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Chapter 1

Introduction

The High Performance Computing (HPC) field studies the hardware-software

interaction and applications characterized by requirements for high process-

ing bandwidth, low response time, high efficiency and scalability.

Currently, multiprocessors and multi-cores are an important evolution/rev-

olution from the technological point of view. These architectures are very

complex and heterogeneous systems with parallelism exploited at processes

level. The trend in multi-cores architectures seems that the number of cores

per chip is expected to double every two years. The idea is to substitute few

complex and power-consuming CPUs with many smaller and simpler CPUs

that can deliver better performance per watt. An important role is played

by high bandwidth and low latency interconnection structures with limited

degree (especially on-chip) while shared memory starts to be organized in

hierarchies.

All this aspects have enormous implications from the software point of

view. We point out that these architectures can be exploited efficiently pro-

vided that applications are able to do it. In spite of this relevant architectural

change, the actual programming tools are at very low-level for a programmer

without profound knowledge in the HPC field. Further, performance predic-

tion and/or performance portability is missing or it is still in an initial phase.

Summarizing, a wide gap still exists between shared memory architectures

and parallel programming development tolls.

We advocate that a structured and methodological approach is able to

reach this targets by mean of structured parallelism programming (or skele-

ton based parallel programming) in which a limited set of paradigms aims
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to provide standard and effective rules for composing parallel computations

in a machine independent manner. The programmers have to use paradigms

to realize the parallel application. The freedom of the programmer is limited

but if paradigms allow composition, parametrization and ad-hoc parallelism,

they become very easy to use from the programmer point of view and very

useful to optimize from the compiler point of view. In fact, having a fixed

set of paradigms the compiler has to ”reason” completely on them inserting

optimizations that could be platform-dependent or choosing the best im-

plementation for the underlying architecture. All this means performance

improvement without direct intervention of programmers.

This important target is both application and architecture dependent

and could be accomplished by a performance cost model in association with

a simplified view of the concrete architecture, i.e. the so called abstract

architecture [20]. Considering that, a parallel compiler must be supplied of

• an abstract architecture, that is a simplified view of the concrete

architecture able to describe the essential performance properties and

abstract from all the others that are useless. It aims to throw away

details belonging to different concrete architectures and emphasizes all

the most important and general ones. An abstract architecture for

shared memory architectures could be the one in Figure 1.1 wherein

there exist many processing nodes as processes and the interconnection

structure is fully interconnected.

• a cost model associated to the abstract architecture. This cost model

have to sum up all the features of the concrete architecture, the inter-

process communication run-time support and the impact of the parallel

application. Further, we strongly advocated that a cost model should

be easy to use and conceptually simple to understand.

We remark that a complete and accurate cost model for these architec-

tures is still missing and the aim of this thesis is just to give a contribution in

this direction. We want to study how a detailed shared memory architecture-

dependent cost model for parallel applications can be realized with particular

care about the impact of the parallel application.

The aim is to use cost models in the compiler technology in order to

statically performs optimizations for parallel applications in the same way
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Figure 1.1: Simplified view of Shared Memory Architecture

that nowadays compilers do for sequential code. This should allow program-

mers to write in an easier way, i.e. using high-level and user-friendly tools,

parallel applications that exploit the underlying architecture as well because

compilers are able either to choose the right implementation or to use low-

level libraries, that are very important for the performance point of view.

Further, performance portability should be maintained among different con-

crete architectures. To our knowledge, there is no other work moving in this

specific direction a part our main source of reference [20].

At processes level a parallel application can be viewed as a collection of

cooperating processes via message passing. Formally, it is a graph wherein

nodes are processes and arcs are communication channels among processes.

This graph can be the result of a first compilation phase totally architecture

independent and successively it can be easily mapped onto the abstract ar-

chitecture for shared memory architecture because it has the same topology.

All the outstanding concrete features are captured in two functions called

Tsend and Tcalc. These functions are evaluated taking into account several

characteristics of the concrete architecture, e.g. interconnection structure,

processing node, memory access latency and so on. At this point, the par-

allel compiler has all the elements to introduce the architecture dependency

according to the cost model. As already told, this way to operate allows

optimizations or choices among various implementations in such a way per-

formance predictability and/or portability can be achieved.

Anyway, the idea to sum up all the salient features of a concrete archi-
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tecture in only two functions is, on one side, very powerful and easy to use

but, on the other side, it is not a quite simple derivation.

In shared memory architectures various kind of resources are shared, e.g.

memory modules and interconnection structures. The shared memory char-

acteristic has, at the same time, pros and cons. On an hand it allows an

easy way to design run-time support for interprocess communication, i.e.

the implementation of send and receive, as an extension of the uniproces-

sor run-time support that takes into account important issues peculiar to

shared memory architectures like synchronization or cache coherence. On

the other hand, since all the processing nodes have to access the shared

memory for loading data or to communicate, the memory becomes a source

of performance degradation due to conflicts. So the effectiveness of the shared

memory approach depends on the latency incurred on memory accesses as

well as the bandwidth of information transfer that can be supported. We

can consider conflicts on shared memory the major source of performance

degradation in these architectures. Considering that, Tsend and Tcalc will be

principally affected by this phenomenon so a cost model should describe this

situation in a proper way in order to ensure at least performance prediction.

Formally, the impact of shared memory conflicts can be modelled as a

client-server queuing system wherein clients Ci are processing nodes access-

ing the same macro-module while the server S is exactly that memory mod-

ule, thus the under-load memory access latency is the server response time

(conventionally called RQ). Figure 1.2 shows this model that will be focus

of interest in all the thesis.

S

Q

C1

Cn

reply

reply

requests

Figure 1.2: Client-Server System with Request-Reply behaviour.

In [20] the model is described through the following system of equations:
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Tcl = TP +RQ

RQ = WQ(Ts, TA) + ta0

ρ = TS

TA

TA = Tcl

p

ρ < 1

(1.1)

Each client Ci generates the next request only when the result of the previous

one has been received. The behaviour of a client can be considered cyclic:

local computational periods of average length TP alternates to waiting ones

(RQ), leading to a certain client average inter-departure time Tcl. Once

we know Tcl we can determine the server average inter-arrival time TA as
Tcl

p
applying the Aggregate inter-arrival time Theorem. Finally, the server

response time RQ is given by the average waiting time WQ in the queue Q

plus a constant known in advance that is the base latency ta0 of the server. Of

course, WQ depends on the type of queue placed in front of the server. The

last expression points out that the system has a self-stabilizing behaviour (the

utilization factor ρ of the server is less than one) so a steady-state solution

exists. In this analytical approach we can find RQ as resolution of a second

degree equation in ρ.

In the following, the client-server model will be described in other for-

malisms, e.g. either as closed queuing network or as Continued Time Markov

Chain (CTMC), and RQ will be predicted through more resolution tech-

niques, e.g. analytical and numerical. The reason is that we want to find a

way to enhance the model for new behaviours and to improve its accuracy

without increase the complexity of the resolution as much.

From this point of view, we know that Markov chains are a very powerful

mathematical tool able to represent the behaviour of complex and concur-

rent systems as could be the Processors-Memory subsystem in shared mem-

ory architectures. Further, many numerical resolution techniques exist for

moderately sized CTMC while iterative methods can be applied in case huge

sizes are involved. Of course, Markov chains are difficult to build so we would
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want to abstract from them and also from their resolution techniques.

For this purpose during the thesis, we will use a high level description

language for Markov chains called Performance Evaluation Process Algebra

(PEPA). It belongs to the Stochastic Process Algebras class and its usabil-

ity comes out from the very formal interpretation of its expressions that is

provided by an operational semantic. As we will see in Chapter 5, PEPA is

a paradigm able to specify Markov chains that allows to express a complex

system as composition of smaller components. These characteristics in addi-

tion to the high level approach, fit PEPA also as formalism to enhance and

to solve the client-server model. To our knowledge, this is the first attempt

to use PEPA for performance modelling in the HPC field.

We advocate that PEPA is flexible formalism for the client-server model

able to reach accuracy in under-load memory access latency estimations and

able to accommodate parallel application constraints.

For flexibility we mean a formalism able to adapt itself nimbly to even

drastic architectural and/or application dependent changes. This ability is

necessary in order to deal changes with no much effort and without increase

a lot the resolution complexity of the model. A notable example could be

the architectural passage from non-hierarchical shared memory to shared

memory hierarchies that are very common in multi-cores architectures. For

its relevance, this aspect will be treated in depth in a chapter.

Further, the accuracy aspect is very important for quantitative reasons.

In order to be used, a performance cost model has to be precise. From this

point of view, both analytical and numerical resolution techniques have been

analysed and compared during the thesis. Of course, not always the more

accurate solution is the best choice in terms of complexity so a good trade-off

between this two contrasting requirements is needed.

Finally, we would want a formalism also able to taken into account the

impact of the parallel application executed on the shared memory architec-

ture. In other words, this means to satisfy application constraints. Notable

examples could be an application composed by different processes or just

processes exploiting a complex internal behaviour. We will treat this topics

in depth.
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Organization of the Thesis The thesis is organized in 8 chapters. The

first one is just this Introduction that aims to focus on the context, the

objective and the structure of this thesis.

Chapter 2 provides an overview of the main concepts about multiproces-

sors and multi-cores exploiting parallelism at processes level.

Chapter 3 summarizes the most important results of Queuing Theory

that will be useful for future treatments. We recall that also the client-server

model with request-reply behaviour reported in [20] is based on Queuing

Theory.

Chapter 4 introduces two cost models for the Processors-Memory system:

the former maps the system into a Closed Queuing Network while the latter is

the client-server model already introduced. We will see pro and cons of both

and their resolutions and we will propose a first variant of the second one

taking into account a first application constraint: heterogeneous processes.

In order to enhance the model to take into account new architectural or

application dependent aspects without increase the complexity, the PEPA

formalism will be proposed in Chapter 5. Therefore, analysis and compar-

isons with other resolution techniques will be shown.

Chapter 6 examines the impact of parallel applications, i.e. applications

composed either by different processes or with processes exploiting a complex

internal behaviour. Also in this case, the theoretical contribution will be

joined to experiments.

The shared memory hierarchy modelling and relative results will be treated

in Chapter 7.

Finally, Chapter 8 draws the conclusions.
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Chapter 2

Shared Memory Architectures

In this chapter we describe the main concepts about a class of parallel Mul-

tiple Instruction Stream Multiple Data Stream (MIMD) architectures: multi-

processors and multi-cores exploiting parallelism at processes level [20, 7, 17].

Obviously, we do not want to give a complete treatment of these architec-

tures in this thesis, that can be found in [20, 7], but only the key concepts

that will be used in chapters to come. So we will start summarizing the

important topics for multiprocessors and successively we will extend them

with particular care about multi-cores.

At first sight, a multiprocessor can be seen as a set of processing nodes

that share one or more levels of memory hierarchy and are able to exchange

firmware messages along an interconnection structure.

As we will see in this chapter, the processing nodes in a multiprocessor are

general purpose CPUs possibly with a local memory and/or some I/O units

while the interconnection structure is usually a trade off between performance

and cost of the interconnection. The shared memory peculiarity means that

any CPU is able to address any location of the physical memory. In other

words, the result of the translation from logical addresses to physical ones can

be any location of main memory. Moreover, lower levels in memory hierarchy

can be shared.

The messages exchanged between processing nodes are used to implement

shared memory accesses or explicit interprocessor communication, e.g. for

process low-level scheduling like a decentralized process wake-up in anony-

mous processors. It is worthwhile to stress the fact that these messages are

low level messages , so they must not be confused with messages at process
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level.

The shared memory characteristic has, at the same time, pros and cons.

On an hand it allows an easy way to design run-time support for interpro-

cess communication, i.e. the implementation of send and receive if processes

cooperate via message passing like in [20], because it is an extension of the

uniprocessor run-time support, that takes into account important issues of

synchronization or cache coherence. On the other hand, since all the pro-

cessing nodes have to access the shared memory for loading data or to com-

municate, the memory becomes a source of performance degradation due to

conflicts. So the effectiveness of the shared memory approach depends on

the latency incurred on memory accesses as well as the bandwidth of infor-

mation transfer that can be supported. Formally, this last aspect can be

modelled as a client-server queuing system in which clients are processing

nodes and servers are the memory modules, thus the memory access latency

is the server response time. Anyway, we will see this model in very depth in

the next chapter because it will be focus of interest in the rest of the thesis.

In the following of this chapter, we will deal with the structure and the

properties of multiprocessors and relevant considerations will also be made

for multi-cores.

Multi-cores, or Chip MultiProcessor (CMP), can be considered shared

memory multiprocessors integrated on a single chip.

Therefore many results found for multiprocessor architectures are also

valid for multi-cores, especially with a number of cores on the same chip

relatively low. But the trend in shared memory architectures seems that the

number of cores is expected to double every two years (Moore law applied to

the number of cores on chip). In fact, the idea is to substitute few complex

and power-consuming CPUs with many smaller and simpler CPUs that can

deliver better performance per watt. It is worthwhile to point out that this

last aspect is true provided that the software is able to exploit efficiently these

architectures. In spite of this relevant architectural change, the actual pro-

gramming tools are very low-level tools for a programmer without profound

knowledge in this field. Further, performance prediction and/or performance

portability is missing or it is still in an initial phase. As explained in [20],

this targets could be accomplished by a performance cost model, that takes

into account the features of different concrete architectures, in association
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Figure 2.1: Simplified view of Shared Memory Architecture

with a simplified view of these architectures, the so called abstract architec-

ture. Obviously, this is not a simple task but we will explain how it can also

be achieved for complex architectures, like multiprocessors and multi-cores,

using the structured and methodological approach utilized in [20]. However,

we remark that a complete and precise cost model for these architectures is

still missing and the aim of this thesis is to give a contribution in this di-

rection with particular care about the impact of the parallel application. To

achieve this goal is therefore necessary to investigate in depth important ar-

chitectural factors, e.g. processing nodes, interconnection structures, shared

memory hierarchy, cache coherence solutions and so on, and we are going to

do this.

2.1 Processing Nodes

We focus on processing nodes that are composed by general purpose CPUs

because in this way is possible to build multiprocessors or multi-cores on top

of uniprocessor products exploiting all the advantages related to modularity.

Successively, they themselves can be in turn building blocks for larger-scale
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systems. This approach must however preserve the interoperability. For

this purpose an interface unit W for each processing node is present. This

unit has at least to be able to intercept all the memory requests and to

transform them into proper firmware messages that will be sent either to the

interconnection structure (external messages) or to some local units (internal

messages) like a local memory (if present). Further, W has to be able to

create proper firmware messages used for explicit communication between

processing nodes.

It is important to notice that a potential re-utilization of uniprocessor

architectures in greater contexts is not always free. In fact, some assembler

and/or firmware mechanisms have to be already present in the uniprocessor

design. Notable examples for shared memory architectures are synchroniza-

tion mechanisms (requiring proper assembler instructions or annotations in

the format of some assembler instruction) and cache management for the

maintaining of coherent information among processing nodes. Anyway, this

topics will be mentioned apart in the following.

A processing node in a shared memory architecture may have in general

the schema visible in the Figure 2.2. As mentioned above, many features are

common in both multiprocessors and multi-cores but slight differences may

arise. We have:

• the CPU is a pipeline or super-scalar uniprocessor (with private data

and instructions caches L1) exploding Instruction Level Parallelism

(ILP), that is parallelism at firmware level. The CPU complexity can

differ for various aspects that affect the performance of sequential code.

In general, if it is required the maintenance of sequential performance,

more complex CPUs are used. Otherwise, few large CPUs can be sub-

stituted with many simpler CPUs with a gain in efficiency and power

consumption. Exclusively for multi-cores architectures, the CPU com-

plexity could be influenced by the limited chip size because a trade-off

between the features of each component on chip must be designed. It

is worthwhile to note that if there are not hard constraints, hardware

multi-threading, especially in the form of Simultaneous Multi Threading

(SMT), is being used to exploit parallelism at firmware level

• the I/O Communication Unit (UC) is provided for explicit interpro-
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cessor communication support. As we have mentioned above, though

the majority of run-time support information are accessible in shared

memory via memory instructions, there are some cases in which di-

rect firmware messages between processing nodes are preferable. No-

table examples are for processor synchronization and process low-level

scheduling

• the interface unit W is directly connected to a local memory LM (if

present) and some I/O units like UC. Moreover, dedicated links are

also present toward the interconnection structure to allow information

exchanges

• a local memory LM is used in general for caching information. This

means to decrease the instruction service time as in uniprocessor archi-

tectures (local benefit) and, peculiarly of shared memory architectures,

it reduces the shared memory conflicts as well as the interconnection

structure congestion with a global performance improvement. The local

memory may be a private memory of the processing node (for instance,

it realizes the second or the third level of cache hierarchy) or, alter-

natively, LM may play a double role: it is integrating part of shared

memory (so it can be addressed by all the other processing nodes) and,

at the same time, it continues to operate as private memory support

for the processing node. Exclusively for next generation multi-cores ar-

chitectures, we can image that, looking at the Moore law applied to the

number of cores, if LM is not private it will not be shared among all the

cores but only among groups of cores due to performance degradations

as a consequence of the slower memory access time

Looking at the explanation of a processing node in a shared memory ar-

chitecture we can recognize that its structure is prevalently a uniprocessor

architecture with firmware-assembler mechanisms to interoperate and coor-

dinate with other processing nodes. So the structure of a processing node

principally affects the performance of the sequential code but, in case a par-

allel application is executing on these architectures, the global performance

depends by other factors like the impact of interconnection structures and/or

the memory congestion. In the next sections we will treat this topics.
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Figure 2.2: Processing Node in a Shared Memory Architecture

2.2 Interconnection Structures

The job of an interconnection structure in a MIMD parallel machine is to

transfer firmware messages from any source node to any desired destination

node in an efficient way that is, low latency and high bandwidth, that are

features suitable for scalable highly parallel machines. This holds for both

classes of MIMD architectures, i.e. shared memory multiprocessors and dis-

tributed memory multicomputers, but for the former class it is also important

to do not fall into the pin count problem.

As we already know from the literature, many types of interconnection

structure exist. In this context we do not want to list all of them with

their features, that can be easily consulted in the literature, but we want to

focus on same aspects that will be useful in future treatments. A detailed

explanation of this topic can be found in [7].

In shared memory architectures, processing nodes communicate explicitly

between them or with the memory modules across a sequence of links and

switches. In the following, we will call all the entities that want to com-

municate through the interconnection structure, i.e. processing nodes and
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memory modules, as nodes. As usually in networking domain, an intercon-

nection structure (or network) can be formally viewed as a graph

N = (V,E)

where V is the set of nodes and switches and E is the set of links between

them. The path from a source node to a destination node is called route

and it is calculated by a routing algorithm. It is out of our scope to give

complete treatment of routing strategies and algorithms so we only mention

that routing can be deterministic, i.e. the path is determined solely by its

source and destination, or adaptive, i.e. the choice of the path is influenced by

dynamic events as traffic intensity along the way. Further, another important

characteristic of a network is how information traverse the route (switching

strategy). Basically, it may happen in circuit switching, i.e. the path between

source and destination is established and reserved until it is necessary, or in

packet switching. In the latter, the information are divided into packets

individually routed from the source to the destination since each packet is

carrying routing and sequencing information in addition to a portion of data.

As we already know, this approach allows a better utilization of the network

because resources are only occupied while a packet is traversing them so we

will assume that interconnection structures that we are going to take into

account will be packet switching networks.

From our point of view, it is important to understand that the above

routing strategies can be directly accomplished by switches at firmware level.

These units perform the so called flow control too. The flow control deter-

mines when a message can move along its route and it is absolutely necessary

in case whenever two or more messages attempt to use the same network re-

source at the same time. For solving it, switches may adopt the classical

store-and-forward technique or a more sophisticated strategy called worm-

hole flow control. In the latter, each packet is further subdivided in flits.

Switches consider flits belonging to the same packet (that is still the unit

of routing) as an input stream that must be forwarded in the same output

port selected by the routing algorithm. Doing that, it is possible to achieve

all the benefits due to a pipeline behaviour provided that the switches band-

width per flit is high enough (and this holds because switches operate at

firmware level). In this case, we can consider wormhole flow control as an
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additional source of parallelism. Further, this technique has another impor-

tant property: flits of the same packet are not entirely buffered before being

forwarding so the buffering area is minimized. Owning to this property, the

interconnection structures with this kind of flow control are very suitable for

networks on chip because the smaller occupied area. Taking into account

the increasing number of cores per chip these solutions are going to become

very attractive for multi-cores architectures. In the following we will assume

networks with wormhole flow control.

As mentioned above, an interconnection structure is a trade-off between

cost of the interconnect and performance. Network latency and the band-

width are critical parameters for measuring performance goodness while the

number of bidirectional links and the occupied area should be considered for

the cost of interconnect. Formally, we define the base network latency as the

time needed to establish a communication through the network between a

source and a destination without contention. In general it depends by many

architectural characteristics, e.g average network distance, message length,

routing, flow control strategy and so on, but it is not a function of the traffic.

Instead, in case conflicts on the network are taken into account, we have the

so called under-load network latency. For future aspects, it is important to

evaluate in detail the base latency in a network with wormhole flow control.

In the next subsection, we will see how this can be made.

2.2.1 Base Latency in Networks with Wormhole Flow
Control

First of all, it is worthwhile to say that pipelined communications also occur

in other firmware units (like memory interface units) that are involved in the

path for achieving a destination, e.g. a memory module. Considering that,

we can extend the wormhole behaviour to such that units and do not only

consider the switches of the interconnection structure in the evaluation of

the base latency.

As reported in [20], if we consider a firmware message of m words that

travels d firmware units (as in the Figure 2.3) and assuming that

• flit size is equal to a word
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(d -1) (𝝉 + Ttr) 2 (m - 1) (𝝉 + Ttr)

Figure 2.3: Base Latency in pipeline behaviour with level transaction
firmware interfaces (d = 4 units and message length of m = 5 words)

• every unit has clock cycle τ

• every link has transmission latency Ttr

• level transaction firmware interfaces

we have that the base latency is

ta0 = (2m+ d− 3)(τ + Ttr) (2.1)

2.2.2 Base Latency in Time-Slot Networks on chip

The above formula is in general a very good approximation but, in case the

interconnection structure is completely on chip (like in multi-cores), further

consideration should be taken into account. First of all, the transmission

latency on chip is very negligible so Ttr = 0. Moreover, we have verified

experimentally on a concrete architecture that firmware units do not wait for

an acknowledgement before being sent the next flit since they are not more

using level transaction protocols but specialized communication protocols,

e.g. time slots based, are involved in order to reduce the latency (Figure 2.4).

Therefore, the derivation of the base latency becomes

ta0 = (d+m− 2)τ (2.2)
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(d -1) 𝝉 (m - 1) 𝝉

Figure 2.4: Base Latency in pipeline behaviour on chip (Ttr = 0) and time slot
based communication firmware protocols (d = 4 units and message length of
m = 5 words)

Another important fact came out from our study. The latency is further

on reduced because units waiting for an information start to work immedi-

ately after the reception of the first part of the information, i.e. a word if

the considered hierarchy is processor-first level cache or the first cache block

if the hierarchy is first level cache-second level cache and so on, and no more

after all the information.

2.2.3 Direct and Indirect Interconnection Structures

In the following of this section, we will study base latency and bandwidth as

a function of the number n of nodes as in [20, 7]. As we can image, we would

want low latency and high bandwidth on one side and we would not want to

deal with the pin-count problem on the other side.

Since we are talking about interconnection structures for highly parallel

machines, we should not take into consideration traditional buses that are

no capable of simultaneous transfers (hence the bandwidth is O(1)) or fully

connected crossbars (that are not physically realizable when the number n of

nodes grows because the cost is O(n2)). In spite of this, buses and crossbars

are actually used. A notable example is the internal structure of switches

that is usually a crossbar connecting all the input ports with all the output

ports. Anyway, their use is only made in case the number of nodes is low. If
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a) b) c)

Figure 2.5: Most important Direct Networks with Limited Degree

an higher number of nodes is involved, other interconnection structures must

be chosen.

In the so called limited degree networks, a node is directly connected to a

small subset of other nodes or it is indirectly connected to every other node

by an intermediate path of switches. These interconnection structures can

be distinguished for their topology in direct or indirect networks.

In the former case, point-to-point dedicated links connect nodes in some

fixed topology. Each node is connected to one and only one switch possibly

through the interface unit W . Of course, communication between not adja-

cent nodes will travel intermediate nodes that will forward the information

to the destination. Notable examples of direct networks are rings (2.5 a),

meshes (2.5 b) and cubes (2.5 c).

In indirect networks, nodes are not directly connected as before but they

are connected only with a subset of switches that, in turn, have a limited

number of neighbours. i.e. other switches or nodes. In general, more than

one switch is used in order to establish a communication between nodes.

Notable examples are trees, butterflies and fat trees.

Briefly, we are going to summarize the most important features of some

widely known interconnection structures. Rings have a base latency O(n),

meshes or two-dimensional cubes have O(
√
n) while butterflies, trees of fat

trees O(log n). With respect to a tree, the so called fat tree has the channel

capacity that doubles at each level from the leaves to the root in order to

compensate the increasing congestion. It is worthwhile to say that all the

cited interconnection structures connect nodes of the same type except the
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butterfly that is principally used to allow communication between nodes of

different types (for example n CPUs with n memory modules). Moreover, it

can be used in a very elegant way to implement the so called Generalized Fat

Tree that plays substantially two roles: it can be used as a fat tree and as a

butterfly achieving an efficient solution in architectures where CPU-CPU and

CPU-memory communications belong logically to different networks (like in

UMA architectures).

Nowadays multiprocessors utilize more rings to communicate or, if the

number of processing nodes is high, fat trees or generalized fat trees are

used. In multi-cores architectures, the area of the chip is an hard constraint

that limits many architectural choices as we have mentioned for the CPU

complexity. Considering that, is not physically possible (until now) to fit

complex interconnection structures on chip. Therefore, in case an high num-

ber of cores is involved, meshes are used because they have good scalability

and easy realization on chip. A notable example of real multi-cores archi-

tecture using a mesh as interconnection structure is the Tilera TileGX. As

we can see in Figure 2.6, the Tilera Tile64 is a 64 cores architecture specif-

ically made for network processing in which every core has the instruction

cache and data cache. Further, a second level of cache L2 realizes the private

local memory. The next level in memory hierarchy is the shared memory

level: there are four interfaces toward it at the borders of the chip. The

mesh is used for explicit communication among cores but it also used for

core-memory communication. In spite of this, it is important to notice that

the mesh should only be used for the interconnection of the cores.

It is worthwhile to notice that, contrarily to many actual multi-cores, this

architecture is not exploding an hierarchical shared memory organization.

Anyway, shared memory hierarchies are widely coming out as a consequence

of the integration of memories on chip, so nowadays the necessity to model

this aspect should be treated. In the chapters to come we will deal with this.

2.3 Shared Memory

As we have said, a single physical address space across all the processing

nodes in shared memory architectures is involved. This allows an easy way

to design an efficient run-time support for interprocess communication be-
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Figure 2.6: Tilera Tile64

cause it occurs implicitly as a result of conventional memory accesses in-

structions like happened in uniprocessor architectures. On the other hand,

since many processing nodes are present, it may happen that more than one

processing node wants to access the shared memory at the same time. Doing

that, processing nodes cause congestion in the interconnection structure as

well. Further, more hierarchical levels of shared memory could aggravate the

congestion.

Firstly, assume that the congestion probability in the interconnection

structure is very low. As soon as possible, we will see that this assumption

is true in various conditions. At this point, we can assume that the ma-

jor source of performance degradation is due to the queue in front of the

shared memory. We already know that local memories may reduce conflicts

on shared memory but, anyway, the design of the shared memory in a proper

way is very important from the performance point of view. In particular, we

need high bandwidth and a minimal contention on the memory. These goals

can be achieved by mean of modular memory with interleaved organization.

These memories are organized in macro modules with their own organization

that can be interleaved or sequential. At this level, the interleaved organi-

zation has the principal effect to reduce the contention on memory modules.
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Moreover, a single macro module can be realized either with an interleaved

internal organization or with just one module with long word. Often, the

number of the internal modules, or the number of words in a long word, co-

incides with the cache block size because it allows high bandwidth transfers

of cache blocks.

2.3.1 UMA and NUMA Architectures

Another important point that is worth to explain is the shared memory

organization in multiprocessor architectures. This characteristic is used to

classify architectures on the base of the relative distance of the shared mem-

ory modules with respect to processing nodes. The accesses can be mainly

performed in two styles:

1. in uniform access memory (UMA) memory accesses take the same time

no matter which CPU requests them

2. in non uniform access memory (NUMA) some memory accesses are

much faster than others depending on which CPU ask for which word

or block

In the former, the memory modules are equidistant from the processing

nodes. This means that the base latency to access them is the same inde-

pendently both from the processing node and requested word. In spite of

this symmetry, (private) local memories are used inside processing nodes in

order to capitalize on the advantages about caching as mentioned above.

In the last memory organization, the symmetry about memory accesses

is not more present. If we look at the typical schema of a processing node

reported in Figure 2.2, we can consider the shared memory as the union of

all the local memories of the processing nodes:

M =
n⋃

i=1

LMi

Hence LM is not more exclusively private of a processing node, but it can

be accessed from the external ones. However, every processing node accesses

own local memory in a very shorter time with respect to external ones that

must travel the interconnection structure.
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Thus, every processing node in shared memory multiprocessors has its

own interface toward the memory so no conflicts are present in accessing the

interface. This does not hold any more for multi-cores architectures because

it is not physically realizable to put a memory interface in the same chip

for every core. This constraint creates an ulterior source of performance

degradation.

The distinction between UMA and NUMA shared memory organizations

can be also effectuated for multi-cores. If the number of cores is low or there

is a single interface, the architecture seems UMA, otherwise it should be

considered NUMA. This is the case of the Tilera Tile64 (Figure 2.6) since it

has four shared memory interfaces placed at the borders of the chip and all

the cores access them though the mesh. Of course, different cores access the

same memory module with different base latencies.

Until now we were assuming interconnection structures with low prob-

ability of conflicts. It is important to keep in mind that if this does not

hold we should take into account the impact due to congestion on networks.

Likely, we know that there exist networks (fat trees, generalized fat trees)

that minimize the conflicts so we can assume the above property for at least

multiprocessors. Instead, we can assume that it also holds for multi-cores

because the performance degradation due to interconnection structures real-

ized on chip is negligible with respect to the memory impact. The reasons

should be the sophisticated techniques (as wormhole flow control and time

slot based communication protocols) that have been used and the difference

in frequency clock between the chip with the cores and the memory. This has

further been verified experimentally on a real architecture from our research

group and more information can be found in [15].

In the following, we will abstract from the interconnection structure and

we concentrate only on shared memory performance degradation. However,

it is worthwhile to stress that, even if interconnection structure congestion

is negligible, the impact of the network latency must be taken into account

from the performance point of view. In the next subsection we are going to

see how the interconnection structure latency impact on the evaluation of

the base memory access latency.
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2.3.2 Base and Under-Load Memory Access Latency

The base latency to access a shared memory memory will be a fundamental

parameter for our treatment. Assuming that the architecture is unloaded, i.e.

any conflict is present, it can be defined as the time that a firmware unit,

e.g. the second level cache, asking for a memory access, must wait before it

receives (the first part of) the memory reply.

We can evaluate the base memory access latency using the approach

introduced in 2.2.1. In fact, as we already told, if all the traversed firmware

units operate in a pipeline behaviour we can easily estimate this value only

knowing the number d of traversed units and the length of the memory

request and reply firmware messages.

It is important to stress the fact that the base memory access time does

not taken into all the time lost due to congestion on shared memory modules.

Therefore, it cannot be a good evaluation of the time that a unit spent for

waiting a reply in case conflict are present in the architecture. As we already

defined for networks, if we add the impact of the congestion we have the so

called under-load memory access latency. Following the approach presented

in [20], in chapters to come we will see how this value can be estimated.

2.4 Synchronization and Cache Coherence

As we already mentioned, shared memory architectures must provide assembler-

firmware mechanism for two critical aspects that are:

1. synchronization. Having many processing nodes and a physical shared

memory space, shared information among processes can be accesses at

the same time by different CPUs. If sequences of indivisible operations

must be performed (like in interprocess communication run-time sup-

port), locking mechanisms are needed (in addition to disable interrupts

like in uniprocessor)

2. cache coherence. As we have already told, in shared memory architec-

tures caching is important for local and global performance improve-

ment. However, in presence of private cache hierarchy per processing



2.4. Synchronization and Cache Coherence 25

node, shared information among processes must be maintained consis-

tent because it may happen that in hierarchies of different processing

nodes the value of the same data differs

If we consider processes that cooperate via message passing like in [20],

synchronization and cache coherence mechanisms are used in the implemen-

tation of send and receive operations. As we will see in this section, the

way to use these mechanisms can affect the performance so a proper de-

sign of the interprocess communication run-time support in shared memory

architectures should be made.

Locking primitives are realized at assembler level with proper instructions

(or annotations) and implement mutual exclusion of indivisible sequences

among CPUs provided that lock and unlock themselves are atomic opera-

tions. This last property is directly implemented at firmware level by shared

memory arbitration mechanisms, i.e. blocking the access to the memory

module containing the locking semaphore. An efficient solution in terms

of memory congestion and fairness, i.e. each CPU is guaranteed to access

the lock section in finite time, is the so called fair locking. If the locking

semaphore is realized in a proper way, from the performance point of view

this technique does not introduce further degradation in addition to the cost

of loading the cache block. Anyway, it is important to recall that in case a

memory module is not accessible by a CPU, the CPU itself must wait. The

increasing number of conflicts due to accesses in mutual exclusion is called

software lockout. Although this phenomenon, its impact can be minimized

realizing the run-time support in a proper way, i.e. minimizing the length of

critical sections even though the number of critical sections grows. In the fol-

lowing, we assume a suitable interprocess communication run-time support

so we will abstract from this problem. It is worthwhile to note that in multi-

cores architectures the impact due to locking mechanisms implemented as

shared memory accesses could be worse than in multiprocessors. This is due

to architectural aspects: in multi-cores CPUs are on chip while shared mem-

ory modules are usually out of chip so a communication could be costly. In

spite of this, actual multi-cores perform synchronization via atomic memory

accesses.
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The literature widely copes with the cache coherence problem. Exhaus-

tive references are [7], [14]. First of all, we remark that information coherence

is maintained in case of reading. Of course, writing is dangerous but only

if the information is shared among processes. Briefly, we want to summa-

rize some aspects concerning the adopted solutions. There are two main

techniques for the maintenance of coherent information among CPUs:

1. automatic cache coherence. In the majority of the shared memory ar-

chitectures, there exists firmware mechanisms that automatically guar-

antee the cache coherence

2. algorithm-dependent cache coherence. This approach is not character-

ized by automatic firmware mechanisms, but it is software-based. So

the cache coherence is entirely managed by the programmer of the in-

terprocess communication run-time support

In the former solution, the idea is to notify memory accesses (or better

writings) to all the other CPUs. When a CPU is writing an information, the

notification can be done by update, i.e. the modified information is sent to all

CPUs, or invalidation, i.e. other copies become not valid as a consequence

of an invalidation signalling. The latter may seem more complicated but it

has a lower overhead because there is not need to communicate the entire

modified information. Mainly, there are two implementation categories to

these strategies:

1. the snoopy-based implementations use a centralization point at firmware

level (snoopy bus) to notify modified information or invalidation mes-

sages. As we already know, buses are interconnection structures useful

only when the number of nodes is low so this is not convenient if the

number of CPU is high

2. directory-based. It is useful when the number of CPUs increases and

more complex interconnection structures are used. The idea is to store

in a memory support information about which cache contains which

block. This approach reduces the overhead but it has a cost, i.e. con-

gestion comes out in spite of the directory should be allocated in a fast

memory
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This last strategy could not make use of automatic firmware mechanisms.

In that case we are talking about the so called algorithm-dependent cache

coherence. As we mentioned above, software-based approaches should only

be considered for the design of the interprocess communication run-time

support. The idea is to capitalize on synchronization mechanisms to design

an explicit management of cache coherence in the run-time support code.

In theory, this approach does not introduce inefficiency per se but software

lockout impact could be aggravated. Unlikely, nowadays is not possible to

turn off automatic firmware mechanisms of cache coherence in the majority

of shared memory architectures. A notable example of architecture in which

is possible to disable automatic cache coherence is the Tilera Tile64 that

we have already introduced. In the following, we will assume algorithm-

dependent cache coherence and we abstract from it.

2.5 Cost Model and Abstract Architecture

We recall from the Introduction that the focus in this thesis is to study

how a detailed shared memory architecture-dependent cost model of paral-

lel applications can be realized. The aim is to use this cost model in the

compiler technology in order to statically perform optimizations for paral-

lel applications in the same way that nowadays compilers do for sequential

code. This should allow programmers to write in an easier way, i.e. us-

ing high-level and user-friendly tools, parallel applications that exploit the

underlying architecture as well because compiler are able either to choose

the right implementation or to use low-level libraries that are very important

from the performance point of view. Further, performance portability should

be maintained among different architectures and other important properties

should be guaranteed, e.g. adaptivity and dinamicity.

A good starting point to achieve the above targets is by mean of struc-

tured parallel programming (or skeleton based parallel programming) in which

a limited set of skeleton describe the structure of particular styles of algo-

rithm. The programmers have to use paradigms to realize the parallel ap-

plication. The freedom of the programmer is limited but if paradigms allow

composition, parametrization and ad-hoc parallelism (in addition to other

important features as required in the definition) they become very easy to
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use from the programmer point of view and very useful to optimize from the

compiler point of view. In fact, having a fixed set of paradigms the compiler

has to ”reason” completely on them inserting optimizations that could be

platform-dependent or choosing the best implementation for the underlying

architecture. To achieve this goal, that is both application and architecture

dependent, the compiler must be supplied of

• a simplified view of the concrete architecture, called abstract archi-

tecture, able to describe the essential performance properties and ab-

stract from all the others that are useless. In fact, we have just seen

that a shared memory architecture is a very complex system with many

characteristics and mechanisms and to take into account all of them is

hardly and it has no much sense. In fact, the abstract architecture aims

to throw away details belonging to different concrete shared memory

architectures and emphasizes all the most important and general ones.

an abstract architecture for shared memory architectures could be the

one in Figure 2.1 in which there exist many processing nodes as pro-

cesses and the interconnection structure is fully interconnected

• a cost model associated to the abstract architecture. This cost model

have to sum up all the features of the concrete architecture, the inter-

process communication run-time support and the impact of the parallel

application. Further, we strongly advocated that a cost model should

be easy to use and conceptually simple to understand

As we can image, this is not a quite simple task for many different reasons

but a wide contribute has been already proposed in [20]. To our knowledge,

there is no other work moving in this specific direction.

We recall from [20] that at processes level a parallel application can be

viewed as a collection of cooperating processes via message passing. For-

mally, it is a graph in which nodes are processes and arcs are communication

channels among processes. This graph can be the result of a first compila-

tion phase totally architecture independent and successively it can be easily

mapped onto the abstract architecture for shared memory architecture be-

cause it has the same topology. Successively, all the outstanding concrete

features are captured in two functions called Tsend and Tcalc. These functions
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are evaluated taking into account several characteristics of the concrete ar-

chitecture, e.g. interconnection structure, processing node, memory access

time and so on. At this point, the parallel compiler has all the elements to

introduce the architecture dependency. This allows the compiler to intro-

duce optimizations or to choose between different implementations in case

different concrete architectures are involved. It is worthwhile to note that

this implies performance portability.

Anyway, the idea to sum up all the salient features of a concrete archi-

tecture in only two functions is, on an hand, very powerful and easy to use

but, on the other hand, it is not a quite simple derivation. In the previous

sections, we explained that we can consider conflicts on shared memory the

major source of performance degradation in these architectures. Considering

that, Tsend and Tcalc will be principally affected by this phenomenon so a

model for describing this situation should be used. Formally, as we men-

tioned above, this aspect can be modelled as a client-server queuing system

in which clients are processing nodes and servers are memory modules (in-

cluding the interconnection structure impact). The shared memory access

latency is the so called server response time. This model will be the focus

of this thesis and we will explain it in depth in Chapter 4.2 but, firstly, it is

necessary to recall some queuing theory concepts.
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Chapter 3

Queueing Theory Concepts

We want to formalize a cost model basing on Queueing Theory concepts.

Thus in this section we will refresh and summarize important results regard-

ing both simple and intermediate queueing systems; the reader may con-

sult [13, 5] for a deeper understanding of those concepts that here will be

just reviewed.

3.1 Description and Characterization of a Queue

Description of Queues A queueing system models the behaviour of a

server S where clients (often known as jobs or client requests) arrive and

ask for a service. In general, clients have to spend some time in a queue

Q waiting that S is ready to serve them. The scheme in Figure 3.1 is a

SQ
λ μ

Figure 3.1: A queue

logical one, not necessarily corresponding to the real structure of the system

we are modelling. For instance, Q could not physically exists or it could be

even distributed among the clients. However, in some of these cases it turns

out to be easier to study the whole system as a single logical queue. This
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kind of approximation can drastically reduce the complexity of the analysis

and makes it possible to obtain an approximate evaluation, which is however

meaningful provided that the mathematical and stochastic assumptions are

validated. We will use and explain this approach in the next sections.

Queue models are classified according to the following characteristics.

• The stochastic process A that describes the arrivals of clients. In par-

ticular, we are interested in the probability distribution of the random

variable tA extracted by A. tA represents the inter-arrival time, that is

the time interval between two consecutive arrivals of clients. Its mean

value is denoted by TA, the standard deviation by σA and the mean

rate of inter-arrivals by λ = 1
TA

.

• The stochastic process B that describes the service of S. B generates

the random variable tS that represents the service time of S, that is the

time interval between the beginning of the executions on two consecu-

tive requests. Its mean value is denoted by TS, the standard deviation

by σS and the mean rate of services by µ = 1
TS

.

• The number of servers or channels r of S, that is the parallelism degree

of S. In the following, except for some specific cases, we will assume

r = 1, that is a sequential server.

• The queue size d, that is the number of positions available in Q for

storing the requests. Notice that in computer systems this size is nec-

essarily fixed or limited. Unfortunately most of the results in Queueing

Theory have been derived for infinite length queues. However, the re-

sults provided for infinite queues will sufficiently approximate the case

of finite ones, under assumptions that we will discuss case by case.

• The population e of the system, which can be either infinite or finite.

• The service discipline x, that is the rule that specifies which of the

queued requests will be served next. We will use the classical FIFO

discipline.

Basing upon these information, queues can be classified according to the

standard Kendall’s notation (see [13] for more details). For instance, we will
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indicate with M/M/1 the queue with a single server where both input and

service processes are Poisson ones.

Inter-departures Process The stochastic process C, that represents the

departures from the system (inter-departure process), depends on the nature

of the queue. For A/B/1 queues, being TP the average inter-departure time,

an evident result is that TP = max(TA, TS).

A first interesting property is the following (see [20] for a simple proof):

Theorem 1 Aggregate inter-arrival time. If a queue Q has multiple

sources (i.e. multiple arrival flows) each one with an average inter-departure

time Tpi, the total average inter-arrival time to Q is given by:

TA =
1∑N

i=1
1

Tpi

Characterization of Queues A first average measure of the traffic inten-

sity at a queue is expressed through the utilization factor ρ.

ρ =
λ

µ
=
TS
TA

For our purposes an extremely important situation is given by ρ < 1. Under

this situation the system stabilizes, therefore it becomes possible to determine

the so called steady-state behaviour of the system.

Other metrics of interest to evaluate the performance of a queueing system

are:

• the mean number of requests in the system, NQ: the average number

of client requests in the system including the one being served;

• the waiting time distribution: the time spent by a request in the waiting

queue. We are practically interested in its mean value WQ.

• the response time distribution: with respect to the waiting time distri-

bution, it includes also the time spent in the service phase. We will

denote its mean value as RQ. Notice that RQ = WQ +LS, where LS is

the average service latency .
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A very general result that can be applied to different kind of scenarios

(not just Queueing Theory) is the Little’s theorem.

Theorem 2 Little’s law. Given a stable system (ρ < 1) where clients

arrive with a rate λ and the mean number of clients in the system NQ is

finite, the average time spent by a client in the system RQ is equal to

RQ =
NQ

λ

The reasoning behind this theorem is intuitive, while the proof is quite com-

plicated. The interested reader may consult [13] for a deeper explanation.

3.2 Notably important Queues

The Queueing Theory is extensive and treats an incredible large number of

special queues (that is, queues with a specific configuration A/B/r/d/e/x),

some of which also particularly complicated. In order to keep limited the

complexity of deriving the architecture cost model, we will be interested in a

minimal (yet meaningful) subset of these queues. Therefore, in this section

we illustrate the main results for only two peculiarly configurations: the

M/M/1 and the M/G/1 queues.

3.2.1 The M/M/1 Queue

In a M/M/1 queue the arrivals occur according to a Poisson process with

parameter λ. The services are exponentially distributed too, with rate µ. The

memoryless property of the exponential distribution, besides being simple to

model, is very important in our context because it allows us to approximate

a lot of different meaningful scenarios. The service discipline is FIFO and it

is assumed that the queue size is infinite. It can be shown that the average

number of requests in the system is equal to

NQ =
ρ

1− ρ
Applying the Little’s law we obtain:

WQ =
ρ

µ(1− ρ)
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RQ =
1

µ(1− ρ)

It could be also proved that even if the queue has finite size k, the previous

formulas still represent an acceptable result provided that the probability

that a request gets stuck due to the full queue is an event with negligible

probability.

3.2.2 The M/G/1 Queue

Although very common, the hypothesis on the exponential distribution of

the service time could not be applicable in some concrete case of interests.

For instance, there could be architectures in which the memory subsystem

takes a constant amount of time to handle a processor request. In these cases

we are interested in the deterministic distribution.

We introduce the M/G/1 queue, where the symbol G stands for general

distribution. All assumptions and considerations made for the M/M/1 are

still valid, except for the distribution of the services: indeed with an M/G/1

we are able to model any distribution of the service time. For this queue we

get the following fundamental results (coming from the so called Pollaczek-

Khinchine formula):

NQ =
ρ

1− ρ [1− ρ

2
(1− µ2σ2

S)]

Applying the Little’s law:

RQ =
1

µ(1− ρ)
[1− ρ

2
(1− µ2σ2

S)]

A particular case of interest is the M/D/1 queue where the service time

distribution is deterministic, that is the variance is null. Imposing σS = 0 in

the previous formula we get the expression of the average response time for

a M/D/1 queue.

3.3 Networks of Queues

Queueing Networks in general A queueing network is a system where

a set of queues are interconnected in an arbitrary way. Figure 3.2 shows the
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simplest queueing network, that is twoM/M/1 queues connected in sequence.

The arrival process at the latter queue is exactly the output process of the

former one; thus it is more correct to identify the second queue with the

notation ./M/1 to express the fact that the arrival process at the second

queue is dependent from the rest of the network.

λ μ1 μ2

Figure 3.2: Two ./M/1 queues in series.

There exist different classes of queueing networks. A first distinction can

be made among cyclic and acyclic networks. It is also useful to distinguish

between open and closed networks. The classification is particularly useful

because in literature there are several theorems that show how, for specific

classes of networks, there exists the possibility of deriving a so called product-

form solution. Solving a queueing network in product-form means that the

performance of the whole system can be analytically derived in a composi-

tional way, starting from the analysis of single queues in isolation. The key

point is that a lot of different algorithms exist to evaluate the performance

of product-form networks. This means that if we were able to model an

architecture as a product-form queueing network, then we could apply an al-

gorithm to extract some parameters of interest, like the system waiting time,

and use them to estimate the under-load memory access latency. Unfortu-

nately we will see that things are not so simple. In the following we explain

the particularly meaningful class of closed queueing networks and we show

an important result known as BCMP theorem.

Closed Queueing Networks In a closed queueing network there cannot

be neither arrivals nor departure outside the network. Thus the population

of the network is constant. Equivalently, for reasons that will be clear in

the next section, we like to think at these networks as systems where a new

request is allowed to flow only when another request departs from the network.

Figure 3.3 shows the simplest closed queueing network.

For a closed queueing network it is useful to introduce the concept of

class : all clients belonging to a specific class share the same routing politics
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μ1 μ2

Figure 3.3: A closed system: two ./M/1 queues in series with cycle.

at a queue. This means that clients belonging to different classes could be

routed to different queues once serviced at the same queue.

We end up this overview by showing one of the main results of the BCMP

theorem [5], which will be useful in the next chapter.

Theorem 3 BCMP networks. Consider a closed queueing network in

which clients can belong to different classes. Assume that all queues of the

network have:

• FIFO service discipline;

• exponential service time;

then for this kind of networks it is possible to derive a product-form solution.

This (part of) theorem is a generalization of the Gordon-Newell theorem [5].

The difference resides in the possibility of using classes of clients. However,

notice that claiming that a product-form solution exists does not mean that

it is also easy to determine it: for instance, in general, adding the client

classification remarkably increase the complexity of the solution.
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Chapter 4

Cost Models for Shared
Memory Architectures

In Chapter 2 we have understood the importance of defining an abstract

representation of a concrete architecture. This abstract architecture must

be accompanied by a cost model. A cost model is fundamental to estimate

the parallel application performance by taking into account both the features

of the application itself, the concrete architecture and the structure of the

run-time support to concurrency mechanisms. We strongly advocated that

a cost model should be easy to use and conceptually simple to understand.

In this perspective we have shown the idea of capturing all aspects in two

simple functions Tsend and Tcalc. The knowledge of these function would

be of invaluable importance for a programmer or (even better) a compiler

to evaluate, configure and optimize parallel programs. Unfortunately, as we

have already seen, shared memory architectures are heterogeneous, extremely

complex systems; this fact, together with the inherent complexity of parallel

programs, makes it really hard the derivation of the abstract architecture

cost model, that is a good approximation for Tsend and Tcalc. For instance, a

critical problem is to predict in which measure the limited memory bandwidth

will influece the value of these parameters. To answer this question we have

to estimate the so called under-load memory access latency RQ, that is the

average time to access the main memory when the parallel application is

running. Tsend and Tcalc will be expressed as functions of RQ. As far as we

know, apart from [20], there are not any studies in literature addressing this

topic with our methodology.
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The structure of this chapter is as follows:

1. Firstly, we will formalize a general methodology to estimate RQ in

shared memory architectures. The key idea is very simple: mapping the

system architecture on a Queueing Network. We will see the weaknesses

of this approach that will force us to look for another approach.

2. Then we will describe a second elegant methodology based on a simpler

architectural model [20]. The main feature of this approach will reside

in the simple analytical resolution technique to determine approxima-

tions of RQ.

3. Finally, we will generalize the behaviour of the latter model to accom-

modate a first application dependent constraint, i.e. heterogeneous

processes, and we will validate the model resolution technique against

experimental results.

4.1 Processors-Memory System as Closed Queue-

ing Network

At the beginning of this chapter we pointed out the necessity of estimat-

ing the under-load memory access latency RQ. To know this parameter is

fundamental to express the cost model for an abstract architecture. In this

section we show the most intuitive way to model a shared memory archi-

tecture, that is mapping it on a queueing network. Basing upon this model

we will explain how, in principle, we could determine RQ. In spite of the

apparent simplicity, we will early understand that this methodology hides a

lot of subtle problems.

4.1.1 Formalization of the Model

Consider a shared memory architecture in which each of the n processing

node is connected, through some kind of interconnection network, to all mem-

ory modules (or equivalently to the chip’s memory interface unit in case of

multi-cores). A parallel application composed of n processes is being exe-

cuted. The process computation alternates think to wait periods. During a



4.1. Processors-Memory System as Closed Queueing Network 41

think period a process P is working on registers or data stored in its local

cache. At some point a cache fault occurs and it is needed to load a block by

issuing a request to the main memory. P stops working until the memory re-

quest is satisfied, i.e. until the requested block is sent back to the P ’s cache.

The duration of this latter wait period, that can be strongly influenced by

the workload generated by the other processes of the parallel application,

corresponds to RQ.

We can model this system with a closed queueing network, as in Fig-

ure 4.1. We identify:

M1

Network

Mm

M0

N1

Nn

N0

Figure 4.1: A closed queueing network model for a shared memory architec-
ture.

• processing nodes (N), memory modules (M), interface units and other

firmware units (e.g.: network routers) as queues.

• the memory requests as the unit of flow (jobs) of the network.

There are n jobs, one for each process. During a think period, a request re-

sides at the processing node queue. Once the think period expires, a request

r departs from the processing node P and is routed through the interconnec-

tion network toward the memory module queue M . Once serviced at M , r

is routed back to P . Assuming that the service time at each queue is expo-

nentially distributed, we clearly end up with a BCMP network (that has a

product-form solution, as pointed out by Theorem 3).

Let Path be the multi-set of queues that have to be traversed by r to

go from P to M and vice versa, with M ∈ Path and P /∈ Path . The
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performance indexes we are interested in are the average times RQi
spent by

r at each queue i ∈ Path. We can estimate the under-load memory access

latency RQ as:

RQ =
∑

i∈Path

RQi

4.1.2 Performance Analysis of the Model

Solving the closed queueing network model of a shared memory architecture

is the process of determining RQ. First of all we need to parametrize the

model, i.e. we have to fix some values of the queueing network, among which

the service time at each server. We notice that:

• the service time at nodes Ni (i = 1, · · · , n) corresponds to the process

think period. Its average value TP is a parameter principally extracted

by profiling of the sequential algorithm. This holds for the simplest

situations, anyway in chapters to come, an example in which the se-

quential code is necessary but it is not sufficient for deriving TP will be

presented.

• the service time at memory modules Mi (i = 1...m) with mean value TS

is an architecture-dependent parameter, thus it is known in advance.

There are n classes, one for each process. Each class is associated its own

unique routing matrix Mi: this way it is possible to route a request to a

certain memory module and, at the same time, sending back the answer to

the processing node that originated it.

At this point we need an algorithm that takes as input these information

and produce as output the performance metrics of the queueing network, e.g.

throughput and waiting time at each server. The best algorithm to solve this

kind of product-form networks is the Mean Value Analysis [18, 11] (MVA).

MVA allows to compute average queue lengths and response times, as

well as throughputs. MVA is a conceptually simple algorithm based on two

important theorems: the Arrival Theorem [18], that states the state of a

system immediately before an arrival is independent of that arrival, and the

Little’s law 2. The time and space complexity of MVA is polynomial in

systems with a single class of clients (O(n2)), while it grows exponentially
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with the number of classes. Since our model is a multi-class one, we could

either:

1. simplify and modify our model by using a single class of clients (even

changing drastically it),

2. or use different versions of the original algorithm, that go under the

name of Approximate Mean Value Analysis techniques. These algo-

rithms find out approximations of the expected solution mitigating the

problem of exponential time complexity ??.

At first sight we could be tempted to opt for the second solution. Ex-

ploiting a well-known algorithm to solve the model, although obtaining only

an approximated solution, is an inviting perspective. In principle, we could

proceed this way. However, we need to be care of the following aspects.

• Complexity of the actual model. Building the closed queueing net-

work model of a shared memory architecture is not so straightforward.

Figure 4.1 is just a logical scheme: it suffers from the lack of the network

model, the shared memory hierarchy, the potential parallelism within

the processing node and so on. Clearly, representing all these elements

in our model would be nonsense because of the exceeding complexity.

Therefore we need a trade-off. We advocate that at least the memory

hierarchy, when shared by a set of processors, and some relevant appli-

cation dependent constraints, e.g heterogeneous processes, should be

modelled.

• Importance of qualitative reasoning. We claim that a cost model,

to work, must be simple. Necessarily simple to understand, ideally sim-

ple to evaluate. The architectural model we have discussed earlier is

neither of them. It is not simple to study and, moreover, it is not possi-

ble to intuitively foresee how a change in the parallel application will be

reflected on the final performance, at least until a new instance of the

MVA algorithm will be executed. We would like an analytical model,

e.g. some kind of simple equations, that help us in understanding, for

instance, how RQ varies as a function of TP or TS. Unfortunately, it

is extremely complex to derive such equations from the actual model,

even with a deeper knowledge of Queueing Theory.
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• Flexibility of the model. The exponential distribution is often a

good approximation for our purposes, but not always. There can be

cases in which a server is in reality a deterministic one, e.g. a memory

module that takes a constant time to retrieve the desired information.

The problem is that if we release the assumption of exponential service

time, the BCMP theorem (3) does not hold any more. In general,

networks with servers having service times different than the exponen-

tial one cannot be reduced in product-form. In this case the stochastic

modelling of the system is no more a Markov process. This is perhaps

one of the biggest problem in performance modelling, and not only

in our context. There exist approximated versions of MVA, based on

heuristics, that try to solve these limitations, but results are often not

as good as expected. Nevertheless, our experience suggests that it is

very common to encounter new scenarios in which MVA either is not

sufficient to solve our model (because its assumptions are violated) or

requires a partial redesign to accommodate our necessities.

In light of these considerations, instead of increasing the complexity of build-

ing a shared memory architecture cost model by studying how to use MVA

techniques for our complex architectural models, we prefer to simplify the

original model and looking for new, easier ways of computing its performance

measures.

In the next section we will show a simplified version of this model. How-

ever, some of the concepts that we have introduced will be exploited as well

in the following.

4.2 Processors-Memory System as Client-Server

Model with Request-Reply Behaviour

4.2.1 Formalization of the Model

Consider a system in which a set of N client modules C1, C2, ..., CN send

requests to a server module S and need to wait for an explicit reply in

order to continue their elaboration. An example of this scheme is shown

in Figure 4.2. Notably cases of this interaction pattern are some client-server
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parallel applications as well as processors-memory systems. Therefore, the

model formalized in this chapter may be applied to a lot of different domains

and abstraction levels. Our main goal in a client-server model with request-

reply behaviour is to estimate the average response time RQ of S.

S

Q

C1

Cn

reply

reply

requests

Figure 4.2: Client-server system with request-reply behaviour.

A logical queue Q is present in front of S. We talk about a logical queue

because conflicts for resource contention could happen not only in S, but

also nearby other modules that, for complexity reasons, are abstracted away

from the system. For example, think to a scenario in which client’s messages

need to travel along an interconnection network to reach S; it is unlikely that

the network is a crossbar, thus the probability pconflict that a request has to

be queued somewhere in the network is different than 0. Depending on the

value of pconflict the cost model can be properly parametrized to take care of

such conflicts. For example, a very simple yet meaningful approach consists

in increasing the latency of the server S. In these cases we may say that S is

logically the subsystem that includes both the interconnection network and

the module that carries out clients’ requests.

We instantiate the model on a generic multiprocessor system with N

processing nodes and m shared memory macro-module by using the same

methodology of [20]:

• Let p be the average number of processing nodes sharing the same mem-

ory macro-module. It is very important that p is as low as possible in

order to minimize the congestion overhead at a memory macro-module.
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In an SMP architecture, in which memory accesses are uniformly dis-

tributed over m macro-modules, p can be estimated as the mean of the

binomial distribution p = N
m

. In a NUMA architecture, the uniform

distribution does not hold any more, but the value of p is dependent on

specific characteristics of the parallel application. It has been shown

in [20] that, for structured parallel programming, there exist optimum

strategies and heuristics to map processes onto processing nodes in such

a way to minimize the value of p.

• The clients C1, C2, · · · , Cp model p processing nodes everyone executing

a process and sharing the same macro-module of main memory

• Initially, we assume for simplicity that all the clients have an identical

behaviour, but in the future we will remove this hypothesis. Further,

we will assume that the behaviour of a client is the one described in

the previous chapter and nothing more complicated. So think periods

alternate to wait ones and the duration of a think period is represented

by an exponentially distributed random variable, with mean value TP .

• the server S models the shared memory macro-module (and potentially

even the interconnection network among the processing nodes and the

memory macro-module). Its service time is assumed to be exponentially

distributed with mean value TS

4.2.2 Assumptions

The cost model for determining RQ in shared memory architectures implies

a complex evaluation due to a large number of degrees of freedom. We

have already seen that a lot of problems arise when trying to model the

architecture as a general closed queueing network. With the client-server

approach we remarkably mitigate the complexity:

1. by simplifying the original model. The complex closed queueing net-

work shrinks to a single queue model. Processing nodes become simple

modules that generate requests with a certain frequency. The focus

is on a single memory macro-module rather than the whole memory

system. The network model is cut away. However, network conflicts

overhead may be taken into account during the resolution of the model.
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2. by using a simple yet meaningful analytical resolution technique that

we will study in the next section.

Since we are seeking for a resolution technique characterized by reasonable

complexity and, at the same time, that is able to retrieve approximated

results, we need to rely on some further assumptions and simplifications:

• we have already said that TP is the mean value of an exponentially

distributed random variable. Actually this distribution depends on the

parallel application characteristics, and could be even different from

the exponential one. For instance, when the elements of an array are

read linearly and the computation between one read and the subsequent

takes always the same amount of clock cycles (which is quite common

in a program), then the proper distribution should be the deterministic

one. However, we are rather interested in evaluating the inter-arrival

time at S. Since we are assuming independent processing nodes, the

input stochastic process at S shows a random behaviour that can be

approximated by an exponential distribution. In the following we will

assume this distribution for the input stochastic process at the server

but, as we will mention, there exist improvements from this point of

view.

• we focus on the server service time TS. The behaviour of a memory

macro-module is in most of the cases deterministic [20]. That is, any

request generated by a processing node takes always the same amount

of clock cycles to be served. On the other hand there are also memory

systems that exhibit a non-trivial behaviour. Some kind of memories

are able to exploit space and time locality of groups of consecutive

requests for elements stored on the same row of a memory bank [1]. In

these cases, TS is not more a constant so an exponential distribution

could be used as a better approximation. Other memories, e.g. DDR-2

memories, have a load-dependent behaviour: the more the number of

request in Q, the lower is the average service time. This is because

requests can be reordered in such a way to exploit the aforementioned

locality properties. For instance, the Tilera Tile64 is characterized by a

load-dependent memory and studies about this behaviour are reported
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in [15]. For our purposes, we will focus only on server service time

exponentially distributed.

• we are assuming homogeneous clients. However, processes of a parallel

application can exhibit different behaviour each other, but in general

this does not hold in case structured parallel programming approach is

used. At first sight, from the cost model point of view two processes

should differ if their think period is different, i.e. they have different

service time TP . However, a formalization taking into account the

structure of the parallel application will be given in Chapter 6 in order

to recognize heterogeneous processes in an easier way.

• another important assumption that we are making is that clients are

characterized by only one TP for all their life cycle. Taking into ac-

count structured parallel applications, this way to model does not re-

flect properly the behaviour of processes. A very common example

could be a process starting with a computational phase (the so called

think period) that will be followed by an inter-process communication

(for instance a send). When this last primitive will be executed, the

service time of the process during that phase can vary a lot from the

computational one, e.g. even an order of magnitude. Informally, we

can define a process phase a lapse of time of the process characterized

by a certain average service time. Having clients characterized by only

one TP , a first way to take into account phases could be to use directly

the overall weighted average service time. We will study the impact of

this phenomenon in Chapter 6, in the meanwhile we will assume only

one phase.

• we are modelling non-hierarchical systems, i.e. architectures where only

the main memory is shared. Instead, especially in state of the art and

upcoming multi-cores, the trend is to provide cores with shared levels

of caches (see Section 2.1). The intuition is that concurrent accesses to

shared resources can introduce a significant overhead, especially if the

number of sharers is large. The problem of hierarchical architectures is

addressed in Chapter 7.
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4.2.3 Model Resolution

In [20] it is shown that the following system of equations captures the be-

haviour of the client-server model with request-reply behaviour.

Tcl = TP +RQ

RQ = WQ(Ts, TA) + ta0

ρ = TS

TA

TA = Tcl

p

ρ < 1

(4.1)

Each client generates the next request only when the result of the previous

one has been received. The behaviour of a client, as we have already said, is

cyclic: think periods (TP ) alternates to wait ones (RQ), leading to a certain

client average inter-departure time Tcl. This fact is captured by the equation

Tcl = TP + RQ. Once we know Tcl we can determine the server average

inter-arrival time TA as Tcl

p
applying the Theorem 1. Finally, the under-load

memory access latency RQ is simply given by the average waiting time WQ

plus a constant known in advance that is the base latency ta0. As already

told, if it is necessary, ta0 also contains the impact of the network. The

expression of WQ depends on the type of Q as we mentioned in Section 3.2.

The system has a self-stabilizing behaviour: e.g. a temporary increase of

TA has the effect of decreasing RQ, that in turn tends to lower TA itself since

Tcl will decrease. This is also an example of qualitative reasoning. Since the

system shows a self-stabilizing behaviour, it could be proved through Markov

analysis that ρ < 1. This means that a steady-state solution exists.

Assuming that Q is either M/M/1 or M/D/1, solving this system with

respect to RQ leads to a second degree equation in ρ. The two solutions ρ1

and ρ2 are always such that ρ1 < 1 and ρ2 > 1, thus the solution of the model

must be subjected to the constrain ρ < 1.

Although suffering from limitations of the previous section, this model

resolution technique is very interesting because:

• it is simple
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• it is based on mean values quantities rather than probability density

functions, and this further simplifies the analysis. We advocate that a

resolution technique based on mean values is sufficiently accurate for

our purposes.

• it enables qualitative analysis

• it is good also for quantitative analysis, i.e. it gives quite good approx-

imation to the real value of RQ as reported in [20]. Moreover, removing

some assumptions, different resolution techniques are possible improv-

ing the quality of the analysis [15].

• it is parametric in the service times distribution. The formula of the

average waiting time WQ is chosen according to the scenario we are

modelling. For example, if the memory subsystem shows a determinis-

tic behaviour, than we will use the standard Queueing Theory formula

for M/D/1 queues (Section 3.2).

• it is prone to generalization and accommodations. For example, we

can easily deal heterogeneous clients with a more general variant of the

model or we can take into account the impact of the interconnection

structure directly in the latency ta0

Besides the distribution of the server service time, another important

aspect is the choice of the parameter of this distribution, that represents

the frequency µ = 1
TS

at which requests are carried out. Consider the two

extreme cases, which are also the most important ones:

• TS = Ta0. The server service time is the base latency. In this case we

model the system as if the network between clients and server would

be a bus. It is known that a bus can handle only one request at a time;

this behaviour would be captured by our system, since client requests

would be blocked immediately in the processing node.

• TS = TM , being TM the average time required by a memory macro-

module to carry out a request. This is the case wherein network con-

flicts are neglected. This assumption is meaningful in particular con-

ditions as explained in Section 2.3.1. In particular, we recall that this
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holds for fat trees and networks on chip (unless the network is a bus) be-

cause, in the formers, the time needed by a request to be routed within

the network on chip is significantly lower than the one spent nearby

the memory (queueing delay plus service time). In the following, we

will assume TS = TM .

Finally, remember the original goal: we are determining the cost model of

an abstract architecture. The abstract architecture is characterized by two

functions: Tsend and Tcalc. To express these functions, we had to understand

the system ability to execute a certain amount of instructions in presence

of memory conflicts, that is the real bandwidth of processing nodes. In this

perspective, the value of RQ will be used to express such functions, as shown

in [20].

4.3 A variant of the Client-Server Model: Het-

erogeneous Clients

In this section we propose a variant of the client-server model in which het-

erogeneous clients are considered. The reason for doing that is to model the

behaviour of a shared memory architecture taking into account a first impact

due to the parallel application executing on it.

As explained above, processes alternate think to wait periods. Until now,

we were assuming for simplicity that think periods were always the same

for all processes but this does not hold in some cases. Some examples are

classical farm or map paradigms because they are composed by the so called

service processes, e.g. emitter and collector, in addition to workers. However,

it is worthwhile to say that the impact of emitter and collector is negligible

if the number of workers is high enough. We recall that in general homo-

geneous processes are involved because the structured parallel programming

approach.

The fundamental characteristic of a process is its inter-departure time

Tcl, i.e. the average time between two consecutive memory requests toward a

given macro-module. This value is principally affected by TP and RQ. Being

RQ (once found) the same for all processes, the only way to distinguish a

process from another one is its service time TP .
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4.3.1 Definition

In order to deal this topic, heterogeneous clients should be used in the model.

If we look at 4.1, we can recognize that the equations system is prone to

accomplish heterogeneity. In fact, the original version is only a specific case

in which clients are homogeneous. In the more general case, we can explicitely

write the inter-departure time Tcl of the p clients sharing the server obtaining

the following system of equations.

Tcl1 = TP1 +RQ

· · ·

Tclp = TPp +RQ

RQ = WQ(Ts, TA) + ta0

ρ = TS

TA

TA = 1∑p
i=1

1
Tcli

ρ < 1

(4.2)

The equations system 4.2 describes the model generalization in a natural

way, nevertheless the resolution complexity, i.e. the degree equation in ρ,

increases if the number of different TP in the system increases.

4.3.2 Comparison against the Queuing Network Sim-
ulator

In this paragraph we want to compare the resolution technique 4.2 against

the outcome provided by the queuing network simulator Java Modelling Tools

(JMT) [4]. The modelled scenario has the following features:

• the number of clients is fixed to p = 16; seven of them have a certain

service time TP1 , other seven a TP2 while the last two have a fixed

TP = 100τ . The idea is to simulate a functional partitioning with

independent workers and two service processes, i.e. a dispatcher and

a gather. Further, we are assuming that the number of workers is the
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optimal one in such a way we can assume them (practically) always

working.

• the distribution is exponential for all service times. Since p is fixed, the

service time of clients is the degree of freedom. In particular, in each

test TP1 will be fixed to a certain value chosen in the range [100τ−800τ ]

while TP2 will vary in the same range in such a way will be possible

to find results for different load states of the server. An important

consideration is that since p is fixed to 16, TP values higher than 800τ

are not such much interesting because the server will be in average

unloaded.

It is worthwhile to say that the most of the values utilized for instantiate

the parameters have been influenced by our studies on the Tilera Tile64

multi-cores [2]. So we have:

• the average server service time is TS = 29τ because this value is typical

of macro-modules of DRAM2 memories. As discovered, the memory

in the Tilera Tile64 is load-dependent but, for our purposes, an expo-

nential distribution will be a good assumption. A more in depth study

about the load-dependent behaviour is present in [15].

• the client service time range is typical of processes in computation phase

on shared memory architectures, like the Tilera Tile64. More difficult

is to establish the right value for service processes. In fact, while we

can practically assume workers always working, this does not hold in

general for emitter and collector. Therefore, it may happen that these

processes alternate stopping periods to communication and how much

time they stop before a communication influences the value of TP that,

in this case, can not only be extracted by profiling but depends also

by other factors. We will introduce this problematic in Chapter 6. In

the meanwhile, we use the constant 100τ as first approximation for the

service time of these clients just for evaluating the theoretical impact

of emitter and collector in case the number of workers is not such much

high.

• the base memory access latency is ta0 = 72τ evaluated on the Tilera

Tile64 taking into account the latency of the memory (29τ) plus the
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base network latencies for the memory request and memory reply.

These last two values depend by the distance travelled in the mesh

and by the length of the firmware messages according to the method-

ology explained in 2.3.2

We will list the results in the following order:

• the graphs in Figure 4.3, 4.4 and 4.5 show the progress of RQ with

TP2 varying on x axis. In each graph TP1 is fixed and its value is

specified in the name of the shape visible in the legend. Each name

is composed by two parts: the former specifies the source, i.e. the

simulator (SIMULATION) or the analytical resolution (CS), while the

latter contains the value of TP1 , that could be 100τ , 300τ or 500τ . As

mentioned above, higher TP values do not introduce substantial error

so they are not reported.

• the graphs in Figure 4.6 and 4.7 show the absolute and relative error of

the analytical resolution against the simulation. We do immediately an

important preliminary observation: the absolute error as such does not

take into account that at different TP1 correspond different RQ shapes.

Instead, the relative error correlates the absolute error with the right

RQ shape. Having said this, we will base on relative error for following

comments.
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Figure 4.3: The RQ shapes for TP1 fixed to 100τ

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 100  200  300  400  500  600  700  800

R
Q

 −
 c

lo
c
k
 c

y
c
le

s

Tp2 − clock cycles

SIMULATOR−300

CS−300

Figure 4.4: The RQ shapes for TP1 fixed to 300τ
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Figure 4.8: Errors of analytical resolution technique against the simulation
for the three cases TP1 = 100τ , 300τ and 500τ
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4.3.3 Comments

In light to the above results, we have the following comments:

• first of all, we notice that there is a gap between the RQ shape of

the simulation and the one resulting from the resolution technique.

Further, the approximation of the resolution technique is slightly better

when the server is not much loaded as well visible in Figure 4.4 and 4.5.

In other words, the difference tends to smooth for high TP values. This

behaviour is close to the one with all homogeneous clients [20] so the

reason of this is not strictly related to having heterogeneous clients, but

it something intrinsically to model assumptions. Since the population

in the system is finite and fixed, the inter-arrival process at the server

can not be exponential. Moreover, clients receive a feedback from the

server that influences their service time and , consequently, their inter-

departure time. From this point of view, some model improvements

have been done and different resolution techniques present in [15] give

better approximations under certain conditions. The possibility and

the goodness of using these improvements with heterogeneous clients

have to be verified yet.

• the just mentioned model approximation is the major reason for the

gap between the simulator shape and the resolution technique shape

but it is not the only one. Looking at the Figure 4.7, we focus on the

CS-100 and CS-300 shapes for TP2 = 100τ . We have that the relative

error in case all the clients have a service time equals to 100τ is 5.5%

(CS-100) while it is 7.7% if seven of them have a service time equals

to 300τ . Hence in this case the relative error is greater in a situation

in which the server receives less requests. This can be explained as the

impact to having heterogeneous clients. Notice that the same thing also

happens for CS-500 and the relative error is bigger with respect to the

other two (9.6%). So we can conclude that when the difference between

the service time of different clients grows, the error of the resolution

technique also increases.
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4.4 Conclusions

The estimation of the under-load memory access latency is the first step

in order to derive the abstract architecture cost model (Tsend and Tcalc),

by means of which the physical system can be completely abstracted. We

will not go into the details of the formal derivation of these functions. The

interested reader is invited to consult [20] for more details. However, it is

sufficient to know that both Tsend and Tcalc are functions of RQ, therefore a

meaningful estimation of its value is crucial.

We have shown that a solution based on pure Queueing Network Theory

is infeasible from the complexity point of view. We prefer the client-server

model and its simple analytical resolution technique based on a minimal set

of Queueing Theory concepts. With this approach we also enable qualitative

analysis which is extremely important in our context: for example, we can

understand the asymptotic behaviour of a certain measure (e.g. Tcl, RQ, ...)

as a function of other model parameters (e.g. TP ) by taking into account

even the feedback effect. The importance of qualitative reasoning has been

shown in [20].

From the quantitative analysis point of view, we have seen that a gap

between the simulation and the result of resolution technique exists, and

it is mainly due to intrinsic original assumptions. This topic has already

been studied in our research group and formalized in [15] where is shown

that improvements under certain conditions are possible and new resolution

techniques are more accurate with respect to the original one.

In spite of this, the accuracy of this resolution technique worsen with re-

spect to the simulation if we start to consider parallel application constraints

like heterogeneous processes. A possible use of at least one of the just cited

more sophisticated techniques could be taken into account, but until now the

goodness of the accuracy is not predictable. Further, it is worthwhile to say

that when the number of different clients increases, the equations degree in

the system 4.2 increases raising the analytical resolution complexity. On the

other hand, we can assume a limited number of different clients in the ma-

jority of the applications resulting from a structured parallel programming

approach.

Although the quality of the results is quite good, in order to apply this
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model to real architectures we need to take care at least of the following

aspects:

1. the gap between the analytical resolution and the simulation should be

in general decreased in order to have a (more) precise cost model.

2. the client-server model cannot be applied to hierarchical systems as it

stands

3. the analytical resolution of the client-server model is prone to accom-

plish some constraints given by the parallel application but the struc-

ture and the specific characteristics of the parallel application are not

taken completely into account yet

4. modelling queues different than the basic ones (M/M/1, M/D/1) is

quite difficult with this resolution technique

In light of these elements, it is necessary to further extend the model. The

price to pay for extending the model is given by the necessity of improving

the actual analytical resolution technique. Unfortunately, the complexity

of the problem notably increases. Therefore, in the next chapter we will

study the potential advantages coming from the employment of numerical

resolution techniques. It is left as an open problem to find out approximate

yet meaningful analytical resolution techniques modelling the aforementioned

topics.



Chapter 5

Stochastic Process Algebra
Formalization of Client-Server
Model

In the previous chapter we have determined an elegant cost model for the

under-load memory access latency in shared memory architectures. Unfortu-

nately, a lot of problems and assumptions may impair the analytical resolu-

tion technique of the client-server model. We pointed out three key aspects.

• Probability distributions and queue types. Inter-arrival and ser-

vice times at a queue of a client-server system may not be exponentially

distributed. It is well-known that providing analytical resolution tech-

niques for non-Markov system is a non-trivial task. Anyway, we know

from [20] that a good approximation for deterministic service times

(using the M/D/1 queue) can be achieved with 4.1, but we can not say

the same about the modelling of:

1. deterministic inter-arrival times

2. distributions different from the deterministic and exponential ones

(if they were needed)

3. queues exhibiting a load-dependent behaviour

• Impact of the parallel application. In the classic model, clients

are assumed homogeneous with a fixed ideal inter-departure time Tcl.

However, we have seen that clients can behave differently each other
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for modelling heterogeneous processes. Moreover, we have already told

about the alternation of different processes phases. A process itself can

have a complex behaviour and modelling it through the mean value of

a probability distribution could be a right approximation or not. In

the simplest scenario a phase of sequential elaboration is followed by a

phase of communication (either point-to-point or collective); it should

be clear that the load generated on the memory system in these two

phases may be drastically different, e.g. even an order of magnitude.

• Hierarchical shared memory. If the multi-cores trend follows the

direction that has been taken, hierarchical shared memory will be a

relevant feature. In these architectures, more than one level of mem-

ory hierarchy is shared by processing nodes (see Section 2.1). There-

fore, conflicts for accessing shared resources could become significant

for what concerns the under-load memory access latency. Somehow

we need to measure also these kind of conflicts; perhaps enhancing

the client-server structure to model a hierarchy of servers (hierarchical

client-server systems with request-reply behaviour).

It is obvious that if we want to take care of these aspects, the resolution tech-

niques should be adequately improved. Again, the problem is to determine

the trade-off between the complexity of the resolution technique and the qual-

ity of the approximated results. In light of this, the following methodology

is proposed:

• the client-server model with request-reply behaviour remains the refer-

ence paradigm (where needed, server may be structured on a hierarchy),

• but numerical resolution techniques will be used to evaluate the under-

load memory access latency, in place of the analytical ones.

We advocate that the employment of numerical techniques can overcome the

complexity deriving from the formalization of analytical ones. The idea is

to describe the client-server model at the level of Markov Chains. There

are a lot of direct solution methods for moderately sized Continuous Time

Markov Chain (CTMC) models, while iterative techniques exist for huge

sized models [9]. Since Markov processes can be difficult to construct by hand
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(this holds for human beings, but maybe not for a compiler), we will exploit

as intermediate description language a stochastic process algebra (SPA). An

SPA approach is very intriguing because the aforementioned aspects may be

addressed with a formal and structured approach.

The structure of the chapter is the following:

1. firstly, we introduce and describe the stochastic process algebra PEPA

2. secondly, we show how to express a basic client-server model with the

new formalism

3. finally, the accuracy of the new resolution technique will be compared

against experimental results

Hierarchical systems and a methodology for an in-depth analysis of the

parallel application impact will be formalized in the next chapter following

this approach.

5.1 PEPA: a Process Algebra for Quantita-

tive Analysis

Performance Evaluation Process Algebra [10] (PEPA) is a high-level descrip-

tion language for Markov processes which belongs to the class of Stochastic

Process Algebras [6] (SPA). Among the wide class of SPAs, we choose PEPA

because it is simple but at the same time it has sufficient expressiveness

for our purposes. The simplicity comes from the structure of the language:

PEPA has only a few elements and a formal interpretation of all expressions

can be provided by a structured operational semantics. In this section we

just introduce the minimal set of PEPA features strictly necessary to model

client-server with feedback systems; for a deeper understanding the reader is

invited to consult [10].

We recall that Markov processes rely on the memoryless property of the

exponential distribution.

Definition 4 Markov Process. A stochastic process X(t), t ∈ [0,>), with

discrete state space S is a Markov process if and only if, for t0 < t1 < ... <
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tn < tn+1, the joint distribution of (X(t0), X(t1), ..., X(tn), X(tn+1) is such

that

Pr(X(tn+1 = sin+1|X(tn) = sin , ..., X(t0) = si0) =

Pr(X(tn+1 = sin+1|X(tn) = sin)

Intuitively, this means that the probability of X to go into the state sin+1 at

time tn+1 is independent of the behaviour of X prior to the instant tn or, in

other words, it depends exclusively by the state sin of X at time tn. It is

important to keep in mind this property when working with PEPA.

The Language A PEPA system is described as the composition of compo-

nents that undertake actions. Components correspond to identifiable parts

in the system. For instance, in our context, clients and servers will be the

components of the systems. A component may be atomic or may itself be

composed by components. The language is indeed compositional in sense

that new components may be formed through the cooperation of other ones.

Each component can perform a finite set of actions. An action has a duration

(or delay) which is a random variable with an exponential distribution. Con-

sequently, the rate of the action is given by the parameter of the exponential

distribution. For example, the expression

P
def
= (α, r).Q

represents the definition of a new component P which can undertake an ac-

tion α at rate r to evolve into another component Q (defined somewhere

else). Since the duration of all actions of the system are exponentially dis-

tributed, it is intuitive to say that the stochastic behaviour of the model is

governed by an underlying CTMC.

The syntax of the PEPA language is formally defined by the following

grammar.
S ::= (α, r).S | S + S | CS

P ::= P BC
L
P | P/L | C

S denotes a sequential component and P denotes a model component which

executes in parallel. C and CS stand for constants to denote either a sequen-

tial or a model component (the effect of the syntactic separations is to allow
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to build only components which are cooperation of only sequential compo-

nents, which has been proved in [10] to be a necessary condition for building

ergodic Markov processes, i.e. amenable to steady-state analysis).
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3.3. THE PEPA LANGUAGE 29

Prefix

(α, r).E
(α,r)

−−−→ E

Choice

E
(α,r)

−−−→ E�

E + F
(α,r)

−−−→ E�

F
(α,r)

−−−→ F �

E + F
(α,r)

−−−→ F �

Cooperation

E
(α,r)

−−−→ E�

E ��
L

F
(α,r)

−−−→ E� ��
L

F

(α /∈ L)
F

(α,r)

−−−→ F �

E ��
L

F
(α,r)

−−−→ E ��
L

F �
(α /∈ L)

E
(α,r1)−−−→ E� F

(α,r2)−−−→ F �

E ��
L

F
(α,R)
−−−→ E� ��

L
F �

(α ∈ L) where R =
r1

rα(E)

r2

rα(F )
min(rα(E), rα(F ))

Hiding

E
(α,r)

−−−→ E�

E/L
(α,r)

−−−→ E�/L

(α /∈ L)
E

(α,r)

−−−→ E�

E/L
(τ,r)

−−−→ E�/L

(α ∈ L)

Constant

E
(α,r)−→ E�

A
(α,r)−→ E�

(A
def
= E)

Figure 3.1: Operational Semantics of PEPA

For any activity instance its activity rate is the product of the apparent rate of the action
type in this component and the probability, given that an activity of this type occurs, that
it is this instance that completes. This leads to the following rule:

E
(α,r1)−−−→ E� F

(α,r2)−−−→ F �

E ��
L

F
(α,R)

−−−→ E� ��
L

F �
(α ∈ L) where R =

r1

rα(E)

r2

rα(F )
min(rα(E), rα(F ))

On the basis of the semantic rules PEPA can be defined as a labelled multi-transition
system. In general a labelled transition system (S, T, { t→ | t ∈ T}) is a system defined by

a set of states S, a set of transition labels T and a transition relation
t→ ⊆ S × S for each

t ∈ T . In a multi-transition system the relation is replaced by a multi-relation in which
the number of instances of a transition between states is recognised. Thus PEPA may be

Figure 5.1: Structured Operational Semantic of PEPA.
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The structured operational semantic is shown in Figure 5.1. Below an

intuitive description of most used PEPA operator is provided. For a complete

treatment the reader is invited to consult [10].

• Prefix ((α, r).P ) This is the basic mechanism to express a sequential

behaviour in PEPA. As already said, a component performs an action

α at rate r behaving subsequently as P .

• Choice (P+Q) This operator represents a component that may behave

either as P or as Q. Assume that α and β are the actions that enable

respectively P and Q, characterized by their own rate. The idea behind

the Choice operator is that once an action has been completed, the

other is discarded. For instance, if the first action to be completed is

β then the component moves to Q, ”forgetting” the other branch.

• Cooperation (P BC
L
Q) This operator denotes the cooperation be-

tween P and Q over L. L is the cooperation set that contains those

activities on which the components are forced to synchronized. The

rate of this shared activity has to be altered to reflect the slower com-

ponent in the cooperation (see how in Figure 5.1). It is important

to notice that for actions not in L components proceed independently

and concurrently with their enabled activites. Actually cooperation is

a multi-way synchronization since more than two components are al-

lowed to jointly perform actions of the same type. When concurrent

components do not have to synchronize the cooperation set L is empty;

in these cases we will use the abbreviation P ||Q to denote P and Q

running in parallel. We will use also a simple syntactic shorthand to

denote an expression like (P ||P ||...||P ) as P [N ], with N the number

of times that P is replicated. Finally, we point out that there can be

situations in which two components do synchronize, but the rate of the

shared activity is determined by only one of the component in the co-

operation. In this case the other component is defined as passive. The

rate of the activity for the passive component will be denoted with the

symbol >.
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5.2 A PEPA Formalism for Client-Server Model

with Request-Reply Behaviour

5.2.1 Definition

A PEPA program for the classical client-server model with request-reply

behaviour (Section 4.2) can be instantiated to model a processors-memory

system just knowing the following parameters:

• TP , the mean time between two consecutive accesses of a processing

node (executing a process) to a certain memory macro-module

• TS, the average service time of that memory macro-module

• p, the average number of processing nodes accessing that memory

macro-module

• Treq, the base network latency for a memory request

• Tresp, the base network latency for a memory reply

The resulting PEPA program is shown below.

rrequestc = 1.0/TP

rreply = 1.0/TS

Clientthink
def
= (request , rrequest).Clientwait

Clientwait
def
= (reply ,>).Clientthink

Server
def
= (request ,>).Server + (reply , rreply).Server

Clientthink [p] BC
request,reply

Server

Each client models a process (on a processing node) that operates forever

in a simple loop, completing in sequence the two phases think and wait

(Figure 5.2).

As already told, the length of the think phase is TP . At the end, a

request action is executed and the client waits for a reply, i.e. it starts

the wait phase. The request action is a shared action between the clients
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think

wait

1 / Tp 1 / Rq

Figure 5.2: A Client alternating think phase to wait ones.

and the server and it models the situation in which a client sends a request

and the server receives it. The length of the wait phase is RQ. For this

reason, the time needed to complete the reply action (phase wait) is initially

unspecified. In fact, it will be imposed in another PEPA expression through

the cooperation with another component. Therefore, Client components see

reply as a pure synchronization operation.

The server modelling the memory macro-module can either accept a re-

quest from one of the p clients (action request) or send them a reply. The

time to complete a request action is obviously unspecified because it depends

on clients. The action reply is shared to model the fact that a client can go

back to the think phase as soon as the server has handled its request.

Finally, the last expression instantiate a client-server model with p clients

running in parallel that try to synchronize themselves with the server through

the cooperation set containing both the two shared actions request and reply.

It is useful to highlight that even simpler solutions could be formalized:

for instance, the synchronization on the action request is not strictly neces-

sary. However we decided to keep it for two reasons. First, it helps to un-

derstand the semantic of the whole system (the ”request-reply behaviour”).

Second, it will be necessary anyway in further extensions of this basic model.
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5.2.2 Quantitative Comparison with respect to other
Resolution Techniques

Preliminary Considerations Solving a PEPA model means solving the

underlying ergodic CTMC, i.e. computing the steady-state. We wrote and

solved PEPA models using the classic tool PEPA Workbench [19]. This

tool provides a lot of different numerical resolution techniques to solve the

model. Different techniques can be employed depending on the size of the

resulting CTMC: if the number of states is huge (hundreds of thousands)

iterative yet approximate techniques are preferred. However, the models

that we treat are extremely small (they never exceed a hundred of states)

thus the steady-state has been directly computed employing a very standard

algorithm. In all other cases, e.g. when the number of clients significantly

grow, a phenomenon known as state space explosion may arise. However,

thanks to the natural structure of our models, we may take fully advantage

from both state-reduction and fluid-approximation techniques [8]. Briefly,

these techniques aim to solve the state space explosion by exploiting potential

symmetries in the CTMC. The presence of symmetries can be informally

deduced looking at the PEPA expressions: for instance, in our model the set

of homogeneous clients (”Client[p]”) induces replicated sub-Markov chains

in the underlying CTMC. These replicated subsystems will be exploited to

restructure the CTMC itself and lowering the state space size.

Model Resolution Once found, steady-state information are exploited to

derive the average response time RQserver of the server. In particular these

information include:

• the average population size of a state

• the throughput of the actions

In our client-server model we are interested in the average number of

clients that reside in state Clientwait (pwait) and in the throughput of the

action reply (λreply). Indeed, by applying the Little’s law (2), we can extract

the average time that a client stays in the state Clientwait, which actually

corresponds to RQserver :

RQserver =
pwait

λreply
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It is extremely important to notice that RQserver is not the under-load

memory access latency, but it is the average time spent by a request at the

server. However, to find out RQ it is enough to take into account the base

latency of the network as in 5.1.

RQ = Treq +RQserver + Tresp (5.1)

Results To evaluate the accuracy of the PEPA client-server model, we have

done a test with the following scenario:

• the number of clients is fixed to p = 16.

• the average server service time is TS = 29τ . This value is typical of

DRAM2 memories, as we have already mentioned in Section 4.3.2. We

assume it exponentially distributed.

• the average think period TP represents the degree of freedom. The

distribution of the period is exponential. TP will take its value in the

range [100τ−3000τ ]. Being p fixed, it is necessary to vary TP in a such

a way to emulate all possible load states of the server, e.g unloaded,

congested, partially congested and so on. As already told, since p is

fixed to 16, for TP values greater than 800τ the server is unloaded

so cases of interest are in the range [100τ − 800τ ] that, moreover, is

the typical range of TP values that processes exploit in computational

phases over a shared memory architecture.

• Treq and Tresp are evaluating on the Tilera Tile64 following the method-

ology explained in Section 2.2.1. The overall base memory access la-

tency ta0 is equal to 72τ as already reported in 4.3.2.

The under-load memory access time found through PEPA has been com-

pared with the result of the following techniques:

• simulation performed with the JMT [4] Queuing Networks simulator,

by means of which it has been implemented a client-server system.
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• analytical resolution of the client-server model reported in 4.1. The

comparison against more sophisticated resolution techniques or exploit-

ing a server service time with a deterministic behaviour can be found

in [15].

The graph in Figure 5.3 shows the progress of RQ for TP varying in the

range [0τ − 3000τ ]. It contains the shapes of all the technique, i.e. JMT

simulation, PEPA, classical client-server model. The other two graphs (Fig-

ure 5.4) show respectively the absolute and relative error of analytical and

numerical resolution techniques against the results retrieved by the simula-

tion. The very important result is visible in Figure 5.4(b): the graph states

that, for an exponential server, the PEPA approximation matches the simu-

lation with a maximum relative error of 2%.
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5.3 Conclusion

Besides being an important step toward the modelling of complex paral-

lel application-architecture systems utilizing a compositional and structured

high-level approach, PEPA turns out to be useful even for what concerns the

quality of the approximation because numerically resolution techniques are

involved. In spite of this, the complexity of these resolutions is mitigated

by advanced techniques and use of proper tools. What we are going to ver-

ify in the next chapters is the possibility for this new formalism to extend

the client-server model taking into account application constraints or more

complex architectures, e.g. shared memory hierarchies.



Chapter 6

Advanced Cost Models: impact
of the Parallel Application

In the last chapter we introduced PEPA, an high-level formalism to generate

Markov chains in order to specify and to solve the client-server model in a

different manner with respect to the classical analytical approach reported

in 4.2.

In this chapter we want to study if (and how) the impact of parallel appli-

cations could be modelled utilizing both analytical and numerical resolution

techniques of the client-server model. We recall that parallel application are

realized composing parallel paradigms in a structured approach. This way

to operate will be fundamental for various assumptions that we will made

during this chapter. The further intent is to verify what is the price to pay

in terms of accuracy for these model enhancements so comparisons among

techniques and against simulation will be made.

In particular, we want to remove some assumptions that we made in

Section 4.2.2:

• processes in a parallel application could be different. An advanced cost

model should treat this topic in order to be (more) precise.

• processes could have a complex internal behaviour that may affect the

under-load memory access latency. The idea is that drastic phase-

dependent changes in accessing the memory may change the congestion

on the memory macro-module in a heavy way (the so called bursts).

The chapter has the following structure:
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1. firstly, we give some definitions that will help us to formally recognize

different processes or different phases of a process. Successively, we

will see how this theory will be further applied in order to reduce the

complexity of numerical resolution techniques in an orthogonal way

with respect to techniques mentioned in 5.2.2.

2. secondly, we will study how is possible to catch the impact of pro-

cess phases. Results of analytical and numerical resolution techniques

will be compared against the output of a simulator developed in the

University of Pisa.

3. finally, we will see how to model in PEPA a parallel application com-

posed by different processes. Consequently, the obtained results will

be compared against the JMT simulation and the analytical resolution

technique introduced in 4.3.

6.1 Processes Classes and Processes Phases

Our intent is to model the workload given by a parallel application executing

on a shared memory architecture. We want to do it because we claim that

the under-load memory access latency RQ could change a lot for different

applications.

A first way to take into account the impact of a parallel application is to

deal

• with heterogeneous processes, i.e. processes differ for own memory

requests frequency or, equivalently, their TP

• with a complex behaviour that a process could internally shows, i.e.

computational phases followed by communication

In the previous chapters, we have already told about these aspects in

an informal way. In order to give formal definitions for future treatments,

we need to find a common point to decide when processes or phases differ.

From the client-server model point of view, processes are modelled through

modules that have a certain service time, that is the mean time between

two consecutive memory requests. It is important to recall that this model
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is based on mean value quantities rather than probability density functions

making the analysis simpler and sufficiently accurate for our purposes. Con-

sidering that, the common point for discerning among processes or phases

should be just what we have called TP . In the following subsections, we will

give definitions of class of processes and process phase in such a way will be

possible to use them for future treatments.

6.1.1 Classes of Processes

The main idea is that processes belonging to the same class can be modelled

in the same way, i.e. as homogeneous clients. Instead, processes of different

classes should be modelled as heterogeneous clients. There are two main

reasons for this classification:

• to establish in a formal way when a process differs from another one in

such a way we will model them in a different way

• to recognize sets of homogeneous processes that will be modelled in

a way to reduce the model resolution complexity, e.g. by mean of

aggregate definition of clients

We have already mentioned that from the cost model point of view, the

best parameter to classify processes is their TP . However, this means to

analyse all processes statically in order to derive their own TP . In order

to keep low the complexity of this procedure, we can exploit the benefits

due to a structured parallel approach. Using always the same set of parallel

paradigms to compose even complicated applications, the complier has to

reason always on them. This means that it is able to immediately recognize

sets of homogeneous processes inside a parallel application. For instance,

consider a farm. The process classification can be done looking at the classical

structure of the farm so all workers will belong to the same class because

they are replicated processes, the emitter will belong to another class and

the collector to another one. The same holds for all the other paradigms

used in a structured approach.

In this way we are able to classify processes looking at the parallel appli-

cation structure. This also means that it does not matter how a process is
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made internally because we can discern among processes of a parallel appli-

cation only looking at the used paradigm. On a hand, this way to operate

reduces the complexity to analyse processes but, on the other hand, the pro-

cesses classification is made on a base that is not the same of the client-server

model, i.e. it does not take into account the fundamental parameter TP . In

fact, it may happen that two processes with same TP fill a different role in

a parallel application so they will belong to different classes. Apparently,

this seems a problem but, again, following a structured approach to parallel

programming, situations like this are rare and if happen, their impact on the

resolution can be consider negligible.

It is worthwhile to notice that how to determine the TP parameter is a

different topic that we will treat in depth in the following. It is important

to recall that up to now we were considering only processes characterized by

an unique TP easily determined by profiling. Of course, this does not hold

in all cases and we will see why.

At this point, we have the way to recognize when processes differ in a

non expensive way in order to model them as heterogeneous clients or no.

Apparently, this classification does not seem to introduce other particular

advantages. In fact, if a process is modelled as a client with a certain service

time, i.e. the TP , two processes with same TP will be modelled as equal

clients independently from their class. To note the further advantage we

have to focus on the formalism wherein clients are represented in the various

resolution techniques.

For instance, consider how clients are represented in PEPA. In general,

each client is a component with own definition. In case we are able to recog-

nize in somehow when processes are equal, we could decrease the number of

that definitions with a potential benefit in terms of resolution. Suppose to

have classified n processes in the same class C in this way:

C = {p1, · · · , pn}

We know that processes in the same class should be modelled in the same

way, so we can define an aggregate client component P that holds for all the

n processes instead of having n distinct (but equal) definitions. This way

to operate decreases the size and the complexity of the generated Markov
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chain with global benefits in terms of resolution. As already mentioned,

this approach allows to reduce the state-space explosion in an orthogonal

way with respect to the techniques introduced in Section 5.2.2. We will see

how to apply this theory in the next section when we will talk about the

client-server model with heterogeneous clients.

6.1.2 Process Phases

Up to now we were considering processes executing only a computational

phase characterized by a certain TP . This way to model does not reflect

properly the behaviour of processes. Structured parallel application have the

further property to be composed by processes that alternate computational

phases to communication. A very common example is the process starting

with a computational phase (the so called think period) that will be followed

by an inter-process communication (for instance a send). As already said,

the difference between TP in computational phases and TP in communication

phases could be even an order of magnitude.

Our main intent is to understand how phases may impact in a TP deriva-

tion. A way to found the TP parameter of a process is by inspection of the

sequential code. We have:

TP =
Tc
f

(6.1)

where

• Tc is the completion time of the sequential version. It takes into account

all the base latencies, e.g. interconnection structures, and various stall

times, e.g. bubbles in the CPU pipeline

• f is the number of faults of the last memory support exclusively private

of a processing node, i.e. that immediately before the shared memory

hierarchy

It is important to notice that this technique is valid in case a process

is (practically) always working. In fact, if the efficiency tends to one there

are not stopping periods. Of course, in parallel applications processes are

not always working. It may happen that the emitter of a farm or processes
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implementing a reduce in a map-reduce do not have an efficiency that tends

to one. According to the definition of a module efficiency in [20], we have:

ξ =
TSid

TS
(6.2)

where:

• TSid
is the ideal service time of the module. For simplicity, if we suppose

to deal with the emitter of a farm, then its ideal service time is just

the time to execute a send ( we can consider negligible the rest of its

behaviour, e.g. to receive and update the state of workers in case the

farm is operating on demand).

• TS is the effective service time of the module. We know that it can be

found as

Ts = max{TA, Tsid}

At this point, the efficiency of the emitter can be rewritten as:

ξ =
Tsend
TA

According to the theory, we would want that that the emitter and the

workers are not bottlenecks in such a way to satisfy all requests (each one

arriving every TA).

So considering an optimal parallelism degree and a proper design of the

emitter we have:

Tsend
TA

< 1⇐⇒ Tsend < TA

The direct consequence of this design is that in average the emitter inter-

leaves send primitives to stopping periods wherein it waits for new incoming

requests. In the latter period any code is executed so the mean time be-

tween two consecutive requests can not be derived only looking at the code

of the send but should also be taken into account the stopping period. These

situations recur frequently in structured parallel applications and stimulate

solutions where phases are considerate in an explicit way. For this reason,

we will give a first attempt to model processes not always working after the

following treatments about phases.
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6.2 How to deal with more Phases

As already mentioned, problems about the derivation of TP can arise if pro-

cesses show periods with sudden changes in memory requests frequency (the

so called bursts). In case a computational phase with a certain TP1 is followed

by another one characterized by a TP2 , the overall completion time Tc can be

rewritten as the sum of the completion times Tc1 and Tc2 of the two phases.

Reverting the Formula 6.1 we have that

Tc1 = f1 · TP1

Tc2 = f2 · TP2

where f1 + f2 = f . At the end, the overall TP will be a weighted average

based on the number of faults per phase:

TP =
Tc
f

=
f1TP1 + f2TP2

f1 + f2
(6.3)

Being TP a value expressed in clock cycles, we just take the integer part

to be correct from a logical point of view.

Up to our studies, this was the best TP evaluation also in case more

phases are involved. The accuracy of all resolution techniques presented in

previous chapters is worse if processes exploit more phases. Before showing

the results and our efforts in order to improve the accuracy in somehow, we

want to clarify the concept of process phase that we have applied in this

context.

As already said in an informal way, a phase of a process is a lapse of time

characterized by a certain TP . At first sight, we can think that exist many

levels of detail about to determine the beginning and the end of a phase.

For instance, a phase could be the entire process life cycle or just the time

between two consecutive memory requests. At this point, it is important to

focus that we want to take into account phases in order to be more precise,

but a complete and detailed treatment is not necessary because we recall

that

1. our cost model is based on average values
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2. significant variations in TP values can be recognized only between com-

putational and communication phases.

Considering that, we need again to find a way to establish phase bound-

aries. A compiler can easily find them concentrating on the base of some

higher level aspects, e.g. well know software limits. For instance, every time

a process invokes a send primitive, we can consider a phase the lapse of time

needed to execute it.

Definition 5 A process phase is a lapse of time characterized by a certain

mean time between two consecutive memory requests and well recognizable

software boundaries

The above definition puts some constraints but does not cover all the

cases. For instance, it may happen that TP changes inside a computational

phases, for instance in case a certain function is followed by another one quite

different. In spite of this, we remark that substantial differences among TP

of computational phases are not present so the achieved level of details is

sufficient for a good starting point.

6.3 Process Phases Modelling

Having the theory to recognize process phases, we can evaluated their impact

on the model. In this section we report:

• firstly, a brief summary on the effectuated tests about the impact of

process phases modelled according to the Formula 6.3. It is worthwhile

to recall that in this solution the TP derivation is made by mean of

weighted average value based on number of faults.

• successively, we present different ways to deal with process phases.

For each solution we will show results and comparisons with previous

versions.

Before doing that, we want to explain the test case. First of all, we have

reproduced by simulation the behaviour of processes exploiting two different

phases, i.e. a computational one (called think) followed by an inter-process
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communication (send), on a shared memory architecture. We have done

it using an architectures simulator developed by our research group in the

University of Pisa.

The test case is the following:

• the number of processes in execution on the same amount of processing

nodes is fixed to p = 16.

• the average memory macro-module service time is TS = 29τ . This

value is typical of DRAM2 memories, as we have already mentioned in

Section 4.3.2. We assume it exponentially distributed as usual.

• the mean time between two consecutive memory requests during the

phase think (TPt) represents the degree of freedom and it will take

values in the range [200τ − 800τ ]. Instead, in the phase send, TPs is

fixed to 20τ . We can notice that the difference between TPt and TPs is

an order of magnitude.

6.3.1 Phases by mean of Weighted Average Value

We recall that the value of TP in this technique is found according to the

Definition 6.3. The under-load memory access time found by simulation has

been compared with

• the one found by the classical analytical resolution of the client-server

model reported in 4.2

• the one obtained with the numerical resolution via PEPA explained

in 5.2.1

Figure 6.1 shows all the RQ shapes, i.e. SIMULATOR, CS and PEPA-

WA (WA stays for weighted average) while the remainder show respectively

the absolute and relative error.
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Comments First of all, we notice that for lower TP the numerical resolu-

tion is better than the analytical one while it is the opposite for higher TP .

Both resolutions show a maximum relative error around the 10% − 15% in

the range TP = [300τ − 700τ ] while on extreme TP values the relative error

is bigger. Anyway, we would want it lower in all the range.

We tried to model the phase impact in other ways in order to reduce the

gap between the under-load memory access latency of at least one resolution

technique and the simulation. In the next subsections we will present these

techniques.

6.3.2 Explicit Phases

The first idea is to model process phases in an explicit way as shown in

Figure 6.3. This is exactly what happen to processes: different phases, each

one effectuating memory requests with own rate, interleave among them.

The idea is to catch the frequency wherein a process passes from a generic

phase to another one.

think

wait

send

wait

rts

rst

Figure 6.3: The behaviour of a client exploiting a think phase followed by a
send one.
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An example on how this can be achieved in PEPA is reported below.

Basically, we change the definition of client in such a way will be also possible

to pass from a phase to another one.

Cthink
def
= (request , rrequestt ).Cwaitt + (send , rts).Csend

Csend
def
= (request , rrequests ).Cwaits + (think , rst).Cthink

Cwaitt
def
= (reply ,>).Cthink

Cwaits
def
= (reply ,>).Csend

Assume the two phases involved in Figure above, then frequencies rts and rst

are easily found reverting their period:

rts =
1

ft · TPt

rst =
1

fs · TPs

(6.4)

Apparently, this way to operate has a problem. As already explained

above, we are effectuating estimations on the base of the sequential code

inspection so the length of phase periods are evaluated only considering the

number f of faults and the mean time between two consecutive memory

requests (TP ). The length of a phase is crucial in our treatment because

it influences directly the rate of some actions. Of course, problems arise

when more processes are in execution because the impact of the under-load

memory access time.

Consequently, the rate estimations 6.4, that are found statically, can dif-

fer a lot from the effective ones. So phase periods should not be evaluated

only considering the sequential version, i.e. f · TP , but have to include the

impact of RQ too. This can be done in various ways, a solution is to adopt an

iterative approach. However, we have to keep in mind that we want to keep

low the complexity to found RQ, so we prefer to introduce an approximation

respect to complex procedures. Therefore, the length of phases can be esti-

mated using the base memory access latency ta0 that can be derived easily

at compilation time. Considering that, we set the rates in the following way:

rts =
1

ft · (TPt + ta0)
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rst =
1

fs · (TPs + ta0)
(6.5)

As already explained in Section 2.3.2, basically ta0 is the sum of terms:

the latency Ls of the server in case no conflicts are taken into account and

the base network latency Tnet = Treq + Tresp:

ta0 = Ls + Tnet

The idea is to substitute the base latency Ls of the server with the under-

load memory access latency RQserver found with PEPA in order to obtain no

more ta0 but RQ:

RQ = RQserver + Tnet

Results and comments Figure 6.4 shows the under-load memory access

latency RQ of the simulation (SIMULATOR), the previous version (PEPA-

WA) and the new version with explicit phases (PEPA-EP). Figure 6.5 shows

the absolute and relative error.
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We can see that the relative error (we call it φ) of the new version (PEPA-

EP) is higher than the error of the previous version (PEPA-WA). This is due

to the approximation that we introduce in the evaluation of phases periods.

Considering that, we can also affirm that the error depends by the difference

between ta0 and RQ hence it will be greater if their ratio grows:

RQ

ta0
↑=⇒ φ ↑

However, the error in this new version is almost constant in all the range

and no more with enormous changes as before.

The potential advantage of this technique is that we believe that it could

be used in order to model processes not always working. In fact, it is sufficient

to pass from the think phase to a stopping one where no memory requests

are generated. It is important to notice that the accuracy still depends by

the ratio
RQ

ta0
.

How this can be achieved in PEPA is shown in the following code:

Cthink
def
= (request , rrequestt ).Cwaitt + (stop, rts).Cstop

Cstop
def
= (think , rst).Cthink

Cwaitt
def
= (reply ,>).Cthink

First of all, we recall that processes with efficiency ξ < 1 are not bottlenecks

so their effective service time TS is equal to the inter-arrival time TA. Thanks

to the structured parallel approach, we are able to estimate the effective

service time of a process looking at TA that is a well know input parameter.

Considering that, the rates to switch from a generic phase to another one

should be setted in this way:

rts =
1

Tsid
=

1

ft · (TPt + ta0)

rst =
1

TS − Tsid
=

1

TA − Tsid

If we apply the formulas above to the example of the Section 6.1.2, we have

that the emitter states the following parameters:



6.3. Process Phases Modelling 91

Tsid ' Tsend =⇒
{
rts = 1

Tsend

rst = 1
TA−Tsend

Unfortunately, this scenario has not been simulated yet so we have no

results about this hypothesis, but it belongs certainly to future works.

6.3.3 Phases by means of Average Clients

Another way to deal with more phases is to estimate how many processes are

in average in a certain phase. Consider the test case introduced in Section 6.3

with a number of processes equals to p. If we are able to recognize that pt

processes are in average in the think phase and ps processes are in send phase,

we could instantiate the client-server model with heterogeneous clients (see

Section 6.4) where n clients have TPt as service time while the other m have

TPs .

The problem lies in how to evaluate the average number of clients in a

certain phase. The way to do it is to consider again the length of phases in

such a way to found their ratio r. Successively r can be used in order to

evaluate pt and ps as

ps + r · ps = p =⇒ ps =
p

1 + r

pt = r · ps
The problem is again to find the right value of r because it depends by

the length of phases. The solution is to consider the base memory access

latency ta0 another time:

r =
ft · (TPt + ta0)

fs · (TPs + ta0)

It is important to say that this way to operate introduces an ulterior

approximation. In fact, being ps and pt an average number of processes

either in send or in think phase, they must be integer numbers in order to

use them in the client-server model with heterogeneous clients. Therefore,

we need to approximate the found values to the closer integers. Of course,

this approximation worsens the accuracy of the technique with respect to the

previous one.
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6.3.4 Explicit Phases with Average Clients

This solution is a mix of the previous versions. The idea is to use explicit

phases in order to determine the average number pi of clients in a certain

phase i. Once we have found these values, we calculate RQ as weighted

average value on the number of clients p:

RQ =

∑
iRQi

· pi
p

(6.6)

Each phase i has own RQi
that, as such, can be evaluated as usual solving

the client-server model only considering that phase. At this point, we know

all the RQi
and we have to evaluated the average number pi of clients for

each phase i. We recall that the frequency to pass from a generic phase i to

another phase j depends by RQi
and that, following the approach explained

in the Explicit Phases technique, phases can be modelled as explicit ones

that interleave among them. If we are able to model all phases with the

associated frequencies to pass from one to another one, the number of clients

in a certain phase is given by the population of that phase in steady-state

condition of the system.

We try to clarify the way to operate with a simple example. We consider

only two phases: think and send. The former has a certain Tps while the

latter is characterized by Tps . First of all, we apply the classical client-server

model in order to derive respectively RQt and RQs .

At this point we use RQt and RQs as input in a new system composed

by p modules each one characterized by think and send states (Figure 6.6).

Of course, frequencies between phases are not more influenced by ta0 as in

Equations 6.5, but in this way:

rts =
1

ft · (TPt +RQt)

rst =
1

fs · (TPs +RQs)

Once we have found the steady-state solution of the new system, we have

that the population in the state think is the average number pt of processes

in that state. The same holds for the state send. At this point we rewrite

the Equation 6.6 for this specific case founding RQ:
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think send

rts

rst

Figure 6.6: Explicit behaviour of a process.

RQ =
RQt · pt +RQs · ps

pt + ps

This technique can be easily adopted with PEPA. We have already seen

in Section 5.2.1 how to define a classical client-server model in this formalism.

The code below simply states the new system composed by p components

each one characterized by a think-send behaviour.

Cthink
def
= (send , rts).Csend

Csend
def
= (think , rst).Cthink

Cthink [p]

Results and comments Figure 6.7 shows the under-load memory access

latency RQ of the simulation (SIMULATOR), the versions PEPA-WA and

PEPA-EP and the final version PEPA-EPAC. Figure 6.8 shows the absolute

and relative error.
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Figure 6.8: Errors against the simulation of numerical resolutions
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In general this final solution gives a general improvement in accuracy

since the relative error never exceed the 10%. Further, it can also be utilized

to model processes not always working. In fact, it is sufficient to evaluate

RQt and successively to set the rates as

rts =
1

Tsid
=

1

ft · (Tpt +RQt)

rst =
1

TA − Tsid
Summarizing, this new version exhibit a better accuracy than PEPA-WA

and succeed to model processes not always working as in PEPA-EP.

6.3.5 Comments

We have formalized the concept of processes class in order to be able to

discern among processes without doubt and to introduce optimizations able

to reduce the resolution complexity. Anyway, a first example on how this

definition are applied is immediately shown in the next section.

We have seen that a process classification should be made taking into

account the mean time between two consecutive memory requests, i.e. TP ,

because this parameter is at the base of the client-server model, but this is

not possible without to increase the analysis complexity. Therefore, process

classification is made looking at the structure of the parallel application.

Successively, it has been explained how RQ could also be derived in case

processes show a complex internal behaviour, i.e. the so called phases. There-

fore, a definition of process phase has been formalized and some techniques

to deal with phases have been proposed and analysed.

6.4 Heterogeneous Clients in PEPA

In this section we will see how to model in PEPA a parallel application

on a shared memory architecture and composed by processes with different

TP . We recall from Section 4.3 that an example could be the functional

partitioning with independent workers. Of course, heterogeneous clients must

be involved in order to model processes with different TP .
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6.4.1 Definition

The PEPA program taking into account heterogeneity is shown below. Thanks

to the compositional approach of PEPA, we can directly reuse the same

server component and the definition of a generic client already present in

Section 5.2.1. So basically, a generic client has the same behaviour as before

and this implies that is unnecessary to add further operations apart from the

already used request and reply. As a consequence of this structured approach,

also the cooperation set in the last expression remains the same.

Of course, a change occurs in the number of client definitions. In fact,

we want to apply the theory seen above in order to recognize C classes of

processes. According to the theory, we do not want to have a definition per

client but, in order to keep lower the resolution complexity, there must a

number of client definitions equals to C. Every definition has own rate of

request, that is peculiar for that given class. This rate is the inverse of the

TP characterizing the class and it has been found according to the techniques

explained in the previous section, i.e. by profiling in the easiest cases or using

the explicit phases technique. The last expression of the program defines the

overall system in which clients of C classes run in parallel synchronizing

themselves with the server. Obviously, each class of clients specifies the

number of clients belonging to that class.

Client1think
def
= (request , rrequest1 ).Client1wait

Client1wait

def
= (reply ,>).Client1think

...

ClientCthink

def
= (request , rrequestC ).ClientCwait

ClientCwait

def
= (reply ,>).ClientCthink

Server
def
= (request ,>).Server + (reply , rreply).Server

Client1think [p1] ‖ ... ‖ ClientCthink
[pC ] BC

request,reply
Server [1.0]



98 Advanced Cost Models: impact of the Parallel Application

6.4.2 Quantitative Comparison with respect to other
Resolution Techniques

Model Resolution Following the procedure in 5.2.2, we have to found

RQserver in order to evaluate the under-load memory access latency. Having

more wait states, i.e. one for client definition, we can evaluate the average

number of clients staying in the state Clientwait as

RQserver =
c∑

i=1

pwaiti

λreply
=

∑c
i=1 pwaiti

λreply
(6.7)

where pwaiti is the average number of clients belonging to the state Clientiwait

in steady-state condition of the system. Successively, it is sufficient to add

the base network latencies for the request and for the reply to obtain the

under-load memory access latency as usual:

RQ = Treq +RQserver + Tresp (6.8)

Results We tested and compared the accuracy of this resolution technique

against the results found for the test case defined in Section 4.3.2. We briefly

report the features of the scenario:

• the number of clients is fixed to p = 16; seven of them have a certain

service time TP1 , other seven a TP2 while the last two have a fixed

TP = 100τ . The idea is to simulate a functional partitioning with

independent workers and two service processes, i.e. a dispatcher and a

gather. We recall that processes exploit only a phase in analogy to the

example in Section 4.3.2.

• the distribution is exponential for all the service times. Since p is fixed,

the service times of the clients are the degree of freedom. In particular,

in each test TP1 will be fixed to a certain value chosen in the range

[100τ − 800τ ] while TP2 will vary in the same range in such a way will

be possible to find results for different load states of the server.

The graphs in Figure 6.9 and 6.10 show the behaviour of RQ varying TP2

and with TP1 fixed respectively to 100τ , 300τ and 500τ . In particular, the

graphs state the RQ shape of the JMT simulation (SIMULATOR), PEPA
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and the analytical resolution introduced in Section 4.3.2 (CS). Successively,

absolute and relative errors of PEPA and CS approaches against the results

of the simulation are shown and compared.

As already explained in previous comments (Section 4.3.2), CS resolution

exhibits in general a gap in the RQ shape with respect to the one of the

simulation. This phenomenon is worsen in case heterogeneous clients are

involved, especially if the service time of different clients differs a lot. On

the other hand, we pointed out in previous chapter that the PEPA approach

does not introduce errors when homogeneous clients are involved.

On the base of the results presented here, we can clearly conclude that the

PEPA approach does not suffer in accuracy even introducing heterogeneous

clients. In fact, the maximum relative error in all graphs is below than 2%,

that is the threshold that we have found for homogeneous clients in PEPA.
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6.5 Conclusion

On the basis of the client-server model there is the evaluation of the time be-

tween two consecutive memory requests generated by a process in execution

of a processing node, i.e. the so called TP . This derivation is a crucial point

in order to obtain accuracy of the involved resolution techniques. In fact, we

have seen that good TP derivations bring results practically identical to the

ones obtained by simulation at least for numerical resolution techniques.

In this sense, we can conclude that the major impact of parallel appli-

cations is due to phases that complicate the derivation of this fundamental

parameter. Consequently, the accuracy worsens even if sophisticated tech-

niques are utilized.



Chapter 7

Advanced Cost Models:
Hierarchical Shared Memory

Hierarchical shared memory is peculiar to multi-cores, especially if the trend

follows the direction that has been taken. In these architectures, more than

one level of memory hierarchy is shared by processing nodes (see Section 2.1).

Therefore, conflicts for accessing shared resources could become significant

for what concerns the under-load memory access latency because more queues

must be travelled. In fact, if we consider for instance that also the second

level of cache is shared among all (or only a subset of) cores, we have that this

memory will be a first level of queue while the main memory (that continues

to be shared) will be the second one. This behaviour can be extended up to

a general number of hierarchy levels, e.g. also the third level of cache could

be shared and so on. Of course, memory requests will travel all the queues

only in some cases.

Our main goal is to measure the impact of this hierarchy of queues in

terms of performance indexes, i.e. the under-load memory access time RQ.

Of course, we want to do it according to the methodology followed so far

hence the starting point will be the same, i.e. the client-server model.

7.1 Hierarchical Client-Server Model with Request-

Reply Behaviour

Before starting to explain how to enhance the classical client-server model

in order to deal with shared memory hierarchies, we do some initial assump-
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tions:

• we consider a shared memory hierarchy composed by a second level of

cache L2 and a main memory M

• M is shared among all the processing nodes. In the following, we

concentrate only on a macro-module that we will consider shared among

all the processing nodes. We will refer at it as M

• L2 is shared among disjointed subsets of processing nodes. This means

that the same (and fixed) number n of processing nodes can access own

L2

• the size of L2 is big enough to contain the entire working sets needed

to processes to execute their job (obviously, we are considering only

processes in execution on processing nodes that belong to the same

subset, i.e. they share the same L2). In this way, we abstract the

impact due to techniques for replacing blocks, i.e. the different ways

to address caches

Briefly, we can summarize the behaviour of a parallel application executed

on a shared memory architecture with the above assumptions in the following

way.

A processing node P (executing a process), in case a cache fault occurs,

generates a memory request req toward the second level of cache L2 that, as

usual, will answer directly to the processing node in case the requested cache

block belongs to it. Otherwise, req will be forwarded to M and L2 has to

wait the reply from the memory before responding to the processing node.

It is worthwhile to notice that in the mean time that L2 waits for a answer

from M , it can reply to other requests of processing nodes provided that it

is able.

In the former case, P has to wait the time needed for

• the request req to reach L2 travelling an interconnection network P−C,

• to stay in the queue in front of L2 since it is shared among other

processing nodes,
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• to be serviced by L2, i.e. an answer ans is generated and sent toward

P ,

• the answer ans to reach P travelling again the interconnection network

P − C.

Instead, in the latter, P regains the control after a time that could be po-

tentially much greater because aggravated by the impact of a second queue

and because the request has to exit to the chip to reach M . At the end, we

have to add the time for

• L2 to generate a request toward the main memory,

• the request to reach M travelling another interconnection network C−
M (not the same as before and eventually out of chip),

• to stay in the queue in front of M ,

• to be serviced by M , i.e. a reply rep will be generated and sent back

to L2

A way to model this behaviour is that clients still continue to model

processing nodes, but the difference lies in more levels of server because we

have to model more levels of shared memory. A classical view of the advanced

client-server model taking into account the above assumptions is shown in

Figure 7.1. We notice that every module Si, i = 1, · · · ,m is at the same time

server towards its n clients and client towards its server S. It is important to

keep in mind that we can generalize all this aspects. In particular, we could

have other hierarchical levels, e.g. a third one, or we can specify a different

number of clients for any hierarchical level. In other words, we can think

about a classical client-server model in which clients are realized following a

compositional approach, e.g. a client could be an entire client-server model.

At this point, we could follow two options:

1. to extend the analytical resolution summarized in Section 4.2 in such

a way the hierarchy is considered

2. to use directly the PEPA formalism
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Figure 7.1: Hierarchical Client-Server Model with Request-Reply Behaviour

In principle, we were tempted for the first solution but some problems

came out. The major obstacle is the increase in the complexity of the an-

alytical resolution due to extensions needed to accomplish the goal so, at

the end, iterative or numerical resolution techniques should be involved even

then. Moreover, it is difficult to write the system of equations for a generic

number of hierarchy levels. Currently, it is still an open problem to adapt

the classical analytical resolution of the client-server model in order to satisfy

server hierarchy.

Instead, exploiting the compositional property mentioned above for the

model enhancement, a solution has been found in a easier way utilizing

PEPA. In the next section, we are going to explain our contribution in this

direction.
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7.1.1 Definition

In the previous sections, we already told that it is possible to recognize

statically the number of cache faults that will occur during the execution

inspecting the sequential code. This brings to know also the frequency which

the processing node generates memory requests, the so called rrequest (the

inverse of TP ). It is worthwhile to note that in case shared memory hierarchies

are involved, memory requests could be satisfied by any hierarchical levels.

So a crucial point is to determine how many requests will be satisfied by a

certain hierarchical level rather than another one. We are able to do this still

by profiling.

We know that when a cache fault occurs, a memory request is sent toward

the upper memory level. Suppose to have the architecture described above,

the request is sent to the second level of cache L2. We can easily check

statically if the requested block will belong to L2 or not. If so, we can

consider L2 able to reply; otherwise the memory request will be forwarded

to M . This way of reason allows to estimate the number of requests satisfied

by any hierarchical level and, at the end, to find the probability to satisfy a

request in a certain hierarchical level rather than another one.

For instance, suppose that the number of requests satisfied by L2 is c

while m is the number of requests satisfied by M . Let pc the probability to

satisfy a request in L2 and pm the probability to satisfy a request in M , we

have:

pc =
c

c+m

pm =
m

c+m

In fact we have that, in average, pc requests are satisfied by L2 while pm

are satisfied by M . At this point, we can use this information in the PEPA

program to model a shared memory hierarchy.

The idea is to model processing nodes as clients able to generate requests

toward either L2 or M . In other words, this means to have clients that

can choose between two different actions, that are requestc or requestm.

Basically, this could be done in two different ways:
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1. the first solution requires to write in a explicit way when a certain

action must be taken by a client

2. the former capitalizes to the probabilities pc and pm to drive the choice

between the two actions

Before to introduce the adopted solutions in depth, it is worth to note that

differences between the two solutions lie exclusively in how clients are made.

The other components of the system, i.e. the one modelling L2 and the other

one modelling M , will be the same for both solutions. Briefly, we say that

the PEPA component modelling the memory will be identical to the server

already defined in previous chapters. Instead, the second level of cache plays

two roles: from one side it acts as a server while on the other side it is a client.

How we will see soon, this behaviour can be easily caught with PEPA.

First Version of Hierarchical Client-Server Model in PEPA We

introduce the first solution through an example. For the time being, the

parameter values are just constants. During the explanation of the test case,

we will motivate choices about values. Suppose this scenario:

• 16 processing nodes, each one with rate rrequest of memory request

generation. For simplicity, we are assuming homogeneous clients char-

acterized by an unique phase. Of course, it is important to remark that

the theory in Chapter 6 could be applied.

• as assumed previously, M is shared among all the processing nodes

while L2 only among disjoint subsets of 4 processing nodes.

• pc = 3
4

and pm = 1
4
.

As mentioned above, we want to write explicitly in the program when a

processing node generates a request toward L2 (action requestc) or toward

M (action requestm). The code below shows how this can be realized.
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rrequest = 1.0/TP

P1
def
= (requestc, rrequest).Pwait1

Pwait1
def
= (reply ,>).P2

P2
def
= (requestc, rrequest).Pwait2

Pwait2
def
= (reply ,>).P3

P3
def
= (requestc, rrequest).Pwait3

Pwait3
def
= (reply ,>).P4

P4
def
= (requestm , rrequest).Pwait4

Pwait4
def
= (answer ,>).P1

Cache
def
= (requestc,>).(reply , rcache).Cache + (requestm ,>).(ask , rask).Cache

Memory
def
= (ask ,>).Memory + (answer , rmemory).Memory

P1 [16.0] BC
requestc,requestm,reply

Cache[4.0] BC
ask,answer

Memory [1.0]

First of all, we notice that rrequest is evaluated in the same way as in

previous sections. In fact, this is the general way to find it. A processing

node is defined as a client composed by a sequence of states Pi followed by

waiting ones, i.e. Pwaiti . In a generic state Pi a client performs an action

that can be either requestc or requestm. Instead, during a waiting state, a

client can performs either a reply or an answer. In case a client, during a

generic state Pi, performs the action requestc, it will wait for a reply in its

following waiting state Pwaiti . Instead, if a requestm is performed, the client

will execute an answer. The length of this sequence, i.e. the parameter i,

as well the frequency to perform a certain action rather than another one,

is found looking at the probabilities pc and pm . In this case, pc = 3
4

and

pm = 1
4

so we can define a client as a sequence of 4 states P1, P2, P3, P4

followed by the respective Pwaiti , i = 1, · · · , 4. Three states will perform

the action requestc (followed by a reply) while the other one will perform a

requestm (followed by an answer).

The component Cache realizes the first server level, i.e. it is acting as L2.

In case a request that it is able to satisfy is performed, it replies directly to

the client executing a reply. Otherwise, it forwards the request to the upper
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server level through the action ask. These actions have a own rate, that is

the inverse of the service time required by the Cache to perform them. It is

worthwhile to say that this values are architecture details that can be easily

found.

As already told, the componentMemory is the same of previous programs

while the last expression defines the entire system.

Comments There are various considerations about the just introduced

solution. First of all, it is important to say that the accuracy of the obtained

results is very good as we will in the following section. In spite of this, some

problems come out. The major constraint is just given by this explicit way to

define the behaviour of a client. In fact, the sequence of interleaved Pi−Pwaiti

states is built taking into account the probabilities pc and pm. Up to now we

were dealing with 3
4

and 1
4
, so a sequence of length 4 can be easily written.

Of course, the same approach would not be used if, for instance, pc = 3
17

.

The reason is simple and it does not belong in the complexity to write in

PEPA the sequence but in how the underlying Markov chain is generated.

In fact, longer sequences of actions bring to Markov chains with a more and

more rigid structure. Since this property, the number of states composing

rigid chains grows and to solve that chains becomes very expensive.

To accommodate any probability pc and pm and to keep reasonable the

number of states forming the generated Markov chain, we need a more relaxed

solution that we are going to explain in the next paragraph. Obviously, we

will pay a price for this.

Second Version of Hierarchical Client-Server Model in PEPA The

idea is to change the PEPA definition of client in order to drop the rigid

structure coming out in the underlying Markov chain. Of course, all the

other components will remain the same. This goal can be accomplished as

shown in the following code.
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P
def
= (requestc, rrequestc).Pwaitc + (requestm , rrequestm ).Pwaitm

Pwaitc
def
= (reply ,>).P

Pwaitm
def
= (answer ,>).P

Cache
def
= (requestc,>).(reply , rcache).Cache + (requestm ,>).(ask , rask).Cache

Memory
def
= (ask ,>).Memory + (answer , rmemory).Memory

P [16.0] BC
requestc,requestm,reply

Cache[4.0] BC
ask,answer

Memory [1.0]

A processing node is a component that can perform in a non deterministic

way either the action requestc or requestm. Of course, it is necessary to

specify the rates of the actions, that are respectively rrequestc and rrequestm . A

way to do it is to evaluate the mean time between two consecutive requests

toward L2 (tpc) or toward M (tpm) as

tpc = TP · pc

tpm = TP · pm
and finally to revert them for having the rates:

rrequestc =
1

tpc

rrequestm =
1

tpm

It is worthwhile to note that tpc and tpm could be estimated directly by

profiling without to evaluate the probabilities pc and pm that will be instead

used to evaluate Treq and Tresp as reported below.

7.1.2 Quantitative Comparison against the Simulation

Model Resolution The way to evaluate the under-load memory access

latency in steady state condition of the system is basically the same as in

the previous cases for both versions. Again, we base on Little’s law to find

out the so called RQserver . The difference lies in having more waiting states
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and more incoming rates to that states. Anyway, we can easily to adjust the

Formula 6.7 in this way:

RQserver =
w∑
i=1

pwaiti

λreply + λanswer

=

∑w
i=1 pwaiti

λreply + λanswer

(7.1)

where

• pwaiti is the average number of clients belonging to the state Pwaiti in

steady-state condition of the system

• w is the number of waiting states. For instance it holds 4 in the example

of the first version while it is equal to 2 in the last case.

Finally, as usual, we have to add the impact of interconnection structures

for having the under-load memory access latency:

RQ = RQserver + Treq + Tresp

It is important to recall that more interconnection structures are involved

in hierarchical shared memory architectures, e.g. the already mentioned

P − C and C −M , so we have to take into account them in a proper way.

The best solution is to consider again interconnection structures logically

belonging to the server subsystem with the difference that the base network

latencies Treq and Tresp are evaluated applying the definition of mean value:

Treq = TreqP−C
· pc + TreqC−M

· pm

Tresp = TrespP−C
· tpc + TrespC−M

· pm

Results We have simulated via JSIM and expressed through the two PEPA

versions the following scenario:

• 16 processing nodes as in the previous tests

• M is shared among all the processing nodes and its service time TS is

exponentially distributed with mean value 29τ as in the previous tests
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• L2 is shared among disjoint groups of 4 processing nodes. It is assumed

to be big enough to contain all the working set needed to processes

in execution over the same subset of processing nodes. Further, it

spends in average 10τ to reply directly to the processing node with

the requested cache block while it forwards the request to the upper

layer in 4τ in average. Both these values are estimated taking into

account second level caches with a proper size to be shared among

various processing nodes.

• pc = 3
4

and pm = 1
4
. These are constants chosen in such a way will be

possible to evaluate the impact of the first hierarchical level of servers,

i.e. the second level cache. Of course, it is important to note that,

in real architectures, a second level of cache will not have a so high

probability to fault because the use of techniques and optimizations at

compile time, e.g. prefetching.

• TP is our degree of freedom. It will take values in the range [25τ, 3000τ ].

The reason to choose very low TP values is quite simple: we are dealing

with a primary cache so the average time between two faults is lower

with respect to cases in previous chapters.

Figure 7.2 states the under-load memory access latency for the simula-

tion (SIMULATION) and the two PEPA versions (respectively PEPAv1 and

PEPAv2) while Figure 7.3 shows the absolute and relative errors of the two

versions against the simulation.
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First of all, we notice that both versions are underestimates of the simula-

tion. The reason probably lies in the probabilist way to estimate some action

rates. In confirmation to this, we have that the first version is very close to

the simulation because it does not introduce much probabilistic behaviour.

Instead, the second solution spaces out from the simulation only for lowest

TP . In fact, the shape of the second version approximates the simulation in

a very good way for all TP range unless the first two values, that are 25τ and

50τ . Therefore, for these TP values, the maximum relative error is registered

as reported in Figure 7.3(b).

On the other hand, we already know that the first version can not treat

general cases because the structure of the generated Markov chains is very

rigid and this is not suitable in terms of resolution. Instead, the second

one is able to accommodate general cases without to enlarge the complexity.

Therefore, we can conclude that the second solution is able to model hierar-

chical shared memory architectures in a good way being a trade-off between

accuracy and complexity.

7.2 Conclusion

Due to the trend that multi-cores have been taken, to model hierarchical

shared memory is becoming an important topic. In this chapter we have seen

that this goal can be accomplished starting from the classical client-server

model. Of course, enhancements are needed and they could be achieved in

two principal way to operate: either extending the analytical resolution tech-

nique introduced in [20] or using the new formalism explained in Chapter 5

(PEPA). We decided for the latter because to extend the analytical resolu-

tion brings to a complexity increase that it is not worth. So we have seen

two PEPA solutions on how is possible to treat hierarchical shared memory.

On the base of tests that we have done, we concluded that the first one is

very precise compared to the simulation but problems arise in terms of gen-

erated Markov chain. In fact, we have already told that the structure of the

underlying Markov chain is rigid and this implies difficulty to solve it. On

the other hand, the second version is a good trade-off between accuracy and

complexity so it should be take into consideration.



Chapter 8

Conclusion and Future Works

Performance on shared memory architectures is dictated by the interrelation

of concrete architecture details, parallel application constraints and run-time

support of concurrency mechanisms. In order to exploit efficiently these

systems is therefore necessary a methodological and structured approach to

handle all this aspects.

On a hand, structured parallel programming is used in order to create

parallel applications in an independent way from the underline architecture.

Further, the use of a fixed set of paradigms to build parallel application

allows optimizations, modularity and a methodology without increase the

complexity as much. On the other hand, a cost model in association with an

abstract architecture is needed from the performance point of view.

We have tried to give a contribution in this direction enhancing the cost

model for shared memory architectures and its accuracy with particular care

to parallel application constraints. The queuing based client-server model

with request-reply behaviour has been our starting point. We have found

other ways to express it with the goal to reach a formalism able to express

flexibility, simplicity and a high-level approach. Of course, the resolution had

to be a trade-off between complexity and accuracy.

We have decided for a Stochastic Process Algebra language (PEPA) as

formalism to describe the Processors-Memory subsystem in an elegant way.

Further, the numerical resolution technique is very accurate.

The next step has been to verify how PEPA was able to enhance the

classical model. Therefore, in this thesis advanced cost models have been

defined. In particular, we have focused on:
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1. shared memory hierarchies. This architectural aspect is more and

more frequent in multi-cores architectures so an advanced cost model

was needed. The impact of more levels of shared memory could impact

on the performance so, once a cost model is provided, a way to deal

with this hierarchical organization could be found. Further, we believe

that a parallel application organized in a hierarchical way could exploit

these architectures in a very efficient way. So the hierarchical client-

server model with request-reply behaviour could be a good starting

point to study this topic.

2. impact of the parallel application. A first direct impact of parallel

applications on the client-server model is to influence TP values. We

recall that TP is an input parameter of the client-server model so its

derivation is fundamental in order to have accuracy. In this thesis we

have seen that this value is influenced in different ways: either due to

complex internal behaviours of processes (the so called process phases)

or for heterogeneity among processes.

Following the structured parallel programming approach, heterogeneous

processes are present only in some paradigms and usually their impact

can be considered negligible with respect to other involved processes

in the parallel application. However, a PEPA cost model for heteroge-

neous processes has been formalized in this thesis in order to be more

precise from at least two point of view: to consider heterogeneous pro-

cesses (and not to abstract from them) in addition to the accuracy of

numerical resolution techniques. Further, we recall that this cost model

could be used in an orthogonal way for dealing with process phases. It

is worthwhile to say that the procedure of analysis in order to recog-

nize different processes can be easily achieved looking at the structure

of the application. Once processes are subdivided in classes is possi-

ble to introduce optimizations in order to reduce the complexity of the

resolution technique.

Also process phases are easily recognizable. Processes in structured

parallel programming approach always interleave computational phases

to inter-process communications and to establish when a send starts or

ends is quite simple because these limits are software boundaries. The
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difference in TP between computational and communication phases can

be even an order of magnitude while, within a computational phase,

TP can change but not so much. This makes sense to model only the so

called think and send phases. Different approaches have been shown

on how to deal with phases.

Further, it has been explained how phases-dependent cost models could

be also used for processes not always working, i.e. their efficiency is

less than one. It is worthwhile to recall that in these processes the TP

derivation can not be made only looking at the sequential code.
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