An unrooted tree only specifies the relationship among species,
without identifying a common ancestor, or evolutionary path (the interested reader
can refer to [88] for a formal definition of phylogenetic tree). In our case, since
we compare different strains of S. cerevisiæ the resulting phylogenetic tree has one
strain in each leaf, and it reveals the relationships among these strains.

The basic problem in constructing a phylogenetic tree is the construction of a
matrix, where each row represents the characteristics being used to measure the
distance between two different entities being compared (two strains in our case).

In [130] the phylogenetic tree representing the population structure of the S. cere-
visiæ strains has already been constructed by considering the SNPs occurring in the
strains. Single Nucleotide Polymorphism (SNP for short) are mutations in the DNA
sequence that occur when a single nucleotide (A,T,C, or G) in the genome sequence
is mutated. For example, a SNP can transform the DNA sequence AACGCTAG into
ATCGCTAG, substituting the second A with T.

SNPs are a widely used class of features in detecting the plylogenetic structure
of a population. However, as discussed in [67, 31], transposons are important gener-
ators of variation upon which natural selection act. Hence, it would be interesting
to perform a phylogenetic study, not based on single base mutations only, as in the
case of SNPs, but on large scale rearrangement events.

A preliminary result of this line of investigation is shown in Figure 4.5, which
qualitatively compares the phylogenetic tree constructed by SNPs in [130] (on the

4.8. CONCLUSIONS AND FUTURE WORK 125

left), with a second tree, that we call mobilome tree, because it has been constructed
by using the information about the non-conserved segments detected in the multiple
alignment of the 38 strains in the S. cerevisiæ dataset. The set of strains “clustered
together” in both trees are highlighted in rectangles and numbered. As we can see,
although the two trees have been constructed by completely different methods, they
show a very similar structure. This first result, empirically validates our method by
showing that the similarity of different strain genomes can be detected by looking
at the mobile segments (the mobilome), without any annotations about the genes
that are found in the genome, and the SNP locations. However, only an extensive
and well designed experimental analysis, involving other population datasets, can
asses the validity of this method.

126 CHAPTER 4. MOBILOMICS IN S. CEREVISIÆ

Conclusions

In this thesis we discussed three incarnations of the pattern discovery task, ex-
ploring three types of patterns that can model different regularities of the input
dataset. While mask patterns have been designed to model short repeated bio-
logical sequences, showing a high conservation of their content at some specific
positions, π-patterns have been designed to detect repeated patterns whose parts
maintain their physical adjacency but not their ordering in all the pattern occur-
rences. Transposons, instead, model mobile sequences in the input dataset, which
can be discovered by comparing different copies of the same input string, detecting
large insertions and deletions in their alignment.

Each of the above class of patterns represents a novel solution to tackle an
existing problem. In the case of mask patterns we described a new class of repetitions
in a sequence, using a succinct description (mask) that gives rise to a smaller set
of output patterns with respect to the set of frequent patterns with don’t cares
(2L instead of (|Σ| + 1)L in the worst case). While in the traditional approaches,
frequent don’t care patterns having a different number of occurrences in the input
text T were considered as different patterns, in our approach, if they share the same
structure in terms of positions that are conserved across their occurrences, they are
represented by the same mask pattern. In Chapter 2 we have shown how to build
the set of all frequent maximal masks of length L in O(2Ln) time and space in the
worst case, using a variant of the Karp-Miller-Rosenberg approach, and a proper
visit of the mask lattice.

In Chapter 3 we explored the problem of detecting conserved gene clusters in
genomes by using fixed length π-patterns. Differently than previous approaches
that have been proposed in the literature, we do not sacrifice the information about
the symbol multiplicities during the pattern discovery task. Moreover, we do not
rely on any notion of maximality to reduce the number of output patterns, instead
we rank the π-patterns according to the number of conserved common intervals
detected in their occurrence lists. In the aforementioned chapter a two-phase ap-
proach has been proposed to detect the top-k frequent π-patterns occurring in the
input text T . While the first phase can be efficiently accomplished (we proposed a
novel O(L log |Σ|n) time, and O(Ln) space algorithm, that improves the state of
the art algorithm by a log(n) time factor), the complexity of the second ranking
phase heavily depends on the presence of repeated symbols in the π-pattern p to

128 CHAPTER D. CONCLUSIONS

rank.
In fact, in Section 3.4 we have shown that given a π-pattern p, together with its

occurrence list L(p), if p is a set of symbols then the number of frontiers represented
by its minimum PQ-tree can be computed in O(|L(p)||p|) time and O(|p|) space.
In the case of multisets of symbols, we have proved in Section 3.5.4 that even the
computation of the number of the frontiers of a given PQ-tree where the labels of
the leaves are not necessarily distinct is #P-complete, also providing a negative
answer to a long standing problem that has been left as an open issue in [155].

Finally, in Chapter 4 we have shown as even a well settled field of investiga-
tion in bioinformatics, as that of transposon detection, can benefit from a change
of perspective. In fact, in this chapter, to overcome the limitations of the existing
approaches, we recast the transposon detection task as a pattern discovery task.
While traditional pattern search approaches fail in handling real world low-coverage
population genomic datasets that are rich in unresolved bases, our pattern discov-
ery approach can exploit the availability of multiple copies of the input genomic
sequences to overcome this limitation. Transposons are detected by focusing on the
non-conserved regions of the coarse-grained global alignment of the input genomic
sequences computed by the Regender tool. The efficiency of the Regender ap-
proach (that runs, on average, in time linear in the sum of the sizes of the two input
sequences) has been empirically assessed in the case study discussed in Chapter 4,
where we experimentally compared Regender with other 9 state of the art global
alignment tools, on the dataset containing 38 strains of the S. cerevisiæ yeast that
has been recently released in [130]. To our knowledge, this is the first time that
such a massive experimental analysis is performed on a large population genomic
dataset. This experimental analysis has shown that Regender outperforms existing
tools in terms of execution time, without compromising the quality of the output
alignment. Moreover, by comparing the non-conserved segments that have been
identified by Regender, with the the transposon annotations that are available at
SGD database [170], we have shown the correctness of our idea of identifying trans-
posons by detecting the non-conserved segments in the sequence alignment.

Future work. In the previous chapters we already presented some specific open
issues that can be subjects of further investigations (see Section 2.6, Section 3.6,
and Section 4.8 for details).

Bibliography

[1] M. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its
applications to genome analysis. Algorithms in Bioinformatics, pages 449–463,
2002.

[2] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[3] A. Aggarwal and J. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

[4] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. In ACM SIGMOD Record, volume 22, pages
207–216. ACM, 1993.

[5] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proc. 20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, pages
487–499. Citeseer, 1994.

[6] A.V. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic
search. Communications of the ACM, 18(6):333–340, 1975.

[7] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[8] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D.J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic acids research, 25(17):3389, 1997.

[9] A. Amir, A. Apostolico, G.M. Landau, and G. Satta. Efficient text finger-
printing via Parikh mapping. J. Discrete Algorithms, 1(5-6):409–421, 2003.

[10] H. Arimura and T. Uno. A polynomial space and polynomial delay algorithm
for enumeration of maximal motifs in a sequence. In Algorithms and Com-
putation, 16th International Symposium (ISAAC’05), volume 3827 of Lecture
Notes in Computer Science, pages 724–737, Hainan, China, 2005. Springer.

130 CHAPTER 0. BIBLIOGRAPHY

[11] S. Arora and B. Barak. Computational Complexity A Modern Approach. Cam-
bridge University Press, Cambridge, 2009.

[12] V. Bafna, B. Narayanan, and R. Ravi. Nonoverlapping local alignments
(weighted independent sets of axis-parallel rectangles)* 1. Discrete Applied
Mathematics, 71(1-3):41–53, 1996.

[13] R. Bar-Yehuda, M.M. Halldórsson, J.S. Naor, H. Shachnai, and I. Shapira.
Scheduling split intervals. In Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 732–741. Society for Industrial and
Applied Mathematics, 2002.

[14] G. Battaglia, D. Cangelosi, R. Grossi, and N. Pisanti. Masking patterns in
sequences: A new class of motif discovery with don’t cares. Theoretical Com-
puter Science, 410(43):4327–4340, 2009.

[15] G. Battaglia, R. Grossi, R. Marangoni, and N. Pisanti. Mining biological
sequences with masks. In Biological Knowledge Discovery from Databases
(BIOKDD’09/DEXA’09), Linz, Austria, 2009.

[16] G. Battaglia, R. Grossi, and N. Scutellà. Consecutive ones property and
pq-trees for multisets: Hardness of counting their orderings. Arxiv preprint
arXiv:1102.0041, 2011.

[17] G. Battaglia, R. Grossi, and N. Scutellà. Counting the orderings for mul-
tisets in consecutive ones property and PQ-trees. In Proceedings of the fif-
teenth annual International Conference on Developments in Language Theory
(DLT’11), volume 6795 of LNCS, Milan, Italy, 2011. Springer.

[18] S. Batzoglou, L. Pachter, J.P. Mesirov, B. Berger, and E.S. Lander. Human
and mouse gene structure: comparative analysis and application to exon pre-
diction. Genome Research, 10(7):950, 2000.

[19] M.P. Béal, A. Bergeron, S. Corteel, and M. Raffinot. An algorithmic view of
gene teams. Theoretical Computer Science, 320(2-3):395–418, 2004.

[20] G. Bejerano, M. Pheasant, I. Makunin, S. Stephen, W.J. Kent, J.S. Mattick,
and D. Haussler. Ultraconserved elements in the human genome. Science,
304(5675):1321, 2004.

[21] C. Berge. Hypergraphs: Combinatorics of Finite Sets, volume 45. Elsevier,
1989.

[22] A. Bergeron, C. Chauve, F. De Montgolfier, and M. Raffinot. Computing com-
mon intervals of K permutations, with applications to modular decomposition
of graphs. Algorithms–ESA 2005, pages 779–790, 2005.

0.0. BIBLIOGRAPHY 131

[23] A. Bergeron, C. Chauve, and Y. Gingras. Formal Models of Gene Clusters.
Bioinformatics algorithms: techniques and applications, page 177, 2008.

[24] A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams.
Algorithms in Bioinformatics, pages 464–476, 2002.

[25] C.M. Bergman and H. Quesneville. Discovering and detecting transposable
elements in genome sequences. Briefings in bioinformatics, 2007.

[26] E. Biscardi. Strumenti computazionali per la mobilomica, una nuova branca
della bioinformatica. Master’s thesis, University of Pisa, 2011.

[27] M. Blanchette, T. Kunisawa, and D. Sankoff. Gene order breakpoint evi-
dence in animal mitochondrial phylogeny. Journal of Molecular Evolution,
49(2):193–203, 1999.

[28] G. Blin, C. Chauve, and G. Fertin. The breakpoint distance for signed se-
quences. In Proc. 1st Algorithms and Computational Methods for Biochemical
and Evolutionary Networks (CompBioNets), pages 3–16, 2004.

[29] G. Blin, C. Chauve, and G. Fertin. Genes order and phylogenetic reconstruc-
tion: Application to γ-proteobacteria. Comparative Genomics, pages 11–20,
2005.

[30] T. Blumenthal. Operons in eukaryotes. Briefings in functional genomics &
proteomics, 3(3):199, 2004.

[31] A. Bohne, F. Brunet, D. Galiana-Arnoux, C. Schultheis, and J.N. Volff. Trans-
posable elements as drivers of genomic and biological diversity in vertebrates.
Chromosome Research, 16(1):203–215, 2008.

[32] K.S. Booth. PQ-tree algorithms. PhD thesis, Univ. of California, Dec., 1975.

[33] K.S. Booth and G.S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci.,
13(3):335–379, 1976.

[34] N.J. Bowen and I.K. Jordan. Transposable elements and the evolution of
eukaryotic complexity. Current issues in molecular biology, 4:65–76, 2002.

[35] N. Bray, I. Dubchak, and L. Pachter. AVID: A global alignment program.
Genome Research, 13(1):97, 2003.

[36] B. Brejová, D. Brown, and T. Vinar. Vector seeds: an extension to spaced
seeds allows substantial improvements in sensitivity and specificity. In WABI,
volume 2812 of LNCS, pages 39–54, Budapest, Hungary, 2003. Springer.

132 CHAPTER 0. BIBLIOGRAPHY

[37] G.S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In
Proceedings of the 29th International Colloquium on Automata, Languages
and Programming, ICALP 2002, volume 2380 of Lecture Notes in Computer
Science, pages 426–438, Malaga, Spain, 2002. Springer-Verlag.

[38] M. Brudno, C.B. Do, G.M. Cooper, M.F. Kim, E. Davydov, et al. LAGAN
and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic
DNA. Genome research, 13(4):721, 2003.

[39] M. Brudno and B. Morgenstern. Fast and sensitive alignment of large genomic
sequences. In CSB, pages 138–, 2002.

[40] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. In
CPM, volume 2089 of LNCS, pages 73–85, Jerusalem, Israel, 2001. Springer.

[41] S.B. Carroll. Evolution at two levels: on genes and form. PLoS Biology,
3(7):1159, 2005.

[42] P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak. An applications-focused
review of comparative genomics tools: Capabilities, limitations and future
challenges. Briefings in Bioinformatics, 4(2):105, 2003.

[43] K.P. Choi, F. Zeng, and L. Zhang. Good spaced seeds for homology search.
Bioinformatics, 20(7):1053–1059, 2004.

[44] J.D. Cohen. Recursive hashing functions for n-grams. ACM Trans. Inf. Syst.,
15(3):291–320, 1997.

[45] Human Genome Sequencing Consortium. Finishing the euchromatic sequence
of the human genome. Nature, 431:931–945, 2006.

[46] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. The MIT Press, September 2001.

[47] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on strings. Cambridge
Univ Pr, 2007.

[48] M. Crochemore and W. Rytter. Usefulness of the karp-miller-rosenberg algo-
rithm in parallel computations on strings and arrays. Theoretical computer
science, 88(1):59–82, 1991.

[49] M. Crochemore and W. Rytter. Jewels of stringology. World Scientific, 2002.

[50] Z.J. Czech, G. Havas, and B.S. Majewski. Perfect hashing. Theoret. Comput.
Sci., 182(1-2):1–43, 1997.

0.0. BIBLIOGRAPHY 133

[51] A.C.E. Darling, B. Mau, F.R. Blattner, and N.T. Perna. Mauve: multiple
alignment of conserved genomic sequence with rearrangements. Genome re-
search, 14(7):1394, 2004.

[52] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L.
Salzberg. Alignment of whole genomes. Nucleic Acids Research, 27(11):2369,
1999.

[53] A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms
for large-scale genome alignment and comparison. Nucleic Acids Research,
30(11):2478, 2002.

[54] J.S. Deogun, J. Yang, and F. Ma. Emagen: An efficient approach to mul-
tiple whole genome alignment. In Proceedings of the second conference on
Asia-Pacific bioinformatics-Volume 29, page 122. Australian Computer Soci-
ety, Inc., 2004.

[55] G. Didier. Common intervals of two sequences. Algorithms in Bioinformatics,
pages 17–24, 2003.

[56] G. Didier, T. Schmidt, J. Stoye, and D. Tsur. Character sets of strings. Journal
of Discrete Algorithms, 5(2):330–340, 2007.

[57] J.-E. Duchesne, M. Giraud, and N. El-Mabrouk. Seed-based exclusion method
for non-coding RNA gene search. In COCOON, volume 4598 of LNCS, pages
27–39, Banff, Canada, 2007. Springer.

[58] R.M. Durbin, D.L. Altshuler, G.R. Abecasis, D.R. Bentley, A. Chakravarti,
A.G. Clark, F.S. Collins, F.M. De La Vega, P. Donnelly, M. Egholm, et al.
A map of human genome variation from population-scale sequencing. Nature,
467(7319):1061–1073, 2010.

[59] R.C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic acids research, 32(5):1792, 2004.

[60] E.E. Eichler and D. Sankoff. Structural dynamics of eukaryotic chromosome
evolution. Science, 301(5634):793, 2003.

[61] T.H. Eickbush and A.V. Furano. Fruit flies and humans respond differently to
retrotransposons. Current opinion in genetics & development, 12(6):669–674,
2002.

[62] T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone
dualization: A brief survey. Discrete Applied Mathematics, 156(11):2035–2049,
2008.

134 CHAPTER 0. BIBLIOGRAPHY

[63] K. Engel. Sperner theory. Cambridge University Press, New York, NY, USA,
1997.

[64] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic pro-
gramming I: Linear cost functions. Journal of the ACM (JACM), 39(3):519–
545, 1992.

[65] R. Eres, G.M. Landau, and L. Parida. A combinatorial approach to automatic
discovery of cluster-patterns. In WABI, volume 2812 of LNCS, pages 139–150,
Budapest, Hungary, 2003. Springer.

[66] E. Eskin. From profiles to patterns and back again: a branch and bound al-
gorithm for finding near optimal motif profiles. In RECOMB ’04: Proceedings
of the eighth annual international conference on Resaerch in computational
molecular biology, pages 115–124, New York, NY, USA, 2004. ACM.

[67] N.V. Fedoroff. Transposable elements as a molecular evolutionary force. An-
nals of the New York Academy of Sciences, 870(MOLECULAR STRATEGIES
IN BIOLOGICAL EVOLUTION):251–264, 1999.

[68] S. Feng and E. Tillier. A fast and flexible approach to oligonucleotide probe
design for genomes and gene families. Bioinformatics, 23(10):1195–1202, 2007.

[69] P. Ferragina and G. Manzini. Indexing compressed text. Journal of the ACM
(JACM), 52(4):552–581, 2005.

[70] D.J. Finnegan. Eukaryotic transposable elements and genome evolution.
Trends in Genetics, 5:103–107, 1989.

[71] G. Franceschini. Proximity mergesort: Optimal in-place sorting in the cache-
oblivious model. In Proceedings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 291–299. Society for Industrial and Applied
Mathematics, 2004.

[72] M.L. Fredman and L. Khachiyan. On the complexity of dualization of mono-
tone disjunctive normal forms. J. Algorithms, 21(3):618–628, 1996.

[73] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Annual Symposium on Foundations of Computer Science
(FOCS), pages 285–297, New York, NY, USA, 1999.

[74] D.R. Fulkerson and D.A. Gross. Incidence matrices and interval graphs. Pacific
J. Math, 15(3):835–855, 1965.

[75] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman
and Co., New York, 1979.

0.0. BIBLIOGRAPHY 135

[76] S.P. Ghosh. File organization: the consecutive retrieval property. Commun.
ACM, 15(9):802–808, 1972.

[77] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix
trees. Algorithm Engineering, pages 30–42, 1999.

[78] M. Giulia, G. Battaglia, N. Pisanti, R. Grossi, and R. Marangoni. Towards
mobilome inference in yeast genomes. Poster at the seventh annual meeting
of the Bioinformatics Italian Society (BITS’10), 2010.

[79] M. Giulia, G. Battaglia, N. Pisanti, R. Grossi, and R. Marangoni. Inferring
mobile elements in s. cerevisiae strains. In International Conference on Bioin-
formatics Models, Methods and Algorithms (BIOINFORMATICS’11), pages
131–136, Rome, Italy, 2011. SciTePress.

[80] P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal
vector computation. VLDB Journal: Very Large Data Bases, 16(1):5–28,
October 2006.

[81] B. Goethals. Survey on frequent pattern mining. Manuscript, pages 1–43,
2003.

[82] L. Goodstadt and C.P. Ponting. Phylogenetic reconstruction of orthology,
paralogy, and conserved synteny for dog and human. PLoS Computational
Biology, 2(9):e133, 2006.

[83] O. Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162(3):705–708, 1982.

[84] T.R. Gregory. The Evolution of the Genome. Academic Press, December 2004.

[85] R. Grossi and J.S. Vitter. Compressed Suffix Arrays and Suffix Trees with
Applications to Text Indexing and String Matching. SIAM Journal on Com-
puting, 35:378, 2005.

[86] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. Sewak
Sharma. Discovering all most specific sentences. ACM Trans. Database Syst.,
28(2):140–174, 2003.

[87] D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen. Data mining, hy-
pergraph transversals, and machine learning (extended abstract). In PODS
’97: Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 209–216, New York, NY, USA,
1997. ACM.

[88] D. Gusfield. Algorithms on strings, trees, and sequences: computer science
and computational biology. Cambridge University Press, 1997.

136 CHAPTER 0. BIBLIOGRAPHY

[89] S. Haddadi and Z. Layouni. Consecutive block minimization is 1.5-
approximable. Inf. Process. Lett., 108(3):132–135, 2008.

[90] A. Halpern, D. Huson, and K. Reinert. Segment match refinement and appli-
cations. Algorithms in Bioinformatics, pages 126–139, 2002.

[91] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

[92] X. He and M.H. Goldwasser. Identifying conserved gene clusters in the pres-
ence of homology families. Journal of Computational Biology, 12(6):638–656,
2005.

[93] S. Heber and J. Stoye. Finding all common intervals of k permutations. In
CPM, volume 2089 of Lecture Notes in Computer Science, pages 207–218,
Jerusalem, Israel, 2001. Springer.

[94] D.A. Hickey. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics,
101(3-4):519, 1982.

[95] D.S. Hirschberg. A linear space algorithm for computing maximal common
subsequences. Commun. ACM, 18(6):341–343, 1975.

[96] R. Hoberman and D. Durand. The incompatible desiderata of gene cluster
properties. Comparative Genomics, pages 73–87, 2005.

[97] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment.
In ISMB, pages 312–320, 2002.

[98] R. Homann, D. Fleer, R. Giegerich, and M. Rehmsmeier. mkESA: enhanced
suffix array construction tool. Bioinformatics, 25(8):1084, 2009.

[99] W.L. Hsu. PC-trees vs. PQ-trees. In COCOON, volume 2108 of Lecture Notes
in Computer Science, pages 207–217, Guilin, China, 2001. Springer.

[100] L. Ilie and S. Ilie. Fast computation of good multiple spaced seeds. In WABI,
volume 4645 of LNBI, pages 346–358, Philadelphia, PA, USA, 2007. Springer.

[101] G. Jacobson and K.P. Vo. Heaviest increasing/common subsequence problems.
In Combinatorial Pattern Matching, pages 52–66. Springer, 1992.

[102] D. Joseph, J. Meidanis, and P. Tiwari. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. Algorithm
TheorySWAT’92, pages 326–337, 1992.

[103] K.J. Kalafus, A.R. Jackson, and A. Milosavljevic. Pash: Efficient genome-
scale sequence anchoring by positional hashing. Genome research, 14(4):672,
2004.

0.0. BIBLIOGRAPHY 137

[104] V.V. Kapitonov and J. Jurka. A universal classification of eukaryotic transpos-
able elements implemented in Repbase. Nature Reviews Genetics, 9(5):411–
412, 2008.

[105] R.M. Karp, R.E. Miller, and A.L. Rosenberg. Rapid identification of repeated
patterns in strings, trees and arrays. In STOC, pages 125–136, Denver, Col-
orado, USA, 1972. ACM.

[106] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Combi-
natorial Pattern Matching, pages 181–192. Springer, 2001.

[107] K. Katoh, K. Kuma, H. Toh, and T. Miyata. MAFFT version 5: improvement
in accuracy of multiple sequence alignment. Nucleic acids research, 33(2):511,
2005.

[108] D.J. Kavvadias and E.C. Stavropoulos. An efficient algorithm for the transver-
sal hypergraph generation. J. Graph Algorithms and Applications, 9(2):239–
264, 2005.

[109] H.H. Kazazian et al. Mobile elements and disease. Current opinion in genetics
& development, 8(3):343–350, 1998.

[110] U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search.
Discr. Appl. Math., 138(3):253–263, 2004.

[111] W.J. Kent. BLAT the BLAST-like alignment tool. Genome research,
12(4):656, 2002.

[112] W.J. Kent and A.M. Zahler. Conservation, regulation, synteny, and introns
in a large-scale C. briggsae–C. elegans genomic alignment. Genome research,
10(8):1115, 2000.

[113] L. Khachiyan, E. Boros, K. Elbassioni, and V. Gurvich. An efficient implemen-
tation of a quasi-polynomial algorithm for generating hypergraph transversals
and its application in joint generation. Discr. Appl. Math., 154(16):2350–2372,
2006.

[114] J.M. Kim, S. Vanguri, J.D. Boeke, A. Gabriel, and D.F. Voytas. Transpos-
able elements and genome organization: a comprehensive survey of retrotrans-
posons revealed by the complete Saccharomyces cerevisiae genome sequence.
Genome research, 8(5):464, 1998.

[115] D.E. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison Wesley, 2nd edition, 1997.

138 CHAPTER 0. BIBLIOGRAPHY

[116] R. Kolpakov and M. Raffinot. New algorithms for text fingerprinting. In
Combinatorial Pattern Matching, pages 342–353. Springer, 2006.

[117] L.T. Kou. Polynomial complete consecutive information retrieval problems.
SIAM J. Comput., 6(1):67–75, 1977.

[118] G. Kucherov, L. Noé, and M. A. Roytberg. Subset seed automaton. In CIAA,
volume 4783 of LNCS, pages 180–191, Praque, Czech Republic, 2007. Springer.

[119] G. Kucherov, L. Noé, and M.A. Roytberg. Multiseed lossless filtration.
IEEE/ACM Trans. Comput. Biology Bioinform., 2(1):51–61, 2005.

[120] G. Kucherov, L. Noé, and M.A. Roytberg. A unifying framework for seed
sensitivity and its application to subset seeds. J. Bioinform. and Comput.
Biology, 4(2):553–570, 2006.

[121] C. Kuratowski. Sur les problèmes des courbes gauches en Topologie. Fund.
Math., 15:271–283, 1930.

[122] G.M. Landau, L. Parida, and O. Weimann. Gene proximity analysis across
whole genomes via PQ trees. Journal of Computational Biology, 12(10):1289–
1306, 2005.

[123] E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin,
K. Devon, K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001.

[124] M. A. Larkin, G. Blackshields, NP Brown, R. Chenna, PA McGettigan,
H. McWilliam, F. Valentin, IM Wallace, A. Wilm, R. Lopez, et al. Clustal W
and Clustal X version 2.0. Bioinformatics, 23(21):2947, 2007.

[125] T. Lassmann and E.L.L. Sonnhammer. Kalign – an accurate and fast multiple
sequence alignment algorithm. BMC bioinformatics, 6(1):298, 2005.

[126] E.L. Lawler. Combinatorial optimization: networks and matroids. Dover
Pubns, 2001.

[127] M.Y. Leung, B.E. Blaisdell, C. Burge, and S. Karlin. An efficient algorithm for
identifying matches with errors in multiple long molecular sequences. Journal
of Molecular Biology, 221(4):1367–1378, 1991.

[128] B. Lewin. Genes (IX ed.). Jones and Bartlett, 2007.

[129] M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter ii: Highly sensitive and
fast homology search. J. Bioinformatics and Computational Biology, 2(3):417–
440, 2004.

0.0. BIBLIOGRAPHY 139

[130] G. Liti, D.M. Carter, A.M. Moses, J. Warringer, L. Parts, S.A. James, R.P.
Davey, I.N. Roberts, A. Burt, V. Koufopanou, et al. Population genomics of
domestic and wild yeasts. Nature, 458(7236):337–341, 2009.

[131] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive ho-
mology search. Bioinformatics, 18(3):440, 2002.

[132] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and Retrieval
of Highly Repetitive Sequence Collections. Journal of Computational Biology,
17(3):281–308, 2010.

[133] U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. In Proceedings of the first annual ACM-SIAM symposium on Discrete
algorithms, pages 319–327. Society for Industrial and Applied Mathematics,
1990.

[134] E.M. Marcotte, M. Pellegrini, H.L. Ng, D.W. Rice, T.O. Yeates, and D. Eisen-
berg. Detecting protein function and protein-protein interactions from genome
sequences. Science, 285(5428):751, 1999.

[135] E.R. Mardis. The impact of next-generation sequencing technology on genet-
ics. Trends in Genetics, 24(3):133–141, 2008.

[136] B. McClintock. The origin and behavior of mutable loci in maize. Proceed-
ings of the National Academy of Sciences of the United States of America,
36(6):344, 1950.

[137] B. McClintock. Controlling elements and the gene. In Cold Spring Harbor
symposia on quantitative biology, volume 21, page 197. Cold Spring Harbor
Laboratory Press, 1956.

[138] J. Meidanis, O. Porto, and G.P. Telles. On the consecutive ones property.
Discrete Applied Mathematics, 88(1-3):325–354, 1998.

[139] M. Michael, F. Nicolas, and E. Ukkonen. On the complexity of finding gapped
motifs. CoRR, abs/0802.0314, 2008.

[140] P.A. Mieczkowski, F.J. Lemoine, and T.D. Petes. Recombination between
retrotransposons as a source of chromosome rearrangements in the yeast Sac-
charomyces cerevisiae. DNA repair, 5(9-10):1010–1020, 2006.

[141] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment ap-
proach to multiple sequence alignment. Bioinformatics, 15(3):211, 1999.

[142] B. Morgenstern. A space-efficient algorithm for aligning large genomic se-
quences. Bioinformatics, 16(10):948, 2000.

140 CHAPTER 0. BIBLIOGRAPHY

[143] E.W. Myers and W. Miller. Optimal alignments in linear space. Computer
Applications in the Biosciences, 4(1):11–17, 1988.

[144] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys (CSUR), 39(1):2, 2007.

[145] G. Navarro and M. Raffinot. Flexible pattern matching in strings. Cambridge
University Press Cambridge;, 2007.

[146] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino-acid sequence of two proteins. Journal of
Molecular Biology, 48(3):443453, 1970.

[147] Z. Ning, A.J. Cox, and J.C. Mullikin. SSAHA: a fast search method for large
DNA databases. Genome research, 11(10):1725, 2001.

[148] C. Notredame, D.G. Higgins, and J. Heringa. T-coffee: a novel method for
fast and accurate multiple sequence alignment1. Journal of molecular biology,
302(1):205–217, 2000.

[149] E. Ohlebusch and M.I. Abouelhoda. Chaining algorithms and applications in
comparative genomics. Handbook of Computational Molecular Biology, 2006.

[150] S. Ohno. Evolution by gene duplication (1970) New York.

[151] K.R. Oliver and W.K. Greene. Transposable elements: powerful facilitators
of evolution. Bioessays, 31(7):703–714, 2009.

[152] L.E. Orgel and FHC Crick. Selfish DNA: the ultimate parasite. Nature,
284(5757):604–607, 1980.

[153] C.M. Papadimitriou. Computational complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

[154] L. Parida. Pattern Discovery in Bioinformatics / Theory & Algorithms. Taylor
& Francis; Chapman & Hall, September 2007.

[155] L. Parida. Statistical significance of large gene clusters. Journal of Computa-
tional Biology, 14(9):1145–1159, 2007.

[156] L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao. Pattern dis-
covery on character sets and real-valued data: linear bound on irredundant
motifs and an efficient polynomial time algorithm. In SODA ’00: Proceedings
of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pages
297–308, Philadelphia, PA, USA, 2000. Society for Industrial and Applied
Mathematics.

0.0. BIBLIOGRAPHY 141

[157] S. Pasek, A. Bergeron, J.L. Risler, A. Louis, E. Ollivier, and M. Raffinot.
Identification of genomic features using microsyntenies of domains: domain
teams. Genome research, 15(6):867, 2005.

[158] A.E. Peaston, A.V. Evsikov, J.H. Graber, W.N. de Vries, A.E. Holbrook,
D. Solter, and B.B. Knowles. Retrotransposons regulate host genes in mouse
oocytes and preimplantation embryos. Developmental Cell, 7(4):597–606,
2004.

[159] N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. Bases of motifs for
generating repeated patterns with wild cards. IEEE/ACM Trans. Comput.
Biology Bioinform., 2(1):40–50, 2005.

[160] K. Popendorf, H. Tsuyoshi, Y. Osana, Y. Sakakibara, and D.P. Martin.
Murasaki: A Fast, Parallelizable Algorithm to Find Anchors from Multiple
Genomes. PLoS ONE, 5(9):195–197, 2010.

[161] F.P. Preparata and M.I. Shamos. Computational geometry: an introduction.
Springer, 1985.

[162] M.N. Price, A.P. Arkin, and E.J. Alm. The life-cycle of operons. PLoS Genet,
2(6):e96, 2006.

[163] P. Rice, I. Longden, and A. Bleasby. EMBOSS: The European Molecular
Biology Open Software Suite. Trends in Genetics, 16(6):276–277, June 2000.

[164] D. Sankoff. Genome rearrangement with gene families. Bioinformatics,
15(11):909, 1999.

[165] D. Sankoff. Rearrangements and chromosomal evolution. Current opinion in
genetics & development, 13(6):583–587, 2003.

[166] T. Schmidt and J. Stoye. Quadratic time algorithms for finding common
intervals in two and more sequences. In Combinatorial Pattern Matching,
pages 347–358. Springer, 2004.

[167] S. Schwartz, L. Elnitski, M. Li, M. Weirauch, C. Riemer, A. Smit, et al.
MultiPipMaker and supporting tools: Alignments and analysis of multiple
genomic DNA sequences. Nucleic Acids Research, 31(13):3518, 2003.

[168] S. Schwartz, W.J. Kent, A. Smit, Z. Zhang, R. Baertsch, R.C. Hardi-
son, D. Haussler, and W. Miller. Human–mouse alignments with BLASTZ.
Genome Research, 13(1):103, 2003.

[169] S. Schwartz, Z. Zhang, K.A. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs,
R. Hardison, and W. Miller. PipMaker a web server for aligning two genomic
DNA sequences. Genome Research, 10(4):577, 2000.

142 CHAPTER 0. BIBLIOGRAPHY

[170] SGD. SGD project. Saccharomyces Genome Database, 2010.
http://www.yeastgenome.org.

[171] X. She, G. Liu, M. Ventura, S. Zhao, D. Misceo, R. Roberto, M.F. Cardone,
M. Rocchi, E.D. Green, N. Archidiacano, et al. A preliminary comparative
analysis of primate segmental duplications shows elevated substitution rates
and a great-ape expansion of intrachromosomal duplications. Genome re-
search, 16(5):576, 2006.

[172] J. Shendure and H. Ji. Next-generation DNA sequencing. Nature biotechnol-
ogy, 26(10):1135–1145, 2008.

[173] A.C.C. Shih and W.H. Li. GS-Aligner: a novel tool for aligning genomic se-
quences using bit-level operations. Molecular biology and evolution, 20(8):1299,
2003.

[174] W.K. Shih and W.L. Hsu. A new planarity test. Theor. Comput. Sci., 223(1-
2):179–191, 1999.

[175] R.G. Snell, J.C. MacMillan, J.P. Cheadle, I. Fenton, L.P. Lazarou, P. Davies,
M.E. MacDonald, J.F. Gusella, P.S. Harper, and D.J. Shaw. Relationship be-
tween trinucleotide repeat expansion and phenotypic variation in huntington’s
disease. Nature genetics, 4(4):393–397, 1993.

[176] Y. Sun and J. Buhler. Designing multiple simultaneous seeds for dna similarity
search. J. Comput. Biology, 12(6):847–861, 2005.

[177] Y. Sun and J. Buhler. Designing patterns for profile hmm search. Bioinfor-
matics, 23(2):42–43, 2007.

[178] R.J. Taft and J.S. Mattick. Increasing biological complexity is positively cor-
related with the relative genome-wide expansion of non-protein-coding DNA
sequences. Genome Biology, 4:P1, 2003.

[179] J. Tamames et al. Evolution of gene order conservation in prokaryotes. Genome
Biology, 2(6):1–0020, 2001.

[180] E. Ukkonen. Structural analysis of gapped motifs of a string. In MFCS,
volume 4708 of LNCS, pages 681–690, Ceský Krumlov, Czech Republic, 2007.
Springer.

[181] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals
of two permutations. Algorithmica, 26(2):290–309, 2000.

[182] L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189–201, April 1979.

0.0. BIBLIOGRAPHY 143

[183] J.S. Varre, J.P. Delahaye, and E. Rivals. Transformation distances: a family
of dissimilarity measures based on movements of segments. Bioinformatics,
15(3):194, 1999.

[184] J.S. Vitter. Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science, 2(4):305–474, 2008.

[185] J. Vuillemin. A data structure for manipulating priority queues. CACM,
21(4):309–315, 1978.

[186] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th
Annual Symposium on Switching and Automata Theory (swat 1973)-Volume
00, pages 1–11. IEEE Computer Society, 1973.

[187] T. Wicker, F. Sabot, A. Hua-Van, J.L. Bennetzen, P. Capy, B. Chalhoub,
A. Flavell, P. Leroy, M. Morgante, O. Panaud, et al. A unified classifica-
tion system for eukaryotic transposable elements. Nature Reviews Genetics,
8(12):973–982, 2007.

[188] W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid and
protein data banks. Proceedings of the National Academy of Sciences of the
United States of America, 80(3):726, 1983.

[189] D.B. Wilson and D.S. Hogness. The enzymes of the galactose operon in Es-
cherichia coli. Journal of Biological Chemistry, 239(8):2469, 1964.

[190] C. Yanofsky, T. Platt, IP Crawford, BP Nichols, GE Christie, H. Horowitz,
M. VanCleemput, and AM Wu. The complete nucleotide sequence of the
tryptophan operon of Escherichia coli. Nucleic Acids Research, 9(24):6647,
1981.

	Introduction
	Structure of the Genome
	Introduction to the Genome Structure
	Genes: the Units of Heredity
	Gene Distribution in the Genome
	Intergenic Regions and Repeats

	Mask Motif Discovery
	Introduction
	Related Problems and State of the Art
	A New Class of Motifs
	Masks and patterns
	Partial order of masks and maximality
	Maximal Masks Problem (MMP)

	The KMR Approach for Masks with Quorum
	Partition construction and generation of masks
	Equivalent masks
	Algorithm KMR for masks

	Adaptive KMR for Maximal Masks
	Lattice traversal
	Implementation
	Safe masks
	More efficient implementation
	Complexity

	Conclusions and Future Work

	-pattern Discovery
	Introduction to -patterns
	Gene clusters in permutations
	Gene clusters in strings with multiplicities

	Fixed Length -patterns
	Preliminary definitions
	Ranking -patterns : the idea
	Two phase approach for ranked -pattern discovery

	-pattern Discovery: First Phase
	-pattern discovery by binary tagging tree
	-pattern discovery by levelwise binary tagging tree

	Ranking -patterns with No Repeated Symbols
	Ranking -patterns with Repeated Symbols
	Introduction to C1P
	Testing the C1P: related work
	Definitions and terminology
	Hardness results for #FRONT
	Hardness results for #FMO

	Conclusions and Future Work

	Mobilomics in S. cerevisiæ
	Transposons in Yeast Genomes
	Dataset Statistics
	The Limitations of the Pattern Search Approach
	Transposons Detection by Global Pairwise Alignment
	Anchor-Based Alignment
	Fragment generation
	Anchor selection

	Regender
	Preliminary data analysis
	Two phases approach
	Algorithm and implementation

	Experimental Results
	Regender performance
	Regender output quality
	Transposons and mobile segments

	Conclusions and Future Work

	Conclusions
	Bibliography

