
Università di Pisa

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

INF01

Ph.D. Thesis

Modular Verification of Biological
Systems

Peter Drábik

Supervisor

Prof. Andrea Maggiolo-Schettini

Supervisor

Dr. Paolo Milazzo

Referee

Prof. Paul Attie

Referee

Prof. Monika Heiner

Chair

Prof. Pierpaolo Degano

November 22, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14703382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Systems of interest in systems biology (such as metabolic pathways, signalling path-
ways and gene regulatory networks) often consist of a huge number of components
interacting in different ways, thus exhibiting very complex behaviours. In biology,
such behaviours are usually explored by means of simulation techniques applied to
models defined on the basis of system observation and of hypotheses on its func-
tioning. Model checking has also been recently applied to the analysis of biological
systems. This analysis technique typically relies on a state space representation
whose size, unfortunately, makes the analysis often intractable for realistic models.
A method for trying to avoid the state space explosion problem is to consider a
decomposition of the system, and to apply a modular verification technique. In par-
ticular, properties to be verified often concern only a small portion of the modelled
system rather than the system as a whole. Hence, for each property it would be
useful to be able to isolate a minimal fragment of the model that is necessary to
verify such a property.

In this thesis we introduce a modular verification technique in which the sys-
tem of interest is described by means of an automata-based formalism, called sync-
programs, that supports modular construction. Our modular verification technique
is based on results of Grumberg et al. and on their application to the theory of
concurrent systems proposed by Attie and Emerson. In particular, we adapt Attie
and Emerson’s approach to deal with biological systems by allowing automata to
synchronise by performing transitions simultaneously.

Modular verification allows qualitative aspects of systems to be analysed with
the guarantee that properties proved to hold in a suitable model fragment also hold
in the whole model. The correctness of the verification technique is proved. The
class of properties preserved is ACTL−, the universal fragment of temporal logic
CTL. The preservation holds only for positive answers and negative answers are not
necessarily preserved.

In order to verify properties we use the NuSMV model checker, which is a
well-established and efficient instrument. We provide a formal translation of sync-
programs to simpler automata, which can be given as input to NuSMV. We prove
the correspondence of the verification problems.

We show the application of our verification technique in some biological case
studies. We compare the time required to verify the property on the whole model

with the time needed to verify the same property by only considering those modules
which are involved in the behaviour of the system related to the property.

In order to handle modelling and verification of more realistic biological scenarios,
we propose also a dynamic version of our formalism. It allows entities to be created
dynamically, in particular by other already running entities, as it often happens in
biological systems. Moreover, multiple copies of the same entities can be present
at the same time in a system. We show a correspondence of our model with Petri
Nets. This has a consequence that tools developed for Petri Nets could be used
also for dynamic sync-programs. Modular verification allows properties expressed
as DACTL− formulae (dynamic version of ACTL−) to be veried on a portion of the
model.

The results of analysis of the case study of the MAP kinase cascade activated
by surface and internalised EGF receptors, which consists of 143 species and 80
reactions, suggest applicability and scalability of the approach.

The results raise the prospect of rendering tractable problems that are currently
intractable in the verification of biological systems. In addition, we expect that the
techniques developed in the thesis could be applied with profit not only to models
of biological systems, but more generally to models of concurrent systems.

Acknowledgments

First of all I thank my supervisors Prof. Andrea Maggiolo-Schettini and Dr. Paolo
Milazzo for their wisdom, guidance and help.

I’m grateful to my reviewers Prof. Monika Heiner and Prof. Paul Attie and the
thesis committee members Prof. Chiara Bodei and Prof. Gianluigi Ferrari for their
precious comments and suggestions and Prof. Pierpaolo Degano for his assistance.

Without Damas Gruska I would never have started my Ph.D. studies, what a
magnificent suggestion. I express my thanks to Jean Krivine for hosting me during
my stay in Paris and to Fabio Martinelli for the support in Pisa.

I’m indebted to my personal Morpheus Franco Alberto and to my computer
science friends and colleagues Rebecca, Lam, Claudio, Alessio, Rui, Giovanni, Giulio,
Igor, Rossano, Dung, Lillo, Matteo, Gabriele, Valentina and Anna.

I acknowledge a long-term friendship with the physics department, thanks Luca,
Lopa, Sebnem, Naveen, Kim, Sergiy, Antonio, Daniele, Anna and Andrea.

I owe a lot to girls and boys from my ultimate frisbee team Ultimate Pirates
Viareggio, to Federica from Rifugio Casentini and to the people of Italy.

Finally, I would like to thank my girlfriend Ada, my parents and my sister
Kataŕına for their love and support throughout my studies and beyond.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 2
1.3 Contributions . 4
1.4 Structure of the Thesis . 5
1.5 Published Material . 7

2 Background 9
2.1 Transition Systems and Logic . 9
2.2 Model Checking . 11
2.3 NuSMV Model Checker . 12
2.4 Synchronisation Skeletons . 15
2.5 Multisets . 17
2.6 Petri Nets . 18
2.7 Selected Notions in Biology . 20
2.8 Properties of Biological Systems and Logics 22

3 Sync-programs 27
3.1 Syntax . 27
3.2 Semantics . 29
3.3 Modelling Lac operon regulation . 32

4 Modular Verification of Sync-programs 39
4.1 Projections . 40
4.2 Path Preservation . 41
4.3 Logic . 43
4.4 Property Preservation Theorem . 44
4.5 Application to Lac Operon Regulation 45

5 Modular Verification in Practice 49
5.1 Translation of Sync-Programs to Sync-Skeletons 49
5.2 Translation of Properties . 53
5.3 Verification Problems Correspondence 55

vi CONTENTS

5.4 Implementation of Sync-Programs in NuSMV 59
5.5 Modular Verification of Lac operon in NuSMV 64

6 Modular Verification as a Property of Semantics 67
6.1 Motivation . 67
6.2 A Generalised Definition of Semantics 68
6.3 The MV property . 69
6.4 Modular Verification of Other Formalisms 71
6.5 Equivalence of conditions . 72

7 Dynamic Sync-Programs 75
7.1 Syntax . 75
7.2 Semantics . 78
7.3 Dynamic Sync-Programs as Petri nets 80
7.4 Dynamic ACTL− . 81
7.5 Modular verification . 85

7.5.1 Subprograms and projections 86
7.5.2 Path Preservation . 87
7.5.3 Property preservation theorem 90

7.6 Case Study: EGF Signalling Pathway 91

8 Modular Verification of Pathways 97
8.1 Pathways . 97
8.2 From Reactions to Sync-Programs . 98
8.3 From Reactions to NuSMV . 100
8.4 Case Study . 103

8.4.1 Finding a Suitable Initial State 104
8.4.2 Interaction Graph . 106
8.4.3 Experiments . 107

8.5 Discussion . 108

9 An Application to Epidemiology 111
9.1 Stochastic Dynamic Sync-Programs 112
9.2 Compartmental Models in Epidemiology 113
9.3 Analysis via Probabilistic Model Checking 114
9.4 Discussion . 118

10 Conclusions 121
10.1 Discussion and Related work . 123
10.2 Future Work Directions . 128

Bibliography 129

Chapter 1

Introduction

1.1 Motivation

A big challenge of current biology is understanding the principles and functioning
of complex biological systems. Despite the great effort of molecular biologists inves-
tigating the functioning of cellular components and networks, we still do not know
how to answer the question “how a cell works”. At least not to a level to be able to
easily modify or repair a cell.

In the last decades, scientists have gathered an enormous amount of molecular
level information. The data are collected and analysed by means of bioinformatics,
a growing discipline which includes genomics (finding the collection of all genes, for
many genomes), transcriptomics (the collection of all actively transcribed genes),
proteomics (the collection of all proteins), and metabolomics (the collection of all
metabolites). For instance the Human Genome Project has obtained a huge quantity
of data. However, this is just a beginning of understanding the human genome.

To uncover the principles of functioning of a biological system, just collecting
data does not suffice. Actually, it is necessary to understand the functioning of parts
and the way these interact in complex systems.

The aim of systems biology is to build, on top of the data, the science that
deals with principles of operation of biological systems. The comprehension of these
principles is done by modelling and analysis exploiting mathematical means.

A typical scenario of modelling a biological system is as follows. To build a model
that explains the behaviour of a real biological system, first a formalism needs to
be chosen. Then a model of the system is created, simulation is performed and the
behaviour is observed. The model is validated by comparing the results with the
real experiments.

The advantage of simulation is not only validation of laboratory experiments,
but also prediction of behaviour under new conditions and automation of the whole
process.

Simulation can give either the average system behaviour or a number of possible

2 CHAPTER 1. INTRODUCTION

system behaviours. This may be insufficient when one is interested in analysing all
the behaviours of a system.

A technique, called model checking, developed in computer science to study the
behaviour of systems of interacting agents, may be of help. This technique permits
the verification of properties (expressed as logical formulae) by exploring all the
possible behaviours of a system.

This analysis technique typically relies on a state space representation whose
size, unfortunately, makes the analysis often intractable for realistic models. This
is true in particular for systems of interest in systems biology (such as metabolic
pathways, signalling pathways, and gene regulatory networks), which often consist
of a huge number of components interacting in different ways, thus exhibiting very
complex behaviours.

The aim of this thesis is to develop a modular verification framework for models of
biological systems that may allow the state space to be considered for the verification
of properties to be significantly reduced.

1.2 State of the Art

Many formalisms originally developed by computer scientists to model systems of
interacting components have been applied to biology, also with extensions to allow
more precise descriptions of the biological behaviours [11, 20, 25, 32, 79, 80]. Ex-
amples of well-established formal frameworks that can be used to model, simulate
and model check descriptions of biological systems are [25, 48, 55].

Model checking techniques have traditionally suffered from the state explosion
problem. Standard approaches to the solution of this problem are based on abstrac-
tions and similar model reduction techniques (see e.g. [29]). Moreover, the use of
Binary Decision Diagrams (BDDs) [30] to represent the state spaces (symbolic model
checking) often allows the tractable size of models to be significantly increased [18].

A method for trying to avoid the state space explosion problem is to consider a
decomposition of the system, and to apply a modular verification technique allowing
global properties to be inferred from properties of the system components. This is
the approach that we follow in this thesis, and it can be particularly efficient when
the modelled systems consist of a high number of components, whereas properties
of interest deal only with rather small subset of them. This is often the case for
properties of biological systems. Hence, for each property it would be useful to be
able to isolate a minimal fragment of the model that is necessary for verifying such
a property. If such a fragment can be obtained by working only on the syntax of
the model, the application of a standard verification technique on the semantics of
the fragment avoids the state explosion. In Figure 1.1 the approach is schematised,
where the projection ↾J the syntactic operation used to obtain a fragment. The
objective is to relate the properties that hold in the semantics of the fragment to

1.2. STATE OF THE ART 3

the properties that hold in the semantics of the whole model. In particular, for
a simple projection there are properties that are preserved from the parts to the
whole.

P I Sem(P I)

Sem(P I↾J)P I↾J

Sem(P I)⌈J

Sem

⌈J

↾J

Sem

?

Figure 1.1: Modular verification – principle

A class of properties whose satisfaction is preserved from the components to
the complete system was identified in Grumberg and Long [52] as ACTL, the uni-
versal fragment of CTL temporal logic. In particular, these properties can express
behavioural patterns that hold universally, expressed by using the universal path
quantifier of the logic. The rationale is that the universal properties declare that a
behavioural property holds for all behaviours of the subsystem. Since by composing
the subsystem, some behaviours can be occluded but none are added, the property
continues to hold also after the composition. The composition plays the dual role
to the projection, because the subsystems of interest are obtained by the projection
of the whole system. This result is thus useful for verification of properties of parts.

A technique proposed by Attie and Emerson [7, 5, 6] exploits the preservation of
these properties in order to verify concurrent programs and synthesise systems from
specifications. Attie and Emerson use a formalism called synchronisation skeletons
[27], an abstraction of sequential processes, suitable for describing distributed sys-
tems. The synchronisation skeletons are state-machines where states are connected
by arcs representing conditional transitions. The transitions can be conditioned by
the states of other synchronisation skeletons.

In order to be able to exploit the above-mentioned modular verification technique
of property preservation in models of biological systems, it needs to be adapted. The
interleaving nature of synchronisation skeletons makes them not suitable for mod-
elling for systems biology. Indeed, in biological systems it is often the case that two
or more entities interact and perform an action simultaneously. In synchronisation
skeletons an agent checks the state of other agents and in condition on these it per-
forms an action. Say that we want to model a synchronised transition of two agents.
The agents agree on the synchronisation and one of them performs the move first.
But then it is impossible to guarantee that the other agent finishes the synchronisa-
tion by performing the promised move and arrive at a correct state, since there is no
mechanism to enforce the performing of a move. Therefore it is necessary to have a

4 CHAPTER 1. INTRODUCTION

language primitive that allows for performing several transitions simultaneously.

1.3 Contributions

For the purpose of modular verification in this thesis we define sync-programs, an
automata-based formalism of interactive systems which extends Attie and Emer-
son’s approach by allowing processes to perform moves simultaneously. Actually,
we consider a quite general form of synchronisation that allows components of a
sync-program to perform a transition either autonomously, or by synchronising with
another component, or by synchronising with more than one other component. This
permits a wide range of interactions between biological entities to be suitably de-
scribed.

The modular verification allows qualitative aspects of systems to be analysed
with the guarantee that properties proved to hold in a suitable model fragment also
hold in the whole model. The correctness of the verification technique is proved.
The class of properties preserved is ACTL−, the universal fragment of temporal
logic CTL without the nextstate modality. The preservation holds only for positive
answers, and negative answers are not necessarily preserved.

In order to verify properties of whole models or of model fragments it is possi-
ble to translate them into the input language of an existing model checking tool.
Specifically, we use the NuSMV model checker [23], which is a well-established and
efficient instrument. We provide a formal translation of sync-programs to simpler
automata, which can be given as input to NuSMV. We prove the correspondence of
the verification problems.

We show the application of our verification technique in some biological case
studies. We compare the time required to verify the property on the whole model
with the time needed to verify the same property by only considering those modules
which are involved in the behaviour of the system related to the property.

In sync-programs we use a general multi-way type of synchronisation. In this
synchronisation a move of an automaton explicitly indicates all the moves required to
synchronise with it. Although being correct, this sometimes leads to quite complex
model descriptions. Generalising, we modify the definition of synchronisation in
order to obtain more succinct models. However, we argue that in order for the
modular verification technique to work, a specific type of synchronisation is required
for which we identify a necessary condition. Interestingly, this condition implies
that a synchronisation that makes the modular verification correct coincides with
the notion used in the original definition of sync-programs.

Another aspect that we deal with in the definition of our formalism is fairness,
which is a constraint on a behaviour of the system that is often considered in con-
current systems but novel in the applications to systems biology. The notion of
fairness is not only necessary to apply the modular verification but from our inves-
tigation it turns out to be useful to describe the behaviour of a biological system

1.4. STRUCTURE OF THE THESIS 5

more accurately.
In order to handle modelling and verification of more realistic biological scenarios,

we propose a dynamic version of our formalism. It allows entities to be created
dynamically, in particular by other already running entities, as it often happens in
biological systems. Moreover, multiple copies of the same entities can be present
at the same time in a system. We show a translation of our formalism to Petri
Nets. This has a consequence that tools developed for Petri Nets could be used
also for dynamic sync-programs. Modular verification allows properties expressed
as DACTL− formulae (dynamic version of ACTL−) to be verified on a portion of
the model.

We show how to verify a particular class of biological systems, metabolic path-
ways, which are series of biochemical reactions occurring within a cell. For this
class of systems we show how to automatically decompose the monolithic model
given as a set of reactions subject to some assumptions. We show encoding of the
model as a sync-program and an ad-hoc translation to NuSMV. This case study,
which consists of 143 species and 80 reactions, also provides a proof of concept for
the scalability of the approach. In addition, it suggests that a tool for the analysis
of pathways could be developed that allows biologists to study indispensability of
components, effects of the removal (or mutation) of some components and causality
relationships among components (or species). The tool would use model checking
internally without exhibiting it to the user. Furthermore, the modular verification
would consent to obtain results of analyses in the order of seconds or minutes even
for complex pathways.

The results raise the prospect of rendering tractable problems that are currently
intractable in the verification of biological systems. In addition, we expect that the
techniques developed in the thesis could be applied with profit not only to models
of biological systems, but more generally to models of concurrent systems.

1.4 Structure of the Thesis

The thesis is structured as follows.

• In Chapter 2 we recall some background notions in Computer Science, Math-
ematics and Biology that will be assumed in the rest of the thesis.

• In Chapter 3 we present the automata-based formalism of sync-program that
is suitable for modelling biological systems with modularity in mind. The
formalism is an extension of synchronisation skeletons with the possibility of
performing moves simultaneously. We present the syntax and the semantics of
sync-programs. As an example of modelling of biological systems we apply our
formalism to the well-known biological process of lac operon gene regulation.

• In Chapter 4 we develop the modular verification technique for sync-programs.
We specify the projection operators needed to obtain fragments of the program

6 CHAPTER 1. INTRODUCTION

and show that any computation of a sync-program is preserved under the
projection. Then we prove for any ACTL− formula, that if it is satisfied in
a semantics of a projected sync-program, i.e. in a fragment of a model, then
the formula is satisfied also in the whole sync-program. Finally, we apply the
modular verification to the model of the lac operon and for some interesting
properties of the system we indicate the smallest fragment sufficient for the
verification.

• In Chapter 5 with the aim of doing the verification practically, we formally
specify the translation of sync-programs to simpler automata that can be im-
plemented in the tool NuSMV. We show the correctness of our translation
with respect to the verification of ACTL− properties. We verify the properties
of the lac operon model from the preceding chapter in NuSMV. We compare
the time necessary to verify such properties by using our modular verification
approach with respect to the the time of verifying the same properties on the
whole model.

• In Chapter 6, we investigate the class of systems for which it is possible to
provide a modular verification technique in the line of Chapter 4. Generalising,
we modify the definition of synchronisation in order to obtain more succinct
models. We identify a necessary condition for the technique and show that it
coincides with our original definition of synchronisation. We briefly compare
sync-automata to other formalisms and sketch the possibility of porting the
verification technique to other formalisms.

• In Chapter 7, we extend the approach by allowing sync-automata (the com-
ponents of a sync-program) to be created dynamically by other already run-
ning sync-automata. Moreover, we allow several instances of the same sync-
automata to be executed concurrently, without any bound on the number of
concurrent instances of the same sync-automaton. This extension is hence a
new formalism that we call dynamic sync-programs and it is biologically mo-
tivated. We give the syntax and the semantics of the new formalism along
with a Petri net representation which allows us to draw some results about
the decidability of some problems for dynamic sync-programs. We develop a
modular verification technique for dynamic sync-programs which will allow to
prove formula preservation of a dynamic variant of the ACTL− logic that we
define. We apply the approach to a biological case study, namely the EGF
signalling pathway.

• In Chapter 8, show how to verify metabolic pathways. We show how to au-
tomatically identify components of a pathway and implement them as sync-
automata. We also give an ad-hoc translation to NuSMV that shows to be
more efficient for this class of systems than the one given in Chapter 5. We
exemplify the approach on a case study of MAP kinase cascade activated by

1.5. PUBLISHED MATERIAL 7

surface and internalised EGF receptors and verify some biologically relevant
properties in a modular way.

• In Chapter 9, in order to be able to describe quantitative aspects of biological
systems, we sketch a possible stochastic extension of dynamic sync-programs.
Without studying their modular verification, we motivate and suggest possible
future developments. We show an application of the extended formalism on
systems of interest in epidemiology where we study some issues by using the
probabilistic model checking as a tool.

Finally, in Chapter 10 we draw some conclusions and discuss related work and
possible further developments.

1.5 Published Material

Part of the material presented in this thesis has appeared in several publications, in
particular:

• Sync-programs and their modular verification presented in Chapters 3 and
4 have appeared in [38]. An extended version along with the translation of
the case study from Section 3.3 according to the translation function given in
Section 5.1 and the experiments from Section 5.5 are published in [39].

• The modular verification of dynamic sync-programs presented in Chapter 7
have appeared in [37].

• The application of the stochastic extension of dynamic sync-programs to Epi-
demiology and their analysis by using the probabilistic model checking from
Chapter 9 were presented in [41].

• An investigation of the class of systems to which it is possible to apply the
modular verification in relation to synchronisation, based on Chapter 6, has
been published in [40].

All the published material is presented in this thesis in a revised and extended form.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Transition Systems and Logic

Transition systems Finite state transition systems (FSTSs) [30] provide a gen-
eral description of a dynamical system that implicitly or explicitly underlies most de-
scription formalisms for concurrent systems. In particular this formalism also called
Kripke structure is frequently derived from high-level languages used for modelling
the dynamics of biological systems.

Moreover, statements in temporal logics, the specification language introduced
in the following sections, are usually interpreted on FSTSs. A finite state transition
system is formally defined as a tuple Σ =< S,AP, L, T, S0 >, where S is a set of
states, AP is a set of atomic propositions, L : S → 2AP is a labelling function that
associates to a state s ∈ S the set of atomic propositions satisfied by s, T ⊆ S × S
is a relation defining transitions between states, and S0 ⊆ S is a set of initial states.

A labelled transition system is an FSTS in which transitions are enriched with
labels. In a labelled transition system the label of a transition usually denotes the
event that has caused the transition.

Logic Computation Tree Logic CTL∗ [27] which is an extension of classical logic
that allows reasoning about an infinite tree of state transitions. It uses operators
about branches (non-deterministic choices) and time progression (state transitions).
Two path quantifiers A and E are thus introduced to handle non-determinism: Af
meaning that f is true on all branches, and Ef that it is true on at least one
branch. The time operators are F,G,X, U and Uw; Xf meaning f is true at the
next transition, Gf that f is always true, Ff that f is eventually true, f U g
meaning f is always true until g becomes true, and f Uw g meaning that either f
remains true until g becomes true or f holds forever. In this logic, Ff is equivalent
to true U f , f Uw g to (f U g) ∨ Gf . We have the following duality properties:
¬(E(f)) = A(¬f), ¬(F (f)) = G(¬f), ¬(f U g) = (¬g Uw ¬f).

The semantics of CTL∗ is evaluated on finite state transition systems. A path

10 CHAPTER 2. BACKGROUND

in FSTS Σ =< S,AP, L, T, S0 >, starting from state s0 is an infinite sequence of
states π = s0, s1, . . . such that (si, si+1) ∈ T for all i ≥ 0. We denote by πk the path
sk, sk+1, The following is the inductive definition of the truth value of a CTL∗

formula in a state s or on a path π, in a FSTS Σ.
Σ, s � α iff α ∈ L(s)
Σ, s � ¬f iff s 6� f
Σ, s � f ∨ g iff Σ, s � f or Σ, s � g
Σ, s � Ef iff there exists a path π starting from s s.t. Σ, π � f
Σ, s � Af iff for all paths π starting from s, Σ, π � f

Σ, π � f iff Σ, s � f where s is the first state of π
Σ, π � ¬f iff Σ, π 6� f
Σ, π � f ∨ g iff Σ, π � f or Σ, π � g
Σ, π � Xf iff Σ, π1 � f
Σ, π � f U g iff there exists k ≥ 0 s.t. Σ, πk � g and

Σ, πj � f for all 0 ≤ j < k
Σ, π � f Uw g iff either for all k ≥ 0,Σ, πk � f or there exists k ≥ 0

s.t. Σ, πk � f ∧ g and Σ, πj � f for all 0 ≤ j < k

The computation Tree Logic CTL [13] is the fragment of CTL∗ where each tem-
poral operator must be preceded by a path operator, and each path operator has
to be immediately followed by a temporal operator. The Linear Temporal Logic
LTL [78] is the fragment of CTL∗ without path quantifiers, and where a formula is
true in an FSTS if it is true on all paths. The expressiveness of LTL and CTL is
incomparable.

Fairness Frequently, when dealing with systems consisting of components, we are
interested only in computation paths that are “fair”, in the sense that all components
participate on the computation in a fair way. Appropriate fairness assumptions are
often crucial for establishing that a program meets certain properties such as absence
of starvation. For example, a computation is not fair if a component of the system
is ignored forever.

Properties describing these requirements are expressible in CTL∗ but cannot be
expressed directly in CTL. In order to deal with fairness in CTL, its semantics
must be modified slightly. We limit our attention only to paths that satisfy fair-
ness constraints expressing how the individual components should participate in the
computation.

Several types of fairness are considered in the literature. For a comprehensive
study of the matter see [45]. Unconditional fairness (also known as impartiality)
requires that every process is executed infinitely often during the computation. In
weak fairness (also known as justice) every process enabled almost everywhere must
be executed infinitely often. Strong fairness implies that every process enabled
infinitely often is executed infinitely often. Finally, in generalised fairness conditions

2.2. MODEL CHECKING 11

about infinite computations may be expressed by means of any atomic proposition
from the language. This is frequently done by using an LTL formula.

We remark that to allow verification of fairness constraints of computation paths
we need to include in transition labels information about which component has par-
ticipated on the state change. Therefore in the rest of the thesis labelled transition
systems will be considered.

2.2 Model Checking

Model checking is a fully automatic verification method for both hardware and
software systems. Essentially it is an exhaustive search of the state space of the
system. Only finite state systems are considered. Model checking tools face a
combinatorial blow up of the state space, commonly known as the state explosion
problem. Efficient techniques have been proposed to handle this condition.

Model checking of CTL was originally proposed by Clarke, Emerson and Sistla
[28]. It involves calculating satisfaction sets, Sat(f), where Sat(f) = {s ∈ S : s �

f}. In order to calculate these sets the syntax tree of f is constructed and the
subformulae are processed in a bottom-up manner, more precisely the leaves are
labelled with the atomic propositions or true, while the inner nodes are labelled
with ¬ , ∧ , EX ,E(U), EG formulae. Nodes labelled ¬ and X have exactly
one son. Other inner nodes have two sons. The algorithm traverses the syntax tree
in this (postfix) order and calculates the satisfaction sets recursively (i.e. syntax tree
is not constructed explicitly). Let us suppose, the CTL formula is in the existential
normal form, given by true|a|f1 ∧ f2|¬f |EXf |E(f U g)|EGf . Satisfaction set of
true is the whole set of states. Satisfaction set of an atomic formula is a set of states
in whose labelling this formula is included. For conjunction and negation we easily
compute the satisfaction set from satisfaction sets of the subformulae. For the EXf
formula, the satisfaction set consists of the states that lead to satisfaction set of f .
Satisfaction set of E(f U g) is computed from Sat(g) by iteratively including states
from Sat(f) leading to this set. For Sat(EGf), instead, we start with Sat(f) and
iteratively include states leading to this set.

These are some of more advanced techniques used in model checking of CTL.

Symbolic model checking. The state space is represented using boolean formu-
lae. State exploration is carried out manipulating these formulae. This is possible
thanks to OBDDs (Ordered Binary Decision Diagrams) that are a canonical repre-
sentation for boolean formulae which is often efficient. Most notable model checkers
based on OBDDs are SMV [23] and SPIN [61].

Explicit model checking. The state space is represented explicitly. State explo-
ration is carried out using hash tables. State explosion limits the size of systems that
can be handled using explicit techniques. However for protocol-like (asynchronous)

12 CHAPTER 2. BACKGROUND

systems explicit state representation usually works better than symbolic state rep-
resentation. A important tool based on explicit state representation is the Murphi
model checker [33].

SAT based model checking. By fixing in advance the maximum length of coun-
terexamples to our specifications, a SAT solver can be used to look for counter ex-
amples. If we know that a counterexample will be not too long, using SAT is very
efficient. In this context a system and the negation of the specification is written as
a propositional boolean formula F in conjunctive normal form. Using SAT solver we
look for a satisfying assignment for F . If we found one then we have a counterex-
ample for the specification, otherwise the system satisfies the specification. Any
efficient SAT solver can be used, e.g. SATO [86], GRASP [69]. SAT based model
checker: BMC [15].

The power of traditional model checking is not exhaustive verification but rather
its capability to generate useful diagnostic feedback in case a violation of the prop-
erty is encountered. Due to this feature, model checking is seen as an effective and
powerful bug-hunting technique: it does not only indicate that a property is refuted,
but also indicates why.

Model checking has been recently applied in model validation in systems biology.
All the properties we mentioned in Section 2.8 can be checked by using current model
checking tools.

2.3 NuSMV Model Checker

The NuSMV model checker [23] is a well-established and efficient symbolic model
checker for Finite State Machines (FSMs). It is particularly suitable to be used in
a framework of modular verification since its input language provides for modular
descriptions and because it accepts CTL (that includes ACTL−, Section 4.3) as the
language for property specification.

The input language can be used to describe systems in three different styles:
as a synchronous system, as an asynchronous system, and by means of a direct
specification of the FSM. We shortly describe the last style.

A direct specification of a FSM in NuSMV may consist of several modules that
may have parameters. One module is called main, and it is the root of the model. As
an example consider the following simple NuSMV model consisting of two modules:
main and proc.

MODULE main

VAR

p1 : proc1(p2.mutex);

p2 : proc2(p1.mutex);

2.3. NUSMV MODEL CHECKER 13

MODULE proc1(other)

VAR

mutex : boolean;

DEFINE

free := !other & !mutex;

INIT

mutex : FALSE;

TRANS

free & next(mutex) | mutex & next(!mutex);

MODULE proc2(other)

VAR

mutex : boolean;

DEFINE

free := !other & !mutex;

INIT

mutex : FALSE;

TRANS

free & next(mutex) | mutex & next(!mutex);

The example describes two asynchronous processes willing to access some resource in
mutual exclusion. In module main we have two variables (defined in the VAR section
of the module) p1 and p2 corresponding to the two processes. In module proc we
have one boolean variable mutex that is true if the process is accessing the resource.
The formal parameter other is a reference to the mutex variable of the other process
(as it is stated in module main). In section DEFINE it is possible to define some
macros (or shortcuts): in this case we define the macro free corresponding to
!other & !mutex that is true if and only if neither of the two processes is accessing
the resource (note that !, & and | represent negation, conjunction and disjunction,
respectively). In section INIT the initial values of variables can be set (in this case
mutex is set to false). Finally, in section TRANS a propositional formula can be given
to specify the transition relation of the FSM. The formula can refer to the values
of the variables before and after (by using the keyword next) the execution of the
transition. In the example we have two possible transitions: the first from a state
satisfying free to a state in which mutex is set to true, and the second from a state
in which mutex holds to a state in which it is set to false.

Note that the direct specification of the transition relation works synchronously.
A next state is any global state that satisfies transition relation specifications in all
the modules. In this example, we demand an asynchronous execution. In fact, the
semantics of the language is such that transitions concerning different modules are
performed in parallel. This causes the two processes p1 and p2 to be able to set
their own mutex variables to true in the same step.

The asynchronicity has to be taken care of at the modelling level. It can be

14 CHAPTER 2. BACKGROUND

forced by means of an extra module which chooses at each step which module is to
perform the transition at the next step. It consists of a variable with two possible
values. Since there are no constraints on values of this variable, in each step it is
non-deterministically decided what is its next value.

MODULE selector

VAR

select : {selP1,selP2};

In the module main we initialise the selector module. We pass the value containing
the name of the module chosen for the current step as an argument to each of the
modules proc1 and proc2 by modifying their headers.

MODULE main

VAR

sel : selector;

p1 : proc1(sel.select,p2.mutex);

p2 : proc2(sel.select,p1.mutex);

In the bodies of modules proc1 and proc2, depending whether the module was
chosen execution or not in the next step, the transition state change is specified or
no change to the state is made.

MODULE proc1(select,other)

VAR

mutex : boolean;

DEFINE

free := !other & !mutex;

INIT

mutex : FALSE;

TRANS

((free & next(mutex) | mutex & next(!mutex)) & next(select)=selP1)

| (mutex=next(mutex) & next(select)!=selP1);

In this way the asynchronous execution is guaranteed.

A desired property for this program is that it should never be the case that
the two processes proc1 and proc1 are at the same time in the mutex state. This
property can be expressed by the following CTL formula:

AG! (p1.mutex & p2.mutex)

By running NuSMV with the commands

system prompt> NuSMV -int mutex.smv

NuSMV > go

NuSMV > check_ctlspec -p "AG! (p1.mutex & p2.mutex)"

2.4. SYNCHRONISATION SKELETONS 15

we obtain the following output:

-- specification AG !(p1.mutex & p2.mutex) is true

NuSMV tells us that the CTL specication is true. In the contrary case it would
produce a counter-example path that can be used for debugging.

2.4 Synchronisation Skeletons

We recall the definition of the synchronisation skeleton model [27] used also by Attie
and Emerson [7]. Note that for the purpose of this thesis we consider a simplified
version of synchronisation skeletons without shared variables. For the purpose of
easy extendability in the course of the thesis, we give definitions in a form slightly
different from the one used in the above cited works.

Consider an index set I containing process indices. Let APi be a set of atomic
propositions for process i, pairwise disjoint for all atomic propositions APj for all
i 6= j. We define I(i) as I − {i}.

Intuitively, the synchronisation skeleton of a process Pi with i from I is a state-
machine where each state represents a region of code that performs some sequential
computation and each arc represents a conditional transition (between different
regions of sequential code) used to enforce synchronisation constraints.

Formally, a synchronisation skeleton is a directed graph where each node is a local
state and each arc has a label that specifies an enabling condition. This condition
describes the states of other synchronisation skeletons that make the move enabled.

Definition 2.1. A synchronisation skeleton SP I
i , where i is an index and I is an

index set, is a tuple (Si, S
0
i , Ri):

• Si ⊆ P(APi) is the set of states ;

• S0
i ⊆ Si is the set of initial states ;

• Ri ⊆ Si×ECi×Si, where ECi ⊆
⋃

L⊆I(i) Πj∈LP(APj), are the moves between
states.

A label of a move is called an enabling condition.

Definition 2.2. An enabling condition of a sync-skeleton SP I
i is a label of the form

{Aj | j ∈ L} where L ⊆ I(i) and Aj is a sets of atomic propositions drawn from
APj or their negations.

We display an enabling condition {Aj | i ∈ L}, unless said otherwise, as a formula
∧j∈LAj where Aj is a conjunction of atomic propositions from APj. We adopt two
views of Aj: one as a set of atomic propositions, one as a conjunction of these
propositions. We switch between these views as convenient.

16 CHAPTER 2. BACKGROUND

We can see an example of a synchronisation skeleton on Figure 2.1. The syn-
chronisation skeleton SP I

0, where 1 ∈ I, is built over a set of atomic proposi-
tions AP 0 = {sb0, ab0, cm0}. It contains three states, namely {sb0,¬ab0,¬cm0},
¬{sb0, ab0,¬cm0} and {¬sb0,¬ab0, cm0}, with the first chosen as initial. On the
figure we display only the atomic propositions true in a state. The set of moves con-
tains three regular and two looping moves. The enabling conditions of these moves

consists of references to AP 1 = {sb1, ab1, cm1}. For example, move sb0
sb1−−→ ab0

can be performed only if there is another synchronisation skeleton in a state that
satisfies ab1.

sb0

ab0

cm0

ab1

sb1

cm1

true

true

Figure 2.1: An example of sync-skeleton – SP I
0.

A synchronisation skeleton program consists of a parallel composition of synchro-
nisation skeletons related by an index set I.

Definition 2.3. Let I = {1, . . . , n} be an index set. The synchronisation skeleton
program is a tuple SP I = (SI

0 , SP
I
1 || . . . ||SP

I
n), where each SP I

i is a synchronisation
skeleton. The set SI

0 = S0
1 × . . .×S0

n is the set of initial states of the synchronisation
skeleton program.

The parallelism is modelled in the usual way by the non-deterministic inter-
leaving of moves of the individual synchronisation skeletons of the processes Pi.
Hence, at each step of the computation, some process with an enabled arc is non-
deterministically selected to be executed next. Now we define the semantics of
synchronisation skeleton formally. First, we define an I-state.

Let I be an index set where I = {1, . . . , n}. An I-state is a n-tuple s =
{s1, . . . , sn}, where si ∈ Si for all i ∈ I. An I-state represents a global state
composed of local states of all synchronisation skeletons in I. We denote the i-th
element of an I-state s as s⌈i.

The definition of semantics of synchronisation skeletons follows.

Definition 2.4. Let I = {1, . . . , n} be an index set. The semantics of SP I =
(SI

0 , SP
I
1 || . . . ||SP

I
n) is given by a structure MI = (SI ,S

0
I ,RI), where

• SI = Πi∈ISi is a set of I-states

• S0
I ⊆ SI is a set of initial states

2.5. MULTISETS 17

• RI ⊆ SI × P(I) × SI is a transition relation giving the transitions of SP I . A
transition (s, l, t) is in RI iff there is an index i, such that

– there is a move si
cci−→ ti such that

∗ si = s⌈i and ti = t⌈i

∗ cci = {Aj | j ∈ L} and L ∈ I(i) and for all j ∈ L, Aj is true in sj

– for all j such that j 6= i, s⌈j = t⌈j.

A transition (s, l, t) in the transition relation RI intuitively means that a move
from synchronisation skeleton with index i has been performed and all the other
synchronisation skeletons remained idle.

By using a syntactic projection on a synchronisation automaton, one obtains
another synchronisation automaton that can be a base for modular verification. In
[7] property preservation is proved, namely each ACTL− (see Section 4.3) property
that can be verified in a semantics of a projected synchronisation skeleton program
holds also in the semantics of the original synchronisation skeleton program.

2.5 Multisets

In mathematics, a multiset is a generalisation of a set. While each member of a set
has only one membership, a member of a multiset can have more than one member-
ship (meaning that there may be multiple instances of a member in a multiset).

Formally, a multiset is a 2-tuple (S,m), where S is a set and m : S → N≥1 is a
function from S to the set N≥1 = {1, 2, 3, ...} of positive natural numbers. The set
S is called the underlying set of elements. For each a in S the multiplicity (that is,
number of occurrences) of a is the number m(a).

For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a,
b, and c are respectively 2, 3, and 1, and the cardinality of the multiset is 6. To
distinguish between sets and multisets, we use a notation that incorporates brackets:
the multiset {2, 2, 3} can be represented as [2, 2, 3].

We say that M = (S,m) is a multiset over S. We denote the set of all multisets
over S as Mset(S). We say that [a1, . . . , an] is a multiset over S iff for all i ∈
{1, . . . , n}, ai ∈ S where some of a1, . . . , an are possibly occurrences of the same
element from S.

We say that an element a is a member of a multiset M , if a is a (set) member
of the underlying set of M . We say that M1 = (S1, m1) is a submultiset of M2 =
(S2, m2) iff M1 ⊆ M2 and for all a ∈ M1, m1(a) ≤ m2(a). An empty multiset is
denoted as ∅.

Now we describe several basic set operations.

18 CHAPTER 2. BACKGROUND

Multiset intersection is specified as follows: if M1 = (S1, m1) and M2 = (S2, m2)
then M1 ∩ M2 = (S1 ∩ S2, m∩), where m∩ is defined on S1 ∩ S2 and m∩ : a 7→
min(m1(a), m2(a)).

Multiset sum is specified as follows: if M1 = (S1, m1) and M2 = (S2, m2) then
M1⊎M2 = (S1∪S2, m⊎), where m⊎ is defined on S1∪S2 and m⊎ : a 7→ m1(a)+m2(a).

Multiset difference is specified as follows: if M1 = (S1, m1) and M2 = (S2, m2)
then M1 − M2 = (S1 ∪ S2, m−), where m− is defined on S1 ∪ S2 and m− : a 7→
max(m1(a) −m2(a), 0).

Now we specify the Cartesian product, relations and functions over multisets.
A Cartesian product of two multisets M1 = (S1, m1) and M2 = (S2, m2) is a

multiset M1 × M2 = (S1 × S2, m×), where m× is defined on S1 × S2 and m× :
(a1, a2) 7→ m1(a1).m2(a2).

A relation between two multisets M1 and M2 is any submultiset of M1 ×M2.
A function f : M1 → M2 from a multiset M1 = (S1, m1) to a multiset M2 =

(S2, m2) is any relation between M1 and M2 with a constraint on the multiplicity
function: for each a1 ∈ M1, Σ(a1,a2)∈fmf((a1, a2)) = m1(a1). The sets S1 and S2 are
called domain and codomain, respectively, of function f . The codomain of function
is denoted as Im(f).

As an example of a function over multisets, consider multisets M1 = [1, 1, 2] and
M2 = [a, b, b]. Then multiset f1 = [(1, a), (1, b), (2, a)] is an example of a function,
note that each element in M1 takes place of as many couples in f1 as is its multiplicity
in M1. On the other hand, f1 = [(1, a), (1, b), (1, a)] is not a function, since there
are three assignments to an element 1 from M1, but its multiplicity in M1 is 2.

Similarly to functions over sets, we can define when a function over multisets is
injective, surjective and bijective.

We call a function f : M1 → M2 injective, iff:
for each a2 ∈ M2, Σ(a1,a2)∈fmf((a1, a2)) < m2(a2).

We call a function f : M1 → M2 surjective, iff:
for each a2 ∈ M2, Σ(a1,a2)∈fmf((a1, a2)) = m2(a2).

If a function f is both injective and surjective, then f is bijective.

2.6 Petri Nets

A Petri net [76] (also known as place/transition net) is a mathematical modelling
language for the description of distributed systems. A Petri net consists of a Petri
net graph (a bipartite graph whose vertices are divided into places and transitions)
and of a marking (a function of places into natural numbers giving the number of
tokens contained in each place).

Syntax A Petri net graph is a 3-tuple (S, T,W), where

• S is a finite set of places

2.6. PETRI NETS 19

• T is a finite set of transitions

• S and T are disjoint, i.e. no object can be both a place and a transition

• W : ((S × T) ∪ (T × S)) → N is a multiset of arcs, i.e. it defines arcs and
assigns to each arc a non-negative integer arc multiplicity; note that no arc
may connect two places or two transitions.

A marking of a Petri net graph is a multiset of its places, i.e. a function M :
S → N. We say that a marking assigns a number of tokens to each place.

A Petri net is a 4-tuple (S, T,W,M0), where

• (S, T,W) is a Petri net graph;

• M0 is the initial marking, a marking of the Petri net graph.

Execution semantics The behaviour of a Petri net is defined as a relation on its
markings, as follows.

Note that markings can be added like any multiset:
M + M ′ = {s → (M(s) + M ′(s)) | s ∈ S}. The execution of a Petri net graph
G = (S, T,W) can be defined as the transition relation →G on its markings, as
follows:

• for any tr in T : M →G,tr M ′ iff there is M ′′ : S → N s.t. M = M ′′ +
Σs∈SW (s, tr) and M ′′ + Σs∈SW (tr , s) = M ′,

• M →G M ′ iff there is tr ∈ T s.t. M →G,tr M
′.

In words: firing a transition tr in a marking M consumes W (s, tr) tokens from
each of its input places s, and produces W (tr , s) tokens in each of its output places
s.

We say that a marking M ′ is reachable from a marking M in one step if M →G

M ′. We say that it is reachable from M if M →∗
G M ′, where →∗

G is the reflexive
and transitive closure of →G, that is, if it is reachable in zero or more steps.

For a Petri net N = (S, T,W,M0), we are interested in the firings that can be
performed starting with the initial marking M0. Its set of reachable markings is the
set R(N) = {M ′ | M0 →

∗
(S,T,W) M

′}. The reachability graph of N is the transition

relation →G restricted to its reachable markings R(N). The reachability graph of
N represents the state space of the net.

One thing that makes Petri nets interesting is that they provide a balance be-
tween modelling power and analysability: many problems one would like to analyse
about concurrent systems can be automatically determined for Petri nets. However
some of those analyses are very expensive to determine in the general case or it is
even unknown at all how to do it even if we do know of their general decidability.
Several subclasses of Petri nets have been studied that can still model interesting
classes of concurrent systems, while these problems become easier.

20 CHAPTER 2. BACKGROUND

2.7 Selected Notions in Biology

Cell biology, the study of the morphological and functional organisation of cells, is
now an established field in biochemical research. Examples of processes of interest
in cell biology are gene regulatory networks, metabolic networks and signalling path-
ways. The main actors are proteins and nucleic acids, which interact as in a complex
system to perform their activities. The study of the cell as a complex system is the
topic of the recently emerged research field of systems biology.

Now we give some fundamental notions of cell biology that will be useful to
understand the case studies in this thesis.

Cells There are two basic classifications of cell: procaryotic and eucaryotic. Tra-
ditionally, the distinguishing feature between the two types is that a eucaryotic cell
possesses a membrane-enclosed nucleus and a procaryotic cell does not. Procaryotic
cells are usually small and relatively simple, and they are considered representa-
tive of the first types of cell to arise in biological evolution. Procaryotes include,
for instance, almost all bacteria. Eucaryotic cells, on the other hand, are generally
larger and more complex, reflecting an advanced evolution, and include multicellular
plants and animals.

Proteins A eucaryotic or procaryotic cell contains thousands of different proteins,
the most abundant class of biomolecules in cells. The genetic information contained
in chromosomes determines the protein composition of an organism. As is true of
many biomolecules, proteins exhibit functional versatility and are therefore utilised
in a variety of biological roles. A few examples of biological functions of proteins are
enzymatic activity (catalysis of chemical reactions), transport, storage and cellular
structure.

Although biologically active proteins are macromolecules that may be very dif-
ferent in size and in shape, all are polymers composed by amino acids that form a
chain. The number, chemical nature, and sequential order of amino acids in a pro-
tein chain determine the distinctive structure and characteristic chemical behaviour
of each protein. The native conformation of a protein is determined by interactions
between the protein itself and its aqueous environment, in which it reaches an ener-
getically stable three–dimensional structure, most often the conformation requiring
the least amount of energy to maintain. In this three dimensional structure, often
very complex and involving more than one chain of amino acids, it is sometimes
possible to identify places where chemical interaction with other molecules can oc-
cur. This places are called interaction sites, and are usually the basic entities in the
abstract description of the behaviour of a protein.

Nucleic Acids (DNA and RNA) Similarly to proteins, nucleic acids are poly-
mers, more precisely they are chains of nucleotides. Two types of nucleic acid exist:

2.7. SELECTED NOTIONS IN BIOLOGY 21

the deoxyribonucleic acid (DNA) and the ribonucleic acid (RNA). The former con-
tains the genetic instructions for the biological development of a cellular form of life.
In eucaryotic cells, it is placed in the nucleus and it is shaped as a double helix, while
in procaryotic cells it is placed directly in the cytoplasm and it is circular. DNA
contains the genetic information, that is inherited by the offspring of an organism.
A strand of DNA contains genes, areas that regulate genes, and areas that either
have no function, or a function yet unknown. Genes are the units of heredity and
can be loosely viewed as the organisms cookbook.

Like DNA, most biologically active RNAs are chains of nucleotides forming dou-
ble stranded helices. Unlike DNA, this structure is not just limited to long double-
stranded helices but rather collections of short helices packed together into structures
akin to proteins. Various types of RNA exist, among these we mention the Messen-
ger RNA (mRNA), that carries information from DNA to sites of protein synthesis
in the cell, and the Transfer RNA (tRNA), that transfers a specific amino acid to a
growing protein chain.

The Central Dogma of Molecular Biology The description of proteins and
nucleic acids we have given suggests a route for the flow of biological information
in cells. In fact, we have seen that DNA contains instructions for the biological
development of a cellular form of life, RNA carries information from DNA to sites
of protein synthesis in the cell and provides amino acids for the development of new
proteins, and proteins perform activities of several kinds in the cell. Schematically
we have this flux of information:

DNA
transcription
−−−−−−−→ RNA

translation
−−−−−−→ protein

in which transcription and translation are the activities of performing a copy of a
portion of DNA into a mRNA molecule, and of building a new protein by following
the information found on the mRNA and by using the amino acids provided by tRNA
molecules. This process is known as the Central Dogma of Molecular Biology.

Enzymes Enzymes are proteins that behave as very effective catalysts, and are
responsible for the thousands of coordinated chemical reactions involved in biological
processes of living systems. Like any catalyst, an enzyme accelerates the rate of a
reaction by lowering the energy of activation required for the reaction to occur.
Moreover, as a catalyst, an enzyme is not destroyed in the reaction and therefore
remains unchanged and is reusable.

The reactants of the chemical reaction catalysed by an enzyme are called sub-
strate. Substances that specifically decrease the rate of enzymatic activity are called
inhibitors, and, in enzymology, inhibitory phenomena are studied because of their
importance to many different areas of research. Inhibitors can be classified mainly in
two types, either competitive or noncompetitive. The former are substances almost
always structurally similar to the natural enzyme substrates and they bind to the

22 CHAPTER 2. BACKGROUND

enzyme at the interaction site where the substrates usually bind to. The latter are
substances that bear no structural relationship to the substrates and that cannot
interact at the active site of the enzyme, but must bind to some other portion of an
enzyme.

Enzymes perform many important activities in cells. For example, DNA tran-
scription and RNA translation are performed by enzymes, and in the external mem-
brane of the cell there are enzymes responsible for transporting some molecules from
the outside to the inside of the cell or vice versa.

2.8 Properties of Biological Systems and Logics

Qualitative properties are properties that are observed and can generally not be
measured as contrasted to quantitative properties. In biological settings, qualitative
properties deal with occurrence of cellular events and relations between them.

Properties of a biological system usually deal with states of the system. A state
of a system is usually defined by the states of its elements. A state of the cell is
defined by the values of the actors, either the presence or absence of molecules, or
their number, or their concentration in each part of the cell and by general data
like pH and the temperature. Note that the set of states can be just represented by
partial information on the actual values of state variables, like for instance interval
or constraints between variables.

We mention several most frequent types of properties investigated in the litera-
ture as identified in [73]. Monteiro et al. created a list of questions on the dynamics
of genetic, metabolic and signal transductional networks. The identified questions
were grouped into four categories, depending on whether they concerned the oc-
currence/exclusion, consequence, sequence and invariance of cellular events. These
categories include the most widely asked questions, however they do not include all.

For each category, the formalisation of of all types of formulae is shown in terms
of temporal logics CTL and CTL∗. Some of these formulae are in a form that
will allow for the modular verification approach developed in this thesis. On the
other hand, formulae with existential quantifiers are not from ACTL− and thus the
approach is not applicable to them.

These formalisations form formula patterns that can help writing correct formu-
lae by instantiating these patterns. Obviously, it is possible to formally describe
also properties not falling in one of the following groups. A resource on how to write
CTL formulae can be found in [35].

Occurrence/exclusion

It is possible / not possible for a state S to occur.

State S is described by some condition that is satisfied in this state. This concept
represents occurrence and its negation, exclusion. An example of this kind of prop-

2.8. PROPERTIES OF BIOLOGICAL SYSTEMS AND LOGICS 23

erty is “Wild bacteria never produce mucus by themselves when starting from a basal
state”. This type encompasses also questions about mutual exclusion, specifying
the negation of the undesired state, i.e. the simultaneous occurrences of two phe-
nomena. For instance, “It is not possible for a state to occur in which there is a high
concentration of protein P1 and P2”.

It is possible for a state S to occur.

EF (S) (O1)

It is not possible for a state S to occur.

¬EF (S) (O2)

Consequence

If a state S1 occurs, then it is possibly/necessarily followed by a state S2.

This type represents an ordering relation between two events. More precisely, it
expresses that if the first state occurs, then it is possibly or necessarily followed by
the occurrence of the second state. If the latter state necessarily follows, then the
consequence pattern expresses a form of causal relation. Examples of this type are,
for instance, “If a state occurs in which protein P is phosphorylated, then it is pos-
sibly followed by a state in which the expression of gene g decreases”, or “If a state
occurs in which the concentration of protein P is below 5 µM, then it is necessarily
followed by a state in which the expression of gene g is at its basal level”.

If a state S1 occurs, then it is possibly followed by a state S2.

AG(S1 → EF (S2)) (C1)

If a state S1 occurs, then it is necessarily followed by a state S2.

AG(S1 → AF (S2)) (C2)

Sequence

A state S2 is reachable and is possibly/necessarily preceded
at some time / all the time by a state S1.

This property type represents an ordering relation between two events. It ought
not to be confused with the consequence pattern, since the conditional occurrence
of the second state which characterises the latter, is absent in the sequence pattern.
It must be possible to observe both the first and the second state, in that order,
for an instance of the sequence pattern to be true. Four variants of this pattern are

24 CHAPTER 2. BACKGROUND

distinguished, depending on whether the second state follows possibly or necessarily
after the first state, and whether the system is in the first state all the time or only
at some time before the occurrence of the second state. Instances are “A steady state
is reachable and is necessarily preceded all the time by a state in which nutrient N
is absent” or “For all states at all computations, BO2 and BO3 do not occur one
after another and, at some time, they will occur between BO1 and UBO1” [77]. By
Chabrier et al. [22] this property type is called checkpoint.

A state S2 is reachable and is possibly preceded at some time by a state S1.

EF (S1 ∧ EF (S2)) (S1)

A state S2 is reachable and is possibly preceded all the time by a state S1.

E(S1 U S2) (S2)

A state S2 is reachable and is necessarily preceded at some time by a state S1.

EF (S2) ∧ ¬E(¬S1 U S2) (S3)

A state S2 is reachable and is necessarily preceded all the time by a state S1.

EF (S2) ∧ AG(¬S1 → AG(¬S2)) (S4)

Persistence

A state S can/must persist indefinitely.

In Chabrier et al. [22] S is called stable state. The invariance pattern is used to
check if the system can or must remain indefinitely in a state. In contrast with the
occurrence/exclusion pattern, the question is not whether a particular state can be
reached, but rather whether a particular state is invariable. Instances of the pattern
are “A state in which reaction R occurs at a high rate can persist indefinitely” and
“A state with a basal expression of gene g must persist indefinitely”.

A state S can persist indefinitely.

EG(S) (P1)

A state S must persist indefinitely.

AG(S) (P2)

2.8. PROPERTIES OF BIOLOGICAL SYSTEMS AND LOGICS 25

Oscillation

The states S1 and S2 oscillate.

Another interesting and frequent property scheme describes oscillatory behaviour.
This pattern (as identified in [19, 9]) says that whenever state S1 occurs, it is possi-
bly followed by state S2 and dually, whenever state S2 occurs, it is possibly followed
by state S1. An example of this type is “The states of high concentration of protein
P and low concentration of P oscillate”.

The states S1 and S2 oscillate.

EG((P → EF (Q)) ∧ (Q → EF (P))) (Osc1)

It is worth noting that the formulation is necessary but not sufficient condition
for oscillations. The correct formula for oscillations is indeed a CTL∗ formula that
cannot be expressed in CTL [19, 12]:

EG((P → F (Q)) ∧ (Q → F (P))) (Osc2)

26 CHAPTER 2. BACKGROUND

Chapter 3

Sync-programs

In this chapter we define sync-programs, an automata-based formalism of interactive
systems which extends synchronisation skeletons by allowing processes to perform
moves simultaneously. As an example of modelling of biological systems we apply
our formalism to the well-known biological process of lac operon gene regulation.

3.1 Syntax

To model biological systems, we use a component-based approach. Each component
represents a biological entity, e.g. a protein or a molecule.

We assume a finite index set I, where an index i represents a unique identifier of
a component. By I(i) we denote the set I−{i}. With a component with index i a set
AP i of atomic propositions is associated, which encode the state of the component.
The sets of atomic propositions are pairwise disjoint for all the components, i.e. if
i 6= j then AP i ∩AP j = ∅.

A component is modelled by using a finite state machine called a sync-automaton.

Definition 3.1. A sync-automaton P I
i , where i is a component index from index

set I, is a tuple (Si, S
0
i , Ri):

• Si ⊆ P(AP i) is the set of states ;

• S0
i ⊆ Si is the set of initial states ;

• Ri ⊆ Si × SC i × Si, where SC i ⊆ P(
⋃

j∈I(P(APj) × P(APj))), are labelled
moves between states.

Each state of a sync-automaton P I
i is a truth value assignment to atomic propo-

sitions of component with index i. We denote a move from state si to state ti with
a label c by si

c
−→ ti. The move from state si to ti with label c intuitively means that

automaton P I
i can move from si to ti if the activities of automata in I(i) satisfy

condition c called a synchronisation condition.

28 CHAPTER 3. SYNC-PROGRAMS

As an example, in Figure 3.1 we show three sync-automata, P I
1 , P I

2 and P I
3 ,

where I is the index set {1,2,3}. Sync-automaton P I
1 consists of two states, given by

two assignments to the only atomic proposition A in AP1. We write A and ¬A to
denote the assignment to A of tt (semantic true) and ff (semantic false), respectively.
Its moves are labelled by conditions on moves of the remaining sync-automata, P I

2

and P I
3 . The sync-automaton P I

2 has three states, built over the set AP 2 = {X, Y }
and moves conditioned by moves of P I

1 and P I
2 . Similarly, the third automaton, P I

3

is constructed over AP 3 = {C} and has two states. The sets of initial states of
the three sync-automata are S0

1 = {A}, S0
2 = {X ∧ ¬Y } and S0

3 = {¬C}. In the
graphical representation they are denoted by dangling arrows.

A ¬A

P
I

1
:

X ∧ ¬Y : X ∧ Y

(X ∧ ¬Y :¬X ∧ Y) ∧ (¬C:C)

true :Y
X ∧ ¬Y X ∧ Y

¬X ∧ Y

P
I

2
:

¬A 	

¬A 	

A : ¬A

(A : ¬A) ∧ (¬C : C)

¬C C

P
I

3
:

(X ∧ ¬Y :¬X ∧ Y) ∧ (A:¬A)

NOSYNC

Figure 3.1: A sync-program consisting of three sync automata, P I
1 , P I

2 and P I
3 .

The synchronisation condition consists of a set of requirements against other
sync-automata, each formed by a precondition and a postcondition on the move
that is expected to be performed synchronously.

Definition 3.2. A synchronisation condition of sync-automaton P I
i is a label of the

form {Aj1:Bj1 , . . . , Ajn:Bjn} where {j1, . . . , jn} ⊆ I(i) and Aj, Bj are sets of atomic
propositions drawn from APj or their negations.

We denote a synchronisation condition {Aj1:Bj1, . . . , Ajn:Bjn} as a formula
∧j∈LAj:Bj, where L = {j1, . . . , jn} and Aj, Bj are conjunctions of literals from AP j.
The set L ⊆ I(i) contains indices of the sync-automata with which P I

i wants to
synchronise. For every j in L, the sets of propositions Aj and Bj are to be satisfied
in the starting and ending state, respectively, of the synchronously performed move
of P I

j . In other words, Aj:Bj in a label of a move of P I
i says that every move in P I

j

that can be performed in parallel with this move of P I
i is obliged to lead from a state

satisfying Aj to a state satisfying Bj . It is worth mentioning that Aj and Bj need
not be full descriptions of states, they can be partial and thus be satisfied by more
than one state. In order for the synchronisation of several sync-automata to actually
take place, we will require that the move performed by each sync-automaton refers
in its synchronisation condition to every other participating sync-automaton.

3.2. SEMANTICS 29

Note that it is possible for L to be empty. Intuitively, this means that the
considered move of sync-automaton P I

i does not have any requirements on other
sync-automata. We write a synchronisation condition of this form, i.e. ∧j∈∅Aj :Bj ,

as NOSYNC . Move si
NOSYNC
−−−−−→ ti represents an autonomous move of P I

i i.e. the
sync-automaton moves without performing synchronisation.

In the special case that set Aj is empty, we shall write truej:Bj . In this case
the sync-automaton is willing to synchronise with any move of P I

j satisfying Bj

in the ending state. Symmetrically, if Bj is empty, Aj needs to be “matched” in
the starting state, and we write Aj :truej. If both Aj and Bj are empty, the sync-
automaton is ready to participate in synchronisation with any move of P I

j and we
write this condition as truej :truej. For the sake of simplicity we will always write
true :Bj and Aj :true for truej :Bj and Aj :truej , respectively. We cannot do the
same simplification on truej:true j, namely we cannot remove the two subscripts j,
because this would make it impossible to understand which is the sync-automaton
the synchronisation condition refers to.

Moreover, note that multiple moves between the same pair of states are possible.
Loops are covered by the definition as well, and we use an abbreviation Aj 	 for a
condition of the form Aj :Aj.

In the example in Figure 3.1, the sync-automaton P I
1 contains A

X∧¬Y :X∧Y
−−−−−−−→ ¬A

that can be performed in synchronisation with a move of P I
2 that leads from a state

that satisfies X ∧ ¬Y to a state that satisfies X ∧ Y . The only such move in P I
2

is X ∧ ¬Y
A:¬A
−−−→ X ∧ Y . Another option for changing the state from A to ¬A

is to synchronise with both P I
2 and P I

3 . Moreover, in the loop move in the state
¬A the sync-automaton P I

1 is willing to synchronise with any move of P I
2 with the

ending state satisfying Y . An example of a NOSYNC move can be found in P I
3 , in

particular the looping move in state C.

Having sync-automata related by an index set, that is their synchronisation
conditions refer to sync-automata within the index set, a sync-program is obtained
by running the sync-automata in parallel.

Definition 3.3. Let I = {1, . . . , n} be an index set. The sync-program is a tuple
P I = (SI

0 , P
I
1 || . . . ||P

I
n), where each P I

i is a sync-automaton. The set SI
0 = S0

1 ×
. . .× S0

n is the set of initial states of the sync-program.

Figure 3.1 shows the sync-program P I with I = {1, 2, 3} made up of sync-
automata P I

1 , P I
2 and P I

3 .

3.2 Semantics

Let I be an index set, where I = {1, . . . , n}. An I-state represents a configuration
of a program and is defined as a tuple s = (s1, . . . , sn) where each si is a state of
the sync-automaton P I

i . An I-state s = {s1, . . . , sn} can be projected onto a single

30 CHAPTER 3. SYNC-PROGRAMS

component index i ∈ I as follows: s⌈i = si. Similarly, s projected onto J ⊆ I with
nodes {j1, . . . , jk}, is s⌈J = (sj1, . . . , sjk). In program P I we define the type of a
move, represented by function type :

⋃

i∈I Ri → I, the index of the sync-automaton
the move belongs to. Function types provides the same functionality on a set of
moves.

Now we can proceed to defining the semantics of sync-programs as a labelled
transition system over I-states, called an I-structure. First, we give the definition
of a synchronisation, which is a complete set of moves from different automata
having all their synchronisation requirements satisfied.

Definition 3.4. Let I be an index set. We call a set of moves MOV a synchroni-
sation iff

1. all moves in MOV are from distinct sync-automata in I

2. if m ∈ MOV is of type i and has the form si
∧j∈LAj :Bj

−−−−−−→ ti, then for all j ∈ L

there is a move m′ ∈ MOV of type j and has the form sj
scj
−→ tj and for all

p ∈ Aj : sj(p) = tt and for all p ∈ Bj : tj(p) = tt

3. MOV is complete, i.e. if m ∈ MOV is of type i and has the form si
∧j∈LAj :Bj

−−−−−−→ ti,
then L = types(MOV) − {i}.

A pair of I-states such that the second state can be reached from the first one
by carrying out the synchronisation in question is called a support of the synchro-
nisation.

Definition 3.5. Let I be an index set. Consider a synchronisation MOV consisting
of moves si

sci−→ ti for all i ∈ types(MOV). We call a couple of states (s, t) the support
of synchronisation MOV iff s and t are I-states and

1. s⌈i = si for all i ∈ types(MOV)

2. t⌈i = ti for all i ∈ types(MOV)

3. for all i ∈ I − types(MOV): s⌈i = t⌈i.

Thus the semantics is a labelled transition system over I-states where the transi-
tions between two states s and t are obtained from the synchronisations with support
(s, t).

Definition 3.6. Let I = {1, . . . , n} be an index set. The semantics of P I =
(S0

I , P
I
1 ||...||P

I
n) is given by the I-structure MI = (SI ,S

0
I ,RI), where SI is a set

of I-states, S0
I ⊆ SI is the set of initial states and RI ⊆ SI × P(I) × SI is a

transition relation giving the transitions of P I . A transition (s, l, t) is in RI iff
there is a nonempty set MOV of moves such that l = types(MOV) and MOV is a
synchronisation with support (s, t).

3.2. SEMANTICS 31

A transition of the form (s, l, t) corresponds to the situation where sync-automata
with indices in l perform moves and the rest stays idle.

The synchronisation corresponding to a transition label l may contain only one
index, let us assume it is i. In this case there is a move in the sync-automaton P I

i

that does not require synchronisation with other sync-automata, i.e. set L in the
synchronisation condition of such a move is empty. Note that the third condition
of the definition of the synchronisation is satisfied vacuously. In this situation sync-
automaton P I

i performs an autonomous NOSYNC move from s⌈i to t⌈i.
The case in which l contains more indices corresponds to the synchronisation

of the sync-automata. Sync-automata with index in l can perform a move if all
their synchronisation requirements against other sync-automata are satisfied. In
particular, for sync-automaton P I

j set Aj must be satisfied in the starting state
and Bj in the ending state of the transition, respectively. Moreover, inclusion of
L in l guarantees that all the required sync-automata will really participate in the
synchronisation. Other automata are not included in the synchronisation, and as
stated in the definition of support, they are required to stay idle. The support thus
serves as a context of a synchronisation.

The completeness requirement in the definition of a synchronisation intuitively
means that in order for the synchronisation of several sync-automata to take place,
it is necessary that the move performed by each sync-automaton refers in its syn-
chronisation condition to every other participating sync-automaton. This ensures
that it is not possible that the synchronisation is composed of several disjoint sets,
each of which could be a synchronisation alone. A more detailed discussion about
the motivation for this definition and its impact on the modular verification can be
found in Chapter 6. Note that since in practise it is often the case that quite few pro-
cesses synchronise, the necessity of inclusion of references to all the synchronisation
partners does not pose a real problem.

As an example of a transition, the program P I = P I
1 ||P

I
2 ||P

I
3 on Figure 3.1

contains a synchronisation of the moves A
X∧¬Y :X∧Y
−−−−−−−→ ¬A of P I

1 and X ∧ ¬Y
A:¬A
−−−→

X ∧ Y of P I
2 . Its support is ([A,X∧¬Y,¬C], [¬A,X∧Y,¬C]). Thus, MI contains a

transition ([A,X∧¬Y,¬C], {1, 2}, [¬A,X∧Y,¬C]) representing that sync-automata
with indices 1 and 2 synchronise and P I

3 remains idle.

A concept that will allow us to reason about properties of programs is that of
path and fullpath.

Definition 3.7. Let I be an index set. A path in an I-structure MI is a se-
quence of I-states and transition labels π = (s1, l1, s2, l2, . . .) such that for all m,
(sm, lm, sm+1) ∈ RI . A fullpath is a maximal path.

A fullpath is infinite unless for some sm
′

there is no sm
′+1 and lm

′
such that

(sm
′
, lm

′
, sm

′+1) ∈ RI . Let πm denote the suffix of π starting in m-th I-state.
The dynamics of a sync-program is given through its computations. A compu-

tation is a fullpath in the semantics of the sync-program. We restrict ourselves to a

32 CHAPTER 3. SYNC-PROGRAMS

CAP cAMP

repressor

ß-galactosidase

glucose

glycolysis

Z Y A

mRNAmRNA

promotor operator

Figure 3.2: A diagram of lac operon regulation [34]

special class of fair computations, in particular those in which every sync-automaton
is executed infinitely many times. We define fairness as a property of paths in MI .

Definition 3.8. A path π = (s1, l1, s2, l2, . . .) in MI is fair iff for all i ∈ I we have
that {m | i ∈ lm} is infinite.

Note that every fair path is infinite and each component involved in a fair path
must have an infinite behaviour. Finite behaviours of components can be simulated
by adding looping moves to the final states.

For the systems we aim to describe, the fairness assumption is reasonable since
we regard a behaviour of biological system correct when all components are able to
perform their function. Moreover, there is a class of systems where all fullpaths are
fair, we provide a non-trivial example of such a system in the next section.

3.3 Modelling Lac operon regulation

In this section we formalise the lac operon regulation process by using sync-programs.
Our model is inspired by the CCS model of the same process given in [77].

First we give a description of the lac operon regulation process. Bacteria have a
simple general mechanism for coordinating the regulation of genes encoding products
that participate in a set of related processes: these genes are clustered on the chro-
mosome and are transcribed together. The gene cluster plus additional sequences
that function together in regulation are called an operon [63].

The lac operon (see Figure 3.2) contains three genes related to lactose metabolism.
The lac Z, Y and A genes encode β-galactosidase, galactoside permease and thio-
galactoside transacetylase, respectively. β-galactosidase converts lactose to galactose

3.3. MODELLING LAC OPERON REGULATION 33

and glucose or to allolactose. Galactoside permease transports lactose into the cell
and thiogalactoside transacetylase appears to modify toxic galactosides to facilitate
their removal from the cell.

In the absence of lactose, the lac operon genes are repressed, namely they are
transcribed at a basal level. This negative regulation is done by a molecule called
Lac repressor, which binds to the operon, blocking the activity of RNA polymerase.
The binding sites are called operators, the main operator is named O1. The lac
operon has two secondary binding sites for the Lac repressor: O2 and O3. To repress
the operon, the Lac repressor binds to both the main operator and one of the two
secondary sites.

When cells are provided with lactose, the lac operon is induced. An inducer
molecule binds to a specific site on the Lac repressor, causing dissociation of the
repressor from the operators. The inducer in the lac operon system is allolactose,
an isomer of lactose. When unrepressed, transcription of lac genes is increased, but
not at its highest level.

In addition, availability of glucose, the preferred energy source of bacteria, affects
the expression of the lac genes. Expressing the genes for proteins that metabolise
sugars such as lactose is wasteful when glucose is abundant. The lac operon deals
with it through a positive regulation. The effect of glucose is mediated by cAMP,
as a coactivator, and an activator protein known as cAMP receptor protein (CRP).
When glucose is absent, CRP-cAMP binds to a site near the lac promoter and
stimulates RNA transcription. In the presence of glucose, the synthesis of cAMP
is inhibited and cAMP declines. Binding to DNA declines, thereby decreasing the
expression of the lac operon.

CRP-cAMP is therefore a positive regulatory element responsive to glucose lev-
els, whereas the Lac repressor is a negative regulatory element responsive to lactose.
Consequently, strong induction of the lac operon requires both lactose (to inactivate
the Lac repressor) and a lowered concentration of glucose (to trigger an increase in
cAMP and increase binding of cAMP to CRP).

In order to give a formal sync-program model, we will fix the index set I =
{lac, β, allo, op, repr , pos, glu} representing lactose, β-galactosidase, allolactose, lac
operon, repressor, CRP-cAMP regulation and glucose, respectively. For the sake of
simplicity we do not model the activities of galactoside permease and thiogalactoside
transacetylase.

We provide a sync-automaton for each biological component. In particular lac-
tose is modelled by P I

lac with AP lac = {Lac none,Lac low}, β-galactosidase by
P I
β with AP glu = {Beta low ,Beta high} and allolactose by P I

allo with AP allo =
{Allo none,Allo low}. The lac operon is represented by P I

op with AP op = {Act ,Rep},
the lac repressor by P I

repr with AP repr = {B1, B2, B3,Ballo}, the positive regulation
by P I

pos with AP pos = {cAMP high,CRP−cAMP} and finally glucose is represented
by P I

glu with AP glu = {Glu high,Glu low}.

Sync-automaton P I
lac (Figure 3.3) has two states, mappings of the set of atomic

34 CHAPTER 3. SYNC-PROGRAMS

propositions AP lac to {tt ,ff }. For each state we display only the atomic proposi-
tions true in that state. Initially, there is no lactose in the cell. The scenario of
the lactose never entering the cell is represented by the looping move in the state
lac out . This move synchronises with looping moves in other sync-automata rep-
resenting the state corresponding to such a behaviour. Note that due to fairness,
no sync-automaton is allowed to remain blocked. External lactose entering the cell
is modelled as a NOSYNC move because it is caused by mechanisms that are not
considered in our model. Once inside the cell, lactose is transformed In the presence
of β-galactosidase to glucose. This is modelled as a synchronisation with P I

glu and
P I
β . On th other hand, when the enzyme β-galactosidase is absent, lactose is trans-

formed to allolactose and it is non-deterministically decided whether all the lactose
is consumed.

Lac out Lac in

NOSYNC

Beta high 	 ∧trueglu 	

Beta low 	 ∧true :Allo low

Beta high 	 ∧trueglu 	

Allo none 	 ∧truebeta 	 ∧
B1 	 ∧trueglu 	 ∧(Act ∧ Rep) 	

Figure 3.3: P I
lac – Lactose

In sync-automaton P I
β (Figure 3.4) β-galactosidase has two states representing its

concentration level which are affected by activation and repression of lac operon P I
op .

When reacting with lactose, this enzyme, at low level, can produce allolactose or, at
high level, can produce glucose and galactose. Since galactose does not participate
in regulation we do not include it in our model. The change in the level of β-
galactosidase is caused by the full expression of the operon, and that is done via
two channels, positive and negative regulation. When lactose never enters the cell,
β-galactosidase level remains low.

Beta low Beta high

true :(Act ∧ ¬Rep) ∧ true :¬B1

true :(Act ∧ ¬Rep) ∧ ¬CRP−cAMP :CRP−cAMP

(Act ∧ ¬Rep):true ∧ CRP−cAMP :¬CRP−cAMP

(Act ∧ ¬Rep):true ∧ ¬B1:true

Lac in 	 ∧true :Allo low Lac in:true ∧ true glu 	

Allo none 	 ∧Lac out 	 ∧
B1 	 ∧trueglu 	 ∧(Act ∧ Rep) 	

Figure 3.4: P I
β – β-galactosidase

Allolactose P I
allo (Figure 3.5) can be present at low concentration in the cell

or be absent. Its level is increased as a result of the reaction of lactose with the

3.3. MODELLING LAC OPERON REGULATION 35

β-galactosidase enzyme. When present, it can bind to lac repressor P I
repr and its

concentration will reduce. Allolactose remains absent, if lactose never enters the
cell.

Allo none Allo low

Lac in 	 ∧Beta low 	

¬BAllo:BAllo

Lac in 	 ∧Beta low 	

Lac out 	 ∧truebeta 	 ∧
B1 	 ∧trueglu 	 ∧(Act ∧ Rep) 	

Figure 3.5: P I
allo – Allolactose

The lac operon P I
op (Figure 3.6) has four states, all possible truth value assign-

ments to AP op . Atomic propositions Act ,Rep represent that the lac operon acti-
vated and repressed, respectively. Repression and unrepression (horizontal moves
in Figure 3.6) are determined by negative regulation P I

repr while activation and in-
activation (vertical moves in Figure 3.6) by positive regulation P I

pos . Note that full
transcription of the operon genes occurs only when both unrepressed and activated
(state Act ,¬Rep). This state also determines the concentration of β-galactosidase.
Note that the absence of lactose makes the operon persist in the active but repressed
state.

¬Act ,¬Rep ¬Act ,Rep

Act ,RepAct ,¬Rep

¬B1:true

true :¬B1

¬CRP−cAMP :CRP−cAMP

CRP−cAMP :¬CRP−cAMP

true :¬B1 ∧ Beta low :Beta high

¬B1:true ∧ Beta high:Beta low

Beta high:Beta low ∧
CRP−cAMP :¬CRP−cAMP

Beta low:Beta high ∧
¬CRP−cAMP :CRP−cAMP

Allo none 	 ∧Lac out 	 ∧
truebeta 	 ∧B1 	 ∧trueglu 	

Figure 3.6: P I
op – Lac operon

The lac repressor P I
repr (Figure 3.7) has five states. After binding of lac re-

pressor protein to O1 site, it might bind either to O2 or O3 sites. The level of
beta-galactosidase may be decreased if it was high before the binding. These bind-
ings repress the operon. When the inducer allolactose binds to the repressor, it
releases the operator sites and unrepresses the operon, possibly changing the level
of β-galactosidase. If allolactose does not bind, a looping move occurs.

The positive regulation P I
pos (Figure 3.8) works as follows. When glucose level

is low, cAMP concentration will be increased. Coactivator CRP creates a complex

36 CHAPTER 3. SYNC-PROGRAMS

∅

B1, B2 B1, B3

B1, B2,Ballo B1, B3,Ballo

¬Rep:Rep ∧
Beta high:Beta low

¬Rep:Rep ¬Rep:Rep
Allo low :Allo none Allo low :Allo none

Rep:¬Rep

Rep:¬Rep ∧Beta low:Beta high

Rep:¬Rep

Rep:¬Rep ∧ Beta low:Beta high

Allo none 	 ∧Lac out 	 ∧truebeta 	 ∧
trueglu 	 ∧(Act ∧ Rep) 	

Allo none 	 ∧Lac out 	 ∧truebeta 	 ∧
trueglu 	 ∧(Act ∧ Rep) 	

Figure 3.7: P I
repr – Lac repressor protein (Negative regulation)

CRP-cAMP that binds to lac operon, stimulating the transcription. When the
glucose concentration is increased, cAMP level will decrease and CRP-cAMP releases
the operon site, deactivating the transcription. Depending on the state of the operon,
the level of β-galactosidase can be affected.

∅

cAMP high

cAMP high,CRP−cAMP

CRP−cAMP

Glu high 	
Glu low 	

¬Act :Act

¬Act :Act ∧ Beta low:Beta high

Glu low 	
Glu high 	

Act :¬Act ∧Beta high:Beta low

Act :¬Act

Figure 3.8: P I
pos – CRP-cAMP (Positive regulation)

In P I
glu (Figure 3.9) glucose concentration can be high or low. The decrease of

its concentration depends on factors that are not modelled. The increase of the
concentration can occur via reaction of lactose and β-galactosidase. It is nonde-
terministically decided when the concentration level of glucose is considered high
enough to pass to state high. In addition, this component can be queried for the
concentration level by P I

pos . The lack of inner lactose makes the glucose level rest
unchanged.

Glu high Glu low

NOSYNC

Lac in:true ∧ Beta high 	

Lac in 	 ∧Beta high 	

truepos :truepos

Lac in 	 ∧Beta high 	

truepos :truepos

Allo none 	 ∧Lac out 	 ∧
truebeta 	 ∧B1 	 ∧
(Act ∧ Rep) 	

Allo none 	 ∧Lac out 	 ∧
truebeta 	 ∧B1 	 ∧
(Act ∧ Rep) 	

Figure 3.9: P I
glu – Glucose

The sync-program describing the whole system is obtained by running all sync-

3.3. MODELLING LAC OPERON REGULATION 37

automata in parallel P I = (SI
0 , P

I
lac||P

I
β ||P

I
allo ||P

I
op||P

I
repr ||P

I
pos ||P

I
glu). The set of ini-

tial states is a combination of the sets of initial states of respective sync-automata.

38 CHAPTER 3. SYNC-PROGRAMS

Chapter 4

Modular Verification of
Sync-programs

In order to analyse the behaviour of a biological system we would like to verify
properties of computations of a sync-program P I representing the system. Assume
that a property φJ only regards a part of a system modelled as dynamic sync-
program P I , in particular the part involving only components from J ⊆ I. We
should check satisfaction of φJ on the semantics of P I , but, in order to avoid the
space explosion, we would like to check it on a smaller and more abstract semantics.
Let us assume a projection operation ↾ that allows us to consider only a subset of
the components of a sync-program. The smallest fragment of P I we can consider is
P J = P I↾J , but in general any projection P J ′

= P I↾J ′ with J ⊆ J ′ ⊆ I could allow
us to obtain a smaller description of the system behaviour to be analysed by means
of model checking and thus avoid the state explosion.

Considering a subprogram of P I obtained through a projection means abstract-
ing away some of the sync-automata and loosing the synchronisations with such
sync-automata. This results in obtaining an overapproximation of the behaviour
of P I , since synchronisations imply constraints on the possible behaviours of the
system. Hence, in order to ensure that the modular verification approach can be
followed, we have to guarantee that properties holding in the semantics of a subpro-
gram obtained through the projection operation hold also in the semantics of the
whole program P I .

The class of properties we will consider consists of the properties that can be
expressed in ACTL−. It has been shown in [52] that properties described with the
temporal logic ACTL are preserved under composition, and this is suitable to be
used in the context of modular verification. In fact, it consists of formulae with
paths quantified only universally, hence formulae describing properties that must
hold in all possible executions of a system. Since we consider projections that give
overapproximations of the behaviours of systems, we can prove that if a property
holds in all possible executions of a subprogram obtained through projection, then
it holds also in the behaviour of the whole system.

40 CHAPTER 4. MODULAR VERIFICATION OF SYNC-PROGRAMS

This chapter is organised as follows. First we define the syntactical projec-
tion that allows to restrict the attention on a portion of a program called sync-
subprogram. Then we prove that any behaviour of a sync-program P I , when pro-
jected onto J , is present as a behaviour of the sync-subprogram PJ . This allows us
to prove the property preservation for all properties from ACTL−. We illustrate the
usefulness of the approach by indicating what are the sync-subprograms that suffice
for verification for some interesting biological properties of the lac operon regulation
presented in Section 3.3.

4.1 Projections

In order to develop our modular verification technique we need two projection oper-
ations that allow to restrict the syntax and the semantics of a sync-program to the
components that have an influence on the satisfaction of a property of interest.

A sync-subprogram represents the behaviour of a portion of a sync-program in
isolation. We obtain a sync-subprogram by syntactically projecting a sync-program
onto an index set J ⊆ I. We denote this by the projection operator ↾J .

Definition 4.1. Let J ⊆ I be an index set and J = {j1, . . . , jk}. Let P I =
(SI

0 , P
I
1 || . . . ||P

I
n) with P I

i = (Si, S
0
i , Ri) for each i ∈ I.

Then P I↾J = (SJ
0 , P

J
j1
|| . . . ||P J

jk
) with P J

j = (Sj, S
0
j , R

′
j) for each j ∈ J where

• Sj and S0
j are as in P I

j ;

• R′
j = {sj

∧j′∈L∩JAj′ :Bj′

−−−−−−−−−→ tj | si
∧j′∈LAj′ :Bj′

−−−−−−−→ tj ∈ Rj}.

Initial states are SJ
0 = S0

j1
× . . .× S0

jn
.

The projection contains sync-automata from J , each sync-automaton has the
same states as its counterpart in P I but synchronisation conditions on their moves
concern only sync-automata from J . We remark that a sync-subprogram P I↾J is
still a sync-program with index set J , hence it can be also denoted by P J .

As an example, on Figure 4.1 there is the sync-program P {1,2,3}↾{1, 2}, that is
P {1,2,3} from Figure 3.1 after projection onto {1, 2}.

A ¬A

P
I

1
:

X ∧ ¬Y : X ∧ Y

X ∧ ¬Y : ¬X ∧ Y

true :Y
X ∧ ¬Y X ∧ Y

¬X ∧ Y

P
I

2
:

¬A 	

¬A 	

A : ¬A

A : ¬A

Figure 4.1: A projection of a sync-program P {1,2,3} onto {1, 2}.

4.2. PATH PRESERVATION 41

In the following we define the semantic projection of transitions and paths.

A transition (s, l, t) in an I-structure can be projected onto J ⊆ I such that
l ∩ J 6= ∅ as follows: (s, l, t)⌈J = (s⌈J, l ∩ J, t⌈J).

In order to define the path projection, we need an auxiliary definition of J-blocks
in a path in an I-structure. For a J ⊆ I let us define a J-block of π to be a maximal
subsequence of π that starts and ends in a state and does not contain a transition
label containing any i such that i ∈ J . Thus we can consider π to be a sequence
of J-blocks with two successive J-blocks linked by a transition label l such that
l ∩ J 6= ∅ (note that a J-block can consist of a single state). It also follows that
s⌈J = t⌈J for any pair of states s, t in the same J-block. Thus, if Bl is a J-block,
we define Bl⌈J to be s⌈J for some state s in Bl .

We now give the formal definition of path projection. Let Bln denote the n-th
J-block of π. Let π be (Bl1, l1,Bl2, l2, . . .) where Blm is a J-block for all m. Then
the path projection is given by: π⌈J = (Bl1⌈J, l1 ∩ J,Bl2⌈J, l2 ∩ J, . . .).

4.2 Path Preservation

In this section we give some lemmas about the relationships between the semantics of
a dynamic sync-program and the semantics of a sync-subprogram obtained through
syntactic projection.

Given an index set I, a subset J ⊆ I and a program P I , the aim of these lemmas
is to show that a fullpath in the semantics P I that is relevant for the verification of
a property concerning sync-automata from J has always a corresponding fullpath
in the semantics of the sync-subprogram we obtain through syntactic projection.

To be able to perform the verification on the semantics of a sync-subprogram,
we need to prove that every computation concerning sync-automata from J of the
program P I is present as a computation of P J .

Since computation of a sync-program has been defined as a fair fullpath in its
semantics, we need to show that every fullpath in the semantics of P I projected
onto J is a fullpath in the semantics of P J = P I↾J . Firstly, we prove that every
path in MI projected onto J is a path in MJ . For that, the basic building stone is
the following projection preservation lemma for transitions.

Lemma 4.2 (Transition projection). Let I be an index set and MI = (SI ,S
0
I ,RI)

the semantics of sync-program P I. For all I-states s, t in SI and all l ∈ P(I),
transition (s, l, t) is in RI iff for all J ⊆ I such that l ∩ J 6= ∅, (s, l, t)⌈J is in RJ ,
where MJ = (SJ ,S

0
J ,RJ) is the semantics of sync-program P J = P I↾J .

Proof. Direction right to left. Suppose that for any J ⊆ I such that l ∩ J 6= ∅,
(s, l, t)⌈J ∈ RJ . By taking J = I we get (s, l, t) ∈ RI .

Direction left to right. Suppose that (s, l, t) ∈ RI , we will show (s, l, t)⌈J ∈ RJ

for any J ⊆ I such that l ∩ J 6= ∅.

42 CHAPTER 4. MODULAR VERIFICATION OF SYNC-PROGRAMS

From the definition of the semantics of sync-program P I we have that there is
a synchronisation MOV with support (s, t) such that types(MOV) = l. We need
to show that in MJ there is a synchronisation MOV ′ with support (s⌈J, t⌈J) such
that types(MOV ′) = l ∩ J . Let us consider the set

MOV ′ = {si
∧j∈L∩JAj :Bj

−−−−−−−−→ ti | si
∧j∈LAj :Bj

−−−−−−→ ti ∈ MOV and i ∈ J}. Since l ∩ J 6= ∅,
MOV ′ is not empty. Then

• all moves are from distinct automata, because it was so in MOV .

• if m ∈ MOV ′ is of type i and has the form si
∧j∈LAj :Bj

−−−−−−→ ti, then for all j ∈ L∩J

there is a move m′ ∈ MOV ′ of type j and has the form sj
scj
−→ tj and for all

p ∈ Aj : sj(p) = tt and for all p ∈ Bj: tj(p) = tt . In particular it is the move

sj
sc′j
−−→ tj where sc ′j = ∧j′∈L′∩JAj :Bj if scj = ∧j′∈L′Aj :Bj.

• the completeness of MOV ′ comes from the completeness of MOV .

Hence, by definition of a synchronisation MOV ′ is a synchronisation in P J . More-
over, since for all i ∈ I − l : s⌈i = t⌈i, it holds for subset J ∩ (I − l) = J − J ∩ l.
That means that (s⌈J, t⌈J) is the support of synchronisation MOV ′ in P J . Also,
types(MOV ′) = l ∩ J . Thus, by definition of semantics of P J the tuple (s⌈J, l ∩
J, t⌈J) = (s, l, t)⌈J is in RJ .

Lemma 4.3 (Path projection). Let I be an index set and MI semantics of sync-
program P I. For every J ⊆ I if π is a path in MI then π⌈J is a path in MJ , where
MJ is the semantics of sync-program P J = P I↾J .

Proof. Let π = (Bl1, l1,Bl2, l2, . . .) be a path in MI and Blm J-blocks for all m.
By sm and tm denote first and last state of Blm, respectively. By definition of I-
structure we have that transition (tm, lm, sm+1) is in MI for all m. By transition
projection lemma transition (tm, lm, sm+1)⌈J = (tm⌈J, lm ∩ J, sm+1⌈J) is in MJ for
all m. Now since sm⌈J = tm⌈J for all m, we get that (sm⌈J, lm ∩ J, sm+1⌈J) in MJ

for all m. Hence sequence (s1⌈J, l1 ∩ J, s2⌈J, l2 ∩ J, . . .) satisfies the definition of a
path in MJ .

With the help of the preceding lemma we can prove that the computation being
a fullpath is preserved.

Lemma 4.4 (Fullpath projection). Let J ⊆ I be an index set. If π is a fair fullpath
in MI , then π⌈J is a fair fullpath in MJ .

Proof. By path projection lemma π⌈J it is a path in MJ . Since π is a fair path in
MI by definition of path projection we get that π⌈J is a fair path in MJ . From the
definition of fairness (Definition 3.8) follows that every fair path is infinite, i.e. it is
a fullpath.

4.3. LOGIC 43

Note that the choice made in Section 3.2 to define a computation as a fair fullpath
was a necessary one. If we had not decided to include the fairness requirement, the
computation preservation would not necessarily hold.

In particular, with computation defined as a fullpath, a violation of the desired
computation preservation arises when an independent partition P of sync-program
P I exists whose sync-automata can be executed forever, while not allowing the
execution of other sync-automata outside P . Consider a fullpath π in MI and a
state t from which only sync-automata in P are executed. When projecting π onto
J = (I − P) composed only of idle sync-automata, a finite path π⌈J is obtained.
However, as in t some automata from J are enabled but not executed, in MJ they
can be executed and thus a path ending in t⌈J is not a fullpath. Hence, π is a
computation of P I but π⌈J is not a computation of P J .

Note that every fair path is infinite since each component involved in a fair path
must have an infinite behaviour. Finite behaviours of components can be simulated
by adding looping moves to the final states. We believe that for the systems we
aim to describe the fairness assumption is reasonable since we regard a behaviour of
biological system correct when all components are able to perform their function.

4.3 Logic

Now we exploit the fullpath projection lemma to prove that behavioural properties
expressed in a suitable logic that hold in the semantics of a sync-subprogram also
hold in the semantics of the original sync-program. The logic we will consider is a
fragment of the Computation Tree Logic CTL.

Following Attie and Emerson [7], we assume the logic ACTL− for specification
of properties. ACTL is the “universal fragment” of CTL which results from CTL by
restricting negation to propositions and eliminating the existential path quantifier
and ACTL− is ACTL without the AX modality.

Definition 4.5. The syntax of ACTL− is defined inductively as follows:

• The constants true and false are formulae. p and ¬p are formulae for any
atomic proposition p.

• If f, g are formulae, then so are f ∧ g and f ∨ g.

• If f, g are formulae, then so are A[f U g] and A[f Uw g].

We define the logic ACTL−
J to be ACTL− where the atomic propositions are

drawn from APJ = {AP i | i ∈ J}. Abbreviations in ACTL−: AFf ≡ A[true U f]
and AGf ≡ A[f Uw false].

Properties expressible by ACTL− formulae represent a significant class of prop-
erties investigated in the systems biology literature as identified in [73], such as

44 CHAPTER 4. MODULAR VERIFICATION OF SYNC-PROGRAMS

properties concerning exclusion (“It is not possible for a state S to occur”), nec-
essary consequence (“If a state S1 occurs, then it is necessarily followed by a state
S2”), and necessary persistence (“A state S must persist indefinitely”).

Occurrence, possible consequence, sequence and possible persistence are of in-
herently existential nature, and are not expressible in ACTL−.

Definition of the semantics of ACTL− formulae on an I-structure follows. Note
that only fair fullpaths are considered.

Definition 4.6. Semantics of ACTL−. We define MI , s � f (resp. MI , π � f)
meaning that f is true in structure MI at state s (resp fair fullpath π). We define
� inductively:

• MI , s � true . MI , s 6� false. MI , s � p iff s(p) = tt .
MI , s � ¬p iff s(p) = ff .

• MI , s � f ∧ g iff MI , s � f and MI , s � g.
MI , s � f ∨ g iff MI , s � f or MI , s � g.

• MI , s � Af iff for every fair fullpath π = (s, l1, . . .) in MI :
MI , π � f .

• MI , π � f iff MI , s � f , where s is the first state of π

• MI , π � f ∧ g iff MI , π � f and MI , π � g.
MI , π � f ∨ g iff MI , π � f or MI , π � g.

• MI , π � f U g iff there exists m ∈ N such that MI , π
m � g

and for all m′ < m : MI , π
m′

� f .

• MI , π � f Uw g iff for all m ∈ N, if MI , π
m′

6� g
for all m′ < m then MI , π

m � f .

4.4 Property Preservation Theorem

Now we give a theorem which states that all ACTL−
J properties that hold in MJ

also hold in MI .

Theorem 4.7 (Property preservation). Let J ⊆ I be an index set, s an I-state and
f an ACTL−

J formula. If MJ , s⌈J � f then MI , s � f.

Proof. By induction on the structure of f (for all s).
f = p. By definition of state projection and the fact that AP is are pairwise

disjoint, for all atomic propositions p from APJ we get that MJ , s⌈J � p iff MI , s �
p. Analogously for f = ¬p.

4.5. APPLICATION TO LAC OPERON REGULATION 45

f = g∧h. From the assumption MJ , s⌈J � g∧h by CTL semantics, MJ , s⌈J � g
and MJ , s⌈J � h. By induction hypothesis MI , s � g and MI , s � h. Hence,
MI , s � g ∧ h. Case f = g ∨ h is proved analogously.

f = A[g Uw h]. Let π be an arbitrary fair fullpath starting in s. We establish
MI , π � [g Uw h]. By fullpath projection lemma π⌈J is a fair fullpath in MJ , hence
by the assumption MJ , π⌈J � [g Uw h]. There are two cases:

1. MJ , π⌈J � Gg . Let t be any state along π. By CTL semantics MJ , t⌈J � g.
by induction hypothesis we have MI , t � g. Since t was an arbitrary state of
π, we get MI , π � Gg and thus MI , π � g Uw h.

2. MJ , π⌈J � [g U h]. Let sm
′′

J be the first state along π⌈J that satisfies h. Then
there is at least one state sm

′′
along π such that sm

′′
⌈J = sm

′′

J . Let sm
′

be first
such state. By induction hypothesis MI , s

m′
� h. From the definition of path

projection any sm with m < m′ projects to sm⌈J that is before sm
′

J in π⌈J .
By the assumption MJ , s

m⌈J � g, hence by induction hypothesis MI , s
m � g.

By CTL semantics we get MI , π � g U h.

In both cases we showed MI , π � g Uw h. Since π was arbitrary fair fullpath starting
in s, we conclude MI , s � A[g Uw h].

f = A[g U h]. Let π be an arbitrary fair fullpath starting in s. By fullpath
projection lemma π⌈J is a fair fullpath in MJ and by the assumption MJ , π⌈J �

[gUh]. By the above case we get s � A[g U h].

4.5 Application to Lac Operon Regulation

In this section we investigate some known properties of the lac operon regulation
and show their representation as ACTL− formulae.

By inspection of the sync-program, for each property we identify the minimal
sync-subprogram that makes the property satisfied. This is done by starting from the
fragment that contains all sync-automata whose atomic propositions are mentioned
in the property. In the case that the verification finishes with a negative result,
iteratively we try to add more sync-automata to the fragment in consideration. Once
the satisfaction of the property is established on a fragment, then by the property
preservation theorem its satisfaction in whole model of the lac-operon regulation is
guaranteed.

For the purpose of this chapter, in this section we only indicate what is the frag-
ment of the model that suffices for the verification of the property. Any verification
method can be applied to the identified fragment in order to investigate the property
in question and the result of the verification is assured. The practical verification
making use of a model checker is presented in the next chapter.

46 CHAPTER 4. MODULAR VERIFICATION OF SYNC-PROGRAMS

The property (P1) “The allolactose bound to the repressor implies that the operon
is repressed” represents the exclusion type as identified in [73]. The formula

AG(Ballo → Rep) (P1)

is verifiable on the semantics of P op,repr .

A slightly more complicated formula is needed to express that (P2) “The in-
crease of allolactose concentration can only be mediated by β-galactosidase in low
concentration”. The formula

AG(Allo none ∧ Beta high → A[¬Allo low U Beta low]) (P2)

is true in the semantics of P allo,β.

The oscillation property (P3) “While lactose is inside the cell, the operon will
necessarily oscillate between a repressed and an unrepressed state” is expressed as
follows. Consider formula (P3a) that represents the property: if operon is repressed
in the current state, then operon will be eventually expressed unless lactose comes
into the cell:

Rep → (AF (¬Rep) ∨ A[AF (¬Rep) U Lac in]) (P3a)

Denote (P3b) an analogous formula, claiming that a repressed state is always reach-
able from an unrepressed state modulo the entrance of lactose into the cell:

¬Rep → (AF (Rep) ∨ A[AF (Rep) U Lac in]) (P3b)

The property (P3) therefore consists of global satisfaction of both the preceding
formulae. The formula

AG((P3a) ∧ (P3b)) (P3)

is true in MI , but the verification in Mlac,op fails. Thus the property preservation
theorem cannot be invoked. However, by inspecting the model we can understand
that by taking into consideration two other components that are not mentioned in
the formula we could succeed in verification. Indeed, the formula is true in the
semantics of P β,lac,op,repr . Note the important role of fairness for satisfaction of this
property that requires that each sync-automaton is executed infinitely many times.
It should be noted that the present formula differs from formula Osc1 in Section
2.8 which requires oscillations along one path. Formula P3, instead, declares the
oscillatory behaviour along all paths . However, we consider a weakening by allowing
an action discharge the oscillations.

A property (P4) that demonstrates the correctness of the model of the lac operon
regulation can be stated as follows: “When the glucose concentration drops and
lactose is inside the cell, the lac operon will eventually be fully expressed”. Encoded
as an ACTL−

glu ,lac,op formula

AG(Glu low ∧ Lac in → AF (Act ∧ ¬Rep)) (P4)

4.5. APPLICATION TO LAC OPERON REGULATION 47

it holds in MI but cannot be verified for any of the subprograms of P I , as it depends
on activities of every component in the model.

We can prove in a modular manner the properties stating the regulation subsys-
tems work, both the negative and the positive ones.

The property (P5) “When glucose concentration is low, the lac operon will even-
tually be unrepressed” is encoded as

AG(Lac in ∧ Rep → AF (¬Rep)) (P5)

can be verified on the semantics of P β,lac,op,repr . Note that the presence of lactose
inside the cell is essential for the negative regulation.

The property (P6) “When glucose concentration is low, the lac operon will even-
tually be activated” written in ACTL− as

AG(Glu low ∧ ¬Act → AF (Act)) (P6)

can be verified on the semantics of P β,pos ,glu,op , marking the importance of the low
level of glucose in the positive regulation.

48 CHAPTER 4. MODULAR VERIFICATION OF SYNC-PROGRAMS

Chapter 5

Modular Verification in Practice

In order to do the modular verification of sync-programs practically, we exploit
the tool NuSMV. In order to use NuSMV we need to translate the sync-program
of interest to the input language of the tool. Our translation of sync-programs,
however, introduces auxiliary states that must not be considered when evaluating
logical properties. Therefore we need to modify the properties so that they do not
take these intermediate states into account.

We show formally the correctness of our translation approach, that is we prove
that the problem of verifying the translated properties on a translation of a sync-
program is equivalent to the problem of verifying the original property on the original
sync-program for any ACTL− property.

Then the correctness of the practical modular verification is guaranteed by the
combination of the Property preservation theorem (Theorem 4.7) and the Verifi-
cation correspondence theorem below. Indeed, when one successfully verifies an
encoded property on the translation of the model fragment in NuSMV, the sat-
isfaction of the corresponding property in the original model fragment holds and
therefore the property holds also in the whole model.

5.1 Translation of Sync-Programs

to Sync-Skeletons

In this section we define a function transl that translates a sync-program into a
formalism that can be implemented directly in NuSMV. The target formalism is the
synchronisation skeletons [27]. Note that by passing from sync-programs to synchro-
nisation skeletons, the underlying concurrency model is changed. Since the latter
formalism does not feature synchronisation in the sense that there is no language
primitive that permits two or more processes to perform a move simultaneously.

Our solution is to add auxiliary states, and translate each transition of a sync-
program to a sequence of transitions in the synchronisation skeletons.

50 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

Denote by sem and semskel the functions that assign to a sync-program its se-
mantics and to a synchronisation skeleton program its semantics, respectively. We
specify functions transl that takes as an input a sync-program P I and outputs a
synchronisation skeleton SP I and formula translation function fortran such that

sem(P I) � φ iff semskel(SP
I) � fortran(φ)

for all ACTL− properties.
For the rest of the section, we assume an arbitrary but fixed ordering on the

index set I denoted by the injective function o : I → N .

Now we define the translation function compositionally.

Sync-program Let P I = (P I
1 || . . . ||P

I
n , S

I
0) be a sync-program. Then the re-

sult of translation transl(P I) is a synchronisation skeleton program composed of a
parallel composition of synchronisation skeletons, representing a translation of all
sync-automata in P I .

Sync-automata A sync-automaton Pi = (Si, S
i
0, Ri) is translated to a synchroni-

sation skeleton transl(P I
i) = P ∗

i = (S∗
i , S

∗
i,0, R

∗
i) which is defined as follows.

We consider an arbitrary but fixed ordering on multiple moves of the sync-
automaton denoted by the injective function moveord : Ri 7→ N .

• States If AP i is the set of atomic propositions used for construction of Si, then
transl(APi) = AP ∗

i used for construction of S∗
i is the union of the following

sets

1. AP i

2. {toa | a ∈ AP i}

3. {movek | 0 < k < maxmov}, where maxmov is the maximal number of
moves between the same states in P I

i

4. {true i, to true i}

The set AP ∗
i of atomic propositions of the synchronisation skeleton P ∗

i includes
all atomic propositions of the sync-automaton P I

i and, in addition, it contains
for each of these atomic propositions a a proposition toa whose inclusion in
a state expresses the fact that there is a successor state where a holds. The
atomic proposition movek is to distinguish intermediate states. The purpose of
these propositions will be clear once we define the set of states of P ∗

i . Atomic
propositions true i and to true i are to mark the set of all states and the set of
intermediate states, respectively.

The set of all states S∗
i ⊆ P(AP ∗

i) is the smallest set for which

5.1. TRANSLATION OF SYNC-PROGRAMS TO SYNC-SKELETONS 51

1. for all s′i ∈ S∗
i we have s′i(true i) = tt

2. for all s′i ∈ S∗
i we have s′i(to true i) = tt iff s′i(toa) = tt for some a

3. for each si ∈ Si there is a s′i ∈ S∗
i so that

(a) for all a ∈ AP i, s
′
i(a) = tt iff si(a) = tt

(b) for all a ∈ AP i, s
′
i(toa) = ff

(c) for all k ∈ N , s′i(movek) = ff

We construct a mapping basicState : si 7→ s′i.

4. for every move si
sci−→ ti ∈ Ri there is a state s′i ∈ S∗

i such that

(a) for all a ∈ AP i, s
′
i(a) = tt iff si(a) = tt

(b) for all a ∈ AP i, s
′
i(toa) = tt iff ti(a) = tt

(c) s′i(movek) = tt iff k = moveord(si
sci−→ ti) and k > 0

We construct a mapping toState : (si
sci−→ ti) 7→ s′i.

The set of states S∗
i of synchronisation skeleton SP ∗

i consists of two disjoint
sets. The first set is the set of all basic states which corresponds one to one to
the set of states of the sync-automaton P I

i . For each state si ∈ Si there is a
state s′i ∈ S∗

i such that all the atomic propositions in si have the same value
in s′i. All “to”-propositions and “move” propositions are false in these states.
The mapping basicState maps si to s′i.

The second group of states is the set of all intermediate states. For every move
si

sci−→ ti in P I
i there is a state in s′i representing that the corresponding move

has been executed but the corresponding transition has not been concluded
yet. The state s′i encodes the move by having true all the atomic propositions
from state si and satisfying toa for all atomic propositions a from ti. For
convenience, we construct a mapping to : P(APi) → P(AP ∗

i) which assigns
to a set of atomic propositions the set of atomic propositions from AP ∗

i such
that there is a toa for each a in the source set, i.e. to(A) = {toa | a ∈ A}.
Therefore intuitively, state s′i can be thought of as si ∧ to(ti). Note that for
every move between two states in the sync-automaton we need a distinct in-
termediate state in the synchronisation automaton. This is ensured by atomic
propositions movek, each of which is true exclusively in one intermediate state
corresponding to a move, when multiple moves are present between the same
pair of states. The mapping toState maps the move si

sci−→ ti to the state s′i.

Moreover, the proposition true i holds in all states of S∗
i and to true i holds

only in the intermediate ones.

• Initial states S∗
i,0 = {basicState(si) | si ∈ Si

0}
The set of initial states is the set of basic states corresponding to initial states
of P I

i .

52 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

• Moves The set of moves R∗
i is the union of the following sets

R1 = { s′j

∧
m∈{1,...,k}(Aim∧to(Bim))∧

∧
m∈{k+1,...,n} Aim∧

∧
w∈I\{i1,...,ik} ¬to truew

−−−→ st′j

| sj

∧
m∈{1,...,n} Aim :Bim

−−−−−−−−−−−−→ tj ∈ Rj

and o(i1) < ... < o(ik) < o(j) < o(ik+1) < ... < o(in)

and s′j = basicState(sj) and st′j = toState(sj

∧
Aim :Bim−−−−−−→ tj)}

R2 = { st′j

∧
m∈{1,...,k} Bim∧

∧
m∈{k+1,...,n}(Aim∧to(Bim))∧

∧
w∈I\{i1,...,ik} ¬to truew

−−−→ t′j

| sj

∧
m∈{1,...,n} Aim :Bim

−−−−−−−−−−−−→ tj ∈ Rj

and o(i1) < ... < o(ik) < o(j) < o(ik+1) < ... < o(in)

and t′j = basicState(tj) and st′j = toState(sj

∧
Aim :Bim−−−−−−→ tj)}

The set of moves of synchronisation skeleton P ∗
i is constructed in such a way

that only one synchronisation of the translated sync-program is simulated
at a time. A synchronisation is performed by a series of separate moves of
participating synchronisation skeletons, one skeleton at a time, in a specific
order o defined globally.

First, all the participating synchronisation skeletons one-by-one following the
order conduct the transition to the respective intermediate states. After fin-
ishing the first round, the second move leads to the respective target states.
Throughout the whole operation all non-participating synchronisation skele-
tons cannot perform any move. Moreover, the synchronisation skeletons that
successfully arrived in the target state will not leave that state until the syn-
chronisation is finished, thus making it a sort of transaction.

In order to guarantee the above scenario, a move of an automaton has to be
simulated by two moves of the corresponding skeleton. The first move, from
the source to the intermediate state has to wait until all the suitable moves of
skeletons preceding it in the order have been performed, and no other move
has been performed in the system.

The formalisation in the definition can be understood with the following intu-
ition in mind

– all sync-automata: I, total order o on I assumed without loss of generality

– I includes (not necessarily only) i1, ..., in and a distinct j

– sync-automata performing the synchronisation: P I
i1
, ..., P I

in
and currently

performing the move is P I
j

5.2. TRANSLATION OF PROPERTIES 53

A move sj
scj
−→ tj of P I

j is translated to two moves of P ∗
i . First, move from

basicState(sj) to toState(sj
scj
−→ tj) has to wait for all the moves of synchronisa-

tion skeletons that are earlier in the order, precisely following the its synchro-
nisation condition. This is expressed by the first part of the synchronisation
condition

∧

m∈{1,...,k}(Aim ∧ to(Bim)). The other part of the condition says that
the remaining skeletons, participating in this synchronisation but later in the
order have to be ready for the transition. Moreover, all modules except for
those participating in the synchronisation that precede the current module in
the order, must not be in a to-state, as expressed by the following condition
∧

m∈k+1,...,n}Aim ∧
∧

w∈I\{i1,...,ik}
¬to truew.

As for the second move, which leads from toState(sj
scj
−→ tj) to basicState(sj),

the module has to check that all the preceding modules have arrived to the
target state and the following modules are the only ones waiting for the exe-
cution, i.e. in a to-state:
∧

m∈{1,...,k}Bim ∧
∧

m∈k+1,...,n}Aim ∧ to(Bim) ∧
∧

w∈I\{i1,...,ik}
¬to truew.

Now we give an estimation of the size of the translated program. Consider
the sync-program P I = (P I

1 || . . . ||P
I
n , S

I
0). The synchronisation skeleton program

transl(P I) is composed of n synchronisation skeletons. If P I
i is composed of ns

states and nm moves, then transl(P I
i) has ns +nm states, since there is one auxiliary

state for each original move, and 2nm moves, since every move is translated into two
moves leading through the auxiliary state.

Let ms be the number of states and mt be the number of transitions in the LTS
representing the semantics of P I . If ksyn is the maximal size of a synchronisation in
P I , then the semantics of transl(P I) consists of at most ms + ksyn .mt states and at
most ksyn .mt transitions.

Moreover, for each state in the semantics of the translation not corresponding to
a state in the semantics of the original program, i.e. in an auxiliary semantic state,
there is only one successor state. As a consequence, the verification problem of the
translated system grows asymptotically as fast as the verification problem of the
original system.

An example of the translation will be presented in Section 5.4 where we translate
the Program P I from Section 3.3 representing the regulation of the lac operon.

5.2 Translation of Properties

To guarantee that the properties are verified only in the states of the translated
program that correspond to actual states of the sync-program, we need to guide
the evaluation of satisfaction of atomic propositions to states that are not to-states.

54 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

For this reason, each state formula has to be implied by a formula ¬toTrue , where
toTrue is defined as

∨

i∈I toTruei and toTruei =
∨

a∈APi
toa.

Formulae describe properties in terms of atomic propositions. The translation
of a sync-program as defined above is composed of two types of states. Basic states
are the ones directly corresponding to states of the original sync-program. All
the atomic propositions from the sync-program have exactly the same value in the
corresponding state in the translation. Any property referring to atomic propositions
of a basic state is therefore evaluated in the same way as it is in the corresponding
state of the sync-program. On the other hand, there are auxiliary intermediate
states, whose original atomic propositions do not correspond to any original state
of the sync program. Therefore, these states should be “skipped” when evaluating
properties of translated sync-programs.

We introduce the formula translation function fortran : ACTL− → ACTL− that
modifies a formula in such a way that the intuition described above holds. Note
that the language of the formulae changes, while the first formula is an ACTL−

formula built over the set of atomic propositions AP =
⋃

i∈I AP i, it is translated
to an ACTL− formula built over a different set of atomic propositions, namely
AP ∗ =

⋃

i∈I AP
∗
i .

Formalising the requirements mentioned above, the function fortran has the
following two characteristics:

• in a basic state, the translation of a formula f is true iff and only if f is true
in the corresponding state of sem(P I)

• in a to-state the translation of an until-formula is evaluated exactly like in the
successor state.

Now we define a formula translation function that meets the above specification.

Definition 5.1. The formula translation function fortran :ACTL− →ACTL− is
defined as follows:

fortran(p) = p iff p is an atomic proposition or its negation
fortran(f ∧ g) = fortran(f) ∧ fortran(g)
fortran(f ∨ g) = fortran(f) ∨ fortran(g)
fortran(A[f U g]) = A[(¬toTrue → fortran(f)) U (¬toTrue ∧ fortran(g))]
fortran(A[f Uw g]) = A[(¬toTrue → fortran(f)) Uw (¬toTrue ∧ fortran(g))]

Note that the translation function does neither add nor remove atomic propo-
sition from the formula. Hence, the first point of the specification is satisfied. In
order to fulfil the second requirement, the intuition behind the modifications in a
until-formula can be understood from the fixed-point characterisation of formula
A[g U h]: If f = A[g U h] then f ↔ h ∨ (g ∧AX f) where AX is the operator that

5.3. VERIFICATION PROBLEMS CORRESPONDENCE 55

says its argument formula holds in all successor states. It is easy to see that the
evaluation of the translated formula

fortran(A[g U h]) = (¬toTrue ∧ h) ∨ ((¬toTrue → g) ∧ AXfortran(A[g U h]))

in an intermediate state is true if and only if fortran(A[g U h]) is true in all successor
states. Effectively, the result of evaluation of the formula fortran(A[g U h]) does not
depend on the intermediate state. For the formula f = A[g Uw h] the fixed point
characterisation is the same as for f = A[g U h], the difference is that for AU the
least fixed-point is considered while for AU w the greatest one. The intuitive differ-
ence is that evaluation of the second disjunct can be postponed forever, admitting
an infinite behaviour. However, the translation follows the same structure as the
one for the case of AU .

To get an intuition about how the translation function works, we exemplify it
on two formula patterns that appear frequently in the verification practice.

fortran(AG(p)) = fortran(A[p Uw false])

= A[(¬toTrue → fortran(p)) Uw (¬toTrue ∧ fortran(false))]

= A[(¬toTrue → p) Uw false]

= AG(¬toTrue → p)

fortran(AF (p)) = fortran(A[true U p])

= A[fortran(true) U (¬toTrue ∧ fortran(p))]

= AF (¬toTrue ∧ p)

5.3 Verification Problems Correspondence

In this section we prove the correspondence of the verification of a formula on a
sync-program and the verification of the formula translation on the sync-program
translation.

To this aim, we first show the operational correspondence of the two semantics,
namely that a computation in the semantics of a sync-program corresponds to a
computation in its translation. In particular, the two computations coincide on the
basic states when considering the original atomic propositions.

We start with showing that a transition of a sync-program corresponds to a
sequence of transitions in the corresponding synchronisation skeleton program. We
override the definition of basicState to work also on I-states: basicState(s) is defined
as

⋃

i∈I basicState(s⌈i).

Lemma 5.2 (Transition Correspondence). Let P I be a sync-program with sem(P I) =
(S,S0,R), its translation SP I = transl(P I) with semskel(SP

I) = (S∗,S∗
0 ,R

∗). We

56 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

have that (s, l, t) ∈ R where l = {l1, ..., lk} iff there is a sequence of transitions from
s0 = basicState(s) to s2n = basicState(t), i.e. there are s1, . . . , s2n−1 ∈ S∗ such that
(s0, l1, s

1), (s1, l2, s
2), ..., (s2n−1, ln, s

2n) are in R∗.

Proof. “⇒” Let (s, l, t) ∈ R and l = {l1, ..., ln}. By the definition of semantics of
sync-program P I there is a synchronisation MOV with support (s, t) and labels of
the participating automata are {l1, ..., ln} with o(l1) ≤ ... ≤ o(ln).

First we prove that if s0 = basicState(s) and for all 0 < i ≤ n states si ∈ S∗ are
as follows

• si⌈j = si−1⌈j if 0 < j ≤ n and j 6= i

• si⌈j = toState(MOV ⌈lj) if j = i

then (si−1, li, s
i) ∈ R∗ for all 0 < i ≤ n.

The proof proceeds by (complete) mathematical induction on i, we show that a
move of SP I

li
is executable in si−1 and it leads to the state si. Let

sli
∧m∈{1,...,i−1,i+1,...,n}Alm :Blm
−−−−−−−−−−−−−−−−−→ tli be the move of automaton P I

li
in MOV . From the

definition of translation we know that there is a move

s′li

∧
m∈{1,...,i−1} Alm∧to(Blm)∧

∧
m∈{i+1,...,n} Alm∧

∧
w∈I\{l1,...,li−1}

¬to truew

−−→ st′li in SP ∗
li

and s′li =

basicState(sli) and st ′li = toState(sli

∧
Aim :Bim−−−−−−→ tli). Now we show that this move is

enabled in si−1, that is we show that si−1⌈li = s′li and the enabling condition is satis-
fied. Since s0⌈li = basicState(s⌈li) and no move of type l1, ..., li−1 changes satisfaction
of atomic propositions from Ali , we have that s0⌈li = si−1⌈li = s′li. By the induction

hypothesis for j from 0 to i − 1 we have that s⌈lj = toState(slj

∧
Aim :Bim−−−−−−→ tlj) and

by the definition of si−1 also si−1⌈lj = sj⌈lj which satisfies Alj and to(Blj). Since
for all i < j ≤ n holds s0⌈lj = si−1⌈lj then si−1 satisfies Alj for all j ∈ {i + 1, ..., n}.
By the semantics of sync-automata and the translation all automata not having
a move in MOV stay idle and s0 satisfies ¬to truej for all j ∈ I − {l1, ..., ln}, it
holds also in si−1. Moreover ¬to true j holds for all i < j ≤ n since it was so in
s0 and s0⌈lj = si−1⌈lj . Hence the enabling condition is satisfied and the move of
SP I

li
can be executed in si−1. Furthermore, from the definition of si the execution

of move of SP I
li

in si−1 leads to si. Therefore then (si−1, li, s
i) ∈ R∗ for all 0 < i ≤ n.

Second, we prove that if s2n = basicState(t) and for all n < i < 2n states si ∈ S∗

are as follows

• si⌈j = si−1⌈j if 0 < j ≤ n and j 6= i− n

• si⌈j = basicState(tlj) if j = i− n and slj
sclj
−−→ tlj ∈ MOV

then (si−1, li−n, s
i) ∈ R∗ for all n < i ≤ 2n.

5.3. VERIFICATION PROBLEMS CORRESPONDENCE 57

The proof is analogous to the case of 0 < i ≤ n, exploiting the definition of state
si and the fact that by definition of a translation on step i there is a move whose
condition is enabled and lead to state basicState(tli−n

).

“⇐” Suppose that in S∗ there are states s0 and s2n such that s0 = basicState(s)
for some s ∈ S and s2n = basicState(t) for some t ∈ S and a sequence of transitions
from s0 to s2n, i.e. there are s1, . . . , s2n−1 ∈ S∗ such that (s0, l1, s

1), (s1, l2, s
2), ...,

(s2n−1, ln, s
2n) are in R∗. We must show that (s, l, t) ∈ R, where l = {l1, ..., ln}. The

proof is based on the following observations

• The set l of automata types that perform the synchronisation is incrementally
built in the first round. The moves follow the order o: for all 0 ≤ i < n
we have that o(li) < o(li+1). Each state is created from the previous one by
performing a move of a synchronisation skeleton from l from a basic state to
a “to”-state. After the first round all synchronisation skeletons SP I

l1
to SP I

ln

are in a “to”-state and all other synchronisation skeletons are in a basic state.

• After the first round the second round of moves such that li = ln+i is per-
formed. Each state is created from the previous one by performing a move of
a synchronisation skeleton from l from a “to”-state to a basic state. After the
second round all synchronisation skeletons are in basic states.

• Let st ′ be the state of SP I after the first round. Let intState be a set of states of
synchronisation skeletons SP I

l1
to SP I

ln
after the first round, that is intState =

⋃

i∈{1,...,n} st
′⌈li. Denote as MOV the set {m | s ∈ intState and toState(m) = s}

of the moves in P I that are encoded by the moves in the set intState. The
set MOV satisfies the definition of a synchronisation in the semantics of P I

and its support is (s, t). Labels of automata whose moves are in MOV are
precisely those in l.

From the above it follows, that (s, l, t) ∈ R.

A lemma follows that states that fair fullpaths restricted to non-intermediate
states (and projected onto their basic part) of a skeleton obtained by the translation
are precisely those of the original sync-program.

Now we define the path restriction operator toBasic that removes to-states and
restricts basic states to their basic part and aggregates the labels between two basic
states.

Definition 5.3. Let π′ be a path in semskel(SP
I). We call π = toBasic(π′) is a

path obtained from π′ as follows: whenever s′ is a basic state in π′ and t′ is the first
basic state along π′ after s′, then there is a corresponding transition in π formed by
(s, l, t) where s = basicState(s′), t = basicState(t′) and l is the set composed of all
labels in the portion of the path π′ between s′ and t′.

We are ready to state and prove the lemma.

58 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

Lemma 5.4 (Fullpath Correspondence). Let P I be a sync-program and SP I its
translation. The following propositions are equivalent

• π′ is a fair fullpath in semskel(SP
I)

• π = toBasic(π′) is a fair fullpath in sem(P I).

Proof. Let π′ be a fair fullpath in semskel (SP
I). Let s′ be a basic state in π′ and t′

the first basic state along π′ after s′ and there is a sequence of to-states obtained one
from the previous one by moves of synchronisation skeletons of types l1, ..., ln. From
the transition correspondence lemma follows that in sem(P I) there is a transition
from the basic part of s′ to the state representing the basic part of t′ with label
l = l1, ..., ln. The function toBasic removes the intermediate series of states and
restricts states s′ and t′ to their basic part and collects types of automata that
perform the moves through the series of states between s′ and t′ into l. This proves
the left-to-right implication of the lemma. Since s′ was an arbitrary basis state in π′,
the correspondence holds for the paths π′ and π = toBasic(π). It remains to argue,
that π is a fair fullpath in sem(P I). Since π′ is a fair fullpath in semskel(SP

I), by
the definition of fairness for synchronisation skeletons, each synchronisation skeleton
participates infinitely often on transitions of the path. This is precisely the definition
of fairness for sync-programs.

The converse implication is proved analogously again with the help of the tran-
sition correspondence lemma.

Finally, a formula fortran(f) is true in a basicState(s) iff f is true in s.

Theorem 5.5 (Verification correspondence). For sync-program P I and skeleton
program SP I , where SP I = transl(P I), for all s ∈ sem(P I) for all f ∈ ACTL− it
holds that

sem(P I), s � f iff semskel(SP
I), basicState(s) � fortran(f).

Proof. By induction on the structure of the formula f .
f = p. By the definition of the program translation, s � p iff s′ � p for all

p ∈ AP . Hence, since fortran(p) = p, we have that s � f iff s′ � fortran(f).
f = g ∧ h. By the semantics of ACTL−, s � g ∧ h iff s � g and s � h. By the

induction hypothesis, this is equivalent to s′ � fortran(g) and s′ � fortran(h) where
s′ = basicState(s) and that is by the semantics of ACTL− s′ � fortran(g)∧fortran(h)
which is in turn equivalent to s′ � fortran(f) by the definition of fortran .

f = g ∨ h. Analogous to the previous case.
f = A[g Uw h]. Let π be an arbitrary fullpath in sem(P I) starting in s. The

Fullpath correspondence lemma guarantees that there is a fullpath π′ in SP I such
that toBasic(π′) = π. By assumption π � gUh. By the definition of ACTL− there
are two cases:

5.4. IMPLEMENTATION OF SYNC-PROGRAMS IN NUSMV 59

1. sem(P I), π � Gg. We have to show that any state t′ of π′ is satisfies fortran(f)
that means by the definition of fortran , that t′ satisfies ¬toTrue → fortran(g).
If t′ is such that there is a t ∈ π and t′ = basicState(t) we show that t′ �
¬toTrue → fortran(g). Since t′ is a basic state, t′ � ¬toTrue and from the
induction hypothesis t′ � fortran(g). If, on the other hand, there is no t ∈
π such that t′ = basicState(t), then t′ � toTrue. Hence t′ � ¬toTrue →
fortran(g) by the semantics of ACTL−.

2. sem(P I), π � g U h. By the definition of ACTLI there is a state t ∈ π such
that t � h and for every state u of π between s and t holds u � g.

From the Fullpath correspondence theorem π′ starts in s′ and leads through
states basicState(v) for each v ∈ π. Path π′ contains t′ = basicState(t). We
need to show that s′ satisfies fortran(f) that means by the definition of fortran ,
that t′ satisfies ¬toTrue ∧ fortran(h) and for all v′ ∈ π′ between s′ and t′, it
holds that v′ � ¬toTruefortran(g).

Since t′ is a basic state, t′ � ¬toTrue and from the induction hypothesis
t′ � fortran(h) which proves the part for t′.

Now consider any v′ ∈ π′ between s′ and t′. If v′ = basicState(v) for some
v ∈ π then v′ � ¬toTrue and from the induction hypothesis v′ � fortran(g)
which by definition of ACTL− proves v′ � ¬toTrue → fortran(g). If, on the
other hand, there is no v ∈ π such that v′ = basicState(v), then v′ � toTrue .
Hence v′ � ¬toTrue → fortran(g).

In both cases we showed semskel(SP
I), toBasic(π) � g Uw h. Since π was an ar-

bitrary fair fullpath starting in s, we conclude sem(SP I), basicState(s) � A[g Uw h].
f = A[g U h]. Let π be an arbitrary fair fullpath in sem(P I) starting in s.

By the fullpath correspondence lemma we have that toBasic(π) is a fair fullpath in
SP I . From the assumption we know that P I , π � g U h . By the above case we get
SP I , basicState(s) � fortran(A[g U h]).

Please note, that even though the above theorem is proved for the logic ACTL−

because it suffices for the purpose of the thesis, the Fair fullpath correspondence
lemma guarantees a similar verification correspondence result for the entire logic
CTL.

5.4 Implementation of Sync-Programs in NuSMV

In this section we demonstrate the process of implementation of a sync-program in
NuSMV on an example. We sketch the translation of the sync-program P I repre-
senting the model of the lac operon regulation from Section 3.3 to a synchronisation
skeleton program. Subsequently, we outline the actual NuSMV code used in the
encoding for the tool.

60 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

Sync-program P I = (SI
0 , P

I
lac||P

I
β ||P

I
allo ||P

I
op||P

I
repr ||P

I
pos ||P

I
glu) consists of parallel

composition of seven sync-automata. Its translation SP I consists of parallel com-
position of seven synchronisation skeletons. We will show the translation of one
sync-automaton, in particular P I

lac (Figure 5.1) representing lactose.

Lac out Lac in

NOSYNC

Beta high 	 ∧trueglu 	

Beta low 	 ∧true :Allo low

Beta high 	 ∧trueglu 	

Allo none 	 ∧truebeta 	 ∧
B1 	 ∧trueglu 	 ∧(Act ∧ Rep) 	

Figure 5.1: P I
lac – Lactose

Its translation, SP I
lac , is shown on Figure 5.2.

Lac out

Lac out
toLac out

Lac out
toLac in

Lac in
toLac out

Lac in

Lac in
toLac in

move1

Lac in
toLac in

move2

C1 C2 C3 C4 C5 C6

C7C8C9C10

Figure 5.2: SP I
lac – synchronisation skeleton for Lactose

Basic states of the synchronisation skeleton (note that we display only the atomic
propositions that are true in the state) are {Lac in} and {Lac out}. All other states
are the intermediate ones, for each move of P I

lac there is one intermediate state. The
move enabling conditions are shown in Table 5.1.

The order o considered over I is such that o(allo) < o(beta) < o(pos) < o(glu) <
o(lac) < o(op) < o(repr). Consider move of P I

lac

Lac out
Allo none	∧truebeta	∧B1	∧trueglu	∧(Act∧Rep)	
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Lac out. This is translated in two

moves of synchronisation skeleton SP I
lac , namely there is one from {Lac out} to

{Lac out, toLac out} with enabling condition C1 and a converse one with condition
C2. On the synchronisation represented by these moves the following six components
participate: allo, β, glu, lac, op, repr .

By the definition of transl , C1 consists of three conjuncts. The first part ex-
presses that SP I

lac has to wait for the skeletons earlier in the order to arrive in their

5.4. IMPLEMENTATION OF SYNC-PROGRAMS IN NUSMV 61

C1 = allo none ∧ toAllo none ∧ truebeta ∧ toTrue beta∧
∧trueglu ∧ toTrue glu ∧ act ∧ rep ∧ b1∧
toTrue allo ∧ toTrue beta ∧ toTrue glu ∧

∧

i∈I−{allo,beta,glu} ¬to i

C2 = allo none ∧ truebeta ∧ trueglu ∧ act ∧ rep ∧ toAct ∧ toRep ∧ b1 ∧ toB1∧
toTrue op ∧ toTrue repr ∧

∧

i∈I−{op,repr}¬to i

C3 = true∧
∧
∧

i∈I ¬to i
C4 = true∧

∧
∧

i∈I ¬to i
C5 = beta high ∧ toBeta high ∧ trueglu ∧ toTrue glu∧

toTrue beta ∧ toTrue glu ∧
∧

i∈I−{beta,glu} ¬to i

C6 = beta high ∧ glu high∧
∧
∧

i∈I ¬to i
C7 = beta low ∧ toBeta low ∧ trueallo ∧ toAllo low∧

toTrue beta ∧ toTrue allo ∧
∧

i∈I−{beta,allo} ¬to i

C8 = beta low ∧ allo low∧
∧
∧

i∈I ¬to i
C9 = beta high ∧ toBeta high ∧ trueglu ∧ toTrue glu∧

toTrue beta ∧ toTrue glu ∧
∧

i∈I−{beta,glu} ¬to i

C10 = true∧
∧
∧

i∈I ¬to i

Table 5.1: Enabling conditions for SP I
lac

62 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

respective intermediate states. Thus C1 contains the following constraints on allo, β
and glu: allo none ∧ toAllo none ∧ truebeta ∧ toTrue beta ∧ trueglu ∧ toTrue glu.
A condition follows that the remaining skeletons, participating in this synchroni-
sation but later in the order have to be ready for the transition: act ∧ rep ∧ b1.
Moreover, all modules except for those participating on the synchronisation that
precede the current module in the order, must not be in a to-state, as expressed by:
toTrue allo ∧ toTrue beta ∧ toTrue glu ∧

∧

i∈I−{allo,beta,glu} ¬to i .
As for the second move, analogously, the module has to check that all the pre-

ceding modules have arrived to the target state and the following modules are
waiting for the execution in a to-state and no other skeleton is in an intermedi-
ate state: allo none ∧ truebeta ∧ trueglu and ∧act ∧ rep ∧ toAct ∧ toRep ∧ b1 ∧ toB1
and toTrue op ∧ toTrue repr ∧

∧

i∈I−{op,repr} ¬to i , respectively.

Now we show how to encode SP I in the input language of NuSMV. The objective
is to give one module for each synchronisation skeleton plus a selector module for
simulating the asynchronous behaviour, and the main module.

We give one module for each of the synchronisation skeletons. For example to
P I
lac corresponds the module

MODULE lacMod(...)

Each module is provided by a list of formal arguments, these will be discussed later
in this section.

In the module, there are essentially three kinds of variables. The first are the
original variables corresponding to the atomic propositions of the sync-automaton.

VAR

lac_out : boolean;

Moreover, there are variables corresponding to the “to”-propositions.

toLac_in : boolean;

We call these variables to-variables. And lastly, there are variables true_glu and
toTrue_glu whose function is clear.

We define macros for specifying the states of the module. These states consist of
a conjunction of variables or their negations, where all the variables are listed. To
each state of the sync skeletons corresponds one macro of the following shape.

DEFINE

state1 := lac_out & !toLac_out & !lac_in & !toLac_in

& !move1 & !toTrue_lac;

The extra variable move1 corresponds to the atomic proposition move1 and ensures
the exclusivity for intermediate states in the case of multiple moves.

Some of the states are chosen to be initial:

5.4. IMPLEMENTATION OF SYNC-PROGRAMS IN NUSMV 63

INIT

state1

The transitions of the program are made so that only one synchronisation of
the modules is carried out at a time. A synchronisation is performed by a series of
separate transitions of participating modules, one module at a time, following the
order o: alloMod, betaMod, posMod, gluMod, lacMod, opMod, reprMod.

Transitions of a module represent the moves of the synchronisation skeleton.
We express the enabling condition by means of two macros. The first one specifies
the positive requirements on other synchronisation skeletons participating in the
synchronisation.

This is expressed by the condition in macro

p12 := allo_none & toAllo_none & true_beta & toTrue_beta & true_glu

& toTrue_glu & act & rep & b1;

The second part expresses for each module in I, whether it is in a basic or an
intermediate state.

n12 := toTrue_allo & toTrue_beta & _toTrue_pos & toTrue_glu

& _toTrue_lac & _toTrue_op & _toTrue_repr;

Note that we use an underscored variable in order to denote the negation of
a variable, instead of using the language construct of negation !. The reason for
keeping distinct the variable and its negation will be clear at the end of this section.

The transition itself is expressed as a logical characterisation of the transition
relation

TRANS

state1 & p12 & n12 & next(state3)

There is one more module selMod representing the selector process taking care
of the asynchronicity of the operation. The selector module is running in parallel
with all other modules and in every step it selects non-deterministically one of the
above modules and only that module will be permitted to change the state.

VAR

select : {selAllo,selBeta,selPos,selGlu,selLac,selOp,selRepr};

The selector passes the name of the scheduled process to each of the modules.
In compliance to this piece of information, each module either performs a transition
or stays idle.

The fairness is implemented on the level of the selector. Since once a process is
selected it must perform a transition, it is enough to schedule the processes infinitely
often. The fairness constraint is included for each of the values of the variable
select.

64 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

FAIRNESS

select = selLac

In the module main we instantiate all of the modules, passing the variables of
all other modules as parameters to each module.

MODULE main

VAR

lac : lacMod(allo.allo_low,!allo.allo_low,...

Note that allo.allo_low is passed to formal parameter allo_low in module gluMod
and its negation to the formal parameter _allo_low. The reason for keeping these
parameters distinct is facilitating the creation of translation corresponding to a
sync-subprogram obtained by means of a projection. For example, to get the sync-
subprogram obtained by projecting the model to {op, rep}, we only need to initialise
modules op and repr in the same manner as before, but with all references to mod-
ules outside of the projection substituted with TRUE. In this way the synchronisation
conditions of modules outside of the projection become superfluous.

The NuSMV source code obtained by the translation of our lac operon model
can be found online [36], along with the examples from the following section.

5.5 Modular Verification of Lac operon

in NuSMV

In this section we show the verification of the properties given in Section 3.3 in
NuSMV.

Each property has to be translated by using the function fortran from Section
5.2. Then the property is verified on the NuSMV implementation of the translation
of the sync-subprogram identified in Section 3.3. Its successful verification on the
fragment of the model implies its satisfaction in the whole model of lac-operon
regulation, as guaranteed by the Property preservation theorem.

The property (P1) “The allolactose bound to the repressor implies that the operon
is repressed” expressed by ACTL− formula

AG(Ballo → Rep) (P1)

is translated by fortran to

AG(¬toTrue → (Ballo → Rep)) (P1’)

which is in the NuSMV syntax written as

AG(notToTrue -> (repr.ballo -> op.rep)) (P1’)

is verified in the synchronisation skeleton representing the sync-subprogram P op,repr

in less then 0.1 seconds.

5.5. MODULAR VERIFICATION OF LAC OPERON IN NUSMV 65

NuSMV > check_ctlspec -p "AG(notToTrue -> (repr.ballo -> op.rep))"

-- specification AG (notToTrue -> (repr.ballo -> op.rep)) is true

NuSMV > time

elapse: 0.5 seconds

NuSMV > print_usage

BDD nodes allocated: 174750

In comparison, the verification in the whole model would take 0.5 seconds.

The property (P2) “The increase of allolactose concentration can only be medi-
ated by β-galactosidase in low concentration” encoded in NuSMV as

AG(notToTrue -> (allo.allo none & beta.beta high ->

A[!allo.allo low U beta.beta low])) (P2’)

is verified in the synchronisation skeleton representing the sync-subprogram P allo,β

in less than 0.1 seconds. In comparison, the verification in the whole model would
take 0.4 seconds.

The oscillation property (P3) “While lactose is inside the cell, the operon will nec-
essarily oscillate between a repressed and an unrepressed state” encoded in NuSMV
the global satisfaction of the conjunction of the following two formulae

(op.rep -> (AF (notToTrue & !op.rep) |

A[(notToTrue -> AF(notToTrue & !op.rep)) U (notToTrue & !lac.lac in)]

)) (P3a’)

and

(!op.rep -> (AF (notToTrue & op.rep) |

A[(notToTrue -> AF(notToTrue & op.rep)) U (notToTrue & !lac.lac in)]

)) (P3b’)

Hence, the Property (P3) encoded in NuSMV is

AG((P3a’) & (P3b’)) (P3’)

This property is verified in the synchronisation skeleton representing the sync-
subprogram P β,lac,op,repr in 0.1 seconds as instead of 1.2 seconds in the whole model.

The correctness property (P4) “When the glucose concentration drops and lac-
tose is inside the cell, the lac operon will eventually be fully expressed” encoded in
NuSMV as

AG(notToTrue ->

(glu.glu low & lac.lac in -> AF(notToTrue & op.act & !op.rep))) (P4’)

is verified in the synchronisation skeleton program PI in 0.9 seconds.

66 CHAPTER 5. MODULAR VERIFICATION IN PRACTICE

Whole model Modular
Property Time BDD size Time BDD size

(P1’) 0.4s 174750 nodes <0.1s 3271 nodes
(P2’) 0.4s 180278 nodes <0.1s 1991 nodes
(P3’) 1.2s 326908 nodes 0.1s 35269 nodes
(P4’) 0.9s 283614 nodes 0.9s 283614 nodes
(P5’) 0.7s 256112 nodes 0.1s 29193 nodes
(P6’) 0.6s 222511 nodes 0.1s 21442 nodes

Table 5.2: Comparison of whole model verification with modular verification

The negative regulation correctness property (P5) “When glucose concentration
is low, the lac operon will eventually be unrepressed” encoded in NuSMV as

AG(notToTrue-> (lac.lac in & op.rep -> AF(notToTrue & !op.rep))) (P5’)

is verified in the synchronisation skeleton representing the sync-subprogram P β,lac,op,repr

in 0.1 seconds (cf. 0.7s).

The positive regulation correctness property (P6) “When glucose concentration
is low, the lac operon will eventually be activated” encoded in NuSMV as

AG(notToTrue-> (glu.glu low & !op.act-> AF(notToTrue & op.act))) (P6’)

is verified in the synchronisation skeleton representing the sync-subprogram P β,lac,op,repr

in 0.1 seconds (cf. 0.6s).

Verification of properties on model fragments obtained by projecting on a subset
of the system components takes much less time than verification of the same prop-
erties on the whole model. We compare in Table 5.2 the time necessary to verify
the considered properties on the whole model and on the suitable model fragment
we have identified. The table shows that the increase of efficiency of modular verifi-
cation with respect to verification on the whole model can be significant, depending
on the number of components to be involved in the modular verification.

Another value that is compared in the table is the size of the data structure
used by the model checker (a Binary Decision Diagram – BDD). Again, the use of
smaller models in the modular verification approach allows smaller data structures
to be used for the representation of the state space. This is another important aspect
of modular verification, which may permit verification of properties of systems whose
complete behaviour representation would require data structures that could be too
big to fit in the memory of a computer.

The worst case in modular verification of a property is the case in which all of
the system components are necessary to verify it (as in the case of property (P4’)).
In this case modular verification coincides with verification on the whole model.

Chapter 6

Modular Verification as a
Property of Semantics

6.1 Motivation

In the previous chapter we have proved that properties of sync-subprograms are
preserved in sync-programs. In this chapter, by analysing the proof of the Preser-
vation Theorem (Theorem 4.7), we characterise the type of formalisms for which it
is possible to prove a similar result.

In [52] the compositional reasoning about synchronous systems is investigated.
The relationship between the whole and the part is captured by means of a homo-
morphism. For asynchronous systems the relationship is represented by Attie and
Emerson in [7] by the system projection.

Analysing the proof, the Property Preservation Theorem (Theorem 4.7) can be
restated as follows by utilising the projection of I-structures (Definition 3.6).

Theorem 6.1. Let AP I be s set of atomic propositions and APJ ⊆ AP I . Let MI

and MJ be I- and J-structures over AP I and APJ , respectively. If for each fullpath
π in MI it holds that π′ = π⌈J is a fullpath in MJ then if MJ � f then MI � f for
all f ∈ACTL−.

These I-structures are obtained as semantics of sync-programs. Abstractly, a
semantics is a function that associates to each sync-program an I-structure. We
want to see what are the conditions on the semantic function (semantics) of sync-
programs such that the semantics of a sync-program and its sync-subprogram satisfy
the assumption of the theorem. Note that we investigate conditions on the semantics
while having a notion of sync-subprogam fixed, i.e. we do not analyse parametrisa-
tion with respect to the syntactic projection.

68 CHAPTER 6. MODULAR VERIFICATION AS A PROPERTY OF SEMANTICS

6.2 A Generalised Definition of Semantics

Let us first recall the definition of semantics. It is an LTS with transitions as follows.
A transition from state s to state t with label l corresponds to having a selection
of automata, precisely those with indices contained in the label l, which perform
a move simultaneously and rest of automata stay idle. We call the set of moves
performed simultaneously a synchronisation and states s and t its support.

We revisit the definition of a synchronisation and we give a new, generalised defi-
nition. The aim is to provide the most general definition that is compatible with the
following intuition. A synchronisation should contain moves from distinct automata,
because it is impossible that more moves of the same automaton be performed syn-
chronously. The next stipulation is that for each move its conditions on other moves
are satisfied, making the synchronisation sound. The last requirement is that only
related moves should be considered. This is to guarantee the “atomicity” of the syn-
chronisation, that is just the moves that wish to participate on the synchronisation
do so. The above specification is formalised in the following definition.

Definition 6.2. Let I be an index set. We call a set of moves MOV a synchroni-
sation iff

1. all moves in MOV are from distinct sync-automata in I

2. if m ∈ MOV is of type i and has the form si
∧j∈LAj :Bj

−−−−−−→ ti, then for all j ∈ L

there is a move m′ ∈ MOV of type j and has the form sj
scj
−→ tj and for all

p ∈ Aj : sj(p) = tt and for all p ∈ Bj : tj(p) = tt

3. Let GMOV be a graph, where vertices are the moves from MOV and there is
a directed edge from m1 to m2 iff move m1 contains a reference to m2 in its
synchronisation condition. Then GMOV is weakly connected.

This definition is only slightly more general than Definition 3.4, in particular
in the third point. A directed graph is weakly connected iff when replacing each
directed edge by an undirected one, we obtain a connected (undirected) graph. In
other words, any pair of vertices is connected through an undirected path. Note that
weak connectivity corresponds to our intuition of considering only related moves,
in particular MOV cannot be partitioned in two sets, such that both are correct
synchronisations.

Furthermore, weak connectivity in a directed graph is satisfied in a complete
graph, a condition required in Definition 3.4.

In order to illustrate the difference between the definitions 3.4 and 6.2 note,
that in the semantics that uses the latter an indirect synchronisation can be per-
formed. It is possible that two sync-automata participate in a simultaneous tran-
sition even without requiring synchronisation from each other, but both being con-
nected through a third party. For instance, if a sync-automaton requires synchro-

6.3. THE MV PROPERTY 69

nisation with two other sync-automata, these are forced to perform a move syn-
chronously even though they might not request synchronisation from each other
directly.

6.3 The MV property

Now we state what it means for a semantic function to have a modular verification
(MV) property.

Definition 6.3. Function of semantics sem : P I 7→ MI has the MV property iff for
projection ↾, for all sync-programs P I , for all J ⊆ I holds:

if π is fullpath in sem(P I) then π′ = π⌈J is a fullpath in sem(P I↾J).

Note that a semantics with the MV property always satisfies the assumptions of
the Theorem 6.1. Furthermore, note that the semantics of sync-programs as defined
in Definition 3.4 has the MV property, as proved in the Fullpath Lemma (Lemma
4.4).

Fairness, as defined in Chapter 4, is preserved by the projection (Lemma4.4).
From the analysis of the proof of the Fullpath Lemma we infer that if fairness
is assumed, the Transition Lemma (Lemma 4.2) is a sufficient condition for the
Fullpath lemma. In the following we investigate for which definitions of semantics
we are able to prove the Transition lemma. Let us recall this lemma.

Lemma 6.4 (Transition projection). Let I be an index set and MI = (SI ,S
0
I ,RI)

the semantics of sync-program P I. For all I-states s, t in SI and all l ∈ P(I),
transition (s, l, t) is in RI iff for all J ⊆ I such that l ∩ J 6= ∅, (s, l, t)⌈J is in RJ ,
where MJ = (SJ ,S

0
J ,RJ) is the semantics of sync-program P J = P I↾J .

We show, that for the semantics utilising the definition of a synchronisation
(Definition6.2) the Transition projection lemma not necessarily holds.

Example: Let m1 = A
X:¬X∧Z:¬Z
−−−−−−−→ ¬A, m2 = X

A:¬A
−−−→ ¬X , m3 = Z

A:¬A
−−−→ ¬Z

where the moves m1, m2 and m3 belong to sync-automaton a1, a2 and a3, re-
spectively. The tuple MOV 1 = ([AXZ]{a1, a2, a3}, [¬A,¬X,¬Z]) is a synchroni-
sation according the Definition 6.2. But MOV 1⌈{a2, a3} = ([XZ]{2, 3}, [¬X,¬Z])

is not a synchronisation because the moves m2↾{a2, a3} = X
NOSYNC
−−−−−→ ¬X and

m3↾{a2, a3} = Z
NOSYNC
−−−−−→ ¬Z do not form a synchronisation. In particular the

third point from the definition of a synchronisation (Definition 6.2) is not satisfied,
as the graph GMOV 1⌈{a2,a3} = ({a2, a3}, ∅) is not weakly connected.

As we can see from the example, weak directed connectivity of the graph from the
definition of synchronisation is not preserved by the projection of the semantics. It
follows that for the synchronisation from Definition 6.2 we cannot prove an analogue
of the following result that holds for the synchronisation from Definition 3.4.

70 CHAPTER 6. MODULAR VERIFICATION AS A PROPERTY OF SEMANTICS

Lemma 6.5. If MOV is a synchronisation of moves from P I, then MOV ↾J is a
synchronisation of moves from sync-subprogram P J = P I↾J .

Proof. Follows directly from the proof of the Transition lemma (Lemma 4.2) and
the definition of sync-subprogram (Definition 4.1).

It is easy to see that the violation of this desired result comes from the third
point of the definition (Definition 6.2), which is the only difference between the two
definitions of synchronisation. Hence, it is necessary to impose a stronger condition
as a property of the graph in the definition of synchronisation. Let Prop denote the
desired graph property. Then these are formal requirements on the property Prop.

1. Prop implies the weak directed connectivity (if Prop(GMOV) then GMOV is
weakly directed)

2. if Prop(GMOV) then Prop(GMOV ↾J) where J ⊆ I.

The effect of projection of a synchronisation (Definition 4.1) is that it removes
nodes and their induced edges, thus producing an induced subgraph.

The second requirement can be rephrased by using graph theoretical concepts.
The property Prop is induced hereditary: Prop is induced hereditary iff if Prop
holds for G, then it holds for all induced subgraphs H of G [16].

Some induced hereditary properties [49]: completeness, planarity, outerplanarity,
bipartity, acyclicity, having max degree, interval graphs, chordal graphs. Not in-
duced hereditary: weak connectivity (as above), connectivity (if a graph it contains
a directed path from u to v or a directed path from v to u for every pair of vertices
u, v), strong connectivity (if it contains a directed path from u to v and a directed
path from v to u for every pair of vertices u, v).

We prove that the only graph property that satisfies the above two characteristics
is completeness.

Lemma 6.6. If Prop(G) implies Prop(H) for all induced subgraphs H of G and
Prop(G) implies WeakConnected(G) then Prop(G) ↔ Complete(G).

Proof. Let us suppose by contradiction, that Prop is different from Complete.
Let G be a graph such that G ∈ Prop. By the assumption G is not complete.

That means that there are vertices v and v′ such that the edge (v, v′) is not in G.
Then consider the subgraph G′ induced by the vertices v and v′. Since Prop is
induced hereditary, G′ is in Prop. Then by the assumption G′ is weakly connected.
However, this contradicts to the fact that there is no edge between v and v′. Thus
the assumption that Prop is different from Complete is wrong and which completes
the proof.

This means that in order to satisfy the transition lemma, a transition has to
consider only moves of automata, that reference each other in the synchronisation
condition.

6.4. MODULAR VERIFICATION OF OTHER FORMALISMS 71

Hence only the semantics of sync-programs that has the MV property is the one
defined in Definition 3.4 as proved in the Transition lemma (Lemma 4.2).

Theorem 6.7. A semantics has the MV property iff a synchronisation considers all
and only moves that refer to all of the participants of the synchronisation.

Proof. For the proof see reasoning above.

6.4 Modular Verification of Other Formalisms

A semantics of a formalism with the synchronisation of automata/processes (in the
following we use the name automata) has the MV property when its concept of
synchronisation, that is determining which moves/actions/events/activities (in the
following we use the name move) that are performed simultaneously, follows the
same principles as the synchronisation in (Definition 3.4), namely:

1. moves are from distinct automata

2. for each move its conditions on other moves are satisfied

3. each move is willing to synchronise with all the participating moves.

There are some well known formalisms that enable synchronisation of multiple
processes through shared actions, for example CSP [60] and PEPA [58]. In the
synchronisation, action names are used without a reference to the process names.
In order to satisfy the third condition, it is necessary that all processes currently
prepared to perform an action really do so.

In CSP, even a stronger condition is satisfied, namely if an action is in the
alphabet of a process then its participation on the action execution is necessary
[50].

In PEPA (by extension Bio-PEPA [25]) we consider a subset of the language, in
particular we consider the version where all rates r of all activities(α, r).S are infinite
and we denote it PEPA∞. In a way this is equivalent to a qualitative version of the
calculus where all activities are instantaneous. The synchronisation of two processes
C1 ⊲⊳L C2 is specifies as a synchronisation on all activities from L, other activities
are independent. Again, the satisfaction of the third condition is guaranteed.

As a result, since implicitly all three requirements for the synchronisation in
the semantics of all CSP and PEPA∞ are satisfied, their semantics have the MV
property. Thus it is possible to prove the preservation of all ACTL− formulae for
CSP and PEPA∞.

In CCS [71], processes may interact on two complementary actions a and ā.
Only two agents may participate in each interaction. Since processes cannot choose
to perform a or ā without the partner, our syntactical projection does not apply
here. Thus we cannot apply our modular verification technique in the case of CCS.
It might be, however, possible to create a more sophisticated syntactical projection
and prove the modular verification for this projection.

72 CHAPTER 6. MODULAR VERIFICATION AS A PROPERTY OF SEMANTICS

6.5 Equivalence of state-based synch. conditions

and action sharing

In this section we argue that the synchronisation principle of sync-automata and
the action sharing in the style of CSP are equivalent.

Synchronisation conditions of sync-programs have been introduced with verifi-
cation in mind. Since properties of behaviours refer to states and not to moves
(actions), synchronisation conditions of a move specify preconditions and postcon-
ditions of the synchronously performed moves.

As it turns out, in order to be able to apply the modular verification, each
move has to indicate all the moves with which it is willing to synchronise. This
is a feature that is present implicitly also in the concept of action sharing in the
style of Team automata [65] or Communities of interacting automata [67]. Now
we show that there is a procedure for obtaining one form of synchronisation from
the other while maintaining the semantics (resulting labelled transition system) of
the program. For this purpose we consider a fictitious formalism of shared action
automata (SAA). Moves between states are labelled by action symbols. A shared
action can be executed only if it is performed by all the processes that contain this
action in their alphabet.

First take a sync-program P I for an index set I. We will show how to construct
an equivalent shared action automaton. Consider a mapping that to each move of
each sync-automaton from P I assigns a unique identifier, let M be a set of all these
identifiers.

We construct a propositional formula fsyncP I that characterises the synchroni-
sation requests of the program P I . For move with identifier m ∈ M we define

• movem ↔ m → (movingm ∧ idlem)

• movingm ↔
∧

c∈sc(m)

∨

sat(m′,c)m
′

• idlem ↔
∧

¬sat(m′,sc(m)) ¬m
′

where sc(m) denotes the synchronisation condition of move m. Furthermore
sat(m, c) is a predicate that is true when move m satisfies the synchronisation con-
dition c in both precondition and postcondition or, in extension, at least one of the
set of conditions.

The formula movem intuitively means that whenever move m is performed then
also for each automaton referred to in the synchronisation condition of m one of the
moves has to be performed too, as specified by the formula movingm. Moreover, all
the other moves must not be performed, as described in the formula idlem.

For the sync-automaton Pi, we have a formula aut i = NANDm∈Pi
movei, that

specifies that only one of the moves is permitted to be performed at a time. Finally,
formula

fsyncP I = ∧i∈Iauti

6.5. EQUIVALENCE OF CONDITIONS 73

puts into conjunction specification of all automata. This formula represents the
description of the move dependencies.

Now, all models of formula fsyncP I represents all correct synchronisations of the
program P I .

The equivalent shared action automaton has the same states and moves between
them as P I . We describe how to obtain the shared action labels.

Take a model X of formula fsyncP I . The identifiers that are true in X represent
moves constituting the corresponding synchronisation. We label these moves with
a fresh action name aX . In this way the SAA performs the synchronisation if and
only if all the moves labelled with this symbol participate on the synchronisation.

After labelling the moves of the SAA with the symbols for all the models of
formula fsyncP I , some moves might be labelled with more action names. Since the
partners of a move in the synchronisation in the sync-programs are fixed for each
move, such a situation corresponds to being able to synchronise with different tuples
of moves from the same tuple of sync-automata. Since each automaton can perform
only one move at a time, it cannot introduce incorrect synchronisation when we
unify the symbols. Thus if two symbols appear as a label of the same move, they
are substituted with the one that is earlier in the global order of action symbols.
Hence we have constructed an SAA that is equivalent to P I .

In order to construct a sync-automaton from a SAA P ′, first we construct a
propositional formula characterising the synchronisations of P ′ analogously to the
converse case. The sync-automaton equivalent to P ′ again consists from the same
states as P ′. Then for a synchronisation corresponding to a model of the above
mentioned formula, we include in the sync-automata fresh moves that reference in
the synchronisation conditions each other in an absolute way, that is preconditon and
postcondition is the full state description. It this way for each synchronisation there
is a fresh tuple of moves that make the synchronisation sound. For quite general
synchronisations, where a move of the SAA can synchronise with more moves of a
partner automaton, this approach can generate quite many moves of the resulting
equivalent sync-automaton. Hence, we have constructed a sync-program that is
equivalent to the SAA P ′.

Note that these algorithms might not be efficient, but their aim is demonstrate
the equivalence of the forms of synchronisation.

74 CHAPTER 6. MODULAR VERIFICATION AS A PROPERTY OF SEMANTICS

Chapter 7

Dynamic Sync-Programs

In this chapter we extend the approach by allowing sync-automata (the compo-
nents of a sync-program) to be created dynamically by other already running sync-
automata. Moreover, we allow several instances of the same sync-automata to be
executed concurrently, without any bound of the number of concurrent instances of
the same sync-automaton. This extension is hence a new formalism that we call
dynamic sync-programs.

This extension is biologically motivated. Indeed, in biological systems it is often
the case that entities involved in the processes of interest (e.g. proteins) are synthe-
sised by other active entities (e.g. the DNA). Moreover, it is very common that a
number of copies of the same entities (e.g. proteins) are active at the same time.

A Petri net representation of dynamic sync-programs is given. The existence
of such a representation implies that the formalism is not Turing-complete, that
verification of the properties of interest is decidable, and that analysis tools for Petri
nets can be used to analyse system descriptions given in terms of sync-programs.

We develop a modular verification technique for dynamic sync-programs. In
order to be able to express properties of different instances of sync-automata in
a dynamic sync-program we define an extension of the logic ACTL− that we call
Dynamic ACTL−. We prove, in the line of Chapter 4, that DACTL− properties that
hold in the semantics of a portion of a dynamic sync-program obtained by a suitable
projection operation, hold also in the semantics of the whole dynamic sync-program.

We apply the approach to a biological case study, namely the EGF signalling
pathway.

7.1 Syntax

As in the case of sync-programs, dynamic sync-programs are founded on the com-
ponent-based approach. We assume a finite index set I representing the possible
indices. Sometimes indices are referred to as types of sync-automata. Whereas in
the static case there was a single component of a given type, in the dynamic case

76 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

there can be also none or more components with the same index from I.
Again, with every index i a set AP i of atomic propositions is associated. Sets

of atomic propositions are pairwise disjoint for all the types, i.e. if i 6= j then
AP i ∩ AP j = ∅.

An individual component with an index from I is modelled by a finite state
machine called a dynamic sync-automaton.

Definition 7.1. A dynamic sync-automaton P I
i , where i is a component index from

index set I, is a tuple (Si, S
0
i , Ri):

• Si ⊆ P(AP i) is the set of states ;

• S0
i ⊆ Si is the set of initial states ;

• Ri ⊆ Si × SC i ×CC i ×Si, where SC i ⊆ Mset(
⋃

j∈I(P(APj)×P(APj))), and
CC i ⊆ Mset(

⋃

j∈I P(APj)) are labelled moves between states.

There are essentially two differences between the definitions of a sync-automaton
and a dynamic sync-automaton. The first is that in a synchronisation condition
of a move of a sync-automaton of type i there can be multiple references to the
components of a type j, referring to different instances of sync-automata of such a
type. References to other instances of the same type i are also allowed.

As second difference with respect to a sync-automaton, a move of a dynamic
sync-automaton contains an extra condition called a creation condition. We denote
a move from state si to state ti with labels sci and cci by si

sci−→
cci

ti where sci

is the synchronisation condition and cci the creation condition. Performing this
move amounts to synchronising with sync-automata specified by the sci while sync-
automata automata described by cci are created.

An example of a dynamic sync-automaton can be seen in Figure 7.1. The compo-
nent’s state space is built over two atomic propositions, A and B. The two states of
the automaton are {A,B} and {¬A,B} with the former chosen to be initial. Moves
between states are labelled by synchronisation and creation conditions.

A B ¬A B

C:¬C ∧ B:¬A

new([{X ∧ ¬Y }])

(X ∧ ¬Y :X ∧ ¬Y) ∧ (X ∧ ¬Y :X ∧ Y)

NOSYNC

Figure 7.1: Example of a dynamic sync-automaton and move conditions.

The synchronisation condition consists of a set of requirements against other
dynamic sync-automata, each formed by a precondition and a postcondition on the
move that is expected to be performed synchronously. As mentioned above, more

7.1. SYNTAX 77

(instances of) automata with the same index can participate on a synchronisation.
Moreover, a dynamic sync-automaton can synchronise with other instances with
indices equal to its own index. It should be noted that since referencing instances by
indices is no longer unambiguous, any of the instances that matches the requirement
suffices. Apart from these modifications, the definition does not differ from the static
one.

Definition 7.2. A synchronisation condition of sync-automaton P I
i is a label of

the form [Aj1 :Bj1, . . . , Ajn:Bjn] where {j1, . . . , jn} ⊆ N and [Aj1:Bj1 , . . . , Ajn:Bjn] is
a multiset over

⋃

j∈I(P(APj) × P(APj)) and Aj , Bj are sets of atomic propositions
drawn from APj or their negations.

Let us denote a synchronisation condition [Aj1:Bj1 , . . . , Ajn:Bjn] as a formula
Aj1 :Bj1 ∧ . . . ∧ Ajn:Bjn, where Aj , Bj are conjunctions of atomic propositions from
Aj and Bj, respectively. Again, an empty synchronisation condition is denoted as
NOSYNC .

In Figure 7.1 an example of synchronisation conditions of a dynamic sync-
automaton can be seen. In particular, the move from {A,B} to {¬A,B} requests
synchronisation from another instance of its own type. In the converse move the
dynamic sync-automaton expresses an intention to synchronise with two automata
instances of the same dynamic sync-automaton.

Another important novelty of dynamic sync-automata are creation conditions.

Definition 7.3. A creation condition of the dynamic sync-automaton P I
i is a label

of the form new([Cj1, . . . , Cjn]), where [Cj1, . . . , Cjn] is a multiset over
⋃

j∈I P(APj)
and Cj are sets of atomic propositions drawn from APj or their negations.

The creation condition specifies dynamic sync-automata that are to be created
when performing the move. For each j the set of atomic propositions (or their
negations) Cj unambiguously encodes an initial state of a dynamic sync-automaton.
In case the multiset of conditions is empty, the creation condition is not displayed.
For an example see the move in Figure 7.1 from {A,B} to {¬A,B} which specifies
a creation of an automaton with initial state {X,¬Y }.

By running in parallel dynamic sync-automata of types related by an index set,
we obtain a dynamic sync-program. Note that a dynamic sync-program can contain
none or multiple dynamic sync-automata of any index. In what follows, we also
refer to individual sync-automata in a dynamic sync-program as to sync-automata
instances.

Definition 7.4. Let I be an index set. A dynamic sync-program is a tuple P I =
(SI

0 , P
I
1 || . . . ||P

I
n), where [P I

1 , . . . , P
I
n] is a multiset of dynamic-sync automata over

⋃

j∈I P
I
j . The set SI

0 = S0
1 × . . . × S0

n is the multiset of initial states of the sync-
program.

78 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

The creation conditions on the moves of all sync-automata are well formed, i.e. for
every creation condition new([Cj1, . . . , Cjn]), each Cj describes a unique state s′ of
a sync-automaton of type in I and s′ is initial.

7.2 Semantics

Let I be an index set, where I = {1, . . . , n}. An I-multistate represents a configu-
ration of a program and is defined as a multiset over S∗ =

⋃

i∈I Si, where Si is the
set of states states of the sync-automaton P I

i .

As an example consider I = {1, 2}, the sets of states S1 = {a ∧ b,¬a ∧ b}
and S2 = {x ∧ y,¬x ∧ ¬y}. Some examples of I-multistates are: [a ∧ b, x ∧ y],
[a ∧ b, a ∧ b, x ∧ y] and [a ∧ b, a ∧ ¬b, x ∧ y].

An I-multistate s projected onto a subset J of I is defined as the greatest submul-
tiset of s where all elements are members of SJ =

⋃

i∈J Si. We denote the projection
by the projection operator ⌈J . For instance, [a ∧ b, a ∧ b, x ∧ y]⌈{1} = [a ∧ b, a ∧ b].

We assume a function type : R∗ → I where R∗ =
⋃

i∈I Ri is the set of moves
of all dynamic sync-automata in I, that for an move from R∗ gives its index i.
Analogously, function types yields a multiset of types of a set of moves.

Now we can proceed to defining the semantics of a sync-program as a labelled
transition system over I-multistates, called an I-multistructure. First, we give the
definition of a synchronisation, which is a complete set of moves from different
automata having all their synchronisation requirements satisfied.

Definition 7.5. Let I be an index set. We call a multiset of moves MOV a dynamic
synchronisation iff

whenever m ∈ MOV is of type i and has the form si
Aj1

:Bj1
∧...∧Ajn :Bjn

−−−−−−−−−−−−→
ccj

ti there is a

bijection inst from the multiset [Aj1:Bj1 , . . . , Ajn:Bjn] to the multiset MOV − {m}

of moves such that for each (Aj:Bj, mk) ∈ inst if mk has the form sk
sck−−→
cck

tk then

for all p ∈ Aj : sk(p) = tt and for all p ∈ Bj: tk(p) = tt .

A dynamic synchronisation is composed of a multiset of moves. For each move the
bijective multiset mapping inst between the multiset of synchronisation conditions
and the multiset of all other moves serves as an assignment of the conditions to
moves within the dynamic synchronisation that satisfy them.

We remark that the dynamic synchronisation is based on analogous principles
as its counterpart synchronisation in Chapter 3. In particular, instead of an explicit
bijective mapping there is an implicit bijection in the synchronisation since there
is only one sync-automaton of a given type. Furthermore, the completeness of the
synchronisation condition graph explicitly required in a synchronisation is satisfied
in a dynamic synchronisation implicitly. Note the elimination of the constraint of

7.2. SEMANTICS 79

moves from distinct automata, actually being the basic feature of dynamic-sync
programs.

As an example consider multiset MOV = [m1, m1, m2] where

m1 = A
sc1∧sc2−−−−→

cc1
B, m1 = A

sc1∧sc2−−−−→
cc1

B and m2 = X
sc1∧sc1−−−−→

cc1
Y , where sc1 = A:B

and sc2 = X :Y . MOV satisfies the definition of a dynamic synchronisation. In
particular

• for m1, the function inst = [(sc1, m1), (sc2, m1)] and

• for m2, the function inst = [(sc1, m1), (sc1, m1)].

A pair of I-multistates such that the second multistate can be reached from
the first one by carrying out the synchronisation MOV while creating automata
specified by creation conditions of the moves in MOV is called a support of the
synchronisation MOV .

Definition 7.6. Let I be an index set. Consider a dynamic synchronisation MOV .
We call a couple of I-multistates (s, t) the support of the dynamic synchronisation
MOV iff s and t are I-multistates and

1. if sMOV is the multiset of all starting states of all moves in MOV , then sMOV ⊆
s

2. if tMOV is the multiset of all ending states of all moves in MOV , then tMOV ⊆ t

3. (t− tMOV) − (s− sMOV) is equal to the multiset of states that correspond to
the creation conditions of moves in MOV .

For the dynamic synchronisation MOV from the example above, the couple (s, t),
where s = [A,A,X,X,C] and t = [B,B, Y,X, C,D], is a support of the dynamic
synchronisation MOV . Intuitively, in the synchronisation two As are changed to B,
one X is transformed to Y , D is created and the rest of the multistate is left intact.

Thus the semantics is a labelled transition system over I-multistates where the
transitions between two multistates s and t are obtained from the dynamic synchro-
nisations with support (s, t).

Definition 7.7. Let I = {1, . . . , n} be an index set. The semantics of a dy-
namic sync-program P I = (S0

I , P
I
1 ||...||P

I
n) is given by the I-multistructure MI =

(SI ,S
0
I ,RI), where SI is a set of I-multistates, S0

I ⊆ SI is the set of initial multi-
states and RI ⊆ SI ×Mset(I) ×SI is a transition relation giving the transitions of
P I . A transition (s, l, t) is in RI iff there is a nonempty multiset MOV of moves
such that l = types(MOV) and MOV is a dynamic synchronisation with support
(s, t).

80 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

A transition of the form (s, l, t) corresponds to the situation where dynamic
sync-automata with indices in l with multiplicity corresponding to the multiplicity
of indices from I in l perform moves, while potentially creating some dynamic sync-
automata and the rest of the automata stays idle.

A concept that will allow us to reason about properties of programs is that of
path. A path in an I-multistructure MI is a sequence of I-multistates and transition
labels π = (s1, l1, s2, l2, . . .) such that for all m, (sm, lm, sm+1) ∈ MI . A fullpath is a
maximal path. Let πm denote the suffix of π starting in m-th I-multistate.

7.3 Dynamic Sync-Programs as Petri nets

In this section we define an alternative representation of dynamic sync-programs in
terms of Petri nets.

Intuitively, in the Petri net representation of a sync-program, a place represents
a state of an index and a transition embodies synchronisation of sync-automata and
creation of new ones. Moreover, the number of tokens in a place represents the
number of automata currently in that state, and the initial marking of the net is
constructed according to the initial state of the sync-program. Note that the Petri
net graph is created from the set of all indices and is always finite.

Petri nets are very intuitive and allow the modeller to have a comprehensive view
of the system. Even though Petri nets can be constructed by following a modular
methodology, they are not directly suitable for modular verification. We shall exploit
the Petri net representation of sync-programs and the formal semantics of Petri
nets to define the formal semantics of sync-programs. Moreover, the existence of a
representation of sync-programs as Petri nets is very important since it implies that
the formalism is not Turing-complete, that verification of the properties of interest
is decidable, and that analysis tools for Petri nets can be used to analyse system
descriptions given in terms of sync-programs.

The Petri net representation of dynamic sync-programs is as follows.

Definition 7.8. Given a set of dynamic sync-automata PI = {P I
i | i ∈ I}, we

construct a Petri net graph GI = (SI , TI ,WI) as follows. The set of places is
SI =

⋃

i∈I Si.

The set of transitions TI = {tMOV |MOV is a dynamic synchronisation from PI}
The set of arcs WI ⊆ (SI × TI) ∪ (TI × SI) is as follows: if MOV is a dynamic

synchronisation from PI , denote as st(MOV) the multiset of starting states of all
moves in MOV and en(MOV) the multiset of ending states of all moves in MOV .

There is an arc from a state s to tMOV iff s belongs to the multiset st(MOV)
and the multiplicity of the arc is equal to the multiplicity of s in st(MOV).

Morevoer, there is an arc from tMOV to a state s iff s belongs to the multi-
set en(MOV) and the multiplicity of the arc is equal to the multiplicity of s in
en(MOV).

7.4. DYNAMIC ACTL− 81

We argue that the structure obtained as a representation of a dynamic sync-
program is a Petri net. The set of places is finite because it is a finite union of
finite sets. The set of transitions is finite because there is a transition for each
dynamic synchronisation of moves in the dynamic sync-program. Each dynamic
synchronisation is composed of a finite multiset of moves, since there is a bijection
between the synchronisation conditions and the moves and the conditions are always
finite. Finally, it is easy to see that the set of places and the set of transitions are
disjoint.

Each transition of the Petri net represents one dynamic synchronisation. There
are arcs from the places representing the starting states of the moves constituting
the synchronisation to the transition representing the synchronisation, with the
respective multiplicity equal to the multiplicity of the move in the synchronisation.
Similarly, there are arcs from the places representing the ending states of the moves
in the synchronisation with the respective multiplicity. Moreover, there are arcs
from the transition to places representing the initial states of automata that were
created by performing the synchronisation corresponding to the transition, again
respecting the multiplicity.

A Petri net PNI = (GI ,M0) consists of a Petri net graph GI defined above and
of an initial marking M0.

Definition 7.9. Given a dynamic sync-program P I = (SI
0 , P

I
1 || . . . ||P

I
n), the initial

marking M0 of GI as follows: a place representing an initial state of a dynamic
sync-automaton from P I

i contains as many tokens in the initial marking M0 as there
are instances of this initial state in the program P I .

Now we state the equivalence result that relates dynamic sync-programs to their
Petri net representation.

Theorem 7.10. Let P I be dynamic sync-program and NI its Petri net represen-
tation. Then these two representations are equivalent, namely the dynamic sync-
program semantics of P I and the Petri net semantics of N I are the same labelled
transition systems.

We do not give the proof of this equivalence result here. It is fairly straightfor-
ward, but quite laborious.

7.4 Dynamic ACTL−

We define a logic for specification of properties of dynamic sync-programs. We adapt
the logic ACTL− for our purpose.

Our dynamic version of universal computation tree logic differs from ACTL− in
that it needs to be able to reason about instances (multisets of automata). For this
reason we give an enriched propositional formula that associates with every atomic
proposition an identifier and an index.

82 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

For example the propositional formula ∃k:i.a(k) asserts the existence of a distinct
instance of a dynamic sync-automaton with index i that is in a state that satisfies
the atomic proposition a. The identifier k serves only for distinction from atomic
propositions of the other instances of automata with the same index. For example,
the property ∃k:i.(∃k′:i.(a(k)∧a(k′))) refers to two instances of sync-automata of the
same type i – the formula says that there are two distinct dynamic sync-automata
and both of them need to be in a state that satisfies a.

As we could see, identifiers are bound by existential and universal operators
which allow reasoning with instances. We are not able to reference a particular au-
tomaton amongst the automata of a given type, we can rather specify existence and
properties of different instances. Therefore, the property ∃k:i.∃k′:i.(a(k) ∧ ¬a(k′))
is a consistent property that states that there are two distinct copies of dynamic
sync-automata with index i, one of which is in a state satisfying a and the other in
a state satisfying ¬a.

Now we give the syntax of DACTL− formally. Note that the path operators
mimic the path operators of ACTL−.

Definition 7.11 (Syntax of DACTL−). Let AP be a set of atomic propositions, I
be an index set and suppose that there is an infinite set Id of identifiers. The logic
DACTL− consists of formulae that are defined inductively as follows.

Propositional formulae

• true , false are propositional formulae

• a(k) is a propositional formula, where a ∈ AP and k ∈ Id

• true i(k) and falsei(k) are propositional formulae, where k ∈ Id and i ∈ I

• if f and g are propositional formulae, then so are ¬f , f ∧ g, f ∨ g, f → g and
f ↔ g

• if f is a propositional formula, then so are ∀k:i.f and ∃k:i.f , where k ∈ Id
and i ∈ I

Formulae

• each propositional formula is a formula

• if h1 and h2 are formulae, then so are h1 ∧ h2 and h1 ∨ h2

• if h1 and h2 are formulae, then so are A[h1 U h2] and A[h1 Uw h2].

On the level of state, formulae can be created by using the boolean operators out
of atomic propositions with associated identifiers. These identifiers can be bound
by quantifiers ∀ and ∃. Intuitively, ∀k:i.f means that for all instances k of index

7.4. DYNAMIC ACTL− 83

i state formula f holds. Dually, ∃k:i.f says that there is an instance k of index i
where state formula f holds.

The scope of quantifier ∀ in formula ∀k:i.f is formula f . Similarly the scope of
quantifier ∃ in formula ∃k:i.f is formula f . We say that quantifiers ∀k:i and ∃k:i
bind an occurrence of index k, if this occurrence is in the scope of the quantifier.
We consider formula f well formed, if its each index occurrence is bound by at most
one quantifier, formulae true i(k) and falsei(k) are bounded only by quantifiers ∀k:i
or ∀k:i with corresponding types and a(k) is bound only by quantifiers ∀k:i or ∀k:i
where a ∈ APi. We say that formula f is closed, if its each index occurrence is
bound by at least one quantifier. In what follows, we will only consider closed well
formed formulae.

On the level of paths, this logic is able to express only formulae that hold for all
paths, by using the universally quantified until operator. Abbreviations in DACTL−:
AFf ≡ A[true U f] and AGf ≡ A[f Uw false]. Properties expressible by DACTL−

formulae are similar to ACTL− properties and thus are able to represent a significant
class of biologically relevant properties.

We define the logic DACTL−
J to be DACTL− where the atomic propositions are

drawn from APJ =
⋃

j∈|J |AP j.

DACTL− formulae are evaluated on I-multistructures. The definition of the
semantics of DACTL− follows. Note that only fair fullpaths are considered. The
concept of fairness is the one of Chapter 4.

Definition 7.12 (Semantics of DACTL−). We define MI , s � f (resp. MI , π � f)
meaning that f is true in multistructure MI at state s (resp fair fullpath π).

For any formula f we define MI , s
1 � f as MI , ∅, s

1 � f .

For a multiset mapping σ : Id → Mset(I) we define MI , σ, s � f inductively:
Let f and g be propositional formulae.

• MI , σ, s
1 � true .

• MI , σ, s
1 6� false.

• MI , σ, s
1 � a(k) iff s′(a) where σ(k) = s′.

• MI , σ, s
1 � true i(k) iff σ(k) 6= ∅.

• MI , σ, s
1 � falsei(k) iff σ(k) = ∅.

• MI , σ, s
1 � ¬f iff not MI , σ, s

1 � f .

• MI , σ, s
1 � f ∧ g iff MI , σ, s

1 � f and MI , σ, s
1 � g.

The cases for f ∨ g, f → g and f ↔ g are analogous.

• MI , σ, s
1 � ∀k:i.f iff for all elements s′ from P(APi) in multiset s1 − Im(σ)

holds MI , σ ⊎ (k, s′), s1 � f .

84 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

• MI , σ, s
1 � ∃k:i.f iff there exists an element s′ from P(APi) in multiset s1 −

Im(σ) such that MI , σ ⊎ (k, s′), s1 � f .

Let h1 and h2 be formulae.

• MI , σ, s
1 � h1 ∧ h2 iff MI , σ, s

1 � h1 and MI , σ, s
1 � h2.

The case for h1 ∨ h2 is analogous.

• MI , σ, s
1 � A[h1 U h2] iff for every fair fullpath π = (s1, l1, . . .) in MI : there

exists m ∈ N such that MI , σ, π
m � h2 and for all m′ < m: MI , σ, π

m′
� h1.

• MI , σ, s
1 � A[h1 Uw h2] iff for every fair fullpath π = (s1, l1, . . .) in MI : for

all m ∈ N, if for all m′ < m: MI , σ, π
m′

6� h2 then MI , σ, π
m � h1.

The main difference of DACTL− with respect to CTL (and its subset ACTL−)
lies in propositional formulae, namely it is the possibility of dealing with instances.
In fact, in the semantics of propositional formulae there is a multiset mapping σ
associating identifiers with particular instances of dynamic sync-automata of type
chosen by the quantifier. The satisfaction of an atomic proposition is resolved in
the instance associated with the proposition by its binding quantifier. Since we
consider only closed well-formed formulae, exactly one binding quantifier exists for
each atomic proposition. When evaluating a closed well-formed formula, the function
σ is empty.

We illustrate the definition of the semantics on an example. Consider index set
I which includes 0 and AP0 = {a, b}. Consider an I-multistate s1 = [{a, b}, {a, b},
{¬a, b}] which can be represented also as [a∧ b, a∧ b,¬a∧ b]. Now we show that s1

contains two distinct states of dynamic sync-automata P I
0 both of which satisfy a:

• MI , s
1 � ∃k:0.∃k′:0.(a(k) ∧ a(k′)) iff

• MI , ∅, s
1 � ∃k:0.∃k′:0.(a(k) ∧ a(k′)) iff

• there exists an element s′ from P(AP0) in s1 such that
MI , [(k, s

′)], s1 � ∃k′:0.(a(k) ∧ a(k′)) iff

• there exists an element s′ from P(AP0) in s1 such that there exists an element
s′′ from P(AP0) in s1 − [s′] such that MI , [(k, s

′), (k′, s′′)], s1 � a(k) ∧ a(k′) iff

• there exists an element s′ from P(AP0) in s1 such that there exists an ele-
ment s′′ from P(AP0) in s1 − [s′] such that MI , [(k, s

′), (k′, s′′)], s1 � a(k) and
MI , [(k, s

′), (k′, s′′)], s1 � a(k′)

• there exists an element s′ from P(AP0) in s1 such that there exists an element
s′′ from P(AP0) in s1 − [s′] such that s′(a) and s′′(a)

• since there are s′ = a∧ b and s′′ = a∧ b and they satisfy the requirements, the
above satisfaction holds and therefore the original satisfaction holds.

7.5. MODULAR VERIFICATION 85

For further examples of the satisfaction of propositional formulae, consider AP t =
{a, b} and let s be the multistate [a ∧ b, a ∧ ¬b] of an I-multistructure MI . Now
we have that MI , s � ∃k:t.∃k′:t.(b(k) ∧ ¬b(k′)) holds, since there exists a function
σ that maps k and k′ to different elements of s and such that sσ(k) satisfies b and
sσ(k′) satisfies ¬b. Note that the requirement that k and k′ are mapped to different
elements of s comes from the fact that the formula b(k) ∧ ¬b(k′) is in the scope of
both k and k′. In fact, we have that also MI , s � ∃k:t.b(k) ∧ ∃k′:t.b(k′) holds, since
this time k and k′ can be mapped to the same element of s (the one satisfying b).
For the same reason we have that MI , s � ∃k:t.∃k′:t.(b(k) ∧ b(k′)) does not hold,
since in s there are not two different elements satisfying b.

This example shows that usual properties that allow to change the position of
existential and universal quantifiers inside a formula do not hold in this case, since
the scope of quantifiers is important to determine whether two different portions
of a formula can be satisfied by the same instance of a sync-automaton or must be
satisfied by two different instances.

Let us consider a few other interesting examples of propositional formulae. The
first is ∃k:t.true t(k), that holds if and only if there exists at least one dynamic
sync-automaton of type t. This formula can be used inside a temporal formula
to test whether a sync-automaton of type t will be eventually created (e.g. in
A[true U ∃k:t.true t(k)]). Similarly, we have that ∀k:t.falset(k) corresponds to the
negation of the previous state formula and holds if and only if there exist no sync-
automata of type t. Finally, we can construct a state formula stating that there
exists exactly one sync-automaton of given type t as follows: ∃k:t.∀k′:t.(truet(k) ∧
falset(k

′)).

We remark that even though the presented logic is of universal nature because
of its role in the modular verification which is the main topic of the thesis, it would
be possible to give a dynamic logic similar to the entire logic CTL. Indeed, the
difference between DACTL− and ACTL− lies in the propositional formulae, keeping
the temporal and path operators identical to the CTL case.

We have extended the logic ACTL− for this dynamic scenario allowing to refer to
automata instances. The logic could be further improved, by allowing the instances
to be tracked over time. Technically this would be done by moving the existen-
tial and universal quantifiers from the level of state formulae to that of formulae.
Note, however, that this is not possible without further information included in the
semantics of sync-programs.

7.5 Modular verification

We develop a modular verification technique for dynamic sync-programs. We prove,
in the line of Chapter 4, that satisfaction of a DACTL− property on a projected
model entails its satisfaction in the original model.

86 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

In order to prove the property preservation, we need the fullpath preservation:
every fair fullpath representing a computation of the entire system when projected
onto J is present also as a computation of the projected system P J . This is ensured
by the Transition projection and Path projection lemmas and a notion of fairness.
Finally we show the preservation of the logic DACTL− by resorting to the previously
proved lemmas.

Note that there are two main differences of dynamic sync-programs with respect
to sync-programs, namely the reasoning with instances and the creation.

The former is dealt with by exploiting the multiset representation and by modi-
fying all structures and operations to manipulate this representation.

The latter, the dynamic creation, influences the modular verification. In particu-
lar, the subprogram that is considered for the modular verification of the properties
must necessarily consider not only a portion J of interest, but also the part of I
containing sync-automata that are able to create dynamic-sync automata within J .
The reason is, that the dynamic sync-automata that are able to create instances of
J , even by transitivity, might have an effect on the properties of interest concerning
the dynamic sync-program P J . Therefore, the modular verification has to take into
account all the mentioned dynamic-sync automata.

7.5.1 Subprograms and projections

In this section we formally define the syntactical and semantic projections that will
be useful for the purpose of modular verification.

A dynamic sync-subprogram represents the behaviour of a portion of a sync-
program in isolation. A dynamic sync-subprogram is obtained from a dynamic
sync-program P I by projection operator ↾J which is much the same as ↾J in Chapter
4.

Definition 7.13. Let I be an index set and J ⊂ I and J = {j1, . . . , jk}. Let P I =
(SI

0 , P
I
1 || . . . ||P

I
n) where [P I

1 , . . . , P
I
n] is a multiset of dynamic-sync automata over

⋃

j∈I P
I
j with P I

i = (Si, S
0
i , Ri) and for each i ∈ I. Then P I↾J = (SJ

0 , P
J
j1
|| . . . ||P J

jk
)

where [P I
j1
, . . . , P I

jk
] is a maximal submultiset of dynamic-sync automata over

⋃

j∈J P
I
j

with P J
j = (Sj, S

0
j , R

′
j) for each j ∈ J where Sj and S0

j are as in P I
j and

R′
j = { sj

[Ak1
:Bk1

,...,Akm :Bkm]∩Mset(
⋃

j∈J (P(APj)×P(APj)))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

new([Cj1
,...,Cjn]∩Mset(

⋃
j∈J P(APj)))

tj

| sj
[Ak1

:Bk1
,...,Akm :Bkm]

−−−−−−−−−−−−−→
new([Cj1

,...,Cjn])
tj ∈ Rj}.

Initial states are SJ
0 = S0

j1
× . . .× S0

jn
.

The projection contains only dynamic sync-automata from J and their synchro-
nisation and creation conditions references to dynamic sync-automata outside J are

7.5. MODULAR VERIFICATION 87

removed. Again a dynamic sync-subprogram P I↾J is still a dynamic sync-program
with index set J , hence it can be also denoted by P J .

In what follows we will always use the syntactical projection in connection with
a notion of creation set of J . It can be obtained through syntactic analysis of the
program P I as follows.

Let P I be a dynamic sync-program and J be a subset of I. Consider an oriented
graph G with vertices from I. There is an oriented edge from i to j if there is a
move in in P I

i whose creation condition contains an initial state of automaton of
type j. The creation set of J is defined as

J ∪ {i ∈ G | there is an oriented path from i to some j ∈ J}.

Intuitively, the projection of a dynamic sync-program onto creation graph J ′ of
J contains all automata that are from J or that create (even by transitivity) an
automaton from J .

To define the semantic projection, let us denote with s⌈J the projection of an I-
multistate s onto a J ⊆ I. It is the greatest submultiset of s consisting only of states
of dynamic sync-automata from J . A transition (s, l, t) in an I-multistructure can be
projected onto J ⊆ I as follows: (s, l, t)⌈J = (s⌈J, l∩J, t⌈J). Projection MI⌈J of an
I-multistructure MI onto J can now be defined as the transition relation consisting
of the projections onto J of the transitions in MI . Note that it is possible that
the transition label is an empty set, and the corresponding projected multistates
are both equal (synchronisation outside J was removed) or different (because of
creation by an automaton outside J). However this does not cause problems, as for
the purpose of verification the transitions of the former type are removed.

Path projection π⌈J is obtained by projecting every transition of the path π onto
J .

7.5.2 Path Preservation

The projection of a dynamic sync-program onto creation set J ′ of J contains all
automata that are from J or that create (even by transitivity) an automaton from
J .

To be able to perform the verification on the semantics of a sync-subprogram,
we need to prove that every computation concerning sync-automata from J of the
program P I is present as a computation of P J .

Since a computation of a sync-program has been defined as a fair fullpath in its
semantics, we need to show that every fullpath in the semantics of P I projected
onto J is a fullpath in the semantics of P J = P I↾J . However, we need the syntactic
projection to be done not onto J , but onto its creation set J ′. This is necessary since
sync-automata from J ′ − J may cause the creation of some sync-automata from J
that may be necessary to satisfy the property of interest.

88 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

The Transition projection lemma states that each individual transition in the
semantics of P I that involves sync-automata from J (either because they perform
some moves or because they are created) has a corresponding transition in the
semantics of P I↾J ′.

Lemma 7.14 (Transition projection). Let I be an index set and MI = (SI ,S
0
I ,RI)

the semantics of dynamic sync-program P I. For all I-multistates s, t in SI and all
l ∈ Mset(I),

(s, l, t) ∈ RI iff (s, l, t)⌈J ∈ RJ ′⌈J

for all J ⊆ I such that if l ∩ J 6= ∅ then s⌈J 6= t⌈J , where J ′ is the creation set of
J and MJ ′ = (SJ ′ ,S0

J ′,RJ ′) is the semantics of sync-program P J ′
= P I↾J ′.

Proof. Direction right to left. Suppose that for any J ⊆ I such that if l ∩ J = ∅
then s⌈J 6= t⌈J holds, (s, l, t)⌈J ∈ MJ ′⌈J . By taking J = I we get (s, l, t) ∈ MI .

Direction left to right. Suppose that (s, l, t) ∈ RI , we will show (s, l, t)⌈J ∈
RJ ′⌈J for any J ⊆ I such that if l ∩ J 6= ∅ then s⌈J 6= t⌈J .

From the definition of the semantics of the dynamic sync-program P I we have
that there is a dynamic synchronisation MOV with support (s, t) s.t. types(MOV) =
l. We need to show that in MJ ′, where J ′ is the creation set of J , there is a
synchronisation MOV ′ with support (s⌈J ′, t⌈J ′) such that types(MOV ′) = l ∩ J ′.
Let us consider the multiset

MOV ′ = { sj
[Ak1

:Bk1
,...,Akm :Bkm]∩Mset(

⋃
j∈J′ (P(APj)×P(APj)))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
new([Cj1

,...,Cjn]∩Mset(
⋃

j∈J′ P(APj)))
tj

| sj
[Ak1

:Bk1
,...,Akm :Bkm]

−−−−−−−−−−−−−→
new([Cj1

,...,Cjn])
tj ∈ MOV and j ∈ J ′}.

Since l ∩ J 6= ∅, and J ′ is the creation set of J , MOV ′ is not empty. Now we prove
that MOV ′ satisfies the definition of a dynamic synchronisation.

Let m′ be any move in MOV ′ and it has the form si
[Aj1

:Bj1
∧...∧Ajr :Bjr]

−−−−−−−−−−−−→
ccj

ti. By the

definition of MOV ′ there is a move m such that si
[Aj1

:Bj1
∧...∧Ajn :Bjn]

−−−−−−−−−−−−−→
ccj

ti in MOV . By

the definition of dynamic synchronisation in MI there is a bijection inst from the
multiset [Aj1 :Bj1, . . . , Ajn:Bjn] to the multiset MOV − {m} of moves such that for

each (Aj :Bj , mk) ∈ inst if mk has the form sk
sck−−→
cck

tk then for all p ∈ Aj: sk(p) = tt

and for all p ∈ Bj: tk(p) = tt .
It is easy to see that inst∩ (Mset(

⋃

j∈J ′(P(APj)×P(APj)))×RJ ′) is a bijection
from the multiset [Aj1 :Bj1, . . . , Ajr :Bjr] to the multiset MOV ′ − {m′} of moves

such that for each (Aj :Bj, mk) ∈ inst if mk has the form sk
sck−−→
cck

tk then for all

p ∈ Aj: sk(p) = tt and for all p ∈ Bj : tk(p) = tt .

Hence MOV ′ satisfies the definition of a dynamic synchronisation in P J ′
. It

remains to show that, (s⌈J ′, t⌈J ′) is a support for MOV ′.

7.5. MODULAR VERIFICATION 89

Let sMOV be the multiset of all starting states of all moves in MOV and tMOV

be the multiset of all ending states of all moves in MOV . From the assumption we
have that (t− tMOV)− (s− sMOV) is equal to the multiset of states that correspond
to the creation conditions of moves in MOV . It is easy to see that if sMOV ′ is the
multiset of all starting states of all moves in MOV ′ and t′MOV is the multiset of all
ending states of all moves in MOV ′ then (t⌈J ′− tMOV ′)− (s⌈J ′− sMOV ′) is equal to
the multiset of states that correspond to the creation conditions of moves in MOV ′.

Thus, by definition of semantics of P J the tuple (s⌈J, l ∩ J, t⌈J) = (s, l, t)⌈J is
in RJ ′⌈J .

By exploiting the Transition projection lemma we can prove a lemma dealing
with paths, and called Path projection lemma.

Lemma 7.15 (Path projection). Let I be an index set and MI be the semantics
of dynamic sync-program P I. For every J ⊆ I if π is a path in MI then π⌈J is
a path in MJ ′⌈J , where J ′ is the creation set of J and MJ ′ is the semantics of
sync-program P I↾J ′.

Proof. Let π = (Bl1, l1,Bl2, l2, . . .) be a path in MI and Blm J ′-blocks for all m
where J ′ is the creation set of J . By sm and tm denote first and last state of Blm,
respectively. By definition of I-multistructure we have that transition (tm, lm, sm+1)
is in MI for all m. By transition projection lemma transition (tm, lm, sm+1)⌈J =
(tm⌈J, lm ∩ |J |, sm+1⌈J) is in MJ ′⌈J for all m. Now every J ′-block projected on J
collapses to one state, i.e. sm⌈J = tm⌈J for all m. Therefore (sm⌈J, lm∩|J |, sm+1⌈J)
is in MJ ′ for all m. Hence sequence (s1⌈J, l1 ∩ |J |, s2⌈J, l2 ∩ |J |, . . .) satisfies the
definition of a path in MJ ′⌈J .

Now we want to exploit the Path projection lemma to prove a similar result on
fair fullpaths, which are the most natural descriptions of complete system executions.
We adopt the concept of fairness from Chapter 4, where a fair path contains infinitely
many transitions performed by each dynamic sync-automaton.

We remark that this concept of fairness in connection with the reasoning about
instances is a little different from the concept of fairness for sync-programs in the
static case. In the dynamic setting, it says that for each type i of dynamic sync-
automata it is infinitely often the case, that some instance of type i performs the
move. No that there is no guarantee of an infinite behaviour of all instances, which
might not entirely correspond to our intuitive interpretation of the fairness. How-
ever, for specifying the fairness as a requirement of an infinite behaviour of each
instance, there is not enough information in the semantics of the dynamic sync-
program, since the semantics is built over multisets and no distinction of individ-
ual instances is made. Nevertheless, the present notion of fairness is sufficient for
the scope of the modular verification and permits to prove the Fullpath projection
lemma.

90 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

Lemma 7.16 (Fullpath projection). Let I be an index set and MI semantics of
dynamic sync-program P I . For every J ⊆ I if π is a fair fullpath in MI then π⌈J is
a fair fullpath in MJ ′⌈J , where J ′ is the creation set of J and MJ ′ is the semantics
of sync-program P I↾J ′.

Proof. By path projection lemma π⌈J it is a path in MJ ′⌈J . Since π is a fair path
in MI by definition of path projection we get that π⌈J is a fair path in MJ ′⌈J .
From the definition of fairness follows that every fair path is infinite, i.e. it is a
fullpath.

7.5.3 Property preservation theorem

The following theorem guarantees that successful verification of a DACTL−
J property

in MJ ′⌈J , where J ′ is the creation set of J , amounts to its successful verification in
MI . We first prove an auxiliary lemma, that shows the preservation of propositional
formulae. Then we prove the theorem itself.

Lemma 7.17 (Preservation of propositional formulae). Let J ⊆ I be an index set,
MI be an I-multistructure and s be an I-multistate. If f is a state formula from
DACTL−

J , M, s � f implies M, s⌈J � f .

Proof. By induction on the construction of f for all σ.
The cases of f = true and f = false are trivial.
The case of f = a(k) where a ∈ I and k ∈ Id follows. Suppose that M, σ, s �

a(k). By definition of DACTL− we have that s′(a) where s′ = σ(k). Since all
elements of multiset s belonging to states of sync-automata of type i are preserved
in s↾J , we have that M, σ, s↾J � a(k). The cases of f = true i(k) and f = true i(k)
are analogous.

The cases of f = g1∧g2, f = g1∨g2, f = g1 → g2 and f = g1 ↔ g2 are immediate
from the induction hypothesis.

The case of f = ∀k:i.g. Suppose that M, σ, s � ∀k:i.g. By the definition
of DACTL− for all elements s′ from P(APi) in multiset s − Im(σ) holds M, σ ⊎
(k, s′), s � f . Since all elements of multiset s belonging to states of sync-automata of
type i are preserved in s↾J , we have that M, σ⊎ (k, s′), s↾J � f . Then by definition
of DACTL− M, σ, s⌈J � ∀k:i.g. The case for f = ∃k:i.g is analogous.

The main theorem follows.

Theorem 7.18 (Property preservation). Let I be an index set and MI semantics
of sync-program P I and s an I-multistate. Let J ⊆ I be an index set, J ′ its creation
set and MJ ′ is the semantics of sync-program P I↾J ′. For every DACTL−

J property
f ,

if MJ ′⌈J, s⌈J � f then MI , s � f.

7.6. CASE STUDY: EGF SIGNALLING PATHWAY 91

Proof. By induction on the structure of f (for all s).
f is a propositional formula. Follows from the lemma about preservation of

propositional formulae.
f = g ∧ h. From the assumption MJ ′⌈J, s⌈J �Φ g ∧ h by DACTL− semantics,

MJ ′⌈J, s⌈J �Φ g and MJ ′⌈J, s⌈J �Φ h. By induction hypothesis MI , s �Φ g and
MI , s �Φ h. Hence, MI , s �Φ g ∧ h. Case f = g ∨ h is proved analogously.

f = A[g Uw h]. Let π be an arbitrary fair fullpath starting in s. We establish
MI , π �Φ [g Uw h]. By fullpath projection lemma π⌈J is a fair fullpath in MJ ′⌈J ,
hence by the assumption MJ ′⌈J, π⌈J �Φ [g Uw h]. There are two cases:

1. MJ ′⌈J, π⌈J �Φ Gg. Let t be any state along π. By DACTL− semantics
MJ ′⌈J, t⌈J �Φ g. by induction hypothesis we have MI , t �Φ g. Since t was an
arbitrary state of π, we get MI , π �Φ Gg and thus MI , π �Φ g Uw h.

2. MJ ′⌈J, π⌈J �Φ [g U h]. Let sm
′′

J be the first state along π⌈J that satisfies h.
Then there is at least one state sm

′′
along π such that sm

′′
⌈J = sm

′′

J . Let sm
′
be

first such state. By induction hypothesis MI , s
m′

�Φ h. From the definition
of path projection any sm with m < m′ projects to sm⌈J that is before sm

′

J

in π⌈J . By the assumption MJ ′⌈J, sm⌈J �Φ g, hence by induction hypothesis
MI , s

m �Φ g. By DACTL− semantics we get MI , π �Φ g U h.

In both cases we showed MI , π �Φ g Uw h. Since π was arbitrary fair fullpath
starting in s, we conclude MI , s �Φ A[g Uw h].

f = A[g U h]. Let π be an arbitrary fair fullpath starting in s. By full-
path projection lemma π⌈J is a fair fullpath in MJ ′⌈J and by the assumption
MJ ′⌈J, π⌈J �Φ [g U h]. By the above case we get s �Φ A[g U h].

7.6 Case Study: EGF Signalling Pathway

In Biology, signal transduction refers to any process by which a cell converts one
kind of signal into another. Signals are typically proteins that may be present in the
environment of the cell. In order to recognise that a signal is available in the envi-
ronment, a cell exposes some receptors on its external membrane. A complex signal
transduction cascade (Fig. 7.2) that modulates cell proliferation is based on a family
of receptors called epidermal growth factor receptors (EGFRs) that are produced by
specific genes in the DNA (through the RNA) and are located on the cell surface.
Receptors are activated by the binding with a specific ligand (epidermal growth fac-
tor, EGF) to form a ligand-receptor complex. After activation, EGFR undergoes a
transition from a monomeric form to a dimeric one (consisting of two ligand-receptor
complexes). EGFR dimerisation enables activation of effector proteins, which initi-
ates several signal transduction cascades, leading to cell proliferation. Occasionally,
ligand-receptor dimers are internalised in endosomes and consequently targeted for
degradation inside the lysosomes.

92 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

EGF EGFR

EFF

CELL MEMBRANE

phosphorylations

Endosome

Lysosome

DNA

RNA

Nucleus

Figure 7.2: The first steps of the EGF pathway

The result of modelling the described steps of the EGF signalling pathways (with
some simplifications) is dynamic sync-program P I .

The index set I consists of five elements {nucl , egfr , endo, lyso, eff }. There is a
dynamic sync-automaton for each instance of each biological component. In par-
ticular the nucleus is modelled by P I

nucl , with APnucl = {Dna}; EGFR by P I
egfr

with AP egfr = {Egfr ,On membr ,Bound ,Dim,Cr endo}; effectors by P I
eff with

AP eff = {Effp}; endosomes P I
endo , with AP endo = {Endo, In lyso}; and finally

lysosomes by P I
lyso , with AP lyso = {Lyso}.

Sync-automaton Anucl (depicted in Figure 7.3) describes the DNA/RNA activity
in the nucleus, that is the production of receptors and effectors encoded as creation
of the respective dynamic sync-automata bound to NOSYNC moves.

Dna NOSYNC
new([{Egfr ,
¬Bound}])

NOSYNC

new([{¬Effp}])

Figure 7.3: Nucleus – Anucl.

Lyso NOSYNC

¬In lyso:In lyso

Figure 7.4: Lysosome – Alyso.

Sync-automaton Aegfr (Figure 7.5) describes a receptor. It starts by binding
an EGF signal, as modelled by the first NOSYNC move. (Absence of EGF signals
in the environment is modelled by the self-looping NOSYNC move in the initial

7.6. CASE STUDY: EGF SIGNALLING PATHWAY 93

state.) Subsequently, it synchronises with another sync-automaton of the same type
to form a dimer (represented by two automata in a state in which Dim holds).
The dimer can then interact with effectors. A dimer can be internalised by an
endosome. The endosome is created by an automaton in a state in which Dim
holds, by synchronising with another automaton in the same state (assumed to be
the other component of the dimer). In order to ensure that only one endosome is
created, the moves of the two components of the dimer are kept distinct. Finally, a
dimer synchronises with an endosome in order to be destroyed (inside the lysosome).

Egfr
On membr

Egfr
On membr
Bound

Egfr Bound
On membr Dim

Egfr Bound
Cr endo Dim

Egfr Bound
Dim

∅

NOSYNC

NOSYNC
¬Dim:Dim

On membr :
(¬On membr ∧ ¬Cr endo)

new([{Endo,
¬In lyso}])

On membr :Cr endo

(¬Effp:Effp) ∧
(On membr ∧Dim):(On membr ∧Dim)

(Endo:¬Endo) ∧ (Dim:¬Dim) (Endo:¬Endo) ∧ (Dim:¬Dim)

NOSYNC

Figure 7.5: EGFR – Aegfr .

An effector protein is modelled by sync-automaton Aeff (Figure 7.6) that, once
created, can either do nothing (the NOSYNC self-looping move) or synchronise with
a dimer in order to move to a state in which it is phosphorylated.

∅ Effp

(On membr ∧Dim):(On membr ∧Dim)
∧(On membr ∧Dim):(On membr ∧Dim)

NOSYNC NOSYNC

Figure 7.6: Effector – Aeff .

Finally, sync-automaton Aendo (Figure 7.7) describes an endosome that synchro-
nises first with a sync-automaton Alyso (Figure 7.4) to model entrance into the
lysosome and then with two automata assumed to represent the dimer it is carry-
ing.

94 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

Endo
Endo
In lyso

∅
Lyso 	

(Egfr :¬Egfr)∧
(Egfr :¬Egfr)

NOSYNC

Figure 7.7: Aendo .

The sync-program corresponding to the initial configuration of the model is P I =
({{Dna}, {Lyso}}, P I

nucl ||P
I
lyso).

To illustrate the Petri net representation dynamic sync-programs, we provide
the Petri net representing dynamic sync-program P I on Figure 7.8. Note that
the colours are used only to visually differentiate places that originate from one
component. These colours are, however, not a part of the formalism. The figure
was prepared by using the tool Snoopy [81].

Now we discuss some properties that could be verified on the model in a modular
way. We indicate what is the fragment of the model that suffices for the verification
of the property. Any verification method can be applied to the identified fragment
in order to investigate the property in question and the result of the verification is
assured.

We would like to verify the property “The number of instances of Aegfr in which
Dim holds is always even”. Since we cannot reason on the numbers of instances,
what we can actually prove is the following weaker property (D1): “In every reach-
able state Dim holds in either zero or at least two instances of Aegfr”. This property
is expressed by the formula

AG((∀k:egfr .falseegfr(k)) ∨ (∀k:egfr .¬Dim(k)) ∨
(∃k:egfr .∃k′:egfr .(Dim(k) ∧Dim(k′)))) (D1)

that can be verified on the semantics of P egfr .

A property (D2) “If an endosome is destroyed, then at the same time two recep-
tors are destroyed” is expressed by the formula

A[(∀k:endo.falseendo(k)) Uw

A[(∃k1:endo.∃k2:egfr .∃k3:egfr .Endo(k1) ∧ Egfr(k2) ∧ Egfr(k3)) U
(∃k1:endo.∃k2:egfr .∃k3:egfr .¬Endo(k1) ∧ ¬Egfr(k2) ∧ ¬Egfr(k3))]] (D2)

that can be verified on the semantics of P endo,egfr .

A property (D3) “If EGF signals are present in the environment, eventually
either effectors are phosphorylated or endosomes are created.” is a property stating
the correct functioning of the model. It is expressed as the formula:

A[((∀k:endo.falseendo(k)) ∨ (∃k:egfr .¬Bound(k))) Uw

7
.6
.

C
A
S
E

S
T
U
D
Y
:
E
G
F
S
IG

N
A
L
L
IN

G
P
A
T
H
W
A
Y

95

Egfr

On_membr
Egfr

On_membr

Bound

Egfr

On_membr

Bound

Dim

Egfr

Cr_endo

Bound

Dim

Egfr

Bound

Dim
0_egfr

0_effp Effp

Endo
Endo

In_lyso

0_endo

Dna

Lyso

2 2

22

2

A_egfr

A_efpp

A_endo

A_nucl

A_lyso

Legend:

2

Figure 7.8: Petri net representation of the EGF Signalling Pathway

96 CHAPTER 7. DYNAMIC SYNC-PROGRAMS

AF ((∃k′:eff .Effp(k′)) ∨ (∃k′′:endo.trueendo(k′′)))] (D3)

that can be proved to hold on the semantics of P egfr ,eff ,endo .

The property “If an endosome is created, it will be eventually destroyed” cannot
be expressed in DACTL− because the semantics does not possess enough information
in order to permit tracing a particular instance over time. We approximate it by
a weaker property (D4) stating “If an endosome is created, an endosome will be
eventually destroyed”. This property is expressed by the formula

A[(∀k:endo.falseendo(k)) Uw AF (∃k:endo.¬Endo(k))] (D4)

that can be verified on the semantics of P endo.

Chapter 8

Modular Verification of Pathways

The purpose of this chapter is to show how to verify a particular class of biological
systems. It also provides a proof of concept for the scalability of the approach.

8.1 Pathways

In biochemistry, metabolic pathways are series of biochemical reactions occurring
within a cell. The reactions are connected by their intermediates: the products of
one reaction are the substrates for subsequent reactions.

In this section we give assumptions under which it is possible to decompose a
pathway into components. The identified components will be modelled by using
sync-automata in the next section.

Syntactic Assumptions Given an infinite set of species S, let us assume bio-
chemical reactions constituting a pathway to have the following form:

r1, . . . , rn → p1, . . . , pn { c1, . . . , cm }

where rj , pj and cj, for suitable values of j, are all in S. We have that rjs are
reactants, pjs are products and cjs are catalysts of the considered reaction. Conse-
quently, given a reaction R we define re(R) = {r1, . . . , rn}, pro(R) = {p1, . . . , pn}
and cat(R) = {c1, . . . , cm}. We denote the set of species involved in reaction R as
species(R) = re(R) ∪ pro(R) ∪ cat(R).

Note that in a reaction there are as many reactants as products. In addition,
we assume a positional correspondence between reactants and products, namely
we assume product pj to be the result of the transformation of reactant rj by the
reaction.

In some sense, a species can be seen as a part of a “state” or “configuration”
of a more general system component, and a reaction can be seen as a synchronised
state change of a set of system components. It is usually possible to translate any
reaction of a pathway into the assumed “normal form” with the same number of

98 CHAPTER 8. MODULAR VERIFICATION OF PATHWAYS

reactants and products. For the moment it is left to the modeller to perform such
a preprocessing.

A pathway P is simply a set of reactions. Given a pathway P , we can infer the
set of species involved in it as species(P) =

⋃

R∈P species(R).

Semantic Assumptions As regards the dynamics of a pathway we consider the
following assumptions and abstractions.

In order to be able model a pathway by a sync-program, it is necessary to abstract
from quantities or concentrations of species. Therefore species can be only either
present or absent.

We need choose an interpretation of the qualitative dynamics of a reaction de-
pending on whether it is catalysed. A reaction without catalysts creates the products
but does not consume the reactants, as some quantity of reactants may remain in
the quantitative view. On the other hand, a reaction favoured by catalysts tends
to be performed as long as there are reactants (in a constant presence of catalysts).
Therefore a reaction with catalysts creates the products and consumes the reactants.
Consuming all reactants might be not realistic if concentrations of reactants differ
significantly, but this is an abstraction we choose to make. It also implies that a
reversible reaction in which both directions are catalysed, which frequently occurs in
biological pathways, oscillates between two states. This could be handled differently
(by considering some kind of dynamic equilibrium state), but we leave this problem
as future work.

Lastly, we assume that all of the catalysts are required to be present in order for
the reaction to take place. Alternative combinations of catalysts that may enable
the reaction should be modelled as different reactions having the same reactants and
products.

8.2 From Reactions to Sync-Programs

Let us fix a pathway P . The assumptions made in the previous section allow us to
identify the set of species with the set of atomic propositions of sync program P I

representing pathway P . That is we have that API = species(P).

Sync-automata Identification The index set I containing indices of components
is a priori not known, since the implicit components of the pathway are not given.
Now we will present an algorithm that given a pathway P returns the index set I
along with the partition of the set API of atomic proposition to sets APi for each
component i.

We illustrate the intuitive idea on an example. Each reaction can be seen as a
synchronisation of components. For example reaction r1, r2 → p1, p2 { c } can
be interpreted as a synchronisation of three constituents: one that changes its state
from a state where r1 holds into a state where p1 is present and r1 is not; another

8.2. FROM REACTIONS TO SYNC-PROGRAMS 99

component that changes its state from a state where r2 holds to a state where p2 is
present and r2 is not; and a component which participates passively and stays in a
state where c is present.

Since we suppose that only one reaction takes place at a time in the whole
system, the states of all the components do not change other than those involved in
the reaction in the way we described.

From the example we can see, that species r1 and p1 belong to the same com-
ponent. Similarly r2 belongs to the component that contains p2, while c is from a
separate one.

The algorithm follows. We start by assuming that each atomic proposition be-
longs to a different APi and we refine this assumption by iterating over the reactions
constituting P . The result of the algorithm is a mapping map assigning each species
to its sync-automaton index.

Algorithm 1 Algorithm to partition atomic proposition (species) into different
sync-automata

Let map : API 7→ I be an injective mapping
for all R in P do
for all rj in reactants(R) do

map :=

{

pj 7→ map(rj)

s 7→ map(s) ∀s ∈ API ; s 6= pj
end for

end for
return map

The algorithm updates the mapping by unifying the elements assigned to re-
actants and products in the same position in a reaction, and this is done for all
reactions in the pathway.

The index set of sync-program P I is the image of mapping map. The sets Ai for
i ∈ I of atomic propositions of each sync-automaton are obtained in the following
way: APi = {p ∈ API | map(p) = i}. States of sync-automaton Pi are as usual
subsets of APi.

Specification of Moves Now, we can obtain moves of the sync-automata de-
scribing system components from reactions in which some of its atomic propositions
are present as reactants and products.

We express the set of moves in terms of meta-moves, namely of moves in which
the source and the target states are not completely specified. Actual moves will
be obtained by instantiating the unspecified portion of the source state of each
meta-move in every possible way, and the corresponding target state in the same
manner. The set of meta-moves of sync-automaton Pi, denoted mm(Pi), is the least

100 CHAPTER 8. MODULAR VERIFICATION OF PATHWAYS

set satisfying the following rules, where rei = re(R)∩APi, proi = pro(R)∩APi and
cati = cat(R) ∩ APi:

• For every R ∈ P such that rei 6= ∅ and cat(R) = ∅ we have that mm(Pi)
contains the following meta-move:

(

∧

r∈rei

r
)

∧ ¬
(

∧

p∈proi

p
) ri1 :pi1∧...∧rik :pik−−−−−−−−−−→

(

∧

r∈rei

r
)

∧
(

∧

p∈proi

p
)

where re(R) \ rei = {ri1, . . . , rik}.

• For every R ∈ P such that rei 6= ∅ and cat(R) 6= ∅ we have that mm(Pi)
contains the following meta-move:

(

∧

r∈rei

r
)

∧ ¬
(

∧

p∈proi

p
)

∧
(

∧

c∈cati

c
)

ri1 :pi1∧...∧rik :pik∧c1:c1∧...∧cl:cl−−−−−−−−−−−−−−−−−−−→

(

∧

r∈rei

¬r
)

∧
(

∧

p∈proi

p
)

∧
(

∧

c∈cati

c
)

where re(R) \ rei = {ri1, . . . , rik} and cat(R) = {c1, . . . , rl}.
These items define moves corresponding to reactions in the case of absence of

catalysts (i.e. reactants are not consumed) and presence of catalysts (i.e. reactants
are consumed).

Note that moves test for the absence of some products to avoid occurrence of a
reaction that does not change the state of the system.

As only fair paths are considered in our approach to represent a correct behaviour
of the system, we need to ensure that each behaviour that we intuitively consider
correct is present as a fair path in the semantics of the system. In other words we
have to extend unfair paths representing correct behaviour so that they become fair.

It should be noted that this is not possible in general, since the considered form of
fairness (unconditional fairness) is not feasible [3], or machine-closed [1]. However,
in the present case of components of pathways it is possible to perform such an
extension empirically in an automatic way by exploiting the possibility of NuSMV
as seen in the following section.

8.3 From Reactions to NuSMV

In order to implement the sync-program P I obtained from the pathway P we could
use the translation transl defined in Section 5.1. In this chapter we choose a different,

8.3. FROM REACTIONS TO NUSMV 101

ad-hoc method that gives rise to a more succinct model leading to more efficient
verification.

The reason we can apply a different translation method is the special way in
which the sync-automata created from a pathway are synchronised. Each synchro-
nisation of sync-automata is induced by an occurrence of some reaction from the
pathway. In the translation from Section 5.1 this would correspond to a series of
moves of the involved sync-skeletons following the protocol. On the other hand,
since the reactants, products and catalysts of the reactions provide extra informa-
tion, the state change corresponding to the reaction taking place can be performed
in one step.

Furthermore note that one reaction corresponds to more combinations of moves
in the related sync-automata. Since the present ad-hoc translation introduces one
transition for each reaction, it provides a simpler NuSMV description of the program.

It should be noted that in the whole translation process of pathway P to a
NuSMV model the sync-automata are not necessary. The partitioning of atomic
propositions into sync-automata is however crucial for the projections used in the
modular verification.

Species involved in a pathway are translated into boolean variables (where value
TRUE means that the species is currently present in the system) whereas reactions are
translated into transitions. Given a pathway P such that species(P) = {s1, . . . , sN},
the translation produces a NuSMV model that starts as follows:

MODULE main

VAR

s1 : boolean;

....

sN : boolean;

In addition, let {a1, . . . aX} be the indices obtained by applying to P the par-
titioning of atomic propositions defined in the previous section. We also add the
following boolean variables that will allow us to track moves of sync-automata, later
to be used in fairness constraints.

VAR

a1_moves : boolean;

....

aX_moves : boolean;

Subsequently, for each reaction Ri ∈ P we define macros sourcestate-Ri,
targetstate-Ri and nochange-Ri. The first two represent conditions to be satisfied
in the source state and in the target state, respectively, of a transition representing
the reaction. The third states that variables not involved in the reaction must not

102 CHAPTER 8. MODULAR VERIFICATION OF PATHWAYS

change. In the NuSMV model for each reaction Ri = r1, . . . , rn → p1, . . . , pn,
where species(P) \ species(Ri) = {nc1, . . . , ncN ′}, we have:

DEFINE

sourcestate-Ri := r1 & ... & rn & !(p1 & & pn);

targetstate-Ri := r1 & ... & rn & p1 & & pn

& ai1_moves & & aiY_moves

& !aj1_moves & & !ajZ_moves;

nochange-Ri := nc1 = next(nc1) & & ncN’ = next(ncN’);

where {ai1, . . . , aiY } are the sync-automata involved in the reaction, {aj1, . . . , ajZ} =
{a1, . . . , aX} \ {ai1, . . . , aiY }.

In addition, for each reaction Ri = r1, . . . , rn → p1, . . . , pn { c1, . . . , cm }, with
m > 0, where species(P) \ species(Ri) = {nc1, . . . , ncN ′}, we have:

DEFINE

sourcestate-Ri := r1 & ... & rn & !(p1 & & pn) & c1 & ... & cm;

targetstate-Ri := !r1 & ... & !rn & p1 & & pn & c1 & ... & cm

& ai1_moves & & aiY_moves

& !aj1_moves & & !ajZ_moves;

nochange-Ri := nc1 = next(nc1) & & ncN’ = next(ncN’);

where, as before, {ai1, . . . , aiY } are the sync-automata involved in the reaction and
{aj1, . . . , ajZ} = {a1, . . . , aX} \ {ai1, . . . , aiY }.

These definitions allow us to define transitions of the model in a simple way. For
each reaction Ri ∈ P we write:

DEFINE

react-Ri := (sourcestate-Ri & next(target-state-Ri) & nochange-Ri);

Now, add self-looping transitions in some states to transform unfair paths into
fair ones. The idea is that we should add a self-loop in every state where a sync-
automaton is blocked, namely none of reactions it is involved in is enabled.

For each species si we define a macro meaning that some reaction having si as a
reactant can take place.

DEFINE

canmove-Si := sourcestate-Rj1 | ... | sourcestate-RjM’;

where {rj1, . . . , riM ′} are reactions having si as a reactant.
Next we specify a macro for each automaton meaning that the automaton cannot

participate in any of its reactions. Note that a specification of this macro is easy in
NuSMV since we can use negation on state conditions.

Then macro follows saying that automaton with index ai is the only one that
moves.

8.4. CASE STUDY 103

DEFINE

blocked-ai := !(canmove-Sj1 | ... | canmove-SjM’);

movesonly-ai := ai_moves & !ak1_moves & akY_moves;

where {sj1, . . . , sjM ′} are the species of automaton with index ai and ak1 , . . . , akY
are indices of all the other automata in the system. The last macro states that no
species is changed after the transition.

DEFINE

nochange-all := s1 = next(s1) & & sN = next(sN);

where species(P) = {s1, . . . , sN}.
Now we can define the self-loop of automaton with index ai.

DEFINE

selfloop-ai := (blocked-ai & movesonly-ai & nochange-all);

Finally, the transition relation is specified as follows

TRANS

react-R1 | ... | react-RM |

selfloop-a1 | ... | selfloop-Au

where {r1, . . . , rM} are all reactions in P and a1, . . . , aY are indices of all automata
in the system.

The initial state of the system needs to be set. However, choosing the initial
assignment to variables s1, . . . ,sN is dependent on the concrete pathway under study.
Thus we postpone the choice to the next section.

To conclude, we write the fairness constraint stating that each automaton ai has
to move infinitely many times in a fair path.

FAIRNESS

ai-moves

Note that this variable is set to true only if a reaction of automaton ai takes place
or automaton performs a self-loop when blocked.

A syntactic projection onto subset J of I is rather simple – leave out automata
from I \ J , their species, reactions and fairness constraints.

8.4 Case Study: MAP Kinase Cascade Activated

by Surface and Internalised EGF receptors

We apply our modular verification approach to a computational model of the MAP
kinase cascade activated by surface and internalised EGF receptors, proposed by

104 CHAPTER 8. MODULAR VERIFICATION OF PATHWAYS

Schoeberl et al. in 8.1. The modelled system is essentially the same as the one seen
in the case study we considered in 7.6, but in this case the model, depicted in figure
8.1 from [82], is much more detailed. In particular, it includes:

(i) a detailed description of all of the reactions involved in the pathway,

(ii) a detailed description of the signalling activity performed by the internalised
receptors, and

(iii) a model of the the MAP kinase cascade that is influenced by the EGF signalling
pathway.

As regards (i), the model includes reactions that involve active EGF receptors
and several effectors named GAP, ShC, SOS, Grb2, RasGDP/GTP and Raf. As
regards (ii), reactions analogous to those involving EGF receptors placed on the
external cell membrane are considered for internalised receptors (denoted EGFRi).
Finally, as regards (iii), reactions involving MEK and ERK proteins (and their
phosphorilated variants MEK-P, MEK-PP, ERK-P and ERK-PP) are included.

Model. Let us denote by P the pathway described above. A manual prepro-
cessing is performed consisting only of considering Phosphatase1, Phosphatase2,
Phosphatase3, Raf* and MEK-PP as catalysts rather than reactants and products
in the reactions of the MAP kinase cascade. The model satisfies the assumptions
made in Section 8.1. It is made up of 143 species and 80 reactions.

In an automatic way we transform P according to the translation described in
Section 8.3. After performing the automata identification procedure described in
Section 8.2, 14 automata are identified. It remains to specify the initial state of the
model.

8.4.1 Finding a Suitable Initial State

We adopt a semi-automatic procedure to find an initial state for the pathway model.
The idea is the following: for each species s in species(P), if there is no reaction
creating it (i.e. if s 6∈

⋃

R∈P prod(R)) then in the initial state we set the corresponding
boolean variable to true. This means that species that cannot be produced are
assumed to be present in the initial state. Otherwise their presence in the model
would not be meaningful. Subsequently, we resort again to the partitioning of species
into sync-automata to find other variables to be set to true. In particular, we find
those sync-automata containing no atomic proposition set to true in the previous
phase. These sync-automata must contain loops, hence we choose manually some of
their boolean variables to be set to true. All of the other variables are set to false, in
order to ensure that the initial state of each component corresponds to one species
being present.

8
.4
.

C
A
S
E

S
T
U
D
Y

105

ATP

ADP

Pi

Grb2

30

Ras−GDP

MEK−PP

ERK−MEK−PP ERK−P MEK−PP

60

ERK−P−MEK−PP

22

46 (73)

48 (74)

56 (80)

Grb2

40

32 (63)

43 (71)

(68)37

Ras−GTP

Raf−Ras−GTP

42 (70)

44

45 (72)

MEK MEK−Raf* Raf*MEK−P−Raf*MEK−P

Raf*

54 (79)

47

Raf* 51 (77)

50 (76)

53

49 (75)

58 (82)

61 (84)

Ras−GTP

25 (19)

Ras−GDP
26

28 (69)

Ras−GTP*

38

31

39

29 (21)27 (20)

GAP

P’ase1

v16, 63

v17, 64

v18, 65

v19, 66 v20, 67

v21, 68

v22, 69

v24, 71

v25, 72

v26, 73

v27, 74

v28, 75v29, 76

v32, 79

v33

v40

v38

v35

v34, 80

v36

v42, 84

v44, 86 v45, 87
v47, 89

v52, 94

v53, 95 v54, 96
v55, 97

v56, 98v57, 99v58, 100

v30, 77

v31, 78

v51, 93

15 (17)

33 (64)

34(65)

36 (67)

Shc*Grb2−Sos

Shc*−Grb2

Shc*

Grb2−Sos

Sos

Raf*−P’ase

62 (85)

57 (81)

59 (83)

v43, 85

v46, 88

v23, 70

Shc

Sos
24

v37, 81

v39, 82

ERK−P ERK−PP−P’ase3

Phosphatase3

Phosphatase2

Sos

ADP
GAP

52 3

ATP
v34

v6

6

v7

ATP ADP

EGFideg
13

v13

10 11

v60 v62

87
86

8

EGFR

EGF
1

v1
(EGF−EGFR)2

(EGF−EGFR*)2−GAP(EGF−EGFR*)2

(EGF−EGFRi*)2

EGFRideg (EGF−EGFRi*)2deg

EGFRi

EGFi

v10
(EGF−EGFRi)2

v11 v12

v61

16 v14

(EGF−EGFR*)2−GAP−Shc

(EGF−EGFR*)2−GAP−Shc*

(EGF−EGFR*)2−GAP−Shc*−Grb2
v41, 83

(EGF−EGFR*)2−GAP−Shc*−Grb2−Sos

(EGF−EGFR*)2−GAP−Shc*−Grb2−Sos−Ras−GTP (EGF−EGFR*)2−GAP−Shc*−Grb2−Sos−Ras−GDP

Grb2SOS

(EGF−EGFR*)2−GAP

(EGF−EGFR*)2−GAP−Grb2

(EGF−EGFR*)2−GAP−Grb2−Sos

(EGF−EGFR*)2−GAP−Grb2−Sos−Ras−GTP
(EGF−EGFR*)2−GAP−Grb2−Sos−Ras−GDP

v8

P’ase3

ERK

55

ERK−P−P’ase3
v59, 101

ERK−PP

P’ase2 MEK−P−P’ase2 MEK−PP
v48, 90

MEK−PP−P’ase2

52 (78)
v49, 91

MEK−P
v50, 92

Ras−GTP*
Raf

41

(EGF−EGFR*)2−GAP

14

Phosphatase1

v2

v−6

35 (66)

23 (18)

Figure 8.1: Scheme of the EGF receptor-induced MAP kinase cascade [82]

106 CHAPTER 8. MODULAR VERIFICATION OF PATHWAYS

8.4.2 Interaction Graph

In modular verification the choice of the submodel to be used for verification of a
property is up to the person performing the verification. The property preservation
theorem guarantees satisfaction of properties that are true in a submodel, but does
not say anything about those that do not hold. To reject the property as false one
would need to establish falsehood in the complete model. However when the truth
is presumed, it might be desirable to try the verification on another (perhaps larger)
submodel. A naive approach is to start by considering the system components that
are mentioned in the property and try incrementally to add components one by one.

A somewhat more sophisticated method can be based on analysing the interac-
tion graph of the model that can be automatically inferred. An interaction graph is
a directed graph in which vertices are system components (elements of I) and edges
connect components that are involved together in a synchronisation.

It is easy to see that the subgraph corresponding to a reasonable submodel needs
to be connected for other than trivial properties.

In the particular case of pathways, we connect components that are involved
together in a reaction. If two components are both involved as reactants (and
consequently products), the edge connecting them will not be oriented (we have both
directions). If one of the two is involved as reactant and the other either as catalyst
or as inhibitor, then the edge will start from the vertex representing the latter to
the vertex representing the former. There is no edge between vertices representing
components involved in the same reactions only as catalysts and inhibitors.

On the Figure 8.2 we can see the interaction graph of pathway P . Each node
of the graph contains the index that has been assigned to the automaton by the
algorithm from Section 8.2 along with its intuitive name. We can identify enzymes
like Phosphatase1, Phosphatase2 and Phosphatase3. We can see the first part of
the pathway corresponding to the EGF receptor and its interaction with effectors,
and its connection to the MAP kinase cascade through the component RasGDP.

EGF
a001

EGFi
a013

EGFR
a087

GAP
a014

Shc
a040

RasGDP
a021 071

Grb2
a030 022

Sos
a030 024

P’ase1
a044

Raf
a041

MEK
a077

ERK
a083

P’ase2
a053

P’ase3
a060

Figure 8.2: Interaction graph

8.4. CASE STUDY 107

8.4.3 Experiments

The final product of the MAP kinase cascade activated by surface and internalised
EGF receptors is species ERK-PP. As can be seen in the interaction graph and in
the diagram in Figure 8.1, some components are involved in complex interactions.
This is true in particular for components EGFR, GAP, RasGDP, Sos, Shc and Grb2
which form a clique in the interaction graph. We are interested in understanding
whether all of these components are really necessary in order to obtain the final
product of the pathway.

The idea is to test whether the final species is produced when the components
of interest are assumed one by one as absent. The property to be tested should be

AF (ERK−PP |ERK−PPi) (E1)

where ERK-PPi is the ERK-PP produced by the internalised branch of the pathway.
We could try to verify this property by using the modular verification on a

suitably chosen subset of the components, but the verification would fail since the
property does not hold in the whole model. The reason why the property does not
hold are our assumptions on the behaviour of catalysed reactions. In particular, the
reactants of catalyzed reactions are always completely consumed, and this introduces
looping behaviours of the MAP kinase part of the pathway, which prevent creation
of ERK-PP.

Note that the components we are interested in are not directly involved in the
MAP kinase cascade. Therefore, in order to establish whether they are necessary
it might be enough to check if they are necessary to produce Raf*, the activator of
the MAP kinase cascade. In fact, we can prove the property “Raf* is a necessary
predecessor of MEK-PP”. The same holds for their internalised couterparts.

The property is an instance of the pattern (S3) from the category “sequence” in
Section 2.8, in particular “A state S2 is reachable and is necessarily preceded at some
time by a state S1”. Unfortunately, the associated formula EF (S2)∧¬E(¬S1 U S2)
is not from ACTL− since the first conjunct is not.

However, if we weaken the desired property and sacrifice reachability, that is we
consider the property “A state S2 is necessarily preceded at some time by a state
S1”, we get the formula ¬E(¬S1 U S2) which is equivalent to the ACTL− formula
A[¬S2 Uw (S1 ∧ ¬S2)] (from the equivalence A[f Uw g] ↔ ¬E[¬g U ¬(f ∨ g)]).
Hence, we successfully apply the modular verification to the following formula (we
do not use the latter equivalent one since in NuSMV the Uw operator is missing)

¬E(¬Raf ∗ U ERK−PP) (E2)

The fact that Raf* is a precursor of ERK-PP allows us to reason about the
indispensability of EGFR, GAP, RasGDP, Sos, Shc and Grb2 on property

AF (Raf ∗|Raf ∗i) (E3)

108 CHAPTER 8. MODULAR VERIFICATION OF PATHWAYS

rather than on (E1).
In order to assess whether each component is necessary to produce Raf*, we

check for each component the property (E3) on a suitably chosen projection.
The property is checked by considering two initial states, the first in which the

involved component is assumed to be present and the second in which the component
is assumed to be absent. The absence of the component is modelled by setting to
false all of its atomic propositions in the initial state of the system.

Property (E3) can be successfully verified in the case that all the components
are assumed to be present. This means that all components contribute (actually,
are not obstacles) to the production of Raf*.

In the cases where the components are selectively removed from the system, we
have that the modular verification allows us to prove the property (E3) only in the
case of Shc. This implies that Shc is not a necessary component, since Raf* is always
produced even if Shc is absent from the system. The modular verification in the
cases of the other components does not succeed, therefore we cannot infer anything
about their indispensability yet. However, rather than proving (E3), we can try
with the following property

AG¬(Raf ∗ ∨ Raf ∗i) (E4)

which implies that (E3) does not hold. This property holds in all the previously
considered projections in which the verification of (E3) failed. Indeed, this proves
that all the involved components are necessary to activate the MAP kinase cascade.

In Table 8.1 we summarise the property verification results and compare the
modular verification times with those that would have been obtained by verifying
the properties on the whole model. The projection proj 1 consists of components
RasGDP, Raf, EGFR, GAP, Grb2, Shc and Sos. We did not perform verification of
(E2) on the whole model as the scope of the analysis is (E3) and (E4).

8.5 Discussion

It is worth pointing out that the fairness we consider might be too weak since it
permits some behaviours that intuitively should not be considered fair. We recall
that the fairness requires that every component is executed infinitely many times
in a fair execution. In our case, components synchronise by performing chemical
reactions. We illustrate the issue on the following part of the pathway P .

Raf, Ras-GTP → Raf-Ras-GTP, Raf-Ras-GTP’ (R12)

Raf, Ras-GTPi → Raf-Ras-GTPi, Raf-Ras-GTPi’ (R60)

The reaction R12 represents binding of Raf and Ras-GTP producing Raf-Ras-
GTP. The reaction R60 represents binding Raf and of the internalised Ras-GTP,
i.e. Ras-GTPi, producing Raf-Ras-GTPi.

8.5. DISCUSSION 109

Prop. Absent Modular verification Monolithic ver.
automata Projection Result Time Result Time

(E2) - Raf, MEK, ERK true 0.1s true -
(E3) - proj 1 true 492.7s true 1129.0s
(E3) EGFR proj 1 false 45.6s false 84.7s
(E4) EGFR proj 1 true 51.5s true 81.5s
(E3) GAP proj 1 false 48.2s false 85.6s
(E4) GAP proj 1 true 43.4s true 82.7s
(E3) Grb2 proj 1 false 50.6s false 86.4s
(E4) Grb2 proj 1 true 51.7s true 82.9s
(E3) RasGDP proj 1 false 51.7s false 176.6s
(E4) RasGDP proj 1 true 51.8s true 161.2s
(E3) Shc proj 1 true 51.9s true 164.9s
(E3) Sos proj 1 false 51.6s false 90.1s
(E4) Sos proj 1 true 49.4s true 81.7s

Table 8.1: Comparison of verification times

Species Raf, Raf-Ras-GTP and Raf-Ras-GTPi belong to the same sync-automaton.
All of the other species are part of another sync-automaton.

Let us consider a state in which both of Ras-GTP and and its internalised version
Ras-GTPi are available. Then the species Raf can “choose” with which of those two
species to react. If it does not behave impartially, and prefers one of those two
in every choice, then the other species will never be created. Subsequently, the
branch of the pathway following after this species is left for starvation. Note that
both Ras-GTP and Ras-GTPi are from the same component, which performs moves
(reactions) and thus satisfies the fairness constraint.

Hence, not having a fairness on the level of reactions, some behaviours that
should be excluded (starvation of a branch of a pathway) are instead allowed. Note
that this is the cause of proving in the property (E3) reachability of disjunction of
Raf* and Raf*i. Intuitively, each of them should be always reachable separately,
that is both AFRaf ∗ and AFRaf ∗i should hold but it is not the case.

Even though the desired stronger fairness is not too complicated to define, in
order to be able to use the modular verification the whole theory would have to be
revised and the property preservation theorem proved for this new case.

We remark that for the verification in NuSMV of the complete model the use
of dynamic BDD reordering is essential. The order of variables is critical to control
the memory and the time required by operations over BDDs. Reordering methods
to determine better variable orders can be applied in order to reduce the size of
the existing BDDs. The reordering is activated by the command line parameter
-dynamic. We have used the default reordering method sift in all our experiments

110 CHAPTER 8. MODULAR VERIFICATION OF PATHWAYS

leading to the computation times and BDD sizes in Table 8.1. The verification
without the reordering always crashed after hours of computation.

It should be noted that in the modelling approach in this chapter, pathways
consist of reactions without inhibitors. This is motivated by the fact that for the
case study we analysed, MAP kinase cascade activated by surface and internalised
EGF receptors, it was not necessary as the pathway does not include inhibitors.

Also, in order to model inhibitors in a natural way, the formalism of sync-
programs would need to be extended. The reason is that inhibitors need to be
implemented by checking the absence of a state of a component which is not possi-
ble directly in sync-programs. The extension could be an approach combining the
state checking interaction by enabling conditions of synchronisation skeletons and
of the synchronisation on moves of sync-automata. This is, however, left as future
work.

As dynamic sync-programs can be translated into Petri nets and sync-programs
are a special case of dynamic sync-programs, one might ask what is the class of Petri
nets corresponding to pathways. It is easy to see that Petri nets corresponding to
pathways subject to assumptions of Section 8.1 may contain at most one token per
place and for each transition T the number of incoming arcs is equal to the number
of outgoing ones.

Chapter 9

Stochastic Dynamic
Sync-Programs and an
Application to Epidemiology

In order to be able to describe quantitative aspects of biological systems, in this
chapter we sketch a possible stochastic extension of dynamic sync-programs. We do
not study their modular verification, the objective is only to motivate and suggest
possible future developments.

Even though dynamic sync-programs have been developed for the description
of biological systems such as signalling pathways, they can well serve as an agent
description language, where each individual is modelled by a finite-state automa-
ton. To represent interactions, synchronisation is utilised. We choose to apply the
extended formalism on systems of interest in epidemiology.

Mathematical modelling of the progress of infectious diseases gives the means
to discover the likely outcomes of epidemics or helps manage them by vaccination.
In case of large populations a deterministic approach using differential equations
can be employed. More recently, individual-based methodology has been applied
to study the epidemic dynamics. Although computationally quite expensive, it
has an ambition to account for stochastic effects characterising such dynamics in
small populations. Individual-based models, thanks to their similarity to systems of
interacting agents, allow benefiting from analysis methods originally developed in
computer science.

We attempt to apply such a technique, probabilistic model checking [66], to study
compartmental population models. These are utilised for many common childhood
diseases that confer long-lasting immunity.

We present the framework on two models. The first is a compartmental model
SIR from the literature and where only hosts are modelled – each individual by
one automaton. This model describes well the progress of infectious diseases with
droplet contact route of transmission such as measles, mumps and rubella [74].
The other model, VectSIR, demonstrates the dynamic aspect of the description lan-

112 CHAPTER 9. AN APPLICATION TO EPIDEMIOLOGY

guage, namely of creation of new automata in the runtime. This approach serves
for investigating epidemics of diseases with vector-borne transmission. Vectors are
organisms that do not cause disease themselves but that transmit infection by con-
veying pathogens from one host to another. Even though not supported by exact
data from field studies, we believe that these models can faithfully be employed
for studying tick-borne encephalitis, Chikungunya (vector mosquitoes), Pappataci
fever (vector sandfly) and diseases caused by Rickettsia bacteria like rickettsialpox,
Boutonneuse fever and various spotted fevers (transmitted by ticks, fleas and lice).

The analysis is done via probabilistic model checking, an extension of model
checking systems that exhibit stochastic behaviour. It allows for verification of
properties specified in probabilistic logic.

We are able to check properties regarding the behaviour of each population over
time, as for instance to identify conditions for the outbreak of the infection or to
demonstrate the retreat of the epidemic. Note that in contrast to simulation ap-
proaches with a limited number of traces we obtain exact results based on inspection
of all possible behaviours of the system, giving strong formal guarantees.

9.1 Stochastic Dynamic Sync-Programs

Now we introduce a stochastic extension of dynamic sync-programs.

The standard way of extending a formalism to model quantitative aspects [53]
of systems is by incorporating a collision-based stochastic framework on the lines of
the one presented by Gillespie [51]. The idea is that a rate constant is associated
with each considered reaction. Following the law of mass action, such a constant
is obtained by multiplying the kinetic constant of the reaction by the number of
possible combinations of reactants that may occur in the system. The resulting rate
is then used as the parameter of an exponential distribution modelling the time
spent between two occurrences of the considered reaction.

The use of exponential distributions to represent the (stochastic) time spent
between two occurrences of chemical reactions allows describing the system as a
Continuous Time Markov Chain (CTMC), and consequently allows verifying prop-
erties of the described system by probabilistic model checking.

In the case of stochastic sync-programs, the transition in the semantics represents
a reaction and automata moves represent reactants. Hence stochastic rates need to

be associated with every move. A move si
sc
−→
cc

ti with rate r is denoted as si
sc[r]
−−→
cc

ti.

In the semantics, the exact rate of a transition is equal to the product of the
rates of all participating moves multiplied by the number of possible combinations
of automata moves. More precisely, rate of a transition tr is rtr = Πm∈tr(rm ∗ #m)
where for each move m participating on the transition rm is the rate of m and #m

is the number of automata able and ready to perform this move.

In order to make sure that the rate of a synchronised transition is meaningful, a

9.2. COMPARTMENTAL MODELS IN EPIDEMIOLOGY 113

common technique is to make one move active, which actually defines the rate for
the synchronised transition, and the other moves passive, with rates 1.

9.2 Compartmental Models in Epidemiology

In order to represent the development of an epidemic a model needs to consider just
the characteristic aspects that are relevant to the infection in consideration. In case
of SIR model (Figure 9.1), the population is divided into three compartments: those
who are susceptible (S) to the disease, those who are infected (I), and those who
have recovered and are immune (R). In the diseases under consideration a single
epidemic outbreak is far more rapid than the vital dynamic and we might neglect
the birth/death processes.

S

I

R

I 	 [r1]
NOSYNC [r2]

¬S:I[1]

Figure 9.1: SIR model – PSIR.

The typical progress of each host is S to I to R. We model this with a sync-
automaton representing each individual. Atomic propositions used are three S, I and
R. Each automaton has three states: {S,¬I,¬R}, {¬S, I,¬R} and {¬S,¬I, R}.
We display only the atomic propositions that are true in a state.

The move from S to I occurs by getting an infection from an individual that
is infected. This is modelled by a synchronisation, where this move can only be
synchronously executed with a move of another sync-automaton that goes from
state satisfying I to state satisfying I (denoted as I). The rate of this move r1
represents the probability of getting the disease in a contact between a susceptible
and an infectious subject. The synchronising partner loop move on state I is passive
and thus has rate 1. The recovery from the disease occurs autonomously for each
individual, hence the NOSYNC move. Its rate is in general dependent on the
recovery time D, in particular r2 = 1/D. The key role in determining the dynamic
of our model plays the ratio of r1 to r2.

In the second model we consider disease with vector-borne transmission. The
hosts are modelled by using the SIR approach (Figure 9.2a), the change is that
the infection occurs by a vector (Figure 9.2b). By feeding on blood of an infected
host the vector gets infected (move to state infective with rate r1) and transmits

114 CHAPTER 9. AN APPLICATION TO EPIDEMIOLOGY

the infection to all successive hosts. We consider a fixed population of hosts. On
the other hand, since the reproduction cycle of most vectors (mainly insects) tends
to be considerably shorter, we model it by creating new individuals (NOSYNC
loops in states ∅ and infective at rate r3). Moreover, vectors, independently of their
infectivity, die at rate r4.

S

I

R

infective 	 [1] NOSYNC [r2]

¬infective 	 [1]

¬infective:infective[1]

(a) Phost

∅

infective

dead

I 	 [r1]

NOSYNC [r4]

NOSYNC /[r4]

S 	 [r1]

NOSYNC 	 [r3]

∅vector

NOSYNC [r3]

∅vector
S:I[r1]

(b) Pvector

Figure 9.2: VectSIR model

9.3 Analysis via Probabilistic Model Checking

While in traditional model checking the structure to check the satisfaction of a
temporal logic formula is a Kripke structure, in the probabilistic setting different
models exist. Their appropriateness is mainly determined by the application, which
may need assuming continuous time, nondeterminism, and so forth.

In setting of the present work, as our stochastic semantics is a Continuous Time
Markov Chain (CTMC), we are interested in model checking of these models. The
logic used is Probabilistic Computation Tree Logic (PCTL) [54]. PCTL is a quanti-
tative variant of CTL where the path quantifiers A and E are replaced by a proba-
bilistic operator P that allows querying the probability of a path formula. Another
logic, Continuous Stochastic Logic (CSL) [8] extends PCTL’s path operators with
time bounds.

Efficient probabilistic model checking tools exist and have been applied by a large
number of users from different areas. We concentrate on the model checker PRISM
[59]. PRISM supports model checking of CTMCs and Markov decision processes
for the logics PCTL and CSL. Other probabilistic model checkers include MRMC,
LiQuor and YMER.

We performed probabilistic model checking of the two models, varying rates
related to the infection process.

In order to be able to perform the analysis described in the following subsection,
we perform an ad hoc translation of the stochastic sync-program to the PRISM

9.3. ANALYSIS VIA PROBABILISTIC MODEL CHECKING 115

input language. The translation preserves the CTMC semantics of stochastic sync-
programs.

Note that for obtaining a model that is amenable to probabilistic model checking,
that is a finite-state model, we need to restrict the number of instances of automata
of each type. Thus, we set a limit of number of individuals to 10, both for hosts and
vectors.

The first model, SIR, is represented by program

SIR = I||S||S||S||S||S||S||S||S||S

with one automaton in state I and nine in state S. In this model we expected
different behaviour depending on the ratio R0 = r1/r2. From the deterministic model
analysis, if R0 > 1/S(0) then there is an outbreak with an increase of infectious
population; if R0 < 1 then no epidemic outbreak occurs, independently of the initial
population in S. This conjecture is checked by fixing rate r2 and varying r1. We
check the PCTL formula

P =?[((R > S))]

representing that the population of recovered individuals is bigger than the popula-
tion of susceptibles. Since before a susceptible becomes recovered, necessarily spends
some time as infected, the property means that at least half of the population was
infected. In Figure 9.3, result of plotting the evaluation of the above formula with
different values of r1 it can be seen, that if r1 is small, the probability of reaching
a point, where at least half of the population was infected, is low. When increasing
r1, probability of such event increases towards 1. In figure Figure 9.4 this progress
is plotted against time as the evaluation of CSL formula

P =?[F <= t((R > S))]

again varying r1.
Probability of the retreat of the epidemic, or reaching state (I = 0) is 1. In

Figure 9.5 it is shown how the retreat is likely to happen in time t.
That the epidemic with small r1 does not occur is clear from Figure 9.6a in which

the probability of being in a state I = X at time Y is expressed by colour intensity.
With higher values of r1 number of infected individuals is likely to increase and then
due to constant population size decrease to 0. The higher r1 is, the more rapidly
the epidemic occurs (Figure 9.6b and 9.6c).

In the second model VectSIR vector-borne transmission is considered. The pro-
gram VectSIR consists of nine susceptible hosts, one infected and five non infected
vectors. The decisive rate for the speed of epidemic outbreak is the creation rate of
new vectors. This is witnessed in Figure 9.7 and Figure 9.8 where r3 is varying with
r1, r2 and r4 fixed.

Similarly as in the previous model, the retreat of the infection is unavoidable
(probability of reaching (I = 0) is 1) and Figure 9.9 details is progress over time.

116 CHAPTER 9. AN APPLICATION TO EPIDEMIOLOGY

Figure 9.3: SIR: reach. (R > S). Figure 9.4: SIR: reach. (R > S) vs. time.

Figure 9.5: SIR: reach. (I = 0) vs. time.

9.3. ANALYSIS VIA PROBABILISTIC MODEL CHECKING 117

(a) r3 = 0, 01 (b) r3 = 0, 5

(c) r3 = 2

Figure 9.6: SIR: probability distribution of I vs. time

Figure 9.7: VectSIR: reach. (R >
S). Figure 9.8: VectSIR: reach. (R > S) vs. time.

118 CHAPTER 9. AN APPLICATION TO EPIDEMIOLOGY

The probability distributions of values of I in time for r3 equal to 0.01, 1 and 2 are
shown in Figure 9.10a, 9.10b and 9.10c, respectively.

9.4 Discussion

We have used an automata based formalism to model individuals, where each agent
is represented by an finite-state automaton. The formalism seems to be a suitable
means for description of these systems, also because of the powerful possibility of
specifying interactions of individuals as synchronisation. Another necessary aspect
that allows for dynamicity is the runtime automata creation. Since arbitrarily com-
plex behaviour of one agent is expressible by a finite-state automaton, large scale of
epidemics can be modelled.

As for the analysis method, probabilistic model checking provides useful insight
into the dynamics of the modelled system. Complex queries can be evaluated over
the models considering probabilities of values of variables in question and, in turn,
plot the results in graphs. All the plots were done by using the tool gnuplot [43]
(see [44] for a tutorial).

A serious drawback, however, are the computational costs of the procedure. In
particular, in order to evaluate the queries in reasonable time (in the order of hours),
we needed to limit the analysis to the order of tens of individuals. A possible
resolution of this impediment is to use approximate model checking that admits
errors as long as they can be bound [64].

As regards related work, probabilistic model checking has recently been applied
to study epidemiological models by Huang [62] who focuses the analysis to preven-
tative and controlling measures in order to limit effects of diseases. Ciocchetta and
Hilston [26] apply the formalism and toolkit Bio-PEPA to modelling and analy-
sis of avian influenza. More often, stochastic models in epidemiology are used in
connection with analysis by simulation [72].

9.4. DISCUSSION 119

Figure 9.9: VectSIR: reach. (I = 0) vs. time.

(a) r3 = 0, 01 (b) r3 = 1

(c) r3 = 2

Figure 9.10: VectSIR: probability distribution of I vs. time

120 CHAPTER 9. AN APPLICATION TO EPIDEMIOLOGY

Chapter 10

Conclusions

We have presented a framework for modelling and modular verification of properties
of biological systems. In particular, we have developed an automata-based formal-
ism of interactive systems that allows system components to perform transitions
simultaneously in a rather general way. This formalism is suitable for modelling
qualitatively a large class of biological systems, such as metabolic pathways, sig-
nalling pathways and gene regulatory networks. We have provided an example in
the modelling of the well-known biological process of lac operon gene regulation. Our
formalism, sync-programs, supports modular construction in that a sync-program
is composed of sync-automata where each automaton models a component. A sync-
program can be studied in a modular way, when some of the components are ab-
stracted away and references to them are rendered void through an operation of
projection

For this formalism we have developed a modular verification technique that al-
lows properties expressed in the universal fragment of temporal logic CTL to be
verified on suitably chosen fragments of models. In particular, these properties can
express behavioural patterns that hold universally. The approach allows to preserve
satisfaction of a formulae from fragments to the whole model. In practise, if one
successfully verifies a property on a portion of the model obtained via projection of
the original model, then the property is guaranteed to hold in the whole model. We
have shown that the class of the properties that can be preserved includes several
useful and biologically relevant properties, as we have illustrated on our case study.

In order to verify properties of sync-programs practically, instead of developing
an instrument tailored to the formalism, we rely on the established and efficient sym-
bolic model checker NuSMV [23]. Since NuSMV accepts as input a formalism called
synchronisation skeletons that is built upon a shared-memory concurrent model, we
encode sync-programs into synchronisation skeletons. We prove the correctness of
the verification on the encoding, that is we show formally that whenever the tool
is used for checking a property on the encoding, its result applies to the original
program as well. The support of the model checker allows us to evaluate the per-
formance of the modular verification in our case study, and we conclude that the

122 CHAPTER 10. CONCLUSIONS

verification of the properties on a suitable portion of the model takes much less time
than verifying the same properties on the whole model.

All our experiments were performed by using NuSMV 2.5.3 on a machine running
Ubuntu Linux 11.10, with Intel Core i5 processor clocked at 2.8 GHz with 8 GB
of RAM. The models of the lac operon regulation and the MAP kinase cascade
activated by surface and internalised EGF receptors, along with the tool used to
translate the pathway into NuSMV can be found on the webpage of the Research
Group on Modelling, Simulation and Verification of Biological Systems [36].

In sync-programs we use a general multiway type of synchronisation. In this
synchronisation a move of an automaton explicitly indicates all the moves required
to synchronise with it. We have investigated other modes of synchronisation in
connection to the modular verification. In particular, driven by the practical mo-
tivation of obtaining more succinct models, we tried to generalise the definition
of the synchronisation. However, we have discovered that in order for the modu-
lar verification technique to work, a specific type of synchronisation is required for
which we have identified a necessary condition. Interestingly, this condition implies
that a synchronisation that makes the modular verification correct coincides with
the notion used in the original definition of sync-programs. We have also briefly
investigated the possibility of application of the modular verification technique to
other formalisms and we conclude that for some of the most well-known formalisms
used for descriptions of concurrent systems the modular approach is applicable.
Some confrontations of the synchronisation style by using preconditions and post-
conditions on the synchronously performed moves of other automata and the more
widely used shared-channel approach is done and the equivalence proof is sketched.
This suggest relations of our formalism to some other formalisms.

Since in biological systems it is often the case that the components are cre-
ated and destroyed dynamically, we have extended the formalism by allowing sync-
automata (the components of a sync-program) to be created dynamically by other
already running sync-automata. Moreover, we allow several instances of the same
sync-automata to be enabled at the same time, without any bound of the number
of concurrent instances of the same sync-automaton. The state space of the se-
mantics of a sync-program is hence no longer finite, but it can be shown that such
extended sync-programs can be translated into Place/Transition Petri nets, thus
inheriting important decidability results. The extension required the modular veri-
fication approach to be adapted. We have specified a dynamic variant of the ACTL
logic suitable for describing systems with multisets of agents. We have proved that
the verification of DACTL properties can be limited to a portion of the model,
which renders the model checking or other verification techniques more efficient. As
an application, we consider the modelling and the verification the EGF signalling
pathway.

In Chapter 8, have shown how to verify metabolic pathways. We showed how
to automatically identify components of a pathway and implement them as sync-
automata. We also give an ad-hoc translation to NuSMV that shows to be more

10.1. DISCUSSION AND RELATED WORK 123

efficient for this class of systems than the one given in Chapter 5. The results
of analysis of the case study of the MAP kinase cascade activated by surface and
internalised EGF receptors suggest applicability and scalability of the approach.

10.1 Discussion and Related work

In this section we provide comments and discuss the related literature of several
aspects investigated in the thesis.

Logics. For the verification we use a fragment of the logic CTL, in particular uni-
versally quantified properties. Even though this class of properties can be considered
as quite limited, properties expressible by ACTL− formulae represent a significant
class of properties investigated in systems biology literature as identified in [73].
Properties concerning exclusion, necessary consequence and necessary persistence
and oscillatory behaviour can be considered (see Section 2.8). Also in our case
studies we have shown a number of biologically relevant properties for which the
presented modular verification approach can be exploited.

Most of these properties regard aspects of correct functioning of the model. It
is not evident, whether emergent properties of the system can be expressed as well.
Nevertheless, the possibility of verifying the correctness enables the validation of
properties expressing the hypotheses one has created during the model construction.
This is necessary in order to understand how the system works.

Formalism. We have defined sync-automata essentially by extending synchronisa-
tion skeletons [27] with synchronisation. Since the purpose was to develop a formal-
ism for modelling biological skeletons such that it would allow modular verification
by using a simple projection operation, we chose to stay as close to synchronisation
skeletons as possible. As regards biological systems, the formalism is general enough
to describe a wide class of biological systems interesting for systems biology.

The fact that the formalism is based upon finite automata, brings several im-
portant advantages: clear mathematical semantics, systems visualisation, and de-
cidability of many crucial behavioural properties [67].

The formalism, being a form of interacting finite-state automata, bears simi-
larities with other formalisms, such as I/O automata [68], Team automata [65],
interacting automata [21] and communities of interacting automata [67].

Differently from most of the other definitions of interacting automata, which are
based on environmental events or communication channels, we have employed state-
based synchronisation conditions. This choice was motivated by the explicit aim of
property verification and by the close relationship with synchronisation skeletons,
the shared-memory model used by Attie and Emerson [7].

Finally, we have chosen the synchronisation among an arbitrary number of com-
ponents, rather than a two-way synchronisation, in order to allow a more natural

124 CHAPTER 10. CONCLUSIONS

modelling of biological phenomena. Multi-way synchronisation is used by several
other formalisms, such as [4, 65, 87].

Modular verification. In the definition of our modular verification technique we
have followed the property preservation approach, namely that truth of ACTL− for-
mulae is preserved from sync-subprograms to the program. This has been originally
considered by Grumberg and Long [52] and Dams [31] in different contexts. Other
approaches to modular verification infer properties of a system from some properties
of its components, e.g. [65], [75] and [14].

Our technique is based on projections which can also be seen as a form of
property-driven model reduction. Similar reduction methods have been proposed
in [10, 17]. Differently from the other proposals, we operate on the syntax of the
model rather than on its semantics.

The property preservation ensures that the truth of ACTL− is preserved from
sync-subprograms to the program. Failure to verify a property in sync-subprograms
does not help in establishing its satisfaction in the whole program. However, it
is worth noting that in some cases model inspection aids finding a larger sync-
subprogram that allows for successful verification of the property. Preservation of
falsehood of ACTL− formulae amounts to full CTL preservation and can be obtained
only under bisimilarity [31]. For application in systems biology see [77].

The ACTL− logic includes only universally quantified formulae. Preservation
of these properties is guaranteed by the fact that the projection operation yields a
reduced model that represents an overapproximation of the system behaviour. In
order to preserve the satisfaction of existentially quantified formulae, such as EFg or
E[g U f] (as done in [31] in the context of abstract interpretation), one would need a
different definition of the projection operation resulting in an underapproximation.
Also in this case, however, the technique presents the problem of false negatives as
they can be avoided only under bisimilarity between the whole and reduced models
[31].

Synchronisation and modular verification We have investigated the way the
definition of synchronisation influences the characteristics that a subsystem obtained
via projection always contains sound behaviour with respect to the whole system.
A somehow related study was done in [85] for Team automata. Team automata is
a formalism based on finite-state automata synchronising on shared actions. The
distinctive feature of this formalism is that an automaton does not necessarily par-
ticipate in every synchronisation of an action it shares (different from most other
models of concurrent systems). Therefore the transition relation of a team automa-
ton is not uniquely determined by its constituting component automata. There is
freedom to choose for an action a synchronisation strategy: how automata synchro-
nise on it. Some of the possibilities are these three:

• free – actions are never executed simultaneously by more than one automaton

10.1. DISCUSSION AND RELATED WORK 125

• action-indispensable – actions are executed as synchronisations in which all
automata having them in the alphabet must participate

• state-indispensable – actions are executed as synchronisation in which only
automata which are ready participate

In [85] the computations and behaviour of team automata in relation to those of
their constituting component automata has been studied in detail. Several types
of team automata that satisfy compositionality could be identified, their behaviour
can be described in terms of its constituting component automata. In particular
compositionality is satisfied in an important case of team automata where all actions
are action-indispensable, i.e. guarantee the participation of all components that
share the action in sync.

Dynamicity. Dynamic sync-automata, enabling the creation of new sync-automata
required the modular verification approach to be adapted with respect to the original
sync-automata. Indeed, in the dynamic case the verification of a property cannot
be performed only on the components of the system that are directly involved in the
property, but also on those that may cause (even indirectly) the creation of some
components involved in the property. Hence, we have introduced a new syntactic
projection operation that takes these aspects into account. For simplicity, when
abstracting away some of the component not involved in the property, we keep in
the projection all the automata that may cause the creation of automata of interest.
But since the internal behaviour of these extra sync-automata is irrelevant for the
property, it could be abstracted from. Thus the syntactic projection could be im-
proved (i) by removing unnecessary NOSYNC moves in the components not directly
involved in the property, and (ii) by removing synchronisations between components
directly and non-directly involved in the property. The efficiency of these operations
is to be studied.

We remark that the existence of the Petri net representation of dynamic sync-
automata has several important implications.

Petri nets provide a balance between modelling power and analysability. Many
important problems that are not decidable in general such as reachability, bound-
edness and liveness are decidable for Petri nets [47]. Model checking of branching
time logics such as CTL and ACTL is, however, undecidable in general [47].

A dynamic sync-program might correspond to an unbounded Petri net, since
there is no upper bound for the total number of instances, corresponding to the
number of tokens.

A projection operation gives a smaller but still possibly unbounded model. The
property preservation theorem is an implication, that states that from a successful
verification of a DACTL− property in the projected model satisfaction of the same
property in the whole model can be inferred.

126 CHAPTER 10. CONCLUSIONS

The solution is to resort to standard approaches to verification of unbounded
systems such as [2, 70, 46].

However, the analysis of unbounded models in the context of Systems Biology is
one of major challenges for Petri net analysis techniques [56].

There are several subclasses of Petri nets that can still model interesting classes
of concurrent systems, where this problem is decidable. In particular, for bounded
Petri nets there are a number of tools that allow efficient CTL model checking, such
as Marcie [84] for general bounded Petri nets where no previous knowledge about
the boundedness degree is required and Model-checking Kit for 1-safe Petri nets [83].

As might be expected, our approach works well when an artificial bound on the
number of instances is imposed. Then the structure becomes finite and is amenable
to standard ACTL− model checking technique. We remark that such an assumption
is quite realistic in the context of applications, since usually the instances represent
molecules or other entities and it is reasonable to limit their quantity in practice.

Furthermore, other analysis techniques and tools (for a list of tools see [42]) used
in the research field of Petri nets such as analyses of structural properties, invariant
based analysis and various types of reachability graph based analyses might be
applicable to dynamic sync-programs through the translation as well.

Fairness. To be able to apply the proposed modular verification technique, the
systems under consideration are subject to some restrictions. In particular, we
assume infinite behaviours over a finite number of states and fairness of systems
(see Section 2.1). The fairness constraint consists of requiring that each component
of the system contributes to the overall behaviour with infinitely many transitions
(Definition 3.2).

The purpose of the fairness constraints is that they guarantee that a projection
of a correct behaviour of the complete system is a correct behaviour of the projected
system, a property that without fairness does not hold.

We remark that for the systems we aim to describe the fairness assumption is
reasonable since we regard a behaviour of biological system correct when all com-
ponents are able to perform their function.

This definition of fairness is sound since we chose to give the semantics of sync-
programs as a labelled transition system, storing the information about the sync-
automata performing the transition in the transition label. This approach is fol-
lowed in sync-programs and since the semantics of synchronisation skeletons is given
through LTSs as well, the two notions of fairness correspond.

In the case of implementation of the synchronisation skeletons in NuSMV (Sec-
tion 5.4), unlabelled transition systems are constructed from the models, without
the possibility of accessing further information. The solution is to delegate the fair-
ness on the scheduler process selector, that schedules the asynchronous execution of
individual modules. Once a module is scheduled, it must perform some move, and
thus it is enough to guarantee that each module is scheduled infinitely many times in

10.1. DISCUSSION AND RELATED WORK 127

a fair path. This is ensured by using as a fairness constraint, that is a formula that
has to be true along the path infinitely often, the selection of each of the modules.

We remark that the concept of fairness in connection with the reasoning about
instances is a little different from the concept of fairness for sync-programs in the
static case. In the dynamic setting (Section 7.5), it says that for each type i of
dynamic sync-automata it is infinitely often the case that some instance of type
i performs the move. Note that there is no guarantee of an infinite behaviour of
all instances, which might not entirely correspond to our intuitive interpretation
of the fairness. However, for specifying the fairness as a requirement of an infinite
behaviour of each instance, there is not enough information in the semantics of the
dynamic sync-program, since the semantics is built over multisets and no distinc-
tion of individual instances is made. Nevertheless, the present notion of fairness is
sufficient for the scope of the modular verification.

As mentioned in Section 8.2, we need to ensure that each behaviour that we
intuitively consider correct is present as a fair path in the semantics of the system.
That is unfair paths representing intuitively correct behaviour of the system have
to be extended so that they become fair. Even though this is not possible in general
[3, 1] in some cases it is possible empirically add self-loops to certain states as it is
done for the case of pathways automatically in Section 8.3.

The concept of unconditional fairness used in this thesis works fairly well in the
applicative field of systems biology. However, in certain situations a stronger version
would be desirable, as in the case of pathways. For more details see a discussion in
Section 8.5.

Applicability. As regards scalability of our approach, Chapter 8 includes a model
of MAP kinase cascade activated by surface and internalised EGF receptors which
is made up of 143 species and 80 reactions. Checking properties on the monolithic
model and in a modular fashion shows a significant difference.

The problem of decomposition or modularisation has not been treated in this
thesis in a systematic way. The assumption of the approach was that it is the
responsibility of the modeller to identify and model components. We are not aware
of a general method, but in certain cases it is possible to do it automatically. As an
example, in Section 8.2 there is an automatic procedure that identifies components
in the case of pathways.

Lastly, in modular verification the choice of the submodel to be used for ver-
ification of a property must be done manually. A naive approach is to start by
considering the system components that are mentioned in the property and try in-
crementally to add components one by one. In Section 8.4 we give an intuition about
how to do it in a little more sophisticated way by using the automatically derived
interaction graph of the system.

128 CHAPTER 10. CONCLUSIONS

10.2 Future Work Directions

A first improvement could be extending the property preservation theorem to pre-
serve all ACTL* properties in the way used in [52]. There should be no major
technical obstacles. We have chosen to follow the ACTL− preservation to follow the
approach of Attie and Emerson [7] and also because of the computational complexity
advantage of CTL model checking problem with respect to the one of CTL∗.

Moreover, it could be interesting to consider a weaker notion of fairness in order
to be able to avoid the impossibility of extension of unfair paths to fair ones in
general. An idea is to follow the line of [7].

Furthermore, investigation of a stronger fairness would be desirable for applica-
tions such as modelling pathways as suggested in Section 8.5. There is a need of a
fairness on a level finer than the level of automata. In particular the fairness should
avoid the problem of starvation on the level of reactions.

In addition, the experience with modelling and analysis of pathways suggests that
a tool for the could be developed that allows biologists to study indispensability of
components, effects of the removal (or mutation) of some components and causality
relationships among components (or species). The tool would use model checking
internally without exhibiting it to the user. Furthermore, the modular verification
would consent to obtain results of analyses in the order of seconds or minutes even
for complex pathways.

The dynamic sync-programs modular verification could be made more efficient
by considering a more sophisticated projection operator as discussed in the previous
section.

From the practical point of view it is still to be assessed whether a new verification
tool should be developed for the formalism, or there is some existing model checker
for Petri nets (e.g. [57, 83, 84]) or generally for infinite state systems that could be
efficiently exploited.

From another perspective, it is interesting to understand how the proposed mod-
ular verification technique applies to Petri nets and compare the performance with
verification tools for this formalism. Also, it remains an open problem whether the
class of Petri nets induced by the translation from dynamic sync-programs given in
Section 7.3 is proper.

As regards the quantitative approach, we have sketched a possible stochastic ex-
tension that could be useful for describing quantitative aspects of biological systems.
We have not investigated the modular verification in the quantitative setting. As
future work it certainly would be desirable given that the extent of state explosion
is massive, as can be seen in our application to epidemiology. There is an active
research field exploring this direction.

There have been first attempts to investigate the modular approach in connection
with quantitative descriptions of biological systems. In [24] the authors consider a
modular approach to quantitative model checking in a biological context.

Bibliography

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. The-
oretical Computer Science, 82(2):253–284, 1991.

[2] Parosh Aziz Abdulla, S. Purushothaman Iyer, and Aletta Nylén. SAT-Solving
the coverability problem for petri nets. Formal Methods in System Design,
24:25–43, January 2004.

[3] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in lan-
guages for distributed programming. Distributed Computing, 2:226–241, 1988.
10.1007/BF01872848.

[4] André Arnold, Gérald Point, Alain Griffault, and Antoine Rauzy. The AltaR-
ica formalism for describing concurrent systems. Fundamenta Informaticae,
40:109–124, November 1999.

[5] Paul C. Attie. Synthesis of large concurrent programs via pairwise composi-
tion. In CONCUR ’99: Proceedings of the 10th International Conference on
Concurrency Theory, pages 130–145, London, UK, 1999. Springer-Verlag.

[6] Paul C. Attie. Synthesis of large dynamic concurrent programs from dynamic
specifications. CoRR, abs/0801.1687, 2008.

[7] Paul C. Attie and E. Allen Emerson. Synthesis of concurrent systems with
many similar processes. ACM Transactions on Programming Languages and
Systems, 20(1):51–115, 1998.

[8] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. Verifying
continuous time markov chains. Computer Aided Verification, pages 269–276,
1996.

[9] Paolo Ballarini, Radu Mardare, and Ivan Mura. Analysing biochemical oscil-
lation through probabilistic model checking. Electronic Notes in Theoretical
Computer Science, 229(1):3–19, 2009.

[10] Roberto Barbuti, Nicoletta De Francesco, Antonella Santone, and Gigliola
Vaglini. LORETO: A tool for reducing state explosion in verification of LOTOS
programs. Softw., Pract. Exper., 29(12):1123–1147, 1999.

130 CHAPTER 10. BIBLIOGRAPHY

[11] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, and Angelo
Troina. A calculus of looping sequences for modelling microbiological systems.
Fundamenta Informaticae, 72(1-3):21–35, 2006.

[12] Grégory Batt. Validation de modèles qualitatifs de réseaux de régulation
génique: une méthode basée sur des techniques de vérification formelle Vali-
dation de modèles qualitatifs de réseaux de régulation génique: une méthode
basée sur des techniques de vérification formelle Validation de modèles qualitat-
ifs de réseaux de régulation génique: une méthode basée sur des techniques de
vérification formelle. PhD thesis, Université Joseph-Fourier - Grenoble, 2006.

[13] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic of
branching time. Acta Informatica, 20(3):207–226, 1983-09-01.

[14] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-Hung Nguyen.
Compositional verification for component-based systems and application. In
ATVA ’08: Proceedings of the 6th International Symposium on Automated
Technology for Verification and Analysis, pages 64–79, Berlin, Heidelberg, 2008.
Springer-Verlag.

[15] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
TACAS ’99, pages 193–207, London, UK, 1999. Springer-Verlag.

[16] Mieczyslaw Borowiecki, Izak Broere, Marietjie Frick, Peter Mihok, and Se-
manǐsin Peter. A survey of hereditary properties of graphs. Discuss. Math.
Graph, 17:5–50, 1997.

[17] Glenn Bruns. A practical technique for process abstraction. In Proceedings of
the 4th International Conference on Concurrency Theory, CONCUR ’93, pages
37–49, London, UK, 1993. Springer-Verlag.

[18] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and beyond. Inf. Comput.,
98(2):142–170, 1992.

[19] Laurence Calzone, Nathalie Chabrier-Rivier, François Fages, and Sylvain Soli-
man. Machine learning biochemical networks from temporal logic properties.
Transactions on Computational Systems Biology VI, pages 68–94, 2006.

[20] Luca Cardelli. Brane calculi. Computational Methods in Systems Biology, pages
257–278, 2005.

[21] Luca Cardelli. Artificial biochemistry. Algorithmic Bioprocesses, pages 429–462,
2009.

10.2. BIBLIOGRAPHY 131

[22] Nathalie Chabrier and François Fages. Symbolic model checking of biochemical
networks. Computational Methods in Systems Biology, pages 149–162, 2003.

[23] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
NuSMV version 2: An opensource tool for symbolic model checking. In Proc.
International Conference on Computer-Aided Verification (CAV 2002), volume
2404 of LNCS, Copenhagen, Denmark, July 2002. Springer.

[24] Federica Ciocchetta, Maria Luisa Guerriero, and Jane Hillston. Investigating
modularity in the analysis of process algebra models of biochemical systems.
CoRR, abs/1002.4063, 2010.

[25] Federica Ciocchetta and Jane Hillston. Bio-PEPA: A framework for the mod-
elling and analysis of biological systems. Theoretical Computer Science, 410(33-
34):3065–3084, 2009.

[26] Federica Ciocchetta and Jane Hillston. Bio-PEPA for epidemiological models.
Electronic Notes in Theoretical Computer Science, 261:43–69, 2010.

[27] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. Logics of Programs,
pages 52–71, 1982.

[28] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[29] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[30] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

[31] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of
reactive systems. ACM Trans. Program. Lang. Syst., 19(2):253–291, 1997.

[32] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical
Computer Science, 325(1):69–110, 2004.

[33] David L. Dill. The Murphi verification system. In In Computer Aided Verifi-
cation. 8th International Conference, pages 390–393. Springer-Verlag, 1996.

[34] Glycolytic pathway and lac operon of e. coli. CSML Model database. http:

//www.csml.org/.

132 CHAPTER 10. BIBLIOGRAPHY

[35] Property pattern mappings for CTL. http://patterns.projects.cis.ksu.

edu/documentation/patterns/ctl.shtml.

[36] Research Group on Modelling, Simulation and Verification of Biological Sys-
tems, Department of Computer Science, University of Pisa. http://www.di.

unipi.it/msvbio/.

[37] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. Dynamic sync-
programs for modular verification of biological systems. In 2nd Int. Workshop
on Non-Classical Models of Automata and applications (NCMA’10), Jena, Ger-
many, 2010.

[38] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. Modular verifi-
cation of interactive systems with an application to biology. Electronic Notes
in Theoretical Computer Science, 268:61–75, 2010.

[39] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. Modular verifi-
cation of interactive systems with an application to biology. Scientific Annals
of Computer Science, 21:39–72, 2011.

[40] Peter Drábik, Andrea Maggiolo-Schettini, and Paolo Milazzo. On conditions
for modular verification in systems of synchronising components. In Marcin
Szczuka, Ludwik Czaja, Andrzej Skowron, and Magdalena Kacprzak, editors,
Proceedings of Concurrency, Specification and Programming - XXth Interna-
tional Workshop, CS&P 2011, Pultusk, Poland, 2011. Bia lystok University of
Technology.

[41] Peter Drábik and Guido Scatena. An application of model checking to epi-
demiology (extended abstract). In 1st Int. Workshop on Applications of Mem-
brane computing, Concurrency and Agent-based modelling in POPulation biol-
ogy (AMCA-POP 2010), Jena, Germany, 2010.

[42] Petri nets tools database. http://www.informatik.uni-hamburg.de/TGI/

PetriNets/tools/quick.html.

[43] Gnuplot graphing utility. http://www.gnuplot.info.

[44] Gnuplot tutorial. http://gnuplot.sourceforge.net/demo_4.5/pm3d.html.

[45] E. Allen Emerson and Chin-Laung Lei. Modalities for model checking: branch-
ing time logic strikes back. Science of Computer Programming, 8:275–306, June
1987.

[46] E. Allen Emerson and Kedar. S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In Proceedings of the 13th Annual IEEE
Symposium on Logic in Computer Science, LICS ’98, pages 70–81, Washington,
DC, USA, 1998. IEEE Computer Society.

10.2. BIBLIOGRAPHY 133

[47] Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets. Petri
nets newsletter, 94:5–23, 1994.

[48] François Fages, Sylvain Soliman, and Nathalie Chabrier-Rivier. Modelling and
querying interaction networks in the biochemical abstract machine biocham.
Journal of Biological Physics and Chemistry, 4:64–73, 2004.

[49] Uriel Feige and Shimon Kogan. The hardness of approximating hereditary prop-
erties. Available on: http://research.microsoft.com/research/theory/

feige/homepagefiles/hereditary.pdf, 2005.

[50] Colin Fidge. A comparative introduction to CSP, CCS and LOTOS. Software
Verification Research Centre, University of Queensland, Tech. Rep, pages 93–
24, 1994.

[51] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[52] Orna Grumberg and David E. Long. Model checking and modular verification.
ACM Trans. Program. Lang. Syst., 16(3):843–871, 1994.

[53] John Haigh. Stochastic modelling for systems biology by d. j. wilkinson. Journal
Of The Royal Statistical Society Series A, 170(1):261–261, 2007.

[54] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and relia-
bility. Formal Aspects of Computing, 6:102–111, 1994.

[55] John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and Oksana
Tymchyshyn. Probabilistic model checking of complex biological pathways.
Theoretical Computer Science, 391(3):239–257, 2008.

[56] Monika Heiner and Ina Koch. Petri net based model validation in systems
biology. In In 25th International Conference on Application and Theory of
Petri Nets, pages 216–237. Springer, 2004.

[57] Monika Heiner, Martin Schwarick, and Alexej Tovchigrechko. DSSZ-MC – a
tool for symbolic analysis of extended petri nets. In Proceedings of the 30th
International Conference on Applications and Theory of Petri Nets, PETRI
NETS ’09, pages 323–332, Berlin, Heidelberg, 2009. Springer-Verlag.

[58] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

[59] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, David Parker, Holger
Hermanns, and Jens Palsberg. PRISM: A tool for automatic verification of

134 CHAPTER 10. BIBLIOGRAPHY

probabilistic systems. In H. Hermanns and J. Palsberg, editors, Proc. 12th In-
ternational Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’06), volume 3920 of LNCS, pages 441–444. Springer,
2006.

[60] C. A. R. Hoare. Communicating Sequential Processes, volume 9. Prentice-Hall
International, London, 1985.

[61] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, September 2003.

[62] Samuel Huang. Probabilistic model checking of disease spread and prevention.
Technical report, Computer Science Department, University of Maryland, 2010.

[63] François Jacob and Jacques Monod. Genetic regulatory mechanisms in the
synthesis of proteins. J Mol Biol, 3:318–356, 06 1961.

[64] Joost-Pieter Katoen. Abstraction of probabilistic systems. In FORMATS, pages
1–3, 2007.

[65] Jetty Kleijn. Team Automata for CSCW: A survey. Petri Net Technology for
Communication-Based Systems, pages 295–320, 2003.

[66] Marta Kwiatkowska. Quantitative verification: Models, techniques and tools.
In Proc. 6th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 449–458. ACM Press, September 2007.

[67] Irina A. Lomazova. Communities of interacting automata for modelling dis-
tributed systems with dynamic structure. Fundamenta Informaticae, 60(1-
4):225–236, 2004.

[68] Nancy Lynch. Input/output automata: Basic, timed, hybrid, probabilistic,
dynamic,... In Roberto Amadio and Denis Lugiez, editors, CONCUR 2003 -
Concurrency Theory, volume 2761 of Lecture Notes in Computer Science, pages
191–192. Springer Berlin / Heidelberg, 2003.

[69] Joao P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm
for propositional satisfiability. IEEE Transactions on Computers, 48:506–521,
1999.

[70] Kenneth L. McMillan. Applying SAT methods in unbounded symbolic model
checking. In Proceedings of the 14th International Conference on Computer
Aided Verification, CAV ’02, pages 250–264, London, UK, UK, 2002. Springer-
Verlag.

10.2. BIBLIOGRAPHY 135

[71] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[72] Charles J. Mode and Candace K. Sleeman. Stochastic Processes in Epidemi-
ology: HIV/AIDS, Other Infectious Diseases and Computers. World Scientific
Publishing Company, 2000.

[73] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas, and
Hidde de Jong. Temporal logic patterns for querying dynamic models of cellular
interaction networks. Bioinformatics, 24(16):i227–233, 2008.

[74] Charles Nunn and Sonia Altizer. Infectious Diseases in Primates: Behavior,
Ecology and Evolution. Oxford University Press, Oxford, 2006.

[75] Michael Pedersen. Compositional definitions of minimal flows in Petri nets. In
Computational Methods in Systems Biology, pages 288–307. Springer, 2008.

[76] Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.

[77] Marcelo Cezar Pinto, Luciana Foss, José Carlos Merino Mombach, and Leila
Ribeiro. Modelling, property verification and behavioural equivalence of lactose
operon regulation. Computers in Biology and Medicine, 37(2):134–148, 2007.

[78] Amir Pnueli. A temporal logic of concurrent programs. Theoretical Computer
Science, 13:45 – 60, 1981.

[79] Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Applica-
tion of a stochastic name-passing calculus to representation and simulation of
molecular processes. Inf. Process. Lett., 80(1):25–31, 2001.

[80] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud
Shapiro. Bioambients: an abstraction for biological compartments. Theoretical
Computer Science, 325(1):141–167, September 2004.

[81] Christian Rohr, Wolfgang Marwan, and Monika Heiner. Snoopy—a unify-
ing petri net framework to investigate biomolecular networks. Bioinformatics,
26(7):974–975, 2010.

[82] Birgit Schoeberl, Claudia Eichler-Jonsson, Ernst Dieter Gilles, and Gertraud
Muller. Computational modeling of the dynamics of the map kinase cascade
activated by surface and internalized egf receptors. Nat Biotech, 20(4):370–375,
2002.

[83] Claus Schröter, Stefan Schwoon, and Javier Esparza. The model-checking kit.
Applications and Theory of Petri Nets 2003, pages 463–472, 2003.

136 CHAPTER 10. BIBLIOGRAPHY

[84] Martin Schwarick and Alexej Tovchigrechko. IDD-based model validation of
biochemical networks. Theoretical Computer Science, 412(26):2884–2908, June
2011.

[85] Maurice ter Beek and Jetty Kleijn. Team Automata satisfying compositionality.
FME 2003: Formal Methods, pages 381–400, 2003.

[86] Hantao Zhang. Sato: An efficient propositional prover. In William McCune, ed-
itor, Automated Deduction—CADE-14, volume 1249 of Lecture Notes in Com-
puter Science, pages 272–275. Springer Berlin / Heidelberg, 1997.

[87] B. Zimmerová. Modelling and Formal Analysis of Component-Based Systems in
View of Component Interaction. PhD thesis, Masaryk University, Brno, Czech
Republic, 2008.

