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gli altri che ora mi stanno sfuggendo. Condividere con voi lo stesso tetto, è



viii

come far parte di una grande famiglia allargata e, proprio per questo, l’aver

vissuto in una casa dello studente sarà un’Esperienza che mi porterò dentro per
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CHAPTER 1

Introduction

Hardware multithreading is becoming a generally applied and commercially

diffused technique in modern processors. Provided that proper architectural

supports to program concurrency are available, during the same time slot, or a

limited number of time slots, the units of a multithreaded (MT) processor are

simultaneously active in processing instructions belonging to distinct programs.

Underutilization of a superscalar processor, due to missing instruction level pa-

rallelism, can be overcome by this technology: the latency of any long-latency

event (such as cache misses or long instruction executions) can be hidden by

allowing multiple programs to share functional units of a single processor in an

overlapping fashion.

The parallel activities executed by a multithreaded CPU are referred to using

the term hardware thread : this is a concurrent computational activity sup-

ported directly at the firmware level. A specific runtime support of threads

is implemented directly at the firmware level in order to be able to execute

different threads simultaneously.

Theoretical and experimental results show that multithreading is well suited in

a multiprogram environment, achieving a scalability that ranges in the interval

1.4-2.4 for a number of threads in the interval 2-8. Nonetheless, how to ex-
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ploit this technology in High Performance Computing (HPC), in a systematic

manner, is still unknown. Since parallel applications usually exhibit an high

exploitable degree of parallelism, an obvious solution seems to be to increase

the parallelism degree in order to exploit all the thread contexts offered by

a multithreaded machine. Unfortunately this simple solution does not give

the expected results: indeed, contention for shared resources limits the perfor-

mance advantages of multithreading on current processors, leading to marginal

utilization of multiple hardware threads and even to a slowdown.

In the literature many researches suggest the use of cooperating threads to

increase the performance of a computation. Speculative precomputation (SPR,

[4]) is an example of such techniques: it utilizes idle hardware thread contexts

to execute helper threads on behalf of the main one. These threads, speculati-

vely prefetch data that are going to be used by the main computation thread in

the near future, thus hiding memory latencies and reducing cache misses. Ex-

perimental tests conducted on commercial multithreaded platforms show that,

on a pool of benchmarks, SPR could give some benefits in some cases, while

performs comparably to the classical program version in the rest.

The work of this thesis aims at investigating an alternative use of multithread-

ing, by utilizing this technology as a support for efficient interprocess commu-

nications in parallel applications.

The working context: communications in parallel applications

The field of HPC is living a new impetus in recent years, thanks to the fact

that multi-many core components, or on chip multiprocessors, are replacing

uniprocessor based CPU, also at a commercial level. This fact has enormous

implications on technologies and applications: in some measure, all hardware-

software products of the next years will be based on parallel processing.

In a structured view to parallel programming, a parallel application can be seen

as a set of cooperating modules that operate together to achieve a common goal;

assuming a local environment (or message passing) model, this cooperation is
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achieved by an exchange of informations between modules through communi-

cation channels.

Parallel programs are expressed as structured computation graphs, via high-

level parallel programming tools, and are usually compiled into a set of pro-

cesses in which the mentioned cooperation is expressed using concurrent pro-

gramming languages. The basic interprocess communication primitives pro-

vided by such languages are send and receive commands; they are used for

transferring a message from a sender to a receiver through a communication

channel.

Since these processes alternate calculus and communication phases in a se-

quential fashion, it is evident that considerable advantages can be obtained by

allowing the overlap between them. Supposing that proper architectural sup-

ports exist, a module can delegate the execution of a communication primitive

to a secondary entity, going ahead with the calculus without waiting for its com-

pletion; in the meanwhile and in parallel the communication is performed by

such secondary entity. In general, hiding the communication latency (at least

in part) is allowed, resulting in a performance benefit that depends by various

factors such as the structure of the application, the particular architecture, the

amount of communications performed with respect to the computation. An

example of such supports is the communication processor, that could be reali-

zed as a central, or as an input-output, coprocessor specialized at the firmware

level. In particular, the input/output coprocessor solution is adopted when the

communication processor is provided inside the interconnection network box.

The goal of this thesis is to realize a proper runtime support, for shared memory

systems, of a basic concurrent language (LC, introduced in the HPC courses

of the Master Program [19]), including the emulation of the communication

processor facility through multithreading. The idea is to associate to each

computational module (mapped as a process or a thread) one (or potentially

more) thread that is in charge of executing the communication primitives, fol-

lowing a philosophy similar to the communication processor case. Performing

basically a burst of load or store for transferring a message, hopefully the new
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thread will not interfere with the computational one.

Research issues

Keeping in mind that the main objective is to implement a proper runtime

support for LC, as library, on a MT architecture, through this thesis various

problems will be addressed:

• understand how a multithreaded CPU actually works, what could be its

limits (with a reference to a real architecture that will be used for the

development) and what precautions take in programming in order to use

it properly;

• how to efficiently implement the runtime support for the concurrent lan-

guage, taking into account some optimizations that will be introduced

(in particular the zero copy technique). It must be designed in a proper

way to be executed in user space, saving additional overheads otherwise

unavoidable;

• as explained, to each process/thread of the parallel application is associ-

ated at least one thread that is in charge of executing the delegated com-

munication primitives. Considering the context of a MT machine, where

the threads share the functional units of a processor, there is the need

of understanding how properly manage the interactions between them,

looking for mechanisms that have properties of high responsiveness and

lightweightness.

Even if they will treated with reference to a particular system, these problems

and their proposed solutions could be considered quite commons in exploiting

these kind of architectures.

This work will allow us to determine whether the proposed use of multithread-

ing is actually a viable alternative to other proposals and what benefits can

results in parallel applications.
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Structure of the thesis

This documents deal with the mentioned topics and it is structured in the

following way:

1. in Chapter 2 the multithreading technique will be introduced in details.

A brief taxonomy of multithreaded architectures and a commercial im-

plementation (the Intel’s Hyperthreading Technology) will be presented.

Finally a brief discussion on the current use of multithreading in HPC is

approached;

2. in Chapter 3 the impact of communications in parallel applications and

the benefit of overlapping them with computation will be discussed. The

communication processor is described, presenting some concrete imple-

mentations;

3. Chapter 4 deals with all the implementation details of this work. Mea-

sures to be adopted in programming, for efficiently exploit multithreaded

system, are presented, with a particular attention on possible mecha-

nisms for efficiently synchronizing two threads. Then the runtime sup-

port for a minimal core of LC in shared memory system is introduced

and, subsequently, it is described how extend it in order to emulate the

communication processor facility through multithreading;

4. in Chapter 5 results obtained from the comparison of the two different

versions of the runtime support for LC, with or without the emulation of

communication processor facility, are discussed;

5. finally, in Chapter 6 conclusions on the work done are reached and pos-

sible ideas for future works are briefly pointed out.





CHAPTER 2

Multithreaded Architectures

In the last few decades there has been an increasing complexity in proces-

sors design in order to achieve an ever increasing performance improvement.

The earlier scalar pipelined CPUs evolved introducing new techniques such as

branch-prediction, out of order and superscalar execution. Nonetheless, the

major complexity design, transistor counts and power consumption that this

solutions imply, do not correspond to a proportional increasing in processors

performance.

Consider, as an example, a superscalar architecture. Superscalar microproces-

sors are able to issue multiple instructions (two to eight) each time slot (1-2

clock cycles) from a conventional linear instruction stream. To accomplish this

goal, proper version of the functional units of a scalar pipelined CPU must

be realized, in order to be able to offer a given average bandwidth. As the

issue rate of microprocessors increases, the compiler or the firmware architec-

ture will have to extract more instruction level parallelism (ILP) from a single

sequential program to fully exploit these additional resources. However, ILP

found in a conventional instruction stream is limited and this results in per-

formance degradations caused by frequent data dependencies. Optimizations

aim to mask latencies caused by such dependencies.

For these reasons, it has been introduced the idea of exploiting parallelism
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among instructions of distinct sequential programs running on the same ILP

CPU, by means of multithreaded architectures (MT architectures). Provided

that proper architectural supports to program concurrency are available, this

idea implies that during the same time slot, or a limited number of time slots,

the CPU units are simultaneously active in processing instructions belonging

to distinct programs. Allowing multiple programs to share functional units of a

single processor in an overlapping fashion, multithreading can potentially hide

the latency of any long-latency event (such as cache misses or long instruction

executions).

The parallel activities executed by a MT CPU, on a time slot basis, are referred

to using the term thread (or hardware thread in the literature), with a more

specific meaning with respect to its traditional notation. Here a thread is still

a concurrent computational activity but is supported directly at the firmware

level. For this purpose, the firmware architecture of a MT CPU, able to execute

at most m threads simultaneously, has to provide:

• m independent contexts, where, as usually, a context is represented by

the program counter and the registers visible at the assembler level;

• a tagging mechanism to distinguish instructions of different threads within

the pipeline;

• a thread switching mechanism to activate context switching at the thread

level.

This means that there is a specific runtime support of threads implemented

directly at the firmware level. From the programmer viewpoint, this may be

not visible: a thread can be declared in the usual way, for example as a user

or system thread, by means of Posix threads. However the compiler of a MT

machine is different from a traditional one: it produces proper code to link the

firmware level runtime support for threads.

In the following sections a brief taxonomy of multithreaded architectures will

be given. Then a commercial implementation of a multithreading technique,
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the Intel Hyperthreading Technology (that will be used also for development

and testing), will be described and, finally, common use of multithreading in

parallel computing will be discussed.

2.1 Taxonomy of multithreaded architectures

Multithreaded architectures fall into two main categories, according on how

instruction emission is performed:

• single-issue architectures: during a time slot only instructions belonging

to a single thread are issued; instructions belonging to distinct threads

are issued in distinct time slots. This class can be implemented either

on a scalar or on a superscalar architecture. In this category, a further

distinction exists between Interleaved Multithreading and Blocking Mul-

tithreading ;

• multiple-issue architectures: during a time slot instructions belonging

to more than one thread can be issued. This class, which can be im-

plemented only on superscalar architectures, is also called Simultaneous

Multithreading.

2.1.1 Interleaved Multithreading

In the Interleaved Multithreading (IMT) approach, in every processor time slot

a new instruction is chosen from a different thread that is ready and active,

so that threads are switched every slot (Figure 2.1). If one of them incurs

in a long latency event, it is simply not scheduled until that event completes.

The key advantage of the interleaved scheme is that there is no context switch

overhead. A disadvantage is that interleaving instructions from many threads

slows down the execution of the individual threads (to mitigate this problem,

some solutions have been proposed, [18]).
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Figure 2.1: Different approaches to Interleaved Multithreading. A, B, C and D are active

threads. In (a) IMT technique is applied to a scalar CPU. In (b) it is applied to a superscalar

one. Gray boxes represent empty issue slots caused by dependencies in threads instructions

execution.

2.1.2 Blocking Multithreading

The Blocked Multithreading (BMT) technique implies that a single thread is

executed until it reaches a situation that triggers a context switch, usually a

long latency operation (Figure 2.2). Compared to IMT technique, a single

thread can now be executed at full speed until a context switch occurs.

The major drawback of this solution is its limited ability to overcome through-

put losses when short stalls occur. Since the CPU issues instruction from a

single thread, when a stall is encountered its pipeline must be emptied (or

frozen) and must be filled up with the instructions of the new thread, result-

ing in a thread context switch of few clock cycles. Because of this start-up

overhead, BMT is much more useful for reducing the penalty of high latency

operations, where the cost of pipeline refill is negligible compared to the stall

time.
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Figure 2.2: Different approaches to Blocked Multithreading, in the case of scalar CPU (a)

and superscalar CPU (b)

2.1.3 Simultaneous Multithreading

As already mentioned, simple superscalar processors suffer from two inefficien-

cies: the limited ability to find ILP in a single program and, consequently,

the stalls due to long latency operations. The Simultaneous Multithreading

(SMT) approach seeks to overcome the drawback of both superscalar and in-

terleaved/blocked multithreading techniques combining them by issuing in-

struction from different threads in the same time slot (Figure 2.3). In this way,

latencies occurring in the execution of a single thread are bridged by issuing

instruction of the remaining threads.

The key insight that motivates SMT is that modern superscalar processors of-

ten have more functional unit parallelism available than a single thread can ef-

fectively use. For these reasons, SMT seems to be the most promising approach

to multithreading and, until now, the most used in research and commercial

solutions.
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Figure 2.3: Example of Simultaneous Multithreading approach: now, instruction of multiple

threads are issued in the same clock cycle

2.2 Intel’s Hyper-Threading Technology

Intel’s Hyper-Threading Technology (HT) [13] was firstly introduced in 2002

with Intel’s Xeon and Pentium 4 processors and proposes a two-threaded SMT

approach for general purpose CPUs. As already explained, this means that

the firmware architecture of an HT CPU is able to maintain informations for

two distinct and independent thread contexts. By doing so, HT makes a sin-

gle physical processor appears as two logical processors to the operative system.

The processor’s resources fall into three categories:

• replicated : these include general-purpose registers, the Advanced Pro-

grammable Interrupt Controller (APIC), the program counter, the in-

struction address relocation table (called Instruction Translation Looka-

side Buffer);

• partitioned : include re-order buffer, load/store buffers and various queues

that decouple the major stages of the pipeline from one other. By stati-

cally partitioning these resources, if a logical processor is stalled, the other

one can continue to make forward progresses. These resources must be

recombined in order that, if only one thread is active, it can run at full

speed;
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• shared : comprise caches (Trace Cache, which performs also the tagging

of threads instructions, and data caches), data address relocation table

(Data Translation Lookaside Buffer), branch predictors, control logics

and execution units. Access to them is handled in a round robin fashion.

As highlighted in [16], the primary difference between the HT implementation

and the SMT architectures proposed in literature regards the mode of sharing

the hardware structures. In fact, SMT researches indicate that virtually all

structures are more efficient when dynamically shared, rather than statically

partitioned like HT does for some of them. Even if any negative effects of the

partitioned approach are minimized with only two hardware contexts, it should

be keep in mind that the technique employed by Intel, at least in its first im-

plementation, will not scale well to a larger number of hardware contexts.

Regarding the benefits achieved, according to Intel, the first implementation

uses only 5% more die area than a comparable non Hyperthreaded processor,

but the performance is 15-30% better. Nowadays, Intel’s Hyper-Technology

technology is the most available commercially solution for SMT in general

purpose CPUs.

2.3 Multithreading in Parallel Computing

Theoretical and experimental results show that SMT is well suited in a mul-

tiprogram context, achieving a scalability that ranges in the interval 1.4-2.4

for a number of threads in the interval 2-8 (Figure 2.4). Parallel applications

usually exhibit an high exploitable degree of parallelism and SMT could seems

to be a good choice also in this case. Unfortunately, the simple solution of

increasing the degree of parallelism allocating more computation threads on

the same processor, does not give the expected results. Contention for shared

resources, indeed, limits the performance advantages of MT on current SMT

processors, thus leading to marginal utilization of multiple hardware threads

and even a slowdown due to multithreading.

Authors in [6] conduct a study in this sense, evaluating, in various parallel
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Figure 2.4: Performance evaluation of multithreading on the standard benchmark suite

Spec95 and Splash2

benchmarks, the impact of exploiting Intel’s Hyperthreading (as mentioned,

the Intel’s SMT implementation) in a Symmetric Multi Processor (SMP) sys-

tem. They conclude that it is not always clear whether it is better to use one or

two threads per processor. They show that doubling the degree of parallelism

with respect to the traditional SMP (thus having two thread run together on

a single processor) there is an average increase in performances of merely 7%

and in some cases there is also a slowdown, till 30% in particular benchmarks.

This is due to the fact that in this case the threads will have similar character-

istics, and so, they will put pressure on the same resources that will become

bottleneck. In particular the authors experienced an increasing in:

• cache misses: in an Hyperthreaded processor, L2 cache is shared between

the two threads. If the working set of both co-executing threads do not

fit in L2 cache then cross-thread cache-line eviction significantly increases

the number of misses;

• DTLB misses: in many cases, co-executing threads work on different

portions of virtual address space and, therefore, cannot share DTLB

entries. This, in turn, results in an effective halving of the data TLB
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area per thread and, thus, in an increased number of misses.

• stall cycles: the previous considerations and the content for execution

units, increase the stall cycles rate (calculated over the total number of

execution cycles), that goes up of a factor 3.

In conclusion, how to efficiently exploit multithreading in parallel applications

is still unknown. In the literature, many researches suggest the use of co-

operating threads to increase the performance of a single thread computation.

Speculative precomputation is an example of such techniques and will be briefly

discussed in the next section.

The work of this thesis aims to investigate an alternative approach to the

problem, by utilizing multithreading to facilitate interprocess communication

in parallel applications, by emulating a communication processor when it is

not physically available.

2.3.1 Speculative Precomputation

Speculative precomputation (SPR) is a technique to improve single-threaded

performance on a multithread architecture. Clearly, such a technique can be

also used in the context of parallel applications. It utilizes otherwise idle hard-

ware thread contexts to execute helper threads on behalf of the main one.

These additional threads, speculatively prefetch data that are going to be

used by the main computation thread in the near future, thus hiding mem-

ory latency and reducing cache misses. SPR could be thought of as a special

prefetch mechanism that effectively targets load instructions that traditionally

have been difficulty to handle via prefetching, such as loads that do not exhibit

predictable access patterns ([4]).

In brief, implementing SPR consists of the following steps:

1. identify the so called delinquent loads : in many practical cases, only

few loads are responsible for the vast majority of cache misses. Their

identification is usually done by means of profiling tools;
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2. generate code for prefetcher threads: a possible solution is to replicate

the original program code and preserve only the backward slices of the

target delinquent loads; all other instructions are eliminated;

3. insert synchronizations point between prefetcher and computation threads:

this must be done in an accurate way, in order that prefetchers bring right

data at the right time.

Results on simulated multithreaded architectures with ideal hardware support

(such as multiple contexts, efficient mechanism for thread spawn, special hard-

ware for lightweight synchronization between threads) shows that particular

SPR techniques can achieve an average 70% of speedup over various bench-

marks ([4]). On the other hand, experimental tests conducted on a commercial

hyperthreaded platform (that does not have such ideal mechanisms) show that,

on a pool of benchmark, SPR achieve speedups between 4% and 34% in half

cases, while performs comparably to single threaded execution in the rest ([2]).



CHAPTER 3

Communication in parallel

applications

Parallel applications can be expressed by means of computation graphs, whose

nodes represent computational modules that cooperate in order to achieve a

common goal. Assuming, without loss of generality, a local environment (or

message-passing) cooperation model, the edges of the graph will represent com-

munication channels that will be used to exchange informations between mod-

ules (Figure 3.1).

M0

M1 M2

M4

M3,2M3,1

M3

Figure 3.1: An example of computation graph: each module can be seen as a server or a

client with respect to another one. For example M1 is a servant for M0 but a client with

respect to M2. Inter-node parallelism can be exploited to reduce the effect of bottlenecks,

as in the case of M3.
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How to study and organize these systems is usually done according to well-

known parallelism paradigms: they are schemes of parallel computations that

recur in the realization of many real algorithms and applications. Such para-

digms are characterized by formal cost models that allow the programmers of

parallel applications to evaluate the performance metrics of the single modules

and of their graph composition.

Parallel programs, expressed as structured computation graphs via high-level

parallel programming tools, are usually compiled in a set of processes, whose

cooperation is defined by means of a concurrent programming language. As

reference language will be used LC, a simple concurrent language introduced,

with didactic purposes, in HPC courses of the master program ([19]). For the

moment, it’s important to know that such a language, as any existing message-

passing library, is defined according to the general semantics of Hoare’s Com-

municating Sequential Processes (CSP). Send and receive commands are the

basic interprocess communication primitives provided. As usually, their com-

bination has the effect of transferring a message from a sender to a receiver,

through a communication channel.

Channels are unidirectional, have a unique name and a type: this is the type

of the messages that can be sent over them and the type of the target vari-

ables to which received messages can be assigned. They can be symmetric or

asymmetric and are characterized by an asynchronous degree k ≥ 0 (k = 0

correspond to the case of synchronous communication).

The compiler of the parallel application has several versions of the runtime

support of LC and selects one of them in order to introduce optimizations (e.g.

zero copy communication) depending on the application and/or on the underly-

ing architecture (e.g. uniprocessor, shared memory multiprocessor, distributed

memory multiprocessor, ...). A LC runtime support suitable for interprocess

communication in shared memory systems and its implementation details will

be discussed in chapter 4.

In the following section, the impact of communications in parallel applications
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and the benefits of overlapping them with computation will be discussed. Then

an architectural support suitable for this scope, the communication processor,

is briefly described.

3.1 Overlapping communication and computation

In cost models for parallel paradigms, a fundamental metric is the interprocess

communication latency Lcom. This is intended as the mean time needed to exe-

cute a complete communication, that is the mean time between the beginning

of the send execution and the copy of the message into the target variable,

including synchronization and low level scheduling operations. We can define

the latency for transmitting a message of L words as:

Lcom(L) = Tsend(L) + Treceive(L)

where Tsend and Treceive are the latencies of the respective operations. In the

case of zero copy runtime support, the message is copied directly into the

target variables of the receiver, without intermediary copies. Hence, the latency

of a receive operation is negligible with respect to the send one, since the

receiver runtime support does not perform message copies. Supposing that

this optimization is used, the communication latency can be rewritten as:

Lcom(L) = Tsend(L) = Tsetup + LTtrasm

where:

• Tsetup is the average latency of all the actions that are independent of

the message length: synchronization, manipulation of structures of the

runtime support, low level scheduling;

• Ttrasm is the latency to copy one word of the message.

Both of them depend on the concrete architecture and runtime support imple-

mentation. Typical order of magnitude for shared memory architectures are

Tsetup = 103 ÷ 104 τ and Ttrasm = 102 ÷ 103 τ .
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Can parallel applications benefit of overlapping communication and compu-

tation? Consider a generic parallel application and, in particular, one of its

modules that operates on stream. Suppose that this module during its life

cycle alternates computation and communication phases: this is a typical si-

tuation in many parallel paradigms that operate on streams. Typically, these

two phases follow each other sequentially (Figure 3.2). In this case the service

Tcalc Lcom

time

Figure 3.2: Non overlapping case: gray boxes identify calculus phases, white boxes commu-

nication ones. In such a situation no overlapping between calculus and communication is

present

time of this module will be increased by the communication latency because it

is entirely paid, resulting in:

T = Tcalc + Lcom

Consider now the case in which proper architectural supports exist (i.e. a

communication processor) to which the execution of an asynchronous send

could be delegated. In this case the module, once the primitive is offloaded to

the communication processor, can start the following calculus phase without

waiting; in the meanwhile and in parallel the communication is performed. In

general this allow to hide (at least in part) the communication latency (Figure

3.3). Denoting with Tcom the average communication time not overlapped with

internal communication, the module service time can be written as

T = Tcalc + Tcom = max(Tcalc, Lcom)

resulting in a clear advantage with respect to the previous case if Lcom is not

negligible with respect to Tcalc. The module latency, instead, is always affected

by the communication latency.
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time

Tcom

Lcom

timeTcalc

Figure 3.3: In this situation there is the possibility to overlap communications and com-

putation. In the first case, the communication latency is fully masked by the calculation

one (Tcalc ≥ Lcom). In the second case, the most general one, calculation is only partially

overlapped to communication

3.2 Communication processor

Shared memory system are MIMD (Multiple Instruction Stream Multiple Data

Stream) general purpose architectures, characterized by a certain number of

processing nodes (n, typically homogeneous), that share the main memory

physical space and are connected each other and with the main memory by an

interconnection structure (Figure 3.4).

SHARED MEMORY

Interconnection
              structure

PE0 PE1 PEn-1

Figure 3.4: Structure of a shared memory system: memory and processing nodes are con-

nected each other via an interconnection structure, usually of limited degree
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The general structure of a processor node is depicted in Figure 3.5. This is

CPU

W

M

UC
(I/O)

I/O BUS

Processing node

Figure 3.5: The internal structure of a processing node

characterized by:

• CPU: processing nodes are usually based on general-purpose, commercial

off-the-shelf CPUs or computers. This is true also for multicore (or

Chip Multi Processor, CMP) architectures, which often integrate existing

CPUs into the same chip. An off-the-shelf CPU chip is connected to the

“rest of the world” through its primitive external interfaces (e.g. Memory

Interface, I/O Bus). Such CPUs should be, in any case, suitable to be

immersed into a multiprocessor system: for example, should be capable

to generate proper physical addresses for addressing the whole shared

memory space;

• local memory and I/O units;

• node interface unit (W): this unit is in charge of interfacing the processing

node with the rest of the system. In this way, existing CPU can be used

thanks to the fact that W masks to the CPU the structure of the shared

memory and interconnection network;
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• communication unit (UC): it is provided for direct interprocessor com-

munications support, usually performed for processor synchronization

(involved in locking mechanism) and process low-level scheduling.

As already said, to allow overlapping between computation and communication

there is the need of proper architectural supports, such as a communication

processor. The structure of a processing node could evolve as illustrated in

Figure 3.6.

IP KP

WIP WKP

UC UC

Processing node

MIP MKP

W

Figure 3.6: The internal structure of a processing node with a communication processor:

processing node itself can now be considered as a shared memory multiprocessor

Every node has now two processors: the communication processor (KP) and

the main one (IP) with their respective local memories and I/O units. KP is

dedicated, or specialized, to the execution of the runtime support of LC and,

in particular, of the send primitive. The delegation of the send is performed

by passing to KP the information required to execute the primitive (typically

the identification of the channel and a reference to the message): these infor-

mations are contained into a data structure prepared by IP, whose reference is
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passed to KP via I/O (i.e. via a communication UC-UC).

Usually, not the entire execution of the send is delegated to KP, but some run-

time support related functionalities are still performed by IP. As an example

consider the send semantics: when the message is copied, if the asynchrony de-

gree becomes saturated the sender process must be suspended. If IP delegates

the send execution entirely to KP, then some complications are introduced in

the send implementation because of the management of the waiting state of

the sender process. A simple solution to the problem is that IP itself verifies

the asynchrony degree of the channel, after the send delegation (clearly this

control will not be performed again by KP), suspending the sender process if

necessary. The initial phase executed by IP is now not overlapped to the in-

ternal calculation. In the interprocess communication cost model, the latency

IP

KP

Tcalc

Lcom

Figure 3.7: Send delegation from IP to KP; blue boxes represent part of the send runtime

support executed by IP

of this phase must be included in the Tcalc parameter (Figure 3.7).

3.2.1 Commercial implementation of communication processors

A concrete example of application of the communication processor can be found

in the Intel Paragon XP/S, first shipped in the 1992 ([5]). Even if it is a dis-

tributed memory architecture, the same idea till now discussed is applied. In

the Intel Paragon systems up to 2048 processing nodes are connected in a 2D

mesh: each of them is a shared memory multiprocessor, with two Intel i860XP

RISC processors, 16-32 Megabytes of local memory and a Network Interface

Card. One of the processors is designated as communication processor and
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handle the message-passing primitives, while the other is used as a compute

processor for general computing, exactly as illustrated before.

In general, although it is possible to realize KP with the same architecture of

IP, the recent trend is to design it as an input-output coprocessor, specialized

at the firmware level, sharing memory with IP through DMA and Memory

Mapped I/O. In particular, this kind of implementation is adopted when the

communication processor is provided inside the interconnection network box.

This is the case of specialized networks for HPC, such as Quadrics, Myrinet

and Infiniband.

Taking into account the case of Myrinet ([3]), its Myricom/PCI network in-

terface card (Figure 3.8) is characterized by a a communication processor, a

local memory and two DMA engines responsible, respectively, for data transfer

from host memory to local memory and from local memory to network. The

HOST
HOST
DMA

KP
NETW
DMA

PCI bus network

LOCAL MEMORY

Figure 3.8: Basic structure of the Myricom/PCI network interface card

former is responsible for the execution of message-passing protocol once proper

delegation is performed by the host node.





CHAPTER 4

Multithreaded support to

interprocess communication

In the previous chapter has been discussed how the parallel applications can

benefit of communication-computation overlap. At this point one wants to

understand if and how it is possible, in a multithreaded and shared memory

architecture, emulate the facility of a communication processor when it is not

physically available. This chapter deals with this problem, implementing a

minimal core of the concurrent language LC that provides this feature. The

approach adopted is to associate to each process/thread of the parallel applica-

tion (from now on will be referred as worker thread) a thread that is in charge

of executing the send primitive (communicator thread) following a philosophy

similar to the IP-KP case.

Although the goal is quite circumscribed, many of the issues that will be ad-

dressed are common in approaching this kind of problem, independently from

the concurrent language used.

The chapter is structured in the following way:

1. programming in multithreaded architectures : measure to be adopted in

programming, for efficiently exploit these kinds of systems, are briefly
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discussed;

2. inter-thread synchronization: the problem of how efficiently synchroniz-

ing two threads, with particular attention to the specific work context, is

approached;

3. LC runtime support : the runtime support of a minimal core of the con-

current language in shared memory architectures is introduced;

4. communicator implementation: finally, how to extend the traditional sup-

port of LC for emulating a communication processor is described.

Through the rest of the thesis, as reference architecture will be considered a

shared memory multiprocessor with Hyper-threading technology, whose struc-

ture is shown in Figure 4.1. It is composed of 2 CPUs Intel Xeon E5520

Core
0

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

L1 L1 L1 L1 L1 L1 L1 L1
L2 L2 L2 L2 L2 L2 L2 L2

Level 3 cache Level 3 cache

IMC IMCQPI QPI

SHARED MEMORY

Figure 4.1: Internal structure of the reference architecture: the Integrated Memory Controller

(IMC) and Quick Path Interconnect (QPI) constitute the interconnection structure of the

system

(running at 2.27 GHz), each of them with four physical cores supporting the

Hyper-threading technology (2-way Simultaneous Multithreading). Level one

and level two cache (respectively of 32 and 256 Kb) are private for each core,
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while the level three cache (8 Mb) is shared by all the four cores of a CPU. The

machine is equipped with 12 Gb of RAM and runs a GNU/Linux operating

system, based on the Linux Kernel 3.0.

4.1 Programming in multithreaded architectures

In the case of a multithreaded architecture, a thread is viewed as a firmware

level supported thread which can be a single process, a user defined thread, a

compiler-generated thread such as micro or nanothreads.

Since the reference environment is a Linux-based operating system, the obvi-

ous solution seemed to exploit multithreaded architecture through used-defined

threads created with the features offered by the Native POSIX Thread Library

(NPTL, compliant with POSIX standards). With the POSIX Threads, a pro-

cess can have multiple threads each of which has its own flow of control and

its own stack. Everything else about the process, including global data, heap

and resources, is shared.

Even if the methodologies applied are the usual of multithreaded programming,

here the application programmer (or, as in this particular case, the runtime

support designer) should be well aware that he/she is working on a multi-

threaded architecture and how it is organized.

As explained in sect. 2.2, Hyper-threading technology makes the single two-

threaded physical processor/core appears as two logical processors (referred as

siblings processors), each of them identified by a unique ID. HT-aware Linux

schedulers are clever enough to manage this situation efficiently, for example

trying to schedule threads/processes on sibling processors only if it is strictly

necessary, taking into account that the majority of the resources is partitioned

or shared between them. Nevertheless, in programming the runtime support of

LC with communication processor facilities there are more stringent require-

ments, for example assuring that the worker and communicator threads run

on two sibling processors to better exploit the cache (since the low levels are

shared between sibling processors). This is usually done by providing directives
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to the scheduler regarding the binding thread-logical processor, the so called

processor affinity. NPTL provides proper function for this purpose, such as

the pthread setaffinity np().

The only thing that the support user must know is the processors topology,

that indicates the association between logical and physical processors. In Linux

systems such informations are published through the sys pseudo file system

([7]). For the testing architecture, this association is sketched in Figure 4.2

Physical core Physical package

0 2 4 6 1 3 5 7

8 10 12 14 9 11 13 15

Figure 4.2: Processors topology of the reference architecture: there are two physical CPU

(also called packages) each of which has four physical cores. The numbers represent the ID

of a logical processor associated by the operative system; ID on the same column identify

sibling logical processors

4.2 Inter-thread synchronization mechanisms

In the working scenario, the communicator thread has to wait, even for a large

period of time, that a send is delegated to it by the worker thread; there-

fore, there is the need for inter-thread synchronization mechanisms provided

in the form of classical wait/signal primitives. Considering the asymmet-

ric workload that characterizes these two threads and, especially, the context

of an Hyper-threaded machine where many of the computational resources are

dynamically shared or statically partitioned, such mechanisms must have prop-

erties of high responsiveness and lightweightness.

In the literature, proper hardware extensions have been proposed to meet these

requirement (consider as an example the lock-box introduced in [17]), while

many brand new commercial products (such as the IBM wirespeed processor)
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provide appropriate synchronization primitives.

An Hyper-threaded processor does not provide such mechanisms for low-latency

and resource-friendly synchronization directly at the firmware level.

In the following, classical method (POSIX mechanisms and spin locks) and a

new one (proposed in [1] and based on proper Intel’s assembler instructions) for

synchronizing two threads are discussed. In conclusion, an evaluation of such

mechanisms is presented. Except where indicated otherwise, the code that will

be shown is written in a C-like pseudocode.

4.2.1 POSIX

POSIX standard provides well-known mechanisms for synchronizing threads.

To signal and wait for a condition, three things are necessary: a mutex M , a

condition variable C and a predicate P . The first two are proper data structure

offered by POSIX Threads; the predicate depends from the particular context

of application. Primitives that work on condition variables must be called in

critical sections, as shown in the example.

Thread A :

mutex lock (M) ;

<...>

cond s igna l (C) ;

mutex unlock (M) ;

Thread B :

mutex lock (M) ;

whi le ( !P)

cond wait (C ,M) ;

<...>

mutex unlock (M) ;

The call at cond wait() do not imply busy-waiting: it actually releases the as-

sociated mutex, causes the thread to be descheduled (passing in waiting state)

and, assuming that there is no other runnable thread, the processor resources

previously occupied are released in favour of the worker thread.

Latest versions of the NPTL Library makes use of futexes (Fast User muTEX),

a mechanism provided by the Linux Kernel (2.6 or greater) as building block
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for fast userspace locking. In this case, multiple threads communicate locking

state through shared memory regions and atomic operations; a futex based

lock works in user space unless there is a lock contention ([10]). In this case,

system calls are required to wake up a process or to put another one into

waiting state. Even if this solution could save many user-kernel-user space

switches compared with old implementations, it should be considered that some

overhead is unavoidable due to the presence of system calls.

4.2.2 Spin lock

Synchronization primitives based on spin lock have been commonplace in tra-

ditional multiprocessor systems, due to their simple implementation and high

responsiveness; unlike to the previous solution, they imply busy waiting. In

the case of spin lock, the lock variable can be a simple boolean that indicates

whether the lock is held by someone. Each processor repeatedly use an atomic

test-and-set or exchange instruction in attempt to change the flag from false

to true, thereby acquiring the lock. A processor releases the lock by setting it

to false.

The principal shortcoming of this first version is contention for the flag: each

waiting processor accesses the single shared flag as frequently as possible us-

ing the indicated instructions. This can be particularly expensive on cache-

coherent processors, since each execution of such instructions can cause a cache

line invalidation (resulting in a ping-pong effect). A simple modification to the

presented algorithm is to use a test-and-set instruction only when a previous

read indicates that this can succeed.

In modern out-of-order processors a spin loop is dynamically unrolled multiple

times since there are no data dependencies and the branch that it contains

can be easily predicted. In an Hyper-threaded environment, a synchronization

primitive based on spin locks can incurs significant performance penalty since

the spinning thread, even though not performing any useful work, inserts a

significant number of instructions that compete with other threads executing
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on the sibling logical processor (the worker thread in this context) causing a

slow-down of both of them.

Intel recommends the use of PAUSE instruction in spin loops ([12]): these in-

struction introduces a slight delay in the loop and de-pipelines its execution,

preventing it from aggressively consume processor resources. The cost of spin-

ning, however, is reduced but not entirely eliminated, because the resources

designated to be statically partitioned are not released by the spinning thread.

Considering the use of the PAUSE instruction, a simple spin lock, written in

assembler language, is the one reported in Listing 4.1.

SLOCK: mov [ LV ] , eax

cmp 0 , eax

je GET LOCK

pause

goto SLOCK

GET LOCK : mov 1 , eax

xchg [ LV ] , eax

cmp 0 , eax

jne SLOCK

Listing 4.1: Spin lock assembler implementation using the pause instruction. LV represents

the address of the locking flag

Spin locks can constitute a building block for simple synchronization primitives.

Spin lock itself can be used as primitive for the access in critical sections while

a condition variable can be implemented via a boolean flag. Maintaining a

style similar to the POSIX standards, the signalling and waiting procedures

must be called into a critical section. The former simply set the flag; the latter

first of all resets the flag and then, cyclically, check it values, releasing the lock

if founded still unset. The resulting wait primitive is shown in Listing 4.2.

bool n o t i f i e d=f a l s e ;

c=UNSYNCHR VALUE; // r e s e t the f l a g

s p i n u n l o c k ( l ) ; // f r e e the l o c k v a r i a b l e

do

{
s p i n l o c k ( l ) ; // l o c k

i f ( c==SYNCHR VALUE) // the p a r t n e r n o t i f i e d
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n o t i f i e d=true ;

e l s e

s p i n u n l o c k ( l ) ; // un lock and loop

} whi le ( ! n o t i f i e d ) ;

Listing 4.2: Wait primitive: c represents the condition variable. It must be called into a

critical section

Clearly, the behaviour is slightly different compared to the POSIX case:

• a condition variable can be used to synchronize entities only in a ”one-

way” fashion. This means that if it used by thread A to signal a condition

to thread B then it cannot be used to synchronize these entities in the

opposite way, otherwise dead-locks can occur;

• since wait and locking primitives require busy waiting, no fairness is

guaranteed to the contenders. Thereby, it is better to use this solution

to synchronize only two entities (like in the study case).

4.2.3 MONITOR/MWAIT instructions

MONITOR and MWAIT are two assembler instructions introduced with the Intel’s

Prescott architecture. The MONITOR instruction sets up a memory address that

is monitored for write activities. MWAIT, instead, places the calling processor in

a ”performance-optimized” state (which may vary between different implemen-

tations) until a write to the monitored region occurs [12]. MWAIT still causes

a busy waiting but behaves as a NOP and execution continues at the next in-

struction in the execution stream. Moreover, on a Hyper-threaded processor, a

thread that calls MWAIT causes its logical processor to relinquish all its shared

and partitioned resources.

The address provided to MONITOR instruction effectively defines an address

range, within which a store will cause the thread blocked to the MWAIT to wake

up. Thus, to avoid missed wake ups, the data structure that will be used as

condition variable must fit within the smallest monitor line size and must be
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properly aligned so that it does not cross this boundary. Otherwise, the pro-

cessor may not wake up after a write intended to trigger an exit from MWAIT.

Similarly, write operations not intended to cause an exit from the optimized

state should not write to any location within the monitored range. In order to

avoid false wake ups the data structure should be padded to the largest mon-

itor line size. Both of this parameters (smallest and larger monitor line size)

are architecture dependent and should be properly checked; in the reference

system are equal to 64 bytes.

Furthermore, multiple events, other than a write to the triggering address

range, can cause a processor that executed MWAIT to wake up, such as inter-

rupts or context switches. This means that, after wake up, the value stored in

the triggering address should be checked and, if necessary, return in a waiting

state: therefore MONITOR/MWAIT need to be executed in a loop.

In their initial implementation, MONITOR and MWAIT instructions are allowed to

be executed only in kernel space, with the maximum privilege level1. Therefore,

in order to be able to implement synchronization primitives based on these two

instructions, there are two possible solutions:

• extend the Linux Kernel with a pair of system calls through which access

to these instructions is granted;

• run the program that use them directly at kernel level.

The second option has been chosen as best representing a probable future si-

tuation where these instructions are released by Intel to be executed in user

level, avoiding the overhead that the system call will have introduced. To run

the entire programs in kernel mode, a proper patch of the Linux Kernel will

be used (Kernel Mode Linux, [15]).

1Actually, during the study of this instructions, some machines were found in the com-

puter center facility of the university, based on Pentium 4 HT (the first commercially available

processor with Hyper-threading technology) that can run this instruction also at user level
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As before, simple synchronization primitives based on these instructions are

provided. Access to critical sections is still granted through spin locks. The

condition variable is now a vector of 64 bytes that has to be properly aligned

on memory. The sketch of the wait primitive, that addresses all the previously

stated problem, is shown in Listing 4.3.

bool n o t i f i e d=f a l s e ;

c=UNSYNCHR VALUE;

do //mon i to r /mwait c y c l e

{
mm monitor(&c , 0 , 0 ) ; // s e t the mon i to r r e g i o n

s p i n u n l o c k ( l ) ;

mm mwait ( 0 , 0 ) ; // wa i t f o r a s t o r e on i t

s p i n l o c k ( l ) ; // a c c e s s to the c o n d i t i o n v a r i a b l e and check

i f ( c==SYNCHR VALUE) // the p a r t n e r n o t i f i e d

n o t i f i e d=true ;

// o t h e rw i s e l oop

}whi le ( ! n o t i f i e d ) ;

Listing 4.3: Wait primitive based on MONITOR/MWAIT instructions: c represent the

condition variable. mm monitor and mm mwait are the GCC intrinsics counterparts of

the MONITOR/MWAIT instructions

The considerations done for the primitives based on spin lock, are valid also

for this case.

4.2.4 Evaluation of the synchronization mechanisms

For comparing the illustrated synchronization mechanisms a proper test sce-

nario has been set up. There are two threads allocated on two sibling proces-

sors: the first one (worker thread) performs, cyclically, heavy calculus in one

case and, in a second one, make also random accesses to a data structure in

order to generate a large amount of cache faults. The second (waiting thread)

just waits until notified by the former each time that a calculus cycle is com-

pleted.

The two tests were performed multiple times for each synchronization primi-
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tive.

The gathered metrics of interest are:

• T : the completion time of the worker thread: the larger this time is, the

more disturbing is the co-existence of the waiting thread on the physical

processor;

• Tcall: the time (measured in processor cycles) that the worker thread

spends in invoking the notification primitive;

• Twakeup: the time (measured in processor cycles) between the notification

to the waiting thread and the moment that it is actually awakened.

Results of the two tests ran on the reference architecture are shown in Table

4.1 and Table 4.2.

Primitive T (msec) Tcall(cycles) Twake(cycles)

Spinlock 4420.5 193 318

MONITOR/MWAIT 2934.12 131 815

Posix 2861.5 3918 162094

Table 4.1: Test case with only calculus

Primitive T (msec) Tcall(cycles) Twake(cycles)

Spinlock 37881.101 602 779

MONITOR/MWAIT 36721.699 719 1701

Posix 35472.199 9640 72154

Table 4.2: Test case with calculus and cache faults

As expected, spin lock based primitives provide minimum response time and

call overhead (comparable with the one exposed by MONITOR/MWAIT) but they

are the most aggressive in term of resource consumption. In the first test case,

on average the spinning thread decelerates the worker thread of more than

50% compared with the other two solutions. This difference decreases in the

second test case, resulting in a slowdown of only 4%: this is probably due to
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the fact that the latencies introduced by cache faults allow to amortize the

additional workload caused by the waiting thread. POSIX based primitives

present the worst wakeup and call times due to the passage at kernel level

and rescheduling of waiting thread. However they present a completion time

that is less compared to the one obtained with MONITOR/MWAIT primitives, that

perform on average 3% worse. This indicates that the “performance-optimized”

state of MWAIT still introduces some impairments on the sibling thread.

As stated in Intel’s documentation, this state is implementation dependent. In

fact, the same tests run on a newer Intel’s processor compared to the reference

one (Intel Core i7-2677M dual core, running at 1.80GHz, 32 Kb for L1 cache

and 256Kb for L2 cache, same operative system of the reference architecture)

show that the difference between the completion time obtained with the POSIX

mechanisms with respect to the one resulting by the usage of MONITOR/MWAIT

based primitives decreases of one order of magnitude (Table 4.3 and Table 4.4).

Primitive T (msec) Tcall(cycles) Twake(cycles)

Spinlock 3662.8 186 261

MONITOR/MWAIT 2381.6 62 615

Posix 2358.899 1421 69803

Table 4.3: Test case with only calculus

Primitive T (msec) Tcall(cycles) Twake(cycles)

Spinlock 29656.099 658 744

MONITOR/MWAIT 28613.599 561 1327

Posix 28525.3 8452 96752

Table 4.4: Test case with calculus and cache faults

Hopefully this gap will become smaller and smaller as new architectures re-

fine these instructions. Regarding the false wake ups caused by event external

to the computation, it has been noticed that they are exclusively due to the

interrupts send by the system timer to the processor for indicating that the

time quantum is expired; in any case, this don’t impact on the completion time.
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In conclusion, it is clear that the spin lock based synchronization mechanisms

are not suitable for synchronizing two threads running on the two sibling pro-

cessors. On the other hand, a single winner from the comparison between

POSIX mechanisms and MONITOR/MWAIT based synchronization primitives can

not be determined both for the simplicity of the test cases considered (which

are, in any case, extreme situations) and, as pointed out, because these instruc-

tions seem to be subject to potential future improvements. For this reason, the

support user will be allowed to chose which one use. In chapter 5, tests will be

performed with both type of primitives. Moreover, given the generality of this

mechanisms, they will not used only in the case of inter-thread synchronization

but also to regulate the access to the runtime support data structures.

4.3 Runtime support of LC

The minimal core of LC that will be implemented refers to the case of sym-

metric, synchronous or asynchronous, deterministic channel (i.e. not referred

in alternative commands) for shared memory architectures, with zero copy op-

timization. The interface offered to the user is inherited by a previous work of

the research group ([8]) and it is maintained for compatibility reasons. Since

in the case of communication processor the interest is focused on asynchronous

communications, the runtime support for this kind of communication is now

discussed. The synchronous case is obtained with some minor modifications.

4.3.1 Zero copy optimization and shared memory segment

The zero copy technique allows the sender to copy a message directly into the

target variable of the receiver without copies in intermediary data structures.

The number of copies is just one, i.e. the minimum independently of the re-

ceiver progress state (zero copy stands for zero additional copy). This means

that the processes involved into the communication must share part of their

virtual memory, in particular the target variables are shared objects them-
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selves.

Moreover, one objective of this work is to design the runtime library in a

proper way to be executed in the user space. In this way the additional over-

head caused by the execution of a language primitive in supervisor (or kernel)

state is saved.

Unix-based operative systems offer a basic mechanism for sharing memory

between different processes: the XSI Shared Memory Segment. A segment is

created by one process and, subsequently, written and read by any number of

processes that acquire it in their address spaces. This means that the logical

addresses, generated by the different processes that operate on the segment,

will be relocated to the same physical addresses. Once that the process finishes

to work with it, it is detatched from its virtual memory and, when none of the

processes is willing to use it, it is finally marked to be destroyed. The memory

segment is referred (hence shared and acquired) by a key that unequivocally

identifies it in the system.

A peculiar characteristic, that will influence some implementation choices, is

that a process can not dynamically share, via an XSI memory segment, an

already allocated portion of its virtual memory. In the case of the runtime

support for LC, this implies that a receiver can not dynamically share the

target variables. These must be created at channel creation time by allocating

the necessary space into a memory segment that will be shared by sender and

receiver.

4.3.2 Channel descriptor

The basic data structure of the runtime support is the channel descriptor that

will contains all the informations necessary for an efficient implementation of

LC functionalities. Along with the target variables, this structure is shared by

sender and receiver. For consistency reasons, the procedures that manipulate

it must be executed in an indivisible way. This requirement is achieved by

means of locking primitives, such as the ones previously discussed. Moreover
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the communication primitives could require some synchronization between the

involved entities. In particular:

• when executing a receive, if the communication channel does not contains

any message, the receiver must wait until a send is executed;

• when executing a send, if the communication channel is full (the asyn-

chrony degree has been reached), the sender must wait until a receive is

executed.

Depending of what type of synchronization primitive is used, these situa-

tions could imply busy waiting (such as in the case of MONITOR/MWAIT) or

not (POSIX mechanisms).

The type of the channel is specified at creation time, therefore the dimension

of the target variables is known and fixed. If the asynchrony degree is equal

to K, K + 1 target variables, handled as a circular vector, will be created and

shared between sender and receiver. The solution N = K + 1 avoids that the

sender process re-executes the send primitive once that the asynchrony degree

is reached: it completes the actual send operation and then is suspended. In

this way, once waked-up, it is resumed at the return logical address of the send

procedure.

By the definition of the zero copy method, the receiver process works directly

on the target variable instances (without copying them). Therefore, a critical

race could occurs when the sender tries to copy a message into a target variable

and the receiver is still utilizing it. To overcome this problem, a simple solution

is to allocate J additional target variables. J is chosen at channel creation time

(J ≥ 0) and this results in having a total of N = K + J + 1 target variables;

in many practical cases, J is equal to 1. The send procedure will copy the

messages in this N variables, handling them as a circular buffer, respecting the

asynchrony degree constraint. On the other hand, the receiver can execute at

most J receive and, simultaneously, use the respective target variables, being

sure that the execution of a send will not overwrite their content.

An alternative solution to this problem could be to associate a validity bit to
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each target variable that indicates whether or not it is safe to overwrite it.

Thus the sender process will now be suspended also if the validity bit of the

target variable to which this message must be copied is set to false. On the re-

ceiver side a proper primitive (e.g. set validity bit()) must be provided in order

to allow the receiver process to indicate that it is no more willing to utilize a

specific target variable.

Even if a validity bit mechanism (with a slightly different semantics) has to

be included in the channel descriptor for consistency reasons that will be clear

in the next section, the solution of the additional J target variables has been

chosen, mainly for reasons of backward compatibility.

Taking into account these considerations, in the case of asynchronous channel

(the synchronous case is simply derived from this one) the channel descriptor

data structure contains:

• lock variable: used to assure the exclusive access to the descriptor; it

will be used by all the procedures that intend to manipulate the data

structure;

• key : the identifier of the shared memory segment that contains this chan-

nel descriptor;

• condition variable: used for synchronizing sender and receiver processes;

if necessary, as in the case of MONITOR/MWAIT based synchronization prim-

itives, two condition variables are present;

• size: the dimension (bytes) of the messages transferred through this chan-

nel;

• messages : the number of messages currently present into the channel;

• K, J : respectively the asynchrony degree and the number of additional

target variables;

• buffer infos : insertion and extraction pointer for the circular vector of

target variables; they assume relative values, that is between 0 and N ,
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indicating a position within the buffer.

As can be seen, for implementation reasons, the vector of target variables and

the vector of the respective validity bits are kept outside the channel descriptor.

However they are allocated in the same memory segment of the channel de-

scriptor, contiguously to it. In this way, only one memory segment per channel

is necessary and, each time that an operation on the buffer (and, consequently,

on the validity bits) must be performed, the address of the interested target

variable can be easily computed knowing the value of the current insertion/ex-

traction pointers, the size of the channel descriptor data structure and the base

address of the memory segment. Figure 4.3 shows the internal organization of

a memory segment.

Channel
descriptor

Target
variables

Validity
bits

BA

BA + siz
eof(c

h)

BA+siz
eof(c

h) +

+ (K
+J+1)si

ze

Figure 4.3: Shared memory segment organization: supposing that it is allocated into the

virtual memory of a process starting from a base address BA, the addresses of all the

interesting structures can be easily computed
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4.3.3 Send and receive primitives

At this point, a sketch of the send and receive primitives implementation, for

the asynchronous case, can be given. Clearly, some modification to them will

be necessary when the communicator thread will be introduced in the runtime

support. For the moment, the validity bit mechanism is not used.

The send procedure (Listing 4.4) is totally executed in mutual exclusion by

using the lock variable present in the channel descriptor.

void send ( Channel ch , char ∗msg )

{
l o ckChanne l ( ch ) ;

// copy the message i n the next t a r g e t v a r i a b l e .

memcpy( VTG( ch , ch−>i n sV tg ) , msg , ch−>s i z e ) ;

// update the number o f messages and t a r g . v a r i a b l e s v e c t o r

i n f o s

ch−>messages ++;

ch−>i n sV tg = ( ch−>i n sV tg + 1 ) % ( ch−>k + ch−>j +1 ) ;

// s i g n a l to the r e c e i v e r

s i g n a l (&(ch−>c o n d t o r e c e i v e r ) ) ;

// i f the b u f f e r i s f u l l wa i t

whi le ( ch−>messages > ch−>k )

wa i t (&(ch−>cond to s ende r ) , &(ch−>l o ckVa r ) ) ;

un lockChanne l ( ch ) ;

}
Listing 4.4: Send primitive

First of all the message is copied into the proper target variable: its address is

computed by using the macro VTG that takes as parameter the base address

of the channel and the pointer of the target variable (its position within the

variables buffer) and compute its address:
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#def ine VTG( ch , i ) ( ( char ∗) ch + s i z eo f (∗ ch ) + ch−>s i z e ∗ i )

Then the number of messages and the insertion pointer are updated according

to the circular handling of the buffer. A signal synchronization primitive is

performed to notify to the receiver, that is possibly waiting, that a new message

is present in the channel and, finally, if the buffer is full, the sender process

have to wait (will be suspended or will enter in a busy waiting state).

On the other hand, the receive code is shown in Listing 4.5; as expected, it is

a very lightweight operation.

char ∗ r e c e i v e ( Channel ch )

{
l o ckChanne l ( ch ) ;

// wa i t i f b u f f e r i s empty

whi le ( ch−>messages == 0 )

wa i tNo t i f y (&(ch−>c o n d t o r e c e i v e r ) , &(ch−>l o ckVa r ) ) ;

// get the p o i n t e r to the message

char ∗ vtg = VTG( ch , ch−>ex t rV tg ) ;

// update i n f o s

ch−>ex t rV tg = ( ch−>ex t rV tg + 1 ) % ( ch−>k + ch−>j +1) ;

ch−>messages −−;

// s i g n a l to the s ende r

s i g n a l (&(ch−>cond to s ende r ) ) ;

un lockChanne l ( ch ) ;

return vtg ;

}
Listing 4.5: Receive primitive

If no message is present into the channel, the receiver will wait upon sender

notification. Otherwise, the pointer to the target variable is computed and

will be returned to the caller. The information are properly updated and a

notification is sent to the sender for indicating that a slot was released in the

target variables buffer.
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4.4 Communicator implementation

The runtime support of LC will be modified and extended in order to allow

the emulation of the facilities of a communication processor through a multi-

threaded architecture.

As seen in section 3.2 the IP processor does not delegate the entire send ex-

ecution to the KP, but the buffer full control is executed by itself. The same

consideration hold also in the case of worker and communication thread:

Worker Thread :

Send :

<d e l e g a t e send>

i f ( b u f f e r f u l l )

wait ( ) ;

Communicator Thread :

wait de legat ion ( ) ;

<ex e cu t e r e s t o f the send>

<loop>

A set of problems have to be addressed:

• how to synchronize the two threads: the communicator thread has to wait

until a delegation arrives from the worker one. Independently of what

mechanism will be used, from now on the existence of the well known

wait and signal primitive is assumed;

• how consistently check whether the buffer is full or not;

• the worker, when delegating a send, has to pass to the communicator

a reference to the channel and to the message to be sent. Furthermore,

more than a send (to different channels) could be delegated without wait-

ing that the previous one is terminated. A data structure, designed

specifically for this purpose, must be shared by these two entities;

• the worker thread can overwrite a message subject of a send, only when it

is safe to do it i.e. the message has been copied into the target variable.

This means that the completion of a send must be properly notified to

the worker.
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4.4.1 Communicator initialization

Assuming that each thread of the parallel application is bound to a unique

logical processor (usually this is the case), when initializing a communicator a

new thread is created and scheduled on the sibling processor of the worker’s

one. The creation procedure is invoked by the worker itself; in this way the two

threads will share all the informations necessary, such as messages to be sent

and channel descriptors. Moreover, being allocated on the same physical core,

the shared cache can be fully exploited. The creation procedure will return a

data structure that contains all the informations necessary to the support to

allow a meaningful cooperation between worker and communicator. It should

be noticed that this solution allow the creation of an arbitrary number of

communicator, which can be useful in the case of architecture n-threaded with

n ≥ 2.

4.4.2 Delegation queue

The structure shared by worker and communicator is responsible for main-

taining the send delegations waiting to be served. A delegation will contains

at least the channel and the message references. Obviously, it must have a

queue structure in order to guarantee that the ordering of communications is

preserved. This structure will be referred as delegation queue.

A problem that must be solved is how to size this structure. In many practi-

cal cases, a limited number of send delegations could be enqueued, due to the

structure of many common parallel paradigms. However, imposing a fixed size

to the queue a priori could result in a violation of send semantics: a sender

process can be suspended if there is no space into the delegation queue even if

the buffer is not full. The solution adopted is to implement a queue whose size

is potentially infinite, in the sense that can dynamically grows when required.

Access to it take place in a mutual exclusion fashion.

Since the delegation queue is the only shared data structure between worker
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and communicator, the synchronization issues between these two entities can

be solved elegantly by regulating in an appropriate way the accesses to this

structure. The delegation queue is made blocking while extracting an element:

• the worker thread, will delegate the send by inserting an element into the

queue. This operation is not blocking and when, executed, will notify the

event to the communicator via a signal primitive;

• the communicator extracts the delegation from the queue. If it is empty,

it will use the wait primitive to wait until a new delegation is inserted.

4.4.3 Check buffer full

Since the check on the channel asynchrony degree saturation is performed by

the worker itself, a consistency problem arises. The worker can not simply check

the messages field of the channel descriptor because this information could be

inconsistent (send delegations may be enqueued but not yet performed by the

communicator). A simple solution could be to let the worker modifies the field

but not releases the lock of the channel; it is in charge of the communicator,

once the communication is completed, to unlock it. The simplicity of this

solution has its counterpart in the fact that the channel could remain locked

for a long time, preventing the receiver to access to it.

The solution adopted is to release the lock variable after that the message

field is updated and the control is performed; it will be acquired again by the

communicator when the send will be actually performed. In this way, however,

the channel could remain in an inconsistent state: the receiver can find a non

empty channel even though it is not so (the send has yet to be executed).

For this reasons the validity bit associated at each target variable has been

introduced: it indicates to the receiver whether or not the next target variable

to be read has a meaningful content.

Summarizing, the actions performed by the various entities are:

• worker: accesses in mutual exclusion to the channel descriptor, updates



4.4. Communicator implementation 49

the message field, checks the asynchrony degree (eventually is suspend);

in any case, releases the lock on the channel descriptor;

• communicator: executes the copy of the message in the target variable,

accesses in mutual exclusion to the channel for updating the informations

regarding the insertion pointer and sets the validity bit;

• receiver: this time must check not only the presence of message through

the proper field, but also the relative validity bit. If a new message is

actually present, it is returned and the relative validity bit is reset to

false.

4.4.4 Send completion notification

For the send notification, a solution similar to the one of MPI specification is

adopted: for each send delegated to the communicator, a ticket is returned to

the caller. The ticket is part of the delegation message. The communicator,

when a send is completed, will validate the correspondent ticket; on the other

hand the worker, before modifying the message, must check the ticket. There

is the need, again, of synchronizing two entities.

4.4.5 Communicator finalization

Once that the worker thread finishes its job, it must properly finalize the

communicator. This is done by inserting into the delegation queue a particular

value and wait for communicator termination; the communicator, when read

the message, will exit. This mechanism will ensure that, once the worker is

terminated, all the delegated communications have been completed.
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4.4.6 Evolution of communication primitives

Taking into account all the discussed solutions, the communication primitives

for asynchronous channel must be modified.

Regarding the send on the worker side, the main operations executed are shown

in Listing 4.6. In this case, the send creates a proper delegation and inserts it

into the delegation queue shared with the communicator. Then the buffer full

check is performed as explained.

De l e ga t i o n ∗ send ( Communicator KP, Channel ch , char ∗msg)

{
// c r e a t e a d e l e g a t i o n

De l e g a t i o n ∗dg= c r e a t eD e l e g a t i o n S t r u c t u r e ( ) ;

dg−>ch=ch ;

dg−>msg=msg ;

// update the channe l

l o ckChanne l ( ch ) ;

ch−>messages ++;

// enqueue the d e l e g a t i o n

enqueue ( kp−>de l egat ionQueue , dg ) ;

// wa i t i f b u f f e r f u l l

whi le ( ch−>messages > ch−>k )

wa i t (&(ch−>cond to s ende r ) , &(ch−>l o ckVa r ) ) ;

un lockChanne l ( ch ) ;

return dg ;

}
Listing 4.6: Send primitive worker side

On the communicator side, the send is actually the main function of the thread,

that is executed until it is stopped (Listing 4.7). The VALB macro, computes

the address of the validity bit.

void CommunicatorMainFunct ion ( )

{
De l e ga t i o n req ;
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// Ex t r a c t a d e l e g a t i o n from the queue . I f i t i s equa l to NULL

// i t means tha t we have to t e rm i n a t e

whi le ( ( r eq=(De l e g a t i o n ∗) dequeue ( de l ega t i onQueue ) ) !=NULL)

{
Channel ch=req−>ch ;

// copy the message to the t a r g e t v a r i a b l e

memcpy( VTG( ch , ch−>i n sV tg ) , msg , ch−>s i z e ) ;

l o ckChanne l ( ch ) ;

// s e t the v a l i d i t y b i t

VALB( ch , ch−>i n sV tg )=true ;

ch−>i n sV tg = ( ch−>i n sV tg + 1 ) % ( ch−>k + ch−>j +1) ;

//wakeup p a r t n e r

s i g n a l (&(ch−>c o n d t o r e c e i v e r ) ) ;

un lockChanne l ( ch ) ;

// s i g n a l t ha t the send has been completed

l o c k (&( req−>lV ) ) ;

s i g n a l (&( req−>t i c k e t ) ) ;

un lock (&( req−>lV ) ) ;

}
}

Listing 4.7: Send primitive communicator side

The receive primitive, is very similar to the previous one, except for the oper-

ations on the validity bit that must be performed. Due to its lightweightness,

the receive will be executed by the worker itself.





CHAPTER 5

Tests and results

This chapter deals with the results obtained from the comparison of the two

different versions of the runtime support for LC, with or without the communi-

cator thread facility; for the sake of simplicity, these two will be also referred as

KP or non-KP version. The tests were performed on common types of parallel

applications:

• a stream computation, structured according to the farm paradigm;

• a data parallel computation (stencil based) on stream.

Moreover, in the case of runtime support with communicator the two different

synchronization mechanisms (POSIX or MONITOR/MWAIT) illustrated in section

4.2 will be analysed. The main purposes of this comparison are:

• to evaluate if the KP version of the runtime support is really able to

overlap main part of the communications with the computation;

• to understand whether or not is convenient use all the thread contexts

to increase the degree of parallelism or use half of them for supporting a

communicator thread.

In general, to exploit the overlap between computation and communications,

the programs must be slightly modified. These interventions will be anyway

minimal, negligible in the case of stream based computations.
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5.1 Stream computation

The considered computation is composed by a process P that operates on a

stream of matrices. Each element of the stream represents a frame coming out

from a video source; the generic element of the matrix is a triplet that identifies

the three color component (red, green and blue, 1 byte each) of the respective

frame’s pixel. A simple filter, sketched below, is applied to each frame for

enhancing the image colors.

void p u r i f y ( Frame f )

{
f o r ( i =0; i<f . h e i g h t ; i++)

f o r ( j =0; j<f . w idth ; j++)

i f ( sq ( f . r−f . g ) + sq ( f . r−f . b ) + sq ( f . g−f . b ) > t h r e s h )

<a s s i g n to each c o l o r the avg o f the p r e v i o u s ones>

}

The resulting frames are sent to another device, such as a monitor. Hence, the

process P is defined as follows:

whi le ( true )

{
rece i ve ( i npu t s t r e am , frame ) ;

p u r i f y ( f rame ) ;

send ( output s t r eam , frame ) ;

}

Since it represents a pure function, P can be parallelized according to the farm

paradigm (Figure 5.1). In particular:

• the workers Wi are essentially replications of the process P ;

• the emitter E schedules the frames of the input stream to the various

workers; this is done by distributing the frames according to a round

robin strategy;

• the collector C collects the resulting frames from each worker; applying

also in this case a round robin strategy (i.e. the collector performs a
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Figure 5.1: General structure of a computation parallelized according to the farm paradigm

receive from the channel relative to W0, hence a receive from W1, and so

on) the frame ordering is preserved in a simple way.

In such a situation, where emitter and collector do not perform other work than

communications, the benefit of an overlap between computation and communi-

cation will be due to the sends made by a worker toward the collector. In this

case, the logic of the program does not need to be further modified in order to

exploit the KP version of the runtime support.

On the reference architecture (constituted by 8 physical cores, each of them

two-threaded; see chapter 4), the emitter and the collector will be bound to

two different physical processors. The workers (whose number identifies the

parallelism degree) will be:

• up to 12 if no communicator is used: they are scheduled first of all on

different physical processors and, if the parallelism degree is greater than

6, on sibling logical processors;

• up to 6 if communicators are used, because for each worker a communi-

cator thread is created and bound to the sibling logical processor.

Different test cases have been created, by using frames of different sizes and,

as usually in the case of stream computations, the parameter of interest will be
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the service time. Each of the test cases was run multiple times, with a stream

of fixed length (2400 frames). The results obtained are shown in Figure 5.2 and

5.3: in these cases the stream is composed by squared frames of size 800× 800

or 1000 × 1000 pixels. In Table 5.1 the calculus time needed for apply the

filter on a frame (Tcalc) and the communication latency involved in sending an

element of the stream through a communication channel (Lcom) are reported
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Figure 5.2: Results with a stream composed by frames of 800 × 800 pixels. KP posix and

KP monitor/mwait refer to the KP versions of the runtime support that use the respective

synchronization primitives. The plot is in log-lin scale

Frame size Tcalc Lcom

800× 800 4.17 0.41

1000× 1000 6.39 0.579

Table 5.1: Calculus and communication times (expressed in milliseconds) experimentally

evaluated
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Figure 5.3: Results with a stream composed by frames of 1000× 1000 pixels

In the case of the runtime support without the communicator facility, increas-

ing the parallelism degree over the number of physically available processors

(thus allocating a worker for each logical processor) does not lead to sensible

benefits: on average the service time decreases of the 6%, passing from 6 to

12 workers. For intermediate values of the degree of parallelism the program

performs worse, due to the round robin scheduling strategy used. On the other

hand, especially in the case of one worker, the KP version of the runtime sup-

port allows to overlap most part of the communication with the computation

performed by the workers (as explained in section 4.4, part of the runtime

support of the send is still executed by the worker thread). The difference

between the two versions of the runtime support vanishes as the parallelism

degree grows. Nevertheless, this is a logical consequence of the parallelism

paradigm applied. From the cost model of the farm paradigm, the service time

of a worker is known to be equal to:

TW = Tcalc + Lcom
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where Lcom is equal to zero if the communications are overlapped with the

computation; the time necessary for the additional controls performed by the

worker thread should be considered in Tcalc. For the sake of simplicity, Tcalc

will be considered equal in both cases. For zero copy communications, both the

emitter and the collector service times are equal to the communication latency,

since they do not perform other work:

TE = TC = Lcom

Moreover, also the inter-arrival time to the emitter will be considered equal to

Lcom. Thus, the service time of the farm is equal to:

T = max(
TW
n
, Lcom)

where n is the parallelism degree. In this particular case, since n ≤ 6 and

Lcom ≤ TW

6
, it can be concluded that:

T =
TW
n

Considering the two different cases, the service time will be:

• in the case of non-KP version of the runtime support:

T =
Tcalc + Lcom

n
=
Tcalc
n

+
Lcom

n
(5.1)

• in the case that the KP version is used:

T =
Tcalc
n

(5.2)

This computation is characterized by the property Lcom << Tcalc. This is not

unusual in the case of parallel computation on shared memory systems. As n

grows, the fraction Lcom/n in (5.1) will become smaller and smaller and the

difference with (5.2) disappears.

Consider now the case in which the communications require a time compara-

ble to the computation one (at least same order of magnitude). The process
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considered operates on a stream of vectors whose elements are of type double;

a simple arithmetic transformation is applied on each vector element. Also in

this case, the parallelization is done according to the farm paradigm. Even

if the computation is not meaningful per se, it represents a typical situation

that could occur in a distributed memory system, where the Tsetup and Ttrasm

parameters (involved, as explained in section 3.1, in the evaluation of Lcom)

are typically one order of magnitude, or more, bigger compared to the shared

memory case. The results are shown in Figure 5.4 and 5.5, while the values of

Tcalc and Lcom are reported in Table 5.2.
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Figure 5.4: Results obtained with a stream composed by vectors of 4 millions of elements

Vector size Tcalc Lcom

4M 51.93 10.04

8M 102.12 19.84

Table 5.2: Calculus and communication times (expressed in milliseconds) experimentally

evaluated
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Figure 5.5: Results obtained with a stream composed by vectors of 8 millions of elements

In this case, the overlap is more visible thanks to the fact that Lcom has an

heavier impact. Moreover, using the communicator threads, there is the possi-

bility to exploit the optimal degree of parallelism in the reference architecture

(n = 5), resulting in a lower service time compared to the non-KP version.

Again, use all the logical processors for doubling the parallelism degree do not

leads to any benefits: there is even a degradation of the performances, passing

from n = 6 to n = 12, probably due to the high cache line contention between

two threads allocated on two sibling processors.

5.2 Data parallel computation

A process P is in charge of apply a convolution computation on a stream of

matrices. A typical application of such calculus can be found in edge detection

algorithms, that allow to recognize the border of the objects present into an

image.

The value of every point in a discrete space (an element of the two dimensional
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matrix) is updated by a function applied to the point itself and to its neighbour

points (Figure 5.6). This is repeated until a given convergence condition is sa-

F

Figure 5.6: Functional dependences of the considered computation

tisfied or a maximum number of iterations has been reached. The convergence

condition is a proper predicate that must be satisfied by all the elements of the

matrix: in the computation examined it requires that, for all the points, the

absolute difference between the current and the previous iteration value is less

than a given threshold.

whi le { true }
{

rece i ve ( i npu t s t r e am ,A) ;

do{
f o r ( i =0; i<N; i++)

f o r ( j =0; j<M; j++)

A ’=C∗(A [ i , j ]+A[ i −1, j ]+A[ i +1, j ]+A[ i , j−1]+A[ i , j +1]) ;

A=A ’ ;

}whi le ( conve rgence (A) | | #i t e r < MAX IT) ;

send ( output s t r eam ,A) ;

}
Listing 5.1: In the computation considered the process works on a matrix stream of dimension

N xM. C is a program dependent constant

The process P is parallelized obtaining a stencil-based computation that oper-

ates on a stream of matrices. Such computations are characterized by workers

that operate in parallel and cooperate through data exchanges. The stencil is

a data dependence pattern implemented by inter-worker communications. In

this study case, the stencil will be static and fixed, meaning that the communi-

cation pattern is known at compilation time and does not change throughout
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the computation. Like any data parallel computation, there will be a prior

S G

W0

Wi

Wn-1

Figure 5.7: Stencil based computation that operates on stream

phase for partitioning the data to all the workers, the scatter, and a final phase

for collecting the result, the gather (Figure 5.7). These two forms of collective

communications will be implemented by means of multiple sends. The process

S will be in charge of performing the scatter of the input matrices toward the

workers: the partitioning adopted will be by rows, meaning that S will send

a bunch of consecutive matrix rows to each of them. In this way, neighbour

workers need to exchange the first and the last row (the borders) of the matrix

each other. Process G will perform the gather operation, collecting all the

row partitions hold by the different workers, building the final matrix. The

convergence condition, is expressed now by a reduce computation. Given the

limited degree of parallelism exploitable in the reference architecture, it is re-

alized without particular optimizations.

The process P , in the case that communicator threads are not used, evolves as

represented in Listing 5.2.

whi le { true }
{

rece i ve ( i npu t s t r e am ,B) ; // r e c e i v e a p a r t i t i o n o f the mat r i x A

send (w( i −1) out ,B [ 0 ] ) ; // f i r s t row to the upper ne ighb .

send (w( i +1) out ,B [N/n ] ) ; // l a s t row to the l owe r ne ighb .
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rece i ve (w( i −1) i n , B[−1]) ; // l a s t row from the upper ne ighb .

rece i ve (w( i +1) i n , B [N/n+1]) ; // f i r s t row from the l owe r ne ighb .

do{
f o r ( i =0; i<N/n ; i++)

f o r ( j =0; j<M; j++)

B ’=C∗(B [ i , j ]+B[ i −1, j ]+B[ i +1, j ]+B[ i , j−1]+B[ i , j +1]) ;

B=B ’ ;

}whi le ( r educe (B) | | #i t e r < MAX IT) ;

send ( output s t r eam ,B) ;

}
Listing 5.2: Pseudo code of the generic worker i. B is the partition of the matrix assigned

Clearly the communication channels must be asynchronous to avoid deadlocks.

If the KP version of the runtime support is utilized, the process must be further

modified: after that the partition of the matrix is received by the worker, two

sends are delegated to the communicator in order to forward the first and the

last row to the neighbours. Meanwhile, the computation of the inner part of the

matrix (that does not require informations additional to the ones already hold)

is executed and, once finished, the receive of the borders from the neighbours

is done in order to compute also the new elements of the first and last row. In

this situation there are two possible sources of overlapping:

• the send of the resulting matrix done by the workers toward the process

G for the gather;

• the send of the borders between neighbours workers.

The communications involved in the reduce phase are not feasible to be over-

lapped with the computation.

The tests were performed with a stream of fixed size composed by matrices with

the same size; also in this case different sizes were used. For the termination

of the inner loop, in order to perform a fair comparison, only the condition on

the number of iterations will be considered. In any case, even if its result is

not actually used, the reduce operation is executed.

The results are shown in Figure 5.8, 5.9 and 5.10. Because there were no
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significant differences, for the KP version is shown only the one that uses

POSIX based synchronization mechanisms.
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Figure 5.8: Results obtained with a stream of matrices 480× 480

As can be seen, in the first test case the two versions of the runtime support

perform in a similar way; increasing the size of the stream elements the be-

nefits of the communicator threads becoming more significant. This is pretty

obvious, thanks to the fact that more time will be necessary to perform the

gather operation and the borders exchange between neighbour workers. More-

over, since it is adopted a row partitioning of the matrices, the communication

latencies of the stencil are constant independently from the parallelism degree.

The effect of this situation is visible especially in the last test case were the

gain due to the KP version of the runtime support over the non-KP version

remains almost constant as the parallelism degree grows.

Also in this case, it should be noticed that exploiting the multithreading by

simply doubling the parallelism degree does not bring to any considerable be-

nefit.
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Figure 5.9: Results obtained with a stream of matrices 480× 960
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Figure 5.10: Results obtained with a stream of matrices 480× 1920





CHAPTER 6

Conclusions and future works

The work of this thesis was aimed at investigating a possible way of exploiting

the hardware multithreading technique for supporting interprocess communi-

cation in shared memory systems, emulating the facility of a communication

processor when it is not physically available. For this purpose, an appro-

priate runtime support of the concurrent language LC has been realized. The

approach adopted is to associate to each process/thread of the parallel appli-

cation (the worker thread) a thread that is in charge of executing the send

primitive (the communicator thread). Once that a send execution is delegated

to the communicator, the worker thread can continue the main computation

while, in parallel, the communication is performed.

The produced results are encouraging: the communicator thread allows to

overlap main part of a communication (on average the 75% on the considered

test cases), without interfere too much with the worker one. This was made

possible thanks to an efficient implementation of the runtime support, that

exploits features offered by Unix-based operating systems (such as the shared

memory segment for implementing zero copy communications) and uses ap-

propriate inter-thread synchronization mechanisms. Regarding the latter, two

types of mechanisms have been considered: the ones based on classical POSIX

mechanism (i.e. mutexes and condition variables) and the ones based on the
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MONITOR/MWAIT Intel’s assembler instructions. In practical terms, in the refer-

ence architecture it has been shown that it is almost equivalent to use one of

them. However, since the MONITOR/MWAIT instructions appear to be subject to

future improvements, probably they will become the preferred choice in newer

systems, assuming that they will be released for use at user level.

The use of the produced runtime support, introduces some advantages already

in the shared memory case, where typical applications could be characterized

by a communication latency one (or more) order of magnitude smaller than

the calculus time. Nevertheless in particular context where this is not true, or,

a fortiori, in the case of distributed memory systems, the benefits will be more

visible, as a simple analysis based on the cost models can demonstrate.

Future works

This work can be considered a starting point to efficiently exploit multithreaded

systems for supporting interprocess communication in parallel architectures.

Further improvements could go essentially in two directions:

• expansion of the library: the runtime support implemented regards a

minimal core of LC: in particular, it refers to the case of symmetric,

synchronous or asynchronous, deterministic channel. Clearly this could

be expanded, including the support for non deterministic channels (hence

alternative commands) and collective communications;

• implementation of a runtime support for distributed memory systems:

in this class of architectures, no memory sharing is physically possible

among processes allocated onto distinct processing nodes. The only prim-

itive architectural mechanism for node cooperation is the communication

by value, that is the cooperation via input-output mechanisms and inter-

face units. Interprocess communications must be implemented on top of
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such mechanism. Since the communication latencies in this kind of sys-

tems are one or two order of magnitude bigger compared to the shared

memory case, the benefits of interprocess communication overlappable

with the computation will be more relevant. Clearly the support must

be heavily modified, but many consideration done in this work will be

still valid.





APPENDIX A

The library

The runtime support of LC has been implemented as a library written in C,

designed to be directly used in user space. The programmer that wants to use

it needs to include the channel.h header. In the following, a brief description

of the offered functionalities and of the library internal structure is given.

Data types

The user of the library will handle three different kinds of data types:

Channel: represents a reference to a generic communication channel;

Communicator: communicator thread descriptor. It contains useful infor-

mations about a communicator thread;

Delegation: represents the delegation of a send from a worker thread to a

communicator one.

All these kind of data types are substantially pointers and represent informa-

tions that will be returned from, respectively, the creation of a communication

channel, the creation of a communicator thread, the offload of a send to the

communicator.
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Functions

The functions offered by the library can be grouped into four main cate-

gories: communication channels management, communicator thread manage-

ment, communication primitives and utilities. These will be now briefly de-

scribed, pointing out precautions that have to be taken while using them.

Channel management

LCcreate ss( key t key, size t size, int j )

Creates a synchronous communication channel, with a given data size

size and implemented using j additional target variables. key is the key

of the shared memory segment that will contain all the data structures

relative to the channel; in this case is used also to identify the channel.

It can be generated using proper System V functions, such as ftok. On

success a reference to the created channel is returned. On failure NULL is

returned.

LCcreate as( key t key, size t size, int k, int j)

Creates an asynchronous communication channel, with a given data size

size, asynchrony degree k and implemented using j additional target

variables, in a similar way to the previous function.

Channel LCattach( key t key )

This function must be called by a process that intends to use the channel

identified by key. In practice it is used to acquire the shared memory

segment that contains all the data structures of the particular channel

into the addressing space of the caller process. On success a reference to

the channel is returned, otherwise NULL.

void LCdetatch( Channel ch )

Detaches the channel identified by the passed reference. By doing so, the
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respective shared memory segment is removed from the virtual memory

of the caller.

void LCdestroy( Channel ch )

Destroys the channel. Its relative shared memory segment will be re-

moved from memory only when the last process detaches it.

Communicator management

Communicator initCommunicator(int core mapping[])

This function will create a communicator thread, allocating all the data

structures necessary for the interaction with the worker. The thread must

be scheduled on the same physical processor where the caller resides: for

this reason, core mapping is an integer vector whose size is equal to the

number of logical processors present in the machine. core mapping[i],

where i is the processor ID of the worker thread, indicates the ID of the

logical processor where the communicator thread must be scheduled in

order to be on the same core of the partner. It can be built according

to the informations published through the sys pseudo file system (see

section 4.1). On success a reference to the communicator descriptor is

returned to the caller. On failure NULL is returned.

void finalizeCommunicator(Communicator kp)

This function must be called by the worker once that it no longer need

the communicator and before that the used channels are detached from

its address space. It will stop the communicator thread, waiting for

its termination (that will occurs when all the delegated send have been

served).
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Communication primitives

void LCssend(Channel ch, char *msg )

Sends the message pointed by msg through the synchronous channel ch.

Being a synchronous communication, this will be executed directly from

the caller.

Delegation LCsend( Communicator kp, Channel ch, char *msg )

Delegates the send of the message msg through the channel ch to the

communicator thread referenced by kp. The procedure can be blocking, if

the channel is full (the asynchrony degree has been reached). A reference

to the send delegation is returned to the caller.

Delegation LCbsend( Communicator kp, Channel ch, char *msg )

Buffered send: a copy of the message is created and sent to the partner.

The send is anyway offloaded to the communicator. The copy of the

message is done by communicator, if it is not working, or by the caller

itself. In this way, it will be possible to modify the message sooner with

respect to the traditional send. Also in this case a reference to the send

delegation is returned to the caller.

void LCwait(Delegation dg)

This procedure imposes to the caller to waiting until it is safe to modify

the message object of the delegation dg. This occurs when the message

has been sent through the channel or, in the case of buffered send, a it

has been copied

char *LCreceive( Channel ch )

Receives a message from the channel ch and returns it to the caller.

The receive, being in the case of zero copy communications, is executed

directly by the worker. It can be blocking if the channel is empty.
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Utility functions

size t LCgetChannelTypeSize( Channel ch )

Returns the size of the data type transmittable with the channel.

bool LCreadyToReceive( Channel ch )

Returns whether or not the channel ch contains at least one valid message.

bool LCreadyToSend( Channel ch )

Returns whether or not the channel ch is full.

Internal structure of the library

The library is composed (apart from the header channel.h) by various files

that are in charge of defining or implementing all of its aspects.

Regarding the header file, they are:

• synchr.h: this header file contains the definitions of locking and syn-

chronization primitives. The offered synchronization primitives recall

the bahaviour of POSIX condition variables. Two different mechanisms

are used: POSIX based and MONITOR/MWAITinstructions. The choice of

which one to use is done at library compilation time, by means of proper

flags;

• shm common.h: contains the definitions of the aforementioned data types

(channel, communicator and delegation descriptors) and internal func-

tions for managing the delegation queue and synchronization on the chan-

nel descriptor.

The implementation of the various functionalities is partitioned in different

source files:

• synchr.c: regards the implementation of synchronization primitives;

• inf blkqueue.c: contains the definition of the queue that will be used as

delegation structure between the worker and the communicator thread;
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• uni shm.c: implements the channel management and communication

(worker side) functionalities;

• kp comm.c: contains the communicator thread related functionalities

(creation, finalization, definition of the main function executed by the

thread).



Bibliography

[1] N. Anastopoulos and N. Koziris. Facilitating efficient synchronization of

asymmetric threads on hyper-threaded processors. In IEEE Int’l Parallel

& Distributed Processing Symp, 2008.

[2] Evangelia Athanasaki, Nikos Anastopoulos, Kornilios Kourtis, and Nec-

tarios Koziris. Exploring the performance limits of simultaneous multi-

threading for memory intensive applications. J. Supercomput., 44:64–97,

April 2008.

[3] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,

Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-

per-second local area network. IEEE Micro, 15:29–36, February 1995.

[4] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes,

Yong-Fong Lee, Dan Lavery, and John P. Shen. Speculative precompu-

tation: long-range prefetching of delinquent loads. In Proceedings of the

28th annual international symposium on Computer architecture, ISCA ’01,

pages 14–25, New York, NY, USA, 2001. ACM.

[5] David E. Culler, Anoop Gupta, and Jaswinder Pal Singh. Parallel Com-

puter Architecture: A Hardware/Software Approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1st edition, 1997.

[6] Matthew Curtis-Maury and Tanping Wang. Integrating multiple forms

of multithreaded execution on multi-smt systems: A study with scientific

applications. In Proceedings of the Second International Conference on the



78 BIBLIOGRAPHY

Quantitative Evaluation of Systems, pages 199–, Washington, DC, USA,

2005. IEEE Computer Society.

[7] Ulrich Drepper. What every programmer should know about memory.

Technical report, Red Hat Inc., 2007.

[8] Paolo Giangrandi. Supporto alle comunicazioni su piattaforme commer-

ciali orientato all’high perfromance computing. Relazione di tirocino, Uni-
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