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. . . Ciò che dobbiamo imparare a fare, lo impariamo facendolo.

(Aristotele)





Abstract

Web search engines are the most popular mean of interaction with the Web.
Realizing a search engine which scales even to such issues presents many
challenges. Fast crawling technology is needed to gather the Web docu-
ments. Indexing has to process hundreds of gigabytes of data efficiently.
Queries have to be handled quickly, at a rate of thousands per second. As a
solution, within a datacenter, services are built up from clusters of common
homogeneous PCs.

However, Information Retrieval (IR) has to face issues raised by the
growing amount of Web data, as well as the number of new users. In re-
sponse to these issues, cost-effective specialized hardware is available nowa-
days. In our opinion, this hardware is ideal for migrating distributed IR
systems to computer clusters comprising heterogeneous processors in order
to respond their need of computing power. Toward this end, we introduce
K-model, a computational model to properly evaluate algorithms designed
for such hardware.

We study the impact of K-model rules on algorithm design. To evaluate
the benefits of using K-model in evaluating algorithms, we compare the
complexity of a solution built using our properly designed techniques, and
the existing ones. Although in theory competitors are more efficient than
us, empirically, K-model is able to prove because our solutions have been
shown to be faster than the state-of-the-art implementations.
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3.3 (a) Structure of a BSN of size n = 8. With bm(x) we denote
bitonic merging networks of size x. The arrows indicate the
monotonic ordered sequence. (b) Butterfly structure of a
bitonic merge network of size n = 4. . . . . . . . . . . . . . . 42

3.4 Example of BSN for 16 elements. Each comparison is repre-
sented with a vertical line that link two elements, which are
represented with horizontal lines. Each step of the sort pro-
cess is completed when all comparisons involved are computed. 44

3.5 Example of a kernel stream comprising more steps of a BSN.
The subset of items composing each element must perform
comparison only inside itself. . . . . . . . . . . . . . . . . . . 44

3.6 Increasing the number of steps covered by a partition, the
number of items included doubles. A, B and C are partitions
respectively for local memory of 2, 4 and 8 locations. . . . . 45

3.7 Elapsed sorting time for varying input size generated with
zipfian and uniform distributions. . . . . . . . . . . . . . . . 53

3.8 Elapsed sorting time for varying input size generated with
gaussian and all-zero distributions. . . . . . . . . . . . . . . 54



viii List of Figures

3.9 Number of memory transactions required by BSN, Radixsort,
and Quicksort algorithims. . . . . . . . . . . . . . . . . . . . 55

3.10 Description of the different versions of the indexer architecture. 56
3.11 Elapsed time for different indexer architectures. . . . . . . . 58
3.12 Performance of Indexgpu+ by varying GpuSort() solutions. . 58
3.13 Types of tree-traversal performed by Algorithm 6: (a) bottom-

up and (b) top-down. . . . . . . . . . . . . . . . . . . . . . . 63
3.14 Representation of our pattern applied to a tree with n = 16

leaves allocated in a memory of k = 4 banks. . . . . . . . . . 64
3.15 Efficiency computed for the tree-based methods with different

values of k by varying the input size. . . . . . . . . . . . . . 67
3.16 Expected behavior of the different solutions in log-log plot.

k equals 16 because this value is realistic, i.e. it is related to
the hardware used for testing. . . . . . . . . . . . . . . . . . 70

3.17 Elapsed time for scan on stream blocks of varying size. . . . 71
3.18 Elapsed time for exclusive scan on large arrays of varying size. 72
3.19 Throughput decoding synthetic data by varying the list size

(L) and setting n and b with the bound values and the average
one. L is divided by 105. . . . . . . . . . . . . . . . . . . . . 78

3.20 Throughput decoding synthetic data by varying the average
number of posting per bunch (n) and setting L and b with
the bound values and the average one. . . . . . . . . . . . . 79

3.21 Throughput decoding synthetic data by varying the average
posting size b and setting n and L with the bound values and
the average one. . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.22 Throughput decoding synthetic data by varying the list size
L and setting n and b with the bound values and the average
one. L is divided by 105. . . . . . . . . . . . . . . . . . . . . 80

5.1 Sketch of the two-level scheduling framework. . . . . . . . . 88
5.2 Structure of the Convergent Scheduling framework. . . . . . 89
5.3 A sketch of the WSE architecture enabling diversification. . 95



List of Tables

2.1 Decompression speed on CPU and GPU in millions of integer
per second. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Matching between computational models and architectural
features. If ‘Yes’ the model in the corresponding row repre-
sents properly the feature in the corresponding column. . . . 35

3.2 Performance of BSN, Radixsort and Quicksort in terms of
number of memory transactions, memory contention, and
number of divergent paths. Results are related to uniform
distribution. “n.a.” means that computation is not runnable
for lack of device memory space. . . . . . . . . . . . . . . . . 55

3.3 Comparison of the computational times referring the different
approach for the indexer architecture (times are in seconds,
|D| in millions of documents). . . . . . . . . . . . . . . . . . 57

5.1 Performance of different scheduling techniques in different
tests varying the job inter-arrival time (in bold the best results). 90



x List of Tables



CHAPTER 1

Introduction

This PhD thesis aims to study the potentiality of unconventional comput-
ing resources consisting of novel many-core processors1 to build large-scale
distributed Web Information Retrieval (WebIR) systems.

Web Search Engines (WSEs) are the main way to access online content
nowadays. Web data is continuously growing, so current systems are likely
to become ineffective against such a load, thus suggesting the need of soft-
ware and hardware infrastructures in which queries use resources efficiently,
thereby reducing the cost per query [1]. Given the high demand of compu-
tational resources by WebIR systems, many-core processors (also referred as
manycores in the rest of this document) can be a promising technology. In
fact, there have been efforts aimed at developing basic programming mod-
els like Map-Reduce2 on manycores. Recently, Bingsheng et al. [2] designed
Mars, a Map-Reduce framework on graphics processors, and Kruijf et al. [3]
presented an implementation of Map-Reduce for the Cell architecture.

The peculiarity of manycores is to merge multiple cores in a single pro-
cessor package where the supporting infrastructure (interconnect, memory
hierarchy, etc.) is designed to provide high levels of scalability, going well
beyond that encountered in multi-core processors, compromising single-core
performance in favor of “parallel throughput”. These cores may be the same
(a homogeneous many-core processor) or different (a heterogeneous many-
core architecture). Novel manycores born to solve specific problems, such as
the graphical ones. Consequently, their exploitation to solve a wider range of
problems requires to redesign the related algorithms for such architectures.

The design of efficient algorithms for such architectures is also made
more difficult by the lack of computational models that properly abstract

1 Graphics Processing Units and Cell BE are an example of such architectures.
2 Map-Reduce is a distributed programming framework originally proposed by Google

for developing Web search applications on a large number of commodity CPUs.
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their features. Models that do not give a realistic abstraction, such as
PRAM [4] for multiprocessor computers, may lead to unrealistic expecta-
tions for the designed algorithms, and thus to evaluate theoretically optimal
algorithms that are not optimal on any realistic machine [5]. We believe that
the challenge of effectively and efficiently programming manycores can be
addressed by defining a computational model which captures the essential
common features determining the real many-core architecture performance.

1.1 Context & Motivations

People use WSEs daily to access information and services on the Web. As
a consequence, Information Retrieval (IR) has to face issues raised by the
growing amount of information, as well as the number of new users. Re-
alizing a search engine which scales even to today’s Web presents many
challenges. Fast crawling technology is needed to gather the Web docu-
ments and keep them up to date. Storage space must be used efficiently to
store indexes and, optionally, the documents themselves. The indexing sys-
tem has to process hundreds of gigabytes of data efficiently. Queries have
to be handled quickly, at a rate of thousands per second. Moreover, for
redundancy and fault tolerance, large search engines operate multiple, geo-
graphically distributed datacenters. Large-scale replication is also required
to reach the necessary throughput. As a solution, within a datacenter, ser-
vices are built up from clusters of homogeneous PCs [6]. The type of PC in
these clusters depends upon price, CPU speed, memory and disk size, heat
output, and physical size. In particular, power consumption and cooling
issues can become challenging. Specifically, the typical power density for
commercial datacenters is much lower than that required for PC clusters.
This leads to the question of whether it is possible to reduce the power usage
per server. First, to reduce the power usage is desirable, but it has to come
without a corresponding performance penalty for applications. Second, the
lower-power server must not be considerably overpriced in order to do not
outweigh benefits of the saved power.

In response to these issues, cost-effective specialized hardware (originally
designed for different purposes) is available nowadays, namely manycores.
Over the past two decades, microprocessor designers have focused on im-
proving the performance of a single thread in a desktop processing environ-
ment by increasing frequencies and exploiting instruction level parallelism
using techniques such as multiple instruction issue, out-of-order issue, and
branch prediction. This has led to an explosion in microprocessor design
complexity and made power dissipation a major concern [7, 8]. For these rea-
sons, new generation of microprocessors (not only specialized ones, but also
classical CPUs) aims to incorporate an ever-increasing number of “cores”
on the same chip, compromising single-core performance in favor of the to-
tal amount of work done across multiple threads of execution [9]. In our
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opinion, this makes those architectures ideal for migrating distributed IR
systems to computer clusters comprising heterogeneous processors in order
to respond their need of computing power and to reduce power usage.

For example, a standard CPU requires 65W and is capable of 20 GFLOPS,
this means a ratio of 3.25 Watt per GFLOPS. The same calculus for GPUs
and Cell BE leads respectively to 70W/250GFLOPS = 0.28W/GFLOPS,
and 150W/500GFLOPS = 0.3W/GFLOPS. As a matter of fact, some scien-
tific communities already use graphics processors for general purpose high
performance computing, and the proposed solutions outperform those based
on classical processors in term of computing time but also energy consump-
tion [10, 11].

Finally, further incentives for using manycores are offered from those
companies proposing novel hardware and software approaches. Since some
years ago, programming techniques for special purpose accelerators had to
rely on APIs to access the hardware, for example OpenGL or DirectX. These
APIs are often over-specified forcing programmers to manipulate data that
are not directly relevant, and the related drivers take critical policy deci-
sions, such as where data resides in memory and when it is copied, that
may be suboptimal. In the last years, due to the trend of media market,
the demand for rendering algorithms is rapidly evolving. For the compa-
nies producing hardware, that means to redesign every time new hardware
able to run novel algorithms as well as provide higher throughput. Such
processors require significant design effort and are thus difficult to change
as applications and algorithms evolve. The demand for flexibility in media
processing motivates the use of programmable processors, and the existing
demand for non-graphical APIs sparked the same companies into creating
new abstractions that are likely to achieve some type of longevity. So, novel
hardware and software solutions are capable of performing stream process-
ing programs as well as facing computational-intensive problems better than
in the past.

1.2 Additional Research Areas

During my PhD, I worked in different research areas. The main topic (in
which I spent most of my effort) is the exploitation of unconventional com-
puting architectures for solving problems typical in IR. Furthermore, I have
also collaborated with other research groups whose research areas are: job
scheduling on distributed computing platforms and efficiency in Web search
results diversification. In the rest of this section the results of these studies
are briefly described, and a more detailed presentation of them is given in
Chapter 5.

Job Scheduling on Distributed Computing Platforms. Such activ-
ity was devoted to define a framework for scheduling a continuous stream
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of sequential and multi-threaded batch jobs on large-scale distributed plat-
forms, made up of interconnected clusters of heterogeneous machines. This
framework, called Convergent Scheduling [12, 13], exploits a set of heuris-
tics that guides the scheduler in making decisions. Each heuristics manages
a specific problem constraint, and contributes to compute a “matching de-
gree” between jobs and machines. Scheduling choices are taken to meet the
QoS requested by the submitted jobs, and optimizing the usage of hardware
and software resources.

Moreover we also propose a two-level scheduler [14] that aims to schedule
arriving jobs respecting their computational and deadline requirements. At
the top of the hierarchy a lightweight Meta-Scheduler classifies incoming
jobs balancing the workload. At cluster level a Flexible Backfilling algorithm
carries out the job machine associations by exploiting dynamic information
about the environment.

Efficient Diversification of Web Search Results. Concerning the di-
versification of results returned by WSEs, we particularly deal with effi-
ciency. The conducted studies aim to extend a search architecture based on
additive machine learned ranking systems [15] with a new module comput-
ing the diversity score of each retrieved document. Our proposed technique
consists in an efficient and effective diversification algorithm [16, 17] based
on knowledge extracted from the WSE query logs.

1.3 Document Organization

The rest of the document is organized as follows. Chapter 2, describing the
state of the art, is divided into three parts: many-core architectures, com-
putational models concerning manycores, and the architecture of today’s
Web search engines. In Chapter 3 describes K-model, a computational
model aiming to properly gather manycores performance constraints. Fur-
thermore, Section 3.2 and Section 3.3 illustrate two case studies concerning
efficient sorting and parallel prefix sum computation, respectively. For each
case study, the related problem is initially addressed in a theoretical way
and the most promising solutions are compared; the section also shows how
experimental results confirm the theoretical ones and how the resulting tech-
niques can be effectively applied to different WebIR aspects. Conclusions,
possible future works, the list of my publications, and the detailed descrip-
tion of the results obtained in additional research areas are described in the
last chapther.



CHAPTER 2

The State of the Art

Manycores are programmable accelerators classified as high-parallel shared-
memory architectures capable of performing high performance computa-
tions [18]. For this reason, manycores can be a viable solution to effectively
and efficiently face the computing needs of a distributed Web IR system.
Unfortunately performance expectations cited by vendors and in the press
are frequently unrealistic for our purpose due to very high theoretical peak
rates, but very low sustainable ones. Given the fact that these kind of pro-
cessors are usually designed with a special purpose, their general purpose
exploitation requires careful design-of-algorithms. In this regard the litera-
ture lacks a computational model able to adequately abstract manycores.

The rest of this chapter is organized as follows. Section 2.1 gives an
overview on the state of the art in manycores. It describes some nowadays
available cost-effective architectures for stream computing and the relative
software tools. Section 2.2 describes a number of computational models
divided in two classes: sequential and parallel. Due to the relevance of the
memory management aspect, the presentation of each class of models is
organized grouping them on this aspect. For each model an analysis of its
suitability to manycores is provided. Section 2.3 describes some groups of
WSE components that are characterized by a high computational load as
well as the need of a higher level of performance.

2.1 Target Computing Architectures

All the architectures we are presenting expose similar features. This mainly
depends on the specialized purpose they are projected for. Each of them is
suitable for computing heavy stream of data faster than CPUs by exploiting
a high parallel but less flexible architecture. This is due to the fact that on



PAGE 6 CHAPTER 2. The State of the Art

manycores the main chip-area is dedicated to computational units, on the
contrary, standard CPUs use this space for other mechanisms (e.g. multiple
instruction issue, out-of-order issue, and branch prediction). On the one
hand, these mechanisms avoid programmers to directly take care of some
hard aspects, thus they make easier to get the highest performance reachable
from the processor. On the other hand, these architectural choice has the
consequence of increasing the GFLOPS reachable by many-core processors
but it also makes more difficult to reach the maximum level of performance
than with the standard CPUs.

On all the architectures under consideration, the need of computing
power has been faced by exploiting some common and comparable char-
acteristics. This is enough to define a unique model able to abstract the
underlying real architectures, in order to make possible to design an algo-
rithm for a wider range of hardware. Successively, we plan to enrich this
common model with a set functions to measure the time requested by a
computation.

In the following, the first two sections describe some relevant charac-
teristics and issues arising from the stream programming model and the
single-instruction multiple-data (SIMD) architecture. These are the two
main classes in which the processors considered can be included. Then,
we will give a briefly introduction to some of these architectures and the
available programming tools.

2.1.1 Single-Instruction Multiple-Data Architecture

SIMD machines are classified as processor-array machines: a SIMD machine
basically consists of an array of computational units connected together
in some sort of simple network topology [19, 20]. This processor array
is connected to a control processor, which is responsible for fetching and
interpreting instructions. The control processor issues arithmetic and data
processing instructions to the processor array, and handles any control flow
or serial computation that cannot be parallelized. Processing elements can
be individually disabled for conditional execution: this option give more
flexibility during the design phase of an algorithm.

Although SIMD machines are very effective for certain classes of prob-
lems, they do not perform well universally. This architecture is specifically
tailored for data computation-intensive work, and it results to be quite
“inflexible” and perform poorly on some classes of problems1. In addition,
SIMD architectures typically scale better if compared to other types of mul-
tiprocessor architecture. That is to say, the desirable price/performance
ratio when constructed in massive arrays becomes less attractive when con-
structed on a smaller scale. Finally, since SIMD machines almost exclusively
rely on very simple processing elements, the architecture cannot leverage
low-cost advances in microprocessor technology.

1 For example, these architectures cannot efficiently run control-flow dominated code.
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Up until recent years, a combination of these factors have led SIMD
architecture to remain in only specialized areas of use.

2.1.2 Stream Processing

Related to SIMD, the computer programming paradigm, called stream pro-
cessing [21], allows some applications to more easily exploit a limited form
of parallel processing. Such applications can use multiple computational
units, such as the floating point units on a GPU or alike processors, without
explicitly managing allocation, synchronization, or communication among
those units.

The stream processing paradigm simplifies parallel software and hard-
ware by restricting the parallel computation that can be performed. Given
a set of data (a stream), a series of operations (kernel functions) are applied
to each element in the stream. Uniform streaming, where one kernel func-
tion is applied to all elements in the stream, is typical. Kernel functions are
usually pipelined, and local on-chip memory is reused to minimize external
memory usage.

Since the kernel and stream abstractions expose data dependencies, com-
piler can fully automate and optimize on-chip management tasks. Stream
processing hardware can use scoreboarding2, for example, to launch DMAs
at runtime, when dependencies become known. The elimination of man-
ual DMA management reduces software complexity, and the elimination of
hardware caches reduces the amount of die area not dedicated to computa-
tional units such as ALUs.

Stream processing is essentially a data-centric model that works very
well for traditional GPU-type applications (such as image, video and digi-
tal signal processing) but less so for general purpose processing with more
randomized data access (such as databases). By sacrificing some flexibil-
ity in the model, the implications allow easier, faster and more efficient
execution. Depending on the context, processor design may be tuned for
maximum efficiency or a trade-off for flexibility.

Stream processing is especially suitable for applications that exhibit
three application characteristics [22]:

• Compute Intensity, the number of arithmetic operations per I/O or
global memory reference. In many signal processing applications to-
day it is well over 50:1 and increasing with algorithmic complexity.

• Data Parallelism exists in a kernel if the same function is applied to all
records of an input stream and a number of records can be processed
simultaneously without waiting for results from previous records.

2 Method for dynamically scheduling a pipeline so that the instructions can execute
out of order when there are no conflicts with previously-issued incomplete instructions
and the hardware is available.
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• Data Locality is a specific type of temporal locality common in signal
and media processing applications where data is produced once, read
once or twice later in the application, and never read again. Inter-
mediate streams passed between kernels as well as intermediate data
within kernel functions can capture this locality directly using the
stream processing programming model.

2.1.3 Target Architectures

The first two architectures introduced in the following are commodities
large-scale diffused, namely Cell BE and GPUs. The last one is the proces-
sor proposed by Intel and named Larrabee. Larrabee is not yet available and
the related documentation is often confounding. However we are interested
to introduce Larrabee as a possible processor to take into consideration for
possible future works. On the base of our knowledge, it is possible to rank
the following architectures in term nominal computing power. The most
powerful processor seems to be represented by GPU, followed by Cell BE;
on the contrary Cell BE seems to be more flexible. About Larrabee, we
have no data about its capabilities.

Cell Broadband Engine

The Cell Broadband Engine (Cell/B.E.) [23] microprocessor is the first im-
plementation of a novel multiprocessor family that conforms to the Cell/B.E.
Architecture (CBEA). The CBEA and the Cell/B.E. processor are the re-
sult of a collaboration between Sony, Toshiba, and IBM, which formally
began in early 2001. Although the Cell/B.E. processor is initially intended
for applications in media-rich consumer-electronics devices, such as game
consoles and high-definition televisions, the architecture has been designed
to enable fundamental advances in processor performance. These advances
are expected to support a broad range of applications in both commercial
and scientific fields.

The CBEA has been designed to support a broad range of applications.
The first implementation is a single-chip multiprocessor with nine processor
elements that operate on a shared memory model, as shown in Figure 2.1.
In this respect, the Cell/B.E. processor extends current trends in PC and
server processors. The most distinguishing feature of the Cell/B.E. proces-
sor is that, although all processor elements can share or access all available
memory, their function is specialized into two types: (i) Power Processor
Element (PPE), (ii) Synergistic Processor Element (SPE).

The Cell/B.E. processor has one PPE and eight SPEs. The PPE con-
tains a 64-bit PowerPC ArchitectureTM core [24]. It complies with the
64-bit PowerPC Architecture and can run 32-bit and 64-bit operating sys-
tems and applications. The SPE is optimized for running compute-intensive
single-instruction, multiple-data (SIMD) applications. It is not optimized
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B

A

C

A indicates a Synergistic Processor Element (SPE), B indicates the Power
Processor Element (PPE), and C indicates the memory Element Intercon-
nect Bus (EIB) connects all processor elements.

Figure 2.1: Schema of Cell/B.E Architecture.

for running an operating system. The SPEs are independent processor ele-
ments, each running their own individual application programs or threads.
Each SPE has full access to shared memory, including the memory-mapped
I/O space implemented by multiple-data (SIMD) applications. It is not
optimized for running an operating system.

The SPEs are independent processor elements, each running their own
individual application programs or threads. Each SPE has full access to
shared memory, including the memory-mapped I/O space implemented by
direct memory access (DMA) units. There is a mutual dependence between
the PPE and the SPEs. The SPEs depend on the PPE to run the operating
system, and, in many cases, the top-level thread control for an applica-
tion. The PPE depends on the SPEs to provide the bulk of the application
performance.

The SPEs support a rich instruction set that includes extensive SIMD
functionality. However, like conventional processors with SIMD extensions,
use of SIMD data types is preferred, not mandatory. For programming
convenience, the PPE also supports the standard PowerPC Architecture
instructions and the vector/SIMD multimedia extensions.

The PPE is more adept than the SPEs at control-intensive tasks and
quicker at task switching. The SPEs are more adept at compute-intensive
tasks and slower than the PPE at task switching. However, either proces-
sor element is capable of both types of functions. This specialization is
a significant factor accounting for the order-of-magnitude improvement in
peak computational performance and chip-area and power efficiency that
the Cell/B.E. processor achieves over conventional PC processors.
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The more significant difference between the SPE and PPE lies in how
they access memory. The PPE accesses main storage (the effective ad-
dress space) with load and store instructions that move data between main
storage and a private register file, the contents of which may be cached.
PPE memory access is like that of a conventional processor technology,
which is found on conventional machines. The SPEs, in contrast, access
main storage with DMA commands that move data and instructions be-
tween main storage and a private local memory, called local storage (LS).
An instruction-fetches and load and store instructions of an SPE access its
private LS rather than shared main storage, and the LS has no associated
cache. This three-level organization of storage (register file, LS, and main
storage) is a radical break from conventional architecture and programming
models. The organization explicitly parallelizes computation with the trans-
fers of data and instructions that feed computation and store the results of
computation in main storage.

Graphic Processing Units

The difference with the Cell is that Cell is nominally cheaper, considerably
easier to program and it is usable for a wider class of problems. This is
because the Cell BE architecture is closer to the one of standard CPUs.
Existing GPUs can already provide massive processing power when pro-
grammed properly but this is not exactly an easy task.

The GPUs we consider in this work are related to a novel generation of
programmable graphics processors[25] that is built around a scalable array
of streaming multiprocessors (SMs). Each multiprocessor contains a set of
scalar processors (referred as “cores” or streaming processors). Further-
more, each processing core in an SM can share data with other processing
cores in the SM via the shared memory, without having to read or write to or
from an external memory subsystem. This contributes greatly to increased
computational speed and efficiency for a variety of algorithms. Based on
traditional processing core designs that can perform integer and floating-
point math, memory operations, and logic operations, each processing core
is multiple pipeline stages in-order3 processor.

GPUs include a substantial portion of die area dedicated to processing,
unlike CPUs where a majority of die area is dedicated to onboard cache
memory. Rough estimates show 20% of the transistors of a CPU are dedi-
cated to computation, compared to 80% of GPU transistors. GPU process-
ing is centered on computation and throughput, where CPUs focus heavily

3 For contraposition in the field of computer engineering, out-of-order execution is
a paradigm used in most high-performance processors to make use of instruction cycles
that would otherwise be wasted by a certain type of costly delay. In this paradigm, a
processor executes instructions in an order governed by the availability of input data,
rather than by their original order in a program. In doing so, the processor can avoid
being idle while data is retrieved for the next instruction in a program, processing instead
the next instructions which is able to run immediately.
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A

B

C

A indicates the shared memory, B indicates the external memory, and C
indicates the array of streaming multiprocessors.

Figure 2.2: Schema of GPU architecture.

on reducing latency and keeping their pipelines busy (high cache hit rates
and efficient branch prediction4).

In the following, the main constraints for obtaining the best performance
from the architecture are introduced. Perhaps the most important perfor-
mance consideration in programming for is “coalescing” external memory
accesses. external memory loads and stores issued in a computational step
by streaming processors are coalesced by the device in as few as one trans-
action when certain access requirements are met. To understand these ac-
cess requirements, external memory should be viewed in terms of aligned
segments of consecutive words. Because of this possible performance degra-
dation, memory coalescing is the most critical aspect of performance opti-
mization of device memory.

Because it is on-chip, shared memory is much faster than local and ex-
ternal memory. In fact, shared memory latency is roughly 100× lower than
external memory latency when there are no bank conflicts that waste its
performance. To achieve high memory bandwidth for concurrent accesses,
shared memory is divided into equally sized memory modules, called banks,
that can be accessed simultaneously. Therefore, any memory load or store
of n addresses that spans n distinct memory banks can be serviced simul-
taneously, yielding an effective bandwidth that is n times as high as the
bandwidth of a single bank.

However, if multiple addresses of a memory request map to the same
memory bank, the accesses are serialized. The hardware splits a memory

4 In computer architecture, a branch predictor is a technique that tries to guess which
way a branch (e.g. an if-then-else structure) will go before this is known for sure.
The purpose of the branch predictor is to improve the flow in the instruction pipeline.
Branch predictors are crucial in today’s pipelined microprocessors for achieving high
performance.
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request that has bank conflicts into as many separate conflict-free requests
as necessary, decreasing the effective bandwidth by a factor equal to the
number of separate memory requests. The one exception here is when all
threads in a half warp address the same shared memory location, resulting in
a broadcast. To minimize bank conflicts, it is important to understand how
memory addresses map to memory banks and how to optimally schedule
memory requests.

Finally, any flow control instruction (if, do, for, . . .) can significantly
impact the effective instruction throughput by causing streaming processors
driven by the same instruction unit to diverge, that is, to follow different
execution paths. If this happens, the different executions paths have to be
serialized, increasing the total number of instructions executed. When all
the different execution paths have completed, the differing execution paths
converge back to the same one.

Many Integrated Core

Many Integrated Core (MIC) technology represents Intel’s entry into the
HPC processor accelerator sector5, as the company attempts to perform an
end-run around GPU computing.

Furthermore Intel [26] offers the following description of the MIC archi-
tecture: “The architecture utilizes a high degree of parallelism in smaller,
lower power, and single threaded performance Intel processor cores, to de-
liver higher performance on highly parallel applications. While relatively
few specialized applications today are highly parallel, these applications
address a wide range of important problems ranging from climate change
simulations, to genetic analysis, investment portfolio risk management, or
the search for new sources of energy.”

As suggested by its name, MIC is essentially an x86 processor which puts
a number of cores on a single chip. The MIC architecture has more cores
(but simpler ones) than a standard x86 CPU and an extra-wide SIMD unit
for heavy duty vector math. As such, it’s meant to speed up codes that can
exploit much higher levels of parallelization than can be had on standard
x86 parts.

2.1.4 Software Tools

The use of computer graphics hardware for general-purpose computation
has been an area of active research for many years, the first example was
Ikonas [27]. Several non-graphics applications, including physics, numerical
analysis, and simulation, have been implemented on graphics processors
in order to take advantage of their inexpensive raw compute power, and
high-bandwidth memory systems. Unfortunately, such programs must rely

5 The first MIC co-processor to hit the commercial market, and the one slated for use
in Stampede, is codenamed “Knights Corner” and will feature over 50 cores.
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on OpenGL [28] or DirectX [29] to access the hardware. These APIs are
simultaneously “over-specified”, in the sense that one has to set and to
manipulate data that is not relevant for his purpose, and the drivers that
implement these APIs make critical policy decisions, such as where data
resides in memory and when it is copied, that may be suboptimal.

An increasing demand for non-graphical APIs sparked a lot of research
into creating other abstractions, and there are currently three emerging
technologies that are likely to achieve some type of longevity. These are
ATI Stream [30], [31] and Nvidia CUDA [32].

ATI Stream SDK

The ATI Stream SDK (namely, Software Development Kit) consists of a
large, collection of code examples, compilers and run-time libraries. Cen-
tral to the collection is the high-level language Brook+ [30] which is based
on C/C++. Brook+ enables the writing of CPU code and syntactically sim-
ple GPU kernel functions. Once this is done, the Brook+ compiler divides
the code into CPU and GPU components for the standard C++ compiler
and the kernel compiler respectively. The kernel compiler produces AMD
Intermediate Language code that is then interpreted by the stream runtime
to Compute Abstraction Layer (CAL) code. The CAL code is then trans-
lated into optimised device specific code for the various stream processors
available.

Code written directly in CAL can be optimised much more than Brook+
code and so it has the potential for greater performance increases. However,
CAL code has a complicated syntax and structure, making it harder to learn
and use. However, with support for OpenCL, ATI’s GPU platform could
become an even more significant part of GPGPU computing.

Nvidia’s CUDA SDK

Like ATI Stream SDK, also the SDK provided by Nvidia for its GPUs consist
of a large, collection of code examples, compilers and run-time libraries.
Thanks to our past experiences with CUDA, let us to put in evidence some
constraints imposed by the model.

Clearly the CUDA model is “restricted”, mainly for reasons of efficiency.
Threads and thread blocks can be created only by invoking a parallel kernel,
not from within a parallel kernel. Task parallelism can be expressed at the
thread-block level, but block-wide barriers are not well suited for supporting
task parallelism among threads in a block. To enable CUDA programs to
run on any number of processors, communication between different blocks of
threads, is not allowed, so they must execute independently. Since CUDA
requires that thread blocks are independent and allows blocks to be exe-
cuted in any order. Combining results generated by multiple blocks must
in general be done by launching a second kernel. However, multiple thread
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blocks can coordinate their work using atomic operations on the out-chip
memory.

Recursive function calls are not allowed in CUDA kernels. In fact, recur-
sion is unattractive in a massively parallel kernel because providing stack
space for all the active threads, would require substantial amounts of mem-
ory. To support a heterogeneous system architecture combining a CPU and
a GPU, each with its own memory system, CUDA programs must copy
data and results between host memory and device memory. The overhead
of CPU/GPU interaction and data transfers is minimized by using DMA
block-transfer engines and fast interconnects.

OpenCL

OpenCL (Open Computing Language) is a framework for developing and ex-
ecuting parallel computation across heterogeneous processors (CPUs, GPUs,
Cell-type architectures and other hardware). The OpenCL framework is
made up of an API for coordinating parallel computation across heteroge-
neous processors, and a cross platform, C-based programming language that
contains extensions for parallelization. OpenCL supports both data-parallel
and task-parallel programming models and is designed to operate efficiently
with graphics APIs such as OpenGL or DirectX. The key feature of OpenCL
is that it is designed not as a GPU programming platform, but as a parallel
platform for programming across a range of computational devices. This
makes it different to either Nvidia’s CUDA or ATI’s Stream which are pro-
prietary and designed to only work on their respective hardware platforms.

Also if OpenCL has the ability to obtain a unique code for more than
one architecture, it is difficult that one algorithmic solution can efficiently
spread on a large range of different architectures. Also if OpenCL compiler
is able to optimize the code for different types of processor, it does not mean
that the same algorithmic approach is the optimal one for all architectures
(i.e. general purpose cache-based processor, GPUs SIMD based architecture
and Cell BE). Likely we can achieve a common optimal approach in some
cases, but we believe that it is not true in general. For example, on GPUs,
some relevant aspects of design are left to the experience of the developer,
rather than to be hidden by hardware mechanisms as on CPUs.

2.2 Computational Models

The simplified and abstract description of a computer is called a computa-
tional model. Such a model can be used as a base to estimate the suitability
of one computer architecture to various applications, the computation com-
plexity of an algorithm and the potential performance of one program on
various computers. A good computational model can simplify the design
of an algorithm onto real computers. Thus, such computational model is
sometimes also called “bridging model” [33].
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This section presents some of the main computational models, so that
we can outline lacks and common aspects among them and the architectures
presented in Section 2.1. Due to the number of models, they are divided
into sequential, and parallel subset. Successively each family is presented
according to the memory model of their targeting parallel computers.

2.2.1 Sequential Models

The first bridging model between the sequential computer and algorithms
was RAM. The concept of a Random Access Machine (RAM) starts with
the simplest model of all, the so-called counter machine model. Cook et
al. [34] introduced a formal model for random access computers and argue
that the model is a good one to use in the theory of computational com-
plexity. RAM consists of a finite program operating on an infinite sequence
of registers. Associated with the machine is the function `(n) which denotes
the time required to store the number n. The most natural values for `(n)
are identically 1, or approximately log |n|.

Memory Hierarchy in Sequential Model

Large computers usually have a complex memory hierarchy consisting of
a small amount of fast memory (registers) followed by increasingly larger
amounts of slower memory, which may include one or two levels of cache,
main memory, extended store, disks, and mass storage. Efficient execution
of algorithms in such an environment requires some care in making sure the
data are available in fast memory most of the time when they are needed.

HMM-BT. The Hierarchical Memory Model (HMM) of computation [35]
is intended to model computers with multiple levels in the memory hierar-
chy. Access to memory location x is assumed to take time dlog xe. In order
to solve problems efficiently in such an environment, it is important to stage
the flow of data through the memory hierarchy so that once the data are
brought into faster memory they are used as much as possible before being
returned to the slower memory.

An HMM is a RAM where access to memory location requires an access
time that is measured by an arbitrary, monotone, non decreasing function.
An HMM is defined with unlimited number of registers, and each operation
on them has unitary cost.

Successively, Aggarwal et al. [36] propose the hierarchical memory ex-
tended with block transfer (BT). In addition a contiguous block can be
copied in unit time per word after the startup time. Specifically, a block-
copy operation copies t memory locations between two disjoint memory
intervals in f(x) + t time. In this way, for example, the transfers from
disks are charged with the time spent for moving the heads on the platters
surface, plus a cost proportional to the length of the block to copy.
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Also for GPUs and Cell, to move blocks of contiguous data leads benefits,
but in this case no mechanic part is involved in this operation. Specifically,
for GPUs out-chip memory bandwidth is used most efficiently when the
simultaneous memory accesses can be gathered into a single memory trans-
action. To obtain the maximum bandwidth, these blocks have to reach a
specific minimum size by coalescing the accesses. Differently, BT “suggests”
to move as longer as possible blocks.

This behavior is proved to leads no kind of advantage in the practice.
Figure 2.3 shows the time needed for transferring 64M integers by using
block of varying size that is denotes the variable t occurring in BT cost
function. The results of the experiment show that above a specific threshold,
transfers on GPUs do not take advantage by increasing the block size used
for the transfer.
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Figure 2.3: Time for transferring an array using varying size blocks on GPU.

Concerning CBEA, for load/store accesses (from SPE to local store to
main memory) we report in Figure 2.4 the result of the test Jimenezet
al. [37]. For DMA transfers the authors have evaluated both DMA requests
of a single data chunk (labeled DMA-elem in the experiments), and DMA
requests for a list of data chunks (labeled DMA-list). In the first case, the
SPE is responsible for programming the Memory Controller (MC) for each
individual DMA transfer. In the second case, the SPE provides a list of
DMA commands to the MC, and the MC takes care of all requests without
further SPE intervention. We have varied the size of DMA chunks from
128 Bytes to 16 KB (the maximum allowed by the architecture). While it is
possible to program DMA transfers of less than 128 Bytes, the experiments
show a very high performance degradation.

Cache-aware algorithm. In their paper, Aggarwal et al. [38] analyzed
the sorting problem. Their work focused on the amount of resources are
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Figure 2.4: Bandwidth for transferring an array using varying size blocks
on CBEA.

consumed by external sorts, in which the file is too large to fit in internal
memory and must reside in secondary storage.

They examined the fundamental limits in terms of the number of I/Os
for external sorting and related problems in current computing environ-
ments. They assumed a model with a single central processing unit, and
the secondary storage as a generalized random-access magnetic disk.

Each block transfer is allowed to access any contiguous group of B
records on the disk. Parallelism is inherent in the problem in two ways:
each block can transfer B records at once, which models the well-known
fact that a conventional disk can transfer a block of data via an I/O roughly
as fast as it can transfer a single bit.

Cache-oblivious algorithm. Frigo et al. [39] presents cache-oblivious
algorithms that use both asymptotically optimal amounts of work, and
asymptotically optimal number of transfers among multiple levels of cache.
An algorithm is cache oblivious if no program variables dependent on hard-
ware configuration parameters, such as cache size and cache-line length need
to be tuned to minimize the number of cache misses.

The authors introduce the Z, L ideal-cache model to study the cache
complexity of algorithms. This model describes a computer with a two-level
memory hierarchy consisting of an ideal (data) cache of Z words of constant
size, and an arbitrarily large main memory. The cache is partitioned into
cache lines, each consisting of L consecutive words that are always moved
together between cache and main memory.

The processor can only reference words that reside in the cache. If the
referenced word belongs to a line already in cache, a cache hit occurs, and
the word is delivered to the processor. Otherwise, a cache miss occurs, and
the line is fetched into the cache. If the cache is full, a cache line must
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be evicted. An algorithm with an input of size n is measured in the ideal-
cache model in terms of its work complexity W (n) and its cache complexity
Q(n, Z, L), that is the number of cache misses it incurs as a function of the
size Z and line length L of the ideal cache.

The ideal-cache model does not conform to the architectures mainly
studied, which exhibits a different memory hierarchy. In fact, target proces-
sor architecture is internally equipped with local memory instead of cache.
Adopting local memory approach, the movements are managed by soft-
ware, on the contrary in cache-based architecture this aspect is automati-
cally managed by the underlying support. So if the support forces control,
software cannot be oblivious.

Local memory approach forces the programmer to bear the effort of syn-
chronizing, sizing, and scheduling the computation of data and its movement
from out-chip memory to the on-chip one. This can be done by moving data
located in different addresses composing a specific access pattern. This ca-
pability is impossible to realize with caches, where the hardware hides this
operation by automatically replacing cache lines missed.

10 %

20 %

30 %

40 %

50 %

1M 2M 4M 8M 16M 32M 64M

B
o

o
s
t 

o
f 

P
e

rf
o

rm
a

n
c
e

Input Size

Figure 2.5: Boost of performance obtained applying a properly defined ac-
cess pattern to sorting GPU-based algorithm.

Eventually, considering the off-chip memory, from our experience on
designing sorting algorithm for GPUs [40] and from the results obtained
by other researchers [41], we argued that minimizing the amount of data
transfered from/to off-chip memory (i.e. the number of cache-misses for
any given cache line length L) does not guarantee the best performance, see
Figure 2.5. The best results has been reached by augmenting the overall
amount of datatransfers from/to off-chip memory, and optimizing the ac-
cess pattern used. On the contrary, the previous version of our algorithm
privileges the minimization of such quantity obtaining lower performance.
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2.2.2 Parallel Models

Parallel computational models can be classified into three generations ac-
cording to the memory model of their targeting parallel computers. The
first class is the shared memory parallel computational model, the second
generation is the distributed memory parallel computational models, also
including some distributed shared memory models, the third generation is
the hierarchical memory parallel computational model.

Shared Memory in Parallel Model

With the success of the RAM model for sequential computation, a natural
way to model a parallel computation is to extend this model with paral-
lel processing capability. A set of independent processors that share one
common global memory pool instead of one processor. From this phase of
our investigation we expect to find some models or hints in order to well-
describe the main constraints and features for the parallelism exposed by
the architectures studied for this PhD thesis.

PRAM & Asynchronous PRAM. A Parallel Random Access Machine
(PRAM) [4] consists of an unbounded set of processors P0, P1, . . ., an un-
bounded global memory, a set of input registers, and a finite program.
Each processor has an accumulator, an unbounded local memory, a pro-
gram counter, and a flag indicating whether the processor is running or
not.

With respect to the instruction set available on RAM, the fork instruc-
tion executed on Pi, provides to replicate the state of Pi into the processor
Pj. An halt instruction causes a processor to stop running.

Simultaneous reads of a location in global memory are allowed, but if
two processors try to write into the same memory location simultaneously,
the PRAM immediately halts. All three steps are assumed to take unit
time in the model. The PRAM model assumes that all processors work
synchronously and that inter-processor communications are essentially free.

Unlike the PRAM, the processors of an Asynchronous PRAM [42] run
asynchronously, i.e. each processor executes its instructions independently
of the timing of the other processors. A synchronization step among a set
S of processors is a logical point in a computation where each processor in
S waits for all the processors in S to arrive before continuing in its local
program.

Historically, PRAM models are the most widely used parallel models.
For the architectures considered in this PhD thesis, PRAM is inaccurate
because it hides details which impact on the real performance of an algo-
rithm, for example it does not consider the time required for communication
as well as synchronization aspect.
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Module Parallel Computer & QRQW PRAM. Mehlhorn et al. [43]
consider algorithms which are designed for parallel computations in which
processors are allowed to have fairly unrestricted access patterns to the
shared memory. The shared memory is organized in modules where only one
cell of each module can be accessed at a time. Their research was motivated
by the Ultracomputer project: a machine capable of 4096 processors as
many memory modules.

The model employs p processors which operate synchronously and N
common memory cells. The common memory is partitioned into m memory
modules. Say that at the beginning of a cycle of this model the processors
issue Rj requests for addresses located in the cells of module j, 0 ≤ j < m.
Let Rmax = max{Rj|0 ≤ j < m}. Then the requests for each module are
queued in some order and satisfied one at a time. So a cycle takes Rmax

time. The authors assume that immediately after the simulation of a cycle
is finished, every processor knows it.

Similarly, Gibbons et al. [44] presented the queue-read, queue-write
(QRQW) PRAM model, which permit concurrent reading and writing, but
at a cost proportional to the number of readers/writers to a memory loca-
tion in a given step.

The QRQW PRAM model consists of a number of processors, each with
its own private memory, communicating by reading and writing locations
in a shared memory. Processors execute a sequence of synchronous steps,
each consisting of three phases for each processor i: read ri, compute ci, and
write wi. Concurrent reads and writes to the same locations are permitted
in a step. In the case of multiple writers to a location x, an arbitrary
write to x succeeds in writing the value present in x at the end of the
step. Consider a QRQW PRAM step with maximum contention k, and
let m = max{ri, ci, wi} for the step. Then the time cost for the step is
max{m, k}, and the time for an algorithm is the sum of its step.

These models seem to properly describe some features of GPUs. Specif-
ically, the models correctly charge the cost of the computation with the
time spent by a bank of memory in order to resolve conflicts accessing the
on-chip shared memory. Clearly this is only one of the key features I want
capture for GPUs and Cell BE.

BPRAM. Aggarwal et al. [45] define a Block PRAM with two param-
eters p, ` as follows. There are p processors each with a local memory of
unbounded size. In addition, there is a global memory of unbounded size.
A processor may access a word from its local memory in unit time. It may
also read a block of contiguous locations from global memory, and it may
write a block into contiguous locations of the global memory. Such an oper-
ation takes time `+ b where b is the length of the block, and ` is the startup
time or the latency, and it is a parameter of the machine. Any number
of processors may access the global memory simultaneously, but in an ex-
clusive read/write fashion. In other words, blocks that are being accessed
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simultaneously cannot overlap; concurrent requests for overlapping blocks
are serviced in some arbitrary order. The input initially resides in global
memory, and the output must also be stored there.

Raising from the merging of PRAM and HMM-BT also this model seem
to be not able to define on aspects of our set of architectures. First of
all, memory of unbounded size assumption does not conform our set of
architectures. Moreover, the approach on the cost for accessing the memory
do not reflect the effective time spent in real cases of study as the test result
reported in Figure 2.3 shows.

HPRAM. The Hierarchical PRAM model, proposed by Heywood et al. [46],
consists of a dynamically configurable hierarchy of synchronous PRAMs, or
equivalently, a collection of individual synchronous PRAMs that operate
asynchronously from each other. A hierarchy relation defines the organiza-
tion of synchronization between independent PRAMs. The set of allowable
instructions are any PRAM-instruction and the partition-instruction. The
partition-instruction adds a controlled form of asynchrony to the model.
Specifically, a partition-step in an algorithm splits the set of processors into
disjoint subsets and assigns a synchronous PRAM algorithm to execute on
each of them. Each subset of processors is a synchronous PRAM operating
separately from the others.

The latency `(P ) and the synchronization cost s(P ) are functions of the
number P of processors being communicated amongst and synchronized.
The latency `(P ) has traditionally been correlated with the diameter dP of
the network interconnecting P processors in the architecture. The synchro-
nization cost is typically dP ≤ s(P ) ≤ dP · logP . Let T and C denote the
number of computation and communication steps, respectively, the com-
plexity of the sub-PRAM algorithm is T + C · `+ (T + C) · s(P ).

Unlikely HPRAM lacks of any consideration about a cost function for
charging the data transfers. However, the partition of processors can be a
viable method to abstract the model the pattern used to distribute data
among processors.

Distributed Memory in Parallel Model

It also exists several parallel computational models assuming a distributed
memory paradigm and the processor communicates through message pass-
ing. They are interesting for our purpose, for example, to support a hetero-
geneous machine made of CPUs and GPUs. In fact, in this kind of machine
each type of processor has its own memory, then a program have to copy
data and results between CPU’s memory and GPU’s memory. The follow-
ing models has been red in order to obtain some hints regarding a model
for a heterogeneous architecture.
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BSP & D-BSP. The Bulk-Synchronous Parallel model (BSP), proposed
by Valiant [47], is defined as the combination of three attributes: a num-
ber of components, each performing processing and/or memory functions,
a router that delivers point-to-point messages, and facilities for synchroniz-
ing all or a subset of the components at regular intervals of L time units
where L parameter specifies the periodicity. A major features of the BSP
model is that it provides to the programmer the option to avoid the ef-
fort of managing memory, assigning computation and, performing low-level
synchronization.

A BSP computation consists of a sequence of supersteps. In each super-
step, at each component is allocated a task consisting of some combination
of local computation steps, message transmissions and (implicitly) message
arrivals from other components. After each period of L time units, a global
check is made to determine whether the superstep has been completed by
all the components. If it happens, the machine proceeds to the next super-
step. Otherwise, the next period of L units is allocated to the unfinished
superstep. The synchronization mechanism can also be switched off for
any subset of the components; sequential processes that are independent
of the results of processes at other components should not be slowed down
unnecessarily.

The message transmission is accomplished by the router, which can send
and receive h messages in each superstep (shortly h-relation). The cost of
realizing such relation is assumed to be g · h+ s time units, where g can be
thought as the latency for each communication and s denotes the startup
cost. If the length of a superstep is L and g ·h� s, then L local operations
and a bL/gc-relation message pattern can be realized.

De la Torre et al. [48] proposed D-BSP that extends a BSP by adding
a collection of subset of submachines, each one composed by processors.
Furthermore, each submachine has the possibility to synchronize and to ex-
change messages among its processors. A D-BSP computation is recursively
defined as a sequence of terminal/structural metastep. The time charged
for a sequence is the sum of the times charged for its metasteps. For each
metastep is defined a submachine s, and on its end, all processors in s
synchronize.

If the metastep is terminal, each processor in the submachine s computes
its local data and exchange the results within s. The time charged is the
maximum number of local computations executed by all processors in s plus
the time occurred to realize a session of communications in s (that is an
h-relation in BSP terminology above).

Otherwise, in a structural metastep for the submachine s, for a given
set of metasteps {µi}1≤i≤r, where each µi is a metastep of an independent
machine si in s, the processors in each si behave according to µi. In this
case, the time charge is the maximum of the time of each metastep plus the
startup latency of s.

Both the models are oriented to describe in particular synchronization
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aspects. Nevertheless, BSP is not able to capture submachine locality, and
charges all processors as the busiest one, so for some algorithms, this exag-
gerates the total amount of data exchanged and overestimate the runtime.
For example, in GPUs case, a stream element that ends its computation is
immediately replaced with a new one, without synchronizations with others
kernel-processor. Furthermore the communications for the next stream el-
ement can happen concurrently with the unfinished computation of others
processors.

LogP. Culler et al. [49] developed a model of distributed-memory multi-
processor architecture in which processors communicate by point-to-point
messages. The model, called LogP, specifies the performance characteristics
of the interconnection network, but does not describe the structure of the
network.

The main parameters of the model are: L, an upper bound on the la-
tency incurred in communicating a message from its source module to its
target module; o, the overhead, defined as the length of time that a pro-
cessor is engaged in the transmission or reception of each message; during
this time, the processor cannot perform other operations; g, the gap, de-
fined as the minimum time elapsed between two consecutive message trans-
missions/receptions for a processor; P , the number of processor/memory
modules.

Furthermore, it is assumed that the network has a finite capacity, such
that at most dL/ge messages can be in transit from any processor or to
any processor at any time. If a processor attempts to transmit a message
that would exceed this limit, it stalls until the message can be sent without
exceeding the capacity limit.

The model is asynchronous, so the processors work asynchronously and
the latency of any message is unpredictable, but is bounded above by L in
the absence of stalls. Because of variations in latency, the messages directed
to a given target module may not arrive in the same order as they are sent.
In analyzing an algorithm, the key metrics are the maximum time and the
maximum space used by any processor. In order to be considered correct,
an algorithm must produce correct results without stalls. In estimating the
running time of an algorithm, this constraint is assumed satisfied.

This model is built for point-to-point type of messages. This type of
communication is not exploitable because it is contradictory with the char-
acteristics of the streaming programming model. Specifically, each element
is ran only once locally to the kernel-processor. Moreover, inherently to
GPUs, each the order followed to execute all elements in the stream is not
known a priori, so it is not possible to know if a kernel is already elapsed
or not.
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Memory Hierarchy in Parallel Model

There are several distributed memory models that incorporate the memory
hierarchy into the analysis of parallel computational models. This is due to
the different gap of speed that exist considering processor and memory.

P-HMM & P-BT. The P-HMM and P-BT are two hierarchical memory
models augmented to allow parallel data transfer. Specifically, each memory
component is connected to P larger and slower memory components at the
next level. The extension adopted in their paper is to have P separate
memories connected together at the base level of each hierarchy. They
assume that the P base memory level locations are interconnected via a
network.

Vitter et al. [50, 51] provide optimal algorithms for different problems
in terms of the number of input/outputs (I/Os) required between internal
memory and secondary storage. Their two-level memory model gave a real-
istic treatment of parallel block transfer, in which during a single I/O each
of the P secondary storage devices (disks) can simultaneously transfer a
contiguous block of B records. To be realistic, the model requires that each
block transfer must access a separate secondary storage device.

Parallelism appears in this model in two basic ways: records are trans-
ferred concurrently in blocks of contiguous records, in this case the seek time
is a dominant factor in I/O; the second type of parallelism arises because
P blocks can be transferred in a single I/O.

LogP-HMM. From an examination of existing models, Li et al. [52] ob-
served that a void exists in parallel models that accurately treat both net-
work communication and multilevel memory. The authors proposed LogP-
HMM model to fill this gap by combining two kinds of models together, and
by adding more resource metrics into either model.

The resulting model consists of two parts: the network part and the
memory part. The network part can be any of the parallel models such
as BSP and LogP, while the memory part can be any of the sequential
hierarchical memory models such as HMM and UMH.

A LogP-HMM machine consists of a set of asynchronously executing
processors, each with an unlimited local memory. The local memory is
organized as a sequence of layers with increasing size, where the size of
layer i is 2i. Each memory location can be accessed randomly; the cost of
accessing a memory location at address x is an access cost function f(x),
usually log x. The processors are connected by a LogP network at level 0. In
other words, the four LogP parameters, L, o, g and P , are used to describe
the interconnection network. A further assumption is that the network has
a finite capacity such that at any time at most, bL/gc messages can be in
transit from or to any processor.
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From the authors we take the hint to approach our modelling problem
by extending an existing parallel model with others. In such way we can
cope the lacks of the different existing models by exploiting the results
achieved by other authors. It remain the effort to formalize additional
resource metrics into either model involved.

UPMH. Alpern et al. [53] introduced the Uniform Memory Hierarchy
(UMH) model to capture performance relevant aspects of the hierarchical
nature of computer memory. A sequential computers memory is modelled
by the authors as a sequence 〈M0,M1, . . .〉 of increasingly large memory
modules that defines a memory hierarchy MHσ. Computation takes place
in M0, so as to M0 can model a computers central processor, while M1 might
be cache memory, M2 main memory, and so on.

A memory module Mu is a triple 〈su, nu, lu〉. Intuitively, Mu holds nu
blocks, each consisting of su data items. The bus Bu copies atomically a
block to or from level-u+ 1 in lu cycles. All buses may be active simultane-
ously. The transfer costs of buses in a UMH are given by a function f(u)
giving the transfer cost in cycles per item of Bu.

The authors also give the notion of communication efficiency of a pro-
gram. It is the ratio of its RAM complexity to its UMH complexity in
term of the problem size. A program is said to be communication-efficient
if it is bounded below by a positive constant. Otherwise, the program is
communication-bound.

In the same paper, the authors parallelized the UMH model to handle
parallelism. A module of the Parallel Memory Hierarchy (PMH) model can
be connected to more than one module at the level below in the hierarchy,
giving rise to a tree of modules with processors at the leaves. Finally,
between two levels of the tree, the model allows point-to-point and broadcast
communications.

Formally, a Uniform Parallel Memory Hierarchy, UPMHα,ρ,f(u),τ is a
PMH forming a uniform τ -tree of 〈ρu, αρu, ρuf(u)〉 memory modules defined
for UMH model.

This model introduced by the authors is suitable to formalize the systems
we are interested. Tree representation of the system is sufficiently flexible
to well-describe more than one kind of architecture, and the different levels
of memory. Unlikely the model needs to be specialized, hopefully merging
on the leaves not simple processor but other models better representing the
type of processor the architecture is provided.

DRAM. The RAM(h, k) [54] model is a computational model with take
into particular consideration the instruction level parallelism (k ways) and
memory hierarchy (h levels). The authors argued that the complexity anal-
ysis of algorithms should include traditional computation complexity (time
and space complexity) and new memory access complexity to reflect the
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different memory access behavior on memory hierarchy of different imple-
mentations.

Unlike the UMH model that gives a detailed architectural model and
scheduling of data transfer, RAM(h, k) accounts for the different memory
hierarchy level by their different real measurable memory access cost under
different memory access patterns of an algorithm including temporal and
spatial locality.

The computer is modeled as one RAM with different memory access
cost on each level under different memory access patterns. In RAM(h, k),
the traditional RAM model with one level unit access cost memory and
single operation per cycle processing unit was extended to the RAM(h, k)
model which has non-uniform access cost h-level memory hierarchies and k
concurrent operations per cycle processing unit.

DRAM(h, k) consists of p independent RAM(h, k) processors each with
its own local memory, and it can be viewed as the combination of the
RAM(h, k) and LogP models.

Network-Oblivious. Biliardi et al. [55] introduced the network-oblivious
algorithm A for a given computational problem Π. Let n be a suitable
function of the input size for Π, a network-oblivious algorithm A for Π
is designed for a complete network M(n) of n Processing Elements (PEs),
PE0, . . . , PEn−1, each consisting of a CPU and an unbounded local memory.
A consists of a sequence of steps labeled in the [0, log n) range.

For 0 ≤ i < log n and 0 ≤ j < n, in an i-step, PEj can perform
operations on locally held data, and send data only to any PEk whose
index k has the same i most significant bits of the index j.

In order to analyze As communication complexity on different machines,
the authors introduce the machine model M(p,B), where the parameters p
and B are positive integers. M(p,B) is essentially an M(p) with a commu-
nication cost function parametrized by the block size B.

Furthermore, the authors introduce the definition of optimality. Let
communication complexity of an algorithm be the sum for all steps of the
maximum number of blocks sent/received by a single PE in one step, a
network-oblivious algorithmA for a problem Π is optimal if, for any instance
of size n and for every p ≤ n and B ≥ 1, the execution of A on an M(p,B)
machine yields an algorithm with asymptotically minimum communication
complexity among all algorithms for Π on M(p,B).

2.3 Web Search Engines

A Web Search Engine (WSE) is designed to give the access to information on
the Web. WSEs work by storing information about many web pages. These
pages are retrieved by a Web crawler, which is an automated browser used
as a mean for providing up-to-date data. Web crawlers are mainly used to
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create a copy of all the visited pages for later processing by a search engine
that will index the downloaded pages. Data about web pages are stored in
an index database for use in later queries. A query can be a single word.
The purpose of an index is to allow information to be found as quickly as
possible.

This chapter focuses a possible group of services that require an higher
computing power, thus that can be usefully executed on novel architectures.
For each service the relative subsection gives a briefly introduction to the
problem, and points out how the new architectures could impact. In this
phase we investigate how to parallelize common solutions at-the-state-of-
the-art, and we propose the use of alternative solutions that could give
better effective results in exchange of an higher computational load.

2.3.1 Infrastructure Overview

For redundancy and fault tolerance, large search engines operate multiple,
geographically distributed datacenters. Within a datacenter, services are
built up from clusters of commodity PCs. The type of PC in these clus-
ters depends upon price, CPU speed, memory and disk size, heat output,
reliability, and physical size [6]. The total number of servers for the largest
engines is now reported to be in the hundreds of thousands.

Within a datacenter, clusters or individual servers can be dedicated to
specialized functions, such as crawling, indexing, query processing, snip-
pet generation, link-graph computations, result caching, and insertion of
advertising content.

Large-scale replication is required to handle the necessary throughput.
For example, if a particular set of hardware can answer a query every 500
milliseconds, then the search engine company must replicate that hardware a
thousandfold to achieve throughput of 2000 queries per second. Distributing
the load among replicated clusters requires high-throughput, high-reliability
network front ends.

Currently, the amount of Web data that search engines crawl and index
is on the order of 400 terabytes, placing heavy loads on server and network
infrastructure. Allowing for overheads, a full crawl would saturate a 10-
Gbps network link for more than 10 days. Index structures for this volume
of data could reach 100 terabytes, leading to major challenges in maintaining
index consistency across datacenters. Copying a full set of indexes from one
datacenter to another over a second 10-gigabit link takes more than a day.

2.3.2 Crawling

The aim of a Web crawler is exploring the Web. It is a computerized “robot”
that connects to responding computer systems, follows links to documents,
and compiles an index of those links and the information available via the
links. But due to the huge volume of Web pages and limitations of hardware,
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a search engine can only fetch a fraction of the Web. Therefore, which pages
should be downloaded first is crucial. Usually this problem may take many
factors into consideration. No doubt that the quality of the downloaded
page set is one of the most important factors. In common sense, people
always prefer to download the most important pages first.

For example, when a Web crawler prepares to download a page set, it
starts with an initial set of seeds. Then all the URLs that are parsed from
the seed pages are added into the URL waiting list for further visit. A main
problem is how to choose the pages that should be visited next. This is so-
called crawling ordering strategy. There are several representative crawling
ordering strategies [56] such as Breadth-First (BF), Backlink-Count (BC),
Batch-Pagerank (BPR) and Larger-Sites-First (LSF).

BF method selects page according to the order of the URL in the list.
This method is very easy to implement and can work effectively in most
situations. BC always visits the page with the most backlink count first,
that is to say, the number of backlink is the metric of page quality.

BPR uses the Web graph of pages that have been downloaded so far to
compute the Pagerank values of pages in the list, and then chooses the page
with the highest score for further visit. This is a time consuming process
although it sounds good in discovering high quality pages. LSF is mainly
based on the assumption that a large-scale site may have a high possibility
of high quality.

From the results obtained by Baeza-Yates, the strategies BPR and LSF
have better performance than the other strategies. However, it prejudices
small sites and the definition of “large” can be difficult [57]. Thus LSF
has better scalability making it more suitable for large scale distributed
crawlers. In a real setting, this strategy should include mechanisms to
avoid spam pages, for example to check for near-duplicate pages to avoid
giving high rank to sites that create artificial loops on themselves.

These last considerations can lead to prefer BRP to LSF, if we are able
to bound the hard computational load imposed by the method.

2.3.3 Indexing

Each crawled document is converted into a set of word occurrences called
hits. For each word the hits record: frequency, position in document, and
some other information.

Indexing can also be considered as a “sort” operation on a set of records
representing term occurrences [1]. Records represent distinct occurrences of
each term in each distinct document. Sorting efficiently these records using
a good balance of memory and disk usage, is a very challenging operation.
In the last years it has been shown that sort-based approaches [58], or single-
pass algorithms [59], are efficient in several scenarios, where indexing of a
large amount of data is performed with limited resources.

Sort-based approach first makes a pass through the collection assembling
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all term-docID pairs. It then sorts the pairs with the term as the dominant
key and docID as the secondary key. Finally, it organizes the docIDs for
each term into a postings list (it also computes statistics like term and
document frequency). For small collections, all this can be done in memory.

With main memory insufficient, we need to use an external sorting algo-
rithm [60]. For acceptable speed, the main requirement of such algorithm
is that it minimizes the number of random disk seeks during sorting. One
solution is the Blocked Sort-Based Indexing algorithm (BSBI). BSBI seg-
ments the collection into parts of equal size, then it sorts the termID-docID
pairs of each part in memory, finally stores intermediate sorted results on
disk. When all segments are sorted, it merges all intermediate results into
the final index.

A more scalable alternative is Single-Pass In-Memory Indexing (SPIMI).
SPIMI uses terms instead of termIDs, writes each block’s dictionary to disk,
and then starts a new dictionary for the next block. SPIMI can index
collections of any size as long as there is enough disk space available. The
algorithm parses documents and turns them into a stream of term-docID
pairs, called tokens. Tokens are then processed one by one.

For each token, SPIMI adds a posting directly to its postings list. Instead
of first collecting all termID-docID pairs and then sorting them (as BSBI
does), each postings list is dynamic. This means that its size is adjusted as
it grows. This has two advantages: it is faster because there is no sorting
required, and it saves memory because it keeps track of the term a postings
list belongs to, so the termIDs of postings need not be stored.

When memory has been exhausted, we write the index of the block
(which consists of the dictionary and the postings lists) to disk. Before
doing this, SPIMI sorts the terms to facilitate the final merging step: if
each block’s postings lists were written in unsorted order, merging blocks
could not be accomplished by a simple linear scan through each block. The
last step of SPIMI is then to merge the blocks into the final inverted index.

SPIMI, which time complexity is lower because no sorting of tokens is
required, is usually preferred with respect to BSBI that has higher time
complexity.

2.3.4 Query Processing

WSEs are facing formidable performance challenges as they need to process
thousands of queries per second over billions of documents. To deal with
this heavy workload, current engines use massively parallel architectures of
thousands of machines that require large hardware investments.

At the state of the art in query processing on GPUs, we are aware only
of the writing of Ding et al. [61]. They investigated new ways to build
such high performance IR systems based on GPUs. Their contribution was
to design a basic system architecture for GPU-based high performance IR,
and to describe how to perform highly efficient query processing within such
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architecture. Preliminary experimental results based on a prototype imple-
mentation suggest that significant gains in query processing performance
might be obtainable with such an approach.

Modern WSEs use ranking functions based on many features (for ex-
ample Pagerank) that are combined into an overall scoring function using
machine-learning techniques. So query processing is typically divided into
two phases: an initial one uses a fairly simple ranking function, such as
BM25 together with some global document score such as Pagerank, to se-
lect a set of candidate documents; in the second phase, the machine-learned
scoring function is applied to only these candidates to select top results.

Specifically, using the Rice-coding the authors apply parallel prefix-sum
to bit array in order to retrieve the most significant part of the “gap”. A
bit-grained array probably implies that each GPUs core has to accesses to
the same word during the parallel prefix-sum. Specifically one memory bank
having to satisfy the more than one request, has serialized them augmenting
the total computational time.

Applying PForDelta, the authors use globally three arrays to store the
gaps. Proposed solution recursively uses PForDelta to code lowest bits
of each gap, and the offset of each exception. However from the article
it is not clear how the eventual exceptions in the most inner PForDelta
encoding are managed. The decompression phase, in this case is charged not
only for conflicts on the on-chip memory, but also for the double decoding
phase and eventually for the exceptions. Also from the results presented,
decompression speed on CPUs and GPUs put in evidence similar level of
performance (see Table 2.1).

Algorithm CPU GPU

Rice 310.63 305.27
PForDelta 1165.13 1237.57

Table 2.1: Decompression speed on CPU and GPU in millions of integer
per second.

For the reasons wrote above, we believe it can exist a margin for im-
provements that can be reached by taking into account that the GPU’s
“core” has a behavior similar to the QWQR PRAM.

Moreover, in the same paper, the presentation of the approach to the
TAAT method lacks of particular. So it is not possible make deep con-
sideration about possible improvements. It could be useful, also for DAAT
approach, deeply investigate on method for computing top-k results. About
this operation we are aware of previous works: Neumann et al. [62] in-
troduced novel optimization methods for top-k aggregation queries in dis-
tributed environments. This optimization proposed computes data-adaptive
scans for different input sources on a tree structure. Furthermore, TPUT
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[63] and KLEE [64] methods have to be evaluated for their implementation
on GPUs.

2.3.5 Postings List Compression

Encoding lists of integers effciently is important for many applications in
different fields. Inverted indexes of WSEs keep the lists of postings com-
pressed in order to exploit the memory hierarchy. In this subsection we
show two of the most interesting solution for this problem: the Vector of
Splits Encoding and PForDelta (mentioned in the previous subsection).

In [65] the authors present Vector of Split Encoding, hereinafter VS,
a novel class of encoders designed to efficiently represent lists of integers.
The method works by splitting the list in variable-length blocks and by
encoding any integer in each block by using a fixed number of bits (namely,
the number of bits required to represent the largest integer of the block).
VS optimally partitions the lists in blocks via dynamic programming.

PForDelta [66], hereinafter P4D, encodes lists of k consecutive integers.
The method firstly finds the smallest b such that most (e.g. ∼ 90%) of
the integers in the list are ≤ 2b . Then, it encodes them by storing each
integer as a b-bit entry. Each entry is then packed within a of k · b bits,
with k usually equal to a multiple of the word size so as to obtain word
aligned blocks. Those integers that do not fit within b bits are treated
as exceptions and stored differently. For example by storing the part of a
binary representation that exceeds the b bits into a separate array with a
reference to the position of the related block element. Each exceptions is
then concatenated to the original codeword during the decoding phase.
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CHAPTER 3

K-model

Nowadays computing architectures exploiting “manycores” processors are
available. As discussed in Section 2.1, Graphics Processing Units, Sony’s
Cell/BE processor, and next-generation CPUs are able to compute hundreds
of arithmetic and logical operations at the same time. The key feature of
all these architectures is the use of a massive collection of SIMD comput-
ing cores integrated in a single silicon chip. The computational elements of
such cores share a small on-chip data-memory. Furthermore, all the SIMD
processors are connected to a global off-chip memory. Such novel many-
core processors are programmable accelerators classified as high-parallel
shared-memory architectures capable of performing high performance com-
putations. An important aspect is that as processor building technology
advances, GPUs and CPUs differently exploit the number of available ad-
ditional transistors. GPUs are specialized for compute-intensive computa-
tions, and therefore designed to devote more transistors to data process-
ing rather than data caching and flow control. As a result, the parallelism
adopted by GPUs is devoted to roughly augment the number of arithmetical
operations issued at the same time, and the bandwidth of the communica-
tion channels. On the other hand, CPUs offer more flexible programming
models and techniques making CPU programming a task easier than GPUs
programming. Furthermore, related to SIMD processors, there is the stream
programming model, see Section 2.1.2. Briefly, according to such program-
ming model, a stream program organizes data as a stream and expresses all
computations as kernel. A stream is a homogeneous sequence of elements
composed by a subset of the input dataset which are, in turn, computed
independently. A kernel consumes a set of input streams, performs a com-
putation, and produces a set of output streams. Streams passing among
multiple computation kernels form a stream program.

As discussed in Section 2.2 many computing models have been proposed
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in the past to analyze sequential and parallel algorithms. For different rea-
sons these models are not able to accomplish our purposes. For instance,
their target architectures are too different from manycores, or the level at
which they abstract the architecture is too high, they tend to do not con-
sider important aspects of computations. As an example, the widely known
PRAM model [4] can be considered a unifying parallel paradigm. However,
it is far from being accurate: for example it does not consider the “cost” of
addressing the different levels of the real memory hierarchy that, instead,
has a great impact on performance. Despite the last consideration, PRAM
has been applied to some recently proposed GPU algorithms [67]. Indeed,
as we describe in this section, experimental results contradict theoretical
results that are not done using a computational model specifically designed
for GPUs. As a consequence, we aim to define a computational model able
to capture the architectural features described in detail in Section 2.1 and
summarized in the following:

• serial control. Due to the SIMD nature of these architectures, algo-
rithm designers have to face the serial control programming effort.
On the one hand this architectural solution permits to multiply the
FLOPS of the processors for a small chip area. On the other hand
to reach the peak of performance we must synchronize the instruc-
tion flows performed by the computational elements related the same
instruction unit.

• internal memory. The SIMD processors considered in Section 2.1
comprises one instruction unit, a collection of single precision pipelines
executing scalar instructions, and a local shared data-memory. This
memory is divided into independent modules, which can be accessed
simultaneously. If two addresses of a memory request fall in the same
module, there is a conflict, thus the accesses have to be serialized,
penalizing the latency of the overall units of the multiprocessors (MP).

• external memory. Finally, the architecture is equipped with its own
external memory that is off-chip, and can be addressed by each MP
during a computation. The latency spent to complete each data trans-
fer depends on the number of memory transactions issued to access
to the different memory segments addressed.

Eventually, Table 3.1 resumes the main computing models analyzed in
the previous section to resumes what models can be exploited to properly
summarize the target peculiarities. Since none of these models is able to
cover all aspects, we properly define a new one. In [68] we propose K-model,
a computational model developed to capture all the features of GPUs, and
alike architectures. In the K-model, an algorithm is evaluated by measuring
the time complexity and the computational complexity. The former is the
latency of each instruction an algorithm calls, summed over all the instruc-
tions called. The computational complexity, instead, can be thought as the



3.1. Definition PAGE 35

classical sequential complexity assuming we are simulating the execution of
the algorithm on a serial RAM. To the best of our knowledge K-model is
the first paper attempting to propose a computational model specifically
targeting manycores.

serial control internal memory external memory

(P)RAM[34, 4] – – –
V-RAM[69] Yes – –
(P)HMM[35] – – –
(P)BT[36] – – Yes
QRQW[44] – Yes –
BSP[47] Yes – –
UPMH[53] – – Yes
Cache Oblivious[39] – – Yes

Table 3.1: Matching between computational models and architectural fea-
tures. If ‘Yes’ the model in the corresponding row represents properly the
feature in the corresponding column.

3.1 Definition

K-model [68] is designed to have an abstract machine able to capture the key
features observed in the novel generation of processing units. This class of
processors is specialized for compute-intensive, highly parallel computation,
exactly what graphics rendering is about, therefore more transistors are
devoted to data processing rather than data caching and flow control.

Due to the homogeneity of available processors and the unpredictability
with which a stream element is assigned to a processor, the abstract machine
referred in the K-model appears simplified w.r.t. the real architecture. In
fact real devices are in general composed of an array of SIMD processors so
as to improve the overall scalability of the architecture when their number
grows. On the contrary, k-model restricts the processors array to only
one. This because the benefit of having more SIMD processors on the real
architectures does not concern the design of the algorithm which should aim
at the effective computation of the single stream element. In other words,
the core of the K-model is the evaluation of the “parallel-work” performed
on each stream element by one SIMD processor, disregarding the number
of real processors.

Before discussing the notion of complexity, we introduce the K-model
to study the complexity of algorithms. This model, which is illustrated in
Figure 3.1, consists of a computer with an array of k scalar execution units
(E[1..k]) linked to a unique instruction unit (IU ) which provides to dispatch
the instructions to the scalar units. This forces the work of the scalar units
to be synchronized, because only one instruction is issued at each step.
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The memory hierarchy consists of an external memory and a local mem-
ory made of a set of local registers, and a internal memory of σ locations
equally divided into k parallel modules (also referred as banks).

The evaluation of an instruction issued by IU in the different execution
paths composing the whole instruction flow of the kernel is based on two
criteria: latency and length. Length is simply the number of units involved
in the execution of an instruction issued by the IU , then it will be in the
range [1..k]. Latency, instead, is measured in terms of the type of instruction
issued.

IU

E[k]

internal
memory

Q[1]

Q[k]

external
memory

E[1]

σ/k

Program

local registers

bank

Figure 3.1: K-model architecture schema.

The K-model evaluates the latency of the arithmetical instructions has
a cost equal to 1. Instead, the time required to perform a data-access in-
struction is evaluated proportionally to the level of contention it generates.
Whenever an instruction addresses the internal memory with no bank con-
flict or a register, the latency of the instruction equals 1. Otherwise, the la-
tency of a data-access instruction is equal to the highest number of requests
incoming to one of the k memory banks. In fact, whenever the IU issues an
instruction accessing the internal memory (at most) k requests performed by
the execution units E[1..k] are collected by the queues Q[1..k], each of them
managing its connected memory module. In order to provide the contents
of memory locations requested, the memory modules work independently
by returning the data once at a time. As a consequence, because all the
accesses have the same latency and because the next instruction will be
issued only when all requests are satisfied, the time required to completely
perform an instruction accessing the internal memory is equal to the size of
the queue that has collected more requests: max{ |Q[i]| }∀i∈[1..k].

However, the evaluation of the “internal work” induced by a stream
element is not the unique purpose of K-model. A relevant aspect to take into
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consideration is the pattern used to access the external memory in order to
fetch the input data and then to flush the results. Since the cost of accessing
the external memory is one order of magnitude higher than the other type of
data-accesses, and due to the parallelism among the instructions performed
on the local memory and the access to the external one, we separately
measure the number of memory transactions issued to access to the external
memory. This measure aims at taking into account coalescing-degree of the
memory accesses requested by the k scalar processors. In particular, the
aspect to take into account in this type of evaluation is not the amount of
data transfered, but the number of memory transactions. Independently
of the number of external memory locations addressed, the latency of the
transfer is defined by the time required to perform of such transaction. Thus,
to increase the data transfer efficiency we have to organize the accesses so as
to request the locations lying in the same k-size segment in same transaction
(or in the least number of them).

3.1.1 Performance Indicators

Concerning the architecture previously described, we denote the time re-
quired to perform any given algorithm by defining two performance indica-
tors, namely T () and G(). The first one, T (), evaluates the work performed
inside the processor and is function of latency of the instructions previously
defined. Instead, G() aims at taking into account external memory accesses
by measuring the number of memory transactions issued to access to the
external data.

Moreover, a further indicator has been defined to evaluate the efficiency
of a algorithm in term of the computational elements E[ ] usage-degree. On
the one hand, T () represents the latency per instruction call, summed over
the instructions issued, and, on the other one, W () is the length induced by
each instruction, summed over the instructions issued.

Note that T () can be thought as the parallel complexity of the algorithm
assuming a collection of k scalar processors, whereas W () can be thought as
the serial complexity, assuming we are simulating the execution on a serial
RAM [34]. Generally, we are interested in the minimization of T (), so as to
obtain faster execution; W (), instead, is more relevant during the efficiency
analysis of the solution we are evaluating. For example, considering the
value of W () over k · T () ratio gives us the level of exploitation of the
architecture performing the computation of a stream element: values closer
to 1 are indicative of a good efficiency.

Eventually, in order to evaluate an algorithm in the K-model, we have to
evaluate the stream to compute by multiplying the complexities of a generic
stream element by the stream size. Whenever the algorithm is made of more
kernels, the whole complexity is defined as the sum over the complexities of
the different kernels.

The schema concerning to the internal-work has also a graphic interpre-
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tation that can clarify the intention of K-model. In fact, we can consider
each instruction as a bin of an histogram that represents the entire kernel
execution on a stream element. Concerning each bin, its height is propor-
tional to the length of the instruction as previously described; its width,
instead, is proportionally to the related instruction latency. In this point of
view, the function T () is denoted by the final width of the histogram and
efficiency is given by the ratio computed by dividing the area of histogram,
i.e. W () function over the area of the rectangle which base equals T () and
height equals k. Therefore, efficiency can be evaluated as W ()/[k · T ()].

Example. Let us consider the following instantiation of the näıve par-
allel algorithm to sum a list of elements. Given k = 4 scalar execution
units, compute the sum of the elements of an array x of n = 2k entries.
Algorithm 1 is a sequence of log n instructions: (r) represents the opera-
tion of reading data, (+) represents the scalar add, and (w) represents the
write-back operation.

Algorithm 1 Näıve parallel algorithm to sum a list of elements.

1: For d = 0 To log n− 1 Do
2: For k = 0 To n− 1 Step 2d+1 Parallel Do
3: a← x[k + 2d+1 − 1], b← x[k + 2d − 1]; // (r)

4: a← a+ b; // (+)

5: x[k + 2d+1 − 1]← a; // (w)

6: End Parallel Do
7: End Do
8: Return x[n− 1];

In Figure 3.2, the time and computational complexities are represented.
Each bin has a width equal to the latency of the relative operation. For
example the smaller width of the (+) bars with respect to the (r) ones states
that (+) has a shorter duration than (r). In particular, (r) operations have
latency equal to 2 because in during the related steps at least one queue
of Q[1..k] has collected 2 distinct accesses. The height of each bar is equal
to the number of units performing the current instruction. Obviously, since
the approach exploits a tree-based computation schema, at each iteration
the number of elements to sum halves as the number of involved units.

The case above is toy example, however reduction like that often occurs
as building block in many algorithms. The example is particularly useful
to show the mean of T (n, k) performance indicator. Let us briefly compute
their formulas. Algorithm 1 is composed of log n steps and the latency
of every one is ≥ k due to the data access pattern used to address the
internal memory. In fact, the näıve implementation leads to concentrate
the load/store requests on a subset of queues Q[ ] and, as a consequence,
the execution of the corresponding instruction requires more time. In this
particular case we can conclude that T (n, k) = k · log n. The main aspect
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Figure 3.2: Temporal behavior of the parallel sum näıve implementation.

to observe is that, using a näıve approach, we waste k parallel couple of
modules, i.e. (E[i], Q[i]) ∀i∈[1..k], at each step. In practice, performing each
step in k time units, in most cases sequential architecture performs better
than the parallel one and it cannot be observed adopting a not-properly-
defined model. To complete the example we also compute the last two
remaining performance indicators. As defined above, W (n) is related to
the RAM complexity and it corresponds to O(n). Concerning G(n, k) and
by assuming the n values are sequentially stored in the external memory,
n/k = 2k/k = 2 memory transactions are performed to get the input values
into the internal memory and 1 further transaction whenever the sum has
to be copied back to the external memory. In this case, the study of G()
is not particularly interesting so it losses some of its significance. However
in the next case study (Section 3.2) is shown as it is fundamental in more
complex algorithm.

3.2 Case Study: Sorting

In [70] we digress from the motivation of sorting efficiently a large amount of
data on modern GPUs to propose a novel sorting solution that is able to sort
in-place an array of integers. In fact, sorting is a core problem in computer
science that has been extensively researched over the last five decades, yet
it still remains a bottleneck in many applications involving large volumes of
data. Furthermore, sorting constitutes a basic building block for Large Scale
Distributed Systems for IR. First of all, as we show in Section 2.3.3, sorting
is the basic operation for indexing. Large scale indexing, thus, required
scalable sorting. Second, the technique we are introducing here is viable for
Distributed Systems for IR since it is designed to run on GPUs that are
considered as a basic building block for future generation data-centers [71].
Our bitonic sorting network can be seen as a viable alternative for sorting
large amounts of data on GPUs.

During our research we studied a new function to map Bitonic Sorting
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Network (BSN) on GPU exploiting its high bandwidth memory interface.
We also present this novel data partitioning schema that improves GPU ex-
ploitation and maximizes the bandwidth with which the data is transferred
between on-chip and off-chip memories. It is worth noticing that being an
in-place sorting based on bitonic networks our solution uses less memory
than non in-place ones (e.g. [67] and [72]), and allows larger datasets to
be processed. Space complexity is an important aspect when sorting large
volume of data, as it is required by large-scale distributed system for infor-
mation retrieval (LSDS-IR).

To design our sorting algorithm in the stream programming model, we
started from the popular BSN, and we extend it to adapt to our target
architecture. Bitonic sort is one of the fastest sorting networks [73]. Due to
its large exploitation bitonic sorting is one of the earliest parallel sorting al-
gorithms proposed in literature [73]. It has been used in many applications.
Examples are the divide-and-conquer strategy used in the computation of
the Fast Fourier Transform [74], WebIR [40, 75], and some new multicasting
network [76].

The main contributions described in this section are the following:

• We perform a detailed experimental evaluation of state-of-the-art tech-
niques on GPU sorting and we compare them on different datasets of
different size and we show the benefits of adopting in-place sorting
solutions on large datasets.

• Taking into account the performance constraints of our novel compu-
tational model [68], we design a method to improve the performance
(both theoretical and empirical) of sorting using butterfly networks
(like bitonic sorting). Our theoretical evaluation, and the experiments
conducted, show that following the guidelines of the method proposed
improve the performance of bitonic sorting also outperforming other
algorithms.

This section is organized as follows. Section 3.2.1 discusses related works
inherent sorting. Section 3.2.2 describes the new function to map BSN
on GPU we propose. Section 3.2.3 and Section 3.2.4 presents the results
obtained in testing the different solutions on synthetic and real dataset.
Section 3.2.5 presents the conclusions and discusses how to evolve in this
research activity.

3.2.1 Related Work

In the past, many authors presented bitonic sorting networks on GPUs [77],
but the hardware they use belongs to previous generations of GPUs, which
does not offer the same level of programmability of the current ones.

Since most sorting algorithms are memory-bound, it is still a challenge
to design efficient sorting methods on GPUs.
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Purcell et al. [78] present an implementation of bitonic merge sort on
GPUs based on an original idea presented by [79]. Authors apply their
approach to sort photons into a spatial data structure providing an efficient
search mechanism for GPU-based photon mapping. Comparator stages are
entirely realized in the fragment units1, including arithmetic, logical and
texture operations. Authors report their implementation to be compute-
bound rather than bandwidth-bound, and they achieve a throughput far
below the theoretical optimum of the target architecture.

In [80, 81] it is shown an improved version of the bitonic sort as well as
an odd-even merge sort. They present an improved bitonic sort routine that
achieves a performance gain by minimizing both the number of instructions
executed in the fragment program and the number of texture operations.

Greß et al. [82] present an approach to parallel sort on stream processing
architectures based on an adaptive bitonic sorting [83]. They present an im-
plementation based on modern programmable graphics hardware showing
that they approach is competitive with common sequential sorting algo-
rithms not only from a theoretical viewpoint, but also from a practical one.
Good results are achieved by using efficient linear stream memory accesses,
and by combining the optimal time approach with algorithms.

Govindaraju et al. [84] implement sorting as the main computational
component for histogram approximation. This solution is based on the
periodic balanced sorting network method [85]. In order to achieve high
computational performance on the GPUs, they used a sorting network based
algorithm, and each stage is computed using rasterization. Later, they
presented a hybrid bitonic-radix sort that is able to sort vast quantities of
data, called GPUTeraSort [77]. This algorithm was proposed to sort record
contained in databases using a GPU. This approach uses the data and task
parallelism to perform memory-intensive and compute-intensive tasks on
GPU, while the CPU is used to perform I/O and resource management.

Cederman et al. [67] show that GPU-Quicksort is a viable sorting alter-
native. The algorithm recursively partition the sequence to be sorted with
respect to a pivot. This is done in parallel by each GPU-thread until the
entire sequence has been sorted. In each partition iteration, a new pivot
value is picked up and as a result two new subsequences are created that
can be sorted independently by each thread block. The conducted exper-
imental evaluation point out the superiority of GPU-Quicksort over other
GPU-based sorting algorithms.

Sengupta et al. [72] present a Radix-sort and a Quicksort implementation
based on segmented scan primitives. Authors presented new approaches to
implement several classic applications using this primitives, and show that
this primitives are an excellent match for a broad set of problems on parallel
hardware.

Wassenberg et al. [86] present a fast radix sorting algorithm that builds

1In addition to computational functionality, fragment units also provide an efficient
memory interface to server-side data, i.e. texture maps and frame buffer objects.
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upon a microarchitecture-aware variant of counting sort. Taking advantage
of virtual memory and making use of write-combining yields a per-pass
throughput corresponding to at least 89% of the system’s peak memory
bandwidth. It also compares favorably to the reported performance of GPU-
based algorithm when data-transfer overhead is included.

3.2.2 K-Model Oriented Solution

A sorting network is a mathematical model of a sorting algorithm that is
made up of a network of wires and comparator modules. The sequence
of comparisons thus does not depend on the order with which the data is
presented. The regularity of the schema used to compare the elements to
sort makes this kind of sorting network particularly suitable for partitioning
the elements in the stream programming fashion, as K-model requires.

In particular, BSN is based on repeatedly merging two bitonic sequences2

to form a larger bitonic sequence [87]. On each bitonic sequence the bitonic
split operation is applied. After the split operation, the input sequence is
divided into two bitonic sequences such that all the elements of one sequence
are smaller than all the elements of the second one. Each item on the
first half of the sequence, and the item in the same relative position in
the second half are compared and exchanged if needed. Shorter bitonic
sequences are obtained by recursively applying a binary merge operation
to the given bitonic sequence [73]. The recursion ends and the sequence
is sorted when the input of the merge operation is reduced to singleton
sequences. Figure 3.3 shows graphically the various stages described above.

(a) A BSN made up of Bitonic Merging Network (b) Bitonic Merging Network

Figure 3.3: (a) Structure of a BSN of size n = 8. With bm(x) we denote
bitonic merging networks of size x. The arrows indicate the monotonic
ordered sequence. (b) Butterfly structure of a bitonic merge network of size
n = 4.

The pseudo-code of a sequential BSN algorithm is shown in Algorithm 2.
Figure 3.4, instead, shows an instantiation of a fan-in 16 BSN.

2A bitonic sequence is composed of two sub-sequences, one monotonically non-
decreasing and the other monotonically non-increasing.



3.2. Case Study: Sorting PAGE 43

Algorithm 2 BitonicSort (A)

1: n← |A|
2: For s = 1 To log n Do
3: For c = s− 1 To 0 Step −1 Do
4: For r = 0 To n− 1 Do
5: If r

2c
≡ r

2s
(mod 2)∧A[r] > A[r⊕2c] Then Swap(A[r], A[r⊕2c])

6: End Do
7: End Do
8: End Do

To design our sorting algorithm in the stream programming model, we
start from the original parallel BSN formulation [73] and we extend it to
follow the K-model guidelines. In particular, the main aspect to consider is
to define an efficient schema for mapping items into stream elements. Such
mapping should be done in order to perform all the comparisons involved in
the BSN within a kernel. The structure of the network, and the constraint
of the programming model, indeed, disallow the entire computation to be
performed within one stream. Firstly, the number of elements to process
by the merging step increases constantly (as it is shown in Figure 3.3).
Furthermore, due to the unpredictability of their execution order, the model
requires the stream elements to be independently computable. This implies
that each item has to be included into at most one stream element, see
Figure 3.5. Following these constraints, the set of items would then be
partitioned (and successively mapped) into fewer but bigger parts as shown
in Figure 3.6. For example, referring to the last merging step of a BSN all the
items would be mapped into a unique part. This is clearly non admissible
since the architectural constraints limit the number of items that can be
stored (and shared) locally (i.e. the size of a stream element). In particular
in the K-model, such limit is fixed by σ that is the amount of memory
available for each stream element, see Figure 3.1.

In our solution we define different partition depending on which step of
the BSN we are. Each partitioning induces a different stream. Each stream,
in turn, needs to be computed by a specific kernel that efficiently exploits
the characteristic of the stream processor.

Since each kernel invocation implies a communication phase, such map-
ping should be done in order to reduce the communication overhead. Specif-
ically, this overhead is generated whenever a processor begins or ends the
execution of a new stream element. In those cases, the processor needs to
flush the results of the previous computation stored in the local memory,
and then to fetch the new data from the off-chip memory. Taking into
account the K-model rule, depending on the pattern used to access the ex-
ternal memory, the measure denoting the time required for such transfer
can increase up to k times and translating in an increase of up to one order
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step

Figure 3.4: Example of BSN for 16 elements. Each comparison is repre-
sented with a vertical line that link two elements, which are represented
with horizontal lines. Each step of the sort process is completed when all
comparisons involved are computed.

kernel stream

element

step

Figure 3.5: Example of a kernel stream comprising more steps of a BSN.
The subset of items composing each element must perform comparison only
inside itself.

of magnitude when measured on the real architecture.

Resuming, in order to maintain the communication overhead as small
as possible, our goals are: (i) to minimize the number of communications
between the on-chip memory and the off-chip one, (ii) to maximize the
bandwidth with which such communications are done. Interestingly, the
sequential version of the bitonic network algorithm exposes a pattern made
up of repeated comparisons. It turns out that this core set of operations
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A

step

B C

Figure 3.6: Increasing the number of steps covered by a partition, the num-
ber of items included doubles. A, B and C are partitions respectively for
local memory of 2, 4 and 8 locations.

can be then optimally reorganized in order to meet the two goals above
described.

Let us describe how a generic bitonic network sorting designed for an
array A of n = 2i items, with i ∈ N+, can be realized in K-model.

In order to avoid any synchronization, we segment the n items in such a
way each part contains all the items to perform some steps without access-
ing the items in other parts. Since the items associated with each stream
element have to be temporarily stored in the on-chip memory, the number
of items per part is bounded by the size of such memory. In the follow, we
show the relation between the number of items per part, and the number
of steps each kernel can perform. This relation emerges from the analysis
of Algorithm 2.

Briefly, to know how many steps can be included in the run of a partition,
we have to count how many distinct values the variable c can assume. First
of all, by the term step we refer to the comparisons performed in the loop
at line 4 of Algorithm 2. Furthermore, let c and s be the variables specified
in Algorithm 2, the notation steps̄, c̄ represents the step performed when
c = c̄ and s = s̄. At each step, the indexes of the two items involved in the
comparison operation are expressed as a function of the variable c.

Claim 1. Within a steps,c two elements are compared, if and only if, the
binary representation of their relative indexes differ only by the c-th bit.

Proof. By definition of bitwise ⊕ the operation r ⊕ 2c, invoked at line 5,
corresponds to flipping the c-th bit of r, in its binary representation.

The claim above gives a condition on the elements of the array A involved
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in each comparison of a step. Given an element A[r] at position r this is
compared with the one whose position is obtained by fixing all the bits in
the binary representation of r but the c-th one which is, instead, negated.
The previous claim can be extended to define what are the bits flipped to
perform the comparisons done within a generic number of consecutive steps,
namely k, called k-superstep3. This definition straightforwardly follows from
the Algorithm 2, and it is divided in two cases, specifically for k ≤ s and
k > s.

Definition 1 (Γ-sequence). Within the k-superstep starting at steps,c, with
1 ≤ k ≤ s, the sequence Γ of bit positions that Algorithm 2 flips when it
performs the comparisons is defined as follows:

Γ =

{
Γ≥ = [c, c− k) if c > k
Γ< = [s, s− k + c+ 1) ∪ [c, 0] otherwise

The sequence basically consists of the enumeration of the different values
taken by c in the k-superstep considered. It is worth being noted that the
values assigned to c in the k steps are distinct because of the initial condition
k ≤ s. Now, let us consider the behavior of the Algorithm 2 when s < k.
In particular, let us restrict to the definition of Γ in steps from step1,0

to stepk,0. Since c is bounded from above by s < k, for each considered
step c can only assume values in the range (k, 0]. Note that, in this case,
the number of steps covered by flipping the bit positions contained in the
sequence is 1

2
k(k + 1), instead of k.

Definition 2 (Γ0-sequence). The sequence Γ0 = (k, 0] corresponds to bit
positions that Algorithm 2 flips when it performs the comparisons within
the 1

2
k(k + 1) steps starting from step1,0.

To resume, given a generic element A[r], with 0 ≤ r < n, and considering
a superstep of the bitonic network, the only bits of r flipped by Algorithm 2
to identify the corresponding elements to compare with are those identified
by the sequence Γ of bit positions. Then, bit positions that do not occur in
Γ are identical for the elements compared with A[r] in such superstep. By
definition of the Γ-sequence, we can retrieve the following claim.

Claim 2. Let A[r] and A[q] be two elements of A. Given a superstep and
its Γ-sequence, A[r] and A[q] belong to the same partition if and only if
∀i /∈ Γ. r[i] = q[i], where the notation r[i] denotes the i-th bit of the binary
representation of r.

From the previous claims, we can also retrieve the size of each partition
as function of Γ.

3In the rest of the section we denote a sequence of integers by putting the greater
value on the left of the range. For example, the sequence formed by the elements in
{i|m ≤ i < M} is denoted by (M,m].
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Lemma 1. Each part is composed by 2|Γ| items.

Proof. By induction on the length of Γ. When |Γ| = 1, an item is compared
with only another one, by Claim 1. So each part is made up of 2 items. For
the inductive step, let us consider the next step in the superstep. Each of
the previous items is compared with an element not yet occurred, due to
the new value of c that implies to flip a new bit position. Since each item
forms a new pair to compare, the number of items to include in the part
doubles, namely it is 2× 2|Γ| = 2|Γ|+1.

From the above lemma, and because each partition covers all the ele-
ments of A, it follows directly that

Corollary 1. The number of parts for covering all the comparisons in the
superstep is 2logn−|Γ|.

The previous claim can be extended to define the Γ-partition procedure.

Definition 3 (Γ-partition). Given a k-superstep, the relative Γ-partition is
the set of parts P = {pi}, for 0 ≤ i < 2logn−|Γ| where each part is constructed
by means of Algorithm 3.

Algorithm 3 BuildPartition (A, n, k,Γ)
1: /* create a bit-mask corresponding to the fixed log n− k bits

whose positions are not in Γ */

2: j = 0, m = 0;
3: For b = 0 To log n− 1 Do
4: If b /∈ Γ Then m[b] = i[j], j = j + 1;
5: End Do
6: /* populate the partition using the bit-mask m defined in the

previous step */

7: For e = 0 To 2k − 1 Do
8: j = 0, r = m;
9: For b = 0 To dlog ne − 1 Do

10: If b ∈ Γ Then r[b] = e[i], i = i+ 1;
11: End Do
12: pi = pi ∪ A[r];
13: End Do

Let us show an example of how Γ-partition works.

Example. Let us consider a bitonic network at step2,2, and the k-superstep
of length k = 2. Since, c̄ ≥ k− 1, then Γ = Γ≥ = [c̄, c̄− k) = [2, 0) = [2, 1].
We firstly create for each part pi a bit-mask mi corresponding to the fixed
dlog ne − k bits whose positions are not in Γ, namely:

p0 ⇒ m0 = 0 00 0 p1 ⇒ m1 = 0 00 1 p2 ⇒ m2 = 1 00 0 p3 ⇒ m3 = 1 00 1
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Where the bold-font bits refer the bits do not occur in Γ. Now, we populate
each partition by using the relative bit-mask mi defined in the previous
step:

p0 =


0 00 0
0 01 0
0 10 0
0 11 0

p1 =


0 00 1
0 01 1
0 10 1
0 11 1

p2 =


1 00 0
1 01 0
1 10 0
1 11 0

p3 =


1 00 1
1 01 1
1 10 1
1 11 1

Now, let us make some consideration about the communication over-
head discussed above. Each time we perform a stream, the computation is
charged of the time spent to fetch all n elements divided among the different
parts, then to write them back. In order to minimize this overhead, we need
to minimize the number of streams needed to cover all the network, i.e. to
maximize the number of steps performed within each partition. Because
each Γ-sequence is made up of 2|Γ| items, see Lemma 1, and in the K-model
the data of each part has to fit in the local memory of σ locations, the
optimal size for Γ is log σ. Then, each Γ-partition forms a stream that feeds
an appropriate kernel. Due to the mapping we design, each part is modeled
as a bitonic network (see Algorithm 4). It is possible to show that such a
modeling allows to always keep the k executors active. At the same time,
the contention to access the k on-chip memory banks is balanced. Note
that, in the K-model rule, by balancing the contention the latency of the
accesses is reduced because the maximum contention is lower.

Algorithm 4 RunStreamElement (Ap,Γ)

1: For Each id ∈ [0, k − 1] Parallel Do
2: n = log2(σ)
3: For i = 0 To n− 1 Do
4: c = Γ[i]
5: For j = id To n/2− 1 Step k Do
6: p = InsAt (j, 0, c)
7: q = InsAt (j, 1, c)
8: Compare&Swap (Ap[p], Ap[q])
9: End Do

10: End Do
11: End Parallel Do

The pseudo-code in Algorithm 4 discards some side aspects, to focus
the main technique. In particular it takes a part (Ap) and the related Γ-
sequence (Γ), then performs all due comparisons in-place. The procedure
InsAt (N, x, p) inserts the bit x at the position c of the binary representa-
tion of N , for example InsAt (7,0, 1) = 1101 = 13. The procedure Com-
pare&Swap performs the comparisons between the argument elements and,
if needed, swaps them. Note that, each RunStreamElement execution is
free from conditional branch instructions. This is a very important feature
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for a SIMD algorithm, avoiding, in fact, divergent execution paths that are
serialized by the (single) instruction unit of the processor.

In a previous work we argued that minimizing the number of data-
transfers is not enough [40, 75]. In particular, in the cache-based model,
proposed by [39], the bandwidth needed to replace a cache-line, in the case
of cache-miss, is constant. Following the K-model rules [68], the memory
bandwidth is fully exploited when simultaneous memory accesses can be
coalesced into a single memory transaction. This means that it is possible
to reduce the latency of data transfer by reorganizing in the proper manner
the accesses to the off-chip memory.

In the rest of the section we will refer a sequence of k consecutive ad-
dresses with the term k-coalesced set, and we will say that a part, or the
associated Γ-sequence, satisfies the k-coalesced condition when its values
are related only to sets that are k-coalesced. Specifically, for Definition 3,
such a Γ-sequence satisfies the k-coalesced condition when it contains all the
values in the range from 0 to log k − 1.

Let us analyze the k-coalesced condition in the K-model. By definition
of Γ-sequence, when we fall into a Γ< case and c > log k, the k-coalesced
condition is verified because the Γ-partition accesses to 2c+1-coalesced sub-
sets of positions. When c ≤ log k, and we are still in the Γ< case, we need to
access to longer consecutive sequences of addresses to satisfy the k-coalesced
condition. On the other hand when we fall into a Γ≥-sequence, no consec-
utive addresses are included in the relative partitions, because the value 0
cannot be included in such type of sequence, for Definition 1. Eventually,
the Γ0 sequence is composed of a unique sequence of contiguous addresses.

To satisfy the k-coalesced condition for all the generated Γ-partitions,
we move some pairs of items from a part of the current partition to another
part. The aim is to group in the same memory transaction items having
consecutive addresses, whenever we need longer sequences of consecutive
memory addresses. To do that, each Γ-sequence is initialized with the values
in the range ] log k, 0]. Then, the values of c related to the next steps to
perform are pushed in the Γ-sequence as far as it contains log σ distinct
values.

This operation augments the coalescing-degree of the data transfer, still
it forces to remove from Γ some elements related to the next values of c. The
best possible communication bandwidth is attained at the cost of decreasing
the length of some supersteps. This means to perform more supersteps to
cover the whole bitonic network.

3.2.3 Evaluation & Experiments

The solution we propose is evaluated theoretically and experimentally by
comparing its complexity and performance with those obtained by [67] with
their version of quick-sort (hereinafter referred to as Quicksort), and the
radix-sort based solution proposed by [72] (hereinafter referred to as Radix-
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sort). Quicksort exploits the popularly known divided-and-conquer princi-
ple, whereas Radixsort exploits the processing of key digits.

Theoretical Evaluation

BSN. The number of steps to perform is (log2 n + log n)/2. To estimate
the number of memory transaction needed to compute a sorting network
for an array of size n, we have to count the number of Γ-partitions needed
to cover all the network. That means to know how many stream elements
are computed, then the number of fetch/flush phases, and the number of
memory transactions.

From Definition 2, it follows that the first partition covers the first
(log2 σ + log σ)/2 steps.

Let us call stages the loop at line 2 of Algorithm 2. In the remaining
steps s > σ, log n − log σ stages remain, and each of them has the last
Γ-partition covering log σ steps. On the other hand the s− log σ steps are
performed with partitions covering log(σ/k) steps. Resuming, the number
of partitions needed to cover all the network is

1 +

logn∑
s=log σ+1

(⌈s− log σ

log(σ/k)

⌉
+ 1
)

= O
( log2 n

log k

)
Since, each element fetches and flushes only coalesced subset of elements,
the number of transactions is

O
(n
k
· log2 n

log k

)
The time complexity is

O
(n log2 n

k

)
as it is obtained by Algorithm 4 which equally spreads the contentions
among the k memory banks and maintains active all elements.

Regarding the computational complexity it is known and it is

O(n log2 n)

Quicksort. It splits the computation in log n steps. For each step it
performs three kernels. In the first one, it equally splits the input and
counts the number of elements greater than the pivot, and the number of the
elements smaller than the pivot. In the second, it performs twice a parallel
prefix sum of the two set of counters in order to know the position where to
write the elements previously scanned. In the final kernel, it accesses to the
data in the same manner that in the first kernel, but it writes the elements
to the two opposite heads of an auxiliary array beginning at the positions
calculated in the previous kernel.
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The first kernel coalesces the access to the elements and, since the blocks
are equally sized, also the computation is balanced. Then the counters are
flushed, and the second kernel starts. Supposing that n/k < σ, each prefix
sum can be computed within a unique stream element. Consequently, for
each prefix sum we need n/k2 memory transactions to read n/k counters.
The time complexity is logarithmic in the number of elements, on the con-
trary the computational complexity is linear. Last kernel is similar to the
first one, except for flushing the data into the auxiliary array. In particular,
because each thread accesses to consecutive memory locations, the main
part of the requests is not coalesced, requesting one memory transaction
per element.

Table 3.2.3 contains the evaluation of the three type of kernel in the
K-model. In order to compute the complexity of the whole algorithm, the
sum of such formulas have to be multiplied by log n.

memory transactions time complexity computational complexity
G() T () W ()

kernel #1 n/k + 2 n/k n
kernel #2 4n/k2 4 · log n

k 2n/k
kernel #3 n/k + n n/k n

Overall O(n log n) O(nk log n) O(n log n)

Radixsort. It divides the sequence of n items to sort into h-sized sub-
sets that are assigned to p = dn/he blocks. Radixsort reduces the data
transfer overhead exploiting the on-chip memory to locally sort data by the
current radix-2b digit. Since global synchronization is required between two
consecutive phases, each phase consists of several separate parallel kernel
invocations. Firstly, each block loads and sorts its subset in on-chip mem-
ory using b iterations of binary-split. Then, the blocks write their 2b-entry
digit histogram to global memory, and perform a prefix sum over the p× 2b

histogram table to compute the correct output position of the sorted data.
However, consecutive elements in the subset may be stored into very dis-
tant locations, so coalescing might not occur. This sacrifices the bandwidth
improvement available, which in practice can be as high as a factor of 10.

In their experiments, the authors obtained the best performance by em-
pirically fixing b = 4 and h = 1024. That means each stream is made up
of dn/1024e elements. Once the computation of a stream element ends,
the copies of the sorted items may access up to O(2b) non-consecutive po-
sitions. Finally, considering 32-bit words, we have 32/b kernels to perform.
This leads to formalize the total number of memory transactions performed
as follows:

O
(32

b
· n
h
· 2b
)
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Regarding computational and time complexity, Radixsort does not use
expensive patterns and it does not increase the contention in accessing
shared memory banks. Therefore, the time complexity is given, by b ·
n/k, and the computational complexity is linear with the number of input-
elements, i.e. b · n.

Experimental Evaluation

The experimental evaluation is conducted by considering the execution time
and amount of memory required by running BSN, Quicksort and Radixsort
on different problem size. The different solutions have been implemented
and tested on an Ubuntu Linux Desktop with an Nvidia 8800GT, that is a
device equipped with 14 SIMD processors, and 511 Megabytes of external
memory. The compiler used is the one provided with the Compute Unified
Device Architecture (CUDA) SDK 2.1 [88]. Even if the CUDA SDK is
“restricted” to Nvidia products, it is conform to the K-model. To obtain
stable result, for each distribution, 20 different arrays were generated.

According to [89], a finer evaluation of sorting algorithms should be done
on arrays generated by using different distributions. We generate the input
array according to uniform, gaussian and zipfian distributions. We also
consider the special case of sorting an all-zero array4. These tests highlight
the advantages and the disadvantages of the different approach tested. The
computation of Radixsort and BSN is based on a fixed schema that uses
the same number of steps for all type of input dataset; on the contrary,
Quicksort follows a divide and conquer strategy, so as to perform a varying
number of steps depending on the sequence of recursive procedures invoked.
The benefits of the last approach are highlighted in the all-zero results.

The experiments confirm our theoretical ones. Figure 3.7 and Figure 3.8
show the means, the standard deviation, and the maximum and the min-
imum of the execution time obtained in the conducted tests. Radixsort
results to be the fastest and this is mainly due to its complexity in terms of
the number of memory transactions that it needs, see Table 3.2. This con-
firms our assumption that the number of memory transactions is dominant
with respect to the time complexity measure, i.e. T (). This is particu-
larly true whenever the cost of each operation is small if compared to the
number of memory access operations (like in the case of data-intensive al-
gorithms). Radixsort, in fact, has a O(n) number of memory transactions,
that is smaller than O(n log2 n/k log k) of the BSN and than O(n log n/k)
of the Quicksort. Considering the specifications of real architectures, which
related to the parameter k ' 16 of the K-model, and considering the capac-
ity of the external memory available on real devices (order of Gigabytes),
Quicksort results to be the least performing method analyzed. Figure 3.9
shows the behaviour of G() for the different solutions.

4All elements are initialized equal to 0.
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Figure 3.7: Elapsed sorting time for varying input size generated with zip-
fian and uniform distributions.

A last word has to be spent regarding the memory consumption of the
methods. Quicksort and Radixsort are not able to sort large arrays, as it
is pointed out, see Table 3.2. Being an in-place solution, in fact, BSN can
thus devote all the available memory to store the dataset. This has to be
carefully considered since sorting large datasets will require less passes than
the other solutions. They need, in fact, to split the sorting process in more
steps, then to to merge the partial results. Moreover, merge operation may
require further transfers for copying the partial results to the device memory
if this operation is performed on manycores. Otherwise, CPU can perform
the merging step, but exploiting a bandwidth lower than the GPU’s one.

On the other hand, our BSN approach is comparable to Radixsort and
it is always faster than Quicksort, mainly because the mapping function
proposed allows the full exploitation of the available memory bandwidth.

Table 3.2 measures the memory contention, and the number of diver-
gent paths. The first value measures the overhead due to the contention on
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Figure 3.8: Elapsed sorting time for varying input size generated with gaus-
sian and all-zero distributions.

the on-chip memory banks as K-model expects. The second value measures
how many times threads of the multiprocessors can not work simultane-
ously. These two last metrics together show the efficiency of the algorithms
tested. Keeping low both values corresponds to a better exploitation of the
inner parallelism of the SIMD processor. All the memory banks and all the
computational, in fact, are allowed to work simultaneously.

Moreover, since direct manipulation of the sorting keys as in Radixsort
is not always allowed, it is important to provide a better analysis of the
comparison-based sorting algorithms tested. Due to the in-place feature
and due to the best performance resulting from the test conducted, BSN
seems more preferable than Quicksort. Furthermore, BSN exposes lower
variance in the resulting times, it is equal to zero in practice. On the
contrary, depending on the distribution of the input data, Quicksort’s times
are affected by great variance. Probably, this is due to how the divide-et-
impera tree grows depending on the pivot chosen, and on the rest of the
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Figure 3.9: Number of memory transactions required by BSN, Radixsort,
and Quicksort algorithims.

Problem Solution Memory Memory Divergent
Size Transactions Contention Paths

220

Bitonicsort 796800 34350 0
Quicksort 4446802 123437 272904
Radixsort 965791 132652 29399

222

Bitonicsort 4119680 151592 0
Quicksort 18438423 379967 1126038
Radixsort 3862644 520656 122667

224

Bitonicsort 20223360 666044 0
Quicksort 85843422 1379155 1126038
Radixsort 15447561 2081467 492016

226

Bitonicsort 101866786 2912926 0
Quicksort n.a. n.a. n.a.
Radixsort n.a. n.a. n.a.

Table 3.2: Performance of BSN, Radixsort and Quicksort in terms of num-
ber of memory transactions, memory contention, and number of divergent
paths. Results are related to uniform distribution. “n.a.” means that
computation is not runnable for lack of device memory space.

input. For example, on system based on multi-devices (i.e. more than one
GPU), this result increases the overhead of synchronization among the set
of available devices.

3.2.4 Indexing a Real Dataset

This section describes the results obtained by indexing a collection of docu-
ments crawled on Web. In practice, our Web crawler has generated varying
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size collections up to 26 million documents of about 200 KB per document.
Then, such datasets have been used as input to evaluate the benefits of
plugging a GPU-based sorter in a Blocked Sort-Based Indexer (BSBI).

We expect that using the GPU leads to reduce the execution time of the
indexing process for two main reasons: (i) GPUs perform the sort process
faster than CPUs, (ii) Within BSBI, CPU and GPU can be exploited in
pipeline fashion. This means that each block of pages is first parsed by the
CPU, then the pairs sorting, which is the most costly part of the elaboration,
is performed independently by the GPU while the CPU carries out a new
block of termId-docId pairs.

Indexcpu (D) ::

1: n← 0
2: while D 6= ∅ do
3: n← n+ 1
4: B ← NextBlock()
5: Parse(B)
6: Sort(B)
7: toDisk(B, fn)
8: D ← D \B
9: fout ← Merge(f1, . . . , fn)

Indexgpu (D) ::

1: n← 0
2: while D 6= ∅ do
3: n← n+ 1
4: B ← NextBlock()
5: Parse(B)
6: GpuSort(B)
7: toDisk(B, fn)
8: D ← D \B
9: fout ← Merge(f1, . . . , fn)

Indexgpu+ (D) ::

◦ Cpu(D) ::

1: while D 6= ∅ do
2: B ← NextBlock()
3: Parse(B)
4: SyncSend(B, toGpu)
5: D ← D \B
6: SyncSend(∅, toGpu)
7: Recv(n, fromGpu)
8: fout ← Merge(f1, . . . , fn)

◦ Gpu() ::

1: n← 0
2: while B 6= ∅ do
3: Recv(B, fromCpu)
4: if B 6= ∅ then
5: n← n+ 1
6: GpuSort(B)
7: toDisk(B, fn)
8: SyncSend(n, toCpu)

Figure 3.10: Description of the different versions of the indexer architecture.

With respect to CPU, GPU offers a considerable computing power, but
its exploitability is bounded by the available memory size. In fact, as said
in the previous section, in our study we used a GPU is equipped with 511
Megabytes of memory, which corresponds to the maximum pairs block size
usable in our tests (blocks are referred as B in Figure 3.10). This aspect
could affect the overall computational time of indexing. Indeed, given a
collection of documents (D), the procedure that merges the pairs blocks
has a greater number of files (f1...n) to join, and this number affects the
merge algorithm complexity of a logarithmic factor (detailed complexity
analysis is given in the following). However, the time spent for merging
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is dominated by the latency for data transferring from/to the disk. Then,
because the whole data to transfer (namely the termId-docId pairs) is the
same in both the approaches (i.e. the CPU-based and the GPU-based ones),
we expect that the time needed by the two solutions for the merging phase
is similar.

In order to quantitatively evaluate the contribution given by a GPU-
based sorter we developed three different indexing algorithms: (i) a CPU-
base indexer, called Indexcpu, (ii) an indexer that alternates the parsing
phase on the CPU, with the sorting phase on the GPU, called Indexgpu; (iii)
an indexer that performs in pipeline fashion, called Indexgpu+ . Figure 3.10
shows such algorithms expressed in pseudo code. In the two last cases we
chose BSN as sort algorithm.

Table 3.3 shows the indexer computational times by varying the size of
the collection. The computational time spent by each indexer version has
been split in two parts: the time needed to create the n sorted files and the
time spent for their merging, represented by the “Parse+[Gpu]Sort” and
“Merge” columns, respectively. Concerning the two GPU-based methods,
“Merge” column is shown once because the solutions perform the same
merge procedure on the same input.

Figure 3.11 shows the overall computational times of the three algo-
rithms when running our case of study. They point out the computational
time benefits obtained by using the graphics co-processor. It can be seen
that the sorting phase is no more the “bottleneck” of the indexer. On the
contrary, considering the GPU-based approaches the computational time is
dominated by the latency of the merging phase. In fact, given the n files
(f1...n in Figure 3.10) to merge the complexity of parsing is linear in the size
of B, that is O(n · |B| ). Furthermore, the complexity of the merging phase
is equal to O(n · |B| · log n ), because n-way merger is realized with an heap
composed of as many elements as the files to merge are. At each step Merge
procedure extracts the minimum pair x from the heap and a new element,
taken from the source file of x, is inserted. The extraction has constant time,

|D| Indexcpu Indexgpu Indexgpu+ Indexgpu, gpu+
Parse+Sort Merge Parse+GpuSort Parse+GpuSort Merge

0.81 42.9 16.8 12.6 9.0 19.8
1.63 94.5 35.5 24.9 20.2 42.0
3.27 185.2 88.7 52.0 38.0 100.9
6.55 394.5 193.4 107.9 73.9 244.6
13.10 783.5 482.3 221.3 151.5 599.8
26.21 1676.8 1089.2 456.4 346.8 1291.7

Table 3.3: Comparison of the computational times referring the different
approach for the indexer architecture (times are in seconds, |D| in millions
of documents).
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Figure 3.11: Elapsed time for different indexer architectures.

but the insertion is O( logm ) given a m-size heap, then the complexity of
the merging phase corresponds to the number of pairs collected multiplied
by log n, that is O(n · |B| · log n ). This leads the complexity of merging to
be higher than the one corresponding to parsing.
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Figure 3.12: Performance of Indexgpu+ by varying GpuSort() solutions.

Figure 3.12 shows the computational times obtained in the last test
we have conducted to compare different versions of Indexgpu+ by varying
the GPU sorting algorithm. To this end, we did not consider GPU-based
Quicksort because the results shown in the previous section point out that
such solution is both slower and space inefficient. Also if Radixsort is a bit
faster than our solution, due to its space complexity, we are forced to use
blocks made up of half documents with respect to the number we can sort
using BSN. As consequence, the merging phase is more costly due to the
increased number of files to merge.
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3.2.5 Conclusions

In this section we initially propose a new mapping of Bitonic Sorting Net-
work on stream processing architectures. We start from its traditional al-
gorithm, and we extend it to adapt to our target architecture. Bitonic
Sorting Network is one of the fastest sorting networks to run on parallel
architectures. The proposed solution was evaluated both theoretically and
experimentally, by comparing its complexity and performance with those
obtained by two others state-of-the-art solutions.

The theoretical algorithms complexity was evaluated by using K-model
a novel computational model specifically designed to capture important as-
pects in stream processing architectures. The experimental evaluation was
conducted using input streams generated according to different distribu-
tions. This kind of experiments highlighted the behavior of the analyzed
algorithms particularly regarding the variance of the performance obtained
for different data distributions. Regarding the execution time, our solution
obtains results comparable to the other competitors. However, our solution
is capable of working in-place (implemented without any auxiliary array in
addition to the one required for the input) and it is able to better exploit
the memory interface bandwidth available on GPUs as well as the comput-
ing power of their parallel cores. These reasons make the proposed solution
viable for sorting large amounts of data.

Accordingly the results of the experiments, we have chosen Bitonic Sort-
ing Network and Radixsort to develop an indexer prototype to evaluate the
possibility of using an hybrid CPU-GPU indexer in the real world. The
time results obtained by indexing tests are promising and suggest to move
also other indexing-phases onto manycore architectures.

3.3 Case Study: Parallel Prefix Sum

In this section we focus on the relevance of prefix sum operation5 as building
block to effectively exploit the parallelism. Given a list of elements, after
scan execution each position in the resulting list contains the sum of the
items in the operand list up to its index. Blelloch [90] defines all-prefix-sums
operation as follows:

Definition 4. Let ⊕ be a binary associative operator with identity I. Given
an ordered set of n elements:

[ a0, a1, . . . , an−1 ]

the exclusive scan operation returns the ordered set:

[ I, a0, (a0 ⊕ a1), . . . , (a0 ⊕ . . .⊕ an−2) ]

5 also known as scan, prefix reduction, or partial sum.
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In literature, many application fields exploit scan to merge the partial
results obtained by different computations. In particular, general purpose
GPU algorithms largely apply this operation as atomic step in many so-
lutions. For example, some of the fastest sorting algorithms (e.g. Radix-
sort [72], Quicksort [67], and others) perform scan operation many times for
reordering the values belonging to different blocks. Dinget al. [61] use prefix
sum to implement their PForDelta decoder for accessing postings lists, and
a number of other applications refer to this operation [91, 92].

Concerning the computational complexity on a sequential processor,
prefix sum operation is linear in the size of the input list. Instead when
the computation is performed in parallel the complexity becomes logarith-
mic [93, 94, 95]. On the one hand, the sequential solution is more easy to
implement and works in-place. As a consequence, if the available degree
of parallelism is low, the approaches based on the sequential solution could
be still applied without major performance loss. On the other hand, it is
straightforward that, augmenting the parallelism degree, the efficient prefix
sum computation becomes a key aspect of the overall performance. This is
the case of Graphics Processing Units (GPUs), Sony’s Cell BE processor,
and next-generation CPUs. They consist of an array of single-instruction
multiple-data (SIMD) processors and allow to execute a huge number of
arithmetic operations at the same time. Related to SIMD, there is the
stream processing (see Section 2.1.2). It is a programming paradigm that al-
lows some applications to easy use multiple computational units by restrict-
ing the parallel synchronization or communication that can be performed
among those units. Given a set of data (stream), a series of operations
(kernel) is computed independently on each stream element. Furthermore,
also due to the performance constraints related to the complex memory hi-
erarchy, the design of efficient algorithms for these processors requires more
efforts than for standard CPUs.

An important contribution of this section is to provide a comparison be-
tween the main existing solutions for computing prefix sum and our original
access pattern. In particular, for each solution, we provide both theoretical
and experimental analysis. We describe and justify the main existing algo-
rithms within K-model (see Section 3.1), which is a computational model de-
fined for the novel massively parallel computing architectures such as GPUs
and alike processors. The theoretical results point out that our approach
efficiently satisfies all the performance constraints featured by K-model, and
show the benefits and the limits of each considered solution. Finally, the ex-
perimental results validate the theoretical ones by showing that our access
schema is up to 25% faster than the other considered solutions.

This section is organized as follows: Section 3.3.1 analyses the solution
can be considered suitable for GPUs or computational models exposing
performance constraints that are similar to the main ones considered by
K-model (e.g. QRQW-model [44]). In Section 3.3.2 we make some general
consideration on the tree-based approaches to define a metric for their eval-
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uation. In Section 3.3.2 our access schema is defined. Section 3.3.3 shows
both theoretical and experimental analysis. Section 3.3.4 describes an ef-
fective encoding schema that achieve impressive decoding performance by
exploiting GPUs.

3.3.1 Related Work

Due to its relevance, scan has been deeply studied from researchers to de-
vise faster and more efficient solutions. However, only few of these are
relevant for our purpose, namely the studies conducted for general purpose
computation on GPUs. Furthermore, we attempted to include in our study
also those solutions proposed for QRQW PRAM [44] because the behav-
ior of its memory equals the IM one, which is the performance constraint
mainly taken into account in this study. Unfortunately, to the best of our
knowledge, none has been found.

Hornet al. [93] propose a solution derived by the algorithm described in
[95]. This solution, represented in Algorithm 5, performs O(n log n) oper-
ations. Since a sequential scan performs O(n) sums, the log n extra-factor
could have a significant effect on the performance hence it is considered
work-inefficient. Note that the algorithm in [95] is designed for the Connec-
tion Machine architecture [96, 69] that is different from the ours, with an
execution time dominated by the number of performed steps rather than
work complexity. From this point of view, that consists in considering the
number of loops performed at line 1 of Algorithm 5, the solution has a
step-complexity equal to O(log n).

Algorithm 5 Work-inefficient scan.

Require: n-size array A[ ]
1: for d← 1 to log n do
2: for all k in parallel do
3: if 2d ≤ k < n then
4: A[k]← A[k] + A[k − 2d−1]
5: end if
6: end for
7: end for

Harriset al. [94] proposed a work-efficient scan algorithm that avoids the
extra factor of log n. Their idea consists in two visits of the balanced binary
tree built on the input array: the first one is from the leaves to the root,
the second starts at the root and ends at the leaves, see Figure 3.13.

Since binary trees with n leaves have log n levels and 2d nodes at the
generic level d ∈ [0, log n− 1], the overall number of operations to perform
is O(n). In particular, in the first phase the algorithm traverses the tree
from leaves to the root computing the partial results at internal nodes, see
lines 1÷6 of Algorithm 6. After that, it traverses the tree starting at the
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root to build the final results in place by exploiting the previous partial
sums, see lines 8÷15 of Algorithm 6.

Algorithm 6 Work-efficient scan.

Require: n-size array A[ ]
1: for d← 0 to log2(n)− 1 do
2: for k ← 0 to n− 1 by 2d+1 in parallel do
3: i← k + 2d − 1
4: A[i+ 2d]← A[i+ 2d] + A[i]
5: end for
6: end for
7: A[n− 1]← 0
8: for d← log2(n)− 1 down to 0 do
9: for k ← 0 to n− 1 by 2d+1 in parallel do

10: i← k + 2d − 1
11: temp← A[i]
12: A[i]← A[i+ 2d]
13: A[i+ 2d]← A[i+ 2d] + temp
14: end for
15: end for

Despite the work-efficiency, Algorithm 6 is not yet fully efficient consid-
ering the metrics defined in Section 3.1, i.e. the function T (). Due to the
data access pattern used, the solution is inclined to increase the latency for
accessing to the shared data-memory IM . In fact, considering a generic
step, different scalar processors require to access elements belonging to the
same memory bank. As a consequence, the most part of the IM accesses
are serialized so as to augment the time required to perform an instruction.

To avoid most memory bank conflicts, Harris et al. insert some empty
positions in the memory representation of the input list. Specifically, their
solution stores an input list element ai at the array A[ ] position as follows:

ai 7→ A[ i+ bi/kc ] (3.1)

Therefore the authors avoid the “periodicity” with which the same sub-
set of memory banks are accessed in Algorithm 6. On the one hand, they
balance the memory banks workload by applying this technique. On the
other hand, the memory space required for representing the input in memory
grows of an extra-factor that equals n/k. Let us consider, as proof, that an
n-size list {a0, . . . , an−1} is represented by the array A as follows: a0 7→ A[0]
and an−1 7→ A[n−1+bn−1

k
c ]. So, the required space is n+bn−1

k
c = O(n+ n

k
),

which corresponds to an extra factor of O(n/k). Last but not the least, this
solution does not scale with the size of the input list because, as shown in
Section 3.3.2, this technique is effective on lists having up to k2 elements.
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3.3.2 K-Model Oriented Solution

The previous section emphasizes the weak points of Algorithm 6. In par-
ticular, such algorithm consists in traversing twice the binary tree built on
the input list. Before introducing our pattern, let us point out two aspects
that permit to define a “metric” for the analysis of the different solutions:

(a) (b)

Figure 3.13: Types of tree-traversal performed by Algorithm 6: (a) bottom-
up and (b) top-down.

(i) Let us consider the sets of accesses made at each phase of Algorithm 6:
the first phase consists of a bottom-up tree-traversal, see Figure 3.13a,
the second phase consists in the same procedure performed in a top-
down manner, see Figure 3.13b. The two sets of accesses are equiv-
alent. The only difference is the reversed order adopted to traverse
the tree. So, by defining an optimized access pattern for the first
visit, we have a method to efficiently perform the second visit too. In
other words, if a pattern generates a conflict in the shared memory by
addressing a pair of elements in the first visit, the same conflict will
occur, for the same pair, in the second visit too. As a consequence,
we can reduce the analysis of an access pattern to one phase: in our
case we chose the bottom-up tree-traversal.

(ii) The second point concerns the operations performed on the shared
data-memory, i.e. load and store. By induction on the tree levels:
the nodes storing the results of the operations performed at the level i
correspond to the operands to add at the level i+1. Thus, by reducing
the number of conflicts generated to store the results at a generic level
of the tree, we automatically reduce the conflicts generated to read the
operands at the next level of the visit. This second aspect permits us
to focus our analysis on only one type of operation (i.e. store) instead
of considering both the store and the load ones.

Resuming, in the rest of the section, we face the problem of defining a
data access pattern able to equally spread sequences of k store operations
on k different memory banks.
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This section describes our access pattern [97]. The main advantages
are: (i) our solution is the optimal in space6, namely O(1); (ii) the pro-
posed schema perfectly balances the workload among the internal memory
modules for any given input size; (iii) the solution is based on the tree-based
solution and inherits its work efficiency.

In order to reduce the memory contention our solution redirects the sum
results so as to refer to distinct memory modules, instead of applying a func-
tion like (3.1) to stretch the memory representation of the input list. Our
schema works by considering subsets of k consecutive store-operations. As
shown in Figure 3.14, given a sequence of k sums to calculate, the algorithm
alternatively stores the result of each one of the first k/2 sums by replacing
the value of the operand with the smallest index (denoted as left-sum) and
it stores the results of the remaining k/2 sums at position of the operand
with the greatest index (denoted as right-sum). Then, we iteratively apply
this pattern to each k-size sequence at all levels of the tree. When the tree-
traversal is ending, the number of nodes belonging to a tree level becomes
smaller than k and the algorithm performs only left-sums.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 3.14: Representation of our pattern applied to a tree with n = 16
leaves allocated in a memory of k = 4 banks.

In this manner, each sequence of k operations addresses k distinct mem-
ory banks. From K-model point of view, this means to eliminate the con-
tention on IM . Equation (3.2) defines the approach depicted in Figure 3.14,
namely it discriminates between left-sums and right-sums. Basically, this
function consists in permuting the set of memory banks related to a sequence
of sums to compute.

LeftRighth(x, m) = Rsth(x · 2m)︸ ︷︷ ︸
base

+ Rotmh (x)︸ ︷︷ ︸
offset

(3.2)

Let k be a power of 2, given an element at position i, the least signifi-
cant log k bits of i identify the memory bank where the element is stored.

6 This result is still more relevant considering that the real architectures exploits small
sized shared data-memories.



3.3. Case Study: Parallel Prefix Sum PAGE 65

Equation (3.2) consists in applying a left circular-shift to the least signif-
icant log k bits of the element positions involved in the computation. In
particular, Rot is applied on a sequence of 2 · k addresses referring k pairs
of operands. If the addresses in the initial sequence are uniformly spread on
k distinct memory banks, we obtain a new sequence of k positions belonging
to k distinct memory banks that are arranged as Figure 3.14 shows. Since
at the first step of the tree traversal the operands are already equally spread
among the k banks, no conflicts are generated accessing them. Therefore,
applying Equation (3.2) we maintain the desired property, i.e. avoid the
conflicts on the memory banks during the execution of Algorithm 6.

In particular, Rotmh (x) stands for computing m times the left circular-
shift of the h least significant bits extracted by the binary representation
of x. For example, Rot1

3(12) = Rot1
3(1100) = Rot1

3(100) = 001 = 1
and Rot2

3(2) = 001 = 1. The Rsth(x) operator resets the h least sig-
nificant bits of the binary representation of x. For example Rst3(13) =
Rst3(1101) = 1000 = 8. Resuming, an index resulting from Equa-
tion (3.2) is composed by two distinct parts: the first part, that is referred
as base, specifies the most significant part of the address; the least sig-
nificant log k bits, that are referred as offset, are obtained by applying a
circular-shift rotation. The resulting pseudo-code is shown in Algorithm 7.

Algorithm 7 Free-conflict bottom-up tree visit step.

1: for d← 0 to log2(n)− 1 do
2: for i← 0 to n/2d+1 − 1 in parallel do
3: x← A[ LeftRightlog k(2i, d) ]
4: y ← A[ LeftRightlog k(2i+ 1, d) ]
5: A[ LeftRightlog k(i, d+ 1) ] = x + y
6: end for
7: end for

This section ends with some notes about the implementation of our
access function on the tested GPUs. The SDK [98] provided with the tested
devices consists in an extension of the C language. However, neither C nor
C++ have a statement for circular-shift of a binary word. However, Rotmh (x)
can be emulated via:

1: x &= (1<<h)-1;

2: return (x>>m) | (x<<(h-m));

and the operation Rsth(x) can be emulated via:

1: return x & (0xFFFFFFFF<<h);

Moreover, we can quickly perform the LeftRighth() operation by pre-
computing and storing in a a set of k constants the displacement to add at
each index to address the correct item at each step. During the tree-visit,
the k processors (E[ ]) perform in parallel k sums. To this end, each of
them shifts the proper constant proportionally to the current level of the
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tree. The complexity to compute the set of constants is proportional to k
and not to the input size. Since these constants depend on k they can be
computed at compile-time without overhead for the computation.

3.3.3 Evaluation & Experiments

The solution we propose is evaluated theoretically and experimentally by
comparing its complexity and performance with those presented in Sec-
tion 3.3.1 and Section 3.3.2.

Theoretical Evaluation

In this section we evaluate the different solutions by defining the related
complexities discussed in Section 3.1, i.e. G(), W () and T (). Firstly we
show the complexities of the three tree-based solutions varying the data
access pattern: the näıve version represented by Algorithm 6, the version
exploiting padding, and the one based on our novel solution. These solu-
tions are referred in the remainder of this section as NoPadding, Padding,
LeftRight, respectively. Concerning T (), the analysis of the different solu-
tions is presented using the metric introduced in Section 3.3.2, i.e. taking
into account the number of conflicts generated storing the results of the op-
erations performed during the bottom-up tree traversal. Then we analyze
the method proposed for the Connection Machine architecture and adapted
for GPUs in [93]. This is referred as CM.

Concerning G(n, k), that measure the external memory data-transfers
efficiency, it equals n/k for all referred methods. In fact, the allocation
in the external memory does not need any particular arrangement because
it is already optimal. Since the input elements are coalesced in a vector,
each memory transaction fully exploits the communication bandwidth by
transferring k elements at a time.

Concerning W (n), let us observe that the number of operations per-
formed by the tree-based solutions does not change by varying the access
pattern. We already pointed out that these methods differ only in the
schema applied for mapping the operands into the internal data-memory
IM . Analyzing the lines 1÷6 of Algorithm 6 and Figure 3.13a, it can be
seen that the number of nodes to compute halves at each step. Let n denote
the input size and, without loss of generality, suppose n is a power of 2. The
overall number of operations performed to traverse the tree is given by (3.3)
and it corresponds to W () too.

W (n) =

logn∑
i=1

n

2i
= n− 1 = O(n) (3.3)

Thus, let us define the efficiency of the solutions and ` denote the number
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of instructions issued by IU , we can define ` as follows:

`n,k =

logn−1∑
i=log k

2i

k︸ ︷︷ ︸
`1

+

`2︷︸︸︷
log k =

n− k
k

+ log k (3.4)

Given a generic tree level d ≥ log k, the number of instructions issued
by the unit IU is `1 = 2d/k, with 2d is the number of nodes composing the
level. At the last log k steps of the tree-visit, the efficiency halves as well as
the number of sums to perform, nevertheless IU issues one instruction per
step, denoted by `2.

With both W (n, k) and `, we can evaluate the efficiency of the solutions
as W (n, k) divided by k · `, see Equation (3.5). Without loss of generality,
we suppose the parameter k, inherent K-model, is a power of 2 and k < n.

W (n, k)

k · `n,k
=

n− 1

k · `n,k
=

n− 1

k · log k + n− k
(3.5)

Figure 3.15 represents (3.5) by showing the behaviour of the efficiency as
function of W (n) by varying the input size. Smaller input size leads to low
efficiency, while smaller values of k lead to faster growth of the efficiency
curve.
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Figure 3.15: Efficiency computed for the tree-based methods with different
values of k by varying the input size.

Concerning the CM method, as argued in Section 3.3.1, the number of
operations performed by Algorithm 5 is O(n log n) for any given n-length
input list. Therefore W () equals O(n log n).

As last indicator, we consider T () that denotes the time required to
compute a stream element. It depends on the different number of conflicts
generated by addressing the internal memory IM so we analyze one solution
at a time.



PAGE 68 CHAPTER 3. K-model

NoPadding. Let n be the input size and d ∈ [1, log n] indicate a step
of the loop represented at the lines 1÷6 of Algorithm 6. The number of
operations to compute at each step is n/2d, and the displacement between
the positions storing two consecutive results is 2d. As a consequence, the
involved queues Q[ ]s are those having index 2d mod k. At each step, the
number of operations to perform halves, the queues size doubles and hence
the time to perform a step is unvaried because the workload halves as the
number of the working memory modules. Since k requests are processed at
a time, the time needed to perform the first log k steps is n/k for each one
of them. Only on the last log n− log k steps, the maximum queue size does
not double because the number of adds becomes too small. Finally Tp̄(n, k)
is:

Tp̄(n, k) =

log k∑
d=1

n

2d
· 2d · 1

k
+

logn∑
d=log k+1

2d · 1

k

= log k · n
k

+

logn−log k∑
d=1

2d

= n · log k + 1

k
− 1

Padding. This method is fully efficient until the displacement applied to
the indexes is smaller than the number of memory modules, i.e. k in K-
model. In particular, for values greater than k, the Function (3.1) generates
the same conflicts in IM as the NoPadding algorithm does. In particular,
let us consider a tree traversal performed on arrays made up of more than
2 · k elements. Due to Padding, the representation in memory of two con-
secutive segments of k elements is divided by an empty entry. At the end
of the traversal performed on such segments, namely after log k steps, this
technique is no more effective. As a consequence, the computation of the
remaining levels generates the same contention-degree of the NoPadding
method.

Hence, we get the peak of IM bandwidth computing the first log k
steps because all operations are equally spread on the memory banks, see
(3.6). Note that such formula is straightforwardly derived by Equation (3.3)
because, when the contention is null, the latency of the overall accesses
corresponds to W ()/k. For the remaining steps the complexity function is
the same obtained in the NoPadding case, i.e. it is Tp̄().

fp(n, k) =
1

k
·

log k∑
i=1

n

2i
(3.6)

The complexity of Padding corresponds to the following expression,
which is obtained by merging fp() and Tp̄.

Tp(n, k) = fp(n, k) + Tp̄

(n
k
, k
)
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LeftRight. As argued in Section 3.3.2, this memory access pattern was
developed in order to avoid all memory bank conflicts so as to expose the
complexity of T () as follows:

Tlr(n, k) = log k +

logn−1∑
i=log k

2i

k

= log k +
n− k
k

This result corresponds to Equation (3.4) that represents the number
of instructions issued by IU . This is the result we expected. In fact,
when the set of accesses corresponding to an instruction does not gener-
ate any memory conflict then the parallel complexity computed in K-model
is asymptotically equal to the number of instruction issued, namely `.

CM. The solution performs log n steps for a given n-size array. Let d ∈
[0, log n − 1] denote a step of Algorithm 5, the method performs n − 2d

operations per step. Resuming, the overall amount of sums corresponding
to W () is:

Wcm(n) =

logn−1∑
d=0

n− 2d = n · log n− n+ 1

In K-model, such solution splits the set of operations performed at each
step into session of k operations. Each session can be implemented so as
to avoid all conflicts on the memory modules. In practice, we temporarily
store the sums of the operands loaded from IM into a local variable. When
all sums have been computed, we proceed by writing back the results into
IM . As a consequence of that:

Tcm(n, k) =
Wcm(n)

k

Figure 3.16 is the log-log plot of the T () functions computed for all the
solutions taken into account. The parameter k (referred in K-model) has
been set equal to 16 that corresponds to the value of the hardware used for
the tests so as to make possible to compare theoretical and experimental
results. The figure points out that CM is the lowest performing solution.
Furthermore, until Padding is able to perform conflict-free accesses, its per-
formance is comparable to one of LeftRight solution. However, the padding
technique does not scale well to larger problem sizes. In particular it is ef-
fective only when the first log k steps and the last log k steps are performed.
This means that trees made of at most log k+ log k levels, namely k2 items,
can be efficiently performed with Padding. On the contrary, for input size
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Figure 3.16: Expected behavior of the different solutions in log-log plot. k
equals 16 because this value is realistic, i.e. it is related to the hardware
used for testing.

greater than k2 we expect that Padding experimental results are wasted due
to the serialization of the accesses.

Finally, the following table summarizes the space complexity of each
considered algorithm:

Pattern Name Space Complexity

CM O( 1 )
NoPadding O( 1 )
Padding O(n/k )
LeftRight O( 1 )

In particular, three of them perform scan in linear space and only Padding
requires an extra factor for the reasons discussed in Section 3.3.1.

Experiental Evaluation

The experiments have been conducted using the CUDA SDK 3.1 on NVIDIA
275 GTX video device. Due to the limited size of the on-chip shared data-
memory and considering the standard 32-bit word size, each stream element
can compute blocks of at most 2048 elements (the same used also for the
experiments in [94]). The conducted experiments aim to measure the time
required to perform the operation scan in two different cases for all the
solutions:

(i) We tested the different approaches by computing an input list that
can be stored in only one stream block, i.e. varying the block size in
the range from 25 up to the maximum size allowed by the architecture,
namely 2048 integers. Moreover, to stable results, each stream consists
of 10752 blocks, see Figure 3.17. The goal of this test is to compare
all the approaches exclusively on a SIMD processor, i.e. how scan is
used in [61, 91].
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(ii) In order to compare the different algorithms, we extend them for com-
putation of large arrays of arbitrary dimensions (e.g. large arrays are
scanned in [72, 67], etc.), see Figure 3.18. The basic idea to perform
on large lists is simple: we divide the large array into blocks that
each can be scanned within a single stream element, scan the blocks,
and write the total sum of each block to another array of block-sums.
Then we scan the block-sums, generating an array of partial results
that are used to “update” all the elements in their respective blocks.
In more detail, let n be the number of elements in the input list in[ ],
and b be the number of elements processed in a block. We allocate n/b
blocks of b elements each. We use the first part of the scan algorithm
(i.e. lines 1÷6 of Algorithm 6) to compute each block j independently,
storing the resulting scans to sequential locations of an output array
out[ ]. We make one minor modification to the scan algorithm. Before
reset the last element of block j (i.e. line 7 of Algorithm 6), we store
the value (the total sum of block j) into an auxiliary array partial[ ].
Then we scan partial[ ] in the same manner. After we use partial[j]
to initialize the computation of block j using a kernel performing the
second part of the scan (i.e. lines 8÷15 of Algorithm 6) on n/b blocks.
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Figure 3.17: Elapsed time for scan on stream blocks of varying size.

The results shown in Figure 3.17 are aligned with the considerations on
the theoretical results obtained in the previous paragraph: our solution has
been proved to be faster than the competitors. In particular, on input of
2048 items, our solution is 25% faster than Padding which was considered
the fastest solution for GPUs. This is mainly due to our novel schema that
is able to fully exploit the parallelism of the architecture that means, from
K-model point of view, to reduce T ( ) with respect to the other methods.

In Figure 3.18, that concerns the computation of large arrays, the ben-
efits of applying our solution are decreased but still permit to outperform
the competitors, i.e. we are 18% faster. The main reason is the increased
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Figure 3.18: Elapsed time for exclusive scan on large arrays of varying size.

number of communications between the array processors and the off-chip
memory that dominates the computational time.

3.3.4 Posting Lists Compression

In this section we discuss about the application of GPUs to the design of an
efficient posting list decoder. In particular we focus on two methods shown
in Section 2.3.5, which are: Vector of Split Encoding [65], hereinafter VS,
and the largely used PForDelta [66], hereinafter P4D. The main issue to
design an efficient GPU-based decoder is to define an efficient method for
retrieving as many as possible postings at the same time. In fact, the tar-
get architecture is massively parallel and permits to execute hundreds of
instructions on thousands of data at a time. Moreover, to provide an ade-
quate supply of input data and to quickly flush the decoded postings, the
GPU is connected to an off-chip memory by a communication channel able
to reach a bandwidth greater than the one typical of the standard CPUs.
Both these features, namely massively parallelism and communication chan-
nel bandwidth, are responsible for the throughput reachable by using GPUs
for posting lists decoding. The desirable theoretical peak of performance
reachable is often an hard task due to the performance constraints that are
proper of this kind of architecture, see Section 2.1. In particular, we focus
in this section to minimize the latency of the computation consisting of
the posting lists decoding. From K-model point of view, we are interested
to reduce both T (), denoting the time required to perform the kernel on
each SIMD processor, and G(), denoting the time needed to fetch encoded
postings and to flush the decoded ones.

To optimize the decoder in order to reduce G() does not require partic-
ular efforts. This is mainly due to the nature of the data structure involved
in the computation. In fact, blocks of both encoded and decoded data are
stored in sequences of consecutive addresses allocated in the external mem-
ory EM . In order to take advantage of the data arrangement, the decoder
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has to be designed in such a way that the SIMD processors can compute
each stream element by fetching, manipulating and flushing subsequences
of consecutive postings. In this way, on each SIMD processor, the decod-
ing kernel function can handle a stream element by accessing to segments
of consecutive addresses, that means by issuing the minimum number of
memory transactions. Furthermore this choice is particularly indicated also
to compute the original set of doc-id values starting from a list of d-gaps.
More precisely, given an ordered list of distinct doc-ids [ d0, d1, d2, . . . ], it is
transformed into the equivalent list of d-gaps [ d0, d1−d0−1, d2−d1−1, . . . ]
before to be encoded. This transformation provides smaller positive inte-
gers to encode ensuring a better compression ratio. As a consequence, the
rationale is decoding a block made up of consecutive postings on the same
SIMD processor. This organization represents the first choice concerning
the decoder architecture to solve the problem of how to organize the de-
coding phase relating to the the stream processing and fully exploiting the
bandwidth of the external memory.

We consider, now, the second key aspect concerning the work performed
internally by SIMD processors whose latency is denoted by T () in K-model.
Given a block of consecutive codewords belonging to the same stream ele-
ment, we choose to distribute them among the scalar processors module the
number of scalar processors composing the SIMD processor. Let us con-
sider VS encoding. According to the VS coding technique, to each bunch
of codewords (b) is associated a signature denoting both the number of en-
coded codewords (nb) and their size (sb) in term of number of bits. Given
a sequence of these bunches and the related sequence of codewords, the
decoding phase has to extract a block of integers from the sequence of code-
words according to the signature. To accomplish this task in parallel, two
approaches can be adopted:

(i) The first one consists in to assign one bunch of codewords (b) to each
processor. According to this approach, each processor only needs to
know: (i) the number of bits preceding the first codeword of the as-
signed bunch and (ii) the number of codewords encoded in the pre-
vious bunches. For example, let us suppose to use a set of k scalar
processors {E[i]}∀i∈[0, k−1] for decoding a set of k bunches of code-
words, i.e. {bi}∀i, each one with a signature (ni, si). This solution
assigns bi to E[i] so, for each i, the processor E[i] accesses the block
of codewords at position

hi =

j<i∑
j=0

nj · bj (3.7)

to extract the first si-size codeword. Then it extracts the next si bits
for the second codeword, and so on until the last ni-th codeword of bi.
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Furthermore, the codewords extracted will be placed in a subset on
consecutive positions in the resulting array starting from the position
gi defined as follows:

gi =

j<i∑
j=0

nj (3.8)

Considering that the previous sums (hi and gi) can be efficiently com-
puted in O(log k) steps [90], the solution is promising, but it does
not optimally balance the workload among the scalar processors. In-
deed, the whole process requires each scalar processor spends a time
proportional to the largest bunch, i.e. max{ni}∀i∈[0, k−1].

(ii) The alternative solution (the adopted one) consists in to preventively
calculate the position of each codeword then to assign each codeword
to a scalar processor module the number of processors, i.e. k. As first
we compute both the sums hi and gi (as defined above) then to each
processor E[i] is assigned the processing of codewords at the positions
corresponding to hi + (i+ t · k) · si for each value of t ∈ N+ such that
0 ≤ i+t ·k < ni. In this way we can optimally distribute the workload
among the processors smoothing in the different bunches size.

Moreover, let us point out that the same conclusion are achieved also
adopting P4D method too. In fact, the extraction of the codewords(exceptions
are managed separately) can be processed as in the VS case. The main dif-
ference is that, in P4D case, the number of codewords belonging to each
bunch is constant. As a consequence, the parameter that defines the size (in
number of codewords) of a block encoded with P4D can be tuned as multi-
ple of k so as to reach a perfect workload, that is assigning to all processors
the same number of codewords to retrieve.

Designing an Efficient Postings Decoder

Now we focus on the computation of hi and gi as defined in the equations
(3.7) and (3.8), respectively, for any given n and i ∈ [0, n − 1]. After the
computation of [ g0, . . . gn−1 ] and [ h0, . . . hn−1 ], each position in the
resulting lists contain the sum of the items in the operand list up to its index.
This type of operation consists in a prefix-sum as shown in Definition 4 and
in the following: let ⊕ be a binary associative operator with identity I.
Given an ordered set of n elements: [ a0, a1, . . . , an−1 ] the exclusive scan
operation returns [ I, a0, (a0 ⊕ a1), . . . , (a0 ⊕ . . .⊕ an−2) ].

Depending on the computing architecture taken into consideration, dif-
ferent efficient solutions can be found in literature. Concerning computation
on GPUs in general, we propose in Section 3.3.2 a method that balances
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the workload among the parallel memory modules and that is able to scale
with any given input size. Resuming, the solution is based on the tree-based
solution and inherits its work efficiency, i.e. the cost of performing two tree-
traversal of a binary tree built on the n-size input list. As a consequence
the method performs twice a procedure costing O(n) operations distributed
on 2 · log n steps.

However, as argued in [96] regarding to Connection Machine [69] and
in Section 3.1 regarding to architectures alike K-model, the time required
for the computation depends on the number of instructions issued (and,
from K-model point of view, it depends also on their latency) rather than
on the number of scalar operations performed. We taken into account the
method proposed in [96] that needs log n steps to be performed instead of
2 · log n steps. The algorithm shown in Algorithm 8 assumes that there
are as many processors as data elements. On GPUs this is not usually
the case, because the For Each instruction in Algorithm 8 is automatically
divided into small parallel batches that are executed sequentially on a SIMD
processor in stream programming fashion. Since Algorithm 8 performs the
scan in place on the array, it does not work because the results of a step are
overwritten by the accesses of another step.

Algorithm 8 PPSumk( A[ ] )

1. For s← 0 To log k − 1 Step s = s+ 1 Do
2. For Each j ∈ [0, k − 1] In Parallel Do
3. If j + 2s < k Then
4. A[j + 2s]← A[j + 2s] + A[j];
5. End If
6. End Do
7. End Do

To avoid such limitation, in our case we can “resize” the problem so as
to have a solution that works in place and performs the minimum number
of steps as Algorithm 8 does. Since in K-model each instruction is provided
simultaneously to the k scalar processors E[ ], we can state the granularity
of the computation equal to k, which means k corresponds to the number
of pairs (nb, sb) belonging to the bunch b that are performed in parallel
with one scan. Note that, there is no difference between the tree-based
solution proposed in Section 3.3.2 and the previous Algorithm 8 in term
of asymptotic analysis: both of them are logarithmic. However, because
in our case the size of the input list is fixed and equals to k, to adopt
Algorithm 8 means to halve the time spent by the scan w.r.t. use a tree-
based approach. Because prefix-sum is the complexest procedure of the
decoder, the coefficients have a relevant effect on the expression’s value for
our purpose.

After prefix-sum computation, the procedure ExtractBunch, which
is described in Algorithm 9, provides to extract the encoded codewords
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related to a generic bunch bi composing a block B of k bunches, i.e. B =
[ b0, . . . , bk−1 ]. Given a bunch bi of codewords and its signature ni and si,
for each codeword belonging to bi, a scalar processor E[j], with j ∈ [0, k−1],
is aware of the following informations: (i) where the representation of the
codeword starts within the codewords bit sequence, i.e. hi + c · si; (ii) the
length of the codeword to extract, i.e. si; (iii) the position of the extracted
codeword inside the resulting list, i.e. gi + c.

Algorithm 9 ExtractBunch( ni, si, hi, gi )

in[ ] bit-stream of encoded data.
out[ ] list of decoded integers.
1. For Each j ∈ [0, k − 1] In Parallel Do
2. For c← j To ni − 1 Step c = c+ k Do
3. begin← hi + c · si;
4. end← begin+ si;
5. out[gi + c] = BitCpy( in[ ], begin, end );
6. End Do
7. End Do

In Algorithm 9, the values that c assumes denote the sequence of integers
congruent j mod k for each processing unit E[j]; moreover BitCpy(A[ ], b, c )
denotes a macro returning the subsequence of digits in the A[ ] bit list from
the position b to c .

Finally, Algorithm 10 resumes the phases for decoding a block of code-
words. It represents the atomic procedure we iteratively use for extracting
the values encoded in a compressed postings list. As shown in Algorithm 9,
the procedure ExtractBunch is executed k times: once for each bunch
of B. As argued above, the parameter k has been chosen as size of B be-
cause it is the least integer permitting us to express the most fine-grained
computation by maintaining the full efficiency.

Algorithm 10 ExtractBlock( B )

1. g[ ]← PPSumk( [n0, . . . , nk−1] );
2. h[ ]← PPSumk( [s0 · n0, . . . , sk−1 · nk−1] );
3. For Each i ∈ [0, k − 1] Do
4. ExtractBunch( ni, si, hi, gi );
5. End Do

Extension for P4D. Many aspects discussed in the previous section
about VS are also valid for designing the P4D decoder. In other words,
P4D differs from VS for the following aspects: (i) the ni parameter is con-
stant in P4D (we refer ni as n̄ to remark that it does not change). In fact,
n̄ is constant and multiple of the word size so as to align the number of
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necessary memory words to the related data transfer; (ii) P4D exploits ex-
ceptions: in this way P4D exchanges a better compression ratio with lower
throughput. Note that, from this point of view, VS can be considered as
exclusively composed of exceptions, that means composed of varying-size
blocks of codewords.

Concerning the performance and the design of the decoder, to have a
unique for ni leads to a more efficient implementation of the method. In
Algorithm 9, by choosing n̄ as multiple of k we can use in each step all
the k scalar processors E[ ]. Contrarily, in the VS case this behavior is not
guaranteed because the inner For of Algorithm 9 involves, at the last loop,
only those processors with index ≤ (ni mod k). Moreover, in Algorithm 10,
if n̄ is constant we do not need to compute PPSumk( [n0...k−1] ) because its
computation equals to a multiplication, i.e. gi = n̄ · i.

Regarding to the second point, namely the exception management, we
defined a variant of the original method that simplifies the implementation,
and improves the throughput of our solution with respect to the throughput
reachable with original version. The past P4D [66] requires to define a
proper set of exceptions for each bunch b. This approach forces to perform
a further computation for extracting each set of exceptions related to a
bunch b. In other words, this means to execute a procedure that, after the
extraction of the “regular” codewords, extracts and merges the exceptions,
requires a time comparable to the time spent to perform Algorithm 10. In
particular, since the different bunches have their own number of different
size exceptions, we have to perform, for each set of exceptions related to a
bunch b, a procedure that is similar to Algorithm 9. To avoid this effort,
our solution merges all exceptions into one set. In other words, instead
of having a set of exceptions for each bunch b, we define a unique set of
exceptions for the block B. In this way we can reduce the overhead for
accessing the exceptions by aligning the representation of different sets of
exceptions. Each exception of the block B is represented by two parts: the
position of the codeword related to the exception in the decoded block B
and the value of the exception to concatenate with the related codeword,
namely the part of codeword exceeding its “regular” representation. Since
the number of codewords per bunch is constant (i.e. n̄) and the bunches in
B are k, the first part of the exception can be stored in logdk+ n̄e. Instead,
the bit size of the exceptions depends on the largest exception to represent
concerning the values in B.

Synthetic Data Tests

The previous sections describe the decoders designed respectively for VS
and P4D and point out the similarities and the differences between the two
solutions. The goal of the conducted tests is to measure the influence on the
decoding throughput of the following aspects: (i) the size of the integer list L
to decode; to take advantage from the parallelism of the target architecture,
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large L are needed to supply the array of processors. (ii) VS decoder suffers
of the variable size of a bunch, i.e. ni. On the one side this aspect permits
to VS to reach a better compression ratio, on the other hand, as argued
in the previous section, it means to handle a variable decoding schema
that is not full-efficiently performed by the proposed solution. Differently,
P4D uses a static memory representation that gives better performance in
term of throughput. (iii) greater the binary representation of the encoded
codewords is, more would be the time required to fetch such data from the
memory, i.e. more memory transactions are necessary. Thus, increasing the
value b, which denotes the average size of an encoded codeword in memory,
the decoding throughput decreases. We expect to find some correspondences
of these behaviors in the experiment results.
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Figure 3.19: Throughput decoding synthetic data by varying the list size
(L) and setting n and b with the bound values and the average one. L is
divided by 105.

VS coding. The first method we analyse is VS. In order to better exhibit
the effects of each one of the aspects introduced above, we measure the
throughput of the VS by varying, one at a time, the average value of the
related parameters, namely L, n, and b. Figure 3.19 shows the results
obtained varying the length of the posting lists in a range from 2 · 105 to
27 · 105 postings, while n, which denotes the average of the ni values, and b
are set equal to different couple of values. Figure 3.20 and Figure 3.21 show
the throughput obtained by varying n and b, respectively. In particular,
Figure 3.20 shows interesting results. The test concerns the effect on the
throughput of varying the average number of postings contained in the
bunches (i.e. n). The related results show that, when n is particularly
small, the efficiency of the instructions performed by the loop For . . . Do
in Algorithm 9 decreases as the number of scalar processors involved in the
decoding process. The effect is a drastic loss in throughput. Fortunately
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Figure 3.20: Throughput decoding synthetic data by varying the average
number of posting per bunch (n) and setting L and b with the bound values
and the average one.
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Figure 3.21: Throughput decoding synthetic data by varying the average
posting size b and setting n and L with the bound values and the average
one.

the probability to have the average number of elements per bunch equal to
few units (i.e. 1 or 2) is low. In fact, it means to instantiate a new bunch
for each encoded integer, but this implies to obtain a low compression ratio
and this is prevented by the VS encoder. In other words, in these cases,
we can state that to store the integers in-clear (i.e. one value per memory
word) is more convenient.

P4D coding. We provide, now, the results of the tests performed for
the P4D solution. Note that, in this case, the parameter n is constant as
required from the definition of the method, in particular we defined n = 32.
Moreover, as a consequence of the solution proposed in the previous sections,
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the management of the exceptions can be done in just one pass, namely
the latency for their treatment is independent of the number of exceptions
defined in the block B to decode.
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Figure 3.22: Throughput decoding synthetic data by varying the list size L
and setting n and b with the bound values and the average one. L is divided
by 105.

In Figure 3.22 the results are shown. It can be seen that the main
parameter affecting the throughput of P4D is L, i.e. the number of encoded
integers. When its average value is low, the size of the input is not enough
to completely exploit the array of processors within the architecture; as a
consequence the overall performance are low. Compared to VS, P4D is able
to guarantee an higher throughput. This is mainly due to a more static
schema used to encode the integers, thus, as argued in the previous section,
also the schema used for the decoding phase is less complex and it ensures
an higher throughput.

3.3.5 Conclusion

The scan operation is a simple and powerful parallel primitive function
with a broad range of applications. In this section we use K-model as
valid tool for the analysis of the efficiency and the complexity of algorithms
performing the prefix-sum operation when performed on GPUs. Driven by
the definitions of K-model performance indicators, we have defined an access
pattern able to minimize the measures inherent to the internal computation
performed on such model. Experiments confirmed the theoretical results by
reducing the time for computing each stream elements up to the 25% with
respect to the other methods existing in literature.

We also described an effective encoding schema that achieve promising
performance in decoding by exploiting graphics processing units that are
present in today’s computers. Experimental evaluation support our claims



3.3. Case Study: Parallel Prefix Sum PAGE 81

and show an impressive throughput of about 6 Giga integers decoded per
second.
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CHAPTER 4

Final Remarks

This PhD study focuses on evaluating the impact of performing general-
purpose computations on unconventional processing architectures1, which
were not intended for general-purpose HPC in the first place. The reasons
for exploiting unconventional processors in HPC could be raw computing
power, good performance per watt, or low cost in general. For example, the
computing power of platforms for graphics rendering continuously raises
and this motivates the use of these platforms to face the demand of compu-
tational resources by WebIR systems. To this end, we proposed a computa-
tional model to assess the suitability of the target architectures to various
applications as well as the computation complexity of an algorithm. By
using our model, we also proposed some novel techniques that improve the
performance of different existing algorithms and that prove the need of an
adequate model for such unconventional processing architectures.

In the following sections we briefly resume the main steps of this PhD
project, the main achieved results, the possible next developments, and the
list of publications.

4.1 Conclusions

Driven by the availability of novel affordable massively parallel processors,
in this PhD thesis, we aim at evaluating the impact of, novel, manycore-
based architectures on WebIR systems. For this reason, the last goal was to
study, design, and deploy optimal algorithmic solutions to WebIR-related
problems that specifically target novel architectures, which are considered,
in turn, made up of manycore processors.

1 e.g. Graphics Processing Units, Sony’s Cell/BE processor, etc.
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We initially stated how we intend to measure the impact of manycore-
based systems on WebIR-related problems. The impact of the proposed
solutions was measured in term of performance metrics, i.e. the time re-
quired for indexing process and the throughput reached decoding a posting
list. Then the entire study was decomposed in two different, correlated,
research lines.

First we identified some data-intensive problems requiring a non-trivial
solution to run efficiently on the target architectures. Such solutions require
a careful design phase allowing us to find appropriate ways to partition the
data, allocate processes, etc. in order to efficiently solve a data-intensive
problem on architectures that are more targeting compute-intensive prob-
lems. Second we generalized the lessons learned from the previous activity
and then we defined an accurate computational model, called K-model, tar-
geting the systems we are considering. As far as we are aware of, models
existing in literature fail to abstract novel processors such as GPUs or the
Cell/BE. In particular, the models we analyzed in our state-of-the-art sec-
tion are either too much general or based on assumptions that incorrectly
describe these novel architectures.

A closed-loop feedback process characterized the two research lines. On
the one hand, WebIR-related problems provided a test-bed for examining
if a technique designed to take into consideration a specific architectural
feature is then really effective. In this sense, the conducted tests helped
us to refine the abstract model. On the other hand the model was used to
design and compare some candidate algorithms in order to develop effective
and efficient solutions for the target problems.

In particular, we considered two case studies related to WebIR: index-
ing and posting list decoding. The studies conducted on the first case led
us to investigate on the efficiency of existing approaches for sorting. As a
result we defined a new solution capable of fully exploiting the computing
power of the available parallel cores as well as the bandwidth of the relative
communication channels. This is possible because our solution exploits a
novel data-access pattern properly designed to efficiently perform a sort-
ing network in the stream programming model, which is strictly related to
manycores. As expected from the analysis of the theoretical evaluation,
our solution is capable of performing similarly to the other state-of-the-art
solutions on small synthetic datasets. However, our sorting network out-
performs the different competitors when it is applied to develop a WebIR
indexer, thereby for sorting of larger datasets. This because our approach
does not use any auxiliary array in addition to the one required for the input
so it is able to sort larger amount of data in a single pass. In the second
case study, we attempt to define an efficient approach to perform the paral-
lel prefix sum. As a result we propose a new technique to efficiently perform
such operation. With respect to the existing solutions, our technique ex-
ploits a novel data access pattern that evenly balances the workload at each
step of the computation. Last but not the least, the proposed technique
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performs the parallel prefix sum in-place, hence it is more effective on large
input data. Successively we developed a posting list decoder that is able
to reach peak of throughput (in term of Mega of integers per second) that
is one order of magnitude higher than the one obtained on “conventional”
processing architectures.

4.2 Future Works

Concerning future works, let us briefly introduce a third possible scenario
related to the exploitation of many-core architectures in the WebIR systems.
We focus on the possibility of exploiting manycores for diversifying the Web
search results2.

In our previous study [99] we dealt with the adaptation of the pipeline
composing the Machine Learned Ranking (MLR) systems to diversifying
problem. In practice, a two-phase scoring scheme is usually employed dur-
ing the online query processing. In the first phase, a simple but inaccurate
scoring technique (e.g. BM25) is used for selecting a small subset of poten-
tially relevant documents from the entire collection. In the second phase,
the selected documents are scored again by using a complex but more ac-
curate MLR process. The final ranking is determined by the document
scores computed in the second phase. In order to perform the second phase
on manycores, the pipelined modules should be examined in the K-model
point of view, thereby optimizing the performance constraints during the
algorithm-design phase. After that, to implement such process on many-
cores, a MapReduce-based approach could be adopted as follows. Firstly
defining an efficient way to perform the functions related to the different
pipelined modules on the input documents. Specifically, the document set
have to be divided into a stream of elements by taking into account the
potential dependencies induced by the existing pipelined functions and the
possible early exit techniques [100]. To this end, we learned that a key
point is the problem of data-management (in particular the allocation and
the representation of the data) in order to maximize the data transfer band-
width and define an efficient program capable of fully exploiting the parallel
computing power. After the computation of the document-score pairs, we
have to reduce these pairs in order to return to the user the final list of doc-
uments. To this end, the pattern we used in [70] to implement the bitonic
merger is a viable solution for implementing this phase.

Furthermore, WebIR includes a number of problems whose solutions
can be re-design within the stream processing paradigm, which is related
to K-model. This could leads to obtain better performance with respect
to the one achievable on conventional architecture. Finally the experience
matured by applying K-model in WebIR context can be usefully re-used in
other application fields so as to take further advantage of more performing

2 for more details, see the appendix in Chapther 5
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processing units.

4.3 List of Publications

This section lists the publications related to my PhD studies. The first
paragraph contains the publications related to the main PhD topic, i.e.
the evaluation of the impact of novel computing architectures in WebIR
systems. The rest of the section lists the publications related to the results
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CHAPTER 5

Appendix

This section shows a more detailed description of the results obtained in
the additional research areas investigated during the PhD period. This
material is not necessary to the comprehension of the results concerning the
main PhD research topic but provides a summary of the results obtained in
different areas.

A. Job Scheduling

To build a grid infrastructure requires the development and deployment of
middleware, services, and tools. At middleware level the scheduler plays
a major role in order to efficiently and effectively schedule submitted jobs
on the available resources. The objective of the scheduler is to assign tasks
to specific resources maximizing the overall resource utilization and guar-
anteeing the QoS required by the applications. As depicted in Figure 5.1
we defined a two-level framework for dynamically scheduling a continuous
stream of sequential and multi-threaded batch jobs on large-scale grids of
interconnected clusters of heterogeneous machines.

At the highest level the Meta Scheduler (MS) dispatches jobs to clus-
ters according to a policy for balancing the workload by assigning a job to
the less loaded cluster. To estimate the workload on each cluster, an array
of max positions is defined for each one. The parameter max identifies the
number of possible priorities that can be assigned to submitted jobs. Each
priority value corresponds to an array position, which stores the amount of
workload due to jobs with the corresponding priority value, plus the amount
of load due to jobs with higher priority. According to this estimation, clus-
ters are ranked, and a job is scheduled to the cluster with the smallest rank.
The job priority is computed by summing the partial priority values ∆p,j
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Figure 5.1: Sketch of the two-level scheduling framework.

computed by two heuristics (Hdeadline and Hlicense) each one managing an
aspect of the considered problem.

Hdeadline aims to improve the number of jobs that execute respecting
their deadline. Jobs closer to their deadline get a boost in priority as a
function of the jobs computational requirements. In particular, the boost
∆p,j to the priority of a job j is proportional to the proximity of the time
at which it has to start its execution to meet its deadline. The boost ∆p,j

is computed as follows. Given a fixed size temporal window the top-level
scheduler assigns a job to a class of priority so that only a small subset of
the jobs related to the current temporal window has the highest priority.
To this end the temporal domain is divided into max intervals then each of
them has a duration equal to twice the previous interval, which is related to
an higher priority class. Depending on the proximity, which is computed as
deadline time minus the wall clock time minus the job expected duration, the
corresponding job is assigned to a priority class. Finally ∆p,j is computed
as function of its corresponding priority class.

Hlicense computes ∆p,j to favor the execution of jobs that improve the
license usage. ∆p,j is computed as a function of the number of licenses
required by a job. Jobs asking for a higher number of licenses get a boost
in preference that gives them an advantage in scheduling. This pushes jobs
using many licenses to be scheduled first, this way releasing a number of
licenses.

The results concerning the tests conducted [14] show that MS is able to
dispatch jobs among underlying clusters, distributing the workload propor-
tionally to the actual cluster computational power, which is the main task
of the the highest level scheduling module.

At bottom of the scheduler hierarchy, each cluster is managed by an
instance of Convergent Scheduler (CS). This framework exploits a job-
machine matrix P |N |×|M | where N denotes the set of jobs to be matched
with the machines belonging to the cluster M . Each entry pi,m ∈ P denotes
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the preference degree of a job i on a machine m.

Heuristic #1

Heuristic #2

Heuristic ...

P =

N M

Heuristics Matching

p
|N|,|M|

p
1,1

Figure 5.2: Structure of the Convergent Scheduling framework.

As shown in Figure 5.2 the current scheduling framework is structured
according to two main phases: Heuristics and Matching. The matrix P con-
stitutes the common interface to the heuristics set. Each heuristics changes
priority values in order to compute job-machine matching degrees. The
final priority value pi,m is the linear combination of the values computed
by each heuristics. Managing the constraints by using distinct heuristics,
and structuring the framework in subsequent phases, leads to a modular
structure that makes it easier to extend and/or to modify. Moreover, to
manage the problem constraints, in [13] we revised and extended the set
of heuristics proposed in [12], and exploited by the scheduler for making
decisions. The matching phase elaborates the resulting P matrix to carry
out a new scheduling plan, which can be updated whenever it is required
by the adopted policy (e.g. event-driven policy: variations in N and/or
M sets; time-driven policy; a mix of the two previous ones). Each matrix
element expresses the preference degree in selecting a machine m to run a
job i. The aim of the matching algorithm is to compute the associations
job-machine to which correspond a larger preference degree, according to
the problem constraints. The elements of P are arranged in descending
order, and the new scheduling plan is built by incrementally including the
job-machine associations, and updating the available resources. Once an
association job-machine takes place, the set of hardware and software re-
sources is updated.

Table 5.1 resumes some of the most significant experimental results ob-
tained from the comparison of our solution, namely CS, and other two of
the most popular scheduling techniques used in literature, i.e. Easy Back-
filling (Easy BF) [101] and its enhanced version Flexible Backfilling (Flex
BF) [102]. The tests have been conducted on GridSim platform [103] by
simulating a stream of 1500 jobs and varying the average job inter-arrival
time Ta in the set of simulator time-unit values { 1, 4, 6 } (all details on the
test methodology and further experiments are shown in [13]). In particu-
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Ta
Scheduling Resource Job Scheduling Late
Technique Usage Slowown Overhead (sec.) Jobs

1
Easy BF 89.31% 2.82 32.4 56.2%
Flex BF 90.74% 2.79 31.9 54.5%

CS 94.42% 1.79 32.7 40.7%

4
Easy BF 86.66% 1.63 19.3 38.9%
Flex BF 86.98% 1.59 18.9 37.9%

CS 92.10% 1.18 21.0 23.3%

6
Easy BF 93.30% 1.14 15.3 24.4%
Flex BF 93.32% 1.11 14.8 24.3%

CS 98.65% 1.03 20.9 16.4%

Table 5.1: Performance of different scheduling techniques in different tests
varying the job inter-arrival time (in bold the best results).

lar the table consists of the following columns: (i) Resource Usage, which
shows the average hardware and software resource utilization percentage;
(ii) Job Slowdown, which shows the average job slowdown that is calculated,
for each job, as (Tw + Te)/Te, with Tw the time that a job spends waiting
to start and/or restart its execution, and Te the job execution time; (iii)
Scheduling Overhead, which shows the overall time required to compute
the scheduling plans; (iv) Late Job, which shows the average percentage of
jobs ending after the required deadline. The results clearly show that CS
is capable of obtaining a more effective and efficient resource utilization by
spending a negligible extra-time.

B. Efficient Diversification of WSE Results

Users interact with WSEs by usually typing a few keywords representing
their information need. These keywords, however, are often ambiguous and
have more than one possible interpretation [104]. By diversifying search re-
sults for covering at least the most popular interpretations of these queries,
we would avoid the submission of most of these second-step queries result-
ing in a twofold advantages: minimizing the risk of dissatisfaction of WSE
users, and decreasing the computational load over it. In our formulation,
we mostly focus our contribution on presenting efficient diversification tech-
niques that would not impact negatively on the quality of the query results.
Result diversification is defined as the problem of maximizing the quality of
the results returned for ambiguous queries by taking into account the past
specializations of such queries available in the query log.

Query Log Based Diversification. We assume that a query log Q is
composed by a set of records 〈 qi, ui, ti, Vi, Gi 〉 registering, for each
submitted query qi: (i) the anonymous user ui; (ii) the timestamp ti at
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which ui issued qi; (iii) the set Vi of URLs of documents returned as top-k
results of the query, and, (iv), the set Ci of URLs corresponding to results
clicked by ui.

Users generally query a search engine by submitting a sequence of re-
quests. Splitting the chronologically ordered sequence of queries submitted
by a given user into sessions, is a challenging research topic [105, 106]. Since
session splitting methodologies are out of the scope of this study, we resort
to adopt a state-of-the-art technique to devise user logical sessions whose
discovering is very important for our result diversification framework. For
a complete coverage of the method we refer to the original papers [107]. As
a result, by processing the query log Q we obtain the set of logical user ses-
sions exploited by our result diversification solution which is entirely based
on information mined from query logs.

Mining Specializations from Query Logs. Let q and q′ be two queries
submitted by the same user during the same logical session recorded in
Q. We adopt the terminology proposed in [107], and we say that a query
q′ is a “specialization” of q if the user information need is stated more
precisely in q′ than in q. Let us call Sq the set of specializations of an
ambiguous/faceted query q mined from the query log. Given the above
generic definition, any algorithm that exploits the knowledge present in
query log sessions to provide users with useful suggestions of related queries,
can be easily adapted to the purpose of devising specializations of submitted
queries. Given the popularity function f() that computes the frequency of
a query topic in Q, and a query recommendation algorithm A trained with
query log Q, the Ambiguous Query Detect algorithm proposed in [17] can be
used to detect efficiently and effectively queries that can benefit from result
diversification, and to compute for them the set of popular specializations
along with their probabilities. The algorithm used learns the suggestion
model from the query log, and returns as related specializations, only queries
that are present in Q, and for which related probabilities can be, thus, easily
computed. Also, this makes it an efficient and effective technique to devise
ambiguous queries and their specializations.

Definition 5 (Probability of Specialization). Let Q̂ = {q ∈ Q, s.t. |Sq| >
1} be the set of ambiguous queries in Q, and P (q′|q) the probability for

q ∈ Q̂ to be specialized from q′ ∈ Sq.

We assume that the distribution underlying the possible specialization
of an ambiguous query is known and complete, i.e.,

∑
q′∈Sq

P (q′|q) = 1,

and P (q′|q) = 0,∀q′ /∈ Sq, ∀q ∈ Q̂. To our purposes these probability
distributions are simply estimated by the following formula:

P (q′|q) =
f(q′)∑

q′∈Sq
f(q′)
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Now, let us give some additional assumptions and notations. D is the
collection of documents indexed by the search engine which returns, for each
submitted query q, an ordered list Rq of documents. The rank of document
d ∈ D within Rq is indicated with rank(d,Rq). Moreover, let d1 and d2 be
two documents of D, and δ : D ×D → [0,1] a distance function having the
non-negative, and symmetric properties, i.e. (i) δ(d1, d2) = 0 iff d1 = d2,
and (ii) δ(d1, d2) = δ(d2, d1).

Definition 6 (Results’ Utility). The utility of a result d ∈ Rq for a spe-
cialization q′ is defined as:

U(d|Rq′) =
∑
d′∈Rq′

1− δ(d, d′)
rank(d′, Rq′)

(5.1)

where Rq′ is the list of results that the search engine returned for specialized
query q′.

Such utility represents how good d ∈ Rq is for satisfying a user intent
that is better represented by specialization q′. The intuition for U is that
a result d ∈ Rq is more useful for specialization q′ if it is very similar to
a highly ranked item contained in the results list Rq′ . The utility function
specified in Equation (5.1) uses a function to measure the distance between
documents. Let us define such function δ(d1, d2) as follows:

δ(d1, d2) = 1− cosine(d1, d2) (5.2)

where cosine(d1, d2) is the cosine similarity between the two documents.
Using the above definitions, we are able to define different query-logs-

based approaches to diversification. In [17] the Agrawal et al. [108] al-
gorithm, and the Santos’s xQuAD framework [109] have been adapted by
using the above formulation. The following formulation, instead, describes
our solution.

The MaxUtiliy-Diversify Problem. The problem addressed in the
Agrawal’s paper, is actually the maximization of the weighted coverage of
the categories with pertinent results. The objective function does not con-
sider directly the number of categories covered by the result set; it might
be the case that even if the categories are less than |Sq|, some of these will
not be covered by the results set. This may happen because the objective
function considers explicitly how much a document satisfies a given cate-
gory. Hence, if a category that is a dominant interpretation of the query q
is not covered adequately, more documents related to such category will be
selected, possibly at the expense of other categories.

We believe, instead, that it is possible to maximize the sum of the var-
ious utilities for the chosen subset S of documents by guaranteeing that
query specializations are covered proportionally to the associated probabil-
ities P (q′|q). Motivated by the above observation, we define the following
problem.
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Definition 7 (MaxUtility-Diversify). Given: query q, the set Rq of
results for q, the probabilities P (q′|q) for all the various specializations q′ ∈
Sq, the utilities U(d|Rq′) of documents, and an integer k. Find a set of
documents S ⊆ Rq with |S| = k that maximizes

U(S|q) =

Relevance︷ ︸︸ ︷
(1− λ)|Sq|

∑
d∈S

P (d|q) + λ
∑
q′∈Sq

P (q′|q)
∑
d∈S

U(d|Rq′)︸ ︷︷ ︸
Diversity

(5.3)

with the constraints that every specialization is covered proportionally to its
probability. Formally, let Rq ./ q

′ = {d ∈ Rq|U(d|Rq′) > 0}. We require
that for each q′ ∈ Sq, |Rq ./ q

′| ≥ bkP (q′|q)c.

Our OptSelect algorithm aims at selecting from Rq, the k results that
maximize the overall utility of the results list. When |Sq| ≤ k the results are
in someway split into |Sq| subsets each one covering a distinct specializa-
tions. The more popular a specialization, the greater the number of results
relevant for it. Obviously, if |Sq| > k we select from Sq the k specializations
with the largest probabilities.

Since U(d|Rq′) measures the utility of a document d when the submitted
query was q and the intended specialization q′, the total utility for each spe-
cialization q′ equals to the sum of the utilities of all the selected documents.
Finally, the sum over all possible specializations of the query q weighted by
P (q′|q), gives the possibility to maximize the global utility of the results set
Rq over all the considered specializations of the query.

While QL-Diversify aims to maximize the probability of covering use-
ful categories, the MaxUtility-Diversify aims to maximize directly the
overall utility. This simple relaxation allows the problem to be simplified
and solved in a very simple and efficient way. Furthermore, the constraints
bounding the minimum number of results tied to a given specialization,
boost the quality of the final diversified result list, ensuring that the cov-
ered specializations reflect the most popular preferences expressed by users
in the past.

Therefore, to maximize U(S|q) in Equation (5.3) we simply resort to
compute for each d ∈ Rq the utility of d for specializations q′ ∈ Sq and, then,
to select the top-k highest ranked documents. Obviously, we have to care-
fully select results to be included in the final list in order to avoid choosing
results that are relevant only for a single specialization. For this reason we
use a collection of |Sq| min-heaps each of those keeps the top bk ·P (q′|q)c+1
useful documents for that specialization. The algorithm returns the set S
maximizing the objective function in Equation (5.3). Moreover, the running
time of the algorithm is linear in the size of document considered. Indeed,
all the heap operations are carried out on data structures having a constant
size bounded by k.
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Similarly to the other two solutions discussed, the proposed solution is
computed by using a greedy algorithm. OptSelect is however computation-
ally less expensive than its competitors. The main reason is that for each
inserted element, it does not recompute the marginal utility of the remain-
ing documents w.r.t. all the specializations. The main computational cost
is given by the procedure which tries to add elements to each heap related
to a specialization in Sq. Since each heap is of at most k positions, each
insertion has cost log k, and globally the algorithm costs O( |Rq|·|Sq|·log k ).

The conducted tests concern the efficacy and the efficiency of our so-
lution of the three studied methods. Regarding to the efficacy, the results
reported in the [17] show that OptSelect and xQuAD behave similarly, while
IASelect performs always worse. After efficacy, we conducted some tests in
the TREC 2009 Web track’s Diversity Task framework to evaluate the effi-
ciency. In particular, we measured the time needed by OptSelect, xQuAD
and IASelect to diversify the list of retrieved documents. The average time
required by the three algorithms to diversify the initial set of documents for
the 50 queries of the TREC 2009 Web Track’s Diversity Task show that our
approach is two orders of magnitude faster than its competitors.

Diversification in Additive MLR Systems. Now, we show how to
derive the most likely refinements, and how to use them to diversify the
list of results. Our focus is on plugging efficient diversification in additive
Machine Learned Ranking (MLR) systems. In modern WSE query response
time constraints are satisfied employing a two-phase scoring. The first phase
inaccurately selects a small subset of potentially relevant documents from
the entire collection (e.g. a BM25 variant). In the second phase, resulting
candidate documents are scored again by a complex and accurate MLR ar-
chitecture. The final rank is usually determined by additive ensembles (e.g.
boosted decision trees [15]), where many scorers are executed sequentially
in a chain and the results of the scorers are added to compute the final
document score.

Here, we show how such a solution needs to be adapted in order to
be plugged in a modern MLR system having a pipelined architecture. Let
us assume that, given a query q, MLR algorithms are used to rank a set
D = {d1, . . . , dm} of documents according to their relevance to q. Then
the k documents with the highest score are returned. To this end, additive
ensembles are used to compute the final score s(di) of a document di as a
sum over many, simple scorers, i.e. s(di) =

∑n
j=1 fj(di), where fj is a scorer

that belongs to a set of n scorers executed in a sequence. Moreover, the set
of scorers is expected to be sorted by decreasing order of importance. This
because, as argued in [100], if we can estimate the likelihood that di will
end up within the top-k documents, we can early exit the s(di) computation
at any position t < n, computing a partial final score using only the first t
scorers. For these reasons, it is important to define a solution that is fully
integrable with the existing systems. Another important aspect to consider
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is the cost of each fj that must be sustainable w.r.t. the others scorers. In
particular, we assume that the cost c of computing fj(di) is constant and
the total cost of scoring all documents in D is, thus C(D) = c ·m · n. For
tasks with tight constraints on execution time, this cost is not sustainable
if both m and n are high (e.g. m > 105 and n > 103 as shown in [100]).

To achieve the previously specified goal, WSE needs some additional
modules in order to enable the diversification stage, see Figure 5.3. Briefly,
our idea is the following. Given a query q, perform simultaneously both
the selection of the documents potentially relevant for q from the entire
collection (module BM25) and the retrieve of the specializations for q (module
SS). Assuming that SS performs faster than both DR and BM25, the module
fDVR can be placed in any position of the MLR pipeline, i.e. f1 →... fn. The
target of fDVR is, then, to exploit Equation (5.1) for properly increasing the
rank of the incoming documents as the other pipelined scorers do. Note
that in this case, that is different from OptSelect running context, the final
extraction of top-k documents is left to the MLR pipeline that already
performs this operation automatically. In the following, we give more detail
on our approach.

BM25

SS

DR f1 fDVR fn

〈 q′, P (q′|q), R′q 〉 ∀q′∈Sq

D

query

q

q

Figure 5.3: A sketch of the WSE architecture enabling diversification.

For any given query q submitted to the engine, we dispatch q to the
document retriever DR that processes the query on the inverted index, and
to the module SS that generates the specializations Sq for q. SS processes
q on a specific inverted index structure derived from query logs: the same
proposed in [110]. SS returns a set of specializations Sq, a distribution of
probability P (q′|q)∀q′ ∈ Sq, and a set Rq′∀q′ ∈ Sq of sketches representing
the most relevant documents for each specialization. Concerning the feasi-
bility in space of the inverted index in SS, note that each set Rq′ related to
a specialization q′ ∈ Sq is very small compared to the set of whole docu-
ments Rq to re-rank, i.e. |Rq′ | � |Rq|. Furthermore, using shingles [111],
only a sketch of a few hundred bytes, and not the whole documents, can
be used to represent a document without significant loss in the precision
of our method1. Resuming, let ` be the average size in bytes of a shingle
representing a document and let h be the average space needed to store the
set Sq of specializations for a query q by using the related inverted index,

1 note that shingles are already maintained by the WSE for near duplicate document
detection.



PAGE 98 CHAPTER 5. Appendix

we need at most ( N · |Sq̂| · |Rq̂ ′ | · ` + N ·h ) bytes for storing N ambiguous
query along with the data needed to assess the similarity among results
lists.

Now, let us focus on fDVR. As the other modules belonging to the MLR
pipeline, also fDVR receives a set of documents D as a stream from its pre-
ceding module, scores the elements, then release the updated set. However,
contrarily to other diversifying methods analyzed in [17], fDVR is able to
compute on the fly the diversity-score for each document d. In fact, ex-
ploiting the knowledge retrieved from the query log, our approach does not
require to know in advance the composition of D to diversify the query re-
sult because SS provides the proper mix of different means related to q. In
particular, we firstly compute for each d ∈ D the related shingle. As stated
in [111], the related sketch can be efficiently computed (in time linear in the
size of the document d) and, given two sketches, the similarity 1 − δ(d, d′)
of the corresponding documents (i.e. d ∈ D and each document d′ returned
by SS, i.e. d′ ∈ Rq′ ∀q′ ∈ Sq) can be computed in time linear in the size
of the sketches. The resulting similarity thus concurs to U(d|Rq′), i.e. the
variation of final score of the document d.

As conclusion, exploiting this approach, the selection of the relevant
results to return to the user can be done by simply selecting the top-k
documents with the highest score.
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