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Università degli Studi di Pisa

Dipartimento di Fisica ”E.Fermi”

Tesi di Dottorato

Dottorato di Ricerca in: Fisica – Ciclo XXIII (2008)

SSD – FIS/03

Development of a stabilized Ti:Sa

frequency comb for frequency

comparisons at high stability in the

optical region

Candidato:

Denis Sutyrin

Supervisore: Coordinatore:
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Abstract

This dissertation describes the development of a self-referenced optical frequency

comb (OFC) based on a Ti:Sa femtosecond (fs) laser, to be employed in frequency

comparisons between a strontium optical lattice clock and other frequency refer-

ences, both in the radio-frequency (RF) and in the optical domain.

The Ti:Sa mode-locked laser, which employs external fiber broadening (EB)

for the generation of octave-spanning spectrum, has been stabilized by locking an

OFC tooth to a clock laser with high spectral purity, operating at 698 nm and

resonant with the clock transition 1S0-
3P0 in neutral strontium atoms.

The frequency stability of this EB OFC has been tested both in the RF domain

by comparison with a high-quality quartz oscillator slaved to the global positioning

system (GPS) signal, and in the optical domain with a second stabilized diode laser

at 689 nm slaved at long term to the intercombination transition 1S0-
3P1 in atomic

strontium.

We perform a frequency noise and intensity-related dynamics characterization

of the free-running fs Ti:Sa EB OFC and implement these results for optimizing

the phase–lock of the OFC to a Hz-wide 698 nm semiconductor laser. Based on

the frequency noise of the beatnote between the clock laser and corresponding EB

OFC tooth fb698 we expect that the short term frequency stability of the 698 nm

clock laser is then transferred to each tooth of the octave-spanning EB OFC.

Moreover, the noise transfer processes between the pump laser and the Ti:Sa

laser have been studied in detail, both comparing the resulting frequency noise

of the EB OFC output spectrum with a single-mode Coherent Verdi V5 and a

multi-mode Spectra Physics Millennia Xs 532 nm pump lasers. In particular, in

the latter case we demonstrate that the implementation of an additional control

loop for the stabilization of carrier-envelope offset (CEO) frequency fCEO allowed

us to stabilize this signal at mHz level, that is compatible with fCEO stabilization

vii



results with the single-mode pump laser case.

Moreover, we show that, with our optical standard operated at a wavelength

698 nm the impact of fCEO frequency noise on the frequency noise of any EB OFC

tooth is negligible when compared with the frequency noise of the fb698.

Despite the OFCs are used typically for precision frequency measurements,

we demonstrate an approach to perform an absolute frequency measurement of

unstable frequency by the EB OFC.

Most of this thesis is devoted to the EB OFC. However, I also present char-

acteristics and our first stabilization results of the OFC working at quasi octave-

spanning (QOS) regime.
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Chapter 1

Introduction

The creation and application of OFCs for precision measurements are the results

of investigations and developments in the field of optical frequency measurement

systems. Therefore, I would like to start describing in Sect. 1.1 the idea of the

development of such systems. Sect. 1.2 describes investigations about detailed

study of OFCs itself. While in Sect. 1.3 I focus on the historical results to create

OFC and implement for frequency measurements.

1.1 The development of optical frequency mea-

suring systems

The invention of the laser [1] made a revolution in many fields of science: spec-

troscopy, material processing, photochemistry, microscopy etc. and also in mili-

tary, medicine and industry. Our interest is the laser impact on Metrology.

Heterodyne beatnotes experiments between independent lasers showed that

lasers could have an excellent spectral and spatial coherence with relatively narrow

linewidths, δν, and correspondingly low fractional uncertainty, δν/ν0, where ν0 is

the atomic transition frequency. The stability of frequency standard in the optical

region potentially can be better than in microwave due to the fact that Allan

deviation is determined as

σy(τ) =
δν(τ)rms

ν0
=

1

πQ

√
Tc

2N0τ
(1.1)

1



Introduction

where δν(τ)rms is the measured frequency fluctuation, Tc is the cycle time (i.e.,

the time required to make a determination of the line center), N0 is the number

of participating particles (atoms), τ is the total averaging time, Q = ∆ν/ν0 is the

resonance quality factor of an optical clock transition.

Due to its high frequency, the practical implementation of optical standard

has a significant technical challenge. This is because an absolute frequency mea-

surement must be compared with the primary standard, which since 1967, is the

hyperfine transition of a cesium atom with frequency of about 9 GHz. Optical

standards have frequencies ∼50 000 times higher. There were no devices that

could link directly microwave and optical regions.

At the beginning, for solving this task, the natural method was to start with

the highest possible frequency from the oscillator, that can be coherently controlled

and linked to the primary standard and then step by step multiply its frequency

up to the optical region by using different types of nonlinear devices.

For this approach were developed new techniques of frequency multiplication

that can work from microwave to IR region. Practically, from 1960 up to 1990,

this approach was realized by using klystrons or backward wave oscillators for

high frequency generation (up to 300 GHz). These devices could be phase–locked

to microwave standard through low-frequency microwave mixing techniques and

quartz crystals. The frequency multiplication step from hundreds of GHz to IR

region demanded new methods and devices. To avoid the use of too many stable

oscillators to span the electromagnetic spectrum, new devices should have had

the highest possible frequency multiplication factor. Moreover, they had to be

able to work in the microwave and IR regions. The search of such devices give us

three interesting devices: whisker-contacted Schottky diodes, point-contact Metal-

Insulator-Metal (MIM) diodes and superconducting Josephson mixers [2–5].

With new nonlinear mixers was possible to reach the 2-5 THz range. Above

this region it was necessary to use FIR lasers with which was possible to reach

∼30 THz. To coherently generate a visible laser frequency near 500 THz starting

from a 1 THz source and relying only on successive stages of second-harmonic

generation would require 2N = 500, or N ≈ 9, stages. With judicious choices of

FIR lasers and mixers it was possible to achieve higher-order mixing (e.g. ×10

or ×12) in the THz range. This meant that is was possible to jump in a single

step from a FIR laser at ∼1 THz to another FIR laser at ∼10 THz. With two

2
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1.1 The development of optical frequency measuring systems

additional mixing orders, the 10 THz signal can be multiplied up to the 30 THz

frequency of the convenient, powerful and stable CO2 lasers [6].

At frequencies above 30 THz, MIM diode mixers are suitable for some mixing

and harmonic generating applications (e.g. 3 × 30 THz = 90 THz), but nonlin-

ear optical crystals can be very effective alternatives because they can be phase-

matched for efficient mixing of specific desired frequencies/wavelengths.

Unfortunately, at higher frequencies no convenient nonlinear mixing elements

were found that could generate continuous wave (CW) high harmonics. Lacking

that, the mixing orders were necessarily low, and optical frequency chains required

several stable laser sources spanning the frequency range and all locked together

with phase-locked-loops - hence the analogy of a chain with interlocking loops.

Several big labs worked on harmonic optical frequency chains that used these ap-

proaches to reach important optical frequency references directly from microwave

frequency sources. They continued to develop and refine optical frequency mea-

surement methods and synthesis chains that were used to measure and evaluate

optical frequency standards [4, 7–19].

Because of their complexity and specialized applications, only a small number

of optical frequency chains were ever constructed. One of such setup is presented in

Fig. 1.1. This was the frequency chain developed by Chebotayev’s group at Novosi-

birsk and configured to operate as an optical time scale, i.e. an ‘optical clock’.

The frequency chain was controlled from a CH4 frequency standard at 88 THz

(3.39 µm) at the top and delivered an output at a RF/microwave frequency [20].

A novel way around the problem of the lack of any efficient nonlinear mixers for

low-power CW lasers was the concept from Klement’ev et al. [21] who proposed

using resonant interactions in atoms to efficiently sum three optical frequencies

to generate a fourth. Specifically, they proposed using Ne atomic resonances to

sum the well-known He-Ne laser lines at 3.39 µm, 1.15 µm and 1.5 µm in order to

generate the 633 nm laser line as shown in Fig. 1.2. The advantage is that resonant

atomic nonlinear mixing can be 8 to 10 orders of magnitude stronger than that

found in bulk nonlinear optical materials. The obvious disadvantage is that the

optical mixing is not broadband, and so only very specific frequencies can be

generated. The four-photon optical mixing approach of Fig. 1.2 was demonstrated

in Russia [21] and was also used at NIST for the measurement of the 633 nm He-Ne

frequency [3].

3
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Figure 1.1: Harmonic optical frequency chain. It was developed by Chebotayev’s

group at Novosibirsk and configured to operate as an optical time scale, i.e. an

”optical clock”. The yellow boxes are sources, the green boxes are phase-locked

loops, the red circles are harmonic mixers.

Demonstration of optical molecular clocks were done in Novosibirsk [23] and

at PTB [7]. Both used He-Ne/CH4 optical frequency standard. Optical clock on

I2 was demonstrated in [24], and on cold atoms/ions in [25–28].

Great improvements of optical clock frequency uncertainty were at the begin-

ning of 2000. These were the results of optical standards referred to laser cooled

4
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1.2 Basic principle of the optical frequency measurements using an
OFC

Figure 1.2: Using atomic resonances for optical mixing. It was proposed by Kle-

ment’ev et al. [21] and first demonstrated in USSR using the Ne transitions shown

here. This scheme was also implemented by a team at NBS using 8 m long He-Ne

gain tubes in a measurement of the frequency of the 473 THz (633 nm) laser [3,22].

and trapped atoms/ions and of the developments of fs OFCs. Cold atoms/ions

were developed in many laboratories around the world and fs OFC technology

provides practical optical synthesizers and frequency dividers.

1.2 Basic principle of the optical frequency mea-

surements using an OFC

In 1998, Hänsch and co-workers introduced a revolutionary approach vastly simpli-

fying optical frequency measurements. By using the modes of optical frequencies

emitted by a mode-locked fs laser as a ruler, they were able to measure differ-

ences of several tens of THz between laser frequencies [29–31]. Next several ex-

periments [32–36] definitely pointed out that, by establishing a phase-coherent

link between optical frequencies and the radio frequency domain, the modes of a

mode-locked fs laser could be used as an extremely precise and absolute ruler in

frequency space.

The emission of a mode-locked fs laser is formed by an ideal regular train

of optical pulses and its optical spectrum presents a series of repeating, equally

5
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spaced spectral lines.

The spacing of the spectral lines of such OFC is given by the repetition rate

frep at which pulses are emitted from the mode-locked laser, while the phase shift

∆ϕCEO between the pulse carrier and the pulse envelope each round trip determines

the overall offset of the comb elements fCEO = frep(∆ϕCEO/2π). The relationship

between these two parameters and the nth element of the OFC is given by the

simple expression

νn = nfrep ± fCEO (1.2)

where n ≈ 106. Here and later in the thesis, the symbol ν refers to optical

frequencies, while f - to RF frequencies. The unknown absolute optical frequency

of a cw laser, whose frequency lies close to OFC tooth n, can be determined by

the equation

νcw = νn ± fb = nfrep ± fCEO ± fb (1.3)

where fb is the beatnote between cw laser and corresponded OFC tooth n.

For a high-precision determination of fCEO, it must be directly measured, and

typically it is performed by using nonlinear frequency generation to compare dif-

ferent regions of the frequency comb [37]. For example, if the laser spectrum covers

more than one octave, then the OFC teeth at the low-frequency end of the spec-

trum can be doubled in a nonlinear crystal and subsequently heterodyned against

the high-frequency teeth of the OFC to yield fCEO. An important advance in this

respect is the generation of octave-spanning spectra with low-power Ti:Sa lasers in

microstructured fibers [38,39], or by direct generation from the laser itself [40–42].

Once measured, fCEO can then be locked at a fixed frequency with the use of

servo-control techniques.

Phase-lock of one tooth n of the OFC can be done to the low-noise cw laser, that

has itself been steered to an atomic resonance, or directly to a known microwave

standard.

OFC becomes a final tool in the long history of the development of optical

frequency measuring systems. The dramatic simplification of a complex optical

frequency chain to a single mode-locked laser has facilitated optical frequency

measurements. An important aspect of this new technology is its high degree of

6



i
i

“PhDThesisPisa” — 2011/11/30 — 8:42 — page 7 — #14 i
i

i
i

i
i

1.3 History of OFC development

reliability and precision together with a lack of systematic errors. For example, it

has been shown that the frep of a mode-locked laser equals the mode spacing to

within the measurement uncertainty of 10−16 [29]. The uniformity of the comb’s

mode spacing has also been verified to a level below 10−17 [29], even after spectral

broadening in fibers.

OFCs are used nowadays in many applications including optical frequency

metrology [36,43,44] optical clocks [45,46] comb-calibrated tunable lasers [47–49],

OFC spectroscopy [50–52], frequency/time transfer [53, 54], low-phase-noise mi-

crowave generation [55–57], calibration of astronomical spectra [58] and search for

variations of fundamental constants [59,60].

1.3 History of OFC development

Mode-locking was first demonstrated in the mid-1960s using a He-Ne laser [61],

a ruby laser [62], and a Nd:glass laser [63]. Unfortunately, from the early 1960s

until about 1990, the pulsed and cw lasers communities continued to diverge. The

cw lasers community worked on the stability of their lasers. While pulsed lasers

researches were focused on escalation of pulsed power.

The key technique for mode-locking was Q-switching based on the implementa-

tion of saturable absorbers. It was generally preferred to obtain high pulse energy

rather than stability.

In the period from 1970s up to 1980s interest of researchers was focused on

ultrafast dye lasers. For this type of laser Q-switching instabilities are not a

problem, and also dye lasers soon allowed the generation of much shorter pulses.

In 1974 the first sub-picosecond passively mode-locked dye laser [64–66] and, in

1981, the first sub-100-fs colliding pulse mode-locked (CPM) dye laser [67] were

demonstrated.

In the 1980s begins a time when diode lasers achieve an average power high

enough for pumping solid state lasers. This provides dramatic improvements in

efficiency, lifetime, size, and other important laser characteristics. For example,

actively mode-locked diode-pumped Nd:YAG [68] and Nd:YLF [69–72] lasers gen-

erated 7-12 ps pulse durations for the first time. In comparison, flashlamp-pumped

Nd:YAG and Nd:YLF lasers typically produced pulse durations of ≈100 ps and

≈30 ps, respectively [73,74]. Before 1992, however, all attempts to passively mod-

7
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elock diode-pumped solid-state lasers resulted in Q-switching instabilities.

The first significant step in ultrafast solid-state lasers was performed in the

end of 1980s, when was demonstrated the Ti:Sa laser [75]. The strong interest in

an all-solid-state ultrafast laser technology was the driving force, and formed the

basis for many new inventions and discoveries.

The next significant step in ultra-short pulse production was made in 1990.

Two important papers were presented: Ishida et al. presented passively mode-

locked Ti:Sa laser with an intracavity saturable absorber dye that produced stable

190 fs pulses [76]. Second, Sibbett’s group presented 60 fs pulses from a Ti:Sa

laser that appeared not to have a saturable absorber [77]. This second result -

in the absence of a visible saturable absorber - had an immediate impact on the

research community, but the ultrafast laser experts realized that the first result

was also very surprising, even though a saturable absorber was present. It was

clear that the dye saturable absorber, with a recovery time in the nanosecond

range, could not support ultrashort pulses with a Ti:Sa laser as it could with dye

lasers. Sibbett’s modelocking approach was initially termed ‘magic modelocking’,

and it triggered a major research effort into understanding passive modelocking of

solid-state lasers. This form of modelocking was soon explained [78–80] and is now

referred to as Kerr lens modelocking (KLM). Ishida’s result was also explained by

KLM: the slow dye saturable absorber only provided a reliable starting mechanism

for KLM.

The short pulses from these systems provide a very broad optical spectrum.

However, it is also important also that spectrum also is stable comb-shaped, where

the spacing of the individual longitudinal modes exactly equals the pulse repetition

rate. Phase-locking the optical frequencies of the OFC to a laser serving as the

oscillator of the clock results in the phase-locking of the OFC spacing (i.e., the

laser repetition frequency) to the clock’s oscillator as well. Therefore, the OFC

provides the phase-coherent division from an optical frequency to a microwave

frequency, and the clock output is the repetition frequency of the mode-locked

laser producing the comb.

The OFC produces a ”ruler” in the frequency domain with which an unknown

optical frequency can be measured. However, many years passed before this ”sim-

ple idea” [81] to use OFC was realized.

8
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1.3 History of OFC development

1.3.1 Bulk crystal based: Ti:Sa OFC

OFC can be produced by several types of lasers. Nowadays, three groups of OFCs

can be outlined: bulk crystal based, fiber-based and microresonator-based OFCs.

Among them, the bulk crystal based group is our interest.

The main active medium in bulk laser is Ti:Sa. The working principle of it is

a Kerr-lens. The primary reason for using Ti:Sa is its enormous gain bandwidth

(700-1000 nm), which is necessary for supporting ultrashort pulses as ruled by the

Fourier formula. Moreover, a Ti:Sa crystal also serves as the nonlinear material for

mode-locking through the optical Kerr effect which manifests itself as an increase

of the nonlinear index at increasing optical intensity. Since the transverse intensity

profile of the intracavity beam is Gaussian, a Gaussian index profile is created in

the Ti:Sa crystal, which makes the latter equivalent to a lens. As a consequence,

the beam tends to focus, the focusing increasing with the optical intensity. To-

gether with a correctly positioned effective aperture, the nonlinear (Kerr) lens can

act as a saturable absorber, i.e. high intensities are focused and hence are fully

transmitted through the aperture, while low intensities experience losses.

Since short pulses produce higher peak powers, they experience lower losses,

making mode-locked operation favorable. This mode-locking mechanism has the

advantage of being essentially instantaneous, but has the disadvantages of not

being self-starting and of requiring a critical misalignment from optimum cw oper-

ation. Since most of the pulse broadening in ultrashort pulses is caused by group

delay dispersion (GDD) of the gain medium, to obtain the shortest possible pulses

from the laser cavity the overall GDD has to be near zero. To counteract the Ti:Sa

normal dispersion, a prism sequence is used, in which the first prism spatially dis-

perses the pulse, causing the long wavelength components to travel through more

glass in the second prism than the shorter wavelength components. The net effect

is to generate an effective anomalous dispersion that counteracts the normal one

in the Ti:Sa crystal. The spatial dispersion is canceled by placing the prism pair

at one end of the cavity so that the pulse retraces its path through the prisms.

With an optimum material choice, it is possible to minimize both second-order

and third-order dispersion, yielding only a fourth-order dispersion limitation [82].

It is also possible to generate anomalous dispersion by the so-called chirped

mirrors [83]. These have the advantage of allowing shorter cavity lengths, but the

9
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disadvantage of less adjustability, if used alone. Chirped mirrors also allow addi-

tional control over higher order dispersion and have been used in combination with

prisms to produce pulses even shorter than those achieved using prisms alone [84].

1.3.2 Free-running OFC

When considering the shape of the OFC lines of a mode-locked laser, there is a

fundamental distinction between the case of a free-running laser and the case of a

laser locked to an external reference. In the former case, when the noise source is

spontaneous emission (SE) noise or any other white noise source, the central time

and the phase of the mode-locked pulse undergo a random walk, and the OFC lines

have a stationary shape. In the latter case, again assuming white noise, the central

pulse time and the phase are bounded, and there is no stationary line shape; the

measured line width is inversely proportional to the measurement time. However,

the phase noise spectrum of each OFC line is stationary, and that spectrum - not

the frequency spectrum - is physically meaningful.

Any clock or frequency measurement system consists of an oscillator and a

counter [85]. The clock performance depends on the frequency noise of the os-

cillator and the phase noise of the counter. Virtually all theoretical calculations

to date of the noise properties of passively mode-locked lasers have focused on

the frequency spectrum of a free-running laser, but in modern time and frequency

metrology applications, these lasers are part of the counting system [86], so it is

their phase noise spectrum after they are locked to an oscillator that is important.

The properties of stabilized OFC strongly depend on properties of free-running

OFC because they become parts of the transfer function of the servo loop. The

frequency noise of both degrees of freedom of OFC should be studied and optimized

before a OFC stabilization.

Frequency noise of free-running OFC

When light passes through any gain medium, it will acquire noise through SE [87].

The SE noise sets a fundamental limit on the linewidth of a laser. For a cw

laser, this Schawlow-Townes limit is due to phase jitter [88]. The situation with

mode-locked lasers is more complicated. A mode-locked laser produces a train of

pulses, regularly spaced in time, and the frequency spectrum is a series of narrow

10
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OFC lines. The width of each OFC line depends on the timing and phase jitter

of the pulse train. The laser dynamics are characterized by four pulse parame-

ters: the pulse energy, the carrier frequency, the central pulse time, the phase,

and in addition a fifth parameter: the round-trip gain. In all mode-locked lasers,

strong nonlinearities couple amplitude and frequency fluctuations into timing and

phase jitter. The quantum-limited noise properties of mode-locked lasers were first

treated by Haus andMecozzi based on soliton perturbation theory in [89], hereafter

referred to as HM. Until recently, subsequent work focused mainly on quantum-

limited timing jitter. With the development of fs OFCs [86], the more general

problem of timing and phase jitter has received more attention [90–96]. While

HM calculated the timing and phase jitter rather than the OFC linewidths, that

paper contains almost all of the information needed to calculate the linewidths.

More recent works extend HM model [90, 91], including technical noise contribu-

tions [92, 96]. The effects of gain dynamics [94] and spontaneous emission limited

noise properties were studied in the work of Wahlstrand et al. [97]. A major

unknown in all theoretical efforts to date was the strength of couplings between

pulse parameters. Theoretical predictions carry large uncertainties and depend on

the details of the laser design, including dispersion management. The quantita-

tive measurement of the linear response of the pulse energy, the central frequency,

the round-trip gain were done by Menyul et al. [98]. The timing and the phase

measurement of a mode-locked Ti:Sa laser by Wahlstrand et al. [99].

Previous evaluations have proven the OFC’s suitability for precision optical

metrology. The fractional frequency uncertainty of Ti:Sa-based OFCs has been

evaluated at the 10−19 level at 1000 s [100, 101]. Experiments testing the phase

coherence of Ti:Sa OFCs have been able to place upper limits on the relative

linewidth of different spectral regions for both locked and free-running OFCs

at 20 mHz [102] and 9 mHz [103], respectively, and were ultimately limited by

by differential-path technical noise caused by air currents and mirror vibrations.

In [104] the OFC was compared to a 10 W average power Yb fiber OFC locked to

a common optical reference, with a resulting 1 mHz resolution bandwidth-limited

relative linewidth. This indicates that the Ti:Sa OFC should be capable of sup-

porting narrower relative linewidths.
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Intensity related dynamics of OFC

The fCEO was first measured for soliton like pulses in a laser cavity operating in the

net negative dispersion regime [105]. A decrease of the fCEO for increasing pulse

energies was explained by a power-dependent wavelength shift, which, together

with the negative GDD, dominated over the accumulated soliton phase [105]. A

detailed analysis of the fCEO [106] based on the perturbed nonlinear Schrödinger

equation for the fundamental soliton revealed that the pulse energy modulates

the group delay due to self-steepening. The resulting timing shift contributes

twice as much to the fCEO and is of opposite sign as the nonlinear phase due to

self-phase modulation. Later measurements of the fCEO using continuum gener-

ation in microstructure fiber confirmed that the self-steepening mechanism pre-

vailed [107–109]. For dispersion-managed solitons [110], which best describe the

pulse dynamics in few-cycle Ti:Sa lasers, the Kerr-induced phase shift was derived

to be reduced compared to classical solitons [106]. Under strong dispersion man-

agement, an analytical and numerical evaluation of the phase slip for dispersion-

managed solitons presented that contributions from the shock-term and the phase

slip can nearly cancel each other [111]. Analytical and experimental studies showed

that the intensity-related spectral shift could be reduced by minimizing the carrier

frequency shift [112]. For a broader spectrum, which was obtained for smaller

magnitudes of net group delay dispersion, the coupling between the negative GDD

(values as high as -400 fs2) and intensity fluctuations decreased [112]. In addition,

the Raman effect was identified as a possible mechanism contributing to spectral

shifts [112]. For octave-spanning Ti:Sa lasers, measurements of the pump power-

dependent carrier envelope offset frequency agreed sufficiently well with previous

results based on soliton perturbation theory so that it was suggested that spectral

shifts could be neglected for broadband intracavity spectra [94]. All these results

indicate that the fCEO dynamics depend strongly on the laser configuration.

Fixed point formalism

At the same time the the fixed point formalism was introduced by Telle, Havercamp

and coworkers in [113, 114]. The formalism was used in several works to estimate

the frequency noise of the optical spectrum of fs fiber lasers [92,96,115]. Moreover,

it has been shown that for each type of noise source there is an optimum pivot
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point for the control of the optical spectrum [93].

1.4 Outline thesis

This thesis presents the design and implementation of a Ti:Sa OFC phase-locked

to a semiconductor clock laser resonant with 88Sr 1S0-
3P0 clock transition.

The first step was to build up a Ti:Sa laser, reach the fs regime and broaden

the optical spectrum in a photonic crystal fiber (PCF) for stabilizing fCEO in a

self-referencing scheme via interferometric detection of the f -2f beat note. The

optimization of the OFC passive stability also was done during this stage of work.

The second step was the stabilization of EB OFC degrees of freedom. The

importance of intensity dynamics was observed and studied. This helped us to

found a working region of fCEO as a function of the multimode pump power,

where amplitude noise is highly suppressed. We have demonstrated that with a

multi-mode pump, by choosing the optimum pump power, and by implementing

a PZT on one pump mirror, the fCEO can reach the same stability level obtained

with a single-mode pump.

To test the EB OFC stability and its feasibility for frequency measurements we

measured the frequency ratio of the 698 nm clock laser and the 689 nm laser stabi-

lized to the 88Sr atomic resonance. The result has demonstrated better short term

stability than the absolute frequency measurement of optical frequencies against

a RF reference. We implement our EB OFC for the absolute frequency measure-

ment of the Verdi V5 with sub-MHz resolution and observed the fast and the slow

behavior of its frequency by the use of a EB OFC. The frequency measurements

have been used in an accurate determination of gravity by the use of 88Sr atoms

trapped in vertical lattices. This work demonstrates the great flexibility of OFCs

for precision measurements of optical frequencies of unstable lasers. This study

in turn may also be important for the study of stabilization techniques of CW

solid-state diode pumped lasers and moreover could be important for the study of

Ti:Sa fs lasers dynamics.

The optimization of stability was done by the study of the frequency noise of

the free-running OFC. The noise analysis of a free-running EB OFC shows that

different perturbations of a EB OFC have different fixed points that are lying in

different parts of spectrum. For this reason, it is useless to stabilize frequency in
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certain region by using perturbations which have fixed points near to it. For us this

formalism gives a prove that new stabilization technique, the pump beam shifting,

is suitable for fCEO stabilization. Due to the absence of the experimental ways to

prove that stability of our clock laser transferred across EB OFC, we estimate a

stability from the related phase noise measurements. Allan deviation is given by

σ2
y(τ) =

∫ ∞

0

Sy(f)
sin4(πτf)

(πτf)2
df (1.4)

where Sy = Sνn/ν0. Then the stability is changed less than one order of

magnitude across the OFC.

The format of this thesis is as follows. In Chapter 2 the theoretical concepts

and principles of frequency measurement are discussed including a method for

frequency noise description of a free-running OFC. Chapter 3 describes the con-

struction of the experimental apparatus used for our experiments and a detailed

characterization of the Ti:Sa OFC. Chapter 4 is focused on the frequency noise

properties and dynamics of our free-running Ti:Sa EB OFC and on the implemen-

tation of this knowledge for an optimization of OFC stabilization loops. Chapter 5

describes the applications of the EB OFC for measurements of the ratio of optical

frequencies and the absolute frequency of an unstable laser.
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Chapter 2

Theoretical aspects of OFCs and

of frequency measurements

I start to describe the theoretical aspects from the properties of ultrashort light

pulses in Sect. 2.1 where I introduce the dispersion definition (SbSect. 2.1.2). The

optical spectrum of OFC in the frequency domain is introduced in Sect. 2.2. The

optical frequency measurement principle is explained in Sect. 2.3. In Sect. 2.4

is discussed the physics of supercontinuum generation, while the working prin-

ciples of octave-spanning OFCs are presented in Sect. 2.5. In Sect. 2.6 several

specific important topics are described: definition of CEO phase and frequency

(SbSect. 2.6.1), the fixed point formalism (SbSect. 2.6.2), intensity-related spec-

tral shift (SbSect, 2.6.3), the intensity-related dynamics of fCEO in octave-spanning

Ti:Sa OFCs (SbSect. 2.6.4) and in EB Ti:Sa OFCs (SbSect. 2.6.5), the response

of fCEO and frep to a pump-power change in a fs fiber laser, which have similar

behavior comparing with Ti:Sa fs laser case in SbSect. 2.6.6 and SbSect. 2.6.7,

amplitude-to-phase conversion effects (SbSect. 2.6.9), the principle to phase-lock

OFCs (SbSect 2.6.10).

2.1 Properties of ultrashort light pulses

2.1.1 Introduction

For the mathematical description we followed the approaches of [116–118].

15



Theoretical aspects of OFCs and of frequency measurements

In linear optics the superposition principle holds and the real-valued electric

field E(t) of an ultrashort optical pulse at a fixed point in space has the Fourier

decomposition into monochromatic waves [116,117,119]

E(t) =
1

2π

∫ ∞

−∞
Ẽ(ω)eiωtdω (2.1)

where |Ẽ(ω)|2 is the spectrum. Ẽ(ω) is obtained by the Fourier inversion

theorem

Ẽ(ω) =

∫ ∞

−∞
E(t)e−iωtdt (2.2)

Since E(t) is real-valued Ẽ(ω) is Hermitian, i. e., obeys the condition

Ẽ(ω) = Ẽ∗(−ω) (2.3)

where ∗ denotes complex conjugation. Hence knowledge of the spectrum for

positive frequencies is sufficient for a full characterization of a light field without

dc component we can define the positive part of Ẽ(ω) as

Ẽ+(ω) =Ẽ(ω) for ω ≥ 0 and

0 for ω < 0
(2.4)

The negative part of Ẽ(ω) is defined as

Ẽ−(ω) =Ẽ(ω) for ω < 0 and

0 for ω ≥ 0
(2.5)

Just as the replacement of real-valued sines and cosines by complex expo-

nentials often simplifies Fourier analysis, so too does the use of complex-valued

functions in place of the real electric field E(t). For this purpose we separate the

Fourier transform integral of E(t) into two parts. The complex-valued temporal

function E+(t) contains only the positive frequency segment of the spectrum. In

communication theory and optics E+(t) is termed the analytic signal (its complex

conjugate is E−(t) and contains the negative frequency part). By definition E+(t)

16
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2.1 Properties of ultrashort light pulses

and Ẽ+(ω) as well as E−(t) and Ẽ−(ω) are Fourier pairs where only the relations

for the positive-frequency part are given as

E+(t) =
1

2π

∫ ∞

−∞
Ẽ+(ω)eiωtdω (2.6)

Ẽ+(ω) =

∫ ∞

−∞
E+(t)e−iωtdt (2.7)

These quantities relate to the real electric field

E(t) = E+(t) + E−(t) = 2Re[E+(t)] = 2Re[E−(t)] (2.8)

and its complex Fourier transform

Ẽ(ω) = Ẽ+(ω) + Ẽ−(ω) (2.9)

E+(t) is complex-valued and can therefore be expressed uniquely in terms of

its amplitude and phase

E+(t) = |E+(t)|eiΦ(t) = |E+(t)|eiΦ0eiωcteiΦa(t)

=

√
I(t)

2ϵ0cn
eiΦ0eiωcteiΦa(t)

=
1

2
A(t)eiΦ0eiωcteiΦa(t)

= Ec(t)e
iΦ0eiωct

(2.10)

where Ec(t) is the complex-valued envelope function without the absolute phase

and without the rapidly oscillating carrier-frequency phase factor, a quantity often

used in ultrafast optics. The envelope function A(t) is given by

A(t) = 2|E+(t)| = 2|E−(t)| = 2
√
E+(t)E−(t) (2.11)

and coincides with the less general expression in Eq. (2.1). The complex

positive-frequency part Ẽ+(ω) can be analogously decomposed into amplitude and

phase

Ẽ+(ω) = |Ẽ+(ω)|e−iϕ(ω) =

√
π

ϵ0cn
I(ω)e−iϕ(ω) (2.12)

17



Theoretical aspects of OFCs and of frequency measurements

where |Ẽ+(ω)| is the spectral amplitude, ϕ(ω) is the spectral phase and I(ω) is

the spectral intensity proportional to the power spectrum density (PSD) - the

familiar quantity measured with a spectrometer. From Eq. (2.3) the relation

−ϕ(ω) = ϕ(−ω) is obtained. It is precisely the manipulation of this spectral phase

ϕ(ω) in the experiment which - by virtue of the Fourier transformation Eq. (2.6) -

creates changes in the real electric field strength E(t) of Eq. (??) without chang-

ing I(ω). If the spectral intensity I(ω) is manipulated as well, additional degrees

of freedom are accessible for generating temporal pulse shapes at the expense of

lower energy. Note that the distinction between positive- and negative-frequency

parts is made for mathematical correctness. In practice only real electric fields and

positive frequencies are displayed. Moreover, as usually only the shape and not

the absolute magnitude of the envelope functions in addition to the phase function

are the quantities of interest, all the prefactors are commonly omitted.

Let us construct the electric field of an optical pulse at a fixed position in

space, corresponding to the physical situation of a fixed detector. Assuming linear

polarization, we may write the real electric field strength E(t) as a scalar quantity

whereas a sinusoidal wave is multiplied with a temporal amplitude or envelope

function A(t)

E(t) = A(t) cos (Φ0 + ωct) (2.13)

with ωc being the carrier angular frequency, Φ0 is the absolute phase or carrier-

envelope phase. The light frequency is given by ν0 = ωc/2π.

The average radiation intensity is given by

I(t) =
1

2
ϵ0cnA(t)

2, (2.14)

with ϵ0 being the vacuum permittivity, c the speed of light and n the refractive

index. The factor 1/2 arises from averaging the oscillations.

In general, we may add an additional time dependent phase function Φa(t) to

the temporal phase term in Eq. (2.13)

Φ(t) = Φ0 + ωct+ Φa(t) (2.15)

and define the instantaneous light frequency ω(t) as

18
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2.1 Properties of ultrashort light pulses

ω(t) =
dΦ(t)

dt
= ωc +

dΦa(t)

dt
(2.16)

This additional phase function describes variations of the frequency in time,

called a ”chirp”.

The temporal phase Φ(t) of Eq. (2.15) contains frequency-versus-time infor-

mation, leading to the definition of the instantaneous frequency ω(t) Eq. (2.16).

In a similar fashion, the spectral phase ϕ(ω) contains time-versus-frequency in-

formation and we can define the group delay Tg(ω), which describes the relative

temporal delay of a given spectral component

Tg(ω) =
dϕ

dω
(2.17)

Usually the spectral amplitude is distributed around a center frequency (or

carrier frequency) ωc. Therefore - for well-behaved pulses - it is often helpful to

expand the spectral phase into a Taylor series

ϕ(ω) =
∞∑
j=0

ϕ(j)(ωc)

j!
(ω − ωc)

j (2.18)

ϕ(ω) = ϕ(ωc)+ϕ′(ωc)(ω−ωc)+
1

2
ϕ′′(ωc)(ω−ωc)

2+
1

6
ϕ′′′(ωc)(ω−ωc)

3+ ... (2.19)

with

ϕ′(ωc) =
∂ϕ(ω)

∂ω

∣∣∣∣
ωc

(2.20)

The spectral phase coefficient of zeroth order describes in the time domain the

absolute phase (Φ0 = −ϕ(ωc)). The first-order term leads to a temporal translation

of the envelope of the laser pulse in the time domain (the Fourier shift theorem) but

not to a translation of the carrier. A positive ϕ′(ωc) corresponds to a shift towards

later times. An experimental distinction between the temporal translation of the

envelope via linear spectral phases in comparison to the temporal translation of

the whole pulse is, for example, discussed in [120, 121]. The coefficients of higher

order are responsible for changes in the temporal structure of the electric field. A

positive ϕ′′(ωc) corresponds to a linearly up-chirped laser pulse.
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Theoretical aspects of OFCs and of frequency measurements

There is a variety of analytical pulse shapes where this formalism can be applied

to get analytical expressions in both domains. For general pulse shapes a numerical

implementation is helpful. As an example, we will focus on a Gaussian laser pulse

E+
in(t) (not normalized to pulse energy) with a corresponding spectrum Ẽ+

in(ω).

Phase modulation in the frequency domain leads to a spectrum Ẽ+
out(ω) with a

corresponding electric field E+
out(t) of

E+
in(t) =

E0

2
e−2 ln 2 t2

∆t2 eiωct (2.21)

Here ∆t denotes the FWHM of the corresponding intensity I(t). The absolute

phase is set to zero, the carrier frequency is set to ωc, additional phase terms are

set to zero as well. The pulse is termed an unchirped pulse in the time domain.

For Ẽ+
in(ω) we obtain the spectrum

Ẽ+
in(ω) =

E0∆t

2

√
π

2 ln 2
e−

∆t2

8 ln 2
(ω−ωc)2 (2.22)

The FWHM of the temporal intensity profile I(t) and the spectral intensity

profile I(ω) are related by ∆t∆ω = 4 ln 2, where ∆ω is the FWHM of the spectral

intensity profile I(ω). Usually this equation, known as the time-bandwidth prod-

uct, is given in terms of frequencies ν rather than circular frequencies ω and we

obtain

∆t∆ν =
2 ln 2

π
≃ 0.441 (2.23)

Several important consequences arise from this example and are summarized

before we proceed:

1. The shorter the pulse duration, the larger the spectral width. A Gaussian

pulse with ∆t = 10 fs centered at 800 nm has a ratio of ∆ν
ν

≈ 10%, corre-

sponding to a wavelength interval ∆λ of about 100 nm. Taking into account

the wings of the spectrum, a bandwidth comparable to the visible spectrum

must be used to create the 10 fs pulse.

2. For a Gaussian pulse the equality in Eq. (2.23) is only reached when the in-

stantaneous frequency (Eq. (2.16)) is time-independent, that is the temporal

phase variation is linear. Such pulses are termed Fourier-transform-limited

pulses or bandwidth limited pulses.
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2.1 Properties of ultrashort light pulses

3. Adding nonlinear phase terms leads to the inequality ∆t∆ν ≥ 0.441.

4. For other pulse shapes a similar time-bandwidth inequality can be derived

∆t∆ν ≥ K (2.24)

Values of K for different pulse shapes are: Gaussian is 0.441, hyperbolic

secant is 0.315, square is 0.886, single side exponential is 0.110, symmetric

exponential is 0.142 [116].

One feature of Gaussian laser pulses is that adding the quadratic term 1
2
ϕ′′(ωc)×

(ω − ωc)
2 to the spectral phase function also leads to a quadratic term in the

temporal phase function and therefore to linearly chirped pulses. This situation

arises for example when passing an optical pulse through a transparent medium

as will be shown in next subsection. The complex fields for such laser pulses are

given by [122,123]

Ẽ+
out(ω) =

E0∆t

2

√
π

2 ln 2
e

−∆t2

8 ln 2
(ω−ωc)2e−i 1

2
ϕ′′(ωc)(ω−ωc)2 (2.25)

E+
out(t) =

E0

2γ
1
4

e
−t2

4ζγ eiωctei(at
2−ϵ) (2.26)

with ζ = ∆t2in/8 ln 2, γ = 1+ϕ′′2/4ζ2, a = ϕ′′/8ζ2γ and ϵ = [arctan(ϕ′′/2ζ)]/2 =

−Φ0.

For the pulse duration ∆tout (FWHM) of the linearly chirped pulse (quadratic

temporal phase function at2) we obtain the convenient formula

∆tout =

√
∆t2 +

(
4 ln 2

ϕ′′

∆t

)2

(2.27)

It is not always advantageous to expand the phase function ϕ(ω) into a Tay-

lor series. Periodic phase functions, for example, are generally not well approxi-

mated by polynomial functions. For sinusoidal phase functions of the form ϕ(ω) =

A sin (ωΓ + ϕ0) analytic solutions for the temporal electric field can be found for

any arbitrary unmodulated spectrum Ẽ+
in(ω).
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Theoretical aspects of OFCs and of frequency measurements

2.1.2 Dispersion

Dispersion is the dependence of the phase velocity in a medium on the optical fre-

quency or the propagation mode. There are various different types of dispersion: in

Chromatic dispersion the phase velocity depends on the optical frequency or wave-

length. This can result from a frequency-dependent refractive index, but also from

waveguide dispersion. Intermodal dispersion results from different propagation

characteristics of higher-order transverse modes in waveguides, such as multimode

fibers. Polarization mode dispersion results from polarization-dependent propa-

gation characteristics. As a result of chromatic dispersion, refraction angles at

optical surfaces can be frequency-dependent, leading to angular dispersion. This

effect can subsequently lead to frequency-dependent path lengths, which can again

act like chromatic dispersion.

A main topic in the design of ultrafast laser systems is the minimization of

these higher dispersion terms with the help of suitably designed optical systems

to keep the pulse duration inside a laser cavity or at the place of an experiment as

short as possible. In the following we will discuss the elements that are commonly

used for the dispersion management.

Chromatic Dispersion and its Mathematical Description

For the following discussion it is useful to think of an ultrashort pulse as being

composed of groups of quasimonochromatic waves, that is of a set of much longer

wave packets of narrow spectrum all added together coherently. In vacuum the

phase velocity

vp = ω/k (2.28)

and the group velocity

vg = dω/dk (2.29)

are both constant and equal to the speed of light c, where k denotes the wave

number. Therefore an ultrashort pulse will maintain its shape upon propagation in

vacuum (no matter how complicated its temporal electric field is). In the following

we will always consider a bandwidth-limited pulse entering an optical system such
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2.1 Properties of ultrashort light pulses

as, for example, air, lenses, mirrors, prisms, gratings and combinations of these

optical elements. Usually these optical systems will introduce dispersion, that

is a different group velocity for each group of quasi-monochromatic waves, and

consequently the initial short pulse will broaden in time. In this context the

group delay Tg(ω) defined in Eq. (2.17) is the transit time for such a group of

monochromatic waves through the system. As long as the intensities are kept

low, no new frequencies are generated. This is the area of linear optics and the

corresponding pulse propagation has been termed linear pulse propagation. It is

convenient to describe the passage of an ultrashort pulse through a linear optical

system by a complex optical transfer function [124]

M̃(ω) = R̃(ω)e−iϕd (2.30)

that relates the incident electric field Ẽ+
in(ω) to the output field

Ẽ+
out(ω) = M̃(ω)Ẽ+

in(ω) = R̃(ω)e−iϕdẼ+
in(ω) (2.31)

where R̃(ω) is the real-valued spectral amplitude response describing for ex-

ample the variable diffraction efficiency of a grating, linear gain or loss or direct

amplitude manipulation. The phase ϕd(ω) is termed the spectral phase transfer

function. This is the phase accumulated by the spectral component of the pulse

at frequency ω upon propagation between the input and output planes that define

the optical system. It is this spectral phase transfer function that plays a crucial

role in the design of ultrafast optical systems.

In the following discussion we will concentrate mainly on pure phase modula-

tion and therefore set R̃(ω) constant for all frequencies and omit it initially. To

model the system the most accurate approach is to include the whole spectral

phase transfer function. Often however only the first orders of a Taylor expansion

around the central frequency ωc are needed.

ϕd(ω) = ϕd(ωc)+ϕ′
d(ωc)(ω−ωc)+

1

2
ϕ′′
d(ωc)(ω−ωc)

2+
1

6
ϕ′′′
d (ωc)(ω−ωc)

3+... (2.32)

If we describe the incident bandwidth-limited pulse by Ẽ+
in(ω) = |Ẽ+(ω)| ×

e−iϕ(ωc) × e−iϕ′(ωc)(ω−ωc) then the overall overall phase ϕop of Ẽ+
out(ω) is given by
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Theoretical aspects of OFCs and of frequency measurements

ϕop(ω) = ϕ(ωc) + ϕ′(ωc)(ω − ωc) + ϕd(ωc) + ϕ′
d(ωc)(ω − ωc)

+
1

2
ϕ′′
d(ωc)(ω − ωc)

2 +
1

6
ϕ′′′
d (ωc)(ω − ωc)

3 + ...
(2.33)

As discussed in the context of [119] the constant and linear terms do not lead

to a change of the temporal envelope of the pulse. Therefore we will omit in the

following these terms and concentrate mainly on the second-order dispersion ϕ′′,

also termed the group velocity dispersion (GVD) or group delay dispersion (GDD),

and the third-order dispersion ϕ′′′ (TOD) whereas we have omitted the subscript

d. Strictly they have units of [fs2/rad] and [fs3/rad2], respectively, but usually the

units are simplified to [fs2] and [fs3].

Note that in fiber optics a slightly different terminology is commonly used.

The propagation constant of a mode in a fiber, often denoted with the symbol

β determines how the phase and amplitude of that light with a given frequency

varies along the propagation direction z: A(z) = A(0) exp(iβz). It is related to

the n-order dispersion by

βn =

dnϕm

dωn

∣∣
ωc

L
[psn/km] (2.34)

where L denotes the length of the fiber. The dispersion parameter D is a

measure for the GDD per unit bandwidth and is given by

D =
ω2
c

2πc
|β2| [ps/nm km] (2.35)

The dispersion of various orders for a medium can most conveniently be cal-

culated if the refractive index is specified with a kind of Sellmeier formula (see

Sect. 2.1.2). Tabulated index data are less suitable, since the numerical differenti-

ation is sensitive to noise.

One distinguishes normal dispersion (for ϕ′′ > 0) and anomalous dispersion (for

ϕ′′ < 0). Normal dispersion, where the group velocity decreases with increasing

optical frequency, occurs for most transparent media in the visible spectral re-

gion. Anomalous dispersion sometimes occurs at longer wavelengths, e.g. in silica

(the basis of most optical fibers) for wavelengths longer than the zero-dispersion

wavelength of ∼ 1.3 µm.

24



i
i

“PhDThesisPisa” — 2011/11/30 — 8:42 — page 25 — #23 i
i

i
i

i
i

2.1 Properties of ultrashort light pulses

Between wavelength regions with normal and anomalous dispersion, there is a

zero dispersion wavelength. The region around this wavelength can be special in

some respects, not only concerning weak dispersive pulse broadening.

Dispersion of third and higher order is called higher-order dispersion. When

dealing with very broad optical spectra, one sometimes has to consider dispersion

up to the fourth or even fifth and sixth order. Ultimately, the concept of Taylor

expansion loses its value in this regime, where many dispersion orders have to be

considered. It is therefore often more convenient e.g. in numerical modeling to

work directly with a table of frequency-dependent phase changes.

Sellmeier Formula

For the specification of a wavelength-dependent refractive index of a transparent

optical material, it is common to use a so-called Sellmeier formula [125] (also called

Sellmeier equation or Sellmeier dispersion formula, after W. Sellmeier). This is

typically of the form

n(λ) =

√
1 +

∑
j

Ajλ2

λ2 −Bj

(2.36)

with the coefficients Aj and Bj. For example, the refractive index of fused

silica can be calculated as [126]

nfs(λ) =

√
1 +

0.6961663λ2

λ2 − 0.06840432
+

0.4079426λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.896612
(2.37)

where the wavelength in micrometers has to be inserted (see Fig. 2.1a).

Such equations are very useful, as they make it possible to describe fairly ac-

curately the refractive index in a wide wavelength range with only a few so-called

Sellmeier coefficients, which are usually obtained from measured data with some

least-square fitting algorithm. Sellmeier coefficients for many optical materials are

available in databases. Some caution is advisable when applying Sellmeier equa-

tions in extreme wavelength regions; unfortunately, the validity range of available

data is often not indicated.

Sellmeier data are also very useful for evaluating the chromatic dispersion of a

material. This involves frequency derivatives, which can be performed analytically
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Figure 2.1: (a) Refractive index of fused silica. (b) GDD of a fused silica for the

beam path in a glass L=1 mm.

with Sellmeier data even for high orders of dispersion, whereas numerical differen-

tiation on the basis of tabulated index data is sensitive to noise. As the example,

the calculated GDD of fused silica is presented in Fig. 2.1b.

The literature contains a great variety of modified equations which are also of-

ten called Sellmeier formula. Extensions to the simple form give above can enlarge

the wavelength range of validity, or make it possible to include the temperature de-

pendence of refractive indices. This can be important, for example, for calculating

phase-matching configurations for nonlinear frequency conversion.

2.1.3 Managing of the Temporal Shape via the Frequency

Domain

Dispersion due to Transparent Media

A pulse traveling a distance L through a medium with index of refraction n(ω)

accumulates the spectral phase

ϕm(ω) = k(ω)L =
ω

c
n(ω)L (2.38)

which is the spectral transfer function due to propagation in the medium as

defined above. The first derivative
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dϕm

dω
= ϕ′

m =
d(kL)

dω
= L

(
dω

dk

)−1

=
L

vg
= Tg (2.39)

yields the group delay Tg and describes the delay of the peak of the envelope

of the incident pulse. Usually the index of refraction n(ω) is given as a function

of wavelength λ, i.e., n(λ). Eq. (2.39) then reads

Tg =
dϕm

dω
=

L

c

(
n+ ω

dn

dω

)
=

L

c

(
n− λ

dn

dλ

)
(2.40)

As different groups of the quasi-monochromatic waves move with different

group velocities the pulse will be broadened. For second-order dispersion in a

transparent media we obtain the )

GDDtm = ϕ′′
m =

d2ϕm

dω2
=

L

c

(
2
dn

dω
+ ω

d2n

dω2

)
=

λ3L

2πc2
d2n

dλ2
(2.41)

For ordinary optical glasses in the visible range we encounter normal dispersion,

i. e., red parts of the laser pulse will travel faster through the medium than blue

parts. So the symmetric temporal broadening of the pulse due to ϕ′′ will lead to

a linearly up-chirped laser pulse. In these cases the curvature of n(λ) is positive

(upward concavity) emphasizing the terminology that positive GDD leads to up-

chirped pulses.

For the TOD in a transparent media we obtain

TODtm = ϕ′′′
m =

d3ϕm

dω3
=

L

c

(
3
d2n

dω2
+ ω

d3n

dω3

)
=

−λ4L

2π2c3

(
3
d2n

dλ2
+ λ

d3n

dλ3

)
(2.42)

Empirical formulas for n(λ) such as Sellmeiers equations are usually tabulated

for common optical materials so that all dispersion quantities in Eq. (2.40), (2.41),

(2.42) can be calculated.

Angular Dispersion

Transparent media in the optical domain possess positive group delay dispersion

leading to up-chirped femtosecond pulses. To compress these pulses, optical sys-

tems are needed that deliver negative group delay dispersion, that is systems where
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the blue spectral components travel faster than the red spectral components. Con-

venient devices for that purpose are based on angular dispersion delivered by

prisms and gratings.We start our discussion again with the spectral transfer func-

tion [124]

ϕ(ω) =
ω

c
Pop(ω) (2.43)

where Pop denotes the optical path length. Eq. (2.43) is the generalization of

Eq. (2.38). The GDD is given by

GDDang =
1

c

(
2
dPop

dω
+ ω

d2Pop

dω2

)
=

λ3

2πc2
d2Pop

dλ2
(2.44)

and is similar to Eq. (2.41). In a dispersive system the optical path from an

input reference plane to an output reference plane can be written

Pop = l cosα (2.45)

where l = l(ωc) is the distance from the input plane to the output plane for

the center frequency ωc and α is the angle of rays with frequency ω with respect

to the ray corresponding to ωc. In general, it can be shown [124] that the angular

dispersion produces negative GDD

GDDang ≈ − lωc

c

(
dα

dω

∣∣∣∣
ωc

)2

(2.46)

For pairs of elements (prisms or gratings) the first element provides the angular

dispersion and the second element recollimates the spectral components. Using

two pairs of elements permits the lateral displacement of the spectral components

(spatial chirp) to be canceled out and recovers the original beam profile.

Dispersion due to Interference: Gires-Tournois Interferometers and

Chirped Mirrors

A Gires-Tournois interferometer (GTI) [127] is a special case of a Fabry-Pérot

interferometer in which one mirror (M1) is a 100% reflector and the top mirror

(M2) is a low reflector, typically with a reflectivity of a few percent (Fig. 2.2). The

group delay dispersion of such a device is given by (see for example [128] or [129])
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GDDGTI =
−2t20(1−R)

√
R sinωt0

(1 +R− 2
√
R cosωt0)2

(2.47)

where t0 = (2nd cos θ)/c is the round-trip time of the Fabry-Pérot [130], n is

the refractive index of the material between the two layers, d is the thickness of

the interferometer and θ is the internal angle of the beam between the layers. In

this formula material dispersion is neglected and R is the intensity reflectivity of

the top reflector. The group delay dispersion can be conveniently tuned either by

tilting the device or by changing the interferometer spacing. Increasing t0 increases

the dispersion, but at the same time reduces the frequency range over which the

group delay dispersion is constant. These devices are typically used in applications

employing pulses larger than 100 fs. For picosecond pulses the mirror spacing is on

the order of several mm, for femtosecond lasers the spacing has to be on the order

of a few µm. In order to overcome the limitations for femtosecond applications,

GTIs were constructed on the basis of dielectric multilayer systems [131]. The

corresponding spectral transfer functions can be found in [117].

Compared to prism compressors GTI mirrors reduce the intra-cavity losses

resulting in higher output power of the laser.

M1 M2

d

100%

n I
in

I
out

q

Figure 2.2: Schematic diagram of a Gires-Tournois interferometer (GTI)

The alternative to GTI are specially designed dielectric multilayer mirrors.

Usually a dielectric mirror consists of alternating transparent pairs of high-index
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and low-index layers where the optical thickness of all layers is chosen to be equal to

1/4 of the Bragg wavelength λB. Interference of the reflections at the index discon-

tinuities add up constructively for the Bragg wavelength. If the optical thickness of

the layers along the mirror structure is varied, then the Bragg wavelength depends

on the penetration depth.

The Bragg wavelength does not have to be varied linearly with the penetration

depth. In principle chirp laws λB(z) can be found for compensation of higher-

order dispersion in addition. It was realized, that the desired dispersion charac-

teristics of the chirped mirrors can be spoiled by spurious effects originating from

multiple reflections within the coating stack and at the interface to the ambient

medium, leading to dispersion oscillations (see the discussion on GTI). An exact

coupled-mode analysis [132] was used to develop a so-called double-chirp tech-

nique in combination with a broadband antireflection coating, in order to avoid

the oscillations in the group delay dispersion. Using accurate analytical expres-

sions double chirped mirrors could be designed and fabricated with a smooth and

custom-tailored group delay dispersion [133] suitable for generating pulses in the

two optical cycles regime directly from a Ti:Sa laser [84]. Double chirping has

the following meaning: in conventional chirped mirrors, equal optical lengths of

high-index (hi) and low-index (lo) material within one period are employed, i. e.,

Plo = Phi = λB/4. Double chirping keeps the duty cycle η as an additional degree

of freedom under the constraint: Plo + Phi = (1− η)λB/2 + ηλB/2 = λB/2.

2.1.4 Waveguide Dispersion

The discussion above is based on the assumption of plane waves. In practice,

significant deviations from this situation can occur, in particular in the context

of waveguides. Here, the quantity of interest is usually not the magnitude of the

k vector (which anyway is no longer well defined), but rather the propagation

constant β, which specifies the phase change per unit length in the propagation

direction (see Eq. (2.34)). As the propagation constant is influenced by the waveg-

uide (particularly for mode diameters of only a few wavelengths or even less), the

dispersion is also affected. This is important e.g. in optical fibers, and particu-

larly in photonic crystal fibers with very small effective mode areas. In some cases,

waveguide dispersion makes the overall dispersion anomalous even in the visible
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2.2 Laser Mode-Locking

wavelength region, where the material dispersion of silica alone is clearly in the

normal dispersion regime. For telecom applications, fiber designs are often made

for tailored dispersion properties, resulting in, e.g., dispersion-shifted fibers.

2.1.5 Measurement of Chromatic Dispersion

There are several techniques for measuring chromatic dispersion:

1. The pulse delay technique [134] (for fibers) is based on measuring the dif-

ference in propagation time (group delay) for pulses with different center

wavelengths. This is typically done using hundreds of meters (or even some

kilometers) of a fiber. The dispersion is obtained by differentiation of these

data.

2. The phase shift technique or“difference method” [135] (also for fibers): a

light beam with a sinusoidally modulated intensity is sent through a fiber,

and the phases of the oscillations of input and output power are compared.

The group delay can be calculated from that phase, and the dispersion can

be measured by performing the measurement at different wavelengths.

3. Dispersion in the resonator of a wavelength-tunable passively mode-locked

laser can be measured by monitoring changes in the pulse repetition fre-

quency when the laser wavelength is changed, as this reveals the wavelength-

dependent group delay.

4. Different types of interferometry [136] (e.g. white-light interferometry [137]

or spectral phase interferometry [138]) can be used to measure the phase de-

lay caused by a dispersive component. The dispersion properties can be ob-

tained from this phase by numerical differentiation. The method is normally

used for dispersion measurements on dispersive laser mirrors and sometimes

for fibers.

2.2 Laser Mode-Locking

Mode-locking is a laser operation regime in which many longitudinal modes of the

cavity are simultaneously forced to oscillate with a precise phase relation so that
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the output laser beam shows a repetitive train of ultrashort optical pulses [74,139].

To achieve mode-locking operation, a suitable device, which is usually referred to

as the mode locker, must be placed inside the cavity. For a given laser medium, the

lower limit to the achievable pulse duration ∆τp is set by the gain line width (∆τp ≥
1/∆ν0), whereas the pulse repetition rate 1/τp is usually equal to the difference

frequency between two consecutive longitudinal modes ∆ν (or an integer multiple

of ∆ν, as for harmonic mode-locking). Therefore, pulse duration, depending upon

the gain line width, usually ranges from about 1 ns, in gas lasers, down to 10 fs in

broad-bandwidth solid-state lasers. Pulse repetition rate depends, of course, upon

the cavity length and usually ranges from about 100 MHz to a few GHz.

2.2.1 Mode-locking: Time- and frequency-domains of mode-

locked laser

Consider an ideal pulse circulating in the laser cavity

E(t) = Re[A(t) exp(−iωct)] (2.48)

where, A(t) - pulse envelope, ωc - carrier frequency. The laser radiation is a

sequence of pulses, which are copies of the same pulse (Fig. 2.3). Time between

pulses T0 = 2L/vg, where vg - pulse propagation velocity in the cavity (group

velocity). However, the pulses are not quite identical, because their envelope

propagates with the velocity vg (see Eq. (2.29)), and a carrier wave with ωc with

the phase velocity. As a result, after each resonator round-trip a carrier wave

acquires a phase shift ∆ϕ with respect to the envelope of A(t), i.e., electric field

is not a periodic function. We assume, however, that the envelope of the pulse is

a periodic function:

A(t) = A(t− T0) (2.49)

In this case, the field of laser radiation can be written as

E(t) = Re
{∑

m

Am exp [−i(ωc +mωr)t]
}

(2.50)

where Am are the Fourier components of A(t); ωrep = 2π/T0 - angular frequency

of pulse repetition. Represent ωc like ωc = ωCEO + pωrep, where p - integer, and
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2.2 Laser Mode-Locking

ωCEO < ωrep. Changing a numeration of mode (n = p+m,n = 0, 1, 2, ...), we get

E(t) = Re
[∑

n

An exp(−iωnt)
]

(2.51)

where

ωn = nωrep + ωCEO; (2.52)

ωCEO and ωrep - microwave frequencies; n ≃ 105 − 106. Thus, spectrum of fs

laser radiation can be represented by a set of equidistant frequencies with interval

ωrep (see Fig. 2.3). In this case, the OFC emitted frequencies (solid line) has

an initial detuning ωCEO relative to the provisions of the frequencies obtained by

multiplying ωrep an integer (dashed line). The appearance of ωrep associated with

the difference of the phase and group velocities of propagation of the laser pulse

in the cavity. During traversal of the cavity phase shift ∆ϕ = ωcT = 2πωc/ωrep.

The frequency of n-th mode (in Hertz) is defined by Eq. (1.2) where fCEO =

ωc/2π; frep = ωrep/2π.

It turned out that considered idealized case is realized in fs laser with a high

degree of accuracy. Checking of frequencies equidistant was done in [29].

2.2.2 Kerr lens mode-locking

This technique is based on the use of a nonlinear loss element simply consisting of

a nonlinear Kerr medium placed in front of an aperture (Fig. 2.4). The nonlinear

medium shows, via the optical Kerr effect, an intensity-dependent refractive index

n = n0 + n2I, where n0 is the linear refractive index of the medium, I is the local

light intensity and n2 is a positive coefficient (for a self-focusing medium) which

depends on the strength of the nonlinearity (e.g., n2 ≃ 4.5 × 10−16 cm2/W for

fused quartz and n2 ≃ 3.45× 10−16 cm2/W for sapphire). A light beam with, e.g.,

a transverse Gaussian intensity distribution I(r) = Ip exp[−2(r/w)2] that crosses

a thin slice of the Kerr medium of length l thus experiences a transversely varying

phase shift

δϕ ≈ 2πln2I(r)/λ) = (2πln2/λ)Ip exp[−2(r/w)2] (2.53)

Close to the beam center r = 0, one can write
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f =nf +f =f (n+ /2 )n rep CEO rep Df p
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Frequency domain

Time domain

E(t)

t

Df 2Df

1/frep

I(t)

f

Figure 2.3: The basic time-and frequency-domain representations of the output

of a mode-locked fs laser. Pulses are emitted at the rate frep, but because of

dispersion in the laser cavity, the carrier advances with respect to the envelope by

∆ϕ from one pulse to the next. In the frequency domain, the result of this phase

slip is an offset common to all modes of fCEO = frep∆ϕ/(2π) (see Eq. (2.61)).

δϕ ≈ (2πln2Ip/λ)[1− 2(r/w)2], (2.54)

i. e., the thin medium introduces a quadratic phase change of the field and

thus acts, for n2 > 0, as a positive lens (called a Kerr lens) of dioptric power

1/f = 4n2lIp/(n0w
2), (2.55)

which increases as the beam intensity Ip increases. If an aperture is placed at

some suitable distance from the Kerr medium, a beam with higher intensity will

be focused tighter and a higher fraction of the beam will be transmitted through

the aperture. Therefore, the Kerr medium with the aperture, like a fast saturable

absorber, introduces losses that decrease when the instantaneous pulse intensity is
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2.3 Principle of measurement of optical frequency

increased, thus leading to mode-locking. Note that, by appropriately controlling

the cavity dispersion, the shortest mode-locked pulses (≈ 6 fs) have been achieved

by this technique for Ti3+:Al2O3 lasers.

Figure 2.4: Kerr lens mode-locking is obtained through a Kerr lens at an intracavity

focus in the gain medium or in another material. In combination with a hard

aperture inside the cavity, the cavity design is made such that the Kerr lens reduces

the laser mode area for high intensities at the aperture and therefore forms an

effective fast saturable absorber. After [140].

2.3 Principle of measurement of optical frequency

After discussing the frequency spectrum of a mode-locked laser, we now turn to

the measurement of the absolute frequencies of OFC lines. For a frequency mea-

surement to be absolute, it must be referenced to the hyperfine transition of 133Cs

that defines the second. From the relations listed above, we see that determining

the absolute optical frequencies of the femtosecond OFC requires two RF mea-

surements, that of frep and fCEO. Measurement of frep is straightforward: we

simply detect the pulse train’s repetition rate (from tens of megahertz to several

gigahertz) with a fast photodiode. On the other hand, measurement of fCEO is
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more involved as the pulse-to-pulse-carrier-envelope phase shift requires an inter-

ferometric measurement, either in the time domain or in the frequency domain.

When the optical spectrum spans an octave in frequency, i.e., the highest frequen-

cies are a factor of two larger than the lowest frequencies, measurement of fCEO is

greatly simplified. If we use a second harmonic crystal to frequency double a OFC

line, with index n, from the low-frequency portion of the spectrum, it will have

approximately the same frequency as the OFC line on the high-frequency side of

the spectrum with index 2n. Measuring the heterodyne beat between these two

families of OFC lines yields a difference,

2νn − ν2n = 2(nfrep + fCEO)− (2nfrep + fCEO) = fCEO, (2.56)

which is just the offset frequency. Thus an octave-spanning spectrum enables

a direct measurement of fCEO. However, an octave-spanning spectrum is not

required; it just represents the simplest approach. This scheme is designated as

“self-referencing” since it uses only the output of the mode-locked laser as shown

in (Fig. 2.5(a)).

Self-referencing is not the only scheme for determining the absolute optical

frequencies given by an octave-spanning spectrum. For example, the absolute

optical frequency of a cw laser can be determined if its frequency lies close to OFC

line n in the low-frequency portion of the fs OFC spectrum. Then the second

harmonic of the cw laser will be positioned close to the OFC line 2n. Measurement

of the heterodyne beat between the cw laser frequency, νref , and the OFC line n

gives fb = νref − (nfrep + fCEO) and between the second harmonic of the cw laser

and OFC line 2n gives fb2 = 2νref − (2nfrep + fCEO). Mixing the beats with

appropriate weighting factors gives fb2 − 2fb1 = 2νref − (2nfrep + fCEO)− (2νref −
2(nfrep + fCEO)) = fCEO, which represents the second detection scheme shown in

Fig. 2.5(b). Another interesting fact is that by mixing the two beat signals, one

establishes a direct link between the optical and RF frequencies (νref and frep) as

in fb2 − fb1 = 2νref − (2nfrep + fCEO)− νref + (nfrep + fCEO) = νref − nfrep .
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2.4 Supercontinuum Generation

Figure 2.5: Two equivalent schemes for the measurement of fCEO using an octave-

spanning OFC. In the self-referencing approach, shown in (a), frequency doubling

and comparison are accomplished with the OFC itself. In the second approach

shown in (b), the fundamental frequency (ν-standard) and its second harmonic

of a cw optical standard are used to determine fCEO. These two basic schemes

are employed for absolute optical frequency measurement and implementation of

optical atomic clocks.

2.4 Supercontinuum Generation

Supercontinuum generation is a process where laser light is converted to light with

a very broad spectral bandwidth (i.e., low temporal coherence), whereas the spatial

coherence usually remains high. The spectral broadening is usually accomplished

by propagating optical pulses through a strongly nonlinear device, such as an

optical fiber. Of special interest are photonic crystal fibers, mainly due to their

unusual chromatic dispersion characteristics, which can allow a strong nonlinear
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interaction over a significant length of fiber. Even with fairly moderate input

powers, very broad spectra are achieved; this leads to a kind of ”laser rainbow”.

In some cases, tapered fibers can also be used.

2.4.1 The Physics of Supercontinuum Generation

The physical processes behind supercontinuum generation in fibers can be very dif-

ferent, depending particularly on the chromatic dispersion and length of the fiber

(or other nonlinear medium), the pulse duration, the initial peak power and the

pump wavelength. When femtosecond pulses are used, the spectral broadening

can be dominantly caused by self-phase modulation. In the anomalous disper-

sion regime, the combination of self-phase modulation and dispersion can lead to

complicated soliton dynamics, including the split-up of higher-order solitons into

multiple fundamental solitons (soliton fission). For pumping with picosecond or

nanosecond pulses, Raman scattering and four-wave mixing can be important. Su-

percontinuum generation is even possible with continuous-wave beams, when using

multi-watt laser beams in long fibers; Raman scattering and four-wave mixing are

very important in that regime.

The noise properties of the generated continua can also be very different in

different parameter regions. In some cases, e.g. with self-phase modulation being

the dominant mechanism and the dispersion being normal, the process is very

deterministic, and the phase coherence of the generated supercontinuum pulses

can be very high, even under conditions of strong spectral broadening. In other

cases (e.g. involving higher-order soliton effects), the process can be extremely

sensitive to the slightest fluctuations (including quantum noise) e.g. in the input

pulses, so that the properties of the spectrally broadened pulses vary substantially

from pulse to pulse.

The strongly nonlinear nature of supercontinuum generation makes it diffi-

cult to understand intuitively all the details of the interaction, or to predict rela-

tions with analytical tools. Therefore, much of the underlying physics describing

supercontinuum generation can be described within the framework of the one-

dimensional nonlinear envelope equation (NEE) [141] with the inclusion of the

effects of stimulated Raman scattering.
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Nonlinear envelope equation

In this model, the pulse is assumed to propagate along the z-axis with a wave vector

amplitude k0 = n0ωc/c where n0 is the linear refractive index of the material

at the central frequency ωc of the pulse [142]. For an input pulse with a peak

amplitude A0 and a pulse duration τp, the equation for the normalized amplitude

u(z, t) = A(z, t)/A0 can be expressed as [143]

δu

δξ
= −isgn(β2)

∑
n=2

Lds

L
(n)
ds

+ i

(
1 +

i

ωcτp

∂

∂τ

)
pnl (2.57)

where Lds = τ 2p /|β2| is the dispersion length, ξ = z/Lds is the normalized

propagation distance, β2 is the GDD, L
(n)
ds = τnp /βn is the nth-order dispersion

length, τ = (t− z/vg)/τp is the normalized retarded time for the pulse traveling at

the group velocity vg, and pnl is the normalized nonlinear polarization. Inclusion of

both instantaneous (i.e., electronic) and noninstantaneous (i.e., nuclear) nonlinear

refractive index changes in the nonlinear polarization yields [143]

pnl =
Lds

Lnl

[
(1− f)|u|2 + f

∫ τ

−∞
dτ ′g(τ − τ ′)|u|2

]
u, (2.58)

where Lnl = (c/ωcn2I0) is the nonlinear length, I0 = n0c|A0|2/2π is the peak in-

put intensity, f is the fractional contribution of Raman scattering to the nonlinear

refractive index, and g(τ) is the Raman-response function [144,145].

The presence of the operator 1 + i∂/ωcτp∂τ in the nonlinear polarization term

accounts for self-steepening effects and allows for the modeling of the propagation

of pulses with spectral widths comparable to the ωc.

Spectral superbroadening

For a fs pulse propagating in a fiber, the central wavelength of the pulse relative

to the zero-GDD point strongly determines the nature of the spectral broadening

and supercontinuum generation. For the case in which the bandwidth of the pulse

overlaps the zero-GDD point, the qualitative characteristics of the supercontinuum

generation can be attributed to the combined action of self-phase modulation and

third-order dispersion [142,146].

The temporal profile of femtosecond pulse in microstructure fiber is highly

complicated. However, after its propagation on a certain distances some substruc-
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ture is visible and can be understood as arising from the formation of well-defined

pulses, known as soliton fission [142], that is accompanied by nonsolitonic radi-

ation at the short-wavelength side. Although stimulated Raman scattering and

self-steepening result in quantitative changes in the spectrum, in the limit where

the GDD is small, the basic shape of the supercontinuum spectrum depends pri-

marily on the amount of third-order dispersion and, to a lesser extent, the amount

of fourth-order dispersion.

2.4.2 Coherence Properties

It is worth spending some thoughts on the coherence properties of supercontinuum.

The spatial coherence (considering the cross-spectral density) is usually very high,

particularly when the source involves a single-mode fiber. On the other hand,

the high spectral bandwidth suggests a very low temporal coherence. However,

supercontinuum generated from periodic pulse trains can still have a high temporal

coherence in the sense that there can be a strong correlations between the electric

fields corresponding to different pulses, if the spectral broadening mechanism is

highly reproducible. This kind of coherence is in fact very important for the

generation of OFCs in photonic crystal fibers, and it may or may not be achieved

depending on parameters such as the seed pulse duration and energy, fiber length,

and fiber dispersion.

The initially surprising discrepancy between high bandwidth and high temporal

coherence can be resolved by realizing the shape of the field correlation function:

it has a very narrow peak around zero time delay (with a width of e.g. a few

femtoseconds), but there are also additional peaks with comparable height at time

delays corresponding to integer multiples of the pulse period. Hence there is low

temporal coherence in the sense of vanishing correlations for most time delays,

but high temporal coherence in the sense of strong correlations for some large

time delays.

2.5 Octave-spanning OFC

In recent years a new type of extremely broadband fs laser, that is able to gener-

ate an octave-spanning spectrum without external broadening in PFC, has been
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2.5 Octave-spanning OFC

realized. The definition of ”octave spanning” has to be explained. The span of a

spectrum is often taken as the width at some power below the peak (often full-

width at half-maximum or perhaps even at the 10 dB points). However, for fs OFC

applications, there is a good operational definition of octave-spanning, namely that

it is possible to obtain f -2f beats. A slightly stronger version of this is that the

beats are sufficiently strong to be used to stabilize the offset frequency of the laser.

This criterion can be met even when the intensity at the octave points is as much

as 40 dB below the peak.

To get an idea of how this laser functions, it is helpful to review the two

practical routes towards shorter pulses and broader spectra in a fs laser.

One approach is to engineer the dispersion inside the resonator in a way that

short pulses with extremely broad spectra do not spread in time during a cavity

round trip. This involves careful design of mirrors to have negative GDD over the

desired large bandwidth and compensate for the positive-gain crystal dispersion

with a low net-higher-order dispersion. This approach has been taken with great

success by Ell et al. [147]. Their carefully engineered intracavity dispersion is

capable of generating spectra exceeding one octave with 5 fs pulses at a repetition

rate of 64 MHz.

However, in the presence of the narrow bandwidth of the chirped mirrors, both

with respect to their dispersive and reflective properties, this limit is inapplicable.

Alternatively, one can allow higher-order dispersion in the resonator but, at the

same time, ensure that the leading and trailing edges of the temporally spreading

spectrum are sufficiently suppressed, such that only a short pulse remains stable

in the cavity. This effect can be attained by employing an effective fast saturable

absorber. In the case of Ti:Sa lasers, this effective saturable absorber is provided

by a soft aperture KLM. While this effect is actually a self-gain modulation, it can

theoretically be treated as an equivalent fast saturable absorber. These effects are

more generally referred to as self-amplitude modulation (SAM).

There are indications that the broadband laser operates in the limit of an in-

creased SAM. The strongest support for this idea is the experimental observation

that the mode-locked output power and the continuous output power of the laser

differ by more than an order of magnitude. This difference indicates that the

Kerr-lens-induced effective saturable absorber has a saturable absorption of ap-

proximately 30%. Theoretical calculations of the change in beam waist diameter
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inside the gain medium (i.e., the soft-aperture Kerr-lens effect) show that replacing

flat mirror with a slightly convex mirror can increase the SAM of pulses circulating

in the ring cavity.

2.6 OFC dynamics

As was mentioned before, a OFC has two degrees of freedom: fCEO and frep.

While the spacing of the frequencies is simply determined by the repetition rate

of the laser and can be relatively easily controlled, the fCEO is governed by phase

differences between the carrier and the envelope of the pulses during one round trip

through the laser cavity. This CEO phase ∆ϕCEO is measured via heterodyning

different harmonics of the mode-locked laser spectrum. In an unstabilized laser,

this ∆ϕCEO exhibits very strong noise and can fluctuate several thousand radians

in only one second.

2.6.1 ∆ϕCEO and fCEO in the time domain

The envelope travels at vg and repeats itself after the cavity round-trip time TR.

The underlying carrier propagates at phase velocity vp. Generally, vp ̸= vg in any

dispersive medium. This means that the electric field structure of the pulse will

undergo a permanent change. The drift of the relative phase between carrier and

envelope can be tracked down to the dn/dω term in the definition of the group

velocity.

When propagating through a dispersive material with an index of refraction

n(z) along the axis z, the pulse will accumulate a phase offset between the carrier

and envelope of [148]

∆ϕCEO =

[
2π

λ

∫ L

0

ng(z)− n(z)dz

]
mod2π =

[
ω2

c

∫ L

0

dn(z)

dω
dz

]
mod2π (2.59)

Here L is the length of the dispersive material, ng = n + (ωdb/dω). For the

case of a linear cavity, L takes the role of twice the cavity length, and the ∆ϕCEO

is the change of the phase ϕCEO per round trip:

∆ϕCEO(t) = ΦCEO(t)− ΦCEO(t− TR) (2.60)
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2.6 OFC dynamics

The CEO phase ∆ϕCEO must not be confused with the phase ΦCEO , which is

typically defined such that a pulse with ΦCEO = 0 has the largest possible value

of the electric field [37]. It is useful to introduce the fCEO [149],

fCEO =
∆ϕCEO

2π
frep (2.61)

where frep equals the inverse round-trip time 1/TR of the cavity and fCEO is

time dependent unless the intracavity dispersion and the cavity length are abso-

lutely constant with time. Changes of fCEO or ∆ϕCEO tend to be unnoticeably

small on a pulse-to-pulse time scale but can reach significant magnitudes on mil-

lisecond time scales, rendering stabilization of these parameters a nontrivial task.

2.6.2 The elastic tape model or fixed point formalism

As the pulses follow each other at a constant delay TR, their spectrum consists of a

OFC of equidistantly spaced frequencies with a separation frep = 1/TR. This OFC

must not be confused with the modes of a linear cavity, which are only equidistant

in the absence of intracavity dispersion. In contrast, if the spacing between the

teeth in the mode-locked OFC were not constant, different Fourier components of

the pulse in Fig. 2.3 would travel at different repetition rates inside the cavity, and

the pulse would slowly drift apart. The fact that the separation of the frequencies

is constant over the entire OFC has been experimentally checked to better than

10−15 [29].

Differing phase and group velocity cause a translation of the entire OFC by

the fCEO. The frequencies of the nth OFC component can therefore be written in

the form of the Eq. (1.2), that leaves only two degrees of freedom for the dynamics

of the OFC, translation via fCEO and breathing via frep as illustrated in Fig. 2.6.

Any kind of perturbation of the cavity, e.g., by a thermal change of the refractive

index of the laser crystal, will typically affect both the frep and the fCEO.

However, as was shown by Havercamp et al., there are always fixed frequencies

fX
fix that remains unaffected by any distortion X [114,150].

fX
fix = fCEO + frep

δfCEO

δX

(
δfrep
δX

)−1

(2.62)

where X could be any physical parameter of the cavity, e.g., its length or the
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temperature of the laser crystal. The fixed point formalism is illustrated in Fig. 2.6,

where two types of fluctuations are shown. It can be used as a base whose linear

combinations describe general frequency fluctuations of the laser. A fluctuation

of type a (Fig. 2.6, top) results from a fluctuation of the mean of the group and

phase delay of the laser cavity, while their ratio is kept constant. For this type

of fluctuation, the repetition rate and the carrier frequency fluctuate. The fixed

point frequency coincides with the frequency origin. A type b fluctuation (Fig. 2.6,

bottom) is induced by a fluctuating difference between the group and phase delay

in the laser cavity, while the phase delay is kept constant. As result of this, the

repetition frequency fluctuates, but the carrier frequency remains unaltered, which

is, therefore, the fixed point frequency for fluctuations of type b [148].

Most environmental contributions to OFC dynamics, such as thermal or non-

linear changes of the intracavity refractive indices, have an f env
fix located between

zero frequency and the carrier frequency [150]. This means that they neither add

a pure contribution to the group delay nor do they only affect the phase delay of

the group. Cavity length fluctuations only affect the repetition rate frep of the

laser but leave the per-round-trip phase shift ∆ϕCEO between envelope and carrier

unchanged (in first approximation).

Measuring the fixed frequency ffix can help to pinpoint the source of dominant

OFC dynamics.

2.6.3 Intensity-related spectral shift

The importance of pump-induced spectral shifts was recognized in very early

work [105] and its importance has been noted for both Ti:Sa [151] and fiber-laser

based OFCs [114]. The basic effect is quite simple: a shift in the spectrum causes a

shift in the round trip time, ω∆β2, due to the net cavity dispersion as in Eq. (2.79).

In so much as ω∆ and β2 can be measured experimentally, the strength of this effect

is easily calculated as in Eq. (2.80). However, given the apparent importance of

this effect, it is worth considering what actually causes the pump-induced spectral

shift.

The two effects of frequency-dependent loss and nonlinear frequency shifts can

lead to a pump-induced frequency shift. In each case, a frequency-pulling effect is

counteracted by the filtering effects of the gain profile. Fig. 2.7 shows schematically
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ffix

frep

fceo

ffix

frep

fceo

fluctuation type a

fluctuation type b

Figure 2.6: Fixed point model description for different types of fluctuations in the

laser. Fluctuation type a (top) is caused by a fluctuating mean of the group and

the phase delay with the ratio of the two held constant. Type b (bottom) is caused

by a change of the difference between the group and the phase delay, while the

phase delay is kept constant [114].

the competing effects. The nonlinear component to the frequency shift, ω∆,NL,

arises primarily from the well-known Raman self-frequency shift, although self-

steepening can also contribute for a chirped pulse. The linear component, ω∆,L

arises from a slope to the cavity loss, lω = dl/dω. Mathematically, [92, 115]

ω∆,NL =
−2A2δ

5Dg(1 + C2)
(τg + µω−1

0 C) and ω∆,L = − lω
2Dg

(2.63)

where A is the pulse peak intensity, δ is the lumped nonlinearity for the laser,

Dg is is the second derivative of the power-broadened gain, i.e. the curvature of

the gain as a function of frequency, C is the pulse chirp, ω0 is the pulse central
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peak, µ is a minor numerical correction related to the modal shape.

Figure 2.7: (a) Definition of frequency terms: ω0 is the gain peak, ωc is the pulse

spectral peak, ωrms is the pulse spectral width, and ω∆ = ωc − ω0. (b) Schematic

showing the spectral shift effects. The pulse can shift higher or lower in frequency

if there is a frequency dependent loss. It will shift lower in frequency due to the

Raman self-frequency shift. In the erbium-doped fiber, it will shift back toward

the gain peak at ω0 due to gain filtering [115].

2.6.4 Intensity-dependent fCEO in octave-spanning Ti:Sa

laser

Assume that the laser operates at carrier frequency νc, then the complex carrier

wave of the pulse is given by [94]

ei2πνc(t−z/vp), (2.64)

In the absence of nonlinearities vp is simply the ratio between frequency and

wavenumber due to the linear refractive index of the media in the cavity, i.e.,

vp = vp(νc) = 2πνc/k(νc). The envelope of a pulse that builds up in the cavity due

to the mode-locking process will travel at the group velocity due to the presence

of the linear media given by vg = vg(νc) = 2π[dk(νc)/dνc]
−1. Therefore, after one

round trip of the pulse over a distance 2Lcav, which takes the time TR = 2Lcav/vg,
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2.6 OFC dynamics

we obtain from Eq. (2.64) that the linear contribution to the ∆ϕCEO caused by

the difference between phase and group velocities is

∆ϕCEO = 2πνc

(
1− vg(νc)

vp(νc)

)
TR (2.65)

and for the subsequent fCEO

fCEO = νc

(
1− vg(νc)

vp(νc)

)
(2.66)

In a dispersive medium, vg and vp depends on the νc. Therefore, if the νc shifts

as a function of the intracavity pulse energy, the linear fCEO becomes energy and

pump power dependent as found in [112].

In a mode-locked laser there are also nonlinear processes at work that may

directly lead to an energy-depended fCEO. There are many effects that may con-

tribute to such a shift. Here we re-derive briefly the effects due to the intensity-

dependent refractive index as discussed by Haus and Ippen [106] for the case of

a laser with strong soliton-like pulse shaping which can be evaluated analytically

using soliton perturbation theory. We then argue that the same analysis holds for

the general case where steady-state pulse formation is different from conventional

soliton pulse shaping.

Now we follow to the theoretical approach of Matos et al. [94]. We start from

the description of a mode-locked laser by a master equation of the form

TR
δA

δT
= DirrevA+ iD2

δ2

δt2
A− iσ|A|2A (2.67)

where we have already factored out the carrier wave [152]. Here, Dirrev is an

operator that describes the irreversible dynamics occurring in a mode-locked laser

such as gain, loss and saturable absorption. A ≡ A(T, t) is the slowly varying field

envelope whose shape is investigated on two time scales: first, the global time T

which is coarse grained on the time scale of the round-trip time TR, and second,

the local time t which resolves the resulting pulse shape. A(T, t) is normalized

such that |A(T, t)|2 is the instantaneous power and
∫
dt|A(T, t)|2 the pulse energy

at time T . D2 = (d2k)/(dν2
c )Lcav/8π

2 is the GDD parameter for the cavity. The

Kerr coefficient is σ = (2π = λc)n2L = Aeff , where lc is the carrier wavelength, n2

is the nonlinear index in cm/W, L is the path length per round trip through the
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laser crystal, and Aeff is the effective mode cross-sectional area. Strictly speaking

Eq. (2.67) only applies to a laser with small changes in pulse shape within one

round trip. Obviously this is not the case for few-cycle laser pulses where the

pulse formation is governed by dispersion-managed mode locking [110]. Never-

theless we want to understand this propagation equation as an effective equation

of motion for the laser, where some of the parameters need to be determined

self-consistently [152].

Let us assume that the laser operates in the negative GDD regime, where

a conventional soliton-like pulse forms, and that it is stabilized by the effective

saturable absorber action against the filtering effects. Then the steady-state pulse

solution is close to a fundamental soliton, i.e., a symmetric sech-shaped pulse

that acquires an energy-dependent nonlinear phase shift per round trip due to the

nonlinear index [106]

A(T, t) = A0sech(t/τ)e
−iϕsT/TR (2.68)

The nonlinear phase shift per round trip is

ϕs =
1

2
σA2

0 (2.69)

A more careful treatment of the influence of the Kerr effect on the pulse propa-

gation, especially for few-cycle pulses, needs to take the self-steepening of the pulse

into account, i.e., the variation of the index during an optical cycle, by adding to

the master equation the term [153].

Lpert = − σ

ωc

δ

δt
(|A|2A) (2.70)

We emphasize that this term is a consequence of the Kerr effect and is not

related to soliton propagation. It can be viewed as a perturbation to the master

Eq. (2.67). For pulses with τ much longer than an optical cycle, this self-steepening

term is unimportant in pulse shaping, because it is on the order of 1 = ωcτ ≪ 1.

However, this term is always of importance when the phase shifts acquired by the

pulse during propagation are considered. Haus and Ippen found, by using soliton

perturbation theory based on the eigensolutions of the unperturbed linearized

Schrödinger equation, analytic expressions for the changes in phase and group
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2.6 OFC dynamics

velocity. Obviously, the nonlinear phase shift per round trip of the soliton adds

an additional phase shift to the pulse in each round trip.

If the term in Eq. (2.70) is applied to a real and symmetric waveform, it

generates an odd waveform.

An odd waveform added as a perturbation to the symmetric waveform of the

steady-state pulse leads, to first order, to a temporal shift of the steady-state

pulse. For a soliton-like steady-state solution this timing shift can be evaluated

with soliton perturbation theory, i.e., using the basis functions of the linearized

operator, and results in a timing shift [106,154].

TR
δ∆t(T )

δT

∣∣∣∣self−steep = ∆

(
1

vg

)
=

σ

ωc

A2
0 =

2ϕs

ωc

(2.71)

In total, the compound effect of self-phase modulation, self-steepening, and

linear dispersion on the pulse results in a carrier-envelope frequency of

fCEO =
frep
2π

∆ϕCEO

= −frep
ϕs

2π
+ νc

δ

δT
∆t(T )self−steep + νc

(
1− vg(νc)

vp(νc)

)
= −frep

4π
δA2

0 + 2
frep
4π

δA2
0 + νc

(
1− vg(νc)

vp(νc)

) (2.72)

As the above expression shows, the term arising from the group delay change

due to self-steepening is twice as large and of opposite sign compared with the one

due to self-phase modulation. In total we obtain

fCEO =
frep
4π

δA2
0 + νc

(
1− vg(νc)

vp(νc)

)
(2.73)

Note that soliton perturbation theory was only used in this derivation for ana-

lytical evaluation of timing shifts. If the pulse shaping in the laser is not governed

by conventional soliton formation but rather by dispersion-managed soliton dy-

namics [110] or a saturable absorber, the fundamental physics stays the same. If

the steady-state solution has a real and symmetric component, the self-steepening

term converts this component via the derivative into a real and odd term, which is

to first order a timing shift in the autonomous dynamics of the free running mode-

locked laser. Another mechanism that leads to a timing shift is, for example, the
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action of a slow saturable absorber, which absorbs only the front of the pulse. So

care needs to be taken to include all relevant effects when a given laser system is

analyzed.

The intensity dependence of fCEO in octave-spanning OFCs is a simple linear

behavior which is universal, provided the correct pump power level is used to

prevent the appearance of pulse instabilities such as cw breakthrough. The pulse

energy in the octave-spanning regime is strongly clamped by the KLM action and

the combination of SPM and bandwidth limitation, making the intensity-related

carrier-envelope frequency shift much smaller than one would expect from the cw

laser model.

2.6.5 Intensity-dependent fCEO in Ti:Sa laser with spec-

trum broadening in PCF

Holman et al. shows that fCEO and frep depend on the laser power and hence on

pulse peak intensity I in Ti:Sa lasers with spectrum broadening in PCF, as [112]

dfrep
dI

=
1

lc

dvg
dI

(2.74)

dfCEO

dI
=

1

2π

δωc

δI

(
1− vg

vp

)
+

ωC

2π

vg
vp

(
1

vp

dvp
dI

− 1

vg

dvg
dI

)
(2.75)

where ωc/δI is the intensity-related laser spectral shift (see Sect. 2.6.3). De-

noting by n̄(n̄ = n̄0 + n̄2I) the average refractive index in the laser cavity leads to

vg = c/[n̄+ ωc(dn̄/dω)ωc ] and vp = c/n̄, which lead to the following equations:

dfrep
dI

= − 1

lc

v2g
c

[
n̄2 + ωc

(
dn̄2

dω

)
ωc

+ c
δωc

δI

δ

δωc

(
1

vg

)]
(2.76)

dfCEO

dI
=

ω2
c

2π

v2g
c2

[
n̄0

(
dn̄2

dω

)
ωc

− n̄2

(
dn̄0

dω

)
ωc

]
+

1

2π

δωc

δI

[(
1− vg

vp

)
+

ωcv
2
g

vp

δ

δωc

(
1

vg

)
− ωcvg

c

δn̄

δωc

] (2.77)

All terms except δωc/δI and δ(1/vg)/δωc are constants. The last term in

Eq. (2.76) and the second term in brackets in Eq. (2.77) reveal the dependence
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of dfrep/dI and dfCEO/dI on the intensity-related spectral shift. Both equations

are dominated by a term proportional to δωc/δIδ(1/vg)/δωc, explaining the near

coincidence in the sign change of dfrep/dI and dfCEO/dI with that of δωc/δI. By

experimentally measuring dfrep/dI and dfCEO/dI it is possible to calculate the

spectrally related shift of 1/vg (i. e., δ(1/vg)/ωc.

2.6.6 Response of fCEO to a pump-power change

The shift in fCEO is complicated by the fact fCEO is the product of ϕCEO and frep.

In the work [115] for fiber laser was considered that a shift in envelope arrival time

will shift both ϕCEO and directly shift frep by ∆frep = frep − 2∆Trep. A careful

treatment yields the following expression for the change in the fCEO offset versus

pump power [115]

dfCEO

dP
=

β0

2π

(
dfrep
dP

)
+

frep
2π

(
dϕspm

dP

)
(2.78)

where β0 = nLω0/c is the lumped, average fiber propagation constant for the

laser of length L and average index of refraction n. The first term accounts for

shifts in the carrier envelope arrival time and the second accounts for shifts in

the carrier phase from self-phase modulation. Eq. (2.78) predicts two important

results (see Fig. 2.8). First, it predicts a linear relationship between dfCEO/dP and

dfrep/dP with a slope of β0/(2π). Which is, in fact, the main term in Eq. (2.62)

for the νpump
fix . Second, it predicts an intercept given by the pump-induced change

to the SPM, or Kerr, phase shift.

2.6.7 Response of the repetition frequency to a pump-

power change

In the SbSect. 2.6.6, we found that the pump-induced change in the offset frequency

is typically dominated by the pump-induced change in the repetition frequency,

dfrep/dP . The next question to address is what are the fundamental reasons for a

pump-induced change in the repetition frequency?

There are a number of perturbations that affect the round-trip time around the

cavity, Trep, and therefore the repetition rate, frep. The perturbations considered

here are: resonant gain contribution, spectral shifts, third-order dispersion, and
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Figure 2.8: Linear relationship between dfCEO/dP and dfrep/dP with a slope of

β0/(2π) [115].

self-steepening. If one includes these perturbations the total round trip time is

given by [115]

Tr =
1

frep
= β1 + ω∆β2 +

1

2
ω2
rmsβ3 +

g

Ωg

+
µA2σ

ω0

(2.79)

where βn = dnβ/dωn|ω0 are the frequency-derivatives of the lumped linear

fiber propagation constant evaluated at the gain peak, ω0. The first term is just

the expected round-trip time for a group velocity of L/β1. The second term is a

correction due to spectral shifts c ω∆ = ωc − ω0 of the carrier from ω0. The third

term is a correction due to third-order dispersion, where ωrms is the root-mean-

square pulse spectral width, and we assume ωrms ≫ ω∆. The fourth term is the

resonant contribution from the laser active medium gain assuming a Lorentzian

gain shape with peak value g and bandwidth Ωg. The final term is the nonlinear

self-steepening contribution, where µ is a minor numerical correction related to

the modal shape.

A calculation of dfrep/dP involves taking the derivative of each term on the

right hand side of Eq. (2.79). The first term, β1, vanishes since it is by definition

the linear part of the propagation constant. The second term is proportional to

the pump-induced spectral shift, dω∆/dP , which can be measured experimentally.

For the remaining terms, we relate the relevant derivatives (of ωrms, g, and A2)

to the derivative of the pulse energy, dw/dP , and ultimately to the fractional

change in the pump power in order to derive a more useful expression for dfrep/dP .

52



i
i

“PhDThesisPisa” — 2011/11/30 — 8:42 — page 53 — #37 i
i

i
i

i
i

2.6 OFC dynamics

See [115]for details of this scaling, here we are interested in a final result:

dfrep
dP

= −f2
rep


SpectralShift︷ ︸︸ ︷
β2

dω∆

dP
+

TOD︷ ︸︸ ︷
ω2
rmsβ3

2P
+

Gain︷ ︸︸ ︷
νLasMed

2PνΩg

+

SS︷ ︸︸ ︷
3µA2σ

2Pω0

 (2.80)

The graphical representation with strengths of the various contributions for

fiber laser are shown in Fig. 2.9. The sum of the effects yields the solid black line,

to be compared to the experimental measurements (solid black squares) [115].

Figure 2.9: The measured dfrep/dP versus pump power measured by Washburn et

al. [115]. The sum of the effects yields the solid black line, to be compared to the

experimental measurements (solid black squares).

2.6.8 Measurement of the fCEO

An early approach for measurement of fCEO employed an interferometric method

based on second-harmonic generation (SHG) cross-correlation between two sub-

sequent laser pulses [105]. For vanishing ∆ϕCEO , the cross-correlation signal is
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identical to the interferometric autocorrelation, with a symmetric fringe pattern.

In all other cases, the fringe pattern appears shifted with the fringe maximum

located at ∆ϕCEO/ω and the cross-correlation is asymmetric. Even though this

measurement in the time domain works in principle [39], it is very susceptible to

offset errors. Any offset between group and phase delay in the long arm of the

cross-correlator will induce a measurement error in determining fCEO. Therefore,

phase-coherent methods are indispensable for precise control of the ∆ϕCEO as was

suggested in [37].

2.6.9 Amplitude-to-phase conversion effects

The key to understanding the mechanisms forming the fCEO phase noise is Eq. (2.59).

Any change of temperature, air pressure, or laser power may also affect ∆ϕCEO.

For simplicity, assume that we have a laser cavity of length L filled with a mate-

rial of index n. We can then rewrite the dependence of Eq. (2.59) on any laser or

environmental parameter X as [105,151,155]:

δ

δX
∆ϕCEO = 2ωc

δωc

δX

δn

δω
L+ ω2

c

δn

δω

δL

δX
+ ω2

c

δ2n

δωδX
L (2.81)

Amplitude-to-phase conversion (APC) is a special case of Eq. (2.81). The case

where X is the intensity deserves special attention, as the resulting fluctuations of

∆ϕCEO can be arbitrarily fast when electronic nonlinearities such as the all-optical

Kerr effect are mediating between amplitude fluctuations and CEO phase noise.

APC effects are mainly taking place in the laser crystal, as this is the position of

highest intracavity intensities.

Spectral shifting of the laser spectrum has been proposed as the first mecha-

nism giving rise to APC effects [105]. The carrier frequency ωc shifts with pump

power or intracavity intensity, an effect that strongly depends on the operating

conditions of the laser. Generally, both effects seem to be weaker when the laser

bandwidth is wider. In a recent publication, spectral shifting was observed for a

750 MHz repetition-rate laser below 50 nm mode-locked bandwidth, whereas it did

not appear to play a role in a 100 MHz repetition-rate laser with its stronger mode

locking and higher pulse energy [112]. APC coefficients ∂f/∂I on the order of 10−7

HzW/m2 were observed when spectral shifting dominates the APC, resulting in

the prevalent contribution to ∆ϕCEO noise. In contrast, the APC coefficient drops
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to a few 10−9 HzW/m2 in the absence of spectral shifting [108,112,155].

A second contribution to ∆ϕCEO noise arises from geometrical changes of the

laser cavity affecting the total cavity length L. This contribution is typically neg-

ligible in prismless cavities but can play a role in cavities that use intracavity

prism sequences for dispersion compensation [40], [108]. One potential mechanism

behind such laser dynamics is beam-pointing variations inside the laser cavity

together with the directional sensitivity of the dispersion of a prism compres-

sor [108, 156, 157]. If the beam direction inside the prism sequence changes, this

will also affect the net first-order dispersion of the cavity via the second term in

Eq. (2.81). Beam-pointing variations can be induced by changes of the refractive

index of the laser crystal. If the index of refraction of the laser crystal changes,

Snell’s law demands a change of angles inside and outside the laser crystal [108].

Beam-pointing effects are held responsible for an approximately tenfold increase

of ∆ϕCEO noise of prism laser cavities as compared to prismless variants.

The third term in Eq. (2.81) contains contributions to ∆ϕCEO noise via intensity-

induced changes of the refractive index [106, 153, 158]. Nonlinear fraction is well

known as the all-optical Kerr effect [153], but according to Eq. (2.81), only the

dispersion of the Kerr effect affects changes of the ∆ϕCEO. The issue of dis-

persion of the Kerr effect has been addressed by [159, 160]. According to Sheik-

Bahae et al. [159], the main contribution to the first-order dispersion of a dielectric

medium well below half the band edge stems from a Kramers-Kronig term induced

by two-photon absorption. As per their example, for sapphire at 800 nm, one cal-

culates ∂2n/∂ω∂I ≈ 10−36 s m2/W rad. Inserting values for typical Ti:Sa laser

cavities [84], one computes a theoretical estimate of ∂f/∂I0 = 5× 10−9 HzW/m2,

which agrees well with the lowest experimentally observed values of ∂f/∂I0. Again,

these low APC coefficients can only be reached in the absence of geometrical effects

and spectral shifting.

From the experimental observations, some guidelines can be given on how to

keep APC effects to a minimum. The first recommendation is to use a prismless

cavity. In prismless cavities, beam pointing does not translate into CEO phase

noise [108]. Spectral shifting is the other APC effect that can be avoided by

suitable design of the laser. For a stable position of the laser spectrum, a broad

mode-locked bandwidth of more than 50 nanometers and a high pulse energy

appear to be favorable conditions [112]. If geometric effects and spectral shifting
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can be avoided, the APC effects are restricted to nonlinear refractive mechanisms,

both Kerr-type and an additional thermally induced mechanism at low Fourier

frequencies. Values on the order of ∂f/∂I0 = 10−8 HzW/m2 or less are indicative

of a dominance of nonlinear refraction in the APC dynamics.

2.6.10 Phase-locked OFC

One might expect that various noise processes would disrupt the pulse train of

a mode-locked laser, effectively blurring out any OFC structure. Fortunately, it

turns out that this noise simply causes the OFC to stretch or shift. This motion

can be eliminated by phase-locking (or ’monitoring’) the OFC with respect to an

underlying frequency reference [44, 81, 100, 104, 161–163] to stabilize frep, which

controls the tooth spacing, and fCEO, which sets the overall frequency shift of the

OFC. The teeth of the resulting OFC are phase-coherent with each other as well

as with the underlying frequency reference.

fCEO stabilization

To stabilize the offset frequency it is crucial to generate a full optical octave.

However, the typical spectral output generated by Ti:Sa lasers spans only several

tens of nm. Propagation through optical fibers is commonly used to broaden the

spectrum of mode-locked lasers via the nonlinear process of self-phase modulation.

Nevertheless, chromatic dispersion in the fiber rapidly stretches the pulse duration,

thus lowering the peak power and limiting the width of generated spectrum. A

real breakthrough has been represented by the advent of air-silica microstructure

fibers having zero group dispersion at 780 nm [38,164]. By coupling the Ti:Sa laser

output into such a fiber, the sustained high intensity (hundreds of GW cm−2)

generates a stable, single-mode, phase-coherent continuum that stretches from

∼ 520 to ∼ 1130 nm. Through four-wave mixing processes, the original spectral

OFC in the mode-locked pulse is transferred to the generated continuum. Once

a full octave is obtained, fCEO can be detected by the self-referencing technique

(see Sect. 2.3). fCEO signal is fed into suitable servo electronics which acts on the

cavity end mirror.

The only missing link to stabilization of the fCEO is now a mechanism for

external control of the fCEO. Such a mechanism allows closing the servo loop,
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forcing the fCEO into a lock with a RF-reference oscillator. Ideally, a control

mechanism should only act on the fCEO and leave other cavity parameters un-

changed (orthogonality). If we leave this concern aside, all mechanisms causing

an amplitude-to-phase conversion (APC) are suited, in principle, for control of the

fCEO. A servo bandwidth of more than 10 kHz is needed, which rules out many

slow mechanisms. Choice of the control mechanism is therefore a trade-off between

orthogonality and bandwidth.

In lasers with intracavity prism sequences, an elegant way of controlling the

fCEO of a laser without affecting other laser parameters is offered. Tilting the end

mirror after the prism sequence affects only the difference between the group and

phase delay in the cavity but leaves other laser parameters widely unchanged [30,

165]. The tilt of the end mirror has to be restricted to small excursions compared

to the angular aperture of the beam at the end mirror. Only then one can be sure

that the intracavity power is not also affected by the mirror tilt. Mirror excursion

in the microradian range is sufficient to control the fCEO within one spectral range.

This makes mirror tilting the method of choice for cavities with prisms. However,

it is typically very difficult to reach a servo bandwidth of more than 1 kHz with

mirror tilting because of mirror inertia. Reaching sufficient bandwidth requires

an optimized setup of the tilt actuator. Bandwidths up to 25 kHz have been

demonstrated using a mirror of low mass directly mounted on a split piezoelectric

transducer (PZT) actuator [107].

Mirror tilting is not an option when a prismless setup is used. Then the method

of choice is modulation of the pump power either with an acoustooptic modula-

tor [155] or with an electro-optic device [166]. As the required pump-power modu-

lation is on the order of 10−3, it is typically very easy to reach bandwidths of several

tens to hundreds of kHz. Pump-power modulation relies on the APC mechanisms

discussed in the previous section and is currently the most widespread mechanism

for fCEO control.

Repetition rate frequency stabilization

Repetition rate control is easily obtained by adjusting the cavity length using a

piezoelectric transducer (PZT) to translate one of the end mirrors. In practice,

PZT stacks can twist as they expand or contract, thereby requiring a more complex
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arrangement. Also, temperature stabilization of the laser base plate is usually

accomplished; this reduces cavity length drifts, thus allowing an ordinary PZT to

achieve a sufficient range. Also frep control by the pump-power modulation were

recently suggested and tested [167,168].
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Chapter 3

Apparatus

In first Sect. 3.1 of this chapter the key questions of the fs Ti:Sa laser development

are presented: the active medium characteristics in SbSect. 3.1.2, characteristics

of three different types of the pump lasers (Millennia Xs, Verdi V5, Verdi G7) in

SbSect. 3.1.3, the Ti:Sa cavity design in SbSect. 3.1.4, elements of stabilization

of both OFC’s degrees of freedom in SbSect. 3.1.5, PCF properties and input

beam alignment in SbSect. 3.1.7, implementation of the f -2f interferometer in

SbSec. 3.1.8.

Separately characteristics of the OFC operated in quasi octave-spanning regime

are presented in in Sect. 3.2).

The absolute frequency characteristics of the locked OFC clearly depend on

the reference. In our case, the reference is the clock laser ( [169, 170]), which

was involved in day-by-day operation with OFC and its main characteristics are

presented in Sect. 3.3.

3.1 Self-referenced home-build fs Ti:Sa laser

Nowadays many OFCs with different characteristics are commercially available.

For experiments that need to use an OFC as a black box, the choice of a proper

commercial OFC is often the best solution. While these lasers can be perfectly

realized, for metrological applications the main task remains the phase stabilization

of OFC. For this a proper realization of a phase-lock loop (PLL) is demanded with

good understanding of nature of the OFC frequency noise. For some experiments
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in which the best stability is required, this translates in modifications needed

in the laser optical cavity or stabilization PLL circuits. For simple cases, these

modifications may concern PZT adding/modification for building proper repetition

rate frequency frep control, dispersion managing for stabilizing fCEO and improving

noise characteristics. Modifications finally can change a lot an initial design of a

laser. For this reason it also suitable to build up OFC in laboratory from scratch

in order to study properties of the OFC. This will demand initially more time than

to buy a commercial OFC. However, it can give a profit in time at the stage of

OFC stabilization.

3.1.1 Clean room environment

The clock laser and fs Ti:Sa laser are placed in a class 1000 clean room. Also the

temperature is stabilized at 21±1◦C and remains in this region if the temperature

outside of laboratory is not dramatically changing. These conditions play a role in

increasing the passive stability of Ti:Sa laser fs regimes up to weeks without need

of cleaning the optics of the Ti:Sa laser, which is, naturally, very sensitive to dust.

The optical systems are partially insulated from seismic, acoustic and sub-

acoustic disturbances. The optical table is supported by four pneumatic insulating

legs. This system decouples floor seismic motions from the laser system, providing

a -40 dB/decade vibration damping up to 30 Hz. A wooden panel above the table

and a heavy-rubber curtain surrounding it block the direct clean room laminar

air-flow and attenuate the acoustic noise from the rest of the laboratory [169].

3.1.2 Active medium: Titanium sapphire

One of the first questions in the project of building a fs laser is the choice of

the active medium. Depending on the task, the choice can be among laser based

on bulk crystals, fiber lasers, dye lasers or semiconductor lasers. Recently, fiber

lasers have been studied in details in many scientific groups. This is due to the

fact that these lasers are compact and do not need frequent alignments and are

cheap when compared to bulk crystal lasers. The cost of bulk lasers is typically

higher compared with fiber lasers due to the high price for pump lasers. However

bulk crystal Ti:Sa lasers still remain a good choice due to their very large gain

bandwidth. This feature allows to achieve very short pulses and a better S/N
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3.1 Self-referenced home-build fs Ti:Sa laser

ratio for beat notes when compared to OFCs based on other active media. These

convert into the better ability to measure precisely an optical frequency.

The active medium used in the laser is a Titanium-ion doped sapphire crystal

(Ti3+:Al2O3). This is a vibronic laser medium, as there is strong coupling between

the vibrational energy levels and the electronic energy levels of the Ti3+ active

ions. The vibronic nature of Ti3+:Al2O3 leads to broad absorption and emission

spectra.

To date, Ti3+:Al2O3 is the most common and commercially available tunable

solid-state laser. Nowadays, it can be pumped with frequency-doubled Nd lasers at

wavelengths around 532 nm, thus efficient all-solid state laser operation is possible.

Formerly, Ar+-ion laser pumping was applied. In commercial systems, overall

efficiencies as high as 30% are obtained.

Besides the broad tuning capability of the Ti:Sa laser, its ability for ultrashort-

pulse generation and amplification is especially exploited. In mode-locked oper-

ation, pulses as short as 5 fs [147, 171–174] and octave-spanning spectra (e.g.,

600 nm to 1200 nm [147]) have been obtained.

The electronic structure of the Ti3+ ion is a close shell plus a single 3d electron.

The free-space, fivefold-degenerate (neglecting spin) d-electron levels are split by

the crystal field of the host. The site for the Ti3+ ion has trigonal symmetry in

the host Al2O3; the crystal field can be viewed as sum of cubic- and trigonal-

symmetry components. The cubic field dominates and splits the Ti3+ energy level

into a triply degenerate 2T2 ground state and a doubly degenerate 2E excited state.

The absorption band centered at 490 nm makes it suitable for variety of laser

pump sources - argon ion, frequency doubled Nd:YAG and YLF, copper vapor

lasers. Given the low absorption cross-section and (compared to dye laser mate-

rials) the relatively low gain, a long gain medium is required to ensure efficient

pumping and overall gain. As a result, the crystal must be pumped collinearly

to obtain the best overlap between pump and resonator mode. An anti-reflection

coated lens is used for focusing the pump beam in the Ti:Sa crystal. The polar-

ization of the pump beam is rotated by a phase plate by π/2. The polarization of

the laser mode is parallel to the optical table and governed by the lossless prop-

agation through the surfaces at the Brewster angle of the crystal and the prisms.

Moreover, the Ti:Sa rod may act as a birefringent filter in the cavity and thus

works as a mode selector. Only the modes that have the correct polarization ori-
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Figure 3.1: The energy levels diagram for Ti:Sa.

entation will propagate without any losses. Setting of the c-axis of the sapphire

crystal parallel to the polarization direction of the circulating radiation, results in

the lossless propagation over the whole accessible gain bandwidth. Therefore care-

ful alignment of the crystal axis is crucial to sustain the broadband mode-locked

operation of the laser.

The Sellmeir equation Eq. (2.36) for sapphire is

n2
Sa(λ) = 1 +

1, 4313493× λ2

λ2 − 0, 0052799261
+

0, 65054713× λ2

λ2 − 0, 0142382647
+

5, 3414021× λ2

λ2 − 325, 017834
(3.1)

where λ in µm. The corresponding graph is plotted in Fig. 3.2a. From it we

can find n(λ = 800 µm) = 1.76. By using the Eq. (3.1) and Eq. (2.41) the GDD

of the sapphire rod is calculated and plotted in Fig. 3.2b.

3.1.3 Pump lasers

A Ti:Sa crystal typically is pumped by a green light from either an Ar+-ion laser or

a diode-pumped solid-state (DPSS) laser, which provides far superior performance

in terms of laser stability and noise. Nowadays, two types of a DPSS lasers are

widely used to pump fs Ti:Sa lasers for metrological applications: multi-mode
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Figure 3.2: (a) Index of refraction for Ti:Sa plotted for Sellmeir’s equation. (b)

GDD of a sapphire rod for the beam path in a crystal L=1 mm (red dashed line)

and L=2.5 mm (blue solid line).

lasers (mml) and single-mode lasers (sml). The sml has an advantage versus mml

due to his lower amplitude noise at higher frequencies. The properties of these

pump lasers largely affects the properties of the Ti:Sa laser.

In our experiments we used both mlm (Millennia Xs Spectra-Physic and Verdi

G7 Coherent) and slm (Verdi V5 Coherent) pump lasers.

Millennia Xs The Millennia Xs is an all solid-state, high power, visible cw laser

that produces more than 10 W of green light at 532 nm. The Millennia Xs has a

1/e2 beam diameter of 2.3 mm ±10%, beam pointing stability < 5µrad/ ◦C and

relative amplitude noise < 0.05% rms.

Most of the results in this thesis have been obtained with this laser.

Verdi V5 The Verdi V5 from Coherent is a pump laser of the sml family. It can

give more than 5 W output power, has a 1/e2 beam diameter of 2.25 mm ±10%,

beam pointing stability < 2µrad/ ◦C and relative amplitude noise < 0.02% rms.

We tested two versions of Verdi V5. When it is necessary to distinguish these

two lasers, we will call the first one “Verdi V5 old”.

Verdi G7 The Verdi G7 532 nm mml high power laser. It is based on opti-

cally pumped semiconductor laser technology where the rod-based gain medium
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is replaced with a robust and versatile semiconductor chip. There are two ad-

vantages of this laser comparing with Verdi V series: no thermal lensing issues

(TEM00 mode has better shape) and no “green” problem due to the very short

(nanosecond) upper state lifetime. It can give more than 7 W output power, has a

1/e2 beam diameter of 2.25 mm ±10%, beam pointing stability < 2µrad/ ◦C and

relative amplitude noise < 0.02% rms.

We tested the OFC performance in QOS regime pumped by the Verdi G7 demo

version.

Amplitude noise of pump lasers

First of all, we measured the amplitude noise of the all our pump lasers: the Verdi

V5, Verdi G7 and Millennia Xs (Fig. 3.3). Verdi G7 has relative intensity noise

(RIN) from low frequencies up to the ∼ 30 kHz comparable with Millennia Xs. At

about 45 kHz Verdi G7 RIN has a bump at 40 kHz and at higher frequencies it

goes down. So, in the important frequency region (for fCEO phase stability) from

40-60 kHz (typical bandwidth of servo loop) up to the ∼ 300 kHz (most of the

amplitude noise higher than 300 kHz will be effectively filtered out by the laser

crystal itself due to the the 3.2 µs lifetime of Ti:Sa [109]) the Verdi G7 has lower

RIN comparing with Millennia Xs RIN.

Comparing with Verdi V5 RIN, Verdi G7 RIN is one order higher from 100 Hz

up to the ∼ 65 kHz. At ∼ 65 kHz and at 100 kHz Verdi V5 RIN has very high

peaks, that can not be compensated by the servo-stabilization loop. The Verdi G7

amplitude noise at higher frequencies can be seen from phase noise of fCEO signal

(Fig. 3.3b. It is visible the bump at ∼ 45 kHz from Verdi G7 amplitude noise. In

the frequency region 100-200 kHz the phase noise is going down, probably reaching

the phase noise level of Verdi V5, and it has small peak at ∼ 265 kHz.

3.1.4 Femtosecond cavity design

General schemes

The second step of fs laser building is to chose of the region for a frep. Once

it is chosen, it is necessary to choose between several possible designs for cavity.

Basically, there are two commonly used linear cavities for Ti:Sa oscillator as de-
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Figure 3.3: (a) The RIN of all pump lasers used to pump the OFC. (b) Free-running

fCEO of the OFC pumped by Verdi G7.

picted in Fig. 3.4: an X or Z configuration. The folded cavity is suitable to obtain

good mode matching with pump and to provide tight focusing in the mirror [175].

Beside it can control the astigmatism produce from laser cavity by adjusting the

angle of the arm. Both types work equally well and usually selected based on

considerations of available space in setting up the cavity [176].

Figure 3.4: Commonly used cavity for Ti:Sa laser: X- and Z-configurations.

In Fig. 3.5 presented schematics of our X folded Ti:Sa cavity, where all possible

plane mirrors between mirror M1 and M4out is neglected, because they don’t have

an impact on next calculations here we used ABCD-matrix’s methods.

Several considerations must be taken into account when a fs cavity is designed.

First is the cavity astigmatism.
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Figure 3.5: Schematics of our X folded Ti:Sa cavity.

Astigmatism compensation

The Ti:Sa crystal as an active medium, normally is cut at Brewster angle. The

presence of the astigmatism in the cavity lead to a beam waist size which is different

in the sagittal (perpendicular to the plane of incident) and tangential (parallel to

the plane of incident) plane [177]. Astigmatism needs to be reduced because it

can cause unstable mode-locking [178] and also reduced output power. For real

X folded cavity, astigmatism cannot be completely compensated but minimized

by titling opportunely the folding mirrors. For the curved mirrors, astigmatism

comes from the asymmetry of the oblique incidence. The proper angle θ in Fig. 3.5

must be chosen to compensate the effects of each other.

In the sagittal and the tangential plane, according to [179], the Guassian beam

is therefore reflected by two different effective focal lengths, related to the normal

incidence focal length of the curved mirror f = R/2

fx =
f

cosθ
(3.2)

fy = fcosθ (3.3)
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Another source of astigmatism is the Brewster angle cut Ti:Sa crystal. The

effective length lx and ly the beams have to travel in the crystal [180]:

lx =
t
√
n2 + 1

n2
(3.4)

ly =
t
√
n2 + 1

n4
(3.5)

where t is the thickness of the Ti:Sa crystal, and n is the refractive index of it.

Knowing the two astigmatic elements, we compensate the astigmatism of the

cavity and aim for maximum overlap of the stability region of x and y direction.

To do this, consider the distance df between the curved mirror, for the x and y

beam dimensions,

dfx = f1x + f2x + δx = lair + lx (3.6)

dfy = f1y + f2y + δy = lair + ly (3.7)

For the x and y direction, lair is the same. Thus,

δx − δy = lx − ly − (f1x − f1y)− (f2x − f2y) = 0 (3.8)

With this condition, the stability parameters in x and y direction are equal,

and the The optimal fold angle for the cavity to reduce a crystal astigmatism can

be calculated using the following equation

t(n2 − 1)
√
n2 + 1

n4
= f1 sin θ1 tan θ1 + f2 sin θ2 tan θ2 (3.9)

for f1 = f2 = f , θ1 = θ2 = θ, t is 2.5 mm, n is 1.76, f = 50 mm we calculate

θ that is equal to ∼ 8.5◦.

Stability regions

The initial step to build a fs laser is to build a cw operating laser. For this a cavity

should satisfy the stability rules.
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With L1, L2, L3, L4 defined in Fig. 3.5 and labeling the distance between the

curved mirrors: df = f1 + f2 + t, our cavity with the Ti:Sa crystal give us a

transmission matrix as follow:

T =M1× L1×M2× L2× TiSa× L3×M3× L4×M4(out)

× L4×M3× L3× TiSa× L2×M2× L1

= L1×M2× L2× TiSa× L3×M3× L4

× L4×M3× L3× TiSa× L2×M2× L1 =

(
A B

C D

) (3.10)

where Mk is the matrix for mirror number k, Lk is the matrix for distance

number k for elements in Fig. 3.5. Note here that matrices of Ti:Sa crystal for

tangential and sagittal planes and the matrix of concave mirrors are not equal.

This results in two different ABCD-matrix for tangential (T) and sagittal (S)

planes.

Suppose that we want to analyze a region of the cavity stability when we are

changing some distance in it, for example, distance L2 between curved mirror M2

and Ti:Sa crystal. For this we can use the stability condition for a cavity [74],

− 1 ≤ A+D

2
≤ 1 (3.11)

or in the form

0 < 1−
(
A+D

2

)2

≤ 1 (3.12)

The graph for the distance L2 in the range where Eq. (3.12) is true and the

cavity is stable (we put f1 = f2 = f = 25, L1 = 180, L3 = 25, L4 = 270) is

presented in Fig. 3.6. The green line is for tangential plane, red one is for sagittal.

This distance will be changed when we will search a fs regime of our laser. Also

useful to know the region for distance L1 or L4 in order to fix desired frep.

Dispersion compensation

For a fs laser the management of the cavity dispersion is of great importance.

Without dispersion compensation, a longer wavelength component of the pulse
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Figure 3.6: Regions for distance L2 between mirror M2 and Ti:Sa crystal when

the cavity is stable.

propagate faster than shorter wavelength component, leading to pulse stretching.

In a mode-locked laser for fs pulse generation, the uncompensated chromatic dis-

persion is not desirable, because to broaden and chirp the generated pulses, making

the femtosecond pulse generation impossible.

A way to compensate the dispersion is to insert in the cavity a prism pairs [156].

Another solution is to use Gires-Tournois interferometer mirrors (GTI) [127] or

chirped mirrors (see SbSect. 2.1.3).

Two different types of Ti:Sa cavities has been tested. In the first case we used

Layertec GTI mirror with GDD -550±50 fs2 in 790-815 nm optical region. The

Ti:Sa crystal introduces a GDD of≈ 145 fs2 into our cavity (see Fig. fig:SapphireGDD).

The air contribution is less than 10 fs2 and there is some small contributions (less

than 20 fs2 for each mirror and specially for λ = 800 nm close to 0) from optics

which laser beam passes in cavity. Thereby, total cavity GDD is about -400 fs2 for

λ = 800 nm in this case.

In second case we test a chirped pair mirrors 101410 from Layertec with a mean

of ≈ −70 fs2/reflection and Naneo Chord GDD mirror with a GDD ≈ −50 fs2.
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These resulting in a net GDD of ≈ −175fs2 per cavity round trip.

Pulse duration

The pulse duration of the fs pulses could be estimated through the pulse frequency

spectrum. The center wavelength λ and the bandwidth ∆λ of the spectrum at full

wave half maximum (FWHM) are the important parameters. These parameters

have relationship with pulse frequency ∆f which given as [181]

∆f =
c

λ2
∆λ (3.13)

For the cavity version with the GTI a typical pulse bandwidth is ∼ 11.5 nm,

and for the chirped mirrors is ∼ 30 nm (Fig. 3.7). Note, that for the the fs cavity

configuration with chirped mirrors it is also possible to generated very broad optput

spectrum (more than 150 nm). The results for this case are presented in Sect. 3.2.

The minimum possible pulse duration of Ti:Sa laser can be estimated from

Eq. 2.27, where we suppose that the femtosecond pulse is in the formation of

hyperbolic secant pulse shape and K = 0.315 [78, 182]. Thus ∆t1 ≈ 58.4 fs and

∆t2 ≈ 18 fs.
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Figure 3.7: Emission optical spectrum of Ti:Sa laser in fs regime with total cavity

dispersion ∼ −400fs2 (left) and ∼ −175fs2.
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3.1.5 Elements for OFC stabilization

Passive stabilization

The performance of locked OFC has a direct link with the conditions of free-

running OFC (see next chapter). Thus the improvement of the passive stability of

a OFC is the first important step for frequency stabilization of its spectrum.

In order to increase the passive stability of the Ti:Sa cavity we have reduced

the height of the beam with respect to the optical table at only 38 mm. The Ti:Sa

cavity and all the optical components were isolated from external environmental

perturbations. All the cavity optical path are surrounded by 20 mm thick Plexiglas

boxes. We have reduced the thermal coupling between high power pump laser

(Millennia Xs) and the Ti:Sa cavity by isolating the pump laser head from the

main breadboard through a 2.5 cm thick Plexiglas slab. Note that Verdi V5 does

not need to be isolated because has his own temperature stabilized support for the

laser head.

The overall setup (pump, Ti:Sa cavity, f -2f interferometer and schemes for

beatnotes with 689 and 698 nm lasers) is mounted on an optical breadboard (90

cm ×90 cm) that is isolated from ground vibrations by using laminar flow damping

legs.

All these tricks, together with the good stability of the temperature in the

room (±1◦C) help to maintain a robust alignment of the optical path in long term

measurements. In this condition, due to a residual change in temperature of the

room we observe a maximum drift in the frep of the order of 20 mHz/s.

Active stabilization

As was noted before, a OFC has two degrees of freedom: frep and fCEO, that should

be stabilized to make precision frequency measurements. The stabilizations have

been done by using PLLs, which are consists on an electronics part and electro-

opto-mechanical actuators for control OFC parameters. In this section we describe

the actuators.

frep stabilization The frep of a OFC is directly connected with the length of

the cavity: frep = c/2L, where c is the speed of light and L is the cavity length.

For this reason the cavity length change is used to control this frequency. The use
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Figure 3.8: The passive stability of our OFC.

of PZT becomes a common technique for such requirements. Then the frep can be

controlled by acting with PZT’s on the cavity length.

The mirror, PZT and mirror mount form a system characterized by their me-

chanical resonances Ωi
res and since this system is inside the feedback loop we can

expect stable operation only at frequencies below the lowest resonance Ωres,low.

This frequency is a function of the mass of the mirror, the mass of the mirror

mount or counterweight, and the way the PZT and the mirror are connected. The

first improvement is to use the smallest possible mirror substrate and PZT glued

with a hard compound onto a massive backplate as the counterweight. This type

of solution is found in many commercial systems, for example in any laser system

with a extended optical resonator.

Such solution can give a large bandwidth of PLL (in some systems up to 180

kHz [183], see the idea in the App. F.3). However, small fast PZT are generally

limited in the maximum excursion. This limits the maximum tuning of the frep.

For example, PZT with sensitivity 0.05 nm/V and maximum voltage 100 V can

tune frep within 0.3 Hz. For this reason it is often implemented a second actuator

with a high voltage or multi-stack PZT that can correct the larger drifts at low

frequency.

In our cavity we use as fast actuator a small plane mirror Layertec 108167

(diameter d = 6.35 mm, thickness t = 3.0 mm) glued to a fast PZT (NoliacTM

CMAR01, operating voltage 200 V, free stroke 2.7 µm), to a massive brass mount.

The mount has an irregular shape with maximum dimensions 20 × 20 × 50 mm.
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Its mechanical resonances were investigated by interferometric method and the

frequency and phase resonance we observed first at Ωres,low ≈ 40 kHz. A slow PZT

is fixed on an output coupler mirror in a normal mirror mount. It has an operating

voltage of 150 V and can tune the frep of about 50 Hz.

Acoustooptic Modulator The fCEO depends mostly on dispersion in a fs cav-

ity (see Eq. 2.61). The easiest way to change the cavity dispersion is to change

the intracavity power. Sufficiently fast for this task are acoustooptic modulators

(AOM). Our AOM is from IntraAction Corp. and its optical rise-time is less than

265 ns, with a bandwidth of about 1.8 MHz (these parameters depends on beam

diameter). The AOM is placed in the noise eater configuration (Fig. 3.9) in which

varying the amplitude ∆A of the driving signal cos (ωAOM t) proportionally changes

the light power in the first diffracted order ∆P , thereby modulating the power on

the undiffracted beam P −∆P .

In our case, the AOM is aligned to have the power in the 1st order ∆P within

1% of P . The RF power to modulate the AOM is 16 dB (comes from the RF

generator through Amplifier Mini-Circuit, model #ZHL-3A).

The sensitivity of the fCEO to the pump power modulation is not linear (as

was discussed in SbSect. 2.6.5 and will be shown in SbSect. 4.1.3 ). However,

it is always possible to find a linear region of fCEO dependence from the pump

power δfCEO/δP (see Fig. 4.1a). In this region a typical sensitivity of the fCEO

is ∼ 2 MHz/100 mW. That for 1% power modulation at P=4.5 W corresponds to

∆fCEO ∼ 900 kHz.

The value of the ∆P is chosen small to avoid fCEO overrunning from the linear

response of δfCEO/δP (see Fig. 4.1a).

For the QOS OFC the δfCEO/δP is always linear (as far as we observed) and

equal ∼ 2 MHz/100 mW (see Fig. 3.17b).

Pump beam horizontal shifting For the same reasons as for frep stabilization,

for a fCEOcase is also useful to have two PLL loops. A fast one is based on the

AOM. A slow control is obtained by a pump beam shift.

To shift the pump beam through the fs cavity we are using a stack low voltage

ring actuators (model HPSt 150/14-10/12, Piezomechanik GmbH) with 0.08 µm/V

sensitivity. Due to the fact that the maximum voltage must never exceed 150 V
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(a)
(b)

Figure 3.9: (a) Configuration for using an AOM as a noise eater. Varying the

amplitude of the driving signal proportionally changes the light power in the

first diffracted order, thereby modulating the power on the undiffracted beam.

(b) Pump beam horizontal shifting.

and that the shifting mirror placed at 45◦, the calculated maximum beam shift

of the pump beam Xpb on the focusing lens was estimated to be around 8.5 µm

(see Fig. 4.1b). We measured the the corresponded sensitivity of the fCEO as a

function Xpb near to the “turning point” by slowly changing the voltage of the

pump mirror PZT. The sensitivity was found to be ∼ 5 − 15 MHz/150 V (see

SbSect. 2.6.5 and SbSect. 4.1.3).

3.1.6 Final design

Fig. 3.10 shows the experimental design of our OFC with a detailed scheme of the

Ti:Sa cavity (presented the version with GTI mirrors). All the mirrors (except

the output coupler) are dielectric coated with > 99% reflectivity at the central

wavelength of 800 nm. The pump beam is coupled into the cavity by a lens of

focal length 75 mm through the dichroic curved mirror M1. The flat side of this

mirror was AR coated for 532 nm to minimize losses.

Two PZTs actuate the flat folding mirror M3 and the OC of the Ti:Sa cavity

for the control of the frep respectively for the fast (up to 40 kHz) and slow control.

The slow drift of the offset frequency fCEO was controlled by observing the f -2f

interferometer (see SbSect. 3.1.8), actuating through a PZT on the position of the

pump mirror (PM), while the short pumping power term stability (up to 100 kHz)

74



i
i

“PhDThesisPisa” — 2011/11/30 — 8:42 — page 75 — #48 i
i

i
i

i
i

3.1 Self-referenced home-build fs Ti:Sa laser

is provided by stabilizing the amplitude of the pump beam by AOM.

The positions of the curved mirrors are critical for producing a fs regime.

Typically, a KLM is obtained by displacing one curved mirror away from the

optimum mirror position for a cw operation.

Figure 3.10: Experimental setup of Ti:Sa OFC. Prismless Ti:Sa laser cavity com-

posed by M1 and M2 - curved mirrors, M3 - flat mirror, OC - output coupler,

GTI - Gires-Tournois interferometer, α - astigmatism compensation angle; PCF

- photonic crystal fiber, L - focusing lens, MP - pump mirror with PZT, AOM -

acouso-optical modulator.

3.1.7 Photonic crystal fiber

Microstructure fibers played a key role in the production of coherent OFCs that

span more than an octave of bandwidth. Theoretical aspects of the supercontin-

uum generation from a PCF were described in SbSect. 2.4.

Our PCF, type Femtowhite 800 from Crystal-Fibre, is a polarization-maintaining

supercontinuum device for use in the 800 nm-range femtosecond lasers. It is a

highly nonlinear, polarization-maintaining photonic crystal fiber with zero disper-
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sion at 750 nm (see Fig. 3.11a). The fiber ends are sealed and mounted in quartz

ferrules, and the polarization axis is indicated on the device. The nonlinear fiber is

mounted in a robust aluminum housing, which can be easily mounted on a mount.

The end facet of the device is shown schematically in Fig. 3.11.

(a)
(b)

Figure 3.11: (a) Typical measured dispersion of the fiber in the FEMTOWHITE

800. Fig. from Appl. note for FEMTOWHITE 800. (b) Principle behind the

beam expansion in the device. The figure shows the end of the fiber where part of

the microstructure has been collapsed.

The microstructure in the fiber is collapsed over a distance of approximately

100 µm, causing the field to diverge into a larger spot size. The spot size in the

raw fiber is approximately 1.6 µm, which is increased to × 2.3 µm as the effective

spot-size to focus to at 100 µm from the end facet. The corresponding spot-size

will be × 30 µm on the fiber end facet.

The PCF is placed in a V-shaped fixed aluminum mount. To align PCF the

input and output collimators are placed in 2-axis translational stages. This solution

give us a stable alignment of both the input coupler and the output coupler.

The input collimator was chosen from equation:

φspot =
4λf

πD
(3.14)

where f is a focus length of the lens, λ is a wavelength, D is a diameter of colli-

mated beam, incident on lens. From the PCF data-sheet φspot ≤ MDF@780(focus) =
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2.3± 0.3 µm, our D ≈ 1.7 mm is measured by the knife-edge method (App. G.1)

and fitted with the error function (App. G.2):

erf(x) =
2√
π

∫ x

0

e−t2dt (3.15)

For λ = 800 nm f ≤ 3.8±0.5 mm. In practice we used a collimator C390TM-B

from Thorlabs with f = 2.75 mm. The coupling efficiency of the PCF is ≈ 50%.

The optical spectrum after PCF is presented in Fig. 3.12. On this graph are

also shown the wavelengths for which is necessary to have enough power in super-

continuum for our measurements: 532 nm and 1064 nm for f -2 f interferometer,

698 nm for beatnotes with the clock laser, 689 nm for beatnotes with 689 nm

laser. Our optical spectrometer is limited in wavelength over ∼ 1000 nm and op-

tical spectrum higher that this wavelength can’t be presented. Instead we put the

power level at λ = 1064 nm, measured by photodiode. The power distribution

across supercontinuum is not constant. A small disaliments of PCF due to, for ex-

ample, thermal fluctuations, can change it a lot. This can lead to situation where

the power levels in the needed regions are insufficient. By rotating a λ/2 plate

before the PCF, we can adjust the power distribution across the supercontinuum

in order to find the best operative conditions. By the way, this instability is a

problem for long-time frequency measurements.

3.1.8 f -2f interferometer

The fCEO is detected by f -2f interferometer. Principle of the detection was dis-

cussed in the Sect. 2.3. In our case, the nonlinear crystal, that doubles the optical

frequency, is a beta-barium-borate (BBO) crystal, type I. We chose the initial

focusing parameters the same as in the experimental setup in the optical clock

laboratory in ILP SB RAS (see App. A) and further optimized them.

To observe fCEO signal, the delay between the two interferometer arms de-

mands to be well adjusted. That is achieved by implementation of a fused-silica

prism placed on an adjusted micrometer stage in of the arms.

In order to reduce the noise in fCEO signal, we carefully optically filtered incom-

ing beams in the interferometer. The beam is coming on an input mirror (Meller

Griot (LWP-45-RS532-TP694-PW1025-UV)), that transmits in the red and in-

frared regions and reflects to the first interferometer arm the wavelength in the
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Figure 3.12: Supercontinuum optical spectrum after the PCF. Also there are shown

important optical wavelengths for which is necessary to have enough power in

supercontinuum: 532 and 1064 nm for f -2f interferometer, 698 nm for the beatnote

with clock laser, 689 nm for the beatnote with 689 nm laser. At 1064 nm it is

shown the power, measured by photodiode.

range 550±50 nm. This beam reflected by the prism and is sent to the beamsplit-

ter for beatnotes with beam from a second interferometer arm. The transmitted

light after the input mirror is coming on a mirror from Meller Griot (SWP-45-

RS1064-TP694-PW1025-UV), that reflect infrared wavelength with λ = 1050± 50

nm into the interferometer arm with nonlinear crystal, and transmit a red light of

wavelength < λ = 700 nm. This red part is used for beatnotes between the OFC

and 698 nm and 689 nm lasers (see the Sect. 5.2). The infrared beam in inter-

ferometer becomes green after the BBO crystal and sent to the beamsplitter for

beatnotes with green light of the first interferometer arm. After the beamsplitter,

the light is filtered by a filter centered at λ = 532 nm with a passband of 10 nm.

Then it focused to a fast photodiode by a lens with focus length f = 50 mm. This

photodiode is typically used also for the detection of the frep.The observed fCEO

signal was 40-50 dB in 10-300 kHz bandwidth with the focal lens f = 60 mm,
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3.1 Self-referenced home-build fs Ti:Sa laser

L2 = 58 mm, input beam radius, measured by the knife-edge method, ∼ 3 mm.

For this parameters, the calculated waist of the beam inside the crystal w0 =

13.5µm (see Fig. 3.13), the wave vector k = 2π/λ1064 = 5.9×106 1/m; the confocal

parameter b = k×w2
0 = 5.9×106× (20×10−6)2 = 2.36mm; L/b = 4×10−3/2.36×

10−3 = 1.7, where L is the crystal length.

Despite the good fCEO S/N, from the theoretical point of view, this result

could be further improved. The theoretical study of second-harmonic generation

(SHG) using focused Gaussian beams by Boyd and Kleinman [184] has long been

a reliable resource for those studying frequency-conversion processes. However,

the Boyd-Kleinman theory applies only to cw beams and cannot be relied upon to

describe harmonic generation correctly using fs pulses.

A theoretical model that describes SHG using fs pulses, by taking into account

the associated critical effects of GDD was presented by Saltiel et al. in [185].

According to this model, in order to obtain the maximum frequency-doubling

efficiency, three parameters must be optimized:

• the GDD, which accounts for the temporal walk-off between the fundamental

and second harmonic pulses in propagation through the nonlinear medium.

GDD is defined by a nonstationary length Lnst = τ/α, where τ is the time

duration of the fundamental pulses, and the GDD parameter, α = 1/v2 −
1/v1, where v2 and v1 are the group velocities of the second harmonic and

fundamental wave respectively;

• the position of the focal spot, m;

• the strength of focusing, m = L/b, (b = k1w
2
01 , where w01 and k1 are the

focal spot radius and the wave vector of the fundamental wave respectively).

The theory of SHG using focused cw beams [184], where GDD is negligible

(Lnst ≫ L), predicts an optimal focusing condition which is expressed by the ratio

L/b = 2.83 (in our case L/b = 1.7). However, the theoretical model [185] for the

cases where GDD is significant (i.e. where L ≥ Lnst), says that depending on

L/Lnst the optimum value for the ration L/b can be approximately one order of

magnitude times greater.
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Figure 3.13: Scheme for beam focusing in BBO crystal L1 = 100 mm, Lin focus

length fin = 30 mm, L2 = 28.9 mm, BBO thickness t = 4 mm and index of

refraction n = 1.65, L3 = 30 mm, Lout focus length fout = 30 mm and input waist

radius r = 0.5 mm.
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Figure 3.14: (a) Scheme for beam focusing in the BBO crystal. (b) Typical fCEO

signal.

3.2 Quasi-octave spanning OFC

3.2.1 Main characteristics of QOS OFC

We also tested a Ti:Sa OFC in a regime with a large spanned optical spectrum

(> 100 nm), refereed here as quasi octave-spanning (QOS) OFC. This regime,

at difference from the EB OFC regime, do not present a ”turning point” (see

SbSect. 2.6.5) and its fCEO as a function of pump power has a simple linear

dependence (see SbSect. 2.6.4).

The QOS OFC is realized modifying the fs cavity by replacing the GTI mirror

by a chirped GDD mirrors pair plus one GDD mirror (Fig. 3.15). As was noted

in SbSbSect. 3.1.4, this step reduces the total intracavity dispersion from ∼ −400
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Figure 3.15: QOS OFC cavity scheme. The GTI mirror from Fig. 3.10 is replaced

by chirped pair mirrors M4, M4 and GDD mirror M6.

fs2 to ∼ −175 fs2. By final adjustment of the Ti:Sa cavity, it is possible to find

the regime when the emitted optical spectrum directly from the Ti:Sa laser has

a span about 700 − 900 nm. An optical spectrum at different pump power levels

is shown in Fig. 3.16. We believe, that the only reason why it is not an octave-

spanning is a limitation of our cavity mirrors coatings. Our output coupler has a

reflectance in 750-850 nm band. A full-octave spectrum with an output coupler

reflectance band of 680 − 880 nm was demonstrated, for example, by Bartels for

a Gigahertz femtosecond laser [42]. On the Fig. 3.16b is presented the broadest

observed optical spectrum with our QOS OFC.

QOS OFC output power as a function of the pump power presented in Fig. 3.17.

Regions 4.0-4.5 W, 4.55-5.5 W and 5.5-6.1 W have different efficiencies. This fact

also corresponds to different sensitivity of fCEO as a function of the pump power

(Fig. 3.17b). The last region at 5.5-6.3. W the continous wave components is

observed in the optical spectrum, that explains the higher efficiency in this region.

Also was observed different phase noise of fCEO at these regions (Fig. 3.17b inset

graphs shows fCEO signals).
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Figure 3.16: (a) QOS OFC output optical spectrum at different levels of the pump

power. Vertical dashed lines shows a reflectance band of our output coupler. (b)

- QOS OFC broadest observed output optical spectrum.
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Figure 3.17: (a) QOS OFC output power as a function of the pump power. (b) -

fCEO as a function of the pump power (case of the mml).

3.2.2 Passive stability of QOS OFC

Interesting results gives the passive stability measurement. In Fig. 3.18 typical

behaviour of the frep of free-running QOS FOC is presented. Compared with free-

running EB OFC case, a frep as a functon of time is changing faster (∼ 1.25 Hz/s),

but always has trend in one direction.
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Figure 3.18: (a) frep of the free-running QOS FOC. (b) fCEO of the free-running

QOS FOC.

3.3 Clock laser

The clock laser used to probe the 1S0-
3P0 strontium clock transition is a frequency-

stabilized diode laser at 698 nm.

The master laser is a commercial diode laser (Hitachi HL6738MG, without AR-

coated) mounted in an extended cavity (Littrow configuration) with a length of

30 mm. The diode operates at around 40◦C and delivers about 10 mW of optical

power at 83 mA driving current. The free running ECDL exhibits a frequency noise

spectral density Sν(f) ≃ 4.6× 108/f (Hz2/Hz) up to few MHz until it reaches its

white noise plateau at 103 (Hz2/Hz) [186,187].

Due to residual sensitivity to other environmental noise source, the stability of

the locked laser is σy = 1− 2× 10−15 for integration times between 1 s and 100 s.

For longer integration times, a residual 1 Hz/s cavity drift degrades the frequency

stability. Accuracy and long-term stability is achieved by referring the laser to

the clock 1S0-
3P0 transition of ultracold bosonic 88Sr isotope confined in a optical

lattice trap. [188].

The laser linewidth is reduced by Pound-Drever-Hall (PDH) frequency stabi-

lization to optical cavities [189]. We use a first stabilization step to reduce the

linewidth to < 1 kHz by locking the laser to a resonance of a pre-stabilization

cavity. Then, we reduce further the linewidth by locking the pre-stabilized laser

to a resonance of an ultra-high-finesse cavity [190,191].

83



Apparatus

The first pre-stabilization cavity is realized with an Invar spacer sitting on a

v-shaped aluminum block. It has a finesse of 104 and the resonance is about 150

kHz wide. The servo correction signal is sent to two actuation channels. As shown

in Fig. 3.19, one is sent to a PZT attached to the extended cavity grating, while

the second goes directly to the diode current with a servo bandwidth of about 2

MHz [169,187,192].

Figure 3.19: Experimental setup for the 698 nm clock laser frequency stabilization

and characterization. Block (a): master diode laser with two-stage frequency sta-

bilization; (b): second independently-stabilized ultra-high-finesse cavity and beat

note interferometer to make laser characterization studies; (c) noise-compensated

fiber link which deliver interrogation laser to the atoms. UHF: ultra-high finesse;

AOMi : acousto-optic modulators; EOMi : electro-optic modulators; SMF: single-

mode optical fiber; PNC: phase noise cancellation system [169].

The key feature of our frequency-stabilized clock laser is the ultra-high-finesse

Fabry-Pérot resonator used as a local frequency reference. The high finesse cavity

is realized with a 10 cm long ULE (High grade Corning 7972 glass) spacer with

two optically contacted SiO2 mirrors. The geometry of the spacer has been opti-

mized with the help of finite element analysis (FEM) to reduce the effect of the
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deformation induced by vibrations coming from the optical table [193]. The cavity

is supported horizontally under vacuum (10−8 Torr, maintained with a 20 l/s ion

pump) with two aluminium arms connected by three low-expansion invar shafts.

The effective supporting points are four 2mm2 square areas with Viton square

pieces placed between the aluminium supporting points and the ULE spacer sur-

face. The vacuum chamber has been built with thick aluminium walls (5 cm) to

increase the thermal inertia of the system. The temperature of the outside surface

of the vacuum is actively stabilized at 25 ◦C with a residual error in temperature

of 25 mK by controlling the current passing through a high resistance (Alumel)

cable wound around the can itself. With the help of finite element analysis (FEM)

simulation we checked the cavity static distortion induced by accelerations in both

vertical and horizontal directions, as a function of the position of the supporting

points along the longitudinal z-axis of the cavity.

The thermal noise limit (see Fig. 3.20a) of our cavities has been estimated by

taking noise values for ULE, fused silica and mirror coating as reported in the

literature [194]. This value is about 3 times smaller with respect to the noise

level in vertical cavities realized at the same wavelength for similar purposes [191],

which yields a fractional frequency stability of 3.8× 10−16.

The finesse of the high finesse cavity has been deduced both by measuring the

photon cavity lifetime τ = 43(2)µs and by directly observing the linewidth ∆ν =

3.7(0.5) kHz of the TEM00 mode of the cavity. The finesse measured is 4.1× 105

within 4% of error, corresponding to 7 ppm total losses for each mirror [187,195].

The second stabilization loop acts at low frequencies (up to 1 kHz) on the PZT

of the pre-stabilization cavity to compensate for low frequency drifts, and at high

frequency (up to 50 kHz) to the AOM used to shift the frequency of the laser

through the driving RF frequency generator. The power coupled into the high

finesse cavity, when the laser is locked to the lowest TEM00 mode of the cavity is

about 60%, while the transmission is typically of the order of 15%, consistent with

the measured mirror losses.

In Fig. 3.20a we show reported the frequency noise of the stabilized laser source,

which was measured by sending part of the light, frequency shifted with an AOM,

to a second independent high finesse cavity sitting on the same optical table, and

analyzing the error signal obtained when the frequency of the beam is steered

around the resonance of the second cavity. From the analysis of the error signal
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(a) (b)

Figure 3.20: (a) The frequency noise of the stable 698 nm laser source locked to its

ultra-high-finesse cavity. The dashed line represents the calculated thermal noise

limit due to the contribution of the ULE spacer, the fused silica mirror substrate

and the Ta2O5/ SiO2 coating. The spectrum takes into account the cavity re-

sponse curve [169]. (b) Stability curves for the clock laser system. The plot shows

the Allan deviation for the frequency-stabilized clock laser which approaches the

thermal noise limit (dot-dashed line), while the fiber link does not limit the po-

tential stability of the laser system. The dashed line corresponds to a white phase

noise-limited Allan deviation σclock
y (τ) = 2.8× 10−16τ−1 for the fiber link [169].

on the second stabilization loop, we can calculate a laser linewidth of the order of

1 Hz.

The Allan deviation were measured by counting the beat note frequency with

different gate times. The result (see Fig. 3.20b) is calculated by removing the

linear drift with a computer controlled RF generator. The minimum σy(τ) is

1.1(3)× 10−15 at τ = 67 s.

A preliminary measurement of the thermal expansion coefficient near room

temperature has been done by changing the temperature of one of the cavities

while maintaining the other one stabilized and measuring the relative shift in the

TEM00 mode of the two cavities. We found a mean value of 5× 10−8K−1 for the

CTE (Coeff. of Thermal Expansion) in the temperature range of 22 - 25 ◦C.

Ultimately, we checked the sensitivity to acceleration of the stabilized laser

system, by observing the frequency noise imposed into the laser by acceleration in
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3.3 Clock laser

both vertical and horizontal directions. The acceleration noise has been measured

with a triaxial accelerometer (Kinemetrics Episensor), while the frequency noise

has been measured by using a resonance of the second high finesse cavity as a

frequency discriminator. We found a value of 3 kHz/ms−2 and 20 kHz/ms−2 for the

sensitivities respectively for vertical and horizontal directions, in good agreement

with the results of our FEM simulations.
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Chapter 4

Analysis of OFC frequency noise

In this chapter it is presented a detailed analysis of the frequency noise of EB

OFC in free-running mode (Sect. 4.1). This information we will use to optimize

the stabilization of the EB OFC (Sect. 4.2). In Sect. 4.3 we will discuss about

the frequency stability of the stabilized EB OFC across all components. The last

Sect. 4.4 consist the information of the sabilization results of the QOS OFC.

4.1 Free-running OFC behaviour

To optimize the controls for fCEO and frep we studied the OFC intensity-related

dynamics and determined the main frequency noise sources for the free-running

OFC. The OFC tooth frequency noise estimations were proved with the experi-

mental measurements of the fCEO and the fb698 frequency linewidths.

4.1.1 Fixed point formalism

The power of the fixed-point formalism (SbSect. 2.6.2) to describe intracavity

noise terms for a fs fiber laser was demonstrated by Newbury and Swann in [96].

We use the same approach to describe frequency noise of our Ti:Sa OFC. In

the fixed point model each source of perturbation e.g. pump power, laser cav-

ity, pump beam fluctuations etc. will cause the comb to expand or to contract

about a single fixed frequency, νX
0 . Mathematically, νX

0 = nX
0 frep + fCEO, where

nX
0 = (δfCEO/δX)/(δfrep/δX), and X is the perturbation source [96, 113, 114].

The last equation implies that νX
0 can be measured experimentally by changing a
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given parameter (e.g. pump power, cavity length, pump beam position) and by

measuring the resulting change of frep and fCEO. To measure the low-frequency

response of the OFC parameter to a given parameter fluctuation, we weakly mod-

ulate pump power, laser cavity and pump beam mirror PZT voltages with a 1-10

Hz frequency, and we monitored the resulting modulation of fCEO and frep us-

ing frequency counters. This measurement was repeated for different settings of

the given parameter modulation depth and, thus generating a series of values of

dfCEO/dP and dfrep/dP . Thus, here we used a simple linear approximation and

applied slow perturbations and than we averaged the data. For the fast perturba-

tions the fixed point will be different (see the full transfer function study by Schilt

et al. in [196]).

4.1.2 Characterization of the frequency noise terms

To develop a quantitative picture of the frequency noise, we will describe the

frequency noise of each tooth of the comb through its noise power spectral density

(PSD),
∫∞
0

Sνndf = ⟨σ2
n⟩, where ⟨σ2

n⟩ are the mean squared fluctuations of comb

mode of index n. The total frequency noise PSD from multiple, uncorrelated noise

sources is calculated by simply adding up the noise PSDs from the various sources,

giving similarly as in [96]: Sνn(f) = (SL
νn(f) + SP

νn(f) + SASE
νn (f)) + (SSC

νn (f) +

SShN
νn (f)), where SL

νn(f) is the cavity length noise, SP
νn(f) is the amplitude noise of

the pump laser and SASE
νn (f) is the amplified spontaneous emission (ASE) PSDs.

These intracavity noise terms can be described using the fixed-point formalism

as [96]:

SX
νn(f) = (νn − νX

0 )2sXrep(f) (4.1)

where sXrep(f) = f−2
rep(δfrep/δX)2sX(f) is the PSD of the fractional repetition-

rate fluctuations driven by the fluctuations in the parameter X.

Other extracavity noise terms are respectively given by the supercontinuum

noise PSD SSC
νn (f) and the shot noise PSD SShN

νn (f).
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4.1 Free-running OFC behaviour

4.1.3 Turning point

As pointed out in Sect. 2.6.3, 2.6.5, in a Ti:Sa OFCs, in which the fs pulse spectrum

does not fill up all the available optical spectrum bandwidth, fCEO shows a non-

linear dependence as a function of pump laser intensity. Fig. 4.1a demonstrates a

typical dependence of fCEO as a function of the pump power for our fs laser. In

particular we can observe a stationary point of fCEO at about 4.5± 0.2 W (often

referred as “turning point” [112]). For this value of pump power fCEO is very

insensitive to intensity changes in the cavity. The parameter of fCEO sensitivity

to intensity change is also critical to the cavity alignment. Near to the working

point the linewidth of the fCEO signal becomes smaller reaching its minimum of

∆ν=15 kHz at 4.36 W, as shown in Fig. 4.1a. This value must be related also

to high intracavity dispersion of our cavity of Ti:Sa (∼ −400fs2). Decreasing this

value will reduce the minimum linewidth of fCEO peak.

The measurement of the frep dependence as a function of the mml pump power

is presented in Fig. 4.1b. This dependence has the coincidence with the measure-

ment of the frep change due to the spectral shift for fiber lasers (see the Fig. 2.9

in SbSect. 2.6.7. While impact of other effects, as TOD, Gain and SS, on the frep

were not observed.

Even if the fCEO has in general a non-linear behavior in function of other

fluctuations, we determine all the fixed points in regions where the fCEO has a

linear dependence away from the turning points.

The measured values of fixed frequencies are νP
0 = 147 THz and νL

0 = 2.5 THz.

Our comb spans from 272.7 THz to 625 THz.

4.1.4 Intracavity and extracavity noise sources

The main contribution to the linewidth of each comb tooth comes from the intra-

cavity noise terms. Moreover, among the intracavity terms the following technical

noise terms dominate: SL
νn(f), S

P
νn(f). For a Ti:Sa laser the main expected sources

of technical noise are given by the pump laser fluctuations and cavity length fluc-

tuations.

Pump laser can introduce noise through its beam-pointing instability and its

amplitude noise. The cavity length instead can fluctuate due to many environ-

mental effects: temperature changes coupled to length through thermal expansion,
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Figure 4.1: (a) The measurement of the dependence of the fCEO center (squares)

and observed linewidth (triangles) as a function of pump power. For this measure-

ment the mml pump laser has been employed. The measured linewidth reaches a

minimum of 15 kHz at pump power P=4.35 W near to the turning point for fCEO

(see text for details). (b) The measurement of the frep dependence as a function

of the mml pump power. This dependence has the coincidence with the measure-

ment of the spectral shift for fiber lasers (see the Fig. 2.9 in SbSect. 2.6.7. The

measurements (a) and (b) were done at different moments.

vibrations through supports and temperature induce fluctuations of the index of

refraction of air.

4.1.5 Cavity length perturbations

We estimated the cavity length fluctuation term SL
νn(f) from the measured upper

limit of the frep fluctuations at 1 Hz: ⟨|δfrep|⟩ = 0.03 Hz.

Supposing that these fluctuations are caused only by cavity length fluctuations

(with a negligibly small contribution due to other effects) we can extract a value

for the mean cavity length fluctuations ⟨|δLmeas|⟩ ≈ 0.15 nm (calculated for the

actual cavity length of ∼ 0.5 m). From this we then estimate the value of the

PSD fractional frequency fluctuation induced by the cavity length fluctuations as

follows:

sLrep(1Hz) =

(
δfrep/δL

frep

)2

sL(1Hz) = 1× 10−20 (4.2)
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4.1 Free-running OFC behaviour

For the estimation of comb tooth linewidth, broaden due to the cavity length

fluctuations, we supposed a 1/f behavior for the quantity sL(f) before a sharper

cut-off above audio frequencies at the frequency f1. Very far from f1 we have a

1/[(f1− f)2+ γ2] response, where γ can be of the same order of f1. The net result

is that the frequency noise for f > f1 is filtered.

4.1.6 Amplitude noise from pump lasers

As mentioned before, two different types of commercial pump lasers have been

tested with our comb: sml and mml.

As shown in Fig. 4.1.6 in the low frequency range (up to 7 kHz) the measured

amplitude noise for the sml is typically higher than the amplitude noise for the

mml. On the other hand, in the high frequency range starting from 10 kHz, the

mml presents a higher amplitude noise (similar amplitude noise spectra have also

been observed in [94,109]).

Fitting the data, we find for sml a relative intensity noise (RIN) of ssml =

5×10−9/f Hz−1 curve, and for mml a RIN of smml = 5×10−5/f2 Hz−1. The PSD

describing the fractional frequency fluctuation in terms of the pump laser RIN can

then be calculated as [96]

sPrep(f) = CsRIN (4.3)

where the repetition rate sensitivity parameter estimated for the typical power

level for our OFC is C = (Pδfrep/δPfrep)
2 = 1.3 × 10−12. By using Eq. (4.3)

we calculated the two values ssml
rep (1Hz) = 1.3 × 10−17 Hz−1 and smml

rep (1Hz) =

1.3× 10−21 Hz−1 for the sml and the mml respectively.

4.1.7 ASE-induced noise terms

The ASE-induced noise leads to fluctuations of different cavity parameters that

have also different fixed points. However, as was discussed in [96], it can be

described by two effects: a timing jitter and a phase jitter. The timing jitter

dominates the comb linewidth of the tooth far away from the timing jitter fixed

point (typically located near to the OFC carrier frequency) [96]
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Figure 4.2: Measured amplitude noise of sml (red) and mml (blue) and their fits

for frequency noise PSD calculations

νASE,t
0 ≃ νc (4.4)

Using the equation for the timing jitter from [96] we get a value of sASE,t
rep (1Hz) =

5.6× 10−28 that is negligible compared with other noise terms.

The phase jitter is instead due to the Schawlow-Townes limit [88,90,91], which

is the same for all modes and in our case is equal to ∼ 10−4 Hz/Hz2 and then also

negligible compared to other technical noise terms.

4.1.8 Shot Noise and Supercontinuum Generation

The estimated extracavity noise terms, like the shot noise and the supercontinuum

generation noise, were also found to be negligible by comparison with the other

noise terms in region 1 Hz - 1 MHz.

To check this experimentally, we test the OFC in the different regime, when

the optical spectrum broads from 680 nm to 880 nm. In this case, we measured

fb698 in two situations. In the first one, we obtain the fb698 signal as was described
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4.1 Free-running OFC behaviour

in ??. While in the second situation, we split the OFC light before the OFC. One

part on the splited beam was sent again to the PCF for the optical broadening and

the detecting the fCEO. The beam second part, was sent to the dichroic mirror

bypass the PFC and further to the same optical way to detect fb698 signal.

The noise level of the detected fb698 signal in the case of the PCF in general is

10-15 dB higher than in the case of the fb698 detection without implementing the

PCF. However, by tuning the waveplate before the PCF and adjusting the proper

power level of the coupled OFC light into the PFC, we are able to get the best

S/N of the fb698. At this conditions, the noise level with PCF is equal or 2 dB

higher that noise level of fb698 when the OFC optical spectrum is bypass the PFC.

Also we compared the linewidth of the fb698 signal in the both cases. In the our

level of precision, we didn’t find any significant linewidth broadening of the fb698

due to the implementation of the PCF.

All the estimated noise contributions are summarized in Tab. 4.2.

4.1.9 OFC tooth linewidth estimation for free-running op-

eration

From calculated frequency noise PSD we can estimate the linewidth of a comb

tooth using approximated analytical expressions for simple PSD shapes: ∆νn =

π
√

Sνn(0)fc for Sνn(f) = Sνn(0)/(1+(f/fc)
2), ∆ν ≫ fc and ∆νn = (4 ln (2)K[4.3+

ln (4.3× 4π2Kτ 2.1c )]1/2 for Sνn(f) = K/f , if (2π)2Kτc ≫ 1, where τc is the obser-

vation time [197] equal to 1 ms, f3 dB is the 3 dB rolloff frequency. The Fig. ??

is the result of the calculation done for the mml case. The main contributions

for OFC tooth frequency noise comes as expected from cavity length deviations.

The measured beatnote signal between the optical comb and the clock laser gives

a value of 125 ± 25 kHz, that is matched with the lower limit of the OFC tooth

linewidth at 698 nm predicted by the model. The big gap between upper and

lower limit of the linewidth for the cavity length fluctuations (∼ 176 kHz) is due

to the fact that the passive stability of the OFC even within one working day is

not the same due to the environmental conditions change (mostly due to the room

temperature) and the corresponded fluctuations of the frep at 1 Hz can be vary

by the factor of 2-4 from lower to upper limit. Typically, the best conditions are

reached after several hours of the OFC work. The f698 beatnote linewidth was
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measured after 4-6 hours of the OFC work and this can explain why its linewidth

matched with the lower limit of the approximation. The result for the pump laser

amplitude noise fits with real linewidth of fCEO measured in linear region close

to the turning point (see Fig. ??) and for the lower limit of the cavity length

fluctuations it adds significant contribution.
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Figure 4.3: The calculated OFC tooth linewidth across the free-running OFC

spectrum for pump laser amplitude noise for mml pump case (green dots) and the

cavity length fluctuations (red dash) with the measured f698 (blue square) and

fCEO (black triangle) linewidths. The fCEO linewidth is measured near to the

turning point. The total OFC tooth linewidth is shown by the black solid curve.

4.2 Stabilization of the OFC

In Fig. 5.1 the experimental apparatus with details on the electronic devices used

for the stabilization of both frep and fCEO is presented. In next sections I will

describe detection of the frep and fCEO signals and their stabilization.
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4.2 Stabilization of the OFC

Figure 4.4: Electronics for the OFC stabilization. BP and LP - band- and low

pass filters, sp.an - spectrum analyzer, Pd - photodetector, PFD - phase-frequency

detector, SAm - servo amplifier, Osc - oscilator, Osc1,3 - HP generators, Osc -

Marconi generator.

4.2.1 fCEO stabilization

The fCEO is measured by a standard technique of f -2f interferometer [37]. The

f -2f output signal is filtered at wavelength λ = 532± 5 nm. The signal detected

by a fast Si photodiode (up to 500 MHz) is amplified by a low-noise amplifier

(Miteq, bandwidth 500 MHz) and split into two channels by a splitter as shown

in Fig. 4.4a. The exit 1 from the splitter is sent the signal to a tunable bandpass

filter (bandwidth 2 MHz) that is tuned for the fCEO (typically we adjust the OFC

to have this value in a region ∼ 20 ± 10 MHz) and than it is again amplified
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and spitted. A splitter exit number 2 is sent through a tunable low pass filter

to a spectrum analyzer or a counter (HP, 12 digits). A typical amplitude of the

signal here is ∼ 0 − 10 dBm with S/N ratio 40 dB (Fig. 4.6) over 100 -300 KHz

bandwidth. The splitter output number 1 is sent to the first channel of PFD1.

The reference signal coming from a DDS generator is sent to the second channel

of the PFD2. The DDS is locked to a reference oscillator (Osc1 - HP generator)

which is refereed to a local oscillator (10 MHz). The local oscillator in our case

is consists of a high purity quartz slaved to a rubidium standard with is steered

at long term to GPS signal. In Fig. 4.5 is presented the Allan deviation of the

local oscillator measured at the start of its work. A question about the current

stability of it will be discussed in the Sect. 5.1. An error signal from the PFD1,

which is proportional to the phase difference between the two input signals, is

sent to our proportional-integral-derivative controller (PID1). An exit 2 from the

PID1 is sent to an oscillator that is driving an AOM. Thereon a fast loop of the

fCEO stabilization is closing. A second part of the PID1 output is sent to a servo

amplifier to integrate the error signal and to drive a high voltage multi stack PZT

(up to ∼ 100 V) in order to compensate a slow drift of the fCEO. The output

signal from this servo is sent to a PZT that shifts the pump beam. Thereby the

slow stabilization loop is closing. A third part of the signal is used to monitor the

quality of fCEO stabilization by an oscillator or a FFT.
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Figure 4.5: Allan deviation of our local oscillator.
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4.2 Stabilization of the OFC

The result of the fCEO stabilization with different pump lasers is presented on

the Fig. 4.6. Note that in the mml pump case we have implemented the PZT on

the pump mirror that reflects the pump beam to the Ti:Sa cavity.

The graph shows that, with our AOM, we achieve 40 kHz bandwidth of the

stabilization loop. And using the pump mirror PZT control in the case of mml,

we reduced the phase noise of fCEO down to the phase noise level of the sml case

in the region 10 - 100 Hz. From 10 kHz Hz the phase noise of locked fCEO with

the mml and the sml are at the same level, even the sml case has a worst situation

due to the peak at 100 kHz. This peak is that evident also in the RIN spectrum

(Fig. 4.1.6a). We note that at the time of these measurements the PLL was not

yet optimized, and this can be the main reason why in the mml case phase noise

is much higher in 100 Hz - 10 kHz region.

4.2.2 frep stabilization: lock to the clock laser

In the Sect. 3.3 we noted that our clock laser, stabilized to an high finesse cavity,

has a good short-term stability and for this reason it can be used as a frequency

standard. In our scheme, the OFC frep is stabilized in the optical region to this

clock laser. The frequency beatnote fb fluctuations are related to the fluctuations

in the frequency of this tooth OFC: frep = (f698 ± fCEO ± fb698)/n. Here f698

- the clock laser frequency. In a self-referenced OFC the fCEO is independently

stabilized, and the fluctuations frep can be caused only by the fluctuations of fb698.

So, if we stabilize the fb698 to a reference, we stabilize at the same time frep. For

this purpose, we achieve the fb698 signal by separating an infrared part of the

OFC light after the PCF that is not useful for the f -2f interferometer. The shape

of the fs beam is corrected by using two cylindrical lenses. The beam is then

superimposed on a polarization cube with the light from the clock laser. Then,

the two matched beams are first filtered at a wavelength λ = 695± 5 nm. Finally,

beams are filtered by a λ = 698 ± 0.5 nm bandwidth filter and beat on a fast

photodiode.

On the Fig. 4.4c is presented electronics for the fb698 stabilization. The same

type of the fast photodiode, as in the case of fCEO detection, is used to detect

the beat signal. The power from the clock laser was ∼ 2.70 mW and from the

femtosecond laser it was ∼ 200 µW before the photodector. The beat signal
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Figure 4.6: The noise spectral densities and the relative estimated Allan deviations

of the phase-locked fCEO (a),(b). (a) The measured phase noise of the locked fCEO.

Upper green curve: slow loop fCEO phase noise (mml case) measured with a slow

servo loop (≤ kHz)acting on the pump laser AOM, when fCEO was weakly locked at

low frequencies, middle blue and lower red curves: the closed loop fCEO phase noise

with mml and sml pumps respectively. Blue and red lines show the accumulated

phase noise respectively for mml and sml. Ellipses and arrows indicates to which

vertical scale the curves are referred. (b) The Allan deviation for the phase-locked

fCEO estimated from the frequency counting measurement for the mml pump (red

squares) and sml pump (blue triangles) cases. (spectrum of the recorded beatnote

for mml pump shown in the inset).
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4.3 OFC stabilization results discussion

have been observed with 40 dB S/N in 300-kHz bandwidth (Fig. 4.7a inset). The

electronic signal is first filtered by low-pass filter (200 MHz). Then it is amplified

a tunable narrow band-pass amplifier (typically we adjust a frequency of the beat

note at ∼ 120 MHz) in two stages. The exit from the last bandpass filter is divided

in two. The output two is sent to PFD2. Like in the case of the fCEO stabilization

loop, a signal from the DDS generator is sent to a second channel of PFD2. A

signal from it goes to a PID2 and than actuates the laser cavity slow and fast

PZTs in order to control laser length, i.e. the frep and fb698.

The frep counting electronics is shown in the Fig. 4.4b. The signal is detected

by the same detector that is used for the fCEO detection. A signal from the exit 2

from the splitter is sent to a band pass filter tuned for ∼ 294.5 MHz and than is

mixed with generator (Osc2) locked to the local oscillator in order to decrease a

counted frequency. From an IF mixer output a signal ∼ 1 MHz is filtered by low

pass filter and is sent to a counter.

The phase noise of the fb698 stabilization is shown in Fig. 4.7b. The bandwidth

of the stabilization is ∼40 kHz. Fig. 4.7a shows the Allan deviation of the fb698

frequency counting. The frequency deviations of the frep was about ∼ 1 mHz (1

s) and ∼ 150 µHz (100 s).

4.3 OFC stabilization results discussion

4.3.1 Calculated frequency noise of different teeth of the

stabilized OFC

To measure the frequency stability of a frequency comb one might perform tests

at different wavelengths by employing several different stabilized laser sources.

Since this represents an experimental challenge due to the availability of high

stability laser sources, here we use a method to give an estimation of the frequency

stability across the OFC through the analysis of in-loop servo signals used for the

stabilization and of the beatnote signals with the optical reference.

The estimation is based on in-loop measurements of the frequency noise of

frep and fCEO locked signals, which give us the intracavity noise contributions the

comb mode n. When nref -th comb tooth at frequency νnref is locked to an optical

reference νref , the n-th comb mode frequency noise is given by [96]:
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Figure 4.7: The noise spectral densities and the relative estimated Allan deviations

of the phase-locked fb698 (a),(b). (a) The measured phase noise of the stabilized

fb698 (blue), phase and frequency detector noise floor (black). Blue line shows the

accumulated phase noise. Ellipses and arrows indicates to which vertical scale

the curves are referred. (b) The Allan deviation for the fb698 estimated from the

frequency counting measurement (the recorded beatnote spectrum is shown in the

inset).

Sνn =

(
n

nref

)2

Sνnref+(1− n/nreffrep)
2 SCEO+2ξn/nref (1−n/nref )

√
SνnrefSCEO

(4.5)

where we have neglected the cross correlation term χ between the fCEO noise

102



i
i

“PhDThesisPisa” — 2011/11/30 — 8:42 — page 103 — #62 i
i

i
i

i
i

4.3 OFC stabilization results discussion

and frep noise, because all fixed points lies in a frequency range between of fCEO

and νnref , the cross- correlation term is always less than zero [96]. Thereby,

Eq. (4.5) a reasonable upper limit to the residual frequency noise on the OFC

teeth χ = 0.

For our OFC, spanned in ∼ 500− 1100 nm region and the optical reference at

698 nm the ratio n/nref lies in 0.63−1.45 range. Corresponding relative contribu-

tion of the fb698 frequency noise and fCEO to a OFC tooth for our case is presented

in Fig. 4.8. Here the shadow region shows bounds of the OFC. Black curve shows

coefficients n/nref for Snref and 1 − n/nref for SCEO. From this graph it is clear

that across all the OFC, the frequency stability of a OFC tooth determines mainly

by the frequency stability of the fb698. The frequency noise of fCEO caused by

the pump laser amplitude noise. For this reason, an impact of the amplitude noise

from a pump laser through fCEO on a frequency stability of a OFC tooth is negligi-

ble compared the cavity length fluctuations. However, because fixed points values

for the amplitude noise, the noise of the pump laser has a strong direct impact

on any OFC tooth stability. The only way to reduce this impact is to reduce the

intracavity dispersion (that should change the fixed point value).

The supposition, that the SCEO impact on the Sνn is negligible to compare

with Sνnref , is true when SCEO ≤ Sνnref . On the left side of the Fig. 4.9 shows

the frequency noise of the fCEO (with the sml and the mml pump) and fb698 locks

(only for the mml pump) recalculated from phase noise measurements (Fig. 4.6a

and Fig. 4.7). The graph shows that SCEO < Sνnref in our case. In the right

side of the Fig. 4.9 shown the frequency noise of different teeth of our EB OFC

phase-locked to the clock laser.

So, the type of the pump laser (sml or mml) is not playing a critical role for

the OFC freuency stability in our case.

The stability of OFC from results presented in Fig. 4.7 and Fig. 4.6 will give

us an Allan deviation σ(a) ≈ 10−12. In the next Chapter 5 will be shown, that

this value is due to the limit of our RF reference (Fig. 4.5) and the EB OFC

frequency stability measurement relatively the optical reference, that operates at

689 nm, can improve this value (see Sect. 5.2). Unfortunately, our second optical

reference give us a quite broad linewidth (> 1 kHz) that very far from our clock

laser stability. In this situations we don’t have any experimental way to prove a

stability of our OFC.
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Figure 4.9: Left:Frequency noise of the stabilized fCEO (middle blue is mml, lowest

green is sml case) and fb698 (upper red curve) signals. Right: Frequency noise of

different teeth of our EB OFC phase-locked to the clock laser.

The only way in this case is to estimate a stability from the related measure-

ments. Using the frequency noise measurements in Fig. 4.7, 4.6 and Eq. (4.5) we
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4.4 Stabilization of QOS OFC

calculated an Allan deviation for different integrated times across the OFC. For

the 125 ms integration time is ∼ 5.2×10−14±4.5×10−14. This value is coincidence

with ∼ 1.15× 10−14 ± 1.4× 10−16 value for 130 ms integration time for the clock

laser relative frequency stability measured in [169].

4.4 Stabilization of QOS OFC

4.4.1 Fixed points for QOS OFC

As for OFC with GTI mirror, we measured the fixed points for QOS OFC. For

cavity length fluctuations fixed point is ∼ 1.47 THz, for pump beam position

fluctuations∼ 98 THz, pump power amplitude noise∼ 98 THz. The fixed points of

QOS OFC are not changed their values significantly to compare with corresponded

values for OFC.

4.4.2 QOS OFC stabilization results

On the Fig. 4.10 are presented results of the frequency counting of the fb698 and

the frep signals. Note, that the QOS OFC was phase locked to the clock laser,

while fCEO was not stabilized on presented data.

The phase noise of the locked fCEO and of the fb698 signals are shown in

Fig. 4.11. The noise level at the same level with the case of EB OFC (see Fig. 4.6

and 4.7). However, both locks are more long-term stable compared with EB OFC

that give us a possibility to measure their phase noise up to 100 s and 10 s for

fCEO and for the fb698 correspondingly. In spite of these stabilization results are

very preliminary, this long-term stability improvement is important result for any

frequency measurement.
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Figure 4.10: Frequency counting of fb698 (Left) and frep (Right) signals of phase-

locked QOS OFC to the clock laser.
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Figure 4.11: fCEO (a) and fb698 (b) phase noise of phase-locked QOS OFC.
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4.4 Stabilization of QOS OFC

Table 4.1: Values used in calculations

Symbol Quantity Value Notes

frep Repetition rate frequency 294.5 MHz -

h Planck constant 6.62× 10−34

νc Carrier frequency 375 THz -

Pout Average output power 700 mW -

θ Spontaneous emission factor 2 -

ltot Cavity losses 5 -

(including the loss

at the output coupler)

Toc Transmission of output coupler 0.03 -

Trt Round trip time 3.4 ns 1/fr

Ep Energy in pulse 2.377× 10−9 Pout/frep

Pp Pump power 4.83 W

Sensitivity of rep rate 69.4 Hz

per 1 W pump power change

Roll-off frequency 5 MHz

RINV Approximation 5× 10(−7)/f (−1,5) Fig. 4.1.6

of Verdi ampl noise

RINM Approximation 2× 10(−10)/f (−0,6) Fig. 4.1.6

of Millennia ampl noise

fCEO Offset frequency (measured) 75 MHz

nsp Effective spontaneous emission 2

factor averaged over

the length of the cavity

∆λ Width of fs spectrum 15 nm

λ Central wavelength 800 nm

trms Pulse duration 60 fs

β2 Net cavity dispersion 400 fs2

Dg Gain dispersion 10 [74]

(gain coefficient α(ω))

qeff Quantum efficiency 0.8

G Overall gain 5.143 Ppump

Pout
qeff

λeff

λc
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Analysis of OFC frequency noise

Table 4.2: Fixed Point, Frequency Dependence, and Magnitude of the Various

Contributions to the Frequency Noise on the Comb Lines

Noise Term Fixed Point Frequency Magnitude at f=1Hz

Dependence sXrep(f) in Units of 1/Hz

Environmental ∼ 2.5 THz f−1 ∼ 3.5× 10−27

(length) f−1 ∼ 1× 10−20

Pump noise ∼ 147 THz f−2 - sml 1.3× 10−17 - sml

f−1 - mml 1.3× 10−21 - mml

Schawlow-Townes limit NA f 0 ∼ 10−4

Intracavity ASE ∼ 375 THz f 0 5.6× 10−28

(quantum limit)

Supercontinuum and NA f 2 -

shot noise
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4.4 Stabilization of QOS OFC
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Figure 4.12: (a) Allan deviation of the fCEO of the QOS OFC pumped by Verdi

G7. (b) - Locked fCEO signal. In the inset span 1 kHz, the fCEO resolution

bandwidth is limited by the spectrum analyzer.
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Chapter 5

OFC applications

In this chapter are presented several applications of the OFC: the absolute fre-

quency measurement of the clock laser (Sect. 5.1), optical to optical ratio between

the clock laser and 689 nm laser locked to the atomic resonance by OFC (Sect. 5.2)

and the absolute frequency measurement of an unstable laser (Sect. 5.3), which

was used in our case for precision measurement of gravity.

The optical frequency reference, used to stabilize the OFC, is always a 698 nm

semiconductor laser source (Fig. 5.1a) employed in high resolution spectroscopy of

the doubly forbidden 1S0-
3P0 clock transition in atomic strontium (Fig. 5.1b). A

second semiconductor laser at 689 nm, resonant with the 1S0-
3P1 intercombination

transition in atomic strontium, has also been employed to perform preliminary

optical frequency comparisons with the stabilized OFC [188](Fig. 5.1b) (see details

in App. C.1, [169] and in [187]). The locked 689 nm laser shows a typical fast

linewidth of the order of 1 kHz after the propagation in a 200 m fiber when the

PNC technique was not activated [169].

As shown in Fig. 5.1 the stabilized laser sources, the OFC and the strontium

cold atom source are located in two separated laboratories, placed in two differ-

ent buildings within the same University campus, respectively at Dipartimento di

Fisica ed Astronomia (UNIFI) and at European Laboratory for Non-Linear Spec-

troscopy (LENS). The light from the stabilized laser is then transferred between

the two labs through the 200 m fiber link [169].

In Fig. 5.1 the experimental apparatus with details on the electronic devices

used for the stabilization of both frep and fCEO are also presented. All the beat-
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notes are detected with fast (300 MHz bandwidth) Si photodetectors. The signals

are then amplified (typically 50 dB) and properly filtered with tunable RF cavity

filters and finally sent to the frequency counters and the locking electronics. For

phase-locking the signals, digital phase and frequency detectors (PFD) are em-

ployed. The RF signal is produced by a direct digital synthesizer, referenced to a

10 MHz high quality quartz (Oscilloquartz BVA) slaved to a Rb atomic clock and

to a GPS receiver, and sent to the PFDs first channels. For the frep stabilization

the fb698 signal is sent to the second channel of corresponding PFD. The error

signal from the PFD is processed by a proportional-integral-derivative (PID) am-

plifier, split in two channels and sent respectively to the “slow” and “fast” PZTs

acting on the two cavity mirrors. For the fCEO stabilization slow drifts are cor-

rected through a PZT that changes the position of the pump mirror [198], while

fast fluctuations (up to 100 kHz) are corrected by changing the pump power with

an acousto-optical modulator (AOM).

5.1 Frequency measurements of the clock laser

locked to an ULE cavity

5.1.1 Absolute frequency measurement of the clock laser

locked to an ULE cavity

To test the frequency stability and to demonstrate the feasibility of optical fre-

quency measurements of the OFC, we measured the absolute optical frequency of

a ultra-stable clock laser at 698 nm. At the same moment the OFC was locked to

this clock laser. The scheme of the fb698, that was presented in a previous chapter,

is the same for the frequency measurement of the absolute frequency of the clock

laser.

An absolute optical frequency can be determined by [39,44]

fopt = fcomb ± fbeat (5.1)

Thus, for a OFC referred to a microwave standard we have:

fopt = nfrep ± fCEO ± fbeat (5.2)
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5.1 Frequency measurements of the clock laser locked to an ULE cavity

Figure 5.1: Schematic view of the experimental apparatus (a) with details on the

electronics employed for stabilization of the OFC (c). Two frequency stabilized

lasers respectively at 698 nm (resonant with strontium clock transition 1S0-
3P0)and

689 nm ((b) stabilized on the strontium second stage cooling transition 1S0-
3P1) are

employed for the frequency stabilization of the OFC and for optical frequency ratio

measurement. PM fiber - polarization-maintaining optical fiber, PCF - photonic

crystal fiber, PLL - phase-locked loop, Synt - synthesizer, AOM - acousto-optical

modulator, PM - pump mirror.

where the integer n can be solved by using a calibrated wavemeter with resolu-

tion better than frep/2. The signs in the equation can be determined by observing

the variation of the fb698 while increasing the fCEO and frep (see rules in Tab. 5.1).

The frequency, determined by our WaveMaster Wavelength Meter from Coher-

ent (it’s resolution is 100 MHz < frep/2 = 147 MHz), was fλ = 429 286.3 GHz. The

frep of the stabilized OFC measured during 3000 seconds was 294 442 158.016 ±
0.062 Hz without linear drift removing (see Fig. 5.2a). The fCEO was equal

to fCEO = 32.723 ± 2 MHz without linear drift removing (see Fig. 5.2b). For

these values the corresponding OFC tooth number n is equal to 1457965. The

fb698, measured during the same time period, was fb698 = 181.104 740 MHz±1
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kHz (see Fig. 5.3a). By putting this values into the Eq. (5.2) and using rules of

Tab. 5.1 we had calculate the absolute frequency of the clock laser fclock absolute =

429 286 509 296kHz±20 kHz. Fig. 5.3b shows the Allan deviation of the measured

optical frequency. The red curve stands for the fb698. For the comparison, the local

reference frequency stability is shown by black line (see Fig. fig:TorinoStand). The

Allan deviation of the optical frequency measurement starts from 3× 10−12 at 1 s

averaging time and drops as τ−0.5 up to 10 s. Starts from 20 s it’s rising as τ 0.5.

In the time region ∼ 40− ∼ 100 s a stability of our OFC is reaching a stability

of our microwave standard. In the inset shown the clock laser absolute frequency

counting where a linear drift of a value 1.258 kHz was removed.

Table 5.1: Rules for choosing sign of fCEO and frep frequencies

frep ↑ and fb ↑ frep ↑ and fb ↓
⇒ fb < 0 ⇒ fb > 0

fCEO ↑ and fb ↑ fCEO ↑ and fb ↓ fCEO ↑ and fb ↑ fCEO ↑ and fb ↓
⇒ fCEO > 0 ⇒ fCEO < 0 ⇒ fCEO < 0 ⇒ fCEO > 0

0 500 1000 1500 2000 2500 3000
294442157,94

294442157,96

294442157,98

294442158,00

294442158,02

294442158,04

294442158,06

294442158,08

 

 

R
ep

et
iti

on
 ra

te
 fr

eq
ue

nc
y,

 H
z

Time, s 50 min

~124 mHz

294442158.016 Hz ~12 mHz

(a)

0 500 1000 1500 2000 2500 3000
30

31

32

33

34

35

C
EO

 fr
eq

ue
nc

y,
 M

H
z

Time, s

~3.932 MHz

32.723 MHz

0 1000 2000 3000

32,72292

32,72301

32,72310

 

 

~70 Hz

(b)

Figure 5.2: (a) The frep measurement. (b) The fCEO frequency measurement.
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5.1 Frequency measurements of the clock laser locked to an ULE cavity
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Figure 5.3: (a) The fb698 frequency measurement. (b) The calculated Allan Devi-

ation.

5.1.2 Calibration of the clock laser frequency by the OFC

The 698 nm clock laser can be locked to the several ULE cavity modes and its

stability will be at the same level. However, in order to match the clock laser fre-

quency and the atomic clock transition, the clock laser should be locked always to

the ULE cavity mode. The frequency gap between the locked clock laser and the

atomic clock transition can be hundreds of megahertz. This is not a problem, be-

cause this frequency gap can be reduced by AOMs, placed in the frequency shifter

configuration to shift the clock laser frequency. The AOMs also are necessary, to

tune the clock laser frequency and to reduce parasitic back reflections.

Once the clock laser frequency matched with the atomic transition, the cavity

mode and all AOM frequency are calibrated and the “true” frequency of the clock

laser can be found in day by day operation. However, the problem is to find the

first time the right ULE cavity mode and AOMs frequencies.

Here I will describe the procedure that we did for the frequency calibration of

our clock laser by the OFC.

Comparing with the SbSect. 5.1.1, the OFC was operated in quasi-octave span-

ning regime (see Sect. 3.2) and pumped by the Verdi G7 (see App. 3.1.3).

Due to the fact, that the OFC frep is around 300 MHz, the wavemeter precision

should be better than ±100 MHz. As we experimentally found, the our WaveMas-

ter Wavelength Meter from Coherent can give a larger error than ±100 MHz. For

115



OFC applications

this reason we used a wavemeter based on a Michelson interferometer and refer-

enced to unstabilized HeNe laser from University of Hannover (see App. E), which

can reach the relative accuracy 10−7.

The absolute value measured by the HeNe wavemeter can be different from day

to day due to, for example, its alignment. To calibrate it, we always measured the

689 nm laser locked to the 88Sr atomic transition (see SbSec. C.1).

The measured wavelength ratio λinput/λreference for the 689 nm laser is r689 =

1.0891926 (the index of refraction n689 = 1.000263957 at T= 27.6◦C, humidity

= 27%). Note that the 689 nm frequency send to the clean room from the LENS

(see Fig. 5.1) is shifted from atomic resonance f689 = 434829121311000 Hz by two

AOMs AOMoffset689 = (83.739 + 80.626) ∗ 106 = 164.365 MHz.

The clock frequency is shifted by two AOMs: one is a double pass frequency

shift +200.863× 2 = 401.726 MHz and another is a single pass shift +70.256 MHz

(in the Fig. 3.19 both AOMs are in PNC system). When the frequency value of

the locked to the ULE cavity clock laser is approximately 429227.4 ± 0.3 GHz

(measured by the Coherent wavelength meter before the slave laser in Fig. 3.19),

the ratio λ698/λreference = r698 = 1.1034096± 1× 10−7 (n698 = 1.000263875± 1×
10−7). The clock laser frequency, measured by the HeNe wavemeter, is fHeNe

clock =

(f689 +AOMoffset689)× r689
r698

(
n689

n698

)−1

= 429228.1±0.1 GHz. This value ∼ 1.4 GHz

far from the 88Sr atomic clock transition and approximately is equal to the ULE

cavity free-spectral range ffsr = 1.5 GHz.

After the locking the lock laser to the proper ULE cavity mode, measuring

the clock laser frequency with the OFC and the adjusting the double pass AOM

frequency (+215 × 2 = 430 MHz), we get, for the moment, a final result. The

measurement with the HeNe wavemeter: r689 = 1.0891928 ± 1 × 10−7, r698 =

1.1034060 ± 1 × 10−7 (n689 = 1.000263957, n698 = 1.000263875 for T = 28.8◦ C,

humidity = 28%). fHeNe
clock = 429227.73± 0.1 GHz.

The frequency measurement of the clock laser by the OFC locked to the it, give

us frep = 294.5193547±1×10−7 MHz, fCEO = +71.2×106 Hz; fb = −10.7×106 Hz.

These results in fOFC
clock = 429228.2±1.46×10−3 GHz and this is ∼ 83.038 MHz far

from the resonance. This frequency gap we plan to fill up by adding a 70-80 MHz

AOM before atoms to tune clock laser frequency.
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5.2 OFC frequency stability in the the radio-frequency and in the
optical region

5.2 OFC frequency stability in the the radio-

frequency and in the optical region

The accuracy of frequency measurements are finally limited by the frequency in-

stability of the time-base RF reference standard. In our case this is the stability of

a Quartz with very high spectral purity served at long-term region to GPS signal

(Fig. 5.1c) with the declared value 6× 10−13 at 1 s.

An accurate measurement can be made by the measurement of optical fre-

quency ratios (see, for example, [103]). We tested our apparatus by making through

the OFC a comparison of frequency stability between the 698 nm clock laser and

689 nm laser. Because our OFC, as was shown in previous section, is stabilized

to the clock laser, we had achieve a real comparison of OFC stability frequency

relatively 689 nm laser stabilized to 88Sr 1S0-
3P1 transition. This frequency sta-

bility measurement we compared with OFC stability measurement relatively RF

standard.

(a) (b)

Figure 5.4: (a) Beat-notes between the OFC and 689 nm laser. (b) - Allan devia-

tion of the OFC against RF reference (blue curve) and of the optical ratio (green

curve) with linear cavity drift removed (red curve).

For the optical frequency ratio measurements the light from 689 nm laser is

transferred over 200 m fiber link to the OFC lab Fig. 5.1 (in this measurement

we have not yet activate the fiber phase noise compensation). This signal was

beaten with corresponded part of the OFC light after the PCF. In this condition
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the typical observed linewidth with the stabilized OFC is of the order of several

hundred Hz - several kHz (Fig. 5.4a). This value we believe to be limited by the

689 laser and not by the stabilized OFC.

In Fig. 5.4b we present the Allan deviation plot of the stability of the OFC

relatively to the 689 nm laser (green curve) and the RF local oscillator (blue curve).

In the short-term region the stability of the OFC is limited by the linewidth of

689 nm laser. Starting approximately from 10 s the stability of the OFC is limited

by the reference high finesse cavity temperature drift that results in a frequency

drift of the clock laser and finally in the frequency instability of the fs OFC.

Comparing this result with the OFC frequency stability measurement relatively

RF local oscillator the optical-optical ratio gives better result up to 20 s integration

time. Further, linear frequency drift must be take into account and removed from

the data measurement. In this case, we obtain the red curve, which gives a stability

at σy = 3× 10−13 level after 100 s integration time.

5.3 Absolute frequency measurement of unsta-

ble lasers with the OFC

5.3.1 Introduction

In this section, we report the implementation of our Ti:Sa fs OFC for the character-

ization of the frequency stability of a commercial single-mode high power frequency

doubled Nd-YVO laser (Verdi V5 Coherent). This laser has found a wide appli-

cation as a low noise pump for solid-state Ti:Sa lasers and is often employed in

atomic physics experiments as a high power source for dipole trap. This laser is

generally characterized by a low AM noise, but can show a quite large frequency

jitter (> 50 MHz) both in short term (< 1 ms) and in long term (> 10 s) [199].

Here we demonstrate how an OFC can be used to measure simultaneously the

absolute frequency jitter at different temporal scales, showing how these device

can find application also to perform precise absolute frequency characterization of

unstable lasers.

These measurements are of particular interest in the field of atomic physics in

which high power CW solid state laser are typically employed to trap cold atoms in
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far off-resonance optical dipole traps with different geometries, ranging from single

beam trap, crossed beam traps or multidimensional optical lattices. Especially in

the last case, information about frequency jitter is important, since in this kind of

trap laser frequency noise may convert in position fluctuations of the trap wells,

resulting in additional atom losses.

Here the absolute calibration of Verdi laser emission frequency have been used

to improve the accuracy of the measurements of the local gravitational acceleration

value by the use of 88Sr ultra-cold atoms trapped in 1D vertical realized with

radiation from Verdi laser.

5.3.2 Experimental Setup

As was mentioned in SbSec. C.1 the wavelength of the light λL emitted by the

Verdi laser is used for for precision measurement of gravity through the observation

of Bloch oscillation of trapped atoms by using the Eq. D.1. To obtain absolute

frequency measurements of Verdi, part of its radiation is then sent through a 200 m

single-mode fiber to the laboratory where is operating the fs OFC (see Fig. D.1).

In the case of direct stabilization in the optical domain the frequency stability

of the optical standard will transfer to all OFC components, and the frequency

noise on the frep signal is reduced by a factor n: frep = (fV ± fCEO ± fb)/n, where

fV is the Verdi frequency, fCEO is the fCEO, fb is the beanotes between the OFC

tooth and the optical standard and n is integer defining the OFC tooth with a

value of the order of 106.

For this experiment, the output radiation from the 200-m transfer is superim-

posed in a polarization beam-splitter with radiation from the femtosecond OFC

(filtered at λ = 532 ± 5 nm) and the beat signal with the corresponding tooth is

observed on a fast photodetector.

5.3.3 Experimental results

The observed beat-notes with Verdi laser are presented in Fig. 5.5a. The typical

fast linewidth is about 10 - 15 MHz broad due to Verdi laser fast frequency jitter on

timescale of few ms [200]. Due to the typical low signal to noise observed (< 25 dB

on 300 kHz bandwidth) and its fast frequency jitter, it is in general not possible

to use standard frequency counters to perform precise frequency measurements.
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To overcome this difficulty, we then lock the frep of the OFC by stabilizing this

beat-note to an RF frequency synthesizer.

(a)
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Figure 5.5: Beat-notes between Verdi and the OFC. (a) free-running beatnotes,

(b) locked beat-notes locked regime.

After detection the beatnote signal is amplified, filtered and split in two chan-

nels. One channel from RF power splitter is used to monitor the OFC stabilization,

while the second one is sent to a phase-frequency detector (PFD).The reference

signal for the stabilization (sent to the second PFD input) comes from a local 30

MHz generator referenced at long term to GPS reference signal.

The servo signal for stabilization generated by the PFD (that is proportional to

phase difference between the two input signals) is then sent to a PID (proportional-

integrated-derivative) controller that is used to actuate two PZT attached to two

OFC cavity mirrors for slow and fast (up to 40 kHz) cavity length change.

In lock condition, as shown in Fig. 5.5b, the beat-note signal is stabilized at 30

MHz and the frequency jitter is then imposed on OFC frep. Thanks to the large

demultiplication factor of the OFC (∼1.9×106) the 10 - 15 MHz frequency jitter

at 532 nm gets divided down to about 1 Hz and imposed on the frep signal that is

typically observed with S/N> 50 dB over 300 kHz bandwidth. The frep signal is

then counted easily with a frequency counter set with 1 s gate time.

In order to determine the absolute frequency of the Verdi we also count the

fCEO. In our setup this signal is sufficiently long term stable compared to Verdi

frequency instabilities, so for this measurement a stabilization of this signal was
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not required. In this case, the absolute value of the Verdi frequency is given by

equation f = n × frep ± fCEO ± fb. To determine the correct tooth number at

the beginning and at the end of each measurement we employ a HeNe wavemeter

(App. E), calibrated with a stabilized laser on the 689 nm 1S0-
3P1

88Sr transition,

that allows an evaluation of the Verdi laser frequency with an uncertainty of the

order of 100 MHz.

In Fig. 5.6 the result of an absolute frequency measurement that lasts for about

104 s is shown. Long term deviation of Verdi frequency greatly depends on many

factors, mainly related to temperature, and laser power setting. To increase long

term stability we performed this measurement after that of the laser was operating

continuously for a long time (about two days) at the same power setting. Moreover,

we covered the laser head with a thermal insulation foam to increase the passive

temperature stability.

From this measurement we can clearly see periodical deviation of the frequency

at two different regimes. Firsts, we observe a long-term oscillation of the Verdi

frequency with period ∼1000 s and amplitude 130-140 MHz, secondly there is a

fast oscillation with a shorter period ∼33 s and an amplitude 30 - 70 MHz with

typical value 30 - 50 MHz (see Fig. 5.6 inset). The missing data in this set are

caused to a OFC unlock from the Verdi signal.

We think that this represents a lower limit for long-term frequency fluctuations

of unstabilized Verdi laser for the reasons explained above. After shutdown period,

these lasers can show in fact both quite different absolute frequency (offset by

several GHz) and large frequency drift rate at start up (up to 100 MHz in one

minute).

Absolute determinations of Verdi frequency (for the measurement shown in

Fig. 5.6 the mean value is 563257825±75 MHz) have been used to determine gravity

with 10−7 relative uncertainty by observing at the same time Bloch oscillation of

ultra-cold 88Sr atoms trapped in vertical standing wave SbSec. C.1.
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Figure 5.6: Verdi absolute frequency measurement. In the inset are shown the

Verdi frequency fluctuations at shorter time scale.
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Chapter 6

Conclusions

To conclude we have developed the OFC based on Ti:Sa fs laser stabilized to the

clock laser. OFC operates with the high frequency stability (better than σy(1s) ≈
4 × 10−12) also when it is pumped by mml. At the first step we carefully design

the laser cavity and took care about the protection of it from the an environment

perturbations. Than the intensity-dependent dynamics and frequency noise of the

free-running fs laser were characterized and are used for the optimizations of OFC

stabilization PLLs.

OFC frep was successfully locked to the optical standard. For this we used

the two PZT transducers for compensation both the fast noise and a frequency

drift in long-term time region. Unfortunately, due to the stability limit of our

microwave reference we have not reached desirable stability of our OFC. For this

reason, we have tested a OFC stability performance by performing an optical-

optical comparison of the stable laser at 689 nm and the clock laser at 698 nm (see

SbSect 5.2). The result of this comparison shows that the OFC frequency stability

in the case of the optical-optical comparison, is higher that in the case of the

optical-RF comparison (Fig. 5.4). This means that the OFC frequency stability

is limited by the local RF reference stability. In turn, in the the optical-optical

comparison case, OFC frequency stability is limited by the linewidth of the optical

reference at 689 nm in short-term and by the thermal cavity drift of the clock laser

in a long-term time domain.

To approximate a level of the OFC stability, we studied in details its frequency

noise at free-running regime and phase-lock spectrum together with the fixed point
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formalism. These results in that the frequency stability of an OFC tooth has the

short term stability at level of σy(1s) ≈ 10−14 (SbSect. 4.3).

The study of intensity-related dynamics help us to stabilize fCEO both with

sml and mml at mHz level (Fig. 4.6). In the QOS regime of the OFC we reached

µHz level of fCEO stabilization (Fig. 4.12) with mml.

The OFC was successfully tested in several applications: the clock laser fre-

qwuncy measurements and calibration, optical to optical ratio between the clokc

laser and 689 nm laser stabilized to the 88Sr atomic transition and the absolute

frequency measurement of the unstable laser. To date, the set up is fully ready to

make a frequency measurement with our transportable Sr clock and its frequency

comparisons with other optical clocks.
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Appendix A

The absolute frequency

measurement of molecular iodine

In this chapter report, as an application of the OFC technology, the work on

absolute frequency measurement on iodine molecule in the far infrared that I have

performed in a stage at the Institute of Laser Physics SB RAS in Novosibirsk.

A.1 Introduction

The absorption spectrum of molecular iodine I2 is widely used as a frequency scale

for the calibration of tunable laser in 500-800 nm optical range. The narrow optical

resonances, obtained by saturated absorption laser spectroscopy, are even used as

high accuracy frequency references. The transitions, which can be suitable for

optical standards, might be discovered in the I2 optical spectrum up to 1.35 µm

wavelength range by the three-level laser spectroscopy method. The optical region

0.9-1.35 µm has a particular interest due to the fact that presently there are no

high accuracy reference standards, while there are many tunable lasers used for

spectroscopy, communication technology and metrology.
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A.2 Apparatus

A.2.1 Ti:Sa OFC

The OFC that is used in the measurements is based on a femtosecond laser with

frep at 500 MHz. As a pump source is used a commercial laser Verdi V8. The

frep is stabilized to Nd:YAG/I2 optical frequency standard created in ILP SB

RAS [201]. This stabilization was done by two phase lock loop (PLL) with two

PZT to which was attached two laser cavity mirrors. In the slow PLL was used

stock PZT allowing to work in bandwidth up to ∼ 5 kHz. For the fast PLL was

implemented ring PZT with low frequency bandwidth at 30 kHz. To control the

pump power level was used an acousto-optic modulator with bandwidth up to 20

kHz.

The output radiation from the fs Ti:Sa laser was broadened by the PCF Fem-

towhite 8000 more than octave from 400 nm to 1100 nm. The green part of the

output signal from the PCF was beat with signal from Nd:YAG/I2 standard and a

beatnote signal was sent to the phase detector and than to the slow and fast PZT

of the Ti:Sa laser. In this way the phase stabilization of the frep to Nd:YAG/I2

frequency standard was obtained. Another part of the PCF output was sent to

the f -2f interferometer. The output signal from it was sent to the phase detector

and than to an AOM order to stabilize fCEO. Thus was made a stabilization of

the both OFC degrees of freedom: frep and fCEO.

The optical cavity of the femtosecond Ti:Sa laser is placed in the metal box

40 × 40 × 40 mm to protect it from an environmental noise. The box is tightly

fixed on a 1000× 500 breadboard that is placed on a big 8× 1 m massive table.

The stability of the OFC is measured against a commercial hydrogen maser.

The measured relative instability is 1×10−12 at 1 s and for averaging times less than

1000 s it is determined by the microwave standard. For longer times more than

1000 s the frequency drift of the Nd:YAG/I2 optical standard is dominant [201].

A.2.2 An apparatus for obtaining and investigations of

emissive transitions optical resonances

The apparatus for obtaining and investigations of emissive transitions optical reso-

nances was done by Matygin et al. [202]. It is a combine of the two laser spectrom-
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A.3 Modification of the setup

eter. First is a saturated absorption spectrometer, the second one is a three-level

laser spectrometer. As an exciting radiation the second harmonic of cw Nd:YAG

laser is used. An external cavity diode laser is used to product a probe radiation

in an optical range of 968-998 nm. The apparatus are guarantee a phase lock of

probe beam frequency to an emissive transition and at the same time phase lock

of a pump laser to an absorption transmission. Only in this case the probe laser

frequency is equal to emissive transition frequency. The measurement of probe

beam frequency gives the value of emissive transition frequency.

A.3 Modification of the setup

Some modifications of OFC setup were done during measurements of the molecular

iodine.

A.3.1 New PZT mount

To obtain frep stabilization in long-term the PZT with big range of length tun-

ability is typically used. It is attached to a massive block plus a mirror. The main

problem of this system is its mechanical resonances that limit the bandwidth of

PLL. These resonance strongly depend on characteristics of PZT, overall mass of

system to which PZT attached and method (quality) of glue of PZT to the massive

block. The proper design of PLL should consider the resonance of such system.

The most accurate method of PZT bandwidth measurement is based on the

Michelson interferometer. In Fig. A.1 the experimental setup is presented.

The setup is a typical Michelson interferometer. An interference picture de-

tected by the photodetector PD. The signal from PD sent to the channel 2 of the

oscilloscope and to the lock system. From the generator of low frequencies the

signal going through a low frequency amplifier to PZT and to the channel 1 of the

oscilloscope. Another part of the generator signal goes to the lock system. The

output signal from the lock system control the additional PZT and change the

length of the beam path.

Example of PZT bandwidth measurements is presented in Fig. A.2 (frequency

response) and Fig. A.3 (phase response). Two resonances are observed at 46 and

51 kHz both in frequency and phase responses. Note, that amplitude of frequency
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resonance is not critical because in principal can be compensated by proper design

of PLL. While the phase change when it is reached 180◦ will limit the bandwidth

of PLL. In this measurement we can see phase change of about 80◦ each.

Generator

Osciloscope

Ch 1

Ch 2
PD

IN PHD

IN SD

Output

Laser

Creit

Computer

1
2

3

4

5

6
7

8

Figure A.1: The setup for PZT resonances measurement. 1 is commercial He-Ne

laser, 2 is a mirror, 3 is the tested PZT, 4 is a massive block, 5 is a plane mirror,

6 is an additional PZT, 7 is plane mirror, 8 is a photodetector

Figure A.2: PZT frequency resonance
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A.4 Measurement

Figure A.3: PZT phase resonance

A.3.2 Carrier-envelope phase-shift management

Many experiments in frequency metrology [44, 86] rely on the precise control of

the ∆ϕCEO of fs oscillators and amplifier systems. The control of this parameter

typically requires manipulation of the phase and the group velocities inside a fs

oscillator cavity. One important consideration for the choice of a device for manip-

ulating the ∆ϕCEO is the rate at which the ∆ϕCEO can be modulated. Orthogonal-

ity of a ∆ϕCEO modulator is a second important issue. The most straightforward

approach for introducing a change of the ∆ϕCEO is variation of material dispersion

in the beam path. In the simplest case this has been accomplished by inserting

glass plates of various thickness into the cavity or beam path or by rotating a

single glass plate [203].

To prepare Ti:Sa OFC for the applications where ∆ϕCEO control is becomes

important, a wedge pair mechanism is start to be designed.

A.4 Measurement

For the frequency measurements of the intervals between hyperfine structure com-

ponents of the emissive transitions is used a heterodyne method. It based on the

measurement of the frequency distance between two probe lasers, which frequen-

cies are phase locked to the different hyperfine structure components of the same

emissive transition. The frequency measurement is done by the Ti:Sa OFC.
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The measured frequency fd was determined by the equation fd = n × fm ±
fCEO ± fbd, where fbd is the beatnote between the diode laser and corresponding

tooth of the OFC. In turn, fCEO = fi ± fh1 and fbd = fm ± fh2, where fi is the

intermidiate frequency, fi is a measured frequency, fh1 and fh2 are heterodyne

frequencies. The fi, fh1 and fh2 are synthesized from the hydrogen microwave

standard. The frequencies of 20 transitions were measured: R56(32-48) a1, P58(32-

48) a1, P85(33-48) a1, R87(33-48) a1, R88(33-48) a10 and all 15 components of

R86(33-48) line. The results are presented in the Tab. A.1.

Table A.1: Measured frequencies of molecular iodine

Line Component Transition frequency (kHz)

P58 (32-48) a1 304 360 509 340 (14)

R56(32-48) a1 304 569 862 427 (19)

R87 (33-48) a1 305 158 831 718 (13)

P85 (33-48) a1 305 473 035 236 (11)

P88 (33-48) a10 305 112 914 648 (15)

R86 (33-48) a1 305 430 191 096 (22)

R86 (33-48) a2 305 430 419 457 (65)

R86 (33-48) a3 305 430 450 726 (5)

R86 (33-48) a4 305 430 460 143 (48)

R86 (33-48) a5 305 430 490 794 (10)

R86 (33-48) a6 305 430 556 161 (63)

R86 (33-48) a7 305 430 570 683 (3)

R86 (33-48) a8 305 430 604 295 (53)

R86 (33-48) a9 305 430 618 684 (36)

R86 (33-48) a10 305 430 719 880 (30)

R86 (33-48) a11 305 430 832 083 (28)

R86 (33-48) a12 305 430 839 995 (27)

R86 (33-48) a13 305 430 864 083 (33)

R86 (33-48) a14 305 430 872 845 (36)

R86 (32-48) a15 305 430 984 743 (31)
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A.5 Discussion

The measurements root-mean-square deviation σ ∼ 2kHz at 100 s. Big deviations

were observed for longer measurement periods. The maximum deviation from the

average value was 30 kHz. For different lines σ was 11-22 kHz. The deviations of

measured values from day to day were up to 40 kHz.

The precision of the OFC is at the level of 1 kHz. For this reason the deviations

should be caused by the frequency instability of the diode laser. The measured

frequency stability of the diode laser locked to a hyperfine structure component of

the iodine emissive transition σ(1− 100s) ∼ 1− 3× 10−11 for the averaging time

1-100 s. The frequency drift of diode laser was observed for the longer averaging

time. This probably explained by not optimized parameters of the diode PLL.

The systematic errors are probably caused by the frequency shift due to the

instability of iodine steam pressures in the cell. From the other works this shift

can be evaluated from the other works. In the work [204] for iodine absorption

lines in the infrared region the frequency shift due to the pressure is 5 kHz/Pa.

The measurements of were done at the iodine cell temperature at 8◦C and corre-

sponding iodine steam pressure is 9 Pa. Suppose that an absorption line frequency

shift happens due to the shift of an upper state. So, in the emission transition

the state shift should be the same as the state shift in an absorption transition.

In our case this is 45 kHz. Finally, summing this value with the precision of our

measurements, we estimate the inaccuracy of the results better than 100 kHz or

3× 10−10.

A.6 Conclusion

Were done measurements of the absolute frequency components of hyperfine struc-

ture of the molecule iodine 127I2 emissive transitions in corresponded regions (32-

48) and (33-48). The precision of the measurement in a comparison with other

results, was improved by 2 orders of magnitude.
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Appendix B

Ti:Sa physical properties

Table B.1: Physical properties of Ti:Sa

chemical formula Ti3+:Al2O3

crystal structure hexagonal

mass density 3.98 g/cm3

Moh hardness 9

Young’s modulus 335 GPa

tensile strength 400 MPa

melting point 2040◦C

thermal conductivity 33 W/(mK)

thermal expansion coefficient ∼5×10−6K−1

thermal shock resistance parameter 790 W/m

birefringence negative uniaxial

refractive index at 633 nm 1.76

temperature dependence of refractive index 13×10−6K−1

Ti density for 0.1% at. doping 4.56×1019cm−3

fluorescence lifetime 3.2 µs

emission cross section at 790 nm 41×10−20cm2
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Appendix C

Cooling and trapping strontium

atoms

In this and the next sections I will describe shortly the apparatus of our strontium

optical clock that was developed by our group at European Laboratory for Non-

linear Spectroscopy (LENS) for the realization of an optical frequency standard

based on neutral strontium atoms and that was used for the measurement with

our OFC. The further details of its can be found in [169,170,205].

Strontium vapours are generated from a Sr dispenser in the oven region. Atoms

are then decelerated in a 30 cm long Zeeman slower, and finally trapped and cooled

in the MOT chamber. With the current setup it is possible to cool and trap about

107 88Sr atoms at µK temperatures in hundreds of ms. The laser sources for

trapping and cooling are based on semiconductor laser diodes (see a level scheme

of Sr with the transition lines in Fig. 5.1b). For the first cooling and trapping stage

on the 1S0-
1P1 transition we used two frequency doubled infrared lasers that deliver

respectively 200 mW at 461 nm (922 nm extended cavity diode laser amplified with

a tapered amplifier and doubled in doubling cavity with BiBO crystal) and 1 mW

at 497 nm (994 nm ECDL frequency doubled with KNbO3 crystal). For the second

stage cooling on the 1S0-
3P1 transition, a frequency stabilized ECDL at 689 nm is

employed [187,206,207].
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C.1 689 nm laser

The second stabilized laser is a 689 nm diode laser, based on the same design

that the clock 698 nm source. This laser is referred to the 1S0-
3P1 intercombi-

nation transition in atomic strontium optically cooled in a magneto-optical-trap

(MOT) [187].

The scheme of the red source at 689 nm resonant with the intercombination
1S0-

3P1 transition for the bosonic strontium isotope is reported in Fig. C.1

Figure C.1: 689 nm laser experimental scheme [169].

The master laser is a 689 nm diode laser mounted in extended cavity configu-

ration (ECDL, Littrow mount). The reduction of the fast linewidth is realized by

locking the laser to a resonance of a reference cavity with standard PDH technique.

The laser electric field is phase modulated at 11 MHz with an electro-optic mod-

ulator (EOM) with a modulation index m < 1, while the error signal is obtained

by demodulating the light reflected from the cavity. In order to reduce the optical

feedback from the cavity, we use an optical isolator and an AOM in cascade at the

output of the laser.

The cavity is composed by two mirrors (99.95% reflectivity at 689 nm), a plane

and a curved one (r = 50 cm) and a 10 cm quartz spacer. The cavity is placed

on a massive iron V-block (20 kg approx.) aligned along an horizontal axis. The
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C.1 689 nm laser

vacuum chamber that contains the cavity and the iron block is evacuated (10−6

Pa) and the vacuum is maintained with a 2 l/s ion pump. In order to attenuate

the vibrations from the optical table, pieces of Viton O-ring and rubber are used

interposed between the cavity and the iron and between the iron and the vacuum

cell. The optical table is also supported with an active air damping system.

The reflected light from the cavity is collected with PDH detector: it is com-

posed by a Si photodiode, amplified with a fast and low current noise tran-

simpedance amplifier and finally down-converted with a mixer. The level of

the voltage noise at the output of the detector is −110 dBV/Hz1/2 which cor-

responds to the shot noise of 100 µW of incident light. The cavity resonance has

a ∆νFWHM = 170 kHz and the slope of the error signal is 3.4 V/MHz. The error

signal has then SNR ∼ 200 in a bandwidth of 3 MHz. The error signal for locking

the laser to the cavity is then sent to the laser via three channels: (1) to the PZT of

the external cavity of the laser with a bandwidth of 2 kHz; (2) to the laser current

driver with a bandwidth of 50 kHz; (3) directly to the diode with a bandwidth of

3 MHz.

For the long term stability of the laser we actively stabilize the length of the

reference cavity with a lock to an atomic signal coming from saturation spec-

troscopy on a strontium heat pipe. For this purpose we use a PZT transducer,

placed between the flat mirror of the cavity and the quartz spacer, for tuning the

cavity length (PZT sensitivity 38 MHz/V). In order to reduce electronic noise in-

duced by the PZT, two different voltages are applied to the two side of the PZT

transducer: the first for coarse tuning of the cavity (up to 2 GHz) comes from a

battery, while the small cavity length correction (up to 2 MHz) is delivered from

low noise electronics.

The drift of the cavity in normal operation is of the order of 20 MHz/hr. In

order to correct for this slow drift, we send the integrated error signal to the PZT

of the cavity with an overall bandwidth of about 50 Hz. In normal operating

condition, the dynamic range of the servo electronics allows a stable lock for about

one day. The overall system (master laser, vacuum cell and optics) is quite compact

and it fits on a single 60 cm × 60 cm aluminum breadboard.
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Appendix D

Apparatus for precision

measurement of gravity

The experimental setup is described in Fig. D.1. In brief, an ultracold sample

of 88Sr atoms is produced in a two-steps magneto-optical-traps operating on the

dipole allowed 1S0-
1P1 transition at 461 nm and on the 1S0-

3P1 intercombination

transition at 689 nm. Atoms are then transferred in 1D vertical lattice realized with

about 2 W of laser radiation at 532 nm from Verdi V5. This system is employed

for precision measurement of gravity through the observation of Bloch oscillation

of trapped atoms [188]. The beam is vertically aligned and retro-reflected by a

mirror, producing a standing wave with a period λL/2 = 266 nm. In this condition,

the acceleration of gravity g is proportional both to the Verdi laser frequency and

Bloch oscillation frequency through the formula

g =
2hνb

(mSrλL)
, (D.1)

where mSr is the atomic mass, λL is the lattice wavelength, νb is the observed

Bloch oscillation frequency, and h̄ is the Planck constant. Since mSr and h̄ are

well known (relative uncertainty 5× 10−8), the force acting along the lattice axis

can be determined by measuring the Bloch frequency νb and the wavelength of the

light λL emitted by the Verdi V5 laser. More details about the experimental setup

can be found also in [187,188,207,208] and in [209].
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Figure D.1: Experimental setup for Verdi frequency calibration and 1D 88Sr optical

lattice. The output radiation from Verdi is focused on the ultra-cold 88Sr cloud

(b) and part of it is then sent through 200 m fiber to the OFC lab for frequency

measurements (a). The beat-note signal between Verdi and the OFC is used to

stabilize the frep of the femtosecond laser though PLL electronics that actuates

slow and fast PZTs in the Ti:Sa cavity. All other interesting signals are counted

with standard frequency counters. fbV is the beat-notes between Verdi and OFC,

f0 is the CEO frequency, frep - repetition rate frequency, Gen - the RF reference

synthesizer, PCF - photonic crystal fiber, M - retro-reflecting mirror for 1D lattice.
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Appendix E

HeNe-laser based wavemeter

The wavemeter is not a commercial instrument. It has been developed in a Diploma

thesis project at the Institute for Quantum Optics of the University of Hannover.

Its relative accuracy 1×10−6 or better, the spectral range is 400-1100 nm, reference

is unstabilized HeNe laser with λvacuum = 632.9914 nm, the free-spectral range is

∆νFSR MHz.

E.1 Principle of Operation

The wavemeter is based on a Michelson interferometer in Genzel arrangement

with retro-reflectors (“cat-eyes”) in each arm (Fig. E.1). An unstabilized HeNe

laser is used as a wavelength reference. While the mirrors are moving at relatively

constant speed (i.e., in the middle of linear movement) fringes are counted for both

the reference and the input laser. Near the end-points, where the movement of

the carriage is more strongly accelerated, the interferometer signal is interpolated

between two zero crossing using an internal high-frequency oscillator. This results

in a high relative accuracy in very compact setup and allows a high measurement

rate which is important for easy handling and wavelength tuning of lasers.

There is an internal microprocessor that controls the measurement process and

calculates wavelength, frequency, etc.
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E.2 Practical use: alignment of the input laser

beam

To achieve the full accuracy of the wavemeter the input laser beam has to be

carefully aligned. First method is to use the reference HeNe beam as a guide

beam. For this it is necessary to align the input laser beam (while not touching

any mirrors or beam splitters of the wavemeter assembly itself) such that its beam

and the reference beam (coming from mirror 3) coincide both at splitter 3 and tho

to three meters away from splitter 3 outside the wavemeter assembly (Fig. E.1).

The best way to achieve this is to have one external mirror 4 as close as possible

to splitter 3 and the fiber coupler 1 far away from it. With the fiber coupler 1 the

overlap at splitter 3 can be optimized, and then the alignment of the close mirror

4 will change the overlap of the beams far away from splitter 3, (almost) without

affecting the overlap at splitter 3. To achieve convergence this process should be

repeated as often as necessary.

However, we found, that this method does not give the best accuracy of the

wavemeter. For this reason, we modified the alignment scheme. We add the re-

movable mirror after the splitter 2 that send the input laser beam and the reference

HeNe beam to fiber coupler 2. The mirror 5 and the fiber coupler 2 mount are used

for the alignment the HeNe-laser reference beam. The fiber coupler 1 and mirror

4 are used for the alignment the input beam of measured laser. The alignment is

finished when maximum power level is detected by photodetector for both beam

at the end of the fiber.

Another important thing, to achieve the wavemeter full accuracy, is power level

on the input beam. There are four BNC connectors that can be used to maximize

fringe contrast and fringe height. They provide the monitor signals of reference

laser and input laser fringes. The best accuracy is achieved when the reference

and input laser signals gives equal amplitudes of the monitored signals. To control

the amplitude of the input laser signal we add a polarizing splitter 4 and a λ/2

before the splitter 3.
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E.2 Practical use: alignment of the input laser beam

Figure E.1: Optical setup of the wavemeter.
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Appendix F

Frequency Stabilization of Lasers

In the final Sect. F the laser stabilization basis is described.

Noise, stability, linewidth, reproducibility, and the uncertainty of the frequency

are important parameters of any frequency-stabilized laser. In general, the laser

frequency fluctuates about a mean value which itself may drift and walk randomly.

Such variations may be caused, e.g., by changes in the temperature, air pressure,

vibrations, acoustics or by fluctuations within the active laser medium itself.

F.1 Oscillator phase noise

Ideal sinusoidal oscillators of frequency f0 have a mathematically strict spectrum in

the form of delta functions, centered at −f0 and f0. However, practical oscillators

seldom exhibit this kind of clean spectrum. They tend to have spreading of spectral

energy around the carrier frequency, as shown in Fig. F.1. The spreading or

spillage of energy to neighboring points around f0 can cause unwanted behavior

at both transmitter and receiver mixers. This spillage of spectral energy behave

like unwanted phase-modulation and is called phase noise.

F.1.1 Representing phase noise

Ideal receiver carrier should be equal to transmitter carrier

v0 cos(ω0t) (F.1)
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-f
0 -f

0f
0

f
0

Ideal oscillator
spectrum

Real oscillator
spectrum

Figure F.1: Oscillator Spectrum; Ideal sinusoidal oscillator will have a Delta func-

tion spectrum. Practical oscillators will have energy spread around the oscillator

frequency. Figure shown here is a two sided power spectrum representation of

ideal and practical oscillators.

The receiver carrier signal in a real receiver can be written as,

v(t) = v0(1 + α(t)) cos

(
ω0t+ ϕ(t) +

β

2
t2
)

(F.2)

The long term drift effect of the oscillator due to ageing is reflected in β, α(t)

is the amplitude noise and ϕ(t) represents phase noise. The phase noise ϕ(t) will

have deterministic component as well as random components. The deterministic

component is attributed by physical phenomena like supply voltage, temperature

change, output impedance of the oscillator etc. The random nature of the phase

noise is usually represented with a power spectral density expressed in power law.

Instantaneous frequency of v(t) is

f(t) =
1

2π

d

dt
(2πf0 + ϕ(t)) (F.3)

The fractional frequency offset is then,
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F.1 Oscillator phase noise

y(t) =
∆f(t)− (f(t)− f0)

f0
=

1

2πf0

dϕ(t)

dt
(F.4)

Since ϕ(t) is assumed to be stationary, y(t) is also stationary. Thus, the auto-

correlation function Ry(τ) can be written as,

Ry(τ) = ⟨y(t), y(t− τ)⟩ (F.5)

The double sided PSD SDS
y is obtained by performing Fourier transform on

Ry(τ).

SDS
y (f) =

∞∫
∞

Ry(τ)e
−j2πfτdτ (F.6)

from which, the one sided PSD Sf
y can be written as,

Sy(f) =

2SDS
y (f), f ≥ 0

0, f < 0
(F.7)

F.1.2 Power spectral density of the Phase Noise

Instead of representing the power spectrum of the instantaneous frequency change,

it is possible to use the power spectral density (PSD) of the phase noise ϕ(t) itself.

These two representations are equivalent. Both these representations are used in

literature.

First the autocorrelation of ϕ(t) is computed:

Rϕ(τ) = ⟨ϕ(t), ϕ(t− τ)⟩ (F.8)

Upon Fourier transform, we get the double sided PSD SDS
ϕ (f)

SDS
ϕ (f) =

∞∫
∞

Rϕ(τ)e
−j2πfτdτ (F.9)

The commonly used single sideband representation Sϕ(f) or simply S(f) is:

S(f) =

2SDS
ϕ (f), f ≥ 0

0, f < 0
(F.10)
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Phase noise power spectral density are mathematically represented using the

power law formula. Even though oscillators do not strictly adhere to the exact

integer power representation, it is widely used to perform analytical calculations.

A simplified model of the random phase noise has a PSD of the form,

S(f) = a+


b, f3 ≥ f

c
f
, f2 ≥ f ≥ f3
d
f2 , f1 ≥ f ≥ f3

(F.11)

Phase noise power spectral density is usually represented as dBc. This expresses

the statistical power of the phase noise signal with respect to the statistical power

of the carrier signal in passband.

F.1.3 Power law model

From experimental observations, the phase noise power spectrum is approximated

by the well known power law model [210]. The oscillator phase noise thus follows

the PSD formula,

Sy(f) =
2∑

n=−2

hnf
n (F.12)

This Eq. F.12 correspond to five independent noise process listed in Table F.1.

Expressed in this functional form, phase noise PSD follows a piecewise exponential

relationship with the offset frequency (from oscillator center frequency). When the

PSD is specified in dB scale (as is the practice) and on a log abscissa scale (log(f))

this turns out to be like piecewise linear relationship. Thus frequency random walk

has a slope of -20 dB/octave and flicker noise 10 dB/octave.

Practical oscillators may not exactly have the slopes to be -20 dB/octave or

-10 dB/octave. They could be arbitrary. To accommodate this change, the power

law equation will have real valued powers (not necessarily integer powers).

S(f) =
∑

n≤0,n∈R

hnf
n (F.13)

Given the phase noise PSD corner frequencies and specified power (measured at

1Hz of bandwidth at these corner points) in dBc/Hz, the slope can be calculated.
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F.1 Oscillator phase noise

F.1.4 Allan variance

In order to compare a stability of any two lasers is used an Allan variance method.

Allans idea is to focus on consecutive frequency measurements - by making a series

of adjacent frequency measurements, each obtained by averaging over a period of

time τ and separated in time by τ , the difference in frequency between consecu-

tive measurements can be computed. Then plotting the rms frequency difference

between adjacent measurements as a function of τ reveals how the oscillators fre-

quency is fluctuating over the various timescales.

The signal from the frequency source can be expressed as

E(t) = E0 cos [2πν0t+ ϕ(t)] (F.14)

The instantaneous fractional frequency deviation from the nominal center fre-

quency is given by

y(t) =
1

2πν0

d

dt
ϕ(t) (F.15)

The Allan variance for an averaging time is then defined as

σ2
y(τ)

2 ≡ ⟨1
2
[ȳ(t+ τ)− ȳ(t)]2⟩ (F.16)

where ⟨⟩ indicates an infinite time average and ȳ represents the time average

of y(t) over a period τ . σy(τ) can be estimated from a finite set of N consecutive

average values of the center frequency, ν̄i, each averaged over a period τ .

σ2
ν(τ) =

1

ν

1

2(N − 1)

N−1∑
n=1

(Ω̄n+1 − Ω̄n)
2 (F.17)

Note, that Allan deviation σy(τ) is the square root of Allan variance.

F.1.5 Link between phase noise and Allan variance

Phase noise manisfest as the jitter in a signals zero crossing. The variance of such

(random) zero crossing jitter is related to the variance of the phase noise itself.

The averaging over τ is equivalent to filtering with a rectangular window func-

tion h(t) ∈ [τ, 0]. Thus we can write,
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σ2
y(τ) =

⟨[∫ ∞

−∞
y(u)h(t− u)du

]⟩
(F.18)

It can be computed easier in Frequency domain as,

σ2
y(τ) =

∫ ∞

0

Sy(f)||H(f)||2df (F.19)

where,

||H(f)||2 =
(
sinπτf

πτf

)2

(F.20)

In Fig. F.2 is presented link between phase noise, fractional-frequency noise

and Allan variance.

Table F.1: Phase noise

noise

type

Sϕ(f) Sy(f) Sϕ ↔ §y σ2
y(τ)

white

PM

b0 h2f
2 h2 =

b0
ν20

3fHh2

(2π)2
τ−2 2πτfH ≫ 1

flicker

PM

b−1f
−1 h1f h1 =

b−1

ν20
[1.038 + 3 ln(2πfHτ)]

h1

(2π)2
τ−2

white

FM

b−2f
−2 h0 h0 =

b−2

ν20

1
2
h0τ

−1

flicker

FM

b−3f
−3 h−1f

−1 h−1 =
b−3

ν20
2 ln(2)h−1

random

walk

FM

b−4f
−4 h−2f

−2 h−2 =
b−4

ν20

(2π)2

6
h−2τ

linear frequency drift ẏ 1
2
(ẏ)2τ 2

fH is the high cutoff frequency, needed for the noise power to be finite

174



i
i

“PhDThesisPisa” — 2011/11/30 — 8:42 — page 175 — #98 i
i

i
i

i
i

F.2 Passive stability of the laser frequency
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Figure F.2: Phase noise, fractional-frequency noise and Allan variance. Based in

figure from Rubiola book [211].

F.2 Passive stability of the laser frequency

In this section we discuss some methods of frequency stabilization. The wavelength

λ or the frequency ν of a longitudinal mode in the active resonator is determined

by the mirror separation L and the refractive indices n2 of the active medium with

length L and n1 outside the amplifying region. The resonance condition is

qc/ν = 2n1(L− Lactmed) + 2n2L, (F.21)
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where q is number. For simplicity, we shall assume that the active medium fills

the whole region between the mirrors. Thus Eq. (F.21) reduces, with L = Lactmed

and n2 = n1 = n, to

ν = qc/(2nL) (F.22)

Any fluctuation of n or L causes a corresponding change of ν. We obtain from

Eq. (F.22)

− ∆ν

ν
=

∆L

L
+

∆n

n
(F.23)

F.2.1 Long-term drift

To illustrate the demands of frequency stabilization, let us assume that we want

to keep the frequency ν = 375× 1012 Hz of, some solid-state laser constant within

1 kHz. This means a relative stability of ∆ν/ν ≈ 2.6(6)× 10−12 and implies that

the mirror separation of L = 0.5m has to be kept constant within 1.33 pm!

From this example it is clear that the requirements for such stabilization are

not trivial. For the next considerations we shall distinguish between long-term

drifts of L and n, which are mainly caused by temperature drifts or slow pressure

changes, and short-term fluctuations caused, for example, by acoustic vibrations

of mirrors, by acoustic pressure waves that modulate the refractive index.

To illustrate the influence of long-term drifts, let us make the following esti-

mate. If α is the thermal expansion coefficient of the material (e.g., quartz or

invar rods), which defines the mirror separation d, the relative change ∆L/L for

a possible temperature change ∆T is, under the assumption of linear thermal

expansion,

∆L/L = α∆T (F.24)

For steel, with α =∼ 10× 10−6K−1, we obtain from Eq. (F.24) for δT = 0, 1 K

a relative distance change of ∆L/L =∼ 10−6, which gives for ν = 375 × 1012 Hz

∆ν a frequency drift of ∼187.5 MHz.

To keep these long-term drifts as small as possible, one has to choose distance

holders for the resonator mirrors with a minimum thermal expansion coefficient

α. Often massive blocks are used as support for the optical components; these
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F.3 Active stabilization of the frequency

have a large heat capacity with a time constant of several hours to smoothen

temperature fluctuations. However, we shall see that such long-term drifts can be

mostly compensated by electronic servo control if the laser frequency is locked to

a constant reference frequency standard.

F.2.2 Short-term drift

A more serious problem arises from the short-term fluctuations, since these may

have a broad frequency spectrum, depending on their causes, and the frequency

response of the electronic stabilization control must be adapted to this spectrum.

The main contribution comes from acoustical vibrations of the resonator mirrors.

The whole setup of a wavelength-stabilized laser should therefore be vibrationally

isolated as much as possible. There are commercial optical tables with pneumatic

damping, in their more sophisticated form even electronically controlled, which

guarantee a stable setup for frequency-stabilized lasers.

The high-frequency part of the noise spectrum is mainly caused by fast fluctu-

ations of the refractive index in the air region of solid-state lasers.

To develop a quantitative picture of the noise, we will use the frequency noise

power spectral density. We can begin by observing that noise causes an indi-

vidual mode frequency to fluctuate with time, δν(T ). These fluctuations can be

characterized by the PSD,

Sνn(f) =
< δν̃2 >

B
[Hz2/Hz], (F.25)

where the tilde represents a Fourier transform with respect to T and f is the

Fourier conjugate variable, B is a unit bandwidth. This frequency noise PSD

describes a jitter of the OFC tooth n at a modulation frequency f with a variance

of Sνn(f).

F.3 Active stabilization of the frequency

All the perturbations discussed above cause fluctuations of the optical path length

inside the resonator that are typically in the nanometer range. In order to keep

the laser frequency stable, these fluctuations can be compensated by corresponding

changes of some resonator parameter x. Typically this parameter is a resonator
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length L. For such controlled and fast length changes in the nanometer range,

piezoceramic elements are mainly used [212, 213]. They consist of a piezoelectric

material whose length in an external electric field changes proportionally to the

field strength. Typical parameters of such piezoelements are a few nanometers of

length change per volt. With stacks of many thin piezodisks, one reaches length

changes of 100 nm/V. When a resonator mirror is mounted on such a piezoelement,

the resonator length can be controlled within a few microns by the voltage applied

to the electrodes of the piezoelement.

The frequency response of this length control is limited by the inertial mass

of the moving system consisting of the mirror and the piezoelement, and by the

eigenresonances of this system. Using small mirror sizes and carefully selected

piezos, one may reach the 100 kHz range [214]. Recently were demonstrated a new

design of PZT mount. To using it is possible to have bandwidth up to 180 kHz.

The method based on the approach to mitigating the effects of the longitudinal

resonances is damping. This is very effectively achieved by drilling out the back

of a copper mounting structure and filling it with lead [183].

The frequency stabilization system consists essentially of three elements:

1. The frequency reference standard with which the laser frequency is com-

pared. One may, for example, use the frequency νR at the maximum or at

the slope of the transmission peak of a Fabry-Perot interferometer that is

maintained in a controlled environment (temperature and pressure stabiliza-

tion). Alternately, the frequency of an atomic or molecular transition may

serve as reference. Sometimes another stabilized laser is used as a standard

and the laser frequency is locked to this standard frequency.

2. The controlled system, which is in this case the resonator length nL defining

the laser frequency δL.

3. The electronic control system with the servo loop, which measures the devi-

ation δν = νL− νR of the laser frequency νL from the reference value νR and

which tries to bring δν to zero as quickly as possible

The ”free-running” linewidth, or short-term stability of the laser, is often not

adequate for many applications without active stabilization of the laser frequency.

In this section we will describe a powerful and elegant technique, used in some of
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F.4 Feedback Loops

the most challenging precision measurements in modern optics, for controlling and

stabilizing the frequency of a laser.

F.4 Feedback Loops

A schematic of a simple feedback loop is shown in Fig. F.3 (see for details [215–

217]). The first component in the loop is the laser witch frequency is to be sta-

bilized. Part of the output laser radiation is split off and used in the feedback

loop. The free-running linewidth and noise spectrum of different lasers, as was

shown before in Sect. F.2 can vary greatly depending on the stability and finesse

of the resonator design, gain-medium characteristics, and other laser parameters.

For example, in many solid-state lasers with relatively high-finesse resonators, the

spectral density of frequency noise is often dominated by pump and mechanical

fluctuations, which generally fall off as ∼ 1/f and can be greatly suppressed by

the feedback loop. On the other hand, the dominant frequency/phase noise in

many diode laser systems is often of a quantum nature due to larger spontaneous

emission rates [218], resulting in significant noise processes extending out to higher

Fourier frequencies.

To detect fluctuations in the laser frequency, a highly stable reference is needed

for comparison. One common way in which this is achieved is by using a high-

finesse Fabry-Perot cavity, constructed in such a way as to provide the neces-

sary stability over the time scale of interest. The mth resonant frequency of a

Fabry-Perot cavity, determined by the cavity length L as: νm = m(c/2L), can be

extremely sharp when low-loss, high reflecting mirrors are used [219]. Although

mechanical cavities may drift on longer time scales, they can provide very high

short-term stability (∼ seconds). This stability can be taken advantage of due to a

combination of a sharp cavity resonance and a linear response to the incident opti-

cal field. Unlike the nonlinear response of atomic transitions that can saturate, the

signal from the reference cavity can ideally be increased until the signal-to-noise

ratio (SNR) of the detected cavity resonance is sufficient to provide the needed

stability for the laser.

To tightly lock the laser frequency to a resonance of the Fabry-Perot cavity,

the resonance must be detected quickly and with a high SNR. This is perhaps the

most critical part of the feedback loop, as it ultimately determines the performance
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of the system. The difference between the laser frequency and cavity resonance

is converted into a voltage, with a discriminator coefficient D given in units of

[V/Hz]. The discriminator voltage, or error signal, can be obtained by several

methods. The simplest and most straightforward approach is to lock to the side of

the cavity transmission fringe. The side-fringe locking technique uses the slope on

either side of the transmission peak to convert frequency fluctuations of the laser

into amplitude fluctuations, which are subsequently detected by a photodiode.

Although easy to implement, the technique suffers from several drawbacks. First,

amplitude modulation (AM) from the laser directly couples into the error signal;

the feedback loop cannot tell the difference between frequency modulation (FM)

and AM. Changes in the laser amplitude will therefore be written onto the laser

frequency. Secondly, due to the photon-lifetime of the Fabry-Perot cavity [219],

fast frequency fluctuations of the laser will not be detected in transmission through

the cavity. A final limitation is the narrow locking range. A small deviation from

the locking point can cause the laser to unlock if the frequency momentarily shifts

across the cavity transmission peak. The last two limitations present a particularly

troubling tradeoff; high-finesse cavities are desirable so as to provide a narrow

linewidth for laser stabilization, yet will simultaneously limit the bandwidth of the

feedback loop and reliability of the lock.

A better method, ”Pound-Drever-Hall” (PDH) stabilization, is easy to imple-

ment and avoids all the above-mentioned complications [189]. PDH stabilization is

closely related to the powerful technique of modulation-spectroscopy used for the

sensitive detection of atomic and molecular transitions. Pound first proposed this

technique for the stabilization of microwave oscillators by introducing phase mod-

ulation at a frequency several times greater than the resonance linewidth [220].To

avoid the limitations of AM on the laser beam, PDH stabilization relies on the

rapid modulation of a lasers frequency to quickly probe both sides of the cavity

resonance. If the resonance information is detected at a sufficiently high modula-

tion frequency, amplitude fluctuations can be reduced to their shot-noise limited

level. In addition, PDH stabilization utilizes the light reflected from the Fabry-

Perot cavity. This is advantageous since the reflected light will be at a minimum

on resonance decoupling AM noise from the error signal. Another important as-

pect of the PDH technique is that the response will not be limited by the cavity

lifetime, allowing for a greater bandwidth in the feedback loop.
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F.5 Feedback Loop: Loop Filter and Actuator

Once the error signal (e) is generated, it is sent through the servo ”loop filter”

to ensure the feedback is applied to the laser with the appropriate phase. Due to

the finite time delay in the feedback loop, all Fourier frequencies of the error signal

cannot be sent back to the laser with the proper phase. The frequency-dependent

voltage gain (G, with units of V/V) must therefore roll off toward zero at some

frequency to prevent positive feedback. After the signal is conditioned by the loop

filter, the correction voltage is finally applied to the actuator, characterized by a

coefficient A in units of Hz/V. The frequency range over which the actuator ex-

hibits a flat frequency response to the applied correction signal usually determines

the maximum bandwidth of the servo loop. For instance, a piezo-mounted cavity

mirror can be used as an actuator to correct the laser frequency. These often have

a resonant frequency on the order of a few kHz. Thus the servo bandwidth needs

to remain much less than this in order not to excite the piezo resonance.

Laser
S (f)f

Output

D

G

A

Stable reference
Servo

loop filter
e

Figure F.3: Simplified schematic of laser feedback loop. Sf is a spectral density of

frequency noise; e is an error signal point; D is a discriminator coefficient; G is a

loop filter gain; A is an actuator coefficient.

F.5 Feedback Loop: Loop Filter and Actuator

Once a good error signal is obtained, all that remains is to send this signal through

the servo loop filter and back to the lasers actuator to ”close the loop”. As dis-

cussed previously, the role of the loop filter is to adjust the error signal such that

it is applied to the laser with the appropriate amplitude, phase, and frequency

response. To prevent the phase of the error signal from shifting too quickly, result-

181



Frequency Stabilization of Lasers

ing in positive feedback, it is important to adjust the gain for the overall feedback

loop at the unity gain frequency [221].

F.5.1 The PID controller

The other component is the feedback amplifier. It processes the error signal. The

gain should be as large as possible and the bandwidth should span as far as pos-

sible to control slow and fast frequency excursions. However, there are several

limitations set by the requirements for the phase of the feedback gain. A reliable

rule for stable operation is that the gain rolls off with high frequencies and the

phase shift at the upper unity gain point should be less than π. A more precise

definition can be obtained using a Nyquist diagram. As a consequence the delay

times have to be kept short and any resonances, mechanical or electronic, have to

be avoided. The gain is usually controlled by a PID amplifier, that means a combi-

nation of proportional amplifier (middle frequencies), integrator (low frequencies)

and differentiator (high frequencies) [222]. All these components contribute to the

electronic round-trip phase and have to be carefully optimized.

Unfortunately, most electro-mechanical actuators have resonances in the acous-

tic range kHz, severely limiting the bandwidth of the amplifier which has to reach

unity gain at frequencies well be below the resonance. One option is to split the

control into several independent branches. For example, to use a piezo with large

range (length changes of several optical wavelengths) at low frequencies to com-

pensate for a drift of the frequencies and to use electro-optic components, such as

a phase modulator inside the cavity, which has a smaller range, but no resonance

for the control of the high frequency excursions. Extensive research has been car-

ried out into these control systems, for example, for the applications in frequency

standards and precision interferometry.
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Appendix G

Knife-edge method

G.1 Knife-edge method

Method: Record the total power in the beam as a knife edge is translated through

the beam using a calibrated translation stage. The power meter records the integral

of the Gaussian beam between −∞ and the position of the knife (see, for example,

[223]).

Analysis: Assume a beam propagating in the z-direction with a Gaussian in-

tensity profile:

I(x, y) = I0e
−2x2/w2

xe−2y2/w2
y (G.1)

where wx and wy are the 1/e2 radii of the beam in the x and y directions

respectively. I0 is the peak intensity.

The total power in the beam is:

PTOT = I0

∫ ∞

−∞
e−2x2/w2

xdx

∫ ∞

−∞
e−2y2/w2

ydy =
π

2
I0wxwy (G.2)

Consider the knife edge being translated in the x-direction. The transmitted

power is then:
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P (X) = PTOT − I0

∫ X

−∞
e−2x2/w2

xdx

∫ ∞

−∞
e−2y2/w2

ydy

= PTOT −
√

π

2
I0wy

∫ X

−∞
e−2x2/w2

xdx

= PTOT −
√

π

2
I0wy

[∫ 0

−∞
e−2x2/w2

xdx+

∫ X

0

e−2x2/w2
xdx

]
= PTOT −

√
π

2
I0wy

[√
π

8
wx +

∫ X

0

e−2x2/w2
xdx

]
=

PTOT

2
−
√

π

2
I0wy

∫ X

0

e−2x2/w2
xdx

(G.3)

Consider now the integral in Eq. (G.3) which we wish to cast in a standard

form. Making the substitution u2 = 2x2/w2
x, so that dx = wxdu/

√
2 and making

the necessary change to the limits of the integral leads to:

P (X) =
PTOT

2
−
√

π

2
I0wy

∫ √
2X
wx

0

e−u2

du (G.4)

Using the standard definition of the Error Function listed in the App. G.2 and

the expression in Eq. (G.4) for the total power in the beam we arrive at our final

result:

P (X) =
PTOT

2

[
1− erf

(√
2X

wx

)]
(G.5)

G.2 The Gaussian Distribution and the Error

Function

The Normal or Gaussian distribution function is defined as:

ϕ(t) =
1√
2π

e−t2/2 (G.6)

where the pre-factor ensures the correct normalization. Statistical tables give

the value of
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G.2 The Gaussian Distribution and the Error Function

P (t) =

∫ t

−∞
ϕ(t)dt (G.7)

A perhaps more useful definition includes the width σ and non-zero mean µ of

the distribution explicitly:

Φ(t) =
1

σ
√
2π

e−(x−µ)2/2σ2

(G.8)

The full width at half maximum is then related to σ by:

FWHM = 2
√
2 ln 2σ ≈ 2.35σ (G.9)

Unfortunately Gaussian beams are defined in yet another way, namely in terms

of the 1/e2 radius or ‘spot size’ w:

I(r) =
2P

πw2
e−2r2/w2

(G.10)

where P is the total power in the beam.

The Error Function is defined as follows:

erf(x) =
2√
π

∫ x

0

e−u2du (G.11)

and has the properties that:

erf(∞) = 1 and erf(−∞) = −erf(x) (G.12)

The Gaussian probability distribution is related to the error function by:

P (x) =
1

2
+

1

2
erf

(
x√
2

)
(G.13)
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