
Università di Pisa
Facoltà di Ingegneria

Corso di Laurea Specialistica in
Ingegneria Informatica

Inner-Eye:
Appearance-based Detection

of Computer Scams

Tesi di Laurea di
Jacopo Corbetta

Relatori:
Prof. Beatrice Lazzerini
Prof. Giovanni Frosini
Prof. Giovanni Vigna
Prof. Christopher Kruegel

Sessione 19 Dicembre 2011

Abstract

Readily-available Internet access has become a defining trait of the
present years. As more and more inexperienced users gain computer
and Internet access, malware writers, criminals and fraudsters are
attempting to annoy or take advantage of them in various ways.

In the past decades, increasingly sophisticated methods have been
invented to stealthily gain access to computer systems and equally
complex tools have been developed to combat them. In recent years,
a new trend has emerged. Instead of using complex penetration tech-
niques, fraudsters can simply exploit the naivety of users to trick
them into installing malware, disclosing their personal data, paying
for services of dubious or inexistent utility, etcetera. Relatively simple
techniques, when applied on a large scale, have the potential to yield
significant revenue without requiring technological sophistication.

Ironically, modern antiviruses and security systems are often caught
unprepared by these simple confidence tricks and are unable to de-
tect them. Their sophisticated heuristics can detect complex exploi-
tation attempts, but are powerless against code that simply presents
messages to the user.

Techniques employed by computer scammers and some common
frauds will be presented and analyzed in this work to define and clarify
the problem and its significance. A survey of possible approaches to
automate the detection these threats will be presented. In particular, I
will explore the use of imaging and text-matching techniques to detect
typical computer scams such as pharmacy and rogue antivirus frauds.

The prototypical Inner-Eye system implements the chosen approa-
ch in a scalable and efficient manner through the use of virtualiza-
tion. Inner-Eye is able to perform complex analyses on a large vo-
lume of possibly malicious websites and executables. Through the
use of Optical Character Recognition and an instrumented web brow-
ser, pharmacy scams can be detected by an SVM classifier with high
reliability.

iii

Sommario

Negli ultimi anni, la sempre più ampia disponibilità dell’accesso
a Internet ha portato molti nuovi utenti a contatto con questa nuova
realtà. Per criminali e truffatori, l’inesperienza di chi per la prima vol-
ta si affaccia al mondo on-line è un’opportunità da sfruttare a proprio
vantaggio.

Per molto tempo, il crimine informatico si è basato sulla ricerca
di metodi sempre più complessi e raffinati per ottenere accesso non
autorizzato ai sistemi di elaborazione; per combattere questa tenden-
za, la ricerca sulla sicurezza informatica si è indirizzata sullo sviluppo
di sistemi altrettanto sofisticati. Recentemente, tuttavia, è emersa
una tendenza completamente nuova. Anziché sfruttare complesse vul-
nerabilità nel software, è possibile semplicemente convincere persone
inesperte a volontariamente fornire i propri dati personali, installare
malware, pagare per ricevere servizi di dubbia utilità, eccetera. Anche
tecniche molto semplici, se applicate su larga scala, possono fornire un
profitto notevole.

Paradossalmente, sono proprio le frodi più semplici a trovare im-
preparati i moderni antivirus e sistemi di sicurezza. Le raffinate eu-
ristiche che impiegano, infatti, sono in grado di rilevare attacchi tec-
nologicamente molto sofisticati ma sono impotenti contro codice che
non fa altro che presentare messaggi all’utente.

In questo lavoro, viene innanzitutto presentato uno studio delle
tecniche usate da truffatori e ciarlatani informatici per raggiungere le
loro vittime e ottenere profitto. Sono poi proposti alcuni metodi per
proteggere gli utenti tramite il rilevamento automatico di queste frodi.
In particolare, verrà esplorato l’uso di tecniche basate sull’elaborazione
di immagini e testo per affrontare il riconoscimento di due tipi di frode
molto comuni: la vendita illegale di farmaci e i finti antivirus.

L’approccio scelto è stato implementato in modo scalabile per co-
struire un sistema di analisi, Inner-Eye. Questo prototipo sfrutta
tecniche di virtualizzazione per analizzare pagine web o eseguibili (an-
che maligni) in modo sicuro ed efficiente, sfruttando un motore di
riconoscimento ottico dei caratteri (OCR), un browser appositamente
modificato e un classificatore basato su una Support Vector Machine.
Inner-Eye è stato testato sul riconoscimento delle frodi farmaceutiche
e ha confermato la propria affidabilità.

iv

Contents

1 Introduction and motivations 1
1.1 Extremes meet: crime and simplicity 5

1.1.1 Spamming . 5
1.1.2 Scams . 6
1.1.3 Scareware . 8

1.2 How to protect users . 11

2 Malware and computer scams 13
2.1 Propagation methods . 14

2.1.1 Spam . 14
2.1.1.1 Collecting spam messages 19

2.1.2 Browser and OS vulnerabilities 20
2.1.3 Search engine result poisoning 21
2.1.4 Malvertisement . 22

2.2 Payloads . 23
2.2.1 Fake antivirus programs 27
2.2.2 Other scareware frauds 34
2.2.3 Common scams and frauds 34

3 Detecting frauds 39
3.1 Network-based detection . 40

3.1.1 Exploiting previously known information 40
3.1.2 Network properties . 42

3.2 Visual similarity . 43
3.3 Image analysis . 43
3.4 Sensitive image elements . 44
3.5 Text-based detection . 45
3.6 Sensitive words . 46

3.6.1 Possible evasion techniques 46
3.6.2 Choosing the words . 48

v

vi CONTENTS

4 The Inner-Eye system 51
4.1 Overview . 51
4.2 Automated submission and training 53

4.2.1 The benign dataset . 54
4.2.1.1 Alexa topsites 54

4.2.2 The spam dataset . 55
4.2.3 The Wepawet dataset 56

4.3 The capture system . 59
4.3.1 Capturing webpages 60

4.3.1.1 Robust handling of character data 63
4.3.2 Capturing Windows executables 65

4.3.2.1 Simulating user interaction 66
4.4 Processing phase . 69

4.4.1 Optical Character Recognition 69
4.4.1.1 Mitigating OCR errors 70

4.4.2 Features . 71
4.4.2.1 Extracting words 71

4.4.3 Detecting obfuscation 72
4.4.4 Classification . 75

4.4.4.1 Support Vector Machines 77

5 Building a scalable system 81
5.1 Latency . 82
5.2 Parallelism . 82
5.3 Virtualization . 83
5.4 Exploiting virtualization . 84
5.5 Scalability . 86
5.6 Cloud-based workers . 86

6 Conclusions 89
6.1 Future work . 90

6.1.1 Detecting fake AV webpages 90
6.1.2 Detecting fake AV binaries 90
6.1.3 Detecting graphical elements 91
6.1.4 Improvements to the current heuristic 91
6.1.5 Other improvements 92

Bibliography 93

List of Figures

1.1 Malware propagation methods as observed by Microsoft 2
1.2 A black market rogue av campaign website 4
1.3 A black market pharmacy campaign website 4
1.4 Percentage of e-mail messages detected as spam by Microsoft

Forefront . 6
1.5 Spam e-mail example . 7
1.6 Example of a website that purports to sell prescription drugs . 9
1.7 Example of rogue antivirus software 10

2.1 Software threat categories according to Microsoft 14
2.2 Cost of offer placement for common advertisement approaches 15
2.3 Type of spam e-mails blocked by Microsoft products over time 16
2.4 E-mail selling e-mail addresses 19
2.5 Email spam types as detected by Microsoft products 26
2.6 Installation procedure for the Braviax rogue AV family 27
2.7 A rogue antivirus webpage . 28
2.8 An original fake antivirus interface 29
2.9 Messages shown in the system tray by Braviax Fake AVs . . . 29
2.10 Result window shown by Braviax Fake AVs 29
2.11 Comparison of the interfaces shown by the TotalProtect fake

AV upon installation and after registration. 30
2.12 Alternate versions of Zentom System Guard 31
2.13 Dropper page using a fake codec error message. 32
2.14 Source code for the fake codec dropper page 32
2.15 Interface shown by the fake codec binary 33
2.16 FakeHDD and Tritax Privacy Center scareware windows . . . 35
2.17 Website selling counterfeit goods 38

3.1 Message displayed by Firefox for blacklisted sites 41
3.2 Graphical elements common to many rogue antiviruses. 44
3.3 Sensitive word list . 49

vii

viii LIST OF FIGURES

3.4 Discarded automatically constructed word list 50

4.1 Appearance of the Alexa toolbar 55
4.2 URL obfuscation example in spam messages 56
4.3 The publicly accessible Wepawet submission point. 58
4.4 Webdriver capture example 61
4.5 Unicode encoding examples 64
4.6 Interaction with a fake antivirus setup 68
4.7 Exact word occurrences . 73
4.8 N-gram occurrences . 74
4.9 Feature categories . 76
4.10 Sparse representation of a sample 77
4.11 Grid search for the SVM parameters 79
4.12 Classifier accuracy . 80

Chapter 1

Introduction and motivations

At the beginning of its history, automatic computing was a kind of arcane
wizardry performed in secluded research laboratories. Over the years, com-
puters have found their way into universities, factories and eventually even
private homes.

In the present decade, computing has reached an astonishing degree of
pervasiveness; it can be said without hyperbole that virtually all working
people in the developed world have access to computing equipment (PCs,
laptops, smartphones, embedded devices, etc.). The Internet has provided a
medium for interconnecting all these devices, creating a global network that
spans through countless language, knowledge and cultural barriers.

In a similar fashion, malicious software (often shortened to malware)
has constantly been evolving. While the first viruses could be likened to
electronic vandalism, malware writers have since engaged security researchers
in an increasingly sophisticated arms race.

Originally, most computer users were knowledgeable individuals, often
programmers themselves. Therefore, significant efforts were made by virus
authors to ensure that their creations would remain undetected. New and
complicated ways were discovered to infect computers by exploiting Operat-
ing System and application bugs and weaknesses.

In the late nineties, a different approach became popular. Instead of at-
tempting to remain invisible and gain privileges exclusively through software

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

vulnerabilities, malware like Melissa actively tried to get the users’ attention
and enlist their help against their own systems; tricking the victim into run-
ning a malicious attachment to an email message was a popular technique.
As the number of inexperienced users with Internet connections rose, this
approach became increasingly powerful and successful, leading to very large
scale infections and substantial economic damage. Presently, misguided user
interaction is by far the leading vector for malware propagation.

Figure 1.1: Malware propagation methods as observed by Microsoft in the first
quarter of 2011. Notice how intentional user action accounts for about 45% of
the infections; user negligence (e.g. unknowingly spreading malware via USB keys,
neglecting to update their systems, etc.) contributes another 30%. Microsoft re-
ports that previously unseen (zero-day) exploits accounted for less than 1% of the
infections and that none of the top malware families relied on them. [1]

The objectives of malware writers have also changed significantly. Ini-
tially, many of the people researching vulnerabilities and writing exploits were
motivated by the desire to master complex techniques and achieve recognition
by finding novel and original exploit avenues. People sought the thrill and
intellectual challenge involved in overcoming protections and understanding
a complex and powerful system, more than the ability to cause damage.

This attitude was especially prevalent among the so-called phone phreaks,
arguably the grandfathers of computer hackers. Some of them would even
put themselves at risk and contact AT&T to notify the company of problems

3

they had discovered while exploring the phone network. Understandably, not
everybody had the same forma mentis.

Criminals noticed that computer crime offered the opportunity to gener-
ate revenue through what at the time was essentially a “clean” and untrace-
able channel. In the present day, large numbers of infected computers (so
called botnets) are used to conduct lucrative spam and extortion campaigns.

Intermediates have also appeared to facilitate computer crime and ex-
ploitation: user traffic, exploit techniques, botnet access, “bulletproof” host-
ing1 and other illegal services can all be bought and sold on a very active
black market.

See Figures 1.3 and 1.2 on the following page for an example of the
level of sophistication reached by fraud campaigns. The people who run the
campaign provide their affiliates with the tools to monetize page views: rogue
antivirus software in the first figure (see Section 1.1.3), prescription drugs
sales infrastructure in the second one (see Section 1.1.2). Through various
techniques, the affiliates will drive user traffic to the content provided by the
campaign masters and will receive a share of the profits made. At any time,
affiliates can check their current account balance, request technical support
through instant messaging, monitor their progress over time, etcetera.

1Hosting services specifically designed to host malware or illegal services. Their owners
purport to be able to resist law enforcement demands to remove the content or identify
the authors.

4 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Figure 1.2: Affiliate control panel for a rogue antivirus software campaign
(BestAV). [34]

Figure 1.3: Home page and advertisement for affiliates for a pharmacy campaign.
To give an appearance of legitimacy to the website, standard-looking “About us”,
“Contact” and “Accettable use policy” pages are provided. [34]

1.1. EXTREMES MEET: CRIME AND SIMPLICITY 5

1.1 Extremes meet: crime and simplicity
Over the last few years, an interesting development has been observed, in
many ways a natural consequence of the trends we discussed in the previous
paragraphs. With billions of unsuspecting users potentially available for
exploitation, the simplest approaches are often adequate to secure revenue.

Criminals and fraudsters have little interest for the novelty of a technique
or for the level of sophistication needed to carry it out; relatively simple
methods such as spamvertising (advertising products, often counterfeit, using
spam) or harvesting credit card data through keyloggers are profitable enough
for them.

In the next few paragraphs we will introduce some of the techniques
employed by fraudsters and explain how they rely on user error to be effective
despite their simplicity.

1.1.1 Spamming

The best example of how simple techniques can net a profit to fraudsters has
actually been around for decades: e-mail spam. Spam e-mail messages are a
very cheap way to contact millions of unsuspecting users. Of course most of
the intended recipients will not interact with the content (some will recognize
the message as untrustworthy, for example, and many won’t even see the
message because of automated spam filtering), but sending the messages is
so cheap that even a small percentage of responses will allow the campaign
to break even.

As we have seen, the sheer number of reached users can be the decisive
factor for the success of a campaign. Increasing the number of e-mails sent
is the easiest solution to this problem and to this day the majority of e-mail
messages carried over the Internet is spam (Figure 1.4).

Of course the general technique is not limited to e-mail messages. Ev-
ery communication medium where a low-cost action allows reaching a good
number of users will find itself targeted by spammers.

Indeed, e-mail spam might actually be considered inefficient in this re-
spect because each recipient has to be listed explicitly: a single modification

6 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Figure 1.4: Percentage of e-mail messages blocked by Microsoft’s antispam solu-
tion for corporate Microsoft Exchange installations (Forefront Online Protection
for Exchange). The decline in blocked messages is due to recent takedowns against
two major botnets (namely Cutwail and Rustock). [1]

to a publicly accessible web page can allow the spammer to reach thousands
of users. User-editable pages like discussion forums, wikis and blog comments
are targeted by spammers for this reason.

1.1.2 Scams

In itself, spamming is just a technique used to reach people: for the campaign
to be profitable, at least a percentage of the messages sent has to generate
revenue.

A possible way to monetize spam is to use it to spread malware, e.g. key-
loggers. Data collected by the keylogger (credit card numbers, bank account
information, . . .) can in turn generate a profit. Chapter 2 will present other
examples of how spam can indirectly generate revenue, but there are also
more direct ways.

For example, spam messages can simply ask the user for money. Various
confidence tricks have been perfected over the years to lure the user into
giving money to the scammer, ranging from the promise of future revenue to
simple pleas for charitable donations.

Offering to sell goods to the user is another very popular way to monetize

1.1. EXTREMES MEET: CRIME AND SIMPLICITY 7

X-Envelope-From: <arlynelonnie@hofstra.edu>
Delivered-To: mhvhsvph@dauber.sonic.net
Delivered-To: reyesj@dauber.sonic.net
Delivered-To: izfxuoly@dauber.sonic.net
Delivered-To: ueqjlef0@dauber.sonic.net
Delivered-To: holtn@dauber.sonic.net
To: <holtn@dauber.sonic.net>
Subject: FREE bonus pills, FREE shipping on

orders over $200, wide range of packages.
Buy CIALIS Now!

From: "DianaLia" <arlynelonnie@hofstra.edu>

Buy CIALIS Now From $1.53 & Get 12 bonus pills FREE!
Purchase CIALIS from $1.53 per pill from any of the
listed reputable online pharmacies. FREE bonus pills,
FREE shipping on orders over $200,
wide range of packages ...
http://rxdrugsion.ru

Figure 1.5: Example of a spam e-mail message, including some of the message
headers. Notice the automatically generated sender and list of recipients. The
website advertised here is shown in Figure 1.6 on page 9.

spam. The spam message will simply contain advertisement and a link to a
legitimate-looking e-commerce website where the user can voluntarily shop
for goods at very low prices. The advertised merchandise often comprises
privacy-sensitive or not widely available articles such as prescription drugs.

Section 2.1.1 will present the phenomenon in detail, but it is worth men-
tioning that these scams do not fundamentally depend on computer tech-
nology. The spam message and the linked websites do not generally contain
malicious elements: the user naivety and confidence are being exploited, not
their computers.

8 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

1.1.3 Scareware

Another method employed by criminals is to create simple web pages and
programs that trick the users into believing their computer has a problem
(ironically, often a malware infection).

The user may be presented with windows designed to look like those of
a legitimate antivirus scanning the files on the victim’s PC. The scan results
window will list several security or reliability problems and will attempt to
convince the user that her data is in great danger. To further the effect,
the program may pop up fake alert dialogs every few minutes or, in more
sophisticated programs, prevent the user from starting any application until
action is taken.

The fraudsters then demand payment from the user to solve the (non-
existing) issue. This category of malware is generally referred to as scareware
and has proven to be extremely lucrative for criminals: it is estimated that
three large scareware campaigns have generated revenue for over $ 130 million
dollars. [35]

Once again, while many scareware families still rely on “traditional” ex-
ploits to infect the user machine, others avoid these altogether. As security
software gains more and more detection abilities, it may very well be the case
that successful malware will have to be essentially harmless and rely entirely
on psychology to generate revenue.

In Section 2.2.1 we will review in detail some of the common scareware
families, how they present themselves to the user and how fraudsters attempt
to monetize them.

1.1. EXTREMES MEET: CRIME AND SIMPLICITY 9

Figure 1.6: The website advertised by the spam message in figure 1.5 on page 7.
The site purports to sell drugs without requiring a prescription from a doctor.

10 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Figure 1.7: The scan dialog show to the user by the OpenCloud fake antivirus
scam.

1.2. HOW TO PROTECT USERS 11

1.2 How to protect users
As malware evolved into more and more complicated forms, antivirus and
security tools have followed suit by evolving the capability to detect sophisti-
cated attacks on system and application integrity. Today, antivirus products
include complex heuristics that detect unusual patterns of interaction with
the operating system, attempt to defeat obfuscation via dynamic binary anal-
ysis, install filesystem hooks to monitor all files read or written, etc.

However, as we have seen in the previous paragraphs, scams can be very
simple and yet maintain effectiveness. Modern security tools are often power-
less against confidence tricks, since the infection and stealthiness mechanics
they so cleverly detect are simply not present.

Indeed, the traditional approach to computer security is fundamentally
inadequate when dealing with the type of scams we have described. Tradi-
tional software vulnerabilities are caused by programming mistakes or mis-
guided architectural decisions. Scholars and practitioners have focused for
years on developing methods to automatically detect vulnerable code, pro-
gramming techniques that would reduce the potential to introduce security-
sensitive bugs and systems to detect and prevent exploitation.

For the type of frauds discussed here to work, no exploits are needed
and no software security patch can correct the problem. A completely new
approach is needed to detect them and protect users. Since they work by
exploiting the user’s confidence, an automatic detection system needs to “see”
the content with the same eyes as a user and possibly interact with it in the
same way. This will be the subject of this work. In particular, it will focus on
rogue antivirus and pharmacy scams, two very common and representative
examples.

Chapter 2 further defines the problem that is being tackled by reviewing
common scams, their propagation methods and how they generate revenue
while Chapter 3 will present the challenges that arise when attempting to
automatically detect them and possible solutions. Chapter 4 describes the
ideas behind the Inner-Eye system, while Chapter 5 will detail how the use
of virtualization techniques allows building a scalable analysis system.

12 CHAPTER 1. INTRODUCTION AND MOTIVATIONS

Chapter 2

Malware and computer scams

Computer programs come in many different forms and have many different
purposes; naturally, malicious or annoying programs exhibit the same diver-
sity [13]. Nowadays, malware is used as an encompassing term for abusive
software, while terms like virus, worm and trojan indicate categories of mal-
ware.

Many security software vendors distinguish malware and “potentially un-
wanted software,” with the latter category usually comprising adware, hack-
ing tools, remote surveillance software, etc. (these are applications that may
see some legitimate use, but are more often than not undesirable on a ma-
chine).

While malicious software is a powerful tool in the hands of criminals, less
sophisticated threats also pose significant dangers for users. Scammers use a
variety of methods to confuse, defraud or harass victims and make a profit
using confidence tricks and exploiting lack of knowledge or familiarity with
computers.

In this work, both “pure”, non-software, scams and more traditional mal-
ware will be analyzed together in an effort to develop a more comprehensive
view of the problem. The term “scam” will be used in an inclusive way to
encompass all kinds of frauds, whether they involve binary executables, web
pages or non-software elements such as text e-mail messages. Occasionally,
the term “malware” will also be used to indicate all kinds of abusive content.

13

14 CHAPTER 2. MALWARE AND COMPUTER SCAMS

Figure 2.1: Software threat categories according to Microsoft, with recent history
(round markers indicate malware categories; square markers indicate potentially
unwanted software categories). [1]

As much as possible, this chapter will present generic payloads (the com-
ponent that generates a profit for the criminal) delivered through equally
generic propagation methods. While not all combinations are possible, this
approach eliminates repetition and focuses on the fundamental nature of
each problem (mitigating the impact of a certain payload, for example, or
the economic efficiency of a propagation method) without drawing attention
to irrelevant details.

2.1 Propagation methods

In this chapter we will first review how cyber-criminals reach their victims.
By focusing on how abusive content is delivered to users it is possible to
develop methods that stop malware before it has any chance to interact with
people. This is particularly important in the case of confidence scams, since
they are specifically developed to deceive and confuse users.

2.1.1 Spam

Spam is probably the most visible and well-known propagation vector for all
sorts of scams and malware. The traditional definition of spamming, devel-

2.1. PROPAGATION METHODS 15

oped in the context of dealing with e-mail spam, is the sending of unsolicited
bulk messages.

Fundamentally, spamming is an economic problem. Whenever a low-cost
action allows delivering a payload to a good number of users, we can be sure
that spammers will try to take advantage of the system. All systems that have
this property are subject to spam. E-mail messaging is a prominent example:
sending e-mails has negligible cost; moreover, messages can have multiple
recipients, therefore the spammer can easily craft a single e-mail message
with a thousand recipients and let the mailing server do the replication for
him.

Total cost Recipients Cost per recipient
Direct mail $ 9,700 7,000 $1.39
Telemarketing $ 160 240 $0.66
Print - targeted $ 7,500 100,000 $0.075
Print - general $ 30,000 442,000 $0.067
Fax $ 30 600 $0.05
Online ads $ 35 1,000 $0.035
Spam $ 250 500,000 $0.0005

Figure 2.2: Typical cost of offer placement for common advertisement ap-
proaches. Source: [10].

Payloads carried by spam vary: some are malicious webpages or pro-
grams, some are simply links to questionable websites (or even to relatively
benign websites which try to over-aggressively promote themselves), some
are directly attached to the message, some appear in the form of links, etc.

E-mail spam is perhaps the most studied phenomenon; system adminis-
trators and common users have been fighting it for decades. Network-based
countermeasures include:

Reverse DNS checks
Most SMTP servers will refuse to relay e-mails from a server that
doesn’t have a valid reverse DNS record. It is assumed that a le-
gitimate mail server will always have one, therefore false positives are
not an issue. Most ISPs, however, do assign automatically generated

16 CHAPTER 2. MALWARE AND COMPUTER SCAMS

Figure 2.3: Type of spam e-mails blocked by Microsoft products over time. [1]
Notice how a massive but short-lived spam campaign advertising fake diplomas was
launched in February causing a visible spike in detections; Microsoft reports that
such spikes were often seen in the past but have been rare in 2001, as current spam
campaigns tend to run over a longer period of time and show up as more gradual
increases and decreases in detection.

reverse DNS names to all their customers’ IPs, so this countermeasure
is less effective than it could be.

Graylisting
The practice of always refusing the first delivery attempt for an e-mail
message, with the assumption that legitimate protocol-abiding clients
will retry the delivery, while spamming bots will just give up.

2.1. PROPAGATION METHODS 17

DNS-based blacklists
Organizations such as SpamHaus maintain extensive blacklists of IP ad-
dresses and domains known to be involved in spam distribution. They
can usually be queried over DNS and benefit from this protocol’s dis-
tributed caching. Blacklists are effective in containing spam campaigns
run from a handful of IP addresses.

Blacklists were one of the factors that pushed spammers to build (or
purchase) extensive botnets: networks of compromised computers that
span numerous networks and countries. Nowadays botnets often host
both spam sending bots and the payload for the campaign. Since secu-
rity practitioners are extending blacklisting to the so-called Command
& Control servers that coordinate the campaigns, botnets can contain
highly volatile proxy nodes that are used to contact the C&C servers
indirectly. [37, 17]

Reputation-based approaches
Mail servers can keep track of the ongoing reputation and habits of
known mail servers and quickly exclude those that appear malicious
or compromised. This practice can be ineffective if spam is sent di-
rectly from the relatively “clean” IP addresses of newly compromised
computers, but is still helpful to ensure that vulnerable SMTP servers
cannot do much harm.

An interesting variation of this technique is used by Google’s email
provider Gmail. A rich web interface is exposed to users, who can
manually mark (or unmark) email messages as spam. The system au-
tomatically learns from the users what messages constitute spam and
which are legitimate.

SMTP blocking
Many residential Internet Service Providers block incoming connections
to port 25 by default. This makes it somewhat harder to run a mail re-
lay from a botnet. This measure cannot restrict sending e-mail, though,

18 CHAPTER 2. MALWARE AND COMPUTER SCAMS

and since customers legitimately use a variety of SMTP servers to han-
dle their e-mails, filtering outgoing connections is usually infeasible.

These countermeasures attempt to stop the spam e-mails before they are
even sent. In Chapter 3 we will see some techniques that examine the content
of the message and try to detect spam a posteriori.

Obtaining lists of valid e-mail addresses is relatively cheap, as shown in
Figure 2.4. Alternatively, spammers can automatically generate addresses or
crawl the web to look for addresses embedded in pages. In response, web-
page authors tend to obfuscate addresses in various ways; techniques include
simple human-readable instructions to amend the wrongly written address,
CAPTCHA-based1 solutions and “spider traps” that try to lure automatic
crawlers into following a series of meaningless automatically-generated links
and pages (in the hope that the bot will give up crawling the site before
getting to the sensitive content).

E-mail spam is only one manifestation of the general phenomenon. Tra-
ditional mail spamming and telephone spamming have existed for a very long
time, although necessarily on a smaller scale due to the intrinsically higher
cost of contacting people through these methods. Legislation has been gen-
erally slow to pick up the problem and generally only mandates opt-out
procedures.

Other common targets for spam are user-editable websites such as wikis,
forums and blogs. Spammers register users and attempt to show links in every
possible way: creating new pages full of fake content (and links), populating
the user list with dormant users (that will show a link to the website in
their profile), adding posts to existing discussions or blog articles (sometimes
repeating part of the content in order to make the comment seem legitimate),
etcetera. Even Wikipedia, which has a very active anti-vandalism team,
occasionally sees link spamming. [41]

Social networks are also emerging as a spam vector. The very personal
nature of the exchanges on those websites makes them very attractive to

1CAPTCHAs are distorted images containing text. In well-constructed CAPTCHAs,
the text is easily readable for humans but not for computer programs.

2.1. PROPAGATION METHODS 19

ISA - Email Database of EUROPE
TOTAL = 3.038.732 E-MAILS
Spain (1.207.266)
France (211.914)
Italy (1.556.313)
Portugal (63.239)

EUR 120
CLICK HERE TO KNOW HOT TO PURCHASE
We acept Paypal, MoneyGram and Western Union

If you have received this email by mistake
or you donÂťt want to receive anymore newsletters from us,
please click here

Figure 2.4: This e-mail purports to sell lists of e-mail addresses; recipients are
filtered for nationality. The spammer uses a handful of different domains and
apparently lists his own real name and address in Brazil in order to receive money
orders. Interestingly, he advertises his e-mail lists through spam itself.

spam bots, who can pose as real people and entice users to click on malicious
or questionable links with high success. The success rate is even higher when
spammers are able to compromise legitimate user accounts: the messages will
appear to come from trusted friends of the victim. While social networking
websites like Twitter and Facebook are starting to implement link filtering
countermeasures, large-scale infections that spread through social networks
have already been observed (the Koobface botnet is one of the best examples).

2.1.1.1 Collecting spam messages

As we have seen, spam messages may be hard to filter but, obviously, are
easy to collect.

A good way to do so is to create a fake mailbox with a guessable name,
preferably at an established email provider domain. Every email received by

20 CHAPTER 2. MALWARE AND COMPUTER SCAMS

the fake user can be considered spam with a high probability. Such techniques
(setting up apparently innocuous infrastructure that would only catch spam
and malicious activity) are employed very often by security researchers and
are referred to as honeypots.

Alternatively, the address of the honeypot can be distributed on-line,
either by putting it on pages reachable by crawlers (but that would not be
considered by a human being) or by adding it to email distribution services
known to resell their lists to spammers.

The advantage of honeypots is that they will catch all types of spam,
including types that have not yet been seen by researchers. They are therefore
very useful for research purposes. If volume is more important than novelty,
it could also be possible to tap into the filtering systems employed by major
email providers: only messages that are detected by existing rules will be
detected, but very large quantities can be received.

2.1.2 Browser and OS vulnerabilities

Many traditional computer viruses and worms focus on self-replication [13].
From a single infected computer, they try to infect as many others as possi-
ble, and devote a significant part of their code to do so. Methods vary from
infecting removable media to remotely exploiting vulnerabilities over the net-
work. Modern malware like Stuxnet2 combines many different approaches to
maximize its chances of success.

In the trend towards simplicity and cost-efficiency, replication capabil-
ities have been neglected by fraudsters. Rogue antiviruses rarely include
self-replication capabilities [31]. Centralized distribution through browser
vulnerabilities is far more common.

Modern browsers are complex environments: they include JavaScript
Just-In-Time compilers, interpreters, many different plugins, ActiveX con-

2A very complex worm that uses multiple infection vectors (including several previously
unknown vulnerabilities) and sits dormant on the user’s machine. The payload activates
only on computers connected to certain Siemens industrial control systems; once it reaches
them, it uses rootkit techniques to stealthily infect and reprogram the controllers. The
malware is supposedly an attempt to sabotage the Iranian nuclear program by other nation
states.

2.1. PROPAGATION METHODS 21

trols, etcetera. As the attack surface is very wide, vulnerabilities have been
commonplace. Notably, many attacks do not target the browser itself (which
may have sandboxing capabilities), but common plugins such as Java and
Adobe Flash: these plugins allow (by design) wider access to the user’s com-
puter than the browser normally does (access to the local filesystem, for
instance) and can be harder to sandbox effectively. Exploits against plugins
also have a good chance to work in many different browsers.

Drive-by downloads and drive-by installs are two common results of these
vulnerabilities: as soon as the user visits an infected page, an executable file
is automatically downloaded to her computer. In some cases, it is possible to
automatically launch the downloaded files, making the exploitation process
completely automatic; otherwise, the malware author has to rely on social
engineering techniques to convince the user to run the binary.

Exploiting browser vulnerabilities, however, always requires the victim to
visit a webpage (partly) under the control of the attacker. Spamming (espe-
cially on social networks) can expose the link to many users and net a certain
number of visits. Compromising legitimate websites to inject the malicious
content is also possible. Other techniques commonly used to promote scams
are described in the following paragraphs.

2.1.3 Search engine result poisoning

Like everything on the Internet, malicious content is heavily promoted through
search engines. While legitimate content can aim to establish an on-line pres-
ence and organically receive links over time, pages set up by fraudsters have
no useful content and cannot hope to get legitimate back links. In order to
evade blacklisting, malware authors frequently change their domain names,
use compromised hosts and generally attempt to remain a moving target.
These practices all go against the basic principles of legitimate Search En-
gine Optimization (SEO).

The term Search Engine Optimization refers to a variety of techniques
used to improve the ranking of websites on popular search engines such as
Google and Bing. While many are absolutely legitimate (and often benefi-

22 CHAPTER 2. MALWARE AND COMPUTER SCAMS

cial even to human users), “blackhat” SEO practitioners aim to artificially
inflate the ranking of websites. Their techniques include building networks
of interconnected sites in order to provide backlinks (the number incoming
links is one of the most important factors considered by Google’s PageRank
algorithm), stuffing pages with popular keywords in the hope to appear in
more search result pages, including text invisible to the user (but visible to
automatic crawlers), . . .

A recent phenomenon is the exploitation of trending topics. As soon as
certain words or phrases are sensed as having importance (e.g. because they
are being used a lot on Twitter), scammers will create dozens of websites
that purport to be about the currently trending topic. Search engines keep
track of which searches are becoming more common and, to provide users
with relevant content as soon as possible, quickly add pages to their index
in prominent positions. The intrinsic volatility of trending words is a perfect
match with the desire of scammers to quickly create and destroy domains
and websites. Fake AV authors are reportedly very effective in exploiting
trending topics to spread their content. [31]

Malware distributed through fraudulent Google search results has access
to some specific obfuscation opportunities: for instance, webpages can check
the Referer header to confirm that the user arrived on the malicious page by
clicking on a Google result page3. The web server can also serve innocuous
content to the Google bot, while serving the malicious payload only to users,
using IP address, browser version and installed plugins as discriminating
factors. [35]

2.1.4 Malvertisement

Compromising a popular website would be a perfect way to spread malware
through drive-by install vulnerabilities: website owners know that, and suc-
cessful sites are generally secure and constantly monitored.

3This particular technique can be expected to lose applicability as Google is currently
switching to serve result pages over HTTPS. Browsers generally don’t set the Referer
header when navigating from a secure page to a non-secure one.

2.2. PAYLOADS 23

However, a secure website may include content from dozens of other
providers: advertisement networks, visitor tracking services, content delivery
networks, user-generated content on other websites such as Youtube, social
networking features, etcetera. Advertising providers are a particularly at-
tractive target for criminals, since their content runs on multiple websites
and they routinely operate on content provided by others.

Reputable advertising networks perform some vetting of the content pro-
vided to them (which is often in the form of Adobe Flash banners), but checks
have often proven insufficient. Since the flash file is delivered directly to the
user’s browser, it can be possible for malware authors to write malicious code
that will appear innocuous when run inside the ad network’s analyzer and
trigger only when run on the victim’s browser.

The malicious ad can directly use a Flash vulnerability to cause a drive-
by install or perform fingerprinting of the browser and redirect the user to
a page that will exploit a specific vulnerability (or appear innocuous in case
no known vulnerability is noticed: since a vulnerable environment is needed
to see the malicious code, analyzing these threats is very complex).

Fake antiviruses are often spread through these ads, and the practice has
been christened malvertisement (or malvertizing). Even popular websites
such as the music streaming service Spotify have been used to spread malware
with this trick. [4]

2.2 Payloads

As we have seen in the previous section, fraudsters and criminals use a variety
of methods to reach users, obfuscate their intent and leverage compromised or
ill-designed third-party systems to better propagate their content. Whether
the message is targeted to users or to other automated systems, part of it
will be designed to carry out the sender’s intent: this part is referred to as
payload.

The payload can take many forms: if the message that carries it was an
e-mail message, it will usually be an attachment or a link in the message

24 CHAPTER 2. MALWARE AND COMPUTER SCAMS

body; in a binary, it will be the code section that carries out the malicious
action.

The following sections will describe the type of payloads that are targeted
in this work. Other common payloads include:

Phishing attempts
This type of payload is often seen in the form of email messages or
websites. The scammer purports to be a trusted entity (e.g. the user’s
bank or credit card provider) and attempts to get the user’s credentials
for the real entity. Users are presented with fake login pages designed
to look like the real website 4. Obtained credentials can then be sold
to other criminals or used to withdraw funds from the compromised
account.

Defenses include the blacklisting of known phishing domains (as imple-
mented, for example, by the Google Safebrowsing API [22] included in
the Mozilla Firefox and Google Chrome browsers), the personalization
of login pages to include user-specified elements (which would make it
harder for the scammers to create believable login pages) and educat-
ing the users on the risks of entering confidential information on pages
visited from untrusted links in emails.

Unsolicited financial advice
Perhaps one of the most interesting applications of e-mail spam is the
diffusion of so-called stock spam. Speculators write messages that pur-
port to have insider information or make credible market forecasts for
certain companies. Messages can advise recipients to buy stocks of a
certain company; stock spam has been observed to have a real impact
on financial markets. [10]

Malicious binaries
These payloads are often delivered through browser vulnerabilities which

4Sometimes the fake website directs the browser to load images and other page assets
directly from the real website. Banks have started to implement HTTP Referer checking
to detect usage of their images on phishing websites.

2.2. PAYLOADS 25

allow both downloading and automatically executing the binary. It is
not uncommon, however, for webpages to simply ask the user to down-
load and execute the binary: scareware authors sometimes use this
method. Attachments to e-mails were once a common way for worms
to spread (Loveletter, for example, would send a copy of itself to peo-
ple in the victim’s address book), but nowadays most mail servers scan
emails for known viruses or plainly reject executable attachments5.

Countless examples of abusive programs exist. Several examples have
been mentioned in this work. Notable threats include programs de-
signed to steal sensitive information from the user (e.g. by logging
keystrokes), disruptive viruses that corrupt or delete data, remote con-
trol software that allows criminals to use the compromised devices for
malicious operations, . . .

Links to artificially inflate website ranking
Spam on publicly visible webpages (such as forums and wikis) may not
be targeted to users. It may instead be aimed at the spiders employed
by search engines. Search engines often use the number of links point-
ing to a website as a signal of its importance and trustworthiness: by
artificially inflating the number of links, blackhat SEO (Search Engine
Optimization) practitioners believe they can improve the ranking of
their clients’ websites.

Several defenses have been developed: for example, wikis and forum
can require new users to solve a CAPTCHA before they can post
links. Search engines also allow marking certain links as “untrusted”
by adding the rel=nofollow attribute to the anchor tag. All external
links on Wikipedia, for example, are generated with this tag in order
to make the encyclopedia a less attractive target for spammers.

Links to questionable websites
In some cases, all the payload author wants to do is to get visibility for
his (or his client’s) website. As we have seen in the previous section,

5Gmail, Google’s mail service, is a well-known example.

26 CHAPTER 2. MALWARE AND COMPUTER SCAMS

spam is a relatively efficient way to market goods by exploiting the
“long tail” of demand: it is impossible to advertise efficiently for some
goods (it might even be illegal to do so, in the case of pharmacy and
counterfeit goods), but the low cost of on-line retailing and advertising
makes their sale economically viable.

In some cases the websites advertised through questionable means are
completely bogus and will take the victim’s money without providing
any service. “Get rich quick” schemes and “advance fee” scams fall
into this category. In other cases, the website does provide a service:
illegal on-line pharmacies, for example, may actually deliver products
ordered. The quality and legality of the goods received by the user is
obviously not guaranteed, nor does the buyer have the protection of
anti-fraud laws.

Figure 2.5 presents common email spam payloads as categorized by Mi-
crosoft.

Figure 2.5: Email spam types as detected by Microsoft products in the first quar-
ter of 2011. [1] Notice how pharmacy-related spam accounts for the majority of
messages. The 419 scams category includes all kinds of advance-fee scams and is
named after the article that deals with fraud in the Nigerian Criminal Code. [30]

2.2. PAYLOADS 27

2.2.1 Fake antivirus programs

Fake (or rogue) antiviruses are binaries (or webpages) that fraudulently at-
tempt to convince the user that his or her computer has one or more malware
infections. They are perhaps the most common representatives of the scare-
ware family of payloads. Google estimates that fake antiviruses make up
15% of the threats detected by their extensive crawling and malware detec-
tion infrastructure. [31].

The details of how the fake antivirus presents itself to the users vary.
Some include legitimate-looking setup procedures (Figure 2.6 shows the ini-
tial installation screens). Others are launched immediately after the user
visits an infected webpage (see Figure 2.7 on the next page for an example);
the page may in turn try to convince the user to download an executable to
“clean” the (bogus) threats detected.

Figure 2.6: Initial installation procedure for the FakeRean/Braviax rogue an-
tivirus family.

Whether or not a setup procedure is provided, fake antiviruses usually
center around showing a fake scanning interface, modeled after the system
scan dialog of real antivirus products. Some fake AVs attempt to mimic the
windows of legitimate antiviruses with varying degrees of accuracy; others
use completely made-up interfaces.

The defining trait of this type of malware is that, no matter how clean the
user machine can be, the rogue scanner will always report the presence of in-
fections. To enhance their credibility, some samples show the user believable
names from known malware families.

While webpages can only show their content within the canvas of the
browser, binaries can be much more obnoxious. The tricks employed range
from confusing messages shown in the system tray (Fig. 2.9) to replacing
the system association for executable binaries so that the user cannot run

28 CHAPTER 2. MALWARE AND COMPUTER SCAMS

Figure 2.7: A rogue antivirus webpage. The original code is heavily obfuscated;
note that the content of the webpage is OS-independent, in this case typical Win-
dows file path are being shown even if the browser is actually running on a Linux
platform.

applications anymore (and would get a “system infected” window every time
she tries to launch one). The malware can also claim that malicious or illegal
activities (such as sending spam e-mails) are being conducted on the user’s
computer.

Invariably, the user is presented with discomforting scan results (Fig.
2.10). The only way to rectify the situation, according to the malicious
program, is to purchase the “full version” of the rogue antivirus product,
which will get rid of the (non-existing) infections.

The victim is then redirected to a page where credit card details can
be entered; common pricing schemes include 6-months licenses available for
about 50 $, 1-year licenses for about 60 $ and life-time licenses for about
90 $ [35]. Once the user buys the registered version of the fake antivirus,

2.2. PAYLOADS 29

Figure 2.8: An original fake antivirus interface. Notice the invented names for
the threats found.

Figure 2.9: Messages shown in the system tray by Braviax Fake AVs

Figure 2.10: Result window shown by Braviax Fake AVs

the program will claim to have cleaned all infections (see Figure 2.11 on the
following page).

Rogue antiviruses tend to be distributed in large campaigns with several
independent affiliates. Typically, the rogue binary is distributed to the af-

30 CHAPTER 2. MALWARE AND COMPUTER SCAMS

Figure 2.11: Comparison of the interfaces shown by the TotalProtect fake AV
upon installation and after registration.

filiates ready for use as-is (the criminals who run the campaign handle all
payments and disburse a quota of the profits to the participants; large part-
nerka operations in Eastern Europe may even gift luxury items to reward
successful affiliates [35]).

The same binary will likely be used over and over by affiliates who may
not have the technical prowess to modify it. This presents some challenges to
the fake antivirus authors, if they want to keep their malware profitable for
some time. After a while, in fact, the name of the rogue becomes well known;
there are blogs (e.g. [34]) that specifically keep track of rogue antiviruses and
offer removal instructions. A simple Google search, presumably within the
technical means of even the most clueless user, could be enough to defeat
the rogue. As a result, fake antiviruses change their names very often. This
issue is somewhat unique to this category of malware: since they need to
convince user to buy the product, a somewhat believable “brand identity” is
necessary, yet it has to change frequently. [29]

Some families, like the OpenCloud rogues, reuse names of existing soft-
ware products. Others, like those belonging to the FakeRean/Braviax family,
will check the version of Windows they are running on and present themselves
with names such as “Vista Internet Security” or “Win7 Antivirus Pro”.

A notable trait of all rogue antivirus families is the tendency to reuse
interface elements taken from the security dialogs of the operating system.
The standard “shield” icon that identifies security critical operations on re-
cent versions of the Windows operating system, the red and white cross icon

2.2. PAYLOADS 31

Figure 2.12: Alternate versions of the Zentom System Guard family of Fake AVs

used to signal errors, warning icons (in some cases even the general back-
ground images) and other standard elements are used to communicate a
sense of risk and danger to the user.

Rogue antiviruses are commonly distributed in the form of Windows
executables. Drive-by download vulnerabilities are used, especially when
compromised ads are the infection vector. In many other cases, the user is
simply invited to run the executable in order to perform some action.

A common way to defraud users is to lure them on a fake video-player
page. When the user attempts to play the video, a fake error message is
displayed that invites her to install additional video codecs or an updated
version of the Flash plugin. Handily, the malicious webpage will provide
the required executable, which in turn contains the rogue antivirus. In an

32 CHAPTER 2. MALWARE AND COMPUTER SCAMS

interesting variation of this approach, scammers will try to sell the (freely
available) plugin to the user.

See Figure 2.13 for a typical example. Notice the simplicity of the code
(Fig. 2.14) and the lack of any obfuscation. Since the download is initiated
only after the user takes action, even this simple page will evade detection
by analyzers like Wepawet6.

(a) Initial page (b) Error message

Figure 2.13: Dropper page using a fake codec error message.

$(document).ready(function() {
$("a#inline").fancybox({

’modal’ : true,
onComplete: function() {

setTimeout(function () {
window.location =

’http://privatetube.onlinetubes24.com/codec.exe’;
}, 1000)

}
});

});

Figure 2.14: The script that triggers the download for the page in Figure 2.13.

6see Section 4.2.3 for details on Wepawet

2.2. PAYLOADS 33

In an interesting twist, the binary used by this particular fraud (codec.exe)
relies on another webpage to get the content and essentially acts as a mini-
browser. Presumably, this is done in order to dynamically update the cam-
paign: in the current version, the payload is a fake antivirus page (see Fig-
ure 2.15). It is also possible that this is done simply to reuse existing assets
as a cost-saving measure. As we have said numerous times, these payloads
generate money through the gullibility of the user: writing a sophisticated
interface could be an overkill.

Figure 2.15: Interface shown by the fake codec binary. Even the window con-
trols are fake and contained in the internal payload webpage. The code for the
fake antivirus webpage is slightly more complicated because it has to show several
interfaces but still does not use any notable obfuscation features besides generating
the page structure on the fly and disabling right-clicking on the page.

The amount of obfuscation and complexity of the code varies widely.
Some rogue antivirus binaries, like the one presented above, are very simple
and have little more than the code needed to display the interface. Oth-
ers have been reported to detect sandbox environments to make analysis
more difficult, block access to security-related websites (including those of
legitimate antivirus vendors), use rootkit techniques to make removal more
difficult, etcetera. [29, 32]

All the propagation methods discussed in the previous section are used

34 CHAPTER 2. MALWARE AND COMPUTER SCAMS

to spread rogue antivirus software; enterprising fake AV fraudsters have also
successfully compromised the official BitTorrent site to replace the legitimate
installation program with one that bundles their software. [21]

A study has been performed on the underground economy surrounding
rogue antivirus campaigns. Interestingly, it has been found that scammers
actually issue some refunds to customers who realize the worthless nature of
the software they purchased. Presumably, they do so to attract less attention
from credit card companies by keeping the chargeback rate low. Payment
intermediaries with lax anti-fraud policies like the Russian website Chronopay
can also act as a shield from the stricter rules enforced by banks and major
credit card companies. [35]

2.2.2 Other scareware frauds

While fake antiviruses are the most common and lucrative type of scareware,
other categories exist. They all simulate a problem on the user’s PC: the
claims range from hard drive failures to threats to the victim’s privacy. To
simulate computer instability, malware can generate fake “blue screens of
death” and system error messages, replace the desktop wallpaper, inject error
messages in webpages, . . . [27]

Direct sales are not the only way scareware can be monetized. Sometimes
scareware is bundled with more traditional malware like password stealing
trojans and spamming bots. The additional malware may persist even if the
user pays to remove the scareware. [29, 31]

Some scareware families even offer “comprehensive” PC health solutions.
See Figure 2.16 for examples.

2.2.3 Common scams and frauds

While scareware is a relatively recent invention, other frauds have been per-
petrated on-line for decades. Since on-line retailing offers a degree of privacy
to the customer, it becomes possible to market “embarrassing” or illegal
merchandise that people would be reluctant to buy in the open.

2.2. PAYLOADS 35

Figure 2.16: A fake hard-drive defragmenter and a “Privacy Center” window
shown by the Tritax family of scareware.

Goods that are advertised through spam and other questionable means
include:

Prescription drugs
Prescription drugs (especially those related to sexual health) are com-
monly offered through spam and other distribution channels. These
websites offer illegal (or semi-legal) ways to bypass physician prescrip-
tion requirements and offer relatively anonymous delivery. While most
of these on-line pharmacies do actually deliver goods paid for by users,
the customer does not have any of the guarantees that legal drug sales
carry (both in terms of quality and safety).

36 CHAPTER 2. MALWARE AND COMPUTER SCAMS

Counterfeit items
Replica watches are also very popular with spammers. These counter-
feit watches cost a fraction of the real brand-name product. Producers
claim the quality and design of their replicas are indistinguishable from
the original; obviously, the customer has no guarantees. Such sales may
also be in violation of trademark laws and can potentially expose the
buyer to legal repercussions should the merchandise be inspected by
customs officers. Besides watches, other luxury items are also com-
monly advertised in spam emails.

Recreational drugs
Websites exist that claim to sell illegal drugs for recreational use. Some
sell semi-legal “smart drugs” or try to exploit loopholes in drug control
laws by selling intermediate products (or seeds, etcetera).

Unregulated gambling
Many states have tight regulations on gambling businesses and tax
them at high rates. Through spam and advertisement, entrepreneurs
publicize access to on-line casinos that are typically located in jurisdic-
tions that do not restrict gambling and have lax taxation. Accessing
those websites may be illegal from some states. As usual, the customer
will probably have no legal protection from abuses from the website
owners.

Fake diplomas and other documents
These goods are commonly offered through regular on-line advertise-
ment. In some cases the spammers are technically selling access to an
on-line university that will award a degree upon completion of some
perfunctory exams. Such “universities” obviously lack any academic
credibility and the titles they bestow generally have no value, but the
procedure may be legal in jurisdictions that do not regulate academic
degrees. Other services claim to help people obtain citizenship from
the United States or from European Union countries. The degree of
legitimacy of these services varies.

2.2. PAYLOADS 37

Heavily discounted software
Websites and spam emails may offer software titles at very low prices.
While some sellers may be exploiting legal loopholes to resell volume li-
censes to individual customers, many others are reselling pirated copies.
Legality considerations aside, such pirated software may also bundle
malware and put the user at risk.

Other scams are not based on selling goods or services to users, but
attempt to gather money from them just by offering “get rich quick” scams,
requiring advance fees for large money transfers (supposedly as part of money
laundering operations, which may or may not be real), or merely asking
for a charitable donation to vaguely characterized causes and organizations.
Citizens of Nigeria have earned a reputation for carrying out a large amount
of these scams and Nigerian laws seem to be ineffective as a deterrent.

While fake antiviruses still make use of some obfuscation features, fraud-
sters have little need for those. No binaries are needed; no intrinsically mali-
cious operations are performed on the user’s computer. Therefore, the detec-
tion for these scams must be based exclusively on their content. Image-based
and JavaScript-based obfuscation is sometimes employed to make keyword-
based detection ineffective, but no other techniques have been observed.

38 CHAPTER 2. MALWARE AND COMPUTER SCAMS

Figure 2.17: Chinese website claiming to sell counterfeit luxury goods and repli-
cas.

Chapter 3

Detecting frauds

Traditional malware detection approaches are ill-suited to combat fake an-
tivirus frauds and other scams. The fundamental problem is that excellent
tools exist to analyze code, disassemble binaries, monitor modifications to
host environments, etc. Unfortunately, these tools are close to useless when
the user is the weak link.

As we have seen in the previous chapter, many successful scams imple-
ment at most a thin layer of obfuscation. In this work, we will present defense
approaches that rely on the intrinsic characteristics of the scams and try to
detect the very elements that attempt to fool the user: the assumption is
that those elements depend on typical human behavior, which is likely to
remain constant over time, while implementation details can be changed at
will. Of course, cultural differences may undermine the effectiveness of cer-
tain detection methods (a trivial example is that a scanner that looks for
English text will fail to recognize scams written in Russian or Italian), but
the basic approach will hopefully need only small adaptations.

Reliable detection of all scams may never be completely feasible. In some
cases, even a human researcher can have trouble in deciding if a given on-line
store is going to defraud its customers or not. Detection can rely on indirect
signals: legitimate on-line stores do not advertise themselves through spam,
for instance. By combining knowledge about the propagation methods, the
payloads and the habits of computer fraudsters, automated detection systems

39

40 CHAPTER 3. DETECTING FRAUDS

can still significantly raise the bar for scammers. One of the reasons scams are
popular with criminals is their low cost, both in economic and technological
terms. Any system that increases the costs that fraudsters have to face may
deter a good amount of them from attempting the fraud in the first place.

In this chapter some possible detection approaches will be reviewed,
together with their strengths and weaknesses. Section 3.6, in particular,
presents the approach currently implemented in the Inner-Eye system, which
will be described in detail in the next chapter. Section 3.4 will describe an-
other promising approach that has been considered during this work and has
not been implemented due to time and complexity constraints.

3.1 Network-based detection

A tempting approach to combat scams (and malware in general) is to stop
them before they can even interact with the victim system. As a though
experiment, consider a browser that can predict whether a webpage is going
to be malicious or not without looking at its content; that browser can remain
absolutely secure just by refusing to load abusive pages. All exploitation
attempts, whether they are aimed at software vulnerabilities or at the user’s
naivety, need to interact with the environment in some way: if malicious
pages are never loaded, perfect safety can be attained.

Obviously, implementing a system that can actually determine the mali-
cious nature of a web page without loading it is not trivial.

3.1.1 Exploiting previously known information

If we have an external (and trusted) oracle that can determine the malicious
nature of a page for us, all we have to do is ask for the information. One
might wonder if this doesn’t simply move the detection problem from the
user’s browser to the oracle system, but the problem may be much simpler
to approach on the oracle’s side: for instance, it can have more computing
power than can be available on the user’s computer. Moreover, the oracle
can collect a huge amount of data from multiple users and analyze it off-line.

3.1. NETWORK-BASED DETECTION 41

Such systems do exist in practice: the Google Safebrowsing API [22]
and the equivalent service built into the Microsoft Internet Explorer browser
are prominent examples. These services aggregate data from many sources
(including, it can be assumed, human input and monitoring) and provide an
API that allows checking whether a given URL is known to be malicious or
not. Since it is impractical to query the oracle every time the user requests
a page, data from the oracle is periodically packed and downloaded by the
browser in the form of a blacklist.

Figure 3.1: Message displayed by the Mozilla Firefox web browser when the user
attempts to visit a URL blacklisted by the Google Safebrowsing service.

To prevent people from misusing the content of the blacklist (which basi-
cally amounts to a collection of vulnerable compromised hosts), only a hash
of the URL is put into the list. This complicates granular blacklisting, as
the client has to manually check all possible URL and path combinations
(Google Safebrowsing has a granularity of four subdomains and five path
components).

Other “oracle” blacklist services exist for known spam senders, vulnerable
hosts, suspected C&C servers, . . .

As criminals using botnets can use more and more new and “clean” IPs,
IP-based blacklists are largely ineffective against modern campaigns: instead
of depending on fixed IP addresses, malware can simply use domain names.
Since the creators of the program (or the webpage) control the domain, they
can modify the records to point to new IPs whenever they want. Naturally,

42 CHAPTER 3. DETECTING FRAUDS

this simply moves the blacklisting problem from the IP-address space to the
domain name space.

DNS-based blacklists can be evaded through fast-flux techniques: the
domains used (for C&C servers, URLs embedded in spam e-mails, etc.) are
constantly changed based on a pre-determined domain name generation algo-
rithm. The malware author registers in advance the domains that will be used
for a certain period of time. If the command and control servers of a botnet
are contacted through this method, security researchers can reverse-engineer
the name generation algorithm and start a registration race with the botnet
owners. Successful takeovers have been performed with this technique [36].
Current name generation algorithms can incorporate unpredictable data (for
example the Twitter trending topics) in an attempt to make it harder (or at
least more expensive) to race with the botnet owners.

3.1.2 Network properties

Blacklists evasion needs force scammers to use highly volatile IP addresses
and domain names. By exploiting this fact, systems have been developed
that estimate the maliciousness of a web page simply by looking at readily
(and safely) retrievable factors such as the Autonomous System number, the
registration date for the domain and IP addresses involved, the number of
redirects present, . . .

The main advantage of these methods is that they can be applied directly
by the client with low overhead. If one is willing to accept the increased cost
of using external centralized services, reputation data can be maintained for
each network feature detected by the client. For example, a service could
keep track of Internet Service Providers commonly used by criminals and
respond to queries based on the AS number of the destination.

This approach has been applied to the detection of phishing pages in [24]
and [14] and has been used to survey existing fake antiviruses in [16].

3.2. VISUAL SIMILARITY 43

3.2 Visual similarity

An interesting way to detect phishing websites is to visually compare pages
with known phishing targets such as bank websites. [40]

Detecting image similarity is not simple. If one were to simply render
pages and compare, pixel by pixel, the resulting images, it would be possible
to escape detection simply by changing some random pixels.

More sophisticated approaches use shingling techniques: the image is
broken down into blocks, and single blocks are compared. If blocks are
computed starting at every possible coordinate in the image, the detection
can be robust even with respect to translations of elements within the page
(assuming, of course, that the blocks are large enough to capture interesting
elements). Scale invariance, however, cannot be obtained with this method.

Moreover, to make the comparison faster, the block content is typically
hashed and put into a hash table. The choice of the hashing function is
critical. Perceptual hashing algorithms must be used, otherwise even single-
pixel changes will allow phishers to evade detection.

Since a collection of target images is required, this technique can’t be
easily adapted to detect scams other than phishing.

3.3 Image analysis

A different approach, developed to detect image-based spam emails, is to
perform analyses on the entire image. [2]

These methods use simple image processing techniques and look for fea-
tures that are known to be present in the images used by spammers. Text
embedded in the image, for instance, is considered suspicious because it is
assumed that legitimate emails will use images sparingly (because of size lim-
its) and avoid their use when information can be conveyed textually. This
limits the approach to email analysis, since images are overall much more
common on the web.

Other features that can be used for detection include the overall color
scheme, the saturation and heterogeneity of the colors, etcetera. These meth-

44 CHAPTER 3. DETECTING FRAUDS

ods are also unlikely to give meaningful results for regular webpages, which
naturally exhibit a huge variety of colors and characteristics. These meth-
ods are chiefly attractive due to their speed, and are usually proposed for
real-time detection of spam e-mails. [9]

3.4 Sensitive image elements
As we have seen in Section 2.2.1, fake antivirus programs and webpages often
mimic operating system or browser error messages. In all cases, they have to
convey a sense of danger to the user, or confuse her with fake error messages.
Relatively consistent graphical elements are employed to remain coherent
with the typical user interfaces seen on the operating system. As we have
seen, this is seen as an important goal by the scammers, to the extent that
some rogue antiviruses detect the Windows version they are running on and
change their appearance to better match its graphical appearance.

Figure 3.2: Graphical elements common to many rogue antiviruses.

This approach can be a good solution for the fake antivirus detection
problem and was considered for implementation in Inner-Eye. Robust recog-
nition of these elements has however proven tricky. First of all, fake antivirus
interfaces vary widely in size: a scale-invariant algorithm has to be employed.
Moreover, while the basic elements tend to be present with great consistency,
the precise bitmap used varies among different fake AV families.

Object recognition techniques have been in development for some time.
Promising approaches include finding scale-invariant “interesting” features in
the image. SIFT [26] and the faster SURF [5] features are good candidates,
possibly combined with the Harris corner detection [3]. It should be noted
that these approaches also provide rotation invariance, which does not appear
to be an interesting property (based on the survey of existing rogue antivirus
performed during this work) and can be a source of unneeded complexity.

3.5. TEXT-BASED DETECTION 45

Simpler recognition techniques also exist, aimed at solving simpler prob-
lems such as tracking the ball in soccer game matches. Other algorithms
rely on pre-built pictorial structures and try to find a match for them in the
image.

Image analysis research, however, has mostly focused on high-resolution
images or real-word videos. Due to the relatively low resolution of com-
puter monitors, traditional object recognition techniques do not work well
on screenshots. Finding meaningful SIFT features in the graphical elements
pictured in Figure 3.2 on the preceding page has proven arduous, and im-
age matching attempts (using both small elements and large image blocks
extracted from common fake AV interfaces) have given mixed results.

Creating a detector based on these features remains as an open problem.
Some approaches currently being considered for future work on the Inner-Eye
system are presented in the final chapter.

3.5 Text-based detection

The traditional approach for spam detection is based on the exam of the
body of the message. The assumption is that scammers need to use certain
words to get the attention of victim: a random message is unlikely to get
the user to click on a provided link, while the promise of certain goods will
probably be more successful.

The most common algorithm used to detect e-mail spam uses a bag of
words approach. It does not consider the order of the words as they appear
in the text, nor does it attempt to reconstruct the meaning of the text.
Conceptually, the system maintains the probability distribution of a bag of
“good” words (likely to be found in legitimate e-mails) and of a bag of “bad”
words (likely to be used by spammers). Considering the message as having
been generated by choosing words randomly from one of the two bags, the
system decides which of the two bags was more likely to be the source of the
words found in the message.

More sophisticated approaches attempt to find the key words for the
text by measuring their relative frequency. The tf-idf weight, for instance,

46 CHAPTER 3. DETECTING FRAUDS

is obtained by dividing the term frequency in the considered document by
a measure of the general importance of the word (the inverse document fre-
quency, derived from the number of occurrences of the word in a corpus of
documents).

3.6 Sensitive words

In the current implementation of Inner-Eye, the main heuristics employed
revolve around the presence of certain sensitive words in the captured text.

Manual examination of scam pages (and rogue antivirus software) has
revealed that certain words are almost always present in the messages shown
to the user. This is because they are necessary to convey the desired message
to the user (e.g. “infected”, “warning”, . . . in the case of fake antiviruses) or to
advertise the goods that attract the user to the scam (e.g. “rolex”, “viagra”,
“pharmacy”, . . . for common replica watches and prescription drugs frauds).

Of course a scammer may attempt to evade detection simply by not
including any of the sensitive words in the page. If the word list is chosen
correctly, however, this will severely gimp his ability to deceive users or to
lure them into visiting the scam page.

3.6.1 Possible evasion techniques

A more realistic threat is that scammers can attempt to obfuscate the pres-
ence of sensitive words. Since these detection methods are easily deployed
and are (supposedly) in use by search engines, miscreants appear to use ob-
fuscation quite often.

Possible obfuscation techniques can be:

JavaScript-based
JavaScript can be used to dynamically alter the content of a web page
and add information that was not originally present. Content can be
decrypted from strings already present in the raw source code, obtained
through network requests, . . .

3.6. SENSITIVE WORDS 47

These types of obfuscation aim to confuse static analyzers that sim-
ply look for sensitive words in the source without executing the code.
Additional layers of obfuscation can be added by manually calling the
JavaScript interpreter (e.g. using the eval function) to create new func-
tion bodies, new variables, etc. Simple dynamic analysis systems may
be fooled by these tricks.

The emergence of JavaScript techniques such as asynchronous loading1

and the implementation of entire web applications as scripts included in
a single page2 has made extensive dynamic modifications to the DOM
tree quite common.

Image-based
Scams are aimed at humans, not computers: therefore, any text that
the user will be able to read can be used to convey deceiving informa-
tion. Sensitive text can simply be displayed using images.

This technique has been used for years to evade spam filtering systems
and still sees some use in the field (although filtering systems now often
consider a large image-to-text ratio as suspicious). Microsoft reports
that currently about 3% of the blocked spam messages attempted to
use this trick, down from about 9% in 2010. [1]

Once again, it should be noted that image-based text is often used by
web designers simply for aesthetic purposes and cannot in itself be used
as a reliable sign of obfuscation.

The widespread use of obfuscation can be a double-edged sword for fraud-
sters. Section 4.4.2.1 will show how Inner-Eye deals with these issues and
how it can often turn obfuscation attempts into additional clues for the de-
tection of malicious intent.

1Modern webpages can use dozens of scripts. The traditional model of synchronous
loading of scripts at the point of inclusion would lead to unresponsive loading for the
pages or force authors to put all scripts at the bottom of the page, which is inefficient and
can lead to interaction problems. To simulate asynchronous loading in browsers which
do not natively support the async attribute, authors write small trampoline scripts that
dynamically add code to the page.

2Twitter is a prominent example

48 CHAPTER 3. DETECTING FRAUDS

3.6.2 Choosing the words

Appropriate choice of the words to include in the list is obviously crucial.
Ideally, the list should cover the most common scams while generating as
few false positives as possible.

In the current implementation, the word list has been constructed man-
ually by observing collected scam pages and binaries. Refer to Figure 3.3 on
the facing page for the words chosen.

Automated approaches to the construction of the word list have been
considered. Words that frequently appear in fake antivirus scams, for ex-
ample, could also frequently appear in legitimate antivirus websites. Using
data available from Yahoo3, we tried to construct a list of words (or couples
of words) that frequently appear in websites related to security but not as
frequently in the general population of websites. The top results are shown
in Figure 3.4 on page 50. Given the high number of unrelated words present
(which can partially be explained by the abundance of marketing pages on
the websites of security vendors), the manual approach was preferred.

It should be mentioned that if a “smart” classifier is employed the list does
not need to be very precise or completely exclude false positives. Given the
list mentioned above, for example, it can be guessed that generic words like
“health” and “protection” are too common to be good signals of a malicious
page by themselves. A good classifier, however, can use that information
only in conjunction with others, assign it a lower weight, or disregard it
completely.

3Yahoo! Term Extractor API, http://developer.yahoo.com/search/content/V1/
termExtraction.html

http://developer.yahoo.com/search/content/V1/termExtraction.html
http://developer.yahoo.com/search/content/V1/termExtraction.html

3.6. SENSITIVE WORDS 49

Word Exact occurrences All occurrences
health 5641 7489
security 5606 5941
safety 3300 3573

protection 3163 3384
pharmacy 2237 2274
viagra 1793 1812
pill 1715 3569
cialis 1575 3216
levitra 1539 1549
propecia 1517 1517
kamagra 1163 1213

prescription 746 810
virus 505 1162
shield 338 554
scan 315 2029
threat 286 852
rogue 165 242
rolex 142 168

spyware 140 250
trojan 96 205
replica 86 335
infected 81 95
worm 52 281
adware 40 77
backdoor 22 37

scar 21 5125
protectior 1 4

Figure 3.3: The list of chosen words. An occurrence is counted whenever the text
recovered from a web page contains the word (multiple matches from the single page
still count as a single occurrence for the purpose of this table). Exact occurrences
require the word to appear between spaces and punctuation. n-gram occurrences (in
which the word is simply treated as a sequence of characters and matched in the text
independently of context) are also recorded to compensate for OCR defects). About
20 000 of the 50 000 URLs scanned contained occurrences. Refer to section 4.4.2.1
for details.

50 CHAPTER 3. DETECTING FRAUDS

solutions industry
threat intelligence
strategic security
distributor partner

z services
portal partners
global alliances

business technology solutions
library products
solution services
database security
mobile security

security education
security risk
health check
english india
partner portal

anti virus
english usa

business operators
usa english

global english
language australia

protection internet free online tools
virus toolkit

management profile
security internet

vision management
customer resource

usa india

Figure 3.4: Top results of the (discarded) automatic word list construction at-
tempt.

Chapter 4

The Inner-Eye system

This chapter describes the prototypical Inner-Eye system. While not all the
techniques described so far are implemented by the system, Inner-Eye serves
as a proof of concept that implements most of the functionality necessary for
the detection of rogue antivirus and pharmacy scams.

Besides a high-level description of the system, the modular implemen-
tation and the internal API will be presented, as they have been instru-
mental in rapidly adapting from targeting exclusively fake antiviruses to a
general-purpose scam detection system. The next chapter will show how this
modularity can be exploited to create a scalable system by distributing the
workload over multiple machines.

4.1 Overview

The final goal in the construction of the Inner-Eye system is the capability
to analyze arbitrary website or binary samples provided by the user and
automatically assign a classification label (e.g. as benign, pharmacy scam,
fake antivirus, . . .) to them.

The system is organized as a series of modules; each of them implements
a specific phase of the analysis. An auxiliary module eases development by
summarizing the results and providing programmatic access to the data and
state of the entire system.

51

52 CHAPTER 4. THE INNER-EYE SYSTEM

1. Submission system
In order to collect sufficient data for training, an automated submis-
sion system was implemented. For example, the Wepawet1 web page
analysis system provided a steady flow of both suspicious and innocu-
ous URLs. Spam e-mail messages provided by a U.S. Internet Service
Provider allowed the extraction of a large number of scam URLs.

Of course, manual submission of arbitrary URLs is also supported.

2. Capture environment
Each (possibly malicious) sample is loaded and allowed to execute in a
controlled and instrumented environment.

There is a risk that the code being executed will detect the presence
of the analysis system and hide its malicious nature: therefore, the
capture environment has to be as realistic as possible. For this reason,
Inner-Eye uses a real browser (to test websites) or a Windows virtual
machine (where binaries can be given administrative privileges). Of
course the system must also be able to reasonably contain the sample
so that it cannot infect the entire system.

The capture system observes the behavior of the sample (possibly inter-
acting with it to simulate user action) while monitoring its execution
by taking screenshots, analyzing the elements created in the virtual
environment and storing the data for future processing.

3. Processing
The screenshots and text retrieved from the previous phase are ana-
lyzed outside the capture environment. Optical character recognition
(OCR) is performed on the screenshots. The text and images are an-
alyzed and compared with each other: the result of this process is a
set of features (or “clues”) that can be used by a classifier to recognize
scam pages and executables.

4. Internal API and monitoring
In order to make the three aforementioned modules work together, a

1http://wepawet.cs.ucsb.edu

http://wepawet.cs.ucsb.edu

4.2. AUTOMATED SUBMISSION AND TRAINING 53

certain amount of glue code and infrastructure needs to exist. While
this task may seem straightforward, it can also become very time-
consuming if done entirely by hand; this layer also needs to easily
adapt to changes in the other modules. The Django2 web framework
was leveraged to easily model the application, create its persistent stor-
age and provide a rich internal API used both by the other modules
and for quick development and prototyping.

The next sections detail the design goals of each of these modules and
their implementation in Inner-Eye.

The Inner-Eye system was originally conceived as a system to analyze
websites and detect fake antivirus pages. It was then realized that its anal-
ysis capabilities are well suited to tackle the general problem of detecting
computer-based confidence frauds. Besides adding detection capabilities for
pharmacy and other web-based scams, a capture module for Windows exe-
cutables was also built. The module has not yet been integrated with the pro-
cessing and classification modules, but already has functionality to simulate
user interaction and retrieve the necessary data; Section 4.3.2 will describe
the module in detail.

4.2 Automated submission and training

The purpose of the system is to analyze arbitrary samples provided by the
user. In order to fulfill its goal, however, the classifier must first receive
training, and the training set must contain an adequate number of samples
whose nature is known.

Three main sources of data provided samples to the Inner-Eye system:

• The top 10 000 most visited websites according to the Alexa ranking.

• About 5 000 URLs automatically extracted from spam emails.

• About 10 000 URLs submitted by users or feeds to theWepawet system.
2https://www.djangoproject.com

https://www.djangoproject.com

54 CHAPTER 4. THE INNER-EYE SYSTEM

4.2.1 The benign dataset

An easy way to get a good number of benign URLs is to simply get a list of
the most popular websites. It is safe to assume that a scam website cannot
get very far in popularity before being noticed and eventually taken down.
Scammers are also known [31] to rapidly change their domains in an effort to
evade DNS-based blacklisting attempt, which prevents them to acquire any
significant popularity.

It could still be possible for a top-ranked website to be compromised and
used to host malware. Direct defacements are rare, due to the sheer amount
of visitors who can report problems combined with the fact that these sites are
generally run by companies with significant financial resources or technical
experience.

However, modern websites often use resources hosted on other domains
to provide utility scripts (jQuery and other popular Javascript frameworks
are available from many content distribution networks, for example), user
tracking and statistics (Google Analytics and Webtrends are well-known ex-
amples), and advertisement. As we have seen in Section 2.1.4, ad networks
have proven to be vulnerable to exploitation and have been used as a vector
for the distribution of malware and running scam campaigns.

As a precaution against these risk and to ensure the completely benign
nature of the dataset, only the home page of the website was captured. It is
safe to assume that the insertion of malicious content on the homepage of a
top website would be noticed in a very short time by security researchers; in
fact, when Spotify (a popular music streaming website) recently had its ad
network hijacked to redirect users to malicious websites, news of the mishap
spread very quickly. [4]

4.2.1.1 Alexa topsites

In order to capture the “most popular” websites we need to define a popular-
ity ranking. A well-known list of the top one million websites is provided by
Alexa Internet, an Amazon subsidiary, free of charge and updated monthly3.

3http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

4.2. AUTOMATED SUBMISSION AND TRAINING 55

The company aggregates data collected directly from user PCs through
the use of a browser toolbar. The toolbar can be downloaded from the com-
pany website and is also bundled with third-party applications. Every time
the user visits a page, the toolbar tracks the visit and displays information
about the website to the users.

Figure 4.1: Appearance of the Alexa toolbar as installed on a user PC.

Privacy concerns aside, it should be noted that anyone can install the
toolbar without providing any personal information. The “Alexa toolbar
users” sample may therefore not be representative of the population of Inter-
net users, especially for websites that are not very popular. For our purposes,
however, we just need a sample of benign sites: the top 10 000 sites in the
Alexa ranking are undoubtedly suitable.

4.2.2 The spam dataset

As we have observed in Section 2.1.1.1, spam messages may be hard to filter
but are, almost by definition, very easy to collect.

In our case, a US-based Internet Service Provider provided a steady
stream of millions of spam messages per day, as collected by a honeypot.
This ensures that no false positives can be in the dataset: if a URL ap-
pears in the message, we can be sure that it is related to a spam campaign.
Advance-fee, pharmacy and replica watches scams were found to be especially
common in the dataset.

A system was then built to extract URLs of scam pages from the spam
messages. Using the standard python email parser library, all text compo-
nents were extracted from the message. Most URLs appeared in the clear
and included the http:\\ prefix so that Mail User Agents would recognize
them and automatically provide a link to the website. These can be easily
extracted by looking for the http prefix and using surrounding punctuation
and spaces as delimiters for the URL string.

56 CHAPTER 4. THE INNER-EYE SYSTEM

A small number of messages, however, was found to omit the protocol
prefix or to have spaces between the components of the domain, presumably
in an effort to confuse URL harvesting scripts and filters. As a robustness
measure, strings that contain dots are also matched against the list of known
top-level domains (TLDs) and an attempt is made to generate a valid URL.

Visit us at www .example .com

Figure 4.2: A weak obfuscation technique sometimes employed in spam messages.

The system analyzed seven millions of spam e-mail messages and ex-
tracted about 5 000 unique URLs (some campaigns appeared to consistently
re-use the same URLs, while others used strings with random components).
Manual inspection of some of the e-mail messages that did not yield URLs
confirmed that a majority of the messages did indeed contain duplicate URLs
or did not contain any link.

4.2.3 The Wepawet dataset

In order to gauge the performance of the system on miscellaneous URLs, a
sample of about 10 000 URLs was collected from the ones submitted to the
public Wepawet interface at http://wepawet.cs.ucsb.edu.

Wepawet [15] is a webpage analyzer that defeats common obfuscation
attempts and detects malicious webpages. It is publicly available and anyone
can submit URLs to be tested. The service also retrieves URLs from certain
feeds made available by security researchers and that are known to carry
a good percentage of malicious webpages. In fact, as part of this work, a
publicly available feed known to regularly fake antivirus scam URLs (the
malware domain list4) was added to the system: it should however be noted
that time passes between the initial discovery of the malicious website and
the instant when the feed becomes available and Wepawet has the chance to

4http://www.malwaredomainlist.com/

http://wepawet.cs.ucsb.edu
http://www.malwaredomainlist.com/

4.2. AUTOMATED SUBMISSION AND TRAINING 57

scan the page. Malicious pages (or some their components) are often taken
down before Wepawet can collect the full content.

Part of the interest in using the Wepawet dataset comes from the fact that
it is known to contain a percentage of malicious pages that might actively
try to infect the capture system: it also serves as a test of the robustness of
the sandbox.

The dataset includes a large number of benign URLs submitted through
random web crawling. Unfortunately, very few fake antivirus webpages were
identified through Wepawet5. The dataset contains a good percentage of
pharmacy and replica watch scams and was therefore still useful in evaluating
the performance of the system.

5Wepawet does have some simple heuristics that attempt to identify common fake
antivirus campaigns by checking the (de-obfuscated) text for some key words; however,
this approach yields a large number of false positives and is easily defeated by image-based
obfuscation. The data from those heuristics was not passed to Inner-Eye.

58 CHAPTER 4. THE INNER-EYE SYSTEM

Figure 4.3: The publicly accessible Wepawet submission point. Notice how it is
possible to manually specify the value of several HTTP headers: this is necessary
to circumvent some evasion techniques employed by malicious pages (see page 22).

4.3. THE CAPTURE SYSTEM 59

4.3 The capture system

In this work, the capture phase is the one that collects information from the
sample. The main goals of the capture are the same whether binaries or
websites are involved:

Realism
It is important to present to the sample code an environment that is as
similar as possible to the one that it expects. This is important both
for the accuracy of the analysis and to exclude the possibility that the
sample code can detect and evade the analysis system.

Instrumentation
The capture system must be able to collect a significant amount of
data. Ideally, it should be able to examine both the inner workings of
the sample code and the appearance of what a user would see on her
monitor.

Sandboxing
The analysis system must be able to operate on arbitrary samples;
many samples will contain questionable content or be outright malicious
and attempt to take control of the capture environment. The system
must be able to contain the infection while still fulfilling the main goal
of gathering data in an unobtrusive way.

These goals may appear to be somewhat mutually excluding. A perfect
sandbox, for example, would severely contain the sample code and limit its
ability to interact with the network. This behavior, however, would make
the analysis too unrealistic (for example, malware samples sometimes load
additional components from the network).

Escaping detection and achieving accuracy are strongly related objec-
tives. To gather as much data as possible, one might envision building a
custom emulated environment. For example, one might implement a spe-
cial browser that keeps track of all loaded files and of all the code that is

60 CHAPTER 4. THE INNER-EYE SYSTEM

executed. Indeed, the Java HtmlUnit6 package is an example of such a sys-
tem. When confronted with real-world pages, these systems will invariably
loose accuracy. Web designers (even when they have no malicious intent)
are known to rely on obscure quirks in existing browsers in order to activate
different code paths in specific browser versions, for example. Exploits and
obfuscation techniques often depend on platform-specific tricks or complex
interactions with plugins and page resources. One would be confronted with
the Sisyphean task of adding more and more functionality to the analysis
system to achieve better coverage, only to uncover more bugs and quirks
(and the necessity to emulate them!) while probably being outpaced by the
constant flow of releases by browser vendors7.

The advantages of building an analysis system over an existing, real,
environment should be evident. Sandboxing and instrumentation can become
tricky, however, especially when the original platform does not natively offer
those capabilities.

In the next two sections we will show how judicious use of software and
hardware virtualization can alleviate many of the issues presented here, both
for website and binary analysis. As a bonus, virtualization-based solutions
are easy to integrate in a scalable architecture, as we will see in Chapter 5.

4.3.1 Capturing webpages

Inner-Eye captures webpages through the popular Mozilla Firefox web browser,
instrumented to allow scripting and remote control.

The instrumentation is achieved through the Selenium extension8. Origi-
nally intended as a testing framework for web applications, Selenium enables
control of browsers in a platform-independent and vendor-independent way.
This will make it easy, should the need arise, to modify Inner-Eye to operate

6http://htmlunit.sourceforge.net
7New versions of the Google Chrome browser, for instance, are released with almost

monthly cadence and see very rapid adoption due to the silent and unobtrusive upgrading
mechanism. Mozilla Firefox developers have recently adopted a similar release strategy.

8http://seleniumhq.org/

http://htmlunit.sourceforge.net
http://seleniumhq.org/

4.3. THE CAPTURE SYSTEM 61

with different browsers (several versions of Internet Explorer and Webkit-
based browsers are supported by Selenium).

In particular, the Selenium server component is used. This component
consists of a daemon that accepts remote control commands over the network
and is able to spawn clean browser instances at will. Since Selenium was
conceived as a testing framework, it takes special care to ensure that the
state of the browser is consistent at the start of every test case; through
the use of temporary profiles, it still allows the website code to run in an
environment that maintains state during the analysis session.

Figure 4.4: Google’s homepage as loaded by the instrumented browser in a clean
instance (in the real capture environment all output is redirected to a memory
framebuffer, but for testing purposes regular screen output can be enabled).

62 CHAPTER 4. THE INNER-EYE SYSTEM

In the current system, the following analysis steps are performed:

0. Before any analysis is conducted, the domain part of the URL is checked
to see if it resolves to an IP address. This avoids committing resources
to the analysis of clearly mis-extracted URLs (the system that extracts
URLs from spam e-mail is prone to make mistakes, for example). It
was observed that (even in the Alexa 10k dataset) websites often do
not set an A DNS records for the base domain, but only for the www
subdomain. This situation is detected and automatically corrected.

1. The raw source code of the page is fetched. This is done through
a version of the open-source curl library9 configured to send requests
that resemble those sent by a real browser (by modifying HTTP headers
such as the User-Agent value).

2. An instrumented browser session is created and directed to visit the
sample URL.

3. After the browser signals that it has finished loading the page, a screen-
shot of the page as the user would see it is taken. The screenshot is
taken through native functionality implemented by the browser and in-
cludes the entirety of the webpage, as if it was shown on a screen large
and tall enough to contain all of it.

4. Through the standard DOM10 introspection API, all text nodes in the
DOM are retrieved. This includes any node that might have been
dynamically created by the page.

5. The browser session is closed and resources freed. The system is now
ready to capture another page.

In the current implementation the page content is fetched twice, once
by curl to retrieve the raw source and once by the instrumented browser.

9http://curl.haxx.se/libcurl/
10The Document Object Model is a standard model of interaction with documents cre-

ated from markup languages such as HTML and XML. It presents the document as a tree
of elements and provides methods to traverse it and retrieve information about the nodes.

http://curl.haxx.se/libcurl/

4.3. THE CAPTURE SYSTEM 63

(Current browsers do not retain the original, unmodified, source of the page.)
This can be a problem, as malicious websites will sometimes serve the mali-
cious content only once per IP, as an annoyance and weak evasion attempt
against analyzers. Given the nature of the datasets used in this work (well-
known websites and URLs that have already been fetched and analyzed by
an analysis system), the evasion issue was considered immaterial. Further-
more, it should be noted that a system is being developed for Wepawet that
is able to act as an HTTP proxy, intercept the requests, and serve already
retrieved resources through a cache; should the need arise, the system could
be interposed between Inner-Eye and the network.

4.3.1.1 Robust handling of character data

All the data retrieved in the capture phase is stored for later processing. A
somewhat interesting and unanticipated problem that has been encountered
is the robust handling of possibly corrupted or malicious data.

Data retrieved from the network can be in any format, be malformed,
corrupted, malicious, etc. As the ultimate goal of the system is to allow sub-
missions from the public, we must also consider a scenario where an attacker
is actively trying to compromise the analysis system by submitting specially
crafted webpages for analysis. Robustness is the key here.

Since Inner-Eye works mostly on text (screenshots are retrieved only
through a safe API exposed by the instrumented browser), storage and pars-
ing might seem a trivial problem. However, even text can present unexpected
behavior when one takes into account the Unicode system.

Unicode is an international standard for the encoding and handling of
text, defined as a sequence of code points. Code points abstract the notion
of character and allow encoding messages in any language; each code point
has been assigned a number and over one million code points exist. When
text is to be stored or transmitted, its code points have to be encoded as a
sequence of bytes according to an encoding scheme. Legacy encodings used
exclusively one byte per character and could represent only a limited number
of code points (typically those used in a language or a group of languages),

64 CHAPTER 4. THE INNER-EYE SYSTEM

while variable-length encodings such as UTF-8 and UTF-16 can represent
any code point.

Letter ISO-8859-1 UTF-8 UTF-16 UTF-32
è E8 C3 A8 E8 00 E8 00 00 00

Figure 4.5: Example Unicode encodings for the letter “è” (code point U+00E8).
UTF-16 and UTF-32 are shown in little-endian byte ordering.

Due to the existence and continued usage of various encodings (more
than ten have been observed in the datasets used), it is impossible to mean-
ingfully parse text without knowing its encoding. Moreover, in the presence
of malformed data, the decoding procedure can be destructive. Some web-
sites in our datasets send wrong or malformed encoding information (and
sometimes even declare different encodings in the HTTP headers and in the
document header). Random or malicious data can also cause problems for
a parser; vulnerabilities related to incorrect handling of Unicode text have
been frequently reported for many software products.

To facilitate development, it is often recommended to convert all incom-
ing text to a single encoding; with this approach, only “boundary” code
will need to deal with Unicode encoding while the core application logic re-
mains shielded from these problems. However, as we have seen, determining
the correct encoding for a web page is not a trivial problem. Therefore for
Inner-Eye a different approach has been followed: data retrieved from the
network and controlled by a potential attacker is always stored as-is without
parsing. If an encoding was specified through an HTTP header, that value
is also stored.

During the processing phase, the retrieved text will be parsed by the
robust HTML BeautifulSoup parsing library, which will determine the cor-
rect encoding of the data using the same heuristics employed by Firefox. It
should be noted that a large number of Unicode parsing errors has been en-
countered while analyzing the available datasets. The BeautifulSoup library
has been modified to be slightly more tolerant in case of decoding errors, in
an attempt to extract as much information as possible from the retrieved
data.

4.3. THE CAPTURE SYSTEM 65

4.3.2 Capturing Windows executables

As we have seen in Section 2.2.1, rogue antivirus software is often distributed
in the form of Microsoft Windows executables.

As many of the analysis capabilities of Inner-Eye depend exclusively on
the appearance of the window presented to the user, extending it to deal with
binaries was seen as a natural choice, especially to deal with the scarcity of
live fake antivirus webpages. Binaries are usually less dependent on net-
work resources than webpages and often lend themselves to analysis even
after the pages that distributed them have been taken down (the payment
infrastructure, however, is usually web-based).

To achieve a good level of realism while isolating the sample from the
internal network, the binary is executed in a Windows virtual machine. The
machine reproduces a common environment currently found on user PCs,
namely a Windows XP installation with some common auxiliary programs
such as browsers and plugins such as the Adobe Flash player. The binary is
executed with full Administrator capabilities, as it is common for malware to
expect such a situation (Windows XP home users often run all their software
under an administration-capable account), and is able to freely modify the
environment as it wants.

Network communication can be restricted as desired; Internet access is
allowed by the current configuration. If this is undesired, honeypot-like sys-
tems exist that monitor traffic and send simulated responses from common
services such as IRC or HTTP; the idea is to trick the malware into believing
that it has network connectivity while in fact keeping it in complete isolation
(a similar system is implemented in the Anubis analysis system [6]).

Through the use of non-persistent disk storage, the VM can be restarted
in a clean state every time. Modifications are stored in a temporary file as
differences from the base image; persistent storage can be re-enabled when-
ever modifications to the capture environment are needed (e.g. to install
patches)

The virtualization solution chosen (VMware) also offers simple commu-
nication capabilities between the host and the guest environment. These are

66 CHAPTER 4. THE INNER-EYE SYSTEM

used to automatically to automatically update the internal scripts, transfer
the sample in the guest, launch the analysis and periodically take screenshots
of the virtual screen.

4.3.2.1 Simulating user interaction

Although rogue antivirus programs can be distributed through drive-by in-
stall vulnerabilities, many samples rely solely on the user to voluntarily run
them.

To mask their fraudulent nature, the first binary executed by the user
is often designed to look like a regular installation program. Legitimate
antivirus products generally require installation before they can be used:
even not very experienced users would find it strange for a program to pop
up security warnings as soon as it was started.

As a bonus, by running a convincing installation procedure, the user
can be tricked into ignoring warnings displayed by products like Windows
Defender: these products keep track of programs set to automatically start
at boot time and warn the user whenever the list changes; however, legitimate
software will often trigger similar warnings during setup and the user is likely
“trained” to ignore them whenever confronted with new software.

Some usability guidelines are published by Microsoft, but there are no
real standards that govern the construction of setup programs. However,
most setup programs are fairly predictable and will present a sequence of
dialog pages linked by “Next” and “Previous” commands. As the Win32
API allows enumerating and controlling windows on the same desktop (even
if they belong to other processes), Inner-Eye uses a Perl script that attempts
to recognize common installation windows and automatically interact with
them until the setup procedure is complete.

Example heuristics employed by the script include:

• Advancing through the pages of the installation dialog.

• Automatically accepting the license terms.

4.3. THE CAPTURE SYSTEM 67

• Simulating a click on the “Finish” button, but only if no “Next” button
is still present.

• Disabling automatic restart.

• Confirming and dismissing pop-up messages.

68 CHAPTER 4. THE INNER-EYE SYSTEM

Figure 4.6: Sample interaction with the setup procedure for a fake antivirus
program. After simulating a click on the “OK” button, the fake scan interface is
displayed. For testing purposes, messages from the simulation script are visible in
the background window (this can be avoided if necessary).

4.4. PROCESSING PHASE 69

4.4 Processing phase
The successful storage of data from the capture phase will trigger further
processing. As a first step, the captured screen image undergoes Optical
character recognition (OCR); the complete analysis is performed when the
OCR results become available.

The capture, OCR and processing modules are completely decoupled and
can operate at different speed without problems. The native filesystem mon-
itoring API exposed by the Operating System is used to trigger processing of
new files (information about the state of the system is kept in a database).

4.4.1 Optical Character Recognition

OCR programs employ a series of heuristics and artificial intelligence tech-
niques to automatically recognize text areas in an image, recognize the sin-
gle characters and reconstruct the original text; they are commonly used on
scanned documents, to quickly sort mail, to verify bank checks, etc.

Traditional OCR applications require high resolution images. It is not
uncommon for printers and scanners to support resolutions of thousands of
DPI (dots per inch). Computer screens, however, can render text only at
a much lower resolution, and webpages, images and applications are not
generally able to scale to arbitrary resolutions. To this day, for example,
the dominant imaging formats for web content (PNG, JPG, etc.) are raster
formats: compression aside, they represent a matrix of pixels with fixed
dimensions. While the commercial OCR solution used for this work was
usually able to cope with low resolution text, in order to overcome some
inaccuracies a manual training phase has been performed.

Of course no amount of training can completely eliminate errors and
whenever OCR is employed one must be prepared to compensate for them.
Both classification and zoning errors are possible [38]. Classification errors
are the simplest: they occur whenever the OCR engine mis-recognizes or
omits one or more characters in the text (extraneous characters can also
be added). As we will see below, the impact of classification errors can be
reduced with compensation techniques.

70 CHAPTER 4. THE INNER-EYE SYSTEM

Zoning errors can also occur. Before attempting character recognition,
the OCR engine has to determine which regions of the image contain text
and must order them. This work uses the mere appearance of words as
a classification signal: ordering errors are therefore inconsequential. Mis-
recognition of text areas can have a stronger impact. Manual analysis of some
samples revealed false-positive cases (e.g. meaningless character sequences
resulting from attempting to “read” drawings and photographs) but relatively
few false negatives (unrecognized text areas). False positives have no impact
on the classification performed by Inner-Eye, since it is very unlikely for
them to introduce sensitive words in the text.

4.4.1.1 Mitigating OCR errors

In the experiment performed in this work, the main quirks exhibited by the
OCR system after manual training were:

• Some trouble in recognizing the spacing between words: spaces are
sometimes missing from the reconstructed text and words are concate-
nated.

• Confusion between the lowercase letter “r”, “m” and “n”, likely due
to the fact that the beginning “leg” of these characters is identical in
many fonts.

To compensate for the first problem, two different types of matching are
performed. In the first, exact, matching, words are required to appear sur-
rounded by whitespace or punctuation, as they naturally do in written text.
A second matching algorithm treats the words as sequences of characters (n-
grams) and any occurrence of the sequence is considered a match. Classifiers
based on n-grams are commonly used to compensate for OCR and spelling
errors [11]: the most powerful approaches involve computing the frequency
of all n-grams over a certain length and using the frequency table to com-
pute the distance between documents. In this work the simpler technique of
looking for pre-determined n-grams has been employed.

4.4. PROCESSING PHASE 71

Compensation for the second problem is even simpler: words that are
likely to be mis-recognized by the OCR engine are included in the word list
in both spellings. For example, both scan and scar are included. They still
appear as distinct words to the classifier, in order to avoid over-generalization:
in the above example, for instance, scar is likely too generic to give mean-
ingful classification results, while protection and protectior are very likely to
be paired by the classifier.

4.4.2 Features

When text from the OCR engine becomes available, the following elements
are available to the processing phase in the current implementation:

• The raw HTML source of the page.

• The text extracted from the dynamic DOM of the page.

• The text recognized by the OCR.

• Metadata such as the URL, the remote IP address, the source of the
submission, the Alexa ranking of the domain, the encoding specified in
the HTTP headers, . . .

As mentioned in Section 4.3.1.1, the HTML source is passed to the python
BeautifulSoup library, a robust HTML parsing library that can reconstruct
a sensible DOM tree even from malformed document. This is necessary
both as a robustness measure and because in many cases even benign pages
don’t strictly adhere to the correct syntax for HTML. Text nodes are then
extracted from the constructed tree and the original text is retrieved.

4.4.2.1 Extracting words

After retrieving the textual content, we have to extract useful data for the
classifier. Very complex algorithms exist to classify text, ranging from text
distance metrics to systems that attempt to parse natural language and re-
construct the meaning of the text. Besides being very complex and CPU-
intensive, these methods also tend to be very fragile.

72 CHAPTER 4. THE INNER-EYE SYSTEM

As we have seen, OCR engines are prone to commit several errors. Zoning
errors are particularly detrimental to algorithms that are sensitive to the
ordering of text; moreover, the “correct” way to linearize text in the presence
of complex table and image-based layouts is subjective and even a human
reader could order the text of similar pages in different ways. Therefore, a
word-based approach was chosen: since with this method the ordering of the
text does not have any impact, zoning errors do not generally constitute a
problem.

Correct feature selection is also very important. The easiest way to build
a word-based classifier is to consider every possible word: this will feed the
classifier a large amount of irrelevant data, needlessly increase its complexity,
increase the likelihood of overfitting and decrease the overall performance of
the classifier. Our list of sensitive words (Sec. 3.6, Fig. 3.3 on page 49) serves
as a first selection that will filter out useless data.

In the current implementation Inner-Eye operates on two kinds of words:
exact word matching and n-gram matching. The kind of match is exposed
to the classifier, so that it can differentiate between the two.

4.4.3 Detecting obfuscation

The mere presence of a certain set of words can sometimes be enough to clas-
sify a page as malicious. However, this approach is prone to false positives.

As we have seen, the authors of scam and fake antivirus pages employ
obfuscation to evade code-based detection engines. The OCR-based detec-
tion implemented in Inner-Eye can not only easily defeat this obfuscation,
but can also turn it into an additional detection mechanism.

By comparing the number of occurrences of each sensitive word in the raw
source text (count_src), the dynamically-generated DOM tree (count_dom)
and the OCR-reconstructed text (count_ocr), the system exposes to the
classifier features that can reveal obfuscation.

The following possibilities arise:

count_dom > count_src
This case typically occurs when JavaScript-based obfuscation is em-

4.4. PROCESSING PHASE 73

Exact word occurrences

Page 1

adware
backdoor

cialis
health

infected
kamagra

levitra
pharmacy

pill
prescription

propecia
protection
protectior

replica
rogue
rolex

safety
scan
scar

security
shield

spyware
threat
trojan
viagra
virus
worm

0 1000 2000 3000 4000 5000 6000

wepawet spam1 alexa

Figure 4.7: Exact word occurrences grouped by source.

ployed. The raw code of the page looks like random garbage (or con-
tains decoy text to fool search engines), plus a small decoding script.
The malicious content will be decoded and added to the page at run-
time. This style of obfuscation is typical (and almost required to escape
detection) for drive-by download and plugin vulnerability attacks, but
is also commonly employed in fake antivirus pages.

count_ocr > count_dom
This case typically occurs in cases of image-based obfuscation. The
page will evade even sophisticated scanners that execute JavaScript
and parse generated text sections. False positives can occur: as a
way to work around platform limitations (e.g. the availability of fonts)
and browser differences, web designers sometimes use images to display
stylized text for titles, banners, etcetera.

74 CHAPTER 4. THE INNER-EYE SYSTEM

n-gram occurrences

Page 1

adware
backdoor

cialis
health

infected
kamagra

levitra
pharmacy

pill
prescription

propecia
protection
protectior

replica
rogue
rolex

safety
scan
scar

security
shield

spyware
threat
trojan
viagra
virus
worm
worr

0 1000 2000 3000 4000 5000 6000 7000 8000

alexa spam1 wepawet

Figure 4.8: N -gram word occurrences grouped by source.

count_ocr > count_src
This condition may indicate that both JavaScript based and image-
based exploits are in use.

count_dom < count_src
This case is relatively rare. A rule based on this condition would detect
text in comments or not yet added to the DOM tree. Since this text is
not visible to the user and cannot be used for obfuscation, this case is
not exposed to the classifier.

count_ocr < count_dom
This condition indicates element hiding. Modern web applications often
pre-load data in the DOM and visualize it only when necessary. Tab-
based interfaces are also implemented in this way. As this condition has
many legitimate reasons to occur and almost no potential for abuse, it
is not exposed to the classifier.

4.4. PROCESSING PHASE 75

count_ocr < count_src
Besides OCR errors, this condition can occur due to element hiding,
text in comments, etc. Since there is no potential for abuse, this case
is not exposed to the classifier.

Equal number of occurrences
This is the expected case for a page that does not perform obfuscation.
It has been observed that by hiding these cases from the classifier we can
exclude a good number of false positives while still catching all pages
that attempt obfuscation. Given the scarcity of malicious pages that
do not attempt any obfuscation, Inner-Eye does not currently consider
this case in the classification: the presence of a word causes features to
be exposed to the classifier only if obfuscation is also detected.

It can be interesting to mention that Inner-Eye’s detection system works
in pretty much the opposite way a SEO trick detection would. Search Engine
Optimization refers to a series of techniques to improve a site’s ranking in
search engines. SEO tricks include legitimate, benign practices such as en-
suring accessibility of all content, avoiding duplicates, structuring sites along
a clear hierarchy and other site construction guidelines. These practices are
widespread and their use is often recommended by the search engines them-
selves [23]. Questionable practices include attempts to artificially inflate the
page ranking by including content and links that will be visible to the search
engine (and potentially lure the bot to visit more of the website, give it a
higher ranking, include it in unrelated search result pages, . . .) but invisible
to the users.

Each feature employed by Inner-Eye has a descriptive name such as
“dom_vs_ocr viagra”: this feature is sensitive to the mismatch in the num-
ber of occurrences of the n-gram “viagra” in the DOM tree and in the OCR-
reconstructed text.

4.4.4 Classification

As the final step of the processing of a sample, Inner-Eye has to use the
features gathered and exposed in the previous phases to determine whether

76 CHAPTER 4. THE INNER-EYE SYSTEM

src_vs_ocr EX src_vs_dom EX src_vs_dom dom_vs_ocr dom_vs_ocr EX src_vs_ocr0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 4.9: Categories of features that will be exposed to the classifier and num-
ber of occurrences. Features with “EX” in the name correspond to exact word
matchings, the others to n-gram matchings.

the page is benign or a scam.
Due to their good performance in text classification tasks, ease of use

and resilience to overfitting, Inner-Eye employs an SVM-based classifier.
Each sample is represented as a point in the feature space. In the case

of webpage classification, for instance, each URL can be represented as a
vector with one coordinate for each possible obfuscated word and obfuscation
method. For example, coordinate dom_vs_ocr viagra will be one if the n-
gram “viagra” appeared more times in the text from the OCR than in the
one from the DOM tree. Alternatively, the value could be a real number
that takes into account the total number of occurrences versus the number
of obfuscated occurrences; while this may seem a good idea to reduce the
number of false positives, experimentation has shown that binary features
perform better in our case.

Since in our case each sample generally exhibits a small number of fea-
tures, it would be represented by a vector with many zeros and a few ones.

4.4. PROCESSING PHASE 77

To conserve space, a sparse representation is used both in the database and
in the input to the classifier.

1 15:1 21:1 24:1 25:1 26:1

Figure 4.10: Sparse representation of a sample URL from the spam dataset in lib-
svm format [12]. The first number is the label that will be used during the training
phase. The rest of the line represents the training vector (features src_vs_dom
cialis, src_vs_dom pill, src_vs_dom cialis EX, src_vs_dom levitra and
src_vs_dom viagra have a non-zero value for the sample.)

4.4.4.1 Support Vector Machines

The classification problem can be expressed as the division of the feature
space in regions that correspond to each classification label. If we limit
ourselves to a binary classification problem (scam or benign), one might try
to use a hyperplane to separate the two classification regions. Single layer
perceptrons are a possible implementation of this kind of linear classifier.

It is well known, however, that these simple classifiers can solve only
problems where the interesting regions are linearly separable in the feature
space. An important indication on how to overcome this limitation comes
from the Cover theorem [19], which in qualitative terms states that a good
way to make a problem space linearly separable is to map it (non-linearly, of
course) into a space with higher dimensionality.

The idea of mapping the original problem space to an intermediate space
where separation will be easier is the foundation of many existing classifiers.
Multi-layer perceptrons, for instance, are built with a “hidden” intermediate
layer which generally has more connections that the input and output layers,
which are constrained by the original problem statement. Since the number of
neurons in the hidden layer is generally fixed before training, one is confronted
with the problem of estimating the “true” dimensionality of the problem:
given too many neurons, the classifier may exhibit overfitting, given too

78 CHAPTER 4. THE INNER-EYE SYSTEM

few, the classifier may not be able to distinguish the classes. Moreover,
the internal representation of the data by the perceptron is generally not
meaningful to humans, therefore checking the internal consistency of the
model becomes very hard [8].

Support Vector Machines largely avoid these problems. Conceptually,
during the training phase the SVM finds the hyperplane that will divide
the space in the clearest possible way: this means solving the optimization
problem of finding the surface that will leave the widest gap between samples
belonging to the different classes.

Instead of optimizing exclusively with respect to the distance, which
may depend only on a few (possibly misclassified!) points and finding a
hard margin, modern SVM training methods usually associate a classification
score to each point and find a soft margin that takes into account more of
the training set and is resilient to noise and outliers. A parameter, generally
designated as C, controls the “softness” of the margin: a harder margin will
classify correctly most (all, in the case of a traditional hard margin) of the
points in the training set and risk overfitting. To select a good value for
C, we can test many different values and use cross-validation: at each step,
a different part of the training set is left out as a validation set and the
performance of the classifier is evaluated using those points.

SVM classifiers can be particularly efficient because the mapping of
points to the highly-dimensional space can be bypassed by using kernel func-
tions. The key observation is that the absolute value of the coordinates is not
important to classify a point: only its relative position with respect to other
points (as expressed, for instance, by the inner product of their coordinates)
must be known. Kernel functions directly compute the inner product without
actually determining the coordinates of the points in the high-dimensionality
space. Many different kernel functions can be used; in our case, a Gaussian
radial basis function has been used:

e−(γ ‖u−v‖)2

As suggested by the libsvm authors [20] the value of γ has been determined

4.4. PROCESSING PHASE 79

with the same procedure used to determine C.

-5 0 5 10 15

-14
-12
-10
-8
-6
-4
-2
 0
 2

training

Best log2(C) = 1 log2(gamma) = -3 accuracy = 95.8333%
C = 2 gamma = 0.125

"-"
 95.5
 95

 94.5
 94

 93.5
 93

log2(C)

log2(gamma)

Figure 4.11: Grid search conducted by libsvm for the C and γ parameters, show-
ing the correct classification rate as determined by cross-validation.

Due to timing and data availability constraints, classification has been
performed only for scams. The training set employed for the grid search
displayed in Figure 4.11 consists of approximately half of the spam and alexa
datasets, with binary features and no scaling. The grid search determined
C = 2 and γ = 0.125 to be good values for the SVM.

With these parameters, the classifier has a final accuracy rate of over
97.2% on the training set. The rest of the spam and alexa datasets (never
seen by the classifier) has been used as a final testing set. On the testing set,
the classifier achieved an accuracy rate of 96.5%, confirming the soundness
of the procedure used.

80 CHAPTER 4. THE INNER-EYE SYSTEM

Training set Accuracy: 97.2% (887 / 912)

Testing set Accuracy: 96.5% (965 / 1000)

Figure 4.12: Accuracy for the SVM classifier (Gaussian RBF kernel, C = 2,
γ = 0.125).

Chapter 5

Building a scalable system

Image processing is a demanding task in terms of computing power. Since
many of the promising heuristics presented in Chapter 3 are image-based,
one may question their real-world applicability.

Inner-Eye, for instance, relies on OCR, a notoriously expensive tech-
nique. OCR-based spam detection systems have been proposed in the past
[18, 7], but their implementation has always been limited to offline analy-
sis. On-line detection systems operate on each item (emails, in the above
cases) as it passes through the system; items are not allowed to reach users
until they have been classified as benign. Latency is the most important
property in this case, and the complexity of the detection system is severely
constrained by it.

The target of Inner-Eye is not the on-line processing of web-pages or
binaries. Given the real-time nature of web traffic, it is very hard to cre-
ate detectors that do not impose an unacceptable performance tax on the
network; deep-packet inspection systems, for example, typically require spe-
cialized hardware. However, Inner-Eye still aims to have good performance,
both for testing and training needs (a large number of pages has been ana-
lyzed in the course of this work) and for future applications (as part of the
Wepawet system, for instance). The next sections will elaborate on the per-
formance limits of the current system and on how it handles a large volume
of pages to analyze.

81

82 CHAPTER 5. BUILDING A SCALABLE SYSTEM

5.1 Latency

Network latency is a significant limiting factor for the performance of the cur-
rent implementation of the system: besides pre-caching the page elements, no
workarounds exist for this problem. Moreover, servers involved in scams of-
ten become unresponsive, both because of takedowns and because fraudsters
abandon them: network timeouts are to be expected.

To better observe the page and allow initial JavaScripts events to fire,
the capture system also includes an artificial delay of a couple of seconds
before capturing the screenshot of the page. This delay is introduced after
the browsers signals that it has finished loading the page; for slow servers
this can be a relatively long time1.

Finally, the commercial OCR solution currently used for Inner-Eye can
take as long as 3 seconds to analyze a complex webpage.

5.2 Parallelism

Latency is only one of the factors that influence performance. Even if the
analysis of a single webpage can take a long time, a good overall speed can
still be maintained by processing several pages in parallel. Care must be
taken to ensure that the performance benefits of a parallel infrastructure
are fully realized and that no unnecessary delays and interdependencies are
introduced, while still performing the amount of synchronization needed to
maintain a consistent state.

Numerous parallel programming paradigms exist. Operating systems, for
instance, support the concurrent execution of multiple tasks by virtualizing
the CPU and maintaining the illusion of a dedicated CPU and memory space
for each process; they also provide inter-process communication facilities so
that multiple processes can cooperate in carrying out a complex task. Many
platforms also allow programs to spawn multiple threads in the context of a

1Browsers typically have relatively long timeouts. While capturing pages in the alexa
dataset, it has been observed that many sites had very heavy homepages that took several
seconds to load even on a very fast connection. Asian websites were particularly affected:
latency and poor international connectivity issues probably exacerbate the problem.

5.3. VIRTUALIZATION 83

single process: threads share the same memory space but execute on different
virtual CPUs.

5.3 Virtualization

Threads and processes allow code to use the existing resources in a more
efficient way. Besides being able to exploit multiple core systems, long op-
erations (such as network communication) performed by one thread do not
block others. Ideally, the processor is never idle: as one threads awaits the
completion of a background task, others run and perform useful work. In-
deed, purely event-base programming paradigms exist: in this model, a single
thread of execution is shared by many small pieces of code, each triggered
by a specific event (timers, user action, completion of network requests, . . .);
JavaScript is a prominent language that adopts this model.

The first implementations of multiprocessing supported only cooperative
multitasking: in order to share the CPU with other tasks, each process had to
explicitly save its state and relinquish control to the Operating System before
the CPU could be allocated to other processes. While the OS API could hide
much of this complexity by automatically performing these operations when-
ever a system call was performed, programs still had to periodically poll the
OS during long computations that would not otherwise require system calls.
Moreover, a rogue or defective process could hang the entire system. Mod-
ern operating systems completely virtualize the CPU: all context switches
are performed automatically and code can be actually written as if a fully
dedicated CPU existed for each process.

One of the benefits provided by multiprocessing is isolation. Each process
is started in a clean memory space and has no access to information outside it,
nor can be influenced by other processes running on the same machine. OS-
mediated interactions are an obvious exception to this rule, and the OS must
be careful to enforce security policies correctly. Ideally, a malicious program
started with very restrictive privileges would be innocuous and unable to
influence the system in any way. Modern browsers run dangerous tasks in

84 CHAPTER 5. BUILDING A SCALABLE SYSTEM

specifically created, unprivileged, “sandboxed” processes, in an attempt to
mitigate the impact of vulnerabilities that might be present in the code.

Sandboxing processes, however, is a complex task. Unless the code has
been specifically written with sandboxing in mind, it will likely rely on the
rich environment provided by the default OS permission model, which typ-
ically includes access to the network and to at least part of the filesystem.
Once again, virtualization can help solve the problem. Through special hard-
ware support or via dynamic recompilation, hypervisors can create multiple
virtual machines on a single physical computer. Each machine runs its own
OS and can be completely isolated from other VMs running on the same
computer.

5.4 Exploiting virtualization

Inner-Eye exploits virtualization in many ways. First of all, each module runs
in a separate process. This allows the system to take advantage of multi-core
processors. Moreover, each stage of the analysis is only loosely coupled with
the preceding and the following one. This allows easy distribution of the
system over multiple virtual or physical machines.

The modules are interconnected as follows:

Submission
An automated submission system feeds URLs retrieved from Weapawet
into the capture module. Submissions from pre-constructed lists (such
as the Alexa topsites list) is also supported. Each URL is tagged with
source information and becomes a task.

Task descriptions are passed to a central queue manager. RabbitMQ2

has been chosen as the central message broker in the current imple-
mentation. RabbitMQ, together with the Celery3 helper library, of-
fers a completely transparent implementation of the Advanced Message

2http://www.rabbitmq.com/
3http://celeryproject.org/

http://www.rabbitmq.com/
http://celeryproject.org/

5.4. EXPLOITING VIRTUALIZATION 85

Queuing Protocol (AMQP). Manual submissions can optionally bypass
the message queue and go straight to the capture module.

Capture
The first thing the capture script has to do is to obtain a unique iden-
tifier for the analysis task being conducted. This ID will be used to
associate capture, OCR and processing information. Since URL data
has to be saved by the capture module in the database, we take ad-
vantage of the write operation to let the database generate a unique
identifier for us: the code does not need any synchronization beyond
the one natively implemented by the database. (Databases such as
MySQL provide AUTO_INCREMENT primary key fields and allow clients to
atomically retrieve the ID associated with the most recently-performed
insertion.)

The rest of the capture procedure can then be performed as described
in Section 4.3. The capture script, the instrumented browser and the
queue client are ready for deployment in separate virtual machines.

Besides communicating with the central database and the message
queue, a common file storage for the captured data exists. In the
current implementation a single file share is used, but (since the ID
is already known at this point) it could be easily split over multiple
storage spaces.

OCR
The commercial OCR solution currently used for Inner-Eye can auto-
matically monitor a directory and perform OCR on new files as they
are created. The OCR engine also runs in a separate virtual machine (a
single one in the current implementation, due to license restrictions).

Processing
The completion of OCR triggers the final stage of processing. Features
will be extracted from the data produced by the previous stage and
inserted into the database; the classifier can also run and produce a
verdict in this stage, if desired.

86 CHAPTER 5. BUILDING A SCALABLE SYSTEM

Notice how each stage can proceed at its own pace without interference
from the others. Each stage can have one or multiple workers, implemented
as processes on the same machine or on different machines.

5.5 Scalability

The features described in the previous paragraph are the key to building a
scalable system. A scalable system can easily be adapted to increased load
(e.g. more pages, or pages that take longer to analyze) by increasing the
available resources.

Should the processing stage of Inner-Eye prove to be too slow to keep
up with the previous stages, for instance, more processing workers can be
created to share the workload.

During the course of this work, the slowest and most problematic stage
has been the capture, mainly due to the intrinsically unpredictable latency
introduced by network and rendering operations. Since the capture system
is the only part of Inner-Eye exposed to potentially malicious code, running
it in disposable virtual machines seemed a natural move.

The RabbitMQ central broker keeps track of the state of each worker VM.
As tasks arrive, they are automatically distributed to the available workers.
The system also monitors the performance of the workers and keeps statistics;
fast workers also have the option to pre-fetch tasks from the queue so that
they are always performing useful work.

5.6 Cloud-based workers

The scalability of the system comes from the ability to painlessly add new
workers in order to handle load spikes or increased demand on the system.
During the analysis of the alexa dataset, for instance, additional workers
were used so that the system could continue analyzing URLs provided by
Wepawet without delay.

5.6. CLOUD-BASED WORKERS 87

Obviously, it would be impractical to acquire new physical machines
and configure them from scratch every time additional capacity was needed.
Moreover, if resources are added to cope with a load spike, it would be
wasteful to permanently commit them to a system that has no ongoing need
for them.

These considerations motivated developers to create the so-called cloud
computing paradigm: processing power is seen as a service that can be pro-
vided in a flexible way. For instance, customers can purchase CPU time
and network resources from large services such as Amazon EC2; no advance
reservation is needed, and users simply pay for what they use.

Cloud computing services are usually provided by a pool of physical ma-
chines that run several virtual machine instances. A central manager keeps
track of the resources in current use, keeps logs and accounting and allocates
pool-wide shared resources such as IP addresses. Thanks to system virtual-
ization, the manager can move instances among different physical machines,
spawn new ones if requested, etcetera.

Instances are created from stored system images. A system image cap-
tures the state of a virtual machine; generally, only the hard drive contents
are needed. When the user requests a new instance, the cloud manager cre-
ates a new virtual machine with the requested features (amount of RAM,
number of processors, etc.) and a copy of the image as hard drive. The VM
will then boot up and reconfigure itself with the new name and IP address
assigned by the cloud manager: after this, the machine is ready to perform
useful work for the project.

A system image has been constructed for the capture module of Inner-
Eye. The workers automatically update their own system software, connect
to the centralized file store, fetch the updated code for the capture system
and register themselves with the queue manager. Configuration changes can
be made without modifying the base image thanks to Puppet4, an event-
based remote configuration tool. A secure shell is also exposed by the worker
in case manual monitoring is needed.

4http://puppetlabs.com

http://puppetlabs.com

88 CHAPTER 5. BUILDING A SCALABLE SYSTEM

The workers have been deployed on a locally-administered cloud man-
aged by Eucalyptus 5, an open-source implementation of the Amazon EC2
platform, where they shared processing resources with several other projects.

5http://open.eucalyptus.com/

http://open.eucalyptus.com/

Chapter 6

Conclusions

By exploring the threats posed to users by modern malware authors and
fraudsters, this work has revealed a trend towards the exploitation of the “hu-
man factor” in computing. In the first chapters, we have seen how scammers
can easily build profitable malware that escapes common existing detection
methods.

Some possible detection methods for computer frauds have been explored,
with a particular focus on rogue AV and pharmacy scams. As information
is mainly presented visually, image-based techniques have been identified as
the most promising way to approach the problem. Instead of succumbing to
obfuscation tricks, these methods are often able to leverage them to improve
their efficacy.

In particular, an obfuscation-sensitive method based on a list of trigger
words has been chosen as the basis of the Inner-Eye detection system. A
complete analysis system has been implemented that is safe, accurate and
efficient in capturing and analyzing web pages. The system’s classifier, based
on a Support Vector Machine, has been trained to detect pharmacy scams
with very good accuracy.

As a final remark, it should be restated that while eliminating all com-
puter frauds may not be a feasible goals, the bar is currently very low for
fraudsters to make a profit from their illicit activities. Forcing criminals to
develop more complex and more costly systems could put many of them out

89

90 CHAPTER 6. CONCLUSIONS

of business and, by removing some of the economic incentives, deter potential
scammers from dedicating themselves to these activities.

6.1 Future work

While the current implementation of Inner-Eye targets web-based pharmacy
scams, its design should lend itself to the addition of more detection capa-
bilities.

6.1.1 Detecting fake AV webpages

A very limited amount of rogue antivirus webpages was available for sub-
mission to the system, too few to meaningfully train an automated classifier.
Finding more (and more varied) web-based rogue antivirus scams is the pre-
requisite for the extension of Inner-Eye to target this type of fraud. A simple
text-based rogue antivirus detector has been recently added to the Wepawet
system and could provide useful data for this task.

The current design of the system should not need particular modifications
to handle this task.

6.1.2 Detecting fake AV binaries

As described in Section 4.3.2 on page 65, an almost complete capture module
for rogue antivirus executables has been implemented during this work.

As binary obfuscation techniques differ substantially from those used
for malicious web pages, the heuristics employed by Inner-Eye will need
amending. Simpler, purely text-based detection methods could be employed.
More interesting detection avenues could be opened by the application of the
techniques proposed in the next paragraphs.

An additional challenge that arises when dealing with rogue AV binaries
is that real, legitimate, security products often use questionable marketing
techniques such as exaggerating the risks faced by the user if she uses only the
free functionality-limited version of an antivirus, or if an integrated security

6.1. FUTURE WORK 91

suite (that may include additional elements such as firewalls and backup
services) is not in use. Running an antivirus on a clean machine should, in
theory, easily allow discrimination of real and fake antiviruses; unfortunately,
those practices complicate the matter and create ample opportunity for false
positives.

6.1.3 Detecting graphical elements

One of the most promising detection heuristics described in Chapter 3 in-
volves the recognition of “scary” graphical elements. This technique is ex-
pected to be relatively powerful and equally applicable for the detection of bi-
nary and web-based rogue antiviruses. However, operating on low-resolution
images has proven hard.

Possible ways to tackle the issue include a two-phase method in which
a simple image-wide algorithm (such as line or edge detection) is applied
first. Heuristics applied to the result of the first phase could be able to point
to a number of candidate positions for the sensitive graphical elements. If
the number of possible positions is low enough, it could be feasible to use
simple matching methods (possibly repeated to compensate for scale and
offset mismatches) that would be too complex to run on the entire image.

Color information is intuitively expected to play a big part in any object
recognition algorithm that is suited for this task.

6.1.4 Improvements to the current heuristic

The current approach based on sensitive words has proved reasonably accu-
rate for the detection of pharmacy scams. Nevertheless, some improvements
could be necessary.

In particular, a traditional distance-based n-gram based text classifier
could be useful to improve accuracy and supplement the manually con-
structed list of sensitive words.

92 CHAPTER 6. CONCLUSIONS

6.1.5 Other improvements

Heuristics based on network features have not been implemented in Inner-
Eye, even though the current system is already equipped to check for the
Alexa rank of sites. While network-related heuristics have proven useful for
the detection of on-line scams, they have been disregarded in favor of more
general approaches. Nevertheless, they could provide very useful data for the
classifier.

While implementing the capture module for Windows executables, it has
become apparent that modern malware can expect (and even require) user
interaction to activate its malicious characteristics. It could be useful to sim-
ulate similar interactions with web pages, in the hope to expose more content
to the capture module. A possible approach would be to detect (through in-
trospection) the click-sensitive elements in the web page and randomly simu-
late mouse events for some of them. A more sophisticated approach could be
to model which areas of the page would be more likely to be clicked by the
user. Additionally, analysis of the JavaScript control flow and event graph
could be used to identify events that would trigger interesting behavior; this
would allow the system to simulate only the most promising interactions.

Bibliography

[1] Microsoft Security Intelligence Report, Volume 11. http://www.
microsoft.com/security/sir/, 2011.

[2] H.B. Aradhye, G.K. Myers, and J.A. Herson. Image analysis for effi-
cient categorization of image-based spam e-mail. In Document Analysis
and Recognition, 2005. Proceedings. Eighth International Conference on,
pages 914–918. IEEE, 2005.

[3] P. Azad, T. Asfour, and R. Dillmann. Combining harris interest points
and the SIFT descriptor for fast scale-invariant object recognition. In
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-
tional Conference on, pages 4275–4280. IEEE, 2009.

[4] K. Baumgartner. Malvertizing continued - spotify’s ad networks
outed. http://www.securelist.com/en/blog/6158/Malvertizing_
Continued_Spotify_s_Ad_Networks_Outed, 2011.

[5] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. Computer Vision–ECCV 2006, pages 404–417, 2006.

[6] U. Bayer, C. Kruegel, and E. Kirda. Anubis: Analyzing unknown bina-
ries, 2009.

[7] A. Bergholz, G. Paass, F. Reichartz, S. Strobel, M.F. Moens, and
B. Witten. Detecting known and new salting tricks in unwanted emails.
In Fifth Conference on Email and Anti-Spam, CEAS, pages 21–22, 2008.

[8] M. Berthold and D.J. Hand. Intelligent data analysis: an introduction.
Springer Verlag, 2003.

93

http://www.microsoft.com/security/sir/
http://www.microsoft.com/security/sir/
http://www.securelist.com/en/blog/6158/Malvertizing_Continued_Spotify_s_Ad_Networks_Outed
http://www.securelist.com/en/blog/6158/Malvertizing_Continued_Spotify_s_Ad_Networks_Outed

94 BIBLIOGRAPHY

[9] E. Blanzieri and A. Bryl. A survey of learning-based techniques of email
spam filtering. Artificial Intelligence Review, 29(1):63–92, 2008.

[10] R. Böhme and T. Holz. The effect of stock spam on financial markets.
Information Security, (June):1–24, 2006.

[11] W.B. Cavnar and J.M. Trenkle. N-gram-based text categorization. In
Proceedings of the Annual Symposium on Document Analysis and Infor-
mation Retrieval (SDAIR), pages 161–175, 1994.

[12] C.C. Chang and C.J. Lin. LIBSVM: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology
(TIST), 2(3):27, 2011.

[13] T.M. Chen and J. Robert. Statistical methods in computer security,
chapter The Evolution of Viruses and Worms, page 265. CRC Press,
2005.

[14] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J.C. Mitchell.
Client-side defense against web-based identity theft. In Proceedings of
the 11th Annual Network and Distributed System Security Symposium
(NDSSâĂŹ04), 2004.

[15] M. Cova, S. Ford, C. Kruegel, and G. Vigna. Wepawet, 2009.

[16] M. Cova, C. Leita, O. Thonnard, A. Keromytis, and M. Dacier. Gone
rogue: An analysis of rogue security software campaigns. In Computer
Network Defense (EC2ND), 2009 European Conference on, pages 1–3.
IEEE, 2009.

[17] A. Decker, D. Sancho, L. Kharouni, M. Goncharov, and
R. McArdle. A study of the pushdo / cutwail botnet.
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/
securitylibrary/study_of_pushdo.pdf, 2009.

[18] G. Fumera, I. Pillai, and F. Roli. Spam filtering based on the analysis of
text information embedded into images. Journal of Machine Learning
Research, 7:2699–2720, 2006.

http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/study_of_pushdo.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/study_of_pushdo.pdf

BIBLIOGRAPHY 95

[19] S. Haykin. Neural networks: a comprehensive foundation. Prentice-Hall,
1999.

[20] C.W. Hsu, C.C. Chang, C.J. Lin, et al. A practical guide to support
vector classification, 2003.

[21] BitTorrent Inc. Security Incident (Updated 9/14). http://blog.
bittorrent.com/2011/09/13/security-incident/, 2011.

[22] Google Inc. Google Safebrowsing API. http://code.google.com/
apis/safebrowsing/.

[23] Google Inc. Google Webmaster guidelines. http://www.google.com/
support/webmasters/bin/answer.py?hl=en&answer=35769, 2011.

[24] E. Kirda and C. Kruegel. Protecting users against phishing attacks. The
Computer Journal, 49(5):554–561, 2006.

[25] C. Lioma, M.F. Moens, J.C. Gomez, J. De Beer, A. Bergholz, G. Paass,
and P. Horkan. Anticipating Hidden Text Salting in Emails. 2008.

[26] D.G. Lowe. Object recognition from local scale-invariant features. In
Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-
tional Conference on, volume 2, pages 1150–1157. Ieee, 1999.

[27] E. Mendoza, J. Manuel, J.D. Torre, and R.D. Paz. Unmask-
ing FAKEAV. http://us.trendmicro.com/imperia/md/content/us/
trendwatch/researchandanalysis/unmaskingfakeav.pdf.

[28] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting spam
web pages through content analysis. In Proceedings of the 15th interna-
tional conference on World Wide Web, pages 83–92. ACM, 2006.

[29] H. O’Dea. The modern rogue-malware with a face. In Virus Bulletin
Conference, 2009.

[30] Nigerian Code of Law. Nigerian criminal code act, chapter 38.

http://blog.bittorrent.com/2011/09/13/security-incident/
http://blog.bittorrent.com/2011/09/13/security-incident/
http://code.google.com/apis/safebrowsing/
http://code.google.com/apis/safebrowsing/
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35769
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=35769
http://us.trendmicro.com/imperia/md/content/us/trendwatch/researchandanalysis/unmaskingfakeav.pdf
http://us.trendmicro.com/imperia/md/content/us/trendwatch/researchandanalysis/unmaskingfakeav.pdf

96 BIBLIOGRAPHY

[31] M.A. Rajab, L. Ballard, P. Mavrommatis, N. Provos, and X. Zhao. The
nocebo effect on the web: an analysis of fake anti-virus distribution.
In USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2010.

[32] J. Segura. Fake AV network steps up its game with rootkit.
http://blogs.paretologic.com/malwarediaries/index.php/2011/
08/19/fake-av-network-steps-up-its-game-with-rootkit/, 2011.

[33] J. Sobrier. The most common obfuscation techniques in
fake AV pages. http://research.zscaler.com/2011/05/
most-common-obfuscation-techniques-in.html, 2011.

[34] Steven K. XyliBox Blog. http://xylibox.blogspot.com/.

[35] B. Stone-Gross, R. Abman, R.A. Kemmerer, C. Kruegel, D.G. Steiger-
wald, and G. Vigna. The underground economy of fake antivirus soft-
ware. Proc.(online) WEIS, 2011.

[36] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my botnet:
Analysis of a botnet takeover. In Proceedings of the 16th ACM confer-
ence on Computer and communications security, pages 635–647. ACM,
2009.

[37] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. The Underground
Economy of Spam: A Botmaster’s Perspective of Coordinating Large-
Scale Spam Campaigns, page 4. USENIX, 2011.

[38] K. Taghva, R. Beckley, and J. Coombs. The effects of OCR error on the
extraction of private information. In Document Analysis Systems, pages
348–357, 2006.

[39] J. Von Neumann and A.W. Burks. Theory of self-reproducing automata.
1966.

http://blogs.paretologic.com/malwarediaries/index.php/2011/08/19/fake-av-network-steps-up-its-game-with-rootkit/
http://blogs.paretologic.com/malwarediaries/index.php/2011/08/19/fake-av-network-steps-up-its-game-with-rootkit/
http://research.zscaler.com/2011/05/most-common-obfuscation-techniques-in.html
http://research.zscaler.com/2011/05/most-common-obfuscation-techniques-in.html
http://xylibox.blogspot.com/

BIBLIOGRAPHY 97

[40] L. Wenyin, G. Huang, L. Xiaoyue, X. Deng, and Z. Min. Phishing web
page detection. In Document Analysis and Recognition, 2005. Proceed-
ings. Eighth International Conference on, pages 560–564. IEEE, 2005.

[41] Andrew GWest, Jian Chang, Krishna Venkatasubramanian, Oleg Sokol-
sky, and Insup Lee. Link spamming wikipedia for profit. In CEAS 11
Proc of the 8th Annual Collaboration Electronic Messaging AntiAbuse
and Spam Conference, 2011(September):152–161.

	Introduction and motivations
	Extremes meet: crime and simplicity
	Spamming
	Scams
	Scareware

	How to protect users

	Malware and computer scams
	Propagation methods
	Spam
	Collecting spam messages

	Browser and OS vulnerabilities
	Search engine result poisoning
	Malvertisement

	Payloads
	Fake antivirus programs
	Other scareware frauds
	Common scams and frauds

	Detecting frauds
	Network-based detection
	Exploiting previously known information
	Network properties

	Visual similarity
	Image analysis
	Sensitive image elements
	Text-based detection
	Sensitive words
	Possible evasion techniques
	Choosing the words

	The Inner-Eye system
	Overview
	Automated submission and training
	The benign dataset
	Alexa topsites

	The spam dataset
	The Wepawet dataset

	The capture system
	Capturing webpages
	Robust handling of character data

	Capturing Windows executables
	Simulating user interaction

	Processing phase
	Optical Character Recognition
	Mitigating OCR errors

	Features
	Extracting words

	Detecting obfuscation
	Classification
	Support Vector Machines

	Building a scalable system
	Latency
	Parallelism
	Virtualization
	Exploiting virtualization
	Scalability
	Cloud-based workers

	Conclusions
	Future work
	Detecting fake AV webpages
	Detecting fake AV binaries
	Detecting graphical elements
	Improvements to the current heuristic
	Other improvements

	Bibliography

