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Introduction

A rate-independent system is a specific case of quasistatic systems. It is time-dependent
but its behavior is slow enough that the inertial effects can be ignored and the systems are
affected only by external loadings. Moreover, in rate-independent systems, the rate of change
of solutions to the systems depends only on the change of the velocity of the loading (it is
independent of the velocity itself, and hence “rate-independent”).

In this introduction, for simplicity, let us consider a point x(t) with the initial position
x(0) = x0 in some finite dimensional normed vector space X, subject to a force defined by a
smooth energy functional E : [0, T ]×X → [0,+∞) and a convex, positively 1-homogeneous
dissipation potential Ψ : X → [0,+∞). We say that x(·) is a solution to the rate-independent
system (E ,Ψ, x0) if the following inclusion holds true,

0 ∈ ∂Ψ(ẋ(t)) + ∂xE (t, x(t)) for a.e. t ∈ (0, T ),

where ∂Ψ is the sub-differential of the convex function Ψ.
Some specific examples of rate-independent systems were studied by many authors includ-

ing Francfort, Marigo, Larsen, Dal Maso and Lazzaroni on brittle fractures [12, 14, 15, 9], Dal
Maso, DeSimone and Solombrino on the Cam-Clay model [8], Dal Maso, DeSimone, Mora
and Morini on plasticity with softening [6, 7], Alberti and DeSimone on capillary drops [1].
The reader is referred to the surveys [17, 19, 20] by Mielke for further references.

The case of a convex energy is quite classical and was considered long time ago by many
authors. For instance, if the energy functional E (t, ·) is uniformly convex and satisfies some
suitable smoothness conditions, then the system admits a unique solution x(·) which is
Lipschitz continuous [28]. However, in the case that the energy functional E is not convex,
uniqueness may be lost (see e.g. Example 1.6 in Chapter 1) and strong solutions may not exist
[31]. Hence, the question of defining a suitable weak solution for (1.1) arises naturally. There
are several ways to define a weak solution, such as the concept of energetic solution [27, 12],
BV solution [25, 26], epsilon-neighborhood solution [17, 10], local solution [34], parametrized
solution [26] and epsilon-stable solution [15]. In this thesis, we shall consider energetic
solutions, BV solutions and epsilon-neighborhood solutions in a very abstract model.

The notion of energetic solution is the first attempt to answer the question of finding
weak solutions. This notion was introduced by Mielke and Theil [27] for shape-memory alloys
(Francfort and Marigo [12] developed a very similar of energetic solutions in the context of
fracture mechanics at about the same time). Then the existence of energetic solutions was
established in many other rate-independent systems as well as for the abstract model, see
e.g. [28, 16, 18, 13, 19, 21]. A function x : [0, T ] → X is called an energetic solution of the
rate-independent system (E ,Ψ, x0), if it satisfies the initial condition x(0) = x0 and x(t),
the global stability

E (t, x(t)) ≤ E (t, x) + Ψ(x− x(t))
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for all (t, x) ∈ [0, T ]×X, and the energy-dissipation balance

E (t2, x(t2))− E (t1, x(t1)) =

∫ t2

t1

∂tE (s, x(s))ds−Diss(x; [t1, t2])

for all 0 ≤ t1 ≤ t2 ≤ T .
If the energy functional E (t, ·) is convex, then the global stability ensures that at every

time t, x(t) is the optimal position, in the sense that any loss of energy when moving to
another position will be compensated by dissipation. However, when the energy functional
is non-convex, then the global stability is too strong. In fact, there are situations where the
system admits a strong solution which is not an energetic solution (see e.g. [31]). Moreover,
global minimizers make the energetic solutions jump easier than physically feasible and into
far-apart energetic configurations, and hence fail to describe the related physical phenomena.

For general (non-convex) energy functionals, some notions based on local minimality are
preferred to overcome this shortcoming of energetic solutions. One of these notions is BV
solution constructed by vanishing viscosity. This notion was introduced by Mielke, Rossi
and Savaré [25, 26]. The idea is to add a small viscosity term to the dissipation functional
Ψ. This results in a new dissipation functional Ψε, which has super-linear growth at infinity
and which converges to Ψ as ε tends to zero in an appropriate meaning. The super-linear
growth of Ψε makes the limit x(·) of the sequence {xε(·)} when ε goes to 0 difficult to jump,
and therefore x(·) should prefer a close-by state which is locally stable to a far-away state
which is globally stable. Moreover, Mielke, Rossi and Savaré have proved in [26] that the
limit x(·) is a BV solution to the system (E ,Ψ, x0), which means x(0) = x0 and x(t) satisfies
the weak local stability,

|∂xE (t, x(t))| ≤ 1 provided that t 7→ x(t) is continuous at t,

and the new energy-dissipation balance,

E (t2, x(t2))− E (t1, x(t1)) =

∫ t2

t1

∂tE (s, x(s))ds−Dissnew(x(t); [t1, t2])

for all 0 ≤ t1 ≤ t2 ≤ T.
Note that the weak local stability in BV solutions only holds at continuity points. The

information at jump points is contained in the new energy-dissipation balance. Moreover,
the new energy-dissipation balance also reveals the information of the solutions along the
jump path. Indeed, if the BV solution x(·) jumps at time t, then there exists an absolutely
continuous path v : [0, 1] → X connecting x(t−) and x(t+) such that along this path, we
have that |∂xE (t0, v(s))| ≥ 1 for all s ∈ [0, 1] (see [25, 26]).

However, BV solutions constructed by vanishing viscosity depend heavily on the choice
of the viscosity. There are examples (see Chapter 1) showing that different viscosities make
BV solutions jump in different time.

Another way to avoid global minimality is to find the minimizer in a small neighborhood
of order ε and obtain an epsilon-neighborhood solution xε(·). When taking the limit of xε(·)
as ε → 0, we get a function x(·) which satisfies both the weak local stability and the new
energy-dissipation balance. We call the limit function x(·) BV solution constructed by epsilon
neighborhood.
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The epsilon-neighborhood approach was first suggested in [17] (Section 6) for a one-
dimensional case when ε is chosen proportional to the square root of the time-step. The
weak local stability was then obtained in [10]. However, it seems that the fact that the
solution also satisfies the new energy-dissipation balance does not appear explicitly in the
literature. In this thesis, we shall prove it in detail (see Section 2.3).

Another topic of this thesis is about regularity of weak solutions to rate-independent
systems (see Chapter 3). The regularity for energetic solutions when the energy functional
is convex was already considered by Mielke, Rossi and Thomas [19, 24, 33]. However, if
the energy functional is non-convex, there are very few results on the regularity of energetic
solutions.

The first regularity question is about the jump set of solutions. Since each solution
has bounded variation, the number of jumps is at most countable. However, without the
convexity assumption, there are examples showing that energetic solutions may have dense
jumps (see Section 3.2). One of our results is to provide sufficient conditions to ensure that
weak solutions have only finitely many jumps. More precisely, we consider one dimensional
models, in which the energy functional E is C2 and satisfies

{(t, x) ∈ [0, T ]× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = 0} = ∅

and the dissipation Ψ is the usual distance in R. We show that every weak solution x(·)
satisfying the weak local stability and the energy-dissipation upper bound

E (t2, x(t2))− E (t1, x(t1)) ≤
t2∫
t1

∂tE (s, x(s))ds−Diss(x(·); [t1, t2])

for all 0 ≤ t1 ≤ t2 ≤ T (e.g., energetic solutions, epsilon-neighborhood solutions and BV
solutions) has only finitely many jumps.

The second question is about the smoothness of solutions. In one-dimension, with the
assumption that E (t, x) is of class C3 and the set

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xxxE (t, x) = 0}

is finite, we can show that any weak solution x(·) (in the same meaning as above) is of class
SBV. Moreover, under some stronger conditions, we derive better smoothness properties for
energetic solutions, such as the pointwise differentiability and the piecewise C1-regularity.

In summary, this thesis contains four chapters. In Chapter 1 and 2, we review of the
definitions of energetic and BV solutions in an abstract setting, with proofs in suitably
simplified cases. In particular, we give a complete proof of the convergence of epsilon-
neighborhood solutions to BV solutions, which seems to be not contained in the previous
works [17, 10]. In Chapter 3, we consider the regularity of weak solutions and in particular
energetic solutions. More precisely, we provide sufficient conditions to ensure that the weak
solutions have finitely many jumps, or are of class SBV, and the pointwise differentiable, or
piecewise C1 for energetic solutions. These regularity results are taken from the preprint
[22]. Finally, in Chapter 4, we explicitly compute the different types of weak solutions in
many examples.

The research stated in this thesis is far from complete. First at all, we would like to
extend the results of epsilon-neighborhood solutions in Section 2.3 to higher dimensions.
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Moreover, we would like to improve the weak local stability for BV solutions constructed by
epsilon-neighborhood. Note that this problem is not simple since there are examples (see
Example 4.5) showing that BV solutions (both obtained by vanishing viscosity and epsilon
neighborhood) do not satisfy the strong local stability. Second, the techniques we employed
in Chapter 3 are rather specific for the one-dimensional case and some further work would
be needed to obtain the results in higher dimensions. Finally, we would like to develop the
theory of BV solutions in Chapter 2 and the regularity results in Chapter 3 in some concrete
infinite-dimensional example, such as capillary drops.
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Chapter 1

Weak solutions of rate-independent
systems

1 General ideas about rate-independent systems

A rate-independent system is a specific case of a larger class of phenomena which are called
quasistatic systems. Quasistatic systems are considered as the bridge between dynamic and
static systems, and are used widely in mathematical frameworks as well as physical models
to describe many phenomena involved in plasticity, phase transformation (e.g. electromag-
netism, superconductivity or dry friction on surfaces), and some hysteresis models (e.g.
shape-memory alloy, quasistatic delamination, fracture). Such systems are time-dependent,
but unlike dynamic systems, their behavior is slow enough such that the inertial effects can
be ignored.

Notice that quasistatic systems have no dynamics of their own. Hence, the changes of
the systems are caused solely by the changes of the external conditions. Moreover, the time
scales of the external conditions are much longer than the intrinsic time scales of the systems.
This property makes the quasistatic systems close to equilibrium at almost every moment.

Although most of quasistatic systems are reversible, the presence of a dissipation effect
makes rate-independent systems irreversible (The reader is referred to Section 1.3 below
for the concept of irreversibility). On the other hand, in rate-independent systems, we do
not allow for viscosity, while in a general quasistatic system, viscous effects may still be
present. Another characterization of rate-independent systems is that, the rate of change
of the solutions to the systems depends only on the change of the velocity of the loading.
Due to this reason, these systems are called rate-independent. For example, if the loading
acts twice faster, then the solutions also respond twice faster. Later on, we will see that this
property is described by the positively 1-homogeneity of the dissipation potential.

In short, by rate-independent systems we denote those systems which have no inertial
effects, no kinetic energy, no viscous effects, are irreversible, and are rate-independent. For
a detailed discussion on the rate-independent systems, we refer to the book [18].

1.1 An abstract framework

We now give an abstract framework for rate-independent systems. Let us consider a point
x(t), dependent on the time t, in some finite-dimensional normed vector space X. Since
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the system is considered to be quasistatic, the energy functional E does not depend on the
velocity ẋ, i.e., E : [0, T ]×X → [0,+∞) consists only the potential energy.

Apart from the energy, we have a dissipation in the model, which describes the loss of
energy caused by the changing in position of the system. Usually, dissipation is characterized
by the convex dissipation potential Ψ : X → [0,+∞), which is supposed to be positively
1-homogeneous to make the system rate-independent.

More precisely, from now on, we shall use the following assumptions.

• X is finite-dimensional normed vector space.

• E : [0, T ]×X → [0,+∞) is of class C2 and satisfies the following technical assumption:
There exists λ = λ(E ) such that

|∂tE (s, x)| ≤ λE (s, x) for all (s, x) ∈ [0, T ]×X.

• Ψ : X → [0,+∞) is convex and positively 1-homogeneous, i.e., Ψ(γv) = γΨ(v) for all
γ > 0.

Then the rate-independent system including the energy E and the dissipation Ψ can be
written as the following differential inclusion

0 ∈ ∂Ψ(ẋ(t)) + ∂xE (t, x(t)) for a.e. t ∈ (0, T ). (1.1)

Here ∂Ψ is the sub-differential of the convex function Ψ,

∂Ψ(v) := {η ∈ X∗| ∀w ∈ X : Ψ(w) ≥ Ψ(v) + 〈η, w − v〉}.

(see [30] Section 23 for more detail about sub-differential of convex functions).
The following example is taken from [2].

Example 1.1. Let us consider a basic example of a small box pulled by a spring on a rough
surface (see Figure 1). If we assume that the other end of the spring moves at a prescribed
slow speed, then at every moment, the box is subject to two forces: the external force (fe)
due to the spring, and the frictional force (fa) due to the rough surface.

More precisely, let us denote by x(t) the center of the box, and by y(t) the end of the
spring. Here x(t) and y(t) are points of R2, but in the following we can think that they are
point masses in Rd. Now if we call l0 the length at rest of the spring and c the constant of
the spring, then the external force is

fe = −∂xE (t, x),

where the potential energy is

E (t, x) :=
c

2
(x− y(t) + l0)

2.

On the other hand, since the dissipation force fa in this case is caused by dry friction, it
obeys the following law

fa :=

{
−k v

|v| if v 6= 0,

−fe and |fa| ≤ k if v = 0.

Here v is the velocity of the box, and k is the frictional coefficient.

2



Figure 1. Small box on a rough surface (This picture is taken from [2]).

Therefore, if at the beginning the external force is small (that is, |fe| < k), then it is
cancelled by the frictional force (fa). Therefore, the system is in static equilibrium and the
box does not move. If we keep pulling the end of the spring, the external force becomes
larger and larger, and when it reaches the critical value (|fe| = k), the frictional force can no
longer balance the external force. Equilibrium is broken and the box starts moving together
with the spring.

The equation of dynamics is then

mẍ = fa + fe,

here we call m the mass of the box.
However, if everything is moving so slowly, we can neglect the term mẍ. Thus, we get

the following force balance

0 = fa + fe. (1.2)

Notice that this system is quasistatic only as a limit of approximation. And indeed, the
body moves even if the total force is 0.

Now if we define the dissipation function Ψ(v) := k|v|, then by direct computation, we
see that −fa ∈ ∂Ψ(v) (we denote by ∂Ψ(v) the sub-differential of Ψ at v). Hence, equation
(1.2) becomes

0 ∈ ∂Ψ(ẋ(t)) + ∂xE (t, x(t)),

which is exactly the equation (1.1).

1.2 Solutions to rate-independent systems

In the case that the energy functional E (t, ·) is uniformly convex and satisfies some suitable
smoothness conditions, then (1.1) admits a unique solution which is Lipschitz continuous (see
[28] Section 7). However, in the case that the energy functional E is not convex, uniqueness
may be lost (see Example 1.6) and strong solutions may not exist [31]. Hence, the question
on how to define a suitable weak solution for (1.1) arises naturally. In the following, we
will introduce the notions of weak solution, energetic solution, BV solution, and epsilon-
neighborhood solution to the system (1.1). Some other notions, e.g. parameterized solution,
epsilon stable solution, can be found in [21, 15].

3



1.3 Some basic properties of weak solutions

Rate independence

If x(t) is a solution to the system (E ,Ψ), then it remains solution to this system after
rescaling time.

More precisely, if we denote

Ẽ (s, x) := E (t(s), x),

with s 7→ t(s) is continuous and increasing, then x̃(s) := x(t(s)) is a solution to the system
(Ẽ ,Ψ).

Time irreversibility

If x(t) is a solution to the system (E ,Ψ), then it is no longer solution to the system after
reversing the time.

More precisely, if we denote
Ẽ (t, x) := E (−t, x),

then in general x̃(t) := x(−t) is not a solution to the system (Ẽ ,Ψ).

Symmetry

Assume that x(t) is a solution to the system (E ,Ψ). Denote

Ẽ (t, x) := E (t,Φ(x)),

where Φ : X → X is an isometry w.r.t. Ψ, i.e., Ψ(Φ(x)−Φ(y)) = Ψ(x−y), for any x, y ∈ X.
Then x̃(t) := −x(t) is a solution to the system (Ẽ ,Ψ).

Concatenation

Let x1 : [a1, a2] → X be a solution to the system (E ,Ψ, x1(a1)) on the time interval [a1, a2]
and x2 : [a2, a3]→ X be a solution to the system (E ,Ψ, x2(a2)) on the time interval [a2, a3].
If x1(a2) = x2(a2), then

x̃(t) :=

{
x1(t) if t ∈ [a1, a2],

x2(t) if t ∈ [a2, a3],

is a solution to the system (E ,Ψ, x1(a)) on the time interval [a1, a3].

Restriction

Let x : [a, b] → X be a solution to the system (E ,Ψ, x(a)) on the time interval [a, b]. For
any subinterval [c, d] ⊂ [a, b], the restriction of x(·) on [c, d] is a solution to the system
(E ,Ψ, x(c)) on the time interval [c, d].

Remark. The above properties also hold for energetic solutions and BV solutions.
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2 Energetic solutions

The first attempt to define a weak notion of solution for (1.1) was made in [27] by Mielke
and Theil for a model for shape-memory alloys via the concept of energetic solution. Then
the existence of energetic solutions was established in many other rate-independent systems
as well as in the abstract case, see [28, 16, 13, 19].

2.1 Motivation and definition

The following argument is taken from [18, 20, 21].
Assume for the moment that the function t 7→ x(t) satisfies equation (1.1) for almost

every t ∈ (0, T ). We denote ∂xE (t, x(t)) by ξ(t), and denote by Ψ∗ the Legendre-Fenchel
transform of Ψ (see [30] Section 12),

Ψ∗(η) := sup{〈η, v〉 −Ψ(v) | v ∈ X}.

By the Fenchel equivalence (see [30] Section 23)

x∗ ∈ ∂F (x)⇐⇒ F (x) + F ∗(x∗) = 〈x∗, x〉 ,

equation (1.1) is equivalent to

Ψ(ẋ(t)) + Ψ∗(−ξ(t)) = 〈−ξ(t), ẋ(t)〉 . (1.3)

If we assume moreover that E (t, x) and x(t) are smooth enough (e.g. E ∈ C1 and x ∈ C1),
we can apply the classical chain rule

d

dt
E (t, x(t)) = 〈ξ(t), ẋ(t)〉+ ∂tE (t, x(t)),

and rewrite (1.3) as

Ψ(ẋ(t)) + Ψ∗(−ξ(t)) = − d

dt
E (t, x(t)) + ∂tE (t, x(t)).

Integrating this equation w.r.t. t, we get∫ t2

t1

[Ψ(ẋ(t)) + Ψ∗(−ξ(t))] dt = E (t1, x(t1))− E (t2, x(t2)) +

∫ t2

t1

∂tE (t, x(t))dt (1.4)

for every 0 ≤ t1 ≤ t2 ≤ T .
Since Ψ is positively 1-homogeneous, the value of its Legendre-Fenchel transform Ψ∗ is

Ψ∗(η) =

{
0 if η ∈ ∂Ψ(0),

+∞ otherwise.

From the equation (1.4), we have∫ T

0

Ψ∗(−ξ(t))dt <∞.

Hence, Ψ∗(−ξ(t)) < +∞ for a.e. t ∈ (0, T ). Thus, equation (1.4) can be rewritten in terms
of the two following conditions
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Weak local stability (w-LS)

Ψ∗(−ξ(t)) < +∞ a.e. in (0, T ), that is, − ∂xE (t, x(t)) ∈ ∂Ψ(0) a.e. in (0, T ),

Energy-dissipation balance (ED)

E (t2, x(t2))− E (t1, x(t1)) =

∫ t2

t1

∂tE (t, x(t))dt−
∫ t2

t1

Ψ(ẋ(t))dt for all 0 ≤ t1 ≤ t2 ≤ T.

Note that the above formula (ED) involves the time derivative of the solution and therefore
makes sense only for “smooth” x(·), while we know that in general solutions to the system
(E ,Ψ) may have jumps as a function of time and therefore are not smooth. To write this
formula in a form that makes sense also for non-smooth functions, we need to introduce
the notion of dissipation distance D : X × X → [0,+∞], and the dissipation functional
Diss(x(t); [t1, t2]),

D(x0, x1) := inf

{∫ 1

0

Ψ(ẏ(t))dt | y ∈ W 1,1([0, 1];X), y(0) = x0, y(1) = x1

}
.

Diss(x(t); [t1, t2]) := sup

{
N∑
i=1

D(x(si−1), x(si)) | N ∈ N, t1 ≤ s0 < s1 < · · · < sN ≤ t2

}
.

We have the following properties.

Proposition 1.2. (i) D(x0, x1) = Ψ(x1 − x0) for all x0, x1 ∈ X.

(ii) If u : [0, T ]→ X is absolutely continuous and satisfies∫ T

0

Ψ(u̇(t))dt < +∞,

then

Diss(u(t); [t1, t2]) =

∫ t2

t1

Ψ(u̇(t))dt.

The definition of absolutely continuous functions can be found in [11] (Section 1.7). The
proof of Proposition 1.2 is given at the end of this chapter.

By Proposition 1.2, we have another definition of Diss(x(t); [t1, t2])

Diss(x(t); [t1, t2]) := sup

{
N∑
i=1

Ψ(x(si)− x(si−1)) | N ∈ N, t1 ≤ s0 < s1 < · · · < sN ≤ t2

}
.

Thanks to Proposition 1.2, we can deduce from the energy-dissipation balance (ED) the
following equality

E (t2, x(t2))− E (t1, x(t1)) =

∫ t2

t1

∂tE (t, x(t))dt−Diss(x(t); [t1, t2])

for all 0 ≤ t1 ≤ t2 ≤ T , provided that x(·) is smooth enough. However, in general, the
function x(·) is only of class BV. This leads us to the definition of weak solution.
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Definition 1.1 (Weak solution). A function x : [0, T ] → X is called a weak solution of
the rate-independent system (E ,Ψ, x0), if it satisfies the initial condition x(0) = x0, the weak
local stability (w-LS)

−∂xE (t, x(t)) ∈ ∂Ψ(0), for a.e. t ∈ (0, T ), (w-LS)

and the energy-dissipation upper bound (ED-upper)

E (t2, x(t2))− E (t1, x(t1)) ≤
∫ t2

t1

∂tE (t, x(t))dt−Diss(x(t); [t1, t2]) (ED-upper)

for all 0 ≤ t1 ≤ t2 ≤ T .

The class of weak solutions is very large, since it contains all of the other notions of solu-
tions, including energetic solutions [27], BV solutions [26], local solutions [34], parametrized
solutions [26], epsilon-stable solutions [15], and epsilon-neighborhood solutions (introduced
below). This also means that, the weak local stability (w-LS) and the energy-dissipation
inequality (ED-ineq) seem to be too weak to characterize solutions for (1.1). However, if
we require solution satisfies global minimality at every time instead of the local one (w-LS),
then global minimality gives us the opposite side of energy-dissipation inequality (ED-ineq).
This leads us to the notion of energetic solution. This notion was first introduced by Mielke
and Theil in 1998 [27] and by Francfort and Marigo at the same time [12].

Definition 1.2 (Energetic solution). A function x : [0, T ] → X is called an energetic
solution of the rate-independent system (E ,Ψ, x0), if it satisfies the initial condition x(0) =
x0, the global stability

E (t, x(t)) ≤ E (t, x) + Ψ(x− x(t)) (S)

for all (t, x) ∈ [0, T ]×X, and the energy-dissipation balance

E (t2, x(t2))− E (t1, x(t1)) =

∫ t2

t1

∂tE (s, x(s))ds−Diss(x(t); [t1, t2]) (ED)

for all 0 ≤ t1 ≤ t2 ≤ T .

It can be seen that there is no time-dependence in the global stability (S), which means
that rate-independent systems are quite “close” to static systems. And the energy balance
(ED) can be understood as the conservation of energy, in the sense that, the released energy
is always balanced by the difference between the work of external forces and the dissipated
energy.

Since there is no derivative of x(·) appearing in the definition of energetic solution, this
notion is well-suited even for solutions that are not smooth.

2.2 Construction of energetic solutions

A classical way to obtain energetic solutions is via time-discretization (see for example [21]
for more details).

For every τ > 0, we divide the time interval [0, T ] into smaller subintervals by a partition
0 = t0 < t1 < · · · < tN ≤ T such that tn− tn−1 = τ for all n ∈ {1, 2, . . . , N} and T − tN < τ .
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Denote x0 := x(0) the initial position. At every time tn with n ∈ {1, . . . , N}, we require
that the position xn is a global minimizer of the energy plus the dissipation, i.e.

xn ∈ argminx∈X{E (tn, x) + Ψ(x− xn−1)}. (1.5)

The discretized solution xτ is then defined by linear interpolation of {xn}Nn=0. It can be
showed that {xτ} has uniformly bounded variation. Therefore, Helly’s selection theorem is
applicable.

Proposition 1.3. [Helly’s selection theorem [1, 16, 29]] Let I be an interval, X a complete
metric space, and fn : I → X a sequence of maps with uniformly bounded variation, i.e.

sup
n∈N

Var(fn; I) := sup
n∈N

sup

{
N∑
k=1

dX(fn(tk−1), fn(tk)) | {tk}Nk=0 is an partition of I

}
<∞.

Assume moreover that for every t ∈ I, the set of values {fn(t)} is relatively compact in X.
Then up to a subsequence, fn converges pointwise to some limit f : I → X and

Var(f ; I) ≤ lim inf
n→∞

Var(fn; I).

Thanks to Helly’s selection theorem, we find a subsequence τn → 0 such that xτn(·)
converges pointwise to some x(·), which also has bounded variation. Moreover, we can check
that x(·) satisfies the global stability (S) and the energy-dissipation balance (ED) (see [21]).
For the reader’s convenience, a proof is presented in Chapter 2 below.

2.3 Some comments

Note that, at the moment, we still do not know whether or not the time-discretization
method can characterize all energetic solutions given by Definition 1.2. However, given a BV
function t 7→ x(t), it is easy to verify if x(·) is an energetic solution of the system (E ,Ψ, x0)
by the following criterion (which generalizes Proposition 5.13 in [1]). This proposition is
useful to verify an energetic solution in many examples. For the definition of BV functions
see [11].

Proposition 1.4. Let x ∈ BV ([0, T ];X) be a left-continuous function at every t ∈ [0, T ]
and satisfy

(i) x(t) ∈ argmin {E (t, x) + Ψ(x− x(0))} for every t ∈ [0, T ];

(ii) Diss(x(t); [0, T ]) = Ψ(x(T )− x(0)).

Here the dissipation functional Ψ : X → [0,+∞) is convex and 1-positively continuous,
the energy functional E : [0, T ] × X → [0,+∞) is C2 and satisfies the following technical
assumption:

There exists λ = λ(E ) such that

|∂tE (s, x)| ≤ λE (s, x) for all (s, x) ∈ [0, T ]×X.

Then, x(·) is an energetic solution to the system (E ,Ψ, x(0)).
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The condition on the left-continuity is only a technical assumption, since any energetic
solution can be modified to be left- or right-continuous. More precisely, we have

Proposition 1.5. Let x : [0, T ] → X be an energetic solution of the system (E ,Ψ, x0).
Here the energy functional E : [0, T ] × X → [0,+∞) is C2 and the dissipation functional
Ψ : X → [0,+∞) is continuous.

Since x ∈ BV ([0, T ];X), the limits x(t+) and x(t−) always exist. Moreover, any function
x̃(·) satisfying x̃(0) = x(0), x̃(T ) = x(T ) and

x̃(t) ∈ {x(t+), x(t−)} for all t ∈ (0, T ),

is also an energetic solution to the system (E ,Ψ, x0).
Moreover, if x(·) is a weak solution of the system (E ,Ψ, x0), then the function x̃(·) defined

as in Proposition 1.5 is also a weak solution of the system (E ,Ψ, x0).

For the reader’s convenience, the proofs of Proposition 1.4 and 1.5 are given at the end
of this chapter.

Example 1.6. Consider the system defined by the energy functional

E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− |x|

where t ∈ [0, 2], x ∈ R, the dissipation functional Ψ(x) := |x|, and the initial value x0 := 0.

Using Proposition 1.4, one can quickly check that this system admits two energetic solu-
tions

x(t) =

{
0 if t ∈ [0, 1/6),√

10+
√
10+90t

3
if t ∈ [1/6, 2],

and

x(t) =

{
0 if t ∈ [0, 1/6),

−
√

10+
√
10+90t

3
if t ∈ [1/6, 2].

In the case that the energy functional is convex, global stability is equivalent to local
stability. Moreover, at every time, the position x(t) defined by global minimality is the best
one, in the sense that, any loss in energy when moving to another position will be compen-
sated by dissipation. However, when the energy functional is non-convex, global stability
turns out to be a too strong requirement. In fact, there are some situations where (1.1)
admits a strong solution which is not globally stable (see, for example, in [31]). Moreover,
global minimizers make the energetic solutions jump easier than physically feasible and into
too far-apart energetic configurations. And hence sometimes, they fail in describing some
natural phenomena.

For example, in nature, water always flows downhill, regardless of the fact that flowing
uphill for a while may help it to reach a better final position. But if we force the water
to satisfy the global minimality, then it would act so that the final position has the lowest
altitude, no matter what in some moment it must go uphill.
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More mathematically, let us return to Example 1.6. In this example, the energetic solu-
tions jump at time t = 1/6 from x = 0 to x = ±

√
15/3. However, this is not a reasonable

jump, since the energy plus dissipation functional must increase a little bit when moving
from x = 0 to x = ±

√
15/3 (see Figure 2). Hence, the right position at time t = 1/6 should

be x = 0, which is a local minimizer of energy plus dissipation functionals.

Figure 2. The function E (t, x) + Ψ(x) = x2 − x4 + 0.3x6 + t (1− x2) at t = 1/6.

3 BV solutions

Since global minimality cannot characterize the “natural” solution trajectory in the case that
the energy functional is nonconvex, alternative notions of solutions involving local minimality
are preferred to overcome this shortcoming of energetic solutions. One of such approaches is
vanishing viscosity, which produces the so-called BV solutions [25, 26].

The idea is to add a small viscosity term to the dissipation functional Ψ. This results in a
new dissipation functional Ψε, which has super-linear growth at infinity and which converges
to Ψ as ε tends to zero in an appropriate meaning. The super-linear growth of Ψε makes the
limit x(·) of the sequence {xε(·)} when ε goes to 0 difficult to jump, and therefore x(·) should
prefer a close-by state which is locally stable to a far-away state which is globally stable.
Moreover, Mielke, Rossi and Savaré have proved in [26] that the limit x(·) also satisfies the
new energy-dissipation balance, which is

E (t2, x(t2))− E (t1, x(t1)) =

∫ t2

t1

∂tE (s, x(s))ds−Dissnew(x(t); [t1, t2])
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for all 0 ≤ t1 ≤ t2 ≤ T . Here Dissnew(xt); [t1, t2]) ≥ Diss(x(t); [t1, t2]). The precise formula
for the new dissipation function Dissnew will be given later.

3.1 Motivation and definition

The following argument follows that of Mielke, Rossi, and Savaré in [26].
In general, the viscous term can be chosen in the form ε−1Ψ0(εv), where ε > 0 and

Ψ0 : X → [0,∞] is a convex function satisfying

(a)
Ψ0(v)

|v|
→ 0 as |v| → 0,

(b)
Ψ0(v)

|v|
→ ∞ as |v| → ∞.

Then for each ε > 0, the dissipation with viscosity reads

Ψε(v) := Ψ(v) + ε−1Ψ0(εv), for all v ∈ X.

Condition (a) guarantees that Ψε converges to Ψ when ε goes to 0, while Ψε has super-linear
growth by condition (b). For simplicity, here we choose Ψ(v) = |v| the usual distance in X,
and Ψ0(v) = |v|2/2. Then

Ψε(v) = |v|+ ε

2
|v|2 for all v ∈ X.

After adding viscosity, the evolution equation (1.1) becomes

0 ∈ ∂Ψε(ẋ
ε(t)) + ∂xE (t, xε(t)) for a.e. t ∈ (0, T ). (1.6)

Thanks to the results by Colli and Visintin [5, 4], this equation admits at least one absolutely
continuous solution xε ∈ AC([0, T ];X). We then repeat the argument for energetic solutions,
and get an identity similar to (1.4)∫ t2

t1

[Ψε(ẋ
ε(t)) + Ψ∗ε(−∂xE (t, xε(t)))] dt = E (t1, x

ε(t1))− E (t2, x
ε(t2))

+

∫ t2

t1

∂tE (t, xε(t))dt. (1.7)

In particular, we have∫ T

0

[Ψε(ẋ
ε(t)) + Ψ∗ε(−∂xE (t, xε(t)))] dt ≤ C,

here we denote by C some constant independent of t.
Denote x+ := max{x, 0}. A direct computation gives Ψ∗ε(w) = 1

2ε
((|w| − 1)+)2. Since Ψε

is non-negative, we get

lim inf
n→∞

∫ T

0

1

2εn
((|∂xE (t, xεn(t))| − 1)+)2dt = lim inf

n→∞

∫ T

0

Ψ∗εn(−∂xE (t, xεn(t)))dt ≤ C.
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Using Fatou’s lemma and the fact that εn → 0, we obtain∫ T

0

lim inf
n→∞

((|∂xE (t, xεn(t))| − 1)+)2dt ≤ lim inf
n→∞

∫ T

0

((|∂xE (t, xεn(t))| − 1)+)2dt = 0.

Therefore,

lim inf
n→∞

(|∂xE (t, xεn(t))| − 1)+ = 0 for a.e. t ∈ (0, T ). (1.8)

Moreover, it follows from Proposition 1.2 that

Diss(xε(t); [0, T ]) ≤
∫ T

0

Ψ(ẋε(t))dt ≤
∫ T

0

Ψε(ẋ
ε(t))dt ≤ C. (1.9)

Thus, the sequence {xε(·)}ε>0 has uniformly bounded variation. Then we can apply
Helly’s selection theorem (see Proposition 1.3) to get a subsequence εn → 0 such that xεn(·)
converges pointwise to some BV function x(·). By the continuity of E we also have that
∂xE (t, xεn(t)) converges pointwise to ∂xE (t, x(t)) as n→∞. Hence, we obtain from (1.8)

|∂xE (t, x(t)))| ≤ 1 for a.e. t ∈ (0, T ).

Moreover, by the continuity of x(·), we get

|∂xE (t, x(t)))| ≤ 1 if x(·) is continuous at t.

This condition is in fact the weak local stability (w-LS), since we have chosen Ψ(x) =
|x| for all x ∈ X.

On the other hand, we have the lower semicontinuity of dissipation

Diss(x(t); [t1, t2]) ≤ lim inf
n→∞

Diss(xεn(t); [t1, t2]). (1.10)

By Proposition 1.2, we also have

Diss(xεn(t); [t1, t2]) ≤
∫ t2

t1

[
Ψεn(ẋεn(t)) + Ψ∗εn(−∂xE (t, xεn(t)))

]
dt. (1.11)

Combining (1.10), (1.11) and (1.7), and taking into account the continuity of E and the
convergence of xεn(t) to x(t), we get the following energy-dissipation inequality (ED-ineq)

E (t2, x(t2))− E (t1, x(t1)) ≤
∫ t2

t1

∂tE (t, x(t))dt−Diss(x(t); [t1, t2]), for all 0 ≤ t1 ≤ t2 ≤ T.

Thus, the BV function x(·) also satisfies the definition of weak solution (see Definition 1.1).
Moreover, Mielke, Rossi and Savaré have proved in [26] that we have an even better upper

bound

E (t2, x(t2))− E (t1, x(t1)) ≤
∫ t2

t1

∂tE (t, x(t))dt−Dissnew(x(t); [t1, t2]) (1.12)
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for all 0 ≤ t1 ≤ t2 ≤ T , where the new dissipation is defined by

Dissnew(x(t); [t1, t2]) := Diss(x(t); [t1, t2])−
∑
t∈J

[
|x(t−)− x(t)|+ |x(t)− x(t+)|

]
+
∑
t∈J

[
∆new(t, x(t−), x(t)) + ∆new(t, x(t), x(t+))

]
,

J is the jump set of x(·) and

∆new(t; a, b)

:= inf

{∫ 1

0

|v̇(r)| ·max{1, |∂xE (t, v(r))|} | v ∈ AC([0, T ];X), v(0) = a, v(1) = b

}
.

There is a general fact (see [25] Proposition 4.2) that if a BV function satisfies the weak
local stability (w-LS), then it also satisfies the opposite of inequality (1.12). Hence, in (1.12)
we have an equality. It leads us to the notion of BV solution.

Definition 1.3 (BV solution). A function x : [0, T ] → X is called a BV solution of the
rate-independent system (E ,Ψ, x0) if it satisfies the initial condition x(0) = x0, the weak
local stability (w-LS)

|∂xE (t, x(t))| ≤ 1 provided that t 7→ x(t) is continuous at t, (w-LS)

and the new energy-dissipation balance (ED-new)

E (t2, x(t2))− E (t1, x(t1)) =

∫ t2

t1

∂tE (s, x(s))ds−Dissnew(x(t); [t1, t2]) (ED-new)

for all 0 ≤ t1 ≤ t2 ≤ T.

Unlike energetic solutions, the stability condition for BV solutions (w-LS) does not hold
for every t. Roughly speaking, (w-LS) can only tell us the information on solutions at
continuity points. The information at jump points is contained in the new energy-dissipation
balance (ED-new). More than that, (ED-new) also reveals the information of BV solutions
along the jump path. Indeed, if the BV solution x(·) jumps at time t, then there exists
an absolutely continuous path v : [0, 1] → X connecting x(t−) and x(t+) such that along
this path, we have that |∂xE (t0, v(s))| ≥ 1 for all s ∈ [0, 1] (see [25, 26] for further details).
However, we can see that the weak local stability (w-LS) is really weak, in the sense that it
allows for both local minimizers and local maximizers. Moreover, we cannot expect a better
local stability, since in some cases, the BV solutions are really local maximizer (see Example
1.7 below).

Example 1.7. Consider the system defined by the energy functional E (t, x) := t (x6−x4)−
|x| where t ∈ [0, 1] and x ∈ R, the dissipation function Ψ(x) := |x|, and the initial value
x0 := 0. Then the BV solution corresponding to the dissipation with viscosity

Ψε(x) = |x|+ ε

2
x2,

is x(t) = 0 for all t ∈ [0, 1].
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In the figure below, we see that x = 0 is a local maximizer for the functional x 7→
E (t, x) + |x| when t > 0. A detailed proof of this claim is given in Chapter 4.

Figure 3. E (t, x) + Ψ(x) = t (x6 − x4) with t = 0.1.

3.2 Construction of BV solutions

Here we construct a BV solution by vanishing viscosity. This construction was given by
Mielke, Rossi, and Savaré in [26]. For simplicity, here we choose the dissipation and dissipa-
tion with viscosity as follows

Ψ(v) := |v|,
Ψε(v) := |v|+ ε

2
|v|2,

for all v ∈ X.
For every ε > 0, τ > 0, we choose the following partition of [0, T ] : 0 = t0 < t1 < · · · <

tN ≤ T such that tn − tn−1 = τ for all n ∈ {1, 2, . . . , N} and T − tN < τ .
Denote x0 := x(0) the initial position. Then the approximation position xτ,εn at every

time tn is defined by iteration as follows

xτ,εn ∈ argminx∈X{E (tn, x) + |x− xτ,εn−1|+
ε

2τ
|x− xτ,εn−1|2} for all n ∈ {1, 2, . . . , N}.

We shall assume that ε → 0, τ → 0 and ε/τ → ∞. Hence, the appearance of the term
ε
2τ
|x−xτ,εn−1|2 ensures that xτ,εn is very “close” to xτ,εn−1. In other words, even if we are looking
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for a minimizer over all X, only points close to xτ,εn−1 can be chosen. Then we also denote
the discretized solution xτ,ε by taking the interpolation of {xτ,εn }Nn=0. The BV solution is
obtained by taking the limit of {xτ,ε} when ε → 0, τ → 0 such that ε/τ → ∞. For the
reader’s convenience, a detailed proof is given in Chapter 2.

3.3 Some comments

Note that the BV solution defined above depends heavily on the choice of the viscosity. There
are examples showing that for different choices of viscosity, we get different BV solutions
that jump at different times.

Now we are back to Example 1.7, but here we consider the BV solution corresponding to
the different viscosity term.

Example 1.8. Consider the system defined by the energy functional E (t, x) := t (x6−x4)−
|x|, where t ∈ [0, 1] and x ∈ R, the dissipation function Ψ(x) := |x|, and the initial value
x0 := 0.

As we know from Example 1.7 that the BV solution corresponding to viscosity ε
2
x2 is

x(t) = 0 for all t ∈ [0, 1].
Now we choose the viscosity ε5x6 with ε−25/18τ → ∞ (where τ is the time step in the

discretization). Then the BV solutions corresponding to this viscosity are

x(0) = 0, x(t) =
√

2/3 for all t ∈ (0, 1]

and

x(0) = 0, x(t) = −
√

2/3 for all t ∈ (0, 1].

A detailed proof of this claim is given in Chapter 4.
It can be seen in Figure 3 above that when t > 0, the BV solution corresponding to

viscosity ε
2
x2 is a local maximizer of energy plus dissipation instead of a local minimizer,

while the BV solutions corresponding to viscosity ε5x6 is global minimizer of energy plus
dissipation (see Figure 4 below). This fact implies that in some specific cases, a “too strong”
viscosity could prevent the solution from jumping even when a jump might be expected. Be-
sides, similarly to energetic solutions, we do not know if BV solutions obtained by vanishing
viscosity can characterize all of BV solutions given by definition.
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Figure 4. E (t, x) + Ψ(x−
√

2/3) = t(x6 − x4)− |x|+ |x−
√

2/3| with t = 0.1.

4 Another construction of BV solutions

4.1 Motivation and construction

Another way to avoid global minimality is to find the minimizer xn in (1.5) in a small
neighborhood of xn−1. More precisely, for any ε > 0, τ > 0, consider the following partition
of [0, T ] : 0 = t0 < t1 < · · · < tN ≤ T , where tn − tn−1 = τ for all n ∈ {1, 2, . . . , N} and
T − tn < τ . Set xε,τ0 := x(0). For all n ∈ {1, 2, . . . , N}, define the sequence {xε,τn } as follows

xε,τn ∈ argminx∈X{E (tn, x) + |x− xε,τn−1| | |x− x
ε,τ
n−1| ≤ ε}.

Here for simplicity, we focus on the case Ψ(x) = |x| for all x ∈ X.
The discretized solution t 7→ xε,τ (t) is then defined by interpolation as follows

xε,τ (t) := xε,τn−1 for every t ∈ [tn−1, tn), n ∈ {1, 2, . . . , N}.

The epsilon-neighborhood solution xε(t) is defined by the pointwise limit of {xε,τ (t)} when
τ → 0 (such limit exists thanks to Helly’s selection theorem). Then we can prove (see Chapter
2) that outside the jump set, xε(t) satisfies the minimality in an epsilon neighborhood of
xε(t) (eps-LS) and the energy-dissipation inequality (ED-ineq). In particular, any epsilon-
neighborhood solution satisfies the definition of weak solution (see Definition 1.1).

Once again, Helly’s selection theorem gives us the pointwise limit x(t) of {xε(t)} when
taking ε→ 0. In Chapter 2 (see Theorem 2.18), we will prove that x(·) fulfills the definition
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of BV solution, i.e., it satisfies the weak local stability (w-LS) outside the jump set, and the
new energy-dissipation balance (ED-new) at every time. We call it BV solution constructed
by epsilon-neighborhood.

This approach was first suggested in [17, Section 6] for one dimensional case when ε is
chosen proportional to the square root of the time-step. The existence was then obtained
in [10] via reparametrization. It was also proved in [10] that the solution satisfies the weak
local stability (w-LS). However, to our knowledge, the fact that the solution satisfies the
new energy-dissipation balance (ED-new) does not explicitly appear in the literature. In
Chapter 2 (Section 2.3), we shall prove the existence and properties of epsilon-neighborhood
solutions xε(·) and its limit x(·).
Remark. Roughly speaking, this approach is a special case of the vanishing viscosity approach
when viscosity term is chosen as follows

Ψ0(v) :=

{
0 if |v| ≤ 1,

+∞ if |v| > 1.

4.2 Definition of epsilon-neighborhood solution

Definition 1.4 (Epsilon-neighborhood solution). For any fixed ε > 0, a function
xε : [0, T ] → X is called an epsilon-neighborhood solution of the rate-independent system
(E ,Ψ, x0) if it satisfies the initial condition xε(0) = x0, the epsilon local stability (eps-LS)

E (t, xε(t)) ≤ E (t, x) + |x− xε(t)| for all |x− xε(t)| ≤ ε, (eps-LS)

provided that xε(·) is continuous at t, and the energy-dissipation inequality (ED-ineq)

E (t2, x
ε(t2))− E (t1, x

ε(t1)) ≤
∫ t2

t1

∂tE (s, xε(s))ds−Diss(xε(t); [t1, t2]) (ED-ineq)

for all 0 ≤ t1 ≤ t2 ≤ T .

The epsilon local stability (eps-LS) is stronger than the weak local stability (w-LS).
Hence, epsilon-neighborhood solutions belong to the class of weak solutions.

When ε becomes smaller and smaller, the epsilon-neighborhood solutions behave more
and more like BV solutions. Besides, in many examples, we see that when ε is small enough,
the epsilon-neighborhood solution xε(·) is independent of ε, and hence, xε(·) coincides with its
limit x(·). Thus, x(·) satisfies the epsilon local stability (eps-LS) for some ε > 0. Therefore,
in those cases, x(·) satisfies both the epsilon local stability (eps-LS) for some ε > 0 and the
new energy-dissipation balance (ED-new).

Now we are back to the system given in Example 1.7, but here we are interested in the
BV solutions constructed by epsilon-neighborhood.

Example 1.9. Consider the system defined by the energy function E (t, x) := t (x6−x4)−|x|
where t ∈ [0, 1] and x ∈ R, the dissipation function Ψ(x) := |x|, and the initial value x0 := 0.

It was already shown in Example 1.8 that the BV solution corresponding to the viscous
dissipation Ψε(x) = |x|+ ε

2
x2 is x(t) = 0 for all t ∈ [0, 1].

When ε ∈ (0,
√

2/3], the epsilon-neighborhood solutions are

xε(0) = 0, xε(t) =
√

2/3 for all t ∈ (0, 1]
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and

xε(0) = 0, xε(t) = −
√

2/3 for all t ∈ (0, 1].

The proof of this claim is given in Chapter 4.

In Example 1.8, the BV solution x(t) = 0 for all t ∈ [0, 1] does not satisfy the strong
local stability, namely

x(t) is a local minimizer of the functional z 7→ E (t, z) + |z − x(t)| for a.e. t. (s-LS)

However, the BV solutions constructed by epsilon-neighborhood in Example 1.9 satisfy
the strong local stability (s-LS). Hence, the question on whether a BV solution constructed
by epsilon neighborhood always satisfy (s-LS) arises naturally. Unfortunately, the answer is
negative, as shown in the following example.

Example 1.10. Consider the system defined by the energy functional E (t, x) := t g(x)− x
with g(x) := x5 sin(1/x), t ∈ [0, 1], the dissipation function Ψ(x) := |x|, and the initial value
x0 := 0. Note that g(·) has a unique global minimizer z1 = 0.2638367621... (see Figure 5
below). Moreover,

(i) The energetic solution constructed by time-discretization is

x(0) = 0 and x(t) = z1 for all t ∈ (0, 1].

(ii) The BV solution constructed by epsilon-neighborhood is x(t) = 0 for all t ∈ [0, 1].
Here we can choose any neighborhood of the form Iε(a) = a + Iε(0) where Iε(0) is a
closed connected neighborhood of 0 with diameter of order O(ε).

(iii) The BV solution constructed by vanishing viscosity is x(t) = 0 for all t ∈ [0, 1]. Here
we can choose an arbitrary viscosity of the form ε−1Ψ0(εx) where Ψ0 : R→ [0,∞) and
lim|x|→∞Ψ0(x)/|x| =∞.

A detailed proof of this claim is given in Chapter 4.
In this example, both the BV solution constructed by vanishing viscosity and the BV

solution constructed by epsilon-neighborhood take the value 0 for every t ∈ [0, 1]. However,
as we can see in Figure 5, for every t > 0, x = 0 is neither a local minimizer nor a local
maximizer of the function z 7→ E (t, z) + |z|.

18



Figure 5. The function E (t, x) + |x| = tx5 sin(1/x) when t = 1 and x > 0.

Similarly to BV solutions constructed by vanishing viscosity, along the jump path of
BV solutions constructed by epsilon-neighborhood, we have |∂xE (t, ·)| ≥ 1. Moreover,
Lemma 2.24 in Chapter 2 tells us that the energy plus dissipation along each jump path
is non-increasing. This fact makes the behavior of BV solutions constructed by epsilon-
neighborhood at jumps more reasonable than the behavior of energetic solutions. However,
BV solutions constructed by epsilon-neighborhood still depend on the way we choose the
neighborhood, see the following example.

Example 1.11. Consider the system defined by the energy functional

E (t, x) := t

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
− |x|

where t ∈ [0, 1] and x ∈ R, the dissipation function Ψ(x) := |x|, and the initial value x0 := 0.
We have

(i) The BV solution constructed by epsilon-neighborhood with the usual neighborhood
Iε(a) = [a− ε, a+ ε] is

x(0) = 0 and x(t) = −1 for all t ∈ (0, 1].
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(ii) The BV solution constructed by epsilon-neighborhood with the neighborhood Iε(a) =
[a− ε, a+ 3ε] is

x(0) = 0 and x(t) = 2 for all t ∈ (0, 1].

(iii) The BV solutions constructed by epsilon-neighborhood with the neighborhood Iε(a) =
[a− ε, a+ 2ε] are both solutions given before.

The proof of this claim can be found in Chapter 4.

5 Comparison of energetic and BV solutions

In this section, we will compare energetic solutions, BV solutions constructed by vanishing
viscosity and BV solutions constructed by epsilon-neighborhood.

5.1 Energetic and BV solutions may be the same

We consider again the system given in Example 1.7.

Example 1.12. Consider the system defined by the energy functional E (t, x) := t (x6 −
x4)− |x| where t ∈ [0, 1], the dissipation function Ψ(x) := |x|, and the initial value x0 := 0.
Then

(i) The energetic solutions constructed by time-discretization are

x(0) = 0, x(t) =
√

2/3 for all t ∈ (0, 1]

and

x(0) = 0, x(t) = −
√

2/3 for all t ∈ (0, 1].

These energetic solutions satisfy the definition of BV solution.

(ii) The BV solutions corresponding to the viscosity term ε5x6 with ε−25/18τ →∞ (where
τ is the time step in the discretization) are precisely the energetic solutions.

(iii) The BV solutions constructed by epsilon-neighborhood are precisely the energetic so-
lutions.

5.2 BV solutions constructed by epsilon neighborhood may jump
later than energetic solutions

Since the construction of a solution by epsilon neighborhood uses local minimizers, such
solution is expected to jump later than energetic solutions. This fact is illustrated by the
following example.

Example 1.13. Consider the system defined by the energy functional

E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− |x|, t ∈ [0, 2], x ∈ R,

the dissipation function Ψ(x) := |x|, and the initial value x0 := 0. We have

20



(i) The energetic solutions constructed by time-discretization satisfy either

x(t) = 0 if t < 1/6, x(1/6) ∈ {0,
√

5/3}, x(t) =

√
10 +

√
10 + 90t

3
if t > 1/6

or

x(t) = 0 if t < 1/6, x(1/6) ∈ {0,−
√

5/3}, x(t) = −
√

10 +
√

10 + 90t

3
if t > 1/6.

(ii) The BV solutions constructed by epsilon-neighborhood satisfy either

x(t) = 0 if t < 1, x(t) =

√
10 +

√
10 + 90t

3
if t > 1

or

x(t) = 0 if t < 1, x(t) = −
√

10 +
√

10 + 90t

3
if t > 1.

As we can see from the example above, the energetic solutions jump at t = 1/6. This
jump point is not reasonable since along the jump path, there are some moment the energy
plus dissipation function is increased (see Figure 2 above). On the other hand, the BV
solution constructed by epsilon-neighborhood jumps at t = 1. This is a reasonable jump
time, since the functional x 7→ E (t, x) + Ψ(x) admits x = 0 as a local minimizer when t < 1
(see Figure 2), and as a local maximizer when t > 1 (see Figure 6 below).

Figure 6. The function E (t, x) + Ψ(x) when t = 1.2.

Now we compare BV solutions constructed by epsilon-neighborhood with BV solutions
constructed by vanishing viscosity.
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5.3 BV solutions constructed by epsilon neighborhood may jump
sooner than those constructed by vanishing viscosity

As we mentioned above, BV solutions constructed by epsilon-neighborhood belong to the
class of BV solutions. Moreover, there are BV solutions that cannot be obtained by using
epsilon-neighborhood. In fact, the following example points out that there exist BV solutions
constructed by vanishing viscosity which are different from BV solutions constructed by
epsilon-neighborhood. Now we are back to the system given in Example 1.6.

Example 1.14. Consider the system defined by the energy functional

E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− |x|, t ∈ [0, 2], x ∈ R,

the dissipation function Ψ(x) := |x|, and the initial value x0 := 0. We have

(i) The BV solutions constructed by epsilon-neighborhood satisfy either

x(t) = 0 if t < 1, x(t) =

√
10 +

√
10 + 90t

3
if t > 1

or

x(t) = 0 if t < 1, x(t) = −
√

10 +
√

10 + 90t

3
if t > 1.

(ii) The BV solution with viscous dissipation Ψε(x) = |x|+ εx2 is x(t) = 0 for all t ∈ [0, 2].

The proof of this claim is given in Chapter 4.

Appendix A: Proofs of some technical lemmas

Proof of Proposition 1.2 (i). By the convexity of Ψ, the following inequality holds true for
every function x ∈ W 1,1([0, 1];X) such that x(0) = x0 and x(1) = x1.∫ 1

0

Ψ(ẋ(t))dt ≥ Ψ

(∫ 1

0

ẋ(t)dt

)
= Ψ(x1 − x0).

Taking the infimum of the left-hand side of the above inequality over all functions x ∈
W 1,1([0, 1];X) such that x(0) = x0 and x(1) = x1, we get

D(x0, x1) ≥ Ψ(x1 − x0). (1.13)

On the other hand, choosing y(t) = x0+t(x1−x0) then y ∈ W 1,1([0, 1];X) and ẏ(t) = x1−x0.
Hence ∫ 1

0

Ψ(ẏ(t))dt = Ψ(x1 − x0).

Therefore, by definition of D(x0, x1) we obtain

D(x0, x1) ≤ Ψ(x1 − x0). (1.14)

Thus, combining (1.13) and (1.14) we get the result.
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Proof of Proposition 1.2 (ii). Step 1. First, we prove that

Diss(u(t); [t1, t2]) ≤
∫ t2

t1

Ψ(u̇(t))dt for every u ∈ AC([0, T ];X).

In fact, since u ∈ AC([0, T ];X), we have that u̇ ∈ L1(0, T ) and

u(t2)− u(t1) =

∫ t2

t1

u̇(t)dt for all 0 ≤ t1 < t2 ≤ T. (1.15)

On the other hand, by Proposition 1.2 (i) and Jensen’s inequality for the convex function
Ψ, we have

D(u(t1), u(t2)) = Ψ (u(t2)− u(t1)) = Ψ

(∫ t2

t1

u̇(s)ds

)
≤
∫ t2

t1

Ψ(u̇(s))ds. (1.16)

Choosing an arbitrary partition t1 = s0 < s1 < · · · < sN = t2 of [t1, t2] and applying
(1.16) for (u(si−1), u(si)), we obtain

N∑
i=1

D(u(si−1), u(si)) =
N∑
i=1

∫ si

si−1

Ψ(u̇(s))ds ≤
∫ t2

t1

Ψ(u̇(s))ds.

Taking the supremum over all of the partitions of [t1, t2], we get the desired result.

Step 2. Now, we prove the converse inequality

Diss(u(t); [t1, t2]) ≥
∫ t2

t1

Ψ(u̇(t))dt for every u ∈ AC([0, T ];X).

We need the following claims.
Claim 1: For any 0 ≤ s1 ≤ s2 ≤ T , we have that∫ s2

s1

Ψ(u̇(s))ds ≤ Ψ(u(s2)− u(s1)) +

∫ s2

s1

Ψ(u̇(s)− u̇(s0))ds

+Ψ

(∫ s2

s1

[u̇(s0)− u̇(s)]ds

)
for every s0 ∈ [s1, s2]. (1.17)

Proof of Claim 1. Since Ψ is convex and positively 1-homogeneous, the triangle inequality
holds

Ψ(a+ b) ≤ Ψ(a) + Ψ(b) for all a, b ∈ X. (1.18)

From the above triangle inequality, it follows that∫ s2

s1

Ψ(u̇(s))ds ≤
∫ s2

s1

Ψ(u̇(s)− u̇(s0))ds+

∫ s2

s1

Ψ(u̇(s0))ds. (1.19)
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By the 1-homogeneity of Ψ and the triangle inequality (1.18), we can write∫ s2

s1

Ψ(u̇(s0))ds = (s2 − s1) ·Ψ (u̇(s0))

= Ψ ((s2 − s1) · u̇(s0))

= Ψ

(∫ s2

s1

u̇(s0)ds

)
= Ψ

(∫ s2

s1

[u̇(s0)− u̇(s) + u̇(s)]ds

)
≤ Ψ

(∫ s2

s1

[u̇(s0)− u̇(s)]ds

)
+ Ψ

(∫ s2

s1

u̇(s)ds

)
= Ψ

(∫ s2

s1

[u̇(s0)− u̇(s)]ds

)
+ Ψ(u(s2)− u(s1)). (1.20)

In the last equality, we have employed the equality (1.15). Then, the estimate (1.17) follows
by (1.19) and (1.20).

Claim 2: For L1-a.e. s ∈ [0, T ] and every ε > 0, there exists r0 > 0 (depending on ε
and s) such that ∫ s+r

s−r
Ψ(u̇(t)− u̇(s))dt ≤ εr, for all r ≤ r0.

Proof of Claim 2. This proof follows by an argument in [11] (see Section 1.7, Corollary 1).
Since X is a finite dimensional normed vector space, we can choose a countable dense

subset {xi}∞i=1 of X. Since Ψ(u̇) ∈ L1, we can apply the Lebesgue-Besicovitch Differentiation
Theorem (see [11] page 43) to get

lim
r→0

1

2r

∫ s+r

s−r
Ψ(u̇(t)− xi)dt = Ψ(u̇(s)− xi)

for L1-a.e. s ∈ (0, T ) and i = 1, 2, . . . . Thus there exists a set A ⊂ [0, T ] such that L1(A) = 0
and s ∈ X\A implies

lim
r→0

1

2r

∫ s+r

s−r
Ψ(u̇(t)− xi)dt = Ψ(u̇(s)− xi)

for all i. Fix s ∈ [0, T ]\A and ε > 0. Since Ψ(0) = 0 and Ψ is convex, we have

lim
z→0

Ψ(z) = 0.

Moreover, since {xi}∞i=1 we can choose xi such that

max{Ψ(u̇(s)− xi),Ψ(xi − u̇(s))} < ε

4
.
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Then

lim sup
r→0

1

2r

∫ s+r

s−r
Ψ(u̇(t)− u̇(s))dt ≤ lim sup

r→0

1

2r

∫ s+r

s−r
Ψ(u̇(t)− xi)dt

+ lim sup
r→0

1

2r

∫ s+r

s−r
Ψ(xi − u̇(s))dt

= Ψ(u̇(s)− xi) + Ψ(xi − u̇(s)) ≤ ε

2
.

Claim 3: For L1-a.e. s ∈ (0, T ), for any ε > 0, there exists r0 > 0 (depending on ε and
s) such that

Ψ

(∫ s+r

s−r
[u̇(s)− u̇(t)]dt

)
≤ εr, for all r ≤ r0. (1.21)

Proof of Claim 3. Apply the Lebesgue-Besicovitch Differentiation Theorem (see [11]) for u̇ ∈
L1, we get

lim
r→0

1

2r

∫ s+r

s−r
[u̇(s)− u̇(t)]dt = 0

for L1-a.e. s ∈ (0, T ). Since limz→0 Ψ(z) = 0 and Ψ is positively 1-homogeneous, we also
have

lim
r→0

1

2r
Ψ

(∫ s+r

s−r
[u̇(s)− u̇(t)]dt

)
= 0

for L1-a.e. s ∈ (0, T ).

Given ε > 0, for L1-a.e. s ∈ (0, T ), thanks to Claim 2 and 3, we can choose r (depending
on ε and s) such that ∫ s+r

s−r
Ψ(u̇(t)− u̇(s))dt ≤ εr, (1.22)

and

Ψ

(∫ s+r

s−r
[u̇(s)− u̇(t)]dt

)
≤ εr. (1.23)

Now we can apply Besicovitch Covering Theorem (see [11]) to the family of these intervals
[s − r, s + r] and to the measure µ := Ψ(u̇)dt to find finitely many disjoint intervals Ii :=
[si − ri, si + ri] such that

µ

(
[t1, t2]\

⋃
i

Ii

)
≤ ε. (1.24)
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Hence, thanks to (1.17), (1.24), (1.22) and (1.23), we can write∫ t2

t1

Ψ(u̇(t))dt =

∫
[t1,t2]\∪iIi

Ψ(u̇(t))dt+
∑
i

∫ si+ri

si−ri
Ψ(u̇(t))dt

≤ µ

(
[t1, t2]\

⋃
i

Ii

)
+
∑
i

Ψ(u(si + ri)− u(si − ri))

+
∑
i

∫ si+ri

si−ri
Ψ(u̇(t)− u̇(ti))dt+

∑
i

Ψ

(∫ si+ri

si−ri
[u̇(ti)− u̇(t)]dt

)
≤ ε+

∑
i

Ψ(u(si + ri)− u(si − ri)) + 2
∑
i

εri

≤ (2T + 1)ε+ Diss(u(t); [t1, t2]).

Since ε > 0 is arbitrary, we finish the proof of Step 2.

Step 3: Combine the inequalities in Step 1 and 2, we conclude that

Diss(u(·); [t1, t2]) =

∫ t2

t1

Ψ(u̇(t))dt.

for every u ∈ AC([0, T ];X). This completes the proof of Proposition 1.2 (ii).

Proof of Proposition 1.4. It is sufficient to prove that x(·) is a limit of a sequence of dis-
cretized solutions.
Step 1. First we check that, for every t and t′ such that 0 ≤ t′ ≤ t ≤ T there holds

x(t) ∈ argminx∈X{E (t, x) + Ψ(x− x(t′))}.

Indeed, since Ψ is convex, non-negative and positively 1-homogeneous, repeat the argument
in the proof of Step 2 Proposition 1.2, we have the following triangle inequality for Ψ

Ψ(x− x(0)) ≤ Ψ(x− x(t′)) + Ψ(x(t′)− x(0)) for all x ∈ X. (1.25)

Thanks to (i) we have the following inequality

E (t, x(t)) + Ψ(x(t)− x(0)) ≤ E (t, x) + Ψ(x− x(0)) for all x ∈ X. (1.26)

On the other hand, thanks to assumption (ii) we get

Ψ(x(t)− x(0)) = Ψ(x(t)− x(t′)) + Ψ(x(t′)− x(0)) for any t′ ∈ [0, t]. (1.27)

Combining (1.27), (1.26) and (1.25), we have that for all t ∈ [0, T ]

E (t, x(t)) + Ψ(x(t)− x(t′)) = E (t, x(t)) + Ψ(x(t)− x(0))−Ψ(x(t′)− x(0))

≤ E (t, x) + Ψ(x− x(0))−Ψ(x(t′)− x(0))

≤ E (t, x) + Ψ(x− x(t′)) for all x ∈ X.
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Step 2. Construction of the discretized solution from x(·).
For every τ > 0 fixed, we consider the following partition of [0, T ] :

0 = t0 < t1 < · · · < tN ≤ T, tn − tn−1 = τ for every n ∈ {1, 2, . . . , N} and T − tN < τ.

Denote yτ (t) := x(tn−1) if t ∈ [tn−1, tn), then by Step 1

x(tn) ∈ argminx∈X{E (tn, x) + Ψ(x− x(tn−1))}.

Hence, yτ (t) is one of the discretized solutions of (E ,Ψ, x(0)) corresponding to the partition
{tn}Nn=0.

Step 3. Now we prove x(·) is the limit of the sequence of discretized solutions {yτn} for
some sequence {τn}.

In fact, consider the sequence {τn} such that τn = 2−n, and denote yτn(t) the discretized
solution corresponding to τn.

If we call {tτnk } the partition of [0, T ] corresponding to τn, then we have

yτn(t) = x(tτnk ) for every t ∈ [tτnk , t
τn
k+1).

On the other hand, for every t ∈ [0, T ] and for every n ∈ N, there exists i such that
t ∈ [tτni−1, t

τn
i ) and tτni−1 → t as n→∞. Hence, by the left-continuity of x(·) we get

lim
n→∞

x(tτni−1) = x(t).

Thus,

lim
n→∞

yτn(t) = lim
n→∞

x(tτni−1) = x(t).

Step 4. Since x(·) is the limit of the sequence of discretized solutions {yτn}, we know that
x(·) satisfies the definition of energetic solution for the system (E ,Ψ, x(0)) (see for example
Theorem 2.1 in the forthcoming Chapter 2).

Proof of Propositions 1.5. Step 1. First we prove the stability, namely

E (t, x̃(t)) ≤ E (t, z) + Ψ(z − x̃(t))

for all (t, z) ∈ [0, T ]×X.
If t ∈ {0, T} or x(·) is continuous at t, then x̃(t) = x(t) and we have the result. Now

assume that x(·) is not continuous at t ∈ (0, T ) and x̃(t) = x(t−) (the case x̃(t) = x(t+) can
be treated in the same way). Since x(·) has only at most countably many jumps, we can
find a sequence tn ↑ t such that x(·) is continuous at every tn. Therefore, using the stability
at tn we have

E (t, x(tn)) ≤ E (t, z) + Ψ(z − x(tn))

for all z ∈ X. Taking the limit as n→∞ we obtain

E (t, x(t−)) ≤ E (t, z) + Ψ(z − x(t−))
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for all z ∈ X. Since x̃(t) = x(t−), we have the desired stability.

Step 2. Next, we verify the energy-dissipation balance

E (t2, x̃(t2))− E (t1, x̃(t1)) =

∫ t2

t1

∂tE (s, x̃(s))ds−Diss(x̃(·); [t1, t2]).

From the proof of Step 2, Lemma 2.5, we know that the global stability implies

E (t2, x̃(t2))− E (t1, x̃(t1)) ≥
∫ t2

t1

∂tE (s, x̃(s))ds−Diss(x̃(·); [t1, t2]). (1.28)

Therefore, it remains to show the following inequality

E (t2, x̃(t2))− E (t1, x̃(t1)) ≤
∫ t2

t1

∂tE (s, x̃(s))ds−Diss(x̃(·); [t1, t2]). (1.29)

Since x̃(0) = x(0), x̃(T ) = x(T ) and Diss(x̃(·); [0, T ]) ≤ Diss(x(·); [0, T ]), we get imme-
diately from the energy-dissipation balance of x(·) that

E (T, x̃(T ))− E (0, x̃(0)) = E (T, x(T ))− E (0, x(0))

=

∫ T

0

∂tE (s, x(s))ds−Diss(x(·); [0, T ])

≤
∫ T

0

∂tE (s, x̃(s))ds−Diss(x̃(·); [0, T ]). (1.30)

Now denote I(t1, t2) by the difference between the left and right-hand side of (1.29). We
have already know from (1.28) that I(t1, t2) ≥ 0 for all 0 ≤ t1 ≤ t2 ≤ T . Moreover, thanks
to (1.30), we also have I(0, T ) ≤ 0. Hence,

0 ≥ I(0, T ) = I(0, t1) + I(t1, t2) + I(t2, T ).

Since each addendum in the last term is non-negative, all of them must be null. In
particular, I(t1, t2) = 0.
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Chapter 2

Existence of weak solutions to
rate-independent systems

In this chapter, we prove the existence of energetic solutions and BV solutions to the rate-
independent systems in the abstract one-dimensional framework.

For the sake of simplicity, we shall assume that the ambient space X = R, the energy
functional is non-negative, and the dissipation coincides with the usual distance in R. Some
of the following proofs do not work for higher dimensions as well as for the general dissipation
functional.

Moreover, we always assume that the energy functional E is C2, and satisfies the following
technical assumption:

There exists λ = λ(E ) such that

|∂tE (s, x)| ≤ λE (s, x) for all (s, x) ∈ [0, T ]×R. (E1)

Remark. The condition (E1) together with Gronwall’s inequality imply that

E (r, x) ≤ E (s, x) eλ|r−s|, |∂tE (r, x)| ≤ λE (s, x) eλ|r−s| (2.1)

for any r, s in [0, T ].

Under these assumptions, our equation (1.1) becomes

∂xE (t, x(t)) + ∂|x′(t)| 3 0 for a.e. t ∈ (0, T ). (2.2)

1 Existence of energetic solutions

In this section we prove the existence of energetic solutions to (2.2) via time-discretization.
First, we divide [0, T ] into small intervals by the partition 0 = t0 < t1 < · · · < tN ≤ T

such that tn − tn−1 ≤ τ for every n ∈ {1, . . . , N} and T − tN < τ . Denote xτ0 := x0 the
initial position, then for n ∈ {1, . . . , N}, we define the approximate position xτn by iteration
as follows

xτn ∈ argminx∈R{E (tn, x) + |x− xτn−1|}. (IP)

Now we denote the discretized solution xτ (t) := xτn−1 for every t ∈ [tn−1, tn). We will
prove that the sequence {xτ (·)}τ>0 is an approximation of some energetic solution x(·) in an
appropriate meaning.
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Here comes the main theorem of this section.

Theorem 2.1 (Energetic solution). Let E : [0, T ]×R→ [0,+∞] be of class C2 and satisfy
(E1). Given any initial data x0 ∈ R such that x0 is a minimizer for the function x 7→
E (0, x) + |x− x0| over x ∈ R. Then the following statements hold true:

(i) For any τ > 0 and for any partition 0 = t0 < t1 < · · · < tN ≤ T of [0, T ] such that
tn− tn−1 = τ for all n ∈ {1, . . . , N} and T − tN < τ , there exists a discretized solution
t 7→ xτ (t) satisfying

xτ0 = x0;

xτn minimizes the function x 7→ E (tn, x) + |xτn−1 − x|, for all n = 1, 2, . . . , N ;

xτ (t) = xτn−1 if t ∈ [tn−1, tn).

(ii) There exists a subsequence {τk} such that xτk(·) converges pointwise to some limit x(·)
and t 7→ x(t) has bounded variation.

(iii) The limit x(·) is an energetic solution of (2.2), namely

(Global stability) For all t ∈ [0, T ] and z ∈ R,

E (t, x(t)) ≤ E (t, z) + |x(t)− z|.

(Energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T , one has

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Diss(x(·); [s, t]).

The reader is referred to [11] for the definition of bounded variation functions. We recall
here the definition of dissipation

Diss(x; [s, t]) := sup

{
N∑
i=1

|x(ti)− x(ti−1)| | N ∈ N, s = t0 < t1 < · · · < tN = t

}
.

for any mapping x : [0, T ]→ R and any 0 ≤ s ≤ t ≤ T .
The proof of this theorem is given in Lemmas 2.2, 2.4 and 2.5 below.

1.1 Discretized solutions

Lemma 2.2 (Discretized solution). For any given initial state x0, any τ > 0 and any
partition 0 = t0 < t1 < · · · < tN ≤ T of [0, T ] such that tn − tn−1 = τ , there exists a
discretized solution t 7→ xτ (t) satisfying the following two properties:

(Minimizer) xτn minimizes x 7→ E (tn, x) + |xτn−1 − x|, for all n = 1, 2, . . . , N ; and

(Interpolation) xτ (t) = xτn−1 if t ∈ [tn−1, tn).
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Proof. Since x 7→ E (tn, x) + |x − xτn−1| is continuous and converges to +∞ as x → ±∞, it
is known that this function has a minimizer.

The following energy estimates will be useful.

Lemma 2.3 (Energy estimates). Let xτn be as in Lemma 2.2. For any n ∈ {1, . . . , N}, we
have

E (tn, x
τ
n) ≤ E (0, x0) e

λtn and E (0, xτn) ≤ E (0, x0) e
2λtn

Moreover, it holds that Diss(xτ ; [0, T ]) < ∞, ∂tE (·, xτ (·)) ∈ L1(0, T ) and, for all 0 ≤ s ≤
t ≤ T ,

E (t, xτ (t))− E (s, xτ (s)) ≤
∫ t

s

∂tE (r, xτ (r))dr −Diss(xτ ; [s, t]).

Proof. Step 1. By the minimality of xτn at time tn, we have

E (tn, x
τ
n) + |xτn−1 − xτn| ≤ E (tn, x

τ
n−1)

= E (tn−1, x
τ
n−1) +

∫ tn

tn−1

∂tE (t, xτn−1)dt.

here the last equality comes from the fact that E (tn−1, x
τ
n−1) <∞ and E (·, xτn−1) is of class

C1.
By (2.1),

∂tE (t, xτn−1) ≤ λE (tn−1, x
τ
n−1) e

λ(t−tn−1) for all t ∈ [tn−1, tn].

Hence

E (tn, x
τ
n) ≤ E (tn, x

τ
n) + |xτn−1 − xτn|

≤
∫ tn

tn−1

λE (tn−1, x
τ
n−1) e

λ(t−tn−1)dt+ E (tn−1, x
τ
n−1)

= E (tn−1, x
τ
n−1)(e

λ(tn−tn−1) − 1) + E (tn−1, x
τ
n−1)

= E (tn−1, x
τ
n−1) e

λ(tn−tn−1).

By induction,

E (tn, x
τ
n) ≤ E (tn−1, x

τ
n−1) e

λ(tn−tn−1) ≤ E (tn−2, x
τ
n−2) e

λ(tn−1−tn−2) eλ(tn−tn−1)

≤ · · · ≤ E (0, x0) e
λ(t1−t0) eλ(t2−t1) . . . eλ(tn−tn−1) = E (0, x0) e

λtn .

Finally, by (2.1) again,

E (0, xτn) ≤ E (tn, x
τ
n) eλtn ≤ E (0, x0) e

2λtn .

Step 2. Now we prove the integral bound. Assume that ti−1 < s ≤ ti < ti+1 < · · · < tj ≤
t < tj+1, where {tn} is the partition corresponding to xτ . We start by writing

E (t, xτ (t))− E (s, xτ (s)) = E (t, xτ (t))− E (tj, x
τ (tj)) + E (tj, x

τ (tj))− E (tj−1, x
τ (tj−1))

+ · · ·+ E (ti, x
τ (ti))− E (s, xτ (s)). (2.3)

31



Denote xk := xτ (tk). By the minimality of xk at time tk, we have

E (tk, xk)− E (tk−1, xk−1) ≤ E (tk, xk−1)− |xk−1 − xk| − E (tk−1, xk−1)

=

∫ tk

tk−1

∂tE (r, xk−1)dr − |xk−1 − xk|

=

∫ tk

tk−1

∂tE (r, xτ (r))dr − |xk−1 − xk|.

In the last equality we have used xτ (r) = xk−1 for all r ∈ [tk−1, tk).
Taking the sum for all k from i+ 1 to j, we get

j∑
k=i+1

[E (tk, xk)− E (tk−1, xk−1)] ≤
j∑

k=i+1

∫ tk

tk−1

∂tE (r, xτ (r))dr

−
j∑

k=i+1

|xk − xk−1|. (2.4)

Moreover,

E (t, xτ (t))− E (tj, x
τ (tj)) = E (t, xj)− E (tj, xj)

=

∫ t

tj

∂tE (r, xj)dr − |xj − xj|

=

∫ t

tj

∂tE (r, xτ (r))dr − |xτ (t)− xj| (2.5)

and

E (ti, x
τ (ti))− E (s, xτ (s)) = E (ti, xi)− E (s, xi−1)

≤ E (ti, xi−1)− |xi−1 − xi| − E (s, xi−1)

=

∫ ti

s

∂tE (r, xi−1)dr − |xi−1 − xi|

=

∫ ti

s

∂tE (r, xτ (r))dr − |xτ (s)− xi|. (2.6)

From (2.3), (2.4), (2.5) and (2.6), we get

E (t, xτ (t))− E (s, xτ (s)) ≤
∫ t

s

∂tE (r, xτ (r))dr

−

(
|xτ (t)− xj|+

j∑
k=i+1

|xk − xk−1|+ |xτ (s)− xi|

)

=

∫ t

s

∂tE (r, xτ (r))dr −Diss(xτ ; [s, t]).
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1.2 Existence and properties of the limit

Lemma 2.4 (Existence of the limit). Let xτn be as in Lemma 2.2. Then Diss(xτ ; [0, T ]) ≤ C
and E (t, xτ (t)) ≤ C for all t ∈ [0, T ], where C is a constant independent of τ .

Consequently, there exists a subsequence τk → 0 such that {xτk(·)} converges pointwise
to some function x(·) and

Diss(x; [0, T ]) ≤ lim inf
k→∞

Diss(xτk ; [0, T ]) ≤ C.

Proof. By definition of xτ (·), condition (2.1), and Lemma 2.3, we have for all t ∈ [tn−1, tn)

E (t, xτ (t)) = E (t, xτn−1)

≤ E (tn−1, x
τ
n−1) e

λ(t−tn−1)

≤ E (0, x0) e
λtn−1 eλ(t−tn−1)

= E (0, x0) e
λt. (2.7)

Moreover, by Lemma 2.3 again, we get

Diss(xτ ; [0, T ]) ≤ E (0, x0)− E (T, xτ (T )) +

∫ T

0

∂tE (t, xτ (t))dt

≤ E (0, x0) +

∫ T

0

λE (t, xτ (t))dt.

Here in the last inequality, we have used the fact that E (T, xτ (T )) is non-negative, and
condition (2.1).

Now taking into account (2.7), the last inequality becomes

Diss(xτ ; [0, T ]) ≤ E (0, x0) +

∫ T

0

λE (0, x0) e
λtdt

≤ E (0, x0) e
λT .

Finally, thanks to Helly’s principle (see Proposition 1.3), we have a subsequence τk → 0
such that xτk converges pointwise to some limit x(·). Moreover, we have

Diss(x; [0, T ]) ≤ lim inf
k→∞

Diss(xτk ; [0, T ]) ≤ C,

Now we prove that the limit x(·) is an energetic solution of (2.2). More precisely, we
prove

Lemma 2.5 (Properties of the limit). Let x(·) be as in Lemma 2.4. Then one has

(i) (Global stability) For any t ∈ [0, T ],

E (t, x(t)) ≤ E (t, z) + |x(t)− z| for all z ∈ R.
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(ii) (Energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Diss(x; [s, t]).

Proof. Step 1: Global stability. Recall that we have a sequence of discretized solutions
xτk(t) converging pointwise to x(t) for every t. Now for every τk, we choose some n such that
t ∈ [tτkn−1, t

τk
n ). Using the minimality for xτk(tτkn−1) at time tτkn−1, we get

E (tτkn−1, x
τk(tτkn−1)) + |xτk(tτkn−1)− xτk(t

τk
n−2)| ≤ E (tτkn−1, z) + |z − xτk(tτkn−2)| for all z ∈ R.

Hence,

E (tτkn−1, x
τk(tτkn−1)) ≤ E (tτkn−1, z) + |z − xτk(tτkn−2)| − |xτk(t

τk
n−1)− xτk(t

τk
n−2)|

≤ E (tτkn−1, z) + |xτk(tτkn−1)− z| for all z ∈ R.

Taking the limit of the above inequality as k → ∞ and using that xτk(tτkn−1) = xτk(t)
whenever t ∈ [tτkn−1, t

τk
n ), we get the global stability at t.

Step 2: Energy-dissipation lower bound. By the continuity of ∂tE , for every ε > 0, we
can find a partition s = ti < ti+1 < · · · < tj = t of [s, t] such that

j∑
k=i+1

∫ tk

tk−1

∂tE (r, x(tk))dr ≥
∫ t

s

∂tE (r, x(r))dr − ε.

Using the global stability of x(tk−1) at time tk−1 we get

E (tk−1, x(tk−1)) ≤ E (tk−1, x(tk)) + |x(tk)− x(tk−1)|.

Hence,

E (t, x(t))− E (s, x(s)) =

j∑
k=i+1

[E (tk, x(tk))− E (tk−1, x(tk−1))]

≥
j∑

k=i+1

[E (tk, x(tk))− E (tk−1, x(tk))− |x(tk)− x(tk−1)|]

≥
j∑

k=i+1

∫ tk

tk−1

∂tE (r, x(tk))−Diss(x; [s, t])

≥
∫ t

s

∂tE (r, x(r))dr −Diss(x; [s, t])− ε.

Since ε was arbitrary, we get the energy-dissipation lower bound

E (t, x(t))− E (s, x(s)) ≥
∫ t

s

∂tE (r, x(r))dr −Diss(x; [s, t]) for all 0 ≤ s ≤ t ≤ T.
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Step 3: Energy-dissipation upper bound. Using Lemma 2.3 we have

E (t, xτk(t))− E (s, xτk(s)) ≤
∫ t

s

∂tE (r, xτk(r))dr −Diss(xτk ; [s, t]),

here {xτk(t)} is a sequence of discretized solutions of (2.2) that converges pointwise to x(t).
We take the limit of the above inequality as k →∞. By the continuity of E and the fact

that xτk(r) converges pointwise to x(r), we have

lim
k→∞

E (t, xτk(t)) = E (t, x(t)),

lim
k→∞

E (s, xτk(s)) = E (s, x(s)).

Moreover, by the continuity of ∂tE , we also get ∂tE (r, xτk(r)) converges pointwise to
∂tE (r, x(t)). Employing the dominated convergence theorem, we have

lim
k→∞

∫ t

s

∂tE (r, xτk(r))dr =

∫ t

s

∂tE (r, x(r))dr.

Finally, thanks to Lemma 2.4, we get

lim inf
k→∞

Diss(xτk ; [s, t]) ≥ Diss(x; [s, t]).

Now putting everything together, we get the following upper bound estimate

E (t, x(t))− E (s, x(s)) ≤
∫ t

s

∂tE (r, x(r))dr −Diss(x; [s, t]) for all 0 ≤ s ≤ t ≤ T.

This ends the proof of the lemma.

Thus, we have already constructed a solution to (2.2) satisfying global stability (S) and
energy-dissipation balance (ED) in the one-dimensional case. For the proof in a more general
framework, we refer to the paper of Mielke [21].

Remark. From the proof of Step 2, we also get the following result.
Let X be a finite dimensional normed space and x : [0, T ] → X be any BV function

satisfying the stability

E (t, x(t)) ≤ E (t, z) + |z − x(t)| for all (t, z) ∈ [0, T ]×X,

then it holds that

E (t, x(t))− E (s, x(s)) ≥
∫ t

s

∂tE (r, x(r))dr −Diss(x; [s, t]) for all 0 ≤ s ≤ t ≤ T.
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2 Existence of BV solutions

The existence of BV solutions is proved via the so-called vanishing-viscosity procedure. This
method was developed by Mielke, Rossi and Savaré, see for instance [26]. The idea is to add
a small viscosity into the dissipation term. BV solutions are then obtained in the limit of the
sequence of the new discretized solutions when the viscosity term and the time-discretization
step go to zero.

For simplicity, here we choose the dissipation with viscosity Ψε = | · | + ε
2
| · |2. The

incremental problem (IP) after adding the viscosity becomes

(IPε) x
τ,ε
n ∈ argminx∈R {E (tn, x) + |x− xτ,εn−1|+ ε

2τ
|x− xτ,εn−1|2} for every n ∈ {1, . . . , N}.

Here τ > 0 and ε > 0 are fixed, 0 = t0 < · · · < tN ≤ T is a partition of [0, T ] satisfying
tn − tn−1 = τ for every n ∈ {1, . . . , N} and T − tN < τ .

Denote uτ,ε(t) := xτ,εn−1 for every t ∈ [tn−1, tn). We will prove that the sequence of {uτ,ε}
is an approximation of some BV solution u(·) in an appropriate sense.

Theorem 2.6 (BV solution). Let E : [0, T ] × R → [0,+∞] be of class C2 and satisfy
(E1). Given any initial data x0 ∈ R such that x0 is a local minimizer for the function
x 7→ E (0, x) + |x− x0|. Then the following statements hold true.

(i) For any τ > 0, for any ε > 0 and for any partition 0 = t0 < t1 < · · · < tN ≤ T of [0, T ]
such that tn − tn−1 = τ and T − tN < τ , there exists a discretized solution t 7→ uτ,ε(t)
satisfying

xτ,εn minimizes x 7→ E (tn, x) + |x− xτ,εn−1|+
ε

2τ
|x− xτ,εn−1|2 for all n = 1, 2, . . . , N ;

uτ,ε(t) = xτ,εn−1 if t ∈ [tn−1, tn).

(ii) There exists a subsequence {uτk,εk} such that uτk,εk(t) converges pointwise to some limit
u(t), and u(·) also has bounded variation.

(iii) The limit u(t) is a BV solution of (2.2), namely

|∂xE (t, u(t))| ≤ 1 for a.e. t ∈ (0, T ),

for all 0 ≤ s < t ≤ T,E (t, u(t))− E (s, u(s)) =

∫ t

s

∂tE (r, u(r))dr −Dissnew(u; [s, t]).

Here for simplicity, we always assume that t 7→ u(t) is right-continuous, then we can
write

Dissnew(u; [0, T ]) := Diss(u; [0, T ])−
∑
t∈J

(∆(t, u(t−), u(t+)))+
∑
t∈J

(∆new(t, u(t−), u(t+))),

J is the jump set of u, the classical jump step is ∆(t, u(t−), u(t+)) := |u(t−)− u(t+)|,
and the new jump step is

∆new(t, u(t−), u(t+))

:= inf{
∫ 1

0

|v̇(r)| ·max{1, |∂xE (t, v(r))|}dr | v ∈ AC([0, 1]), v(0) = u(t−), v(1) = u(t+)}.
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The notion of BV (bounded variation) functions could be found in [11]. The notion of
AC (absolutely continuous) functions could be found in [32].

This theorem is proved thanks to Lemma 2.7, 2.9 and 2.10 below.

2.1 Discretized solutions

Lemma 2.7 (Discretized solution). For any given initial state x0, any ε > 0, any τ > 0 and
any partition 0 = t0 < t1 < · · · < tN ≤ T of [0, T ] such that tn − tn−1 = τ and T − tN < τ ,
there exists a discretized solution t 7→ uτ,ε(t) defined by

(Minimizer) xτ,εn minimizes x 7→ E (tn, x) + |x − xτ,εn−1| + ε
2τ
|x − xτ,εn−1|2, for all n =

1, 2, . . . , N ; and

(Interpolation) uτ,ε(t) = xτ,εn−1 if t ∈ [tn−1, tn).

Proof. The proof is obvious from the general fact: Given f : X → [0,+∞] such that f is
continuous and f(x)→∞ as |x| → ∞. Then f admits a minimizer.

We shall need the following energy estimates for the discretized solutions.

Lemma 2.8 (Energy estimates). Let xτ,ε be as in Lemma 2.7. Then for any n we have

E (tn, x
τ,ε
n ) ≤ E (0, x0) e

λtn and E (0, xτ,εn ) ≤ E (0, x0) e
2λtn .

Moreover,
N∑
n=1

(|xτ,εn − x
τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2) ≤ E (0, x0) e

λT

and for all n = 1, 2, . . . , N,

|xτ,εn − x
τ,ε
n−1| ≤ C

τ

ε

for some constant C > 0 independent of τ and ε.

Proof. Step 1. By the minimality of xτ,εn , we have

E (tn, x
τ,ε
n ) + |xτ,εn − x

τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2 ≤ E (tn, x

τ,ε
n−1).

By the C1-continuity of E (·, xτ,εn−1), we can write

E (tn, x
τ,ε
n−1) = E (tn, x

τ,ε
n−1)− E (tn−1, x

τ,ε
n−1) + E (tn−1, x

τ,ε
n−1)

=

∫ tn

tn−1

∂tE (t, xτ,εn−1)dt+ E (tn−1, x
τ,ε
n−1).

Using condition (2.1), we get

∂tE (t, xτ,εn−1) ≤ λE (tn−1, x
τ,ε
n−1) e

λ(t−tn−1) for all t ∈ [tn−1, tn].

37



Hence,

E (tn, x
τ,ε
n ) ≤ E (tn, x

τ,ε
n ) + |xτ,εn − x

τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2

≤ E (tn, x
τ,ε
n−1)

=

∫ tn

tn−1

∂tE (t, xτ,εn−1)dt+ E (tn−1, x
τ,ε
n−1)

≤
∫ tn

tn−1

λE (tn−1, x
τ,ε
n−1) e

λ(t−tn−1)dt+ E (tn−1, x
τ,ε
n−1)

= E (tn−1, x
τ,ε
n−1)(e

λ(tn−tn−1) − 1) + E (tn−1, x
τ,ε
n−1)

= E (tn−1, x
τ,ε
n−1) e

λ(tn−tn−1).

By induction,

E (tn, x
τ,ε
n ) ≤ E (tn−1, x

τ,ε
n−1) e

λ(tn−tn−1) ≤ E (tn−2, x
τ,ε
n−2) e

λ(tn−1−tn−2) eλ(tn−tn−1)

≤ · · · ≤ E (0, x0) e
λ(t1−t0) eλ(t2−t1) . . . eλ(tn−tn−1) = E (0, x0) e

λtn .

Finally, by (2.1) again

E (0, xτ,εn ) ≤ E (tn, x
τ,ε
n ) eλtn ≤ E (0, x0) e

2λtn .

Thus,
E (tn, x

τ,ε
n ) ≤ E (0, x0) e

λtn and E (0, xτ,εn ) ≤ E (0, x0) e
2λtn .

Step 2. Now we prove that

N∑
n=1

(|xτ,εn − x
τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2) ≤ E (0, x0) e

λT .

Since xτ,εn is a minimizer of y 7→ E (tn, y) + |y − xτ,εn−1|+ ε
2τ
|y − xτ,εn−1|2, we have

E (tn, x
τ,ε
n ) + |xτ,εn − x

τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2 ≤ E (tn, x

τ,ε
n−1).

Thus
|xτ,εn − x

τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2 ≤ E (tn, x

τ,ε
n−1)− E (tn, x

τ,ε
n ).
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Taking the sum when n runs from 1 to N , we get

N∑
n=1

(|xτ,εn − x
τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2) ≤

N∑
n=1

[
E (tn, x

τ,ε
n−1)− E (tn, x

τ,ε
n )
]

≤
N∑
n=1

[
E (tn, x

τ,ε
n−1)− E (tn−1, x

τ,ε
n−1)

]
+

+
N∑
n=1

[
E (tn−1, x

τ,ε
n−1)− E (tn, x

τ,ε
n )
]

=
N∑
n=1

∫ tn

tn−1

∂tE (t, xτ,εn−1)dt+ E (0, x0)− E (tN , x
τ,ε
N )

≤
N∑
n=1

∫ tn

tn−1

∂tE (t, xτ,εn−1)dt+ E (0, x0).

By (2.1),
∂tE (t, xτ,εn−1) ≤ λE (tn−1, x

τ,ε
n−1) e

λ(t−tn−1), for all t ∈ [tn−1, tn).

By Step 1,
E (tn−1, x

τ,ε
n−1) ≤ E (0, x0) e

λtn−1 .

Thus,
∂tE (t, xτ,εn−1) ≤ λE (0, x0) e

λt, for all t ∈ [tn−1, tn).

Hence,

N∑
n=1

(|xτ,εn − x
τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2) ≤

N∑
n=1

E (0, x0)

∫ tn

tn−1

λeλtdt+ E (0, x0)

=
N∑
n=1

E (0, x0)(e
λtn − eλtn−1) + E (0, x0)

= E (0, x0) e
λtN ≤ E (0, x0) e

λT .

Step 3. Finally we show that for every n,

|xτ,εn − x
τ,ε
n−1| ≤ C

τ

ε

for some constant C > 0 independent of τ and ε.
By the minimality of xτ,εn we have

E (tn, x
τ,ε
n ) + |xτ,εn − x

τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2 ≤ E (tn, x

τ,ε
n−1),

or equivalently,

|xτ,εn − x
τ,ε
n−1|+

ε

2τ
|xτ,εn − x

τ,ε
n−1|2 ≤ E (tn, x

τ,ε
n−1)− E (tn, x

τ,ε
n )

=

∫ xτ,εn

xτ,εn−1

∂xE (tn, y)dy

≤ C|xτ,εn − x
τ,ε
n−1|.
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Here, the constant C is independent of n, since the sequence {xτ,εn } is uniformly bounded.
This ends the proof of Lemma 2.8.

2.2 Existence and properties of the limit

Now we prove that there is a subsequence of {uτ,ε(t)} converging pointwise to some function
u(t) when ε→ 0 and τ → 0.

Lemma 2.9 (Existence of the limit). Let xτ,εn be as in Lemma 2.7. Then Diss(uτ,ε; [0, T ]) ≤
C and E (t, uτ,ε(t)) ≤ C for all t ∈ [0, T ], where C is a constant independent of τ, ε.

Consequently, there exists a subsequence {uτk,εk}, τk → 0, εk → 0, converging pointwise
to some function u(t) and

Diss(u; [0, T ]) ≤ lim inf
k→∞

Diss(uτk,εk ; [0, T ]) ≤ C

Proof. Thanks to Lemma 2.8, we have

Diss(uτ,ε; [0, T ]) =
N∑
n=1

|xτ,εn − x
τ,ε
n−1| ≤ E (0, x0) e

λT = const.

By Helly’s selection theorem, there exists a subsequence uτk,εk(t) converging to some u(t)
for all t ∈ [0, T ]. Moreover,

Diss(u; [0, T ]) ≤ lim inf
k→∞

Diss(uτk,εk ; [0, T ]) ≤ C.

So far, we have proved there is a sequence {uτ,ε} converging pointwise to some function
u(t) for all t ∈ [0, T ] when τ and ε tend to 0. Now we will prove that u(t) is a BV solution
of (2.2) under the assumption that τ

ε2
tends to 0. More precisely, we prove that

Lemma 2.10 (Properties of the limit). Let u(·) be a limit of the sequence {uτk,εk} as in
Lemma 2.9. If we choose the sequences τk → 0, εk → 0 so that τk

ε2k
→ 0, then

(Local stability) |∂xE (t, u(t))| ≤ 1 for a.e. t ∈ (0, T ).

(New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T ,

E (t, u(t))− E (s, u(s)) =

∫ t

s

∂tE (r, u(r))dr −Dissnew(u; [s, t]),

Remark. The condition τk/ε
2
k → 0 is not optimal. In [26], Mielke, Rossi and Savaré show

that the condition τk/εk → 0 is enough to obtain a BV solution. However, for simplicity, we
use the stronger condition τk/ε

2
k → 0, which allows for a simpler proof as below.

Now we introduce two more approximations of u(t).
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Definition 2.1. Let xτ,εn be as in Lemma 2.7. We define the left-continuous piecewise con-
stant interpolation

uτ,ε(t) = xτ,εn if t ∈ (tn−1, tn],

and the piecewise linear interpolation

uτ,ε(t) =
t− tn−1
tn − tn−1

xτ,εn +
tn − t

tn − tn−1
xτ,εn−1

=
xτ,εn − x

τ,ε
n−1

τ
t+

xτ,εn−1tn − xτ,εn tn−1
τ

if t ∈ [tn−1, tn].

Lemma 2.11. Let xτ,εn be as in Lemma 2.7. Let uτ,ε, uτ,ε, and uτ,ε be the right-continuous
piecewise constant interpolation, left-continuous piecewise constant interpolation, and the
piecewise linear interpolation of the sequence {xτ,εn }. Then , up to subsequences, all three
sequences {uτk,εk}, {uτk,εk}, and {uτk,εk} converge pointwise to the same limit u(t) for all
t ∈ [0, T ], when εk → 0 and τk

εk
→ 0.

Proof. Observe that

‖uτ,ε − uτ,ε‖ ≤ sup
n
|xτ,εn − x

τ,ε
n−1|

‖uτ,ε − uτ,ε‖ ≤ sup
n
|xτ,εn − x

τ,ε
n−1|.

We also get from Lemma 2.8 that

|xτ,εn − x
τ,ε
n−1| ≤ C

τ

ε
.

Thus, when τ and ε tend to 0 with constraint τ
ε
→ 0, we have

lim
ε→0, τ

ε
→0
|xτ,εn − x

τ,ε
n−1| = 0.

On the other hand, by Lemma 2.9, we know that, up to a subsequence, {uτk,εk} converges
pointwise to some u(t). So we also have

uτk,εk(t)→ u(t),

uτk,εk(t)→ u(t),

as εk → 0 and τk/εk → 0.

Now we call Ψ the classical dissipation function and Ψε the dissipation function with
viscosity term,

Ψ(x) := |x|
Ψε(x) := |x|+ ε

2
|x|2 (2.8)
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Lemma 2.12. Let Ψε be the dissipation function with viscosity as in (2.8), Ψ∗ε be the Legendre
transform of Ψε (see [30] for the definition of Legrendre transform). Let xτ,εn be as in Lemma
2.7, uτ,ε be the piecewise linear interpolation of {xτ,εn }, wτ,ε be the left-continuous piecewise
constant interpolation of −∂xE (tn, x

τ,ε
n ), i.e. wτ,ε(t) = −∂xE (tn, x

τ,ε
n ) if t ∈ (tn−1, tn], and

u(t) be the limit defined in Lemma 2.9. Then we have the following relation

lim
ε→0, τ

ε2
→0

∫ T

0

[
Ψε(u̇τ,ε(t)) + Ψ∗ε(wτ,ε(t))

]
dt = E (0, x0)− E (T, u(T )) +

∫ T

0

∂tE (t, u(t))dt,

Proof. From (IPε), we have that xτ,εn is a minimizer of the following function

x 7→ E (tn, x) + τΨε

(
x− xτ,εn−1

τ

)
.

Differentiating w.r.t. x, we get

0 ∈ ∂xE (tn, x
τ,ε
n ) + ∂Ψε

(
xτ,εn − x

τ,ε
n−1

τ

)
. (2.9)

Using the Fenchel equivalence,

x∗ ∈ ∂F (x)⇐⇒ F (x) + F ∗(x∗) = 〈x∗, x〉 ,

(2.9) now becomes

τΨε

(
xτ,εn − x

τ,ε
n−1

τ

)
+ τΨ∗ε(−∂xE (tn, x

τ,ε
n )) =

〈
−∂xE (tn, x

τ,ε
n ), xτ,εn − x

τ,ε
n−1
〉
. (2.10)

Applying the chain rule for E (t, uτ,ε(t)) where E ∈ C1 and uτ,ε is piecewise linear, we have

d

dt
E (t, uτ,ε(t)) = ∂tE (t, uτ,ε(t)) + 〈∂xE (t, uτ,ε(t)), u̇τ,ε(t)〉

= ∂tE (t, uτ,ε(t)) +

〈
∂xE (t, uτ,ε(t)),

xτ,εn − x
τ,ε
n−1

τ

〉
, for all t ∈ (tn−1, tn).

Then

E (tn, x
τ,ε
n )− E (tn−1, x

τ,ε
n−1) =

∫ tn

tn−1

∂tE (t, uτ,ε(t))dt+

∫ tn

tn−1

〈
∂xE (t, uτ,ε(t)),

xτ,εn − x
τ,ε
n−1

τ

〉
dt,

or equivalently,

0 = E (tn−1, x
τ,ε
n−1)−E (tn, x

τ,ε
n )+

∫ tn

tn−1

∂tE (t, uτ,ε(t))dt+

∫ tn

tn−1

〈
∂xE (t, uτ,ε(t)),

xτ,εn − x
τ,ε
n−1

τ

〉
dt.

Plugging the above equation into (2.10) and then taking the sum over n, we arrive at

N∑
n=1

[
τΨε

(
xτ,εn − x

τ,ε
n−1

τ

)
+ τΨ∗ε(−∂xE (tn, x

τ,ε
n ))

]

= −
N∑
n=1

〈
∂xE (tn, x

τ,ε
n ), xτ,εn − x

τ,ε
n−1
〉

+
N∑
n=1

(
E (tn−1, x

τ,ε
n−1)− E (tn, x

τ,ε
n )
)

+
N∑
n=1

∫ tn

tn−1

∂tE (t, uτ,ε(t))dt+
N∑
n=1

∫ tn

tn−1

〈
∂xE (t, uτ,ε(t)),

xτ,εn − x
τ,ε
n−1

τ

〉
dt (2.11)
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If we replace
xτ,εn −xτ,εn−1

τ
by u̇τ,ε(t) and −∂xE (tn, x

τ,ε
n ) by wτ,ε(t) for t ∈ (tn−1, tn], then the

left-hand side of (2.11) becomes

LHS(2.11) =
N∑
n=1

∫ tn

tn−1
Ψε

(
xτ,εn − x

τ,ε
n−1

τ

)
+

N∑
n=1

∫ tn

tn−1

Ψ∗ε(−∂xE (tn, x
τ,ε
n ))

=
N∑
n=1

∫ tn

tn−1
Ψε(u̇τ,ε(t))dt+

N∑
n=1

∫ tn

tn−1
Ψ∗ε(wτ,ε(t))dt

=

∫ tN

0

Ψε(u̇τ,ε(t))dt+

∫ tN

0

Ψ∗ε(wτ,ε(t))dt, (2.12)

The right-hand side of (2.11) can be written as

RHS(2.11) = E (0, x0)− E (tN , x
τ,ε
tN

) +

∫ tN

0

∂tE (t, uτ,ε(t))dt

+
N∑
n=1

∫ tn

tn−1

〈
∂xE (t, uτ,ε(t)),

xτ,εn − x
τ,ε
n−1

τ

〉
dt−

N∑
n=1

〈
∂xE (tn, x

τ,ε
n ), xτ,εn − x

τ,ε
n−1
〉

= E (0, x0)− E (tN , x
τ,ε
tN

) +

∫ tN

0

∂tE (t, uτ,ε(t))dt+
N∑
n=1

Mn (2.13)

where

Mn :=

∫ tn

tn−1

〈
∂xE (t, uτ,ε(t)),

xτ,εn − x
τ,ε
n−1

τ

〉
dt−

〈
∂xE (tn, x

τ,ε
n ), xτ,εn − x

τ,ε
n−1
〉
.

Now we show that
∑N

n=1Mn → 0 as ε→ 0, and τ/ε2 → 0.
In fact, by C2 continuity of E in both two variables t and x we can write

|Mn| ≤
∣∣∣∣∫ tn

tn−1

〈
∂xE (t, uτ,ε(t)),

xτ,εn − x
τ,ε
n−1

τ

〉
dt−

∫ tn

tn−1

〈
∂xE (tn, x

τ,ε
n ),

xτ,εn − x
τ,ε
n−1

τ

〉
dt

∣∣∣∣
≤

∫ tn

tn−1

|∂xE (t, uτ,ε(t))− ∂xE (tn, x
τ,ε
n )| ·

∣∣∣∣xτ,εn − xτ,εn−1τ

∣∣∣∣ dt
≤

∫ tn

tn−1

|∂xE (t, uτ,ε(t))− ∂xE (t, xτ,εn )| ·
∣∣∣∣xτ,εn − xτ,εn−1τ

∣∣∣∣ dt
+

∫ tn

tn−1

|∂xE (t, xτ,εn )− ∂xE (tn, x
τ,ε
n )| ·

∣∣∣∣xτ,εn − xτ,εn−1τ

∣∣∣∣ dt
≤

∫ tn

tn−1

C

τ
|xτ,εn − x

τ,ε
n−1|2dt+

∫ tn

tn−1

Cτ

∣∣∣∣xτ,εn − xτ,εn−1τ

∣∣∣∣ dt,
with the constants C independent of τ, ε and n.

By Lemma 2.8 we have

|xτ,εn − x
τ,ε
n−1| ≤ C

τ

ε
.

43



Therefore, Mn can be estimated by

|Mn| ≤
∫ tn

tn−1

C
τ

ε2
dt+

∫ tn

tn−1

C
τ

ε
dt

= C
τ 2

ε2
+ C

τ 2

ε
.

Thus, taking the sum over n, and noticing that n ∼ T
τ

, we get

N∑
n=1

|Mn| ≤ C
Tτ

ε2
+ C

Tτ

ε
→ 0 when ε→ 0 and τ/ε2 → 0. (2.14)

Finally, taking the limit in (2.11) and using (2.12), (2.13) and (2.14), we get the result.
This ends the proof of Lemma 2.12.

Now we are able to prove the Local Stability.

Proof of Lemma 2.10. Local stability
In particular, from Lemma 2.12, we have

lim inf
ε→0, τ

ε2
→0

∫ T

0

Ψ∗ε(wτ,ε(t)) ≤ const.

Denote x+ := max{x, 0}. A direct computation gives us that

Ψ∗ε(w) =
1

2ε
((|w| − 1)+)2. (2.15)

Hence, we have

lim inf
ε→0, τ

ε2
→0

1

2ε

∫ T

0

((|wτ,ε| − 1)+)2 ≤ const.

Using Fatou’s Lemma and the fact that ε→ 0, we obtain

0 = lim inf
ε→0, τ

ε2
→0

(|wτ,ε| − 1)+ = (|∂xE (t, u(t))| − 1)+ for a.e. t ∈ (0, T ).

Thus, we get the weak local stability (w-LS)

−∂xE (t, u(t)) ∈ [−1, 1] for a.e. t ∈ (0, T ).

Remark. If we call J the jump set of u(·), then by the continuity of E (·, ·) and u(·) outside
J, we also have −∂xE (t, u(t)) ∈ [−1, 1] for all t ∈ (0, T )\J.

Before proving the new Energy-Dissipation balance in Lemma 2.10, we need some pre-
liminary lemmas.

Lemma 2.13. Let Ψε,Ψ
∗
ε, x

τ,ε
n , uτ,ε, wτ,ε as before. Then it holds that

lim inf
ε→0, τ

ε2
→0

∫ T

0

(Ψ∗ε(wτ,ε(t))−Ψ∗ε(−∂xE (t, uτ,ε(t))))dt ≥ 0.
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Proof. Step 1. By (2.15), we can write∫ tN

0

[
Ψ∗ε(wτ,ε(t))−Ψ∗ε(−∂xE (t, uτ,ε(t)))

]
dt

=
N∑
n=1

∫ tn

tn−1

[
1

2ε
((|wτ,ε(t)| − 1)+)2 − 1

2ε
((|∂xE (t, uτ,ε(t))| − 1)+)2

]
dt

=
N∑
n=1

∫ tn

tn−1

[
1

2ε
((|∂xE (tn, x

τ,ε
n )| − 1)+)2 − 1

2ε
((|∂xE (t, uτ,ε(t))| − 1)+)2

]
dt

=
N∑
n=1

∫ tn

tn−1

(x+n )2 −
N∑
n=1

∫ tn

tn−1

(y(t)+)2dt, (2.16)

here we denote

xn :=
|∂xE (tn, x

τ,ε
n )| − 1√

2ε
,

y(t) :=
|∂xE (t, uτ,ε(t))| − 1√

2ε
.

From Lemma 2.12, we have ∫ T

0

Ψ∗ε(wτ,ε(t))dt ≤ C.

Thus

N∑
n=1

∫ tn

tn−1

(x+n )2 ≤ C. (2.17)

Step 2. Note that by the Cauchy-Schwarz inequality, for all m > 0 and x, y ∈ R we have

(y+)2 − (x+)2 = (y+ − x+)(y+ + x+)

≤ |y − x|.(y+ + x+)

≤
(

1

m
(x− y)2 +m(x+ + y+)2

)
≤

(
1

m
(x− y)2 + 2m(x+)2 + 2m(y+)2

)
.

In particular, choosing m = 1/4 we obtain

(y+)2 ≤ 8(x− y)2 + 3(x+)2.

Hence for all m > 0 and x, y ∈ R we get

(y+)2 − (x+)2 ≤
(

1

m
+ 16m

)
(x− y)2 + 8m(x+)2.
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Step 3. Now applying the elementary inequality in Step 2, we can write∫ tn

tn−1

[
1

2ε
((|∂xE (tn, x

τ,ε
n )| − 1)+)2 − 1

2ε
((|∂xE (t, uτ,ε(t))| − 1)+)2

]
dt

=

∫ tn

tn−1

[
(x+n )2 − (y(t)+)2

]
dt

≥
∫ tn

tn−1

[
−
(

1

m
+ 16m

)
(xn − y(t))2 − 8m(x+n )2

]
dt. (2.18)

Notice that for all t ∈ (tn−1, tn), we have

(xn − y(t))2 =

(
|∂xE (tn, x

τ,ε
n )| − |∂xE (t, uτ,ε(t))|√

2ε

)2

≤ 1

2ε
(∂xE (t, uτ,ε(t))− ∂xE (tn, x

τ,ε
n ))2

≤ 1

ε

[
(∂xE (t, uτ,ε(t))− ∂xE (t, xτ,εn ))2 + (∂xE (t, xτ,εn )− ∂xE (tn, x

τ,ε
n ))2

]
≤ 1

ε
C|xτ,εn − x

τ,ε
n−1|2 +

1

ε
C(tn − tn−1)2.

Thus by Lemma 2.8∫ tn

tn−1

(xn − y(t))2dt ≤
∫ tn

tn−1

[
1

ε
C(xτ,εn − x

τ,ε
n−1)

2 +
1

ε
C(tn − tn−1)2

]
≤

∫ tn

tn−1

[
1

ε
C
τ 2

ε2
+

1

ε
Cτ 2

]
≤

∫ tn

tn−1

C
τ

ε2
τ

ε
. (2.19)

Combining (2.16), (2.17), (2.18) and (2.19), we get∫ tN

0

(Ψ∗ε(wτ,ε(t)))−Ψ∗ε(−∂xE (t, uτ,ε(t))))dt ≥

(
N∑
n=1

∫ tn

tn−1

−
(

1

m
+ 16m

)
C
τ

ε2
τ

ε

)
− 8mC.

Choosing m = τ/ε2 → 0, we obtain the desired result in Lemma 2.13.

Lemma 2.14. Let {un} be a sequence of Lipschitz functions. Suppose that un converges
uniformly to some u in C0([0, S]), and u̇n is w∗-convergent to some v in L∞(0, S). Then u
is Lipschitz continuous and v = u̇ for a.e. s ∈ (0, S).

Proof. By definition of the w∗-convergence in L∞(0, S), we have for every g in L1(0, S),

lim
n→∞

∫ S

0

u̇n(s)g(s)ds =

∫ S

0

v(s)g(s)ds. (2.20)
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Now, we choose some g ∈ W 1,1(0, S). Since the sequence un uniformly converges to u,
the dominated convergence theorem gives us

lim
n→∞

∫ S

0

un(s)ġ(s)ds =

∫ S

0

u(s)ġ(s)ds.

Itegrating by parts, we get from the above equality

lim
n→∞

∫ S

0

u̇n(s)g(s)ds =

∫ S

0

u̇(s)g(s)ds. (2.21)

This equality is valid for every g ∈ W 1,1(0, S).
Thus, we get from (2.20) and (2.21)∫ S

0

u̇(s)g(s)ds =

∫ S

0

v(s)g(s)ds, for all g ∈ W 1,1(0, S).

In particular, the above inequality also holds for all g ∈ C∞c . Thus, we have that u̇ = v a.e.
in (0, S).

Lemma 2.15. Let {un} be a sequence of BV functions. If un converges to u in L∞(0, S)
and |un| converges w∗ to v in L∞(0, S), then v(s) ≥ |u|(s) for a.e. s ∈ (0, S).

Proof. Let φ(x) = sign(u(x)). For all ϕ ∈ L1, ϕ ≥ 0 we have∫ S

0

|u|ϕ =

∫ S

0

uφϕ = lim
n→∞

∫ S

0

unφϕ ≤ lim
n→∞

∫ S

0

|un| · |φ| · |ϕ| = lim
n→∞

∫ S

0

|un|ϕ =

∫ S

0

vϕ.

Therefore, ∫ S

0

vϕ ≥
∫ S

0

|u|ϕ, ∀ϕ ∈ L1, ϕ ≥ 0.

This implies that v ≥ |u| a.e.

Lemma 2.16. Let Ψε,Ψ
∗
ε, x

τ,ε
n , uτ,ε, u(t) as before. Then we have the following estimate

lim inf
ε→0, τ

ε2
→0

∫ T

0

(Ψε(u̇τ,ε(t)) + Ψ∗ε(−∂xE (t, uτ,ε(t))))dt ≥ Dissnew(u; [0, T ]).

Proof. The proof is divided into 6 steps.

Step 1. Change of variables.
We have ∫ T

0

Ψε(u̇τ,ε(t)) + Ψ∗ε(−∂xE (t, uτ,ε(t)))

=

∫ T

0

(
|u̇τ,ε(t)|+

ε

2
|u̇τ,ε(t)|2 +

1

2ε
((| − ∂xE (t, uτ,ε(t))| − 1)+)2

)
≥

∫ T

0

(
|u̇τ,ε(t)|+ 2

√
ε

2
|u̇τ,ε(t)|2 ·

1

2ε
(| − ∂xE (t, uτ,ε(t))| − 1)+)2

)

=

∫ T

0

(
|u̇τ,ε(t)|+ |u̇τ,ε(t)| · (| − ∂xE (t, uτ,ε(t))| − 1)+

)
=

∫ T

0

|u̇τ,ε(t)| ·max{1, | − ∂xE (t, uτ,ε(t))|}dt.
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Choose sequences {τn} and {εn} such that uεn,τn(t) converges to u(t) pointwise for all t ∈
[0, T ] and denote

sn(t) := t+

∫ t

0

[
Ψεn(u̇τn,εn(h)) + Ψ∗εn(−∂xE (h, uτn,εn(h)))

]
dh,

and Sn := sn(T ). Since sn(t) is strictly increasing and continuous, we can define the inverse

tn(s) := s−1n (s), for all s ∈ [0, Sn].

Choosing a subsequence of (τn, εn) if needed, by Lemma 2.13 we have

lim
εn→0,τn/ε2n→0

∫ T

0

(Ψ∗εn(wτn,εn(t))−Ψ∗εn(−∂xE (t, uτn,εn(t))))dt ≥ 0.

Therefore, thanks to Lemma 2.12, the sequence {Sn}n∈N is uniformly bounded. Hence, we
can find a number S such that Sn ≤ S, for all n. And we can also find a subsequence of
{Sn} (we also denote this subsequence by {Sn}) such that Sn converges to some S > 0.

Now we extend the sequence of functions {tn} over [0, S] by defining tn(s) := tn(Sn)
for all s ≥ Sn and denote for every s ∈ [0, S]

un(s) := uτn,εn(tn(s)),

wn(s) := −∂xE (tn(s), un(s)).

Notice that since sn(t) is strictly increasing, tn(s) is also strictly increasing on [0, Sn]. So
ṫn(s) > 0 for all s ∈ [0, Sn]. By changing variables in the integral, we get∫ T

0

|u̇τn,εn(t)| ·max{1, | − ∂xE (t, uτn,εn(t))|}dt =

∫ S

0

1[0,Sn] · |u̇n(s)| ·max{1, |wn(s)|}ds.

In the next steps we find convergent subsequences of tn(s), un(s) and wn(s).

Step 2. Convergent subsequence of {tn}.
Notice that the sequence {tn} is uniformly bounded by a constant: |tn(s)| ≤ T, for all s ∈

[0, S]. Moreover, the sequence {tn} is equicontinuous: ṫn(s) < 1 for all s ∈ (0, Sn) since
|ṡn(t)| = ṡn(t) > 1 for all t ∈ (0, T ), and ṫn(s) = 0 for all s ∈ (Sn, S) by definition of tn.
Hence we can apply the Arzelà-Ascoli theorem to get a subsequence (still denoted by {tn})
converging uniformly to some t.

Moreover, we also have ||ṫn||L∞(0,S) ≤ 1. Thus, (up to a subsequence) we can assume that

ṫn w
∗-converges to some s in L∞(0, S). By Lemma 2.14, we have ṫ = s.

Step 3. Convergent subsequence of {un}.
First, we prove that the sequence {u̇n} is uniformly bounded in L∞-norm. In fact, by

the definition of un we have

u̇n(s) = u̇τn,εn(tn(s)) ṫn(s) =
u̇τn,εn(t)

ṡn(t)
,

here we denote t := tn(s).
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Now we call {tk} the partition corresponding to τn. Since sn(t) is strictly increasing, we
can find two numbers s1, s2 such that if s1 < s < s2 then tk−1 < t < tk. Notice that both
s1, s2 and tk−1, tk depend on τn.

By the definition of uτn,εn(t), we know that

u̇τn,εn(t) =
xτn,εnk − xτn,εnk−1

τn
if t ∈ (tk−1, tk).

By the definition of sn(t), we get

ṡn(t) = 1 + Ψεn(u̇τn,εn(t)) + Ψ∗εn(−∂xE (t, uτn,εn(t)))

= 1 + Ψεn

(
xτn,εnk − xτn,εnk−1

τn

)
+ Ψ∗εn(−∂xE (t, uτn,εn(t)))

= 1 +

∣∣∣∣xτn,εnk − xτn,εnk−1

τn

∣∣∣∣+
εn
2

∣∣∣∣xτn,εnk − xτn,εnk−1

τn

∣∣∣∣2 +
1

2εn

(
(|∂xE (t, uτn,εn(t))| − 1)+

)2
.

Hence, for all s1 < s < s2 we have

|u̇n(s)| =

∣∣∣∣xτn,εnk − xτn,εnk−1

τn

∣∣∣∣×
× 1

1 +
∣∣∣xτn,εnk −xτn,εnk−1

τn

∣∣∣+ εn
2

∣∣∣xτn,εnk −xτn,εnk−1

τn

∣∣∣2 + 1
2εn

((|∂xE (t, uτn,εn(t))| − 1)+)2

≤ 1.

Thus, |u̇n(s)| ≤ 1 for all s ∈ (s1, s2). This implies ||u̇n||L∞(0,S) ≤ 1.
Therefore, we can apply the Arzelà-Ascoli theorem to get a subsequence (also denoted by

{un}) converging uniformly to some u in C0([0, S]). Moreover, since ||u̇n||L∞(0,S) ≤ 1, up to

subsequence, we can assume that u̇n converges in w∗-sense to some v in L∞(0, S). Applying
Lemma 2.14, we have u̇ = v a.e.

Moreover, we can check that u(s) = u(t(s)), for all s ∈ [0, S] such that t(s) /∈ J .
In fact, let φ : [0, T ] → R be an arbitrary continuous function. Since uτn,εn converges

to u pointwise and |uτn,εn| ≤ C, we can apply the Dominated Convergence Theorem to get
uτn,εn converges to u strongly in L1(0, T ). Consequently,

lim
n→∞

∫ T

0

uτn,εn(t)φ(t) dt =

∫ T

0

u(t)φ(t) dt. (2.22)

On the other hand, for every n ∈ N, using change of variable t = tn(s), we get

lim
n→∞

∫ T

0

uτn,εn(t)φ(t) dt =

∫ S

0

1[0,Sn] uτn,εn(tn(s))φ(tn(s)) ṫn(s) ds

=

∫ S

0

1[0,Sn] un(s)φ(tn(s)) ṫn(s) ds. (2.23)
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Since un converges to u uniformly in C0([0, S]), φ is continuous, tn converges to t uniformly
in C0([0, S]), Sn converges to S in R, and ṫn converges to ṫ weakly-∗ in L∞(0, S), we have

lim
n→∞

∫ S

0

1[0,Sn] un(s)φ(tn(s)) ṫn(s) ds =

∫ S

0

1[0,S] u(s)φ(t(s)) ṫ(s) ds

=

∫ S

0

u(s)φ(t(s)) ṫ(s) ds. (2.24)

Now, using change of variable t = t(s), we get∫ T

0

u(t)φ(t) dt =

∫ S

0

u(t(s))φ(t(s)) ṫ(s) ds. (2.25)

Combining (2.22), (2.23), (2.24), and (2.25), we get∫ S

0

u(t(s))φ(t(s)) ṫ(s) ds =

∫ S

0

u(s)φ(t(s)) ṫ(s) ds. (2.26)

Denote by J the jump set of u(·). For any t ∈ J , we denote the set A(t) := {s ∈
[0, S] | t(s) = t}. Since t is increasing, A(t) is an interval in R. Since u(t) has bounded
variation, J is at most countable. Thus, we can write J = {t1, t2, . . . , tn, . . . }. Now denote
by A := ∪n∈N,tn∈JA(tn), we can see that t is strictly increasing outside the set A. Together
with the fact that t is absolutely continuous, we get that ṫ > 0 for a.e. s ∈ [0, S]\A.

Hence, by (2.26) and the fact that ṫ > 0 for a.e. s ∈ [0, S]\A, we obtain

u(t(s)) = u(s) for a.e. s ∈ [0, S]\A.

By continuity of u, we also get

u(t(s)) = u(s) for all s ∈ [0, S]\A.

Step 4. Convergent subsequence of {wn}.
Since un converges uniformly to u in C0([0, S]), tn converges uniformly to t in C0([0, S]),

and E is C2, we have immediately that wn to w in C0([0, S]), and

w(s) = −∂xE (t(s), u(s)).

Step 5. Now we show that

lim
n→∞

∫ S

0

1[0,Sn] · |u̇n(s)| ·max{1, |wn(s)|}ds ≥ Dissnew(u; [0, T ]).

In fact, denote an(s) := 1[0,Sn](s) ·max{1, |wn(s)|}, then an(s) converges to

a(s) = 1[0,S](s) ·max{1, |w(s)|}
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strongly in L1(0, S). Since ‖u̇n‖L∞ ≤ C, up to a subsequence we can assume that |u̇n|
w∗-converges to some v in L∞(0, S). Apply Lemma 2.15 we have v ≥ |u̇| a.e. Thus

lim
n→∞

∫ S

0

1[0,Sn] · |u̇n(s)| ·max{1, |wn(s)|}ds = lim
n→∞

∫ S

0

an(s) · |u̇n(s)|ds

=

∫ S

0

a(s) · v(s)ds

=

∫ S

0

1[0,S] ·max{1, |w(s)|} · v(s)ds

≥
∫ S

0

max{1, |w(s)|} · |u̇(s)|ds.

By the local stability, for all t /∈ J , we know that |∂xE (t, u(t))| ≤ 1. Hence, for all
s /∈ ∪t∈JA(t), we have |w(s)| ≤ 1. Thus, we can write∫ S

0

max{1, |w(s)|} · |u̇(s)|ds =

∫
[0,S]\∪t∈JA(t)

|u̇(s)|+
∑
t∈J

∫
A(t)

max{1, |w(s)|} · |u̇(s)|ds.

First, we prove that∫
[0,S]\∪t∈JA(t)

|u̇(s)| ds ≥ Diss(u; [0, T ])−
∑
t∈J

|u(t+)− u(t−)|

= Diss(u; [0, T ])−
∑
t∈J

∆(t, u(t−), u(t+)).

In fact, consider t1 ∈ J , we can write that A(t1) = [a1, b1]. For any δ > 0 such that
a1 − δ, b1 + δ /∈ ∪t∈JA(t), we have∫

[0,S]\[a1−δ,b1+δ]
|u̇(s)| ds = Diss(u; [0, S]\[a1 − δ, b1 + δ])

= Diss(u; [0, a1 − δ]) + Diss(u; [b1 + δ, S])

≥ Diss(u; [0, t(a1 − δ)]) + Diss(u; [t(b1 + δ), T ])

= Diss(u; [0, T ])−Diss(u; [t(a1 − δ), t(b1 + δ)]).

Here the inequalities

Diss(u; [0, a1 − δ]) ≥ Diss(u; [0, t(a1 − δ)])

and
Diss(u; [b1 + δ, S]) ≥ Diss(u; [t(b1 + δ), T ])

come from the fact that a1−δ, b1 +δ /∈ ∪t∈JA(t), and that u(s) = u(t(s)) for all s ∈ [0, S]\A.
Now choosing a sequence δk → 0 such that a1 − δk, b1 + δk /∈ ∪t∈JA(t) for all k. Taking
k →∞, we get ∫

[0,S]\[a1,b1]
|u̇(s)| ds ≥ Diss(u; [0, T ])− |u(t−1 )− u(t+1 )|.
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By induction, the above inequality also holds for finitely many jumps∫
[0,S]\∪ni=1A(ti)

|u̇(s)| ds ≥ Diss(u; [0, T ])−
n∑
i=1

|u(t−i )− u(t+i )|.

Taking n→∞, we get the result.
Now we verify that∑

t∈J

∫
A(t)

max{1, |w(s)|} · |u̇(s)|ds ≥
∑
t∈J

∆new(t, u(t−), u(t+)).

In fact, for any t ∈ J , since A(t) is an interval in R, we can denote A(t) = [s0, s1]. Now
using the change of variable to replace u(s) by some v(r) satisfying v ∈ AC([0, 1]), v(0) =
u(s0) = u(t−), v(1) = u(s1) = u(t+), we have∫

A(t)

max{1, |w(s)|} · |u̇(s)| =

∫ s1

s0

max{1, |w(s)|} · |u̇(s)|

=

∫ s1

s0

max{1, |∂xE (t(s), u(s))|} · |u̇(s)|

=

∫ 1

0

max{1, |∂xE (t, v(r))|} · |v̇(r)|dr

≥ ∆new(t, u(t−), u(t+)}.
Thus,∫ S

0

max{1, |w(s)|} · |u̇(s)|ds ≥ Diss(u; [0, T ])−
∑
t∈J

∆(t, u(t−), u(t+)) +
∑
t∈J

∆new(t, u(t−), u(t+))

= Dissnew(u; [0, T ]).

This completes the proof of Lemma 2.16.

Lemma 2.17 (Lower bound of the new Energy - Dissipation balance). For any BV func-
tion u : [0, T ] → R, for any energy functional E ∈ C2(R2) satisfying the constraint
|∂xE (t, u(t))| ≤ 1 for a.e. t ∈ (0, T ), it holds that

E (t1, u(t1))− E (t0, u(t0)) ≥
∫ t1

t0

∂tE (s, u(s))ds−Dissnew(u, [t0, t1]).

Proof. Since u is BV, the distributional derivative Du can be split into three parts: the
absolutely continuous part w.r.t. Lebesgue measure Dau, the jump part Dju and the Cantor
part Dcu. Now we denote u′co = Dau+Dcu, then applying the chain rule formula for E ∈ C2

and u ∈ BV (see [3]), we get

E (t1, u(t1))− E (t0, u(t0))

=

∫ t1

t0

∂tE (s, u(s))ds+

∫ t1

t0

〈∂xE (s, u(s)), u′co(s)〉 ds+
∑

t∈J∩(t0,t1)

[E (t, u(t+))− E (t, u(t−))]

+E (t0, u(t+0 ))− E (t0, u(t0)) + E (t1, u(t1))− E (t1, u(t−1 ))

≥
∫ t1

t0

∂tE (s, u(s))ds−
∫ t1

t0

|u′co(s)|ds−
∑

t∈J∩(t0,t1)

|E (t, u(t+))− E (t, u(t−))|

−|E (t0, u(t+0 ))− E (t0, u(t0))| − |E (t1, u(t1))− E (t1, u(t−1 ))|.
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Notice that∫ t1

t0

|u′co(s)|ds = Diss(u; [t0, t1])−
∑

t∈J∩(t0,t1)

|u(t+)− u(t−)| − |u(t+0 )− u(t0)| − |u(t1)− u(t−1 )|

= Diss(u; [t0, t1])−
∑

t∈J∩(t0,t1)

∆(t, u(t−), u(t+)) (2.27)

−∆(t0, u(t0), u(t+0 ))−∆(t1, u(t−1 ), u(t1)).

Moreover, for every absolutely continuous curve v in AC([0, 1]) such that v(0) = u(t−),
v(1) = u(t+) we have the following formula

E (t, u(t+))− E (t, u(t−)) =

∫ 1

0

∂xE (t, v(x)) · v̇(x)dx.

Thus

|E (t, u(t+))− E (t, u(t−))| ≤
∫ 1

0

|∂xE (t, v(x))| · |v̇(x)|dx

≤
∫ 1

0

max{1, |∂xE (t, v(x))|} · |v̇(x)|dx.

The above inequality holds for every absolutely continuous curve v connecting u(t−) and
u(t+). Thus we can write

|E (t, u(t+))− E (t, u(t−))|

≤ inf
v
{
∫ 1

0

max{1, |∂xE (t, v(x))|} · |v̇(x)|dx : v ∈ AC([0, 1]), v(0) = u(t−), v(1) = u(t+)}

= ∆new(t, u(t−), u(t+)). (2.28)

Therefore, it follows from (2.27) and (2.28)

E (t1, u(t1))− E (t0, u(t0)) ≥
∫ t1

t0

∂tE (s, u(s))ds−Diss(u; [t0, t1])

+
∑

t∈J∈(t0,t1)

∆(t, u(t−), u(t+)) + ∆(t0, u(t0), u(t+0 ))

+∆(t1, u(t−1 ), u(t1))−
∑

t∈J∩(t0,t1)

∆new(t, u(t−), u(t+))

−∆new(t0, u(t0), u(t+0 ))−∆new(t1, u(t−1 ), u(t1))

=

∫ t1

t0

∂tE (s, u(s))ds−Dissnew(u, [t0, t1]).

This ends the proof of the lower bound.

Now we are able to prove the upper bound of the new Energy-Dissipation balance.
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Proof of Lemma 2.10. From Lemma 2.12, we know that

lim
ε→0, τ

ε2
→0

∫ T

0

(Ψε(u̇τ,ε(t)) + Ψ∗ε(wτ,ε(t)))dt = E (0, x0)− E (T, u(T )) +

∫ T

0

∂tE (t, u(t))dt.

On the other hand, we see that∫ T

0

(Ψε(u̇τ,ε(t)) + Ψ∗ε(wτ,ε(t)))dt =

∫ T

0

(Ψ∗ε(wτ,ε(t))−Ψ∗ε(−∂xE (t, uτ,ε(t))))dt

+

∫ T

0

(Ψε(u̇τ,ε(t)) + Ψ∗ε(−∂xE (t, uτ,ε(t))))dt.

By Lemma 2.13,

lim inf
ε→0, τ

ε2
→0

∫ T

0

(Ψ∗ε(wτ,ε(t))−Ψ∗ε(−∂xE (t, uτ,ε(t))))dt ≥ 0.

Thanks to Lemma 2.16,

lim inf
ε→0, τ

ε2
→0

∫ T

0

(Ψε(u̇τ,ε(t)) + Ψ∗ε(−∂xE (t, uτ,ε(t))))dt ≥ Dissnew(u; [0, T ]).

Hence,

Dissnew(u; [0, T ]) ≤ lim inf
ε→0, τ

ε2
→0

∫ T

0

(Ψ∗ε(wτ,ε(t))−Ψ∗ε(−∂xE (t, uτ,ε(t))))dt

+ lim inf
ε→0, τ

ε2
→0

∫ T

0

(Ψε(u̇τ,ε(t)) + Ψ∗ε(−∂xE (t, uτ,ε(t))))dt

≤ lim inf
ε→0, τ

ε2
→0

∫ T

0

(Ψε(u̇τ,ε(t)) + Ψ∗ε(wτ,ε(t))dt

≤ E (0, x0)− E (T, u(T )) +

∫ T

0

∂tE (t, u(t))dt.

Thus, we get

E (T, u(T ))− E (0, x0) ≤
∫ T

0

∂tE (t, u(t))dt−Dissnew(u; [0, T ]). (2.29)

Now denote by I(t1, t2) the difference between the left-hand side and the right-hand side
of (2.29). Then it follows from Lemma 2.17 that I(t1, t0) ≥ 0 for every 0 ≤ t0 ≤ t1 ≤ T . On
the other hand, from Lemma 2.10, we have that I(0, T ) ≤ 0. Thus,

0 ≥ I(0, T ) = I(0, t0) + I(t0, t1) + I(t1, T ).

Since each addendum of the above formula is nonnegative, we get that I(t0, t1) = 0, which
is the new energy-dissipation balance.

E (t1, u(t1))− E (t0, u(u0)) ≤
∫ t1

t0

∂tE (s, u(s))ds−Dissnew(u, [t0, t1]) (2.30)

for every 0 ≤ t0 ≤ t1 ≤ T . This ends the proof of the new energy-dissipation balance.

Remark. For a proof in a more general setting, we refer to the paper of Mielke, Rossi, and
Savaré [26].
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3 Another construction of BV solutions

The idea is to find the minimizer xi of the discretized problem in some small neighborhood
of xi−1, instead of finding the minimizer over all R. To be precise, let ε > 0, τ > 0 and let
N ∈ N satisfy 1 ∈ [τN, τ(N + 1)). We define a sequence {xε,τ}Ni=0 by
(IP′ε) xε,τ0 = x0 (initial position) and

xε,τi ∈ argmin{E (tn, x) + |x− xε,τi−1| | |x− x
ε,τ
i−1| ≤ ε} for every i ∈ {1, . . . , N}.

We define the discretized solution xε,τ (·) by interpolation

xε,τ (t) := xε,τi−1 for every t ∈ [ti−1, ti), i ∈ {1, . . . , N}.

The limit x(·) of xε,τ (·) as ε→ 0 and τ → 0 is a solution to (2.2) in an appropriate sense.

Theorem 2.18 (BV solutions constructed by epsilon-neighborhood). Let E : [0, T ]× R →
[0,+∞] be of class C2 and satisfy (E1). Let us consider an initial datum x0 ∈ R such that x0
is a local minimizer for the functional x 7→ E (0, x) + |x−x0|. Then the following statements
hold true.

(i) For any ε > 0 and τ > 0, there exists a discretized solution t 7→ xε,τ (·) as described
above. For any ε > 0, there exists a subsequence τn → 0 such that xε,τn(·) converges
pointwise to some limit xε(·). There exists a subsequence εn → 0 such that xεn(·)
converges pointwise to some BV function x(·).

(ii) (Local stability) If t 7→ x(t) is continuous at t, then

|∂xE (t, x(t))| ≤ 1.

(iii) (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T , one has

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Dissnew(x; [s, t]).

This theorem is proved in the following subsections.

3.1 Discretized solutions

We start by considering the discretized solution xε,τ .

Lemma 2.19 (Discretized solution). For any given initial state x0, any τ > 0 and any
partition 0 = t0 < t1 < · · · < tN ≤ T of [0, T ] such that tn − tn−1 = τ , there exists a
discretized solution t 7→ xε,τ (t) satisfying the following two properties:

(i) (Minimizer) We have xε,τ0 = x0 and for every i = 1, 2, ..., N , xε,τi minimizes x 7→
E (tn, x) + |xε,τi−1 − x| over x ∈ R, |x− xε,τi−1| ≤ ε; and

(ii) (Interpolation) xε,τ (t) = xε,τi−1 if t ∈ [ti−1, ti), i ∈ {1, ..., N}.

Proof. Since x 7→ E (tn, x) + |x− xε,τi−1| is continuous, this functional has a minimizer xε,τi in
the compact set |x− xε,τi−1| ≤ ε.
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By the same argument as for energetic solutions (cf. Lemma 2.3), we have the following
estimates.

Lemma 2.20 (Energy estimates). Let xε,τ be as in Lemma 2.19. Then we have

(i) (Discrete bound) For any n ∈ {1, . . . , N} we have

E (tn, x
ε,τ
n ) ≤ E (0, x0) e

λtn and E (0, xε,τn ) ≤ E (0, x0) e
2λtn .

(ii) (Integral bound) For all 0 ≤ s ≤ t ≤ T , it holds that Diss(xε,τ ; [s, t]) < ∞,
∂tE (·, xε,τ (·)) ∈ L1(0, T ) and

E (t, xε,τ (t))− E (s, xε,τ (s)) ≤
∫ t

s

∂tE (r, xε,τ (r))dr −Diss(xε,τ ; [s, t]).

3.2 The epsilon-neighborhood solutions

Lemma 2.21 (epsilon-neighborhood solution). Given an initial datum x0 ∈ R such that
E (0, x0) <∞ and x0 is a local minimizer for the functional x 7→ E (0, x) + |x− x0|, let xε,τ

be as in Lemma 2.19. Then there exists a subsequence τn → 0 such that xε,τn(t) → xε(t)
for all t ∈ [0, T ]. Moreover, the epsilon-neighborhood solution xε(·) satisfies the following
properties:

(i) (Epsilon local stability) If xε(·) is right-continuous at t, namely limt′→t+ x
ε(t′) = xε(t),

then xε(t) satisfies the epsilon local stability

E (t, xε(t)) ≤ E (t, x) + |x− xε(t)| for all |x− xε(t)| ≤ ε.

(ii) (Energy-dissipation inequalities) We have Diss(xε; [0, T ]) ≤ C (independent of ε),
∂tE (·, xε(·)) ∈ L1(0, T ) and for all 0 ≤ s ≤ t ≤ T ,

−Dissnew(xε; [s, t]) ≤ E (t, xε(t))−E (s, xε(s))−
∫ t

s

∂tE (r, xε(r))dr ≤ −Diss(xε; [s, t]).

Proof. Step 1. Existence. By Lemma 2.20 and the condition (E1), we see that {xε,τ (·)}
has uniformly bounded variation and it is uniformly bounded. Therefore, applying Helly’s
selection principle we can find a subsequence τn → 0 and a BV function xε(·) such that
xε,τn(t)→ xε(t) as n→∞ for all t ∈ [0, T ].

Step 2. A consequence of the right-continuity. Let us denote by {tni }Nni=0 the par-
tition corresponding to τn and assume that t ∈ [tni−1, t

n
i ]. It is obvious that

xε,τni−1 = xε,τn(t)→ xε(t)

as n→∞. Now we show that if xε(·) is right-continuous at t, then

xε,τni = xε,τn(tni )→ xε(t).
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Let t′ > t. Due to the integral bound in Lemma 2.20, we have

E (t, xε,τn(t))− E (t′, xε,τn(t′)) + Diss(xε,τn ; [t, t′]) ≤
∫ t′

t

∂tE (r, xε,τn(r))dr ≤ C|t′ − t|.(2.31)

For n large enough, we have t < tni < t′. Therefore,

|xε,τni − xε,τni−1 | ≤ Diss(xε,τn ; [t, t′]).

Moreover, when n→∞, we have

xε,τn(t)→ xε(t) and xε,τn(t′)→ xε(t′).

Thus it follows from (2.31) that

E (t, xε(t))− E (t′, xε(t′)) + lim sup
n→∞

|xε,τni − xε,τni−1 | ≤ C|t′ − t|.

Since this inequality holds for all t′ > t, we can take t′ → t and use the assumption xε(t+) =
xε(t) to obtain

lim sup
n→∞

|xε,τni − xε,τni−1 | ≤ 0.

Since we have already known that xε,τni−1 → x(t), we can conclude that xε,τni → x(t).

Step 3. Stability. We show that for all t ∈ [0, T ],

E (t, xε(t)) ≤ E (t, z) + |z − xε(t)| for all |z − xε(t)| ≤ ε.

First, we prove the result for z ∈ R such that |z−xε(t)| < ε. Since limn→∞ x
ε,τn(t) = xε(t),

we get
|z − xε,τn(t)| < ε

for n large enough. Using the notation in Step 2, from the definition of xε,τni and condition
|z − xε,τni−1 | < ε, we obtain

E (tni , x
ε,τn
i ) + |xε,τni − xε,τni−1 | ≤ E (tni , z) + |z − xε,τni−1 |.

Taking the limit as n→∞ and using the fact that both xε,τni−1 and xε,τni converge to x(t) (see
Step 2), we obtain

E (t, xε(t)) ≤ E (t, z) + |z − xε(t)| for all |z − xε(t)| < ε. (2.32)

Now for any z such that |z− xε(t)| = ε, we can choose a sequence zn converges to z such
that |zn − xε(t)| < ε. Applying (2.32) for zn, we get

E (t, xε(t)) ≤ E (t, zn) + |zn − xε(t)|. (2.33)

Notice that the mappings z 7→ E (t, z) and z 7→ |z − xε(t)| are continuous. Hence, we can
take the limit in (2.33) and get the result also for |z − xε(t)| = ε.

Step 4. Energy-dissipation inequalities.
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From Lemma 2.20 we have, for all 0 ≤ s ≤ t ≤ T ,

E (t, xε,τn(t))− E (s, xε,τn(s)) ≤
∫ t

s

∂tE (r, xε,τn(r))dr −Diss(xε,τn ; [s, t]).

Since xε,τn(r)→ xε(r) for all r ∈ [0, T ], we have

E (t, xε,τn(t))− E (s, xε,τn(s))→ E (t, xε(t))− E (s, xε(s))

and ∫ t

s

∂tE (r, xε,τn(r))dr →
∫ t

s

∂tE (r, xε(r))dr

as n→∞. Moreover, one has

lim inf
n→∞

Diss(xε,τn ; [s, t]) ≥ Diss(xε; [s, t]).

Thus we can derive one energy-dissipation inequality

E (t, xε(t))− E (s, xε(s)) ≤
∫ t

s

∂tE (r, xε(r))dr −Diss(xε; [s, t]).

We shall use Lemma 2.17 to obtain the other energy-dissipation inequality,

E (t, xε(t))− E (s, xε(s)) ≥
∫ t

s

∂tE (r, xε(r))dr −Dissnew(xε; [s, t]).

It is suffices to verify that |∂xE (t, xε(t))| ≤ 1 for a.e. t ∈ (0, T ). In fact, for every t ∈ [0, T ]
such that xε(·) is right-continuous at t, we have proved in Step 3 the ε-stability

E (t, xε(t)) ≤ E (t, x) + |x− xε(t)| for all |x− xε(t)| ≤ ε.

This inequality implies that ∂xE (t, xε(t)) ∈ [−1, 1]. On the other hand, since xε(·) is a BV
function, it is continuous except at most countably many points. Therefore, we can apply
Lemma 2.17 to derive the desired inequality.

3.3 Existence and properties of the limit

Lemma 2.22 (Limit of epsilon-neighborhood solutions). Let us consider an initial datum
x0 ∈ R such that E (0, x0) <∞ and x0 is a local minimizer for the functional x 7→ E (0, x) +
|x − x0|. Let xε be as in Lemma 2.21. Then there exists a subsequence εn → 0 and a BV
function x(·) such that xεn(t) → x(t) for all t ∈ [0, T ]. Moreover, the function x(·) satisfies
the following properties

(i) (Local stability) If t 7→ x(t) is continuous at t, then

|∂xE (t, x(t))| ≤ 1.

(ii) (New energy-dissipation balance) For all 0 ≤ s ≤ t ≤ T , one has

E (t, x(t))− E (s, x(s)) =

∫ t

s

∂tE (r, x(r))dr −Dissnew(x; [s, t]).
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Proof. Step 1. Existence. Since Diss(xε; [0, T ]) ≤ C independent of ε, by Helly’s selection
principle we can find a subsequence εn → 0 and a BV function x(·) such that xεn(t)→ x(t)
as n→∞ for all t ∈ [0, T ].

Step 2. Stability. Let

A := {t ∈ [0, T ] |xεn(·) is right continuous at t for all n ≥ 1}.

Then [0, T ]\A is at most countable. Moreover, for t ∈ A, by Lemma 2.21 we have

E (t, xεn(t)) ≤ E (t, z) + |z − xεn(t)| for all |z − xεn(t)| ≤ εn

for all n ≥ 1. Therefore,
|∂xE (t, xεn(t))| ≤ 1 for all n ≥ 1.

Taking n→∞, we obtain
|∂xE (t, x(t))| ≤ 1

for all t ∈ A.
Moreover, by continuity, we also get |∂xE (t, x(t))| ≤ 1 provided x(·) is continuous at t.

Step 3. New energy-dissipation balance. First, similarly to the proof of energy in-
equalities in Lemma 2.21, we have

−Dissnew(x(·); [s, t]) ≤ E (t, x(t))− E (s, x(s))−
∫ t

s

∂tE (r, x(r))dr ≤ −Diss(x(·); [s, t]).

(More precisely, the second inequality is a consequence of the corresponding inequality of xε

in Lemma 2.21 and Fatou’s lemma, while the first inequality follows from Lemma 2.17.)
If x(·) has no jumps in [s, t], then we have immediately the energy-dissipation balance

E (t, x(t))− E (s, x(s))−
∫ t

s

∂tE (r, x(r))dr = −Diss(x(·); [s, t]) = −Dissnew(x(·); [s, t]).

Therefore, it remains to consider jump points. More precisely, we need to show that if
x(·) jumps at t ∈ (0, T ), namely x(t−) 6= x(t+), then

E (t, u(t+))− E (t, u(t−)) = −∆new(t, u(t−), u(t+)).

This fact follows from Lemma 2.23 and 2.24 below.

The following lemma is similar to Theorem 4.7 in [26].

Lemma 2.23 (New energy-dissipation balance at a jump). Let be given a BV function
u : [0, T ]→ R and an energy functional E ∈ C2(R2). If u(·) jumps at t ∈ (0, T ) and

sign(u(t+)− u(t−)) · ∂xE (t, z) ≤ −1

for all z between u(t−) and u(t+), then we have the equality

E (t, u(t+))− E (t, u(t−)) = −∆new(t, u(t−), u(t+)).
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Here recall that ∆new(t, u(t−), u(t+)) is defined by

inf

{∫ 1

0

max{1, |∂xE (t, v(x))|} · |v̇(x)|dx | v ∈ AC([0, 1]), v(0) = u(t−), v(1) = u(t+)

}
.

Proof. For any BV function u one has

E (t, u(t+))− E (t, u(t−)) =

∫ 1

0

∂xE (t, v(x)) · v̇(x)dx

≥ −
∫ 1

0

|∂xE (t, v(x))| · |v̇(x)|dx

≥ −
∫ 1

0

max{1, |∂xE (t, v(x))|} · |v̇(x)|dx.

for any v ∈ AC([0, 1]) such that v(0) = u(t−) and v(1) = u(t+). Therefore,

E (t, u(t+))− E (t, u(t−)) ≥ −∆new(t, u(t−), u(t+)).

Now we show the reverse inequality. We shall consider the case u(t+) > u(t−) (the other
case can be treated by the same way). Since ∂xE (t, z) ≤ −1 for all z between u(t−) and
u(t+), then by choosing

v(s) = u(t−) + s(u(t+)− u(t−)), s ∈ [0, 1],

we obtain v̇(s) = u(t+)− u(t−) ≥ 0 and

E (t, u(t+))− E (t, u(t−)) =

∫ 1

0

∂xE (t, v(s)) · v̇(s)ds

= −
∫ 1

0

max{1, |∂xE (t, v(s))|} · |v̇(s)|ds

≤ −∆new(t, u(t−), u(t+)).

This completes the proof.

To obtain the energy-dissipation balance in Lemma 2.22, it remains to verify the second
condition in Lemma 2.23.

Lemma 2.24 (Monotonicity in jump intervals). Let x(·) be the function as in Lemma 2.22.
If x(t−) < x(t+), then the function

z 7→ E (t, z) + |z − x(t−)|

is decreasing on [x(t−), x(t+)].
On the other hand, if x(t−) > x(t+), then the function

z 7→ E (t, z) + |z − x(t−)|

is increasing on [x(t+), x(t−)].
Consequently, if x(t−) 6= x(t+), then we always have

sign(x(t+)− x(t−)) · ∂xE (t, z) ≤ −1

for all z between x(t−) and x(t+).
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Proof. We shall consider the case x(t−) < x(t+) (the other case can be treated in the same
way). Assume by contradiction that there exist z1, z2 ∈ (x(t−), x(t+)) such that z1 < z2 and

E (t, z1) + |z1 − x(t−)| < E (t, z2) + |z2 − x(t−)|.

Denote
δ := E (t, z2)− E (t, z1) + z2 − z1 > 0.

By the continuity of (t, z1, z2) 7→ E (t, z2)− E (t, z1) + z2 − z1, we can choose t1 < t < t2 and
ε′ ∈ (0, z2 − z1) such that

x(t1) < z1 < z2 < x(t2)

and

E (s2, y2)− E (s1, y1) + y2 − y1 ≥ δ/2 (2.34)

for all s1, s2 ∈ [t1, t2], y1 ∈ [z1 − ε′/2, z1 + ε′/2], y2 ∈ [z2 − ε′/2, z2 + ε′/2].
By the definition of x(·), there exist ε ∈ (0, ε′) and τ > 0 such that

xε,τ (t1) < z1 < z2 < xε,τ (t2).

Since the function xε,τ (·) has no jump step bigger than ε, there exist t1 < s1 < s2 < t2 such
that

xε,τ (s1) ∈ [z1 − ε/2, z1 + ε/2] and xε,τ (s2) ∈ [z2 − ε/2, z2 + ε/2].

The inequality (2.34) implies that

E (s2, x
ε,τ (s2))− E (s1, x

ε,τ (s1)) + xε,τ (s2)− xε,τ (s1) ≥ δ/2.

On the other hand, using the integral bound in Lemma 2.20 we get

E (s2, x
ε,τ (s2))− E (s1, x

ε,τ (s1)) ≤
∫ s2

s1

∂tE (r, xε,τ (r))dr −Diss(xε,τ ; [s1, s2])

≤ C(s2 − s1)− (xε,τ (s2)− xε,τ (s1))

since ∂tE is continuous and xε,τ (·) is bounded uniformly w.r.t. ε and τ . Therefore,

δ/2 ≤ E (s2, x
ε,τ (s2))− E (s1, x

ε,τ (s1)) + xε,τ (s2)− xε,τ (s1) ≤ C(s2 − s1).

Since 0 ≤ s2 − s1 ≤ t2 − t1, we can conclude that

δ ≤ 2C(t2 − t1).

This is a contradiction since δ > 0 is fixed while the difference t2− t1 can be chosen arbitrary
small.
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Chapter 3

Regularity of weak solutions to
rate-independent systems

In this chapter, we deal with the regularity results for weak solutions (in particular, energetic
solutions and BV solutions) to the rate-independent systems in one-dimension.

The regularity for energetic solutions to rate-independent systems when the energy func-
tional is convex was already considered by Mielke and Thomas [19, 33]. It was shown that if
the energy functional E (t, x) is α-convex in x ∈ X, where X is a finite dimensional normed
space, for any fixed t ∈ [0, T ] and satisfies some technical assumptions like

∃λ : ∀(t, x) such that E (t, x) <∞, then

E (·, x) ∈ C1([0, T ]) and ∂sE (s, x) ≤ λE (s, x) ∀s ∈ [0, T ],

then the energetic solutions are Lipschitz continuous (or Hölder continuous) provided that
∂tE (t, ·) is Lipschitz continuous (or Hölder continuous, respectively).

However, if the energy functional is non-convex, there are very few results on the regu-
larity of the energetic solutions as well as the other classes of weak solutions. In general, we
cannot expect a regularity to be better than BV as we can see in Example 3.1 below. But
under some assumptions on E , we can obtain the SBV regularity, or even piecewise C1.

Example 3.1. Let u : [0, 1] → [0, 1] be any increasing and left-continuous function. Then
u(t) is an energetic solution of the rate-independent system defined by (E ,Ψ, x0), where the
energy functional is E (t, x) := 1

2
(u(t) + 1 − x)2, the dissipation function is Ψ(x) := |x| and

the initial position is x0 := u(0).

Proof. Applying Cauchy’s inequality of the form a+ b ≥ 2
√
ab with a = (u(t) + 1− x)2 and

b = 1, we get

1

2
(u(t) + 1− x)2 + |x− x0| =

1

2

(
(u(t) + 1− x)2 + 1

)
+ |x− x0| −

1

2

≥ |u(t) + 1− x|+ |x− x0| −
1

2

≥ u(t)− x0 +
1

2

= |u(t)− x0|+
1

2
.
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Therefore, u(t) minimizes x 7→ {E (t, x) + |x− x0|} among all x ∈ R. Moreover, since u(t) is
increasing in t, we have Diss(u; [0, 1]) = |u(1) − u(0)| = |u(1) − x0|. Applying Proposition
1.4, we obtain that u(t) is an energetic solution of the system (E ,Ψ, x0).

In general, we have the following result, which will be proved later.

Theorem 3.2 (Any increasing function is an energetic solution). Let u : [0, T ] → R be an
arbitrary increasing and left-continuous function. Then u is an energetic solution of some
rate-independent system with smooth energy functional.

Thus, an energetic solution may not belong to the class SBV, even if the energy func-
tional is smooth. In this chapter, we prove that under some relevant requirements (but not
convexity) on the energy functional, weak solutions (and in particular energetic solutions,
and BV solutions) are of class SBV. To our knowledge, there is no available results on the
regularity of weak solutions for general, non-convex energy functionals.

Moreover, in the case that the solutions have only finitely many jumps, a kind of piecewise
C1-smoothness can be obtained. We also give some condition ensuring that weak solutions
have only finitely many jumps. A regularity result for the vector-valued cases is provided in
the end of this chapter.

1 Regularity results

Let x(·) be a weak solution to the system described by the energy functional E (t, x) and the
dissipation functional Ψ(x, y) := |x − y|. More precisely, x : [0, T ] 7→ R is a BV function
which satisfies two conditions:

(w-LS) (Weak local stability) For all t ∈ (0, T ), if x(·) is continuous at t, then

|∂xE (t, x(t))| ≤ 1.

(ED-upper) (Energy-dissipation upper bound) For all 0 ≤ t1 ≤ t2 ≤ T ,

E (t2, x(t2))− E (t1, x(t1)) ≤
t2∫
t1

∂tE (s, x(s))ds−Diss(x(·); [t1, t2]).

Remark. Energetic solutions, BV solutions and epsilon-neighborhood solutions satisfy (w-LS)
and (ED-upper).

We shall use the following assumptions.

(H1) E (t, x) is of class C3 and the set

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xxxE (t, x) = 0}

has only finitely many elements.
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(H2) The set

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xtE (t, x) = 0,

[∂xxtE (t, x)]2 = ∂xttE (t, x) · ∂xxxE (t, x)
}

has only finitely many elements.

(H3) The set

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xtE (t, x) = 0}

has only finitely many elements.

(H4) The set

{(t, x) ∈ [0, T ]× R | ∂xE (t, x) ∈ {−1, 1}, ∂xtE (t, x) = ∂xttE (t, x) = 0}

is empty.

(H5) The set
{(t, x) ∈ [0, T ]× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = 0}

is empty.

These conditions hold true for a dense class of energy functionals (we are not going to
specify exactly the meaning of dense). Note that no convexity is imposed.

All our regularity results apply to the scalar case (d = 1). Only the last result works in
an arbitrary dimension.

Theorem 3.3 (SBV regularity). Assume that the function x(·) has bounded variation and
satisfies (w-LS) and (ED-upper). If (H1) holds true, then x(·) is of class SBV.

In the next theorem, we consider the differentiability of energetic solutions in the case
that they have finitely many jumps.

Theorem 3.4 (Differentiability). Assume that x(·) is a BV function satisfying (S) and
(ED-upper) and x(·) has only finitely many jump points. If (H1) holds true, then we can
decompose [0, T ] into four disjoint sets I1, I2, I3 and J such that the following holds true.

(i) For every t ∈ I1, x′(t) does not exist and either x′−(t) = 0 or x′+(t) = 0.

(ii) For every t ∈ I2, x
′
−(t) and x′+(t) do exist, but they are different. Moreover, x(·) is

differentiable in a neighborhood of t (except the point t itself) and

x′+(t) = lim
s↓t

x′(s), x′−(t) = lim
s↑t

x′(s).

(iii) For every t ∈ I3, x(·) is differentiable at t, namely x′(t) exists.

(iv) J is the jump set of x(·).

Notice that both I1 and I2 are discrete sets. Moreover, if (H2) also holds true, then I1 ∪ I2
is also a discrete set.
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Here the right and left derivatives x′+(t), x′−(t) are defined by

x′+(t) := lim
s↓t

x(s)− x(t)

s− t
, x′−(t) := lim

s↑t

x(s)− x(t)

s− t
.

In the next two theorems, we consider the piecewise C1-smoothness of the energetic
solutions.

Theorem 3.5 (Weak C1 regularity). Assume that x(·) is a BV function satisfying (S) and
(ED-upper) and x(·) has only finitely many jump points. If (H1) and (H3) hold true, then
there exists a set I of isolated points such that for any t ∈ (0, T )\I, the classical derivative
x′(t) exists. Moreover, the function x′(·) is continuous on (0, T )\I.

Here we say that t is an isolated point of I if there exists ε > 0 such that

(t− ε, t+ ε) ∩ I = {t},

Theorem 3.6 (C1 regularity). Assume that x(·) is a BV function satisfying (S) and (ED-
upper) and x(·) has only finitely many jump points. If (H1), (H3) and (H4) hold true, then
there exist finite disjoint open intervals {In}Mn≥1 such that [0, T ] = ∪Mn≥1In, and x(·) is C1 on
any interval In.

In Theorem 3.4, 3.5, and 3.6, we require that the energetic solution has finitely many
jump points. In the following theorem, we give a simple condition to make sure a weak
solution has only finitely many jumps in one dimension.

Theorem 3.7 (Finite jumps). Assume that x(·) is a BV function satisfying (w-LS) and
(ED-upper). If (H5) holds true, then x(·) has only finitely many jumps.

So far, all of the regularity theorems are stated in one dimension, since our techniques
seem rather specific for one dimension. Now we give one generalization for SBV regularity
in higher dimensions.

Theorem 3.8 (SBV regularity for higher dimensions). Let x : [0, T ]→ Rd (d ≥ 1) be a BV
function satisfying (w-LS) and (ED-upper). Moreover, we assume that

(H6) E (t, x) is of class C3(Rd+1) and the set

{(t, x) ∈ (0, T )× Rd | |∇xE (t, x)| = 1, F (t, x) = (∇xE (t, x)) · (∇xF (t, x)) = 0}

is countable, where the function F (t, x) is defined by

F (t, x) := (∇xE (t, x)) ·H(t, x) · (∇xE (t, x))T

and the Hessian matrix H(t, x) is defined by

[H(t, x)]ij := (∂xi∂xjE )(t, x).

Then x(·) is of class SBV.

The previous theorems are proved in the next sections.
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2 Any increasing function is an energetic solution

To prove Theorem 3.2, we start with some classical results.

Lemma 3.9. For any closed set C in Rd, there exists a smooth function ϕ such that ϕ :
Rd → [0, 1] and ϕ−1(0) = C.

Proof. Since the set Rd\C is open, we can find a family of open balls {Bn} such that

Rd\C =
⋃
n∈N

Bn.

Moreover, a classical result tells us that, for any n ∈ N, there exist ϕn : Rd → [0, 1] such
that ϕn is of class C∞ and ϕ−1n (0) = Rd\Bn.

Take ϕ :=
∑

n∈N αnϕn with αn > 0 for all n. This implies ϕ−1(0) = C.
Now for every n ∈ N, we choose αn such that ‖Dkϕn‖∞ ·αn ≤ 2−n for all k = 0, 1, . . . , n.

It is easy to check that ϕ(Rd) ∈ [0, 1] and ϕ is of class C∞. This completes the proof of
Lemma 3.9.

Lemma 3.10. If u : [0, T ] 7→ R is an increasing function, then there exists a smooth function
g : [0, T ]×R→ R such that

g(t, x) ∈ [−1, 0) for all t ∈ [0, T ] and for all x < u(t),

g(t, x) ∈ (0, 1] for all t ∈ [0, T ] and for all x > u(t),

g(t, x) = 0 for all t ∈ [0, T ] and for all x = u(t).

Proof. Define

C1 := {(t, x) | x ≥ u(t−)}, C2 := {(t, x) | x ≤ u(t+)}.

We show that C1 and C2 are closed sets in R2. For example, to prove that C1 is closed, we
need to show that if a sequence {(tn, xn)}n≥1 ⊂ C1 converges to (t0, x0), then (t0, x0) ∈ C1,
namely x0 ≥ u(t−0 ). Indeed, if s < t0, then for n large enough we have tn > s, and
hence xn ≥ u(t−n ) ≥ u(s). Thus x0 = lim xn ≥ u(s) for all s < t0, which implies that
x0 ≥ lims↑t0 u(s) = u(t−0 ). Thus C1 is closed. Similarly, we have C2 is closed.

Applying Lemma 3.9 we can choose two smooth functions g1 : R2 → [0, 1] and g2 : R2 →
[0, 1] such that

g−11 (0) = C1 and g−12 (0) = C2.

We define
g(t, x) := g2(t, x)− g1(t, x) for all (t, x) ∈ [0, T ]×R.

It is straight-forward to see that the function g has all desired properties.

Now we are able to show
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Proof of Theorem 3.2. We choose the energy functional E (t, x) such that g(t, x) = ∂xE (t, x)+
1 (here g is from Lemma 3.10), the dissipation function Ψ(x) := |x|, and the initial value
x0 := u(0). We shall prove that u is an energetic solution of the system (E , |.|, u(0)).

By Proposition 1.4, x(·) is an energetic solution to the system (E , |.|, x0) if the following
three conditions hold.

(i) x(·) is left-continuous.

(ii) Diss(x(·); [0, T ]) = |x(T )− x0|.

(iii) For all t ∈ [0, T ], x(t) minimizes the functional x 7→ E (t, x) + |x− x0| for x ∈ R.

Thus it remains to check that u satisfies the condition (iii). We shall use the fact that
for all t, ∂xE (t, u(t)) = −1 and ∂xE (t, x) ∈ (−1, 0] if x > u(t), and ∂xE (t, x) ∈ [−2,−1) if
x < u(t). We distinguish two cases.

Case 1: x > u(t). By the smoothness of E , we can write

E (t, x) = E (t, u(t)) +

∫ x

u(t)

∂xE (t, z)dz

> E (t, u(t)) +

∫ x

u(t)

(−1) = E (t, u(t)) + u(t)− x.

Thus,

E (t, x) + |x− u(0)| > [E (t, u(t)) + u(t)− x] + [x− u(0)]

= E (t, u(t)) + u(t)− u(0).

Case 2: x < u(t). Similarly to Case 1, we write

E (t, x) = E (t, u(t))−
∫ u(t)

x

∂xE (t, z)dz

> E (t, u(t))−
∫ u(t)

x

(−1) = E (t, u(t)) + u(t)− x.

Hence,

E (t, x) + |x− u(0)| > [E (t, u(t)) + u(t)− x] + [x− u(0)]

= E (t, u(t)) + u(t)− u(0).

In summary, u(t) is the unique minimizer for the functional x 7→ E (t, x) + |x−x(0)| over
x ∈ R. This completes the proof.

3 SBV regularity

Now we prove Theorem 3.3.
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Proof of Theorem 3.3. Step 1. Thanks to Proposition 1.5, we can assume that x(·) is right-
continuous.

By dividing (0, T ) into smaller intervals if necessary, we can assume that the set

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xxxE (t, x) = 0}

is empty.

Step 2. Since x(·) is a BV function in 1-dim which is right-continuous, there is a real-valued
Radon measure µ such that

x(t) = const + µ((0, t]) for all t ∈ [0, T ].

By Lebesgue Decomposition Theorem we can write

µ = fdx+ µs

where f ∈ L1 and µs = µ|S with

S =

{
t ∈ (0, T ) | lim

h↓0

|µ|(t− h, t+ h)

h
=∞

}
.

Let J be the jump set of x(·). We split µs into the Cantor part µc := µ|S\J and the jump
part µJ := µ|J . To show that x(·) is of SBV , we need to prove that µc = 0.

Step 3. Next, we shall use the following lemmas:

Lemma 3.11. For any BV function x : [0, T ]→ R which is right-continuous, the set

A :=

{
t ∈ (0, T )\J | lim inf

h→0

∣∣∣∣x(t+ h)− x(t)

h

∣∣∣∣ <∞}
has |µs|-measure 0.

Lemma 3.12. Assume that x : [0, T ] → R has bounded variation and satisfies (w-LS) and
(ED-upper). If (H1) holds true, then the set

B :=

{
t ∈ (0, T )\J | lim

h→0

∣∣∣∣x(t+ h)− x(t)

h

∣∣∣∣ =∞
}

is at most countable. Therefore, |µs|(B) = 0.

Step 4. Since µc is the restriction of µs on (0, T )\J , µc = 0 if |µs|((0, T )\J) = 0. Because
we can write (0, T )\J = A ∪ B, Lemma 3.11 and 3.12 ensure that |µs|((0, T )\J) = 0. This
completes the proof of Theorem 3.3.

It remains to show Lemma 3.11 and 3.12.

68



Proof of Lemma 3.11. Step 1. For any h > 0, we have

x(t+ h)− x(t) = µ((0, t+ h])− µ((0, t]) = µ((t, t+ h])

Thus, we can rewrite

A =

{
t ∈ (0, T )\J | lim inf

h→0

∣∣∣∣µ((t, t+ h])

h

∣∣∣∣ <∞} .
If we define

Ak :=

{
t ∈ (0, T )\J |

∣∣∣∣µ((t, t+ h])

h

∣∣∣∣ < k for some h > 0 arbitrary close to 0

}
,

then A ⊂ ∪∞k=1Ak. We can prove that Ak is Borel, and hence it is |µs|-measurable. We will
obtain |µs|(A) = 0 if we can check |µs|(Ak) = 0 for all k.

Step 2. Since µs⊥L1, there exists a Borel set Sp such that |µs|(Scp) = 0 and L1(Sp) = 0.
For any ε > 0 there exists an open set Uε ⊃ Sp such that L1(Uε) < ε. We have

µs(Ak) = µs(A
′
k),

where A′k = Ak ∩ Uε.

Step 3. Next, we consider the following family F covering A′k where

F = {[t, t+ h] : t ∈ A′k and h is chosen such that [t, t+ h] ⊂ Uε and |µ|((t, t+ h]) < kh} .

Notice that since t does not belong to J , µ([t, t+ h]) = µ((t, t+ h]). We refine F to F ′ such
that F ′ still covers A′k as follows: if I ∈ F is a subset of another interval of F , or I is a
subset of the union of two other intervals of F , then we omit I.

After refining F , we obtain the family F ′ with the following properties.

P1. No interval of F ′ is a subset of another interval of F ′.

P2. Three different intervals of F ′ always have no common element (otherwise, two of
them cover the remaining one). As a consequence, any t ∈ A′k is covered by at most 2
intervals of F ′.

P3. Any interval of F ′ is disjoint from all of the others except at most 2 intervals. In fact,
if J ∩ I 6= ∅, J 6⊂ I and I 6⊂ J , then J must contain precisely one of the two boundary
points of I. Therefore, by property P2, there are at most 2 intervals of F ′, which are
different from I and have nontrivial intersections with I.

P4. For any I ∈ F ′, there is a nontrivial interval (a, b) ⊂ I such that

(a, b) ∩
(
∪

I′∈F ′\{I}
I ′
)

= ∅.

In fact, assume that for all (a, b) ⊂ I, there exists J ∈ F ′, J 6= I, such that (a, b)∩J 6= ∅.
By property P3, there are (at most) two intervals J1, J2 ∈ F ′ such that for all (a, b) ⊂ I,
then either (a, b) ∩ J1 6= ∅ or (a, b) ∩ J2 6= ∅. It implies that I ⊂ J1 ∪ J2, which is a
contradiction.
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P5. F ′ is at most countable. In fact, by property P4, each I ∈ F ′ contains a nontrivial
interval (a, b) which has empty intersection with all of the other intervals of F ′. In this
interval (a, b) we can choose a rational number cI . Since I 7→ cI is injective from F ′
into Q, we conclude that F ′ is at most countable.

P6. We can divide F ′ into three subfamilies F ′1, F ′2, F ′3, such that each subfamily is disjoint.
This can be done by induction using property P2.

Step 4. Now we have

|µs|(Ak) = |µs|(A′k) ≤ |µs|

(⋃
I∈F ′

I

)
≤
∑
I∈F ′
|µs|(I) ≤

3∑
j=1

∑
I∈F ′j

|µs|(I)

.
Recall that any I ∈ F ′ satisfies |µs|(I) ≤ kL1(I). Moreover, for any j = 1, 2, 3, the family
F ′j contains disjoint intervals I ⊂ Uε. Therefore,∑

I∈F ′j

|µs|(I) ≤ k
∑
I∈F ′j

L1(I) = kL1(Uε) ≤ kε for all j = 1, 2, 3.

Thus
|µs|(Ak) ≤ 3kε.

Because it holds true for any ε > 0, we conclude that |µs|(Ak) = 0. This completes the proof
of Lemma 3.11.

Before proving Lemma 3.12, we need some preliminary results.

Lemma 3.13. Assume that x : [0, T ]→ R has bounded variation and satisfies the weak local
stability (w-LS) and the energy-dissipation upper bound (ED-upper)

E (t2, x(t2))− E (t1, x(t1)) ≤
t2∫
t1

∂tE (s, x(s))ds−Diss(x(·); [t1, t2])

for all 0 ≤ t1 ≤ t2 ≤ T , then we have

∂xE (t, x(t)) ∈ {−1, 1}

for all t /∈ J and t /∈ int(N ∪ J). Here we denote by J the jump set of x(·) and

N := {t | x′(t) exists and x′(t) = 0}. (3.1)

Moreover, if we assume furthermore that x(·) is right-continuous and satisfies the global
stability (S), then ∂xE (t, x(t)) ∈ {−1, 1} for all t /∈ int(N).
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Remark. Recall that the global stability, namely x(t) is a global minimizer for the functional

z ∈ R 7→ E (t, z) + |z − x(t)|,

implies that
0 ∈ ∂x[E (t, x) + |x− x(t)|]x=x(t).

This yields the weak local stability,

∂xE (t, x(t)) ∈ [−1, 1].

Proof. Step 1. First, we show that if t /∈ N ∪ J , then ∂xE (t, x(t)) ∈ {−1, 1}.
Since t /∈ N , we can find a sequence tn → t and tn 6= t such that

lim inf
n→∞

∣∣∣∣x(tn)− x(t)

tn − t

∣∣∣∣ > 0. (3.2)

Case 1. Assume that tn ↓ t. From the energy-dissipation upper bound, one has

E (tn, x(tn))− E (t, x(t)) ≤
tn∫
t

∂tE (s, x(s))ds−Diss(x(·); [t, tn]).

Using Taylor’s expansion on the left-hand side and the continuity of s 7→ ∂tE (s, x(s)) on the
right-hand side, we obtain

∂tE (t, x(t)) · (tn − t) + ∂xE (t, x(t)) · (x(tn)− x(t)) + o(x(tn)− x(t)) + o(tn − t)
≤ (tn − t) · ∂tE (t, x(t))−Diss(x(·); [t, tn]) + o(tn − t).

Dividing this inequality by |x(tn)− x(t)| and using (3.2), we obtain

∂xE (t, x(t)) · x(tn)− x(t)

|x(tn)− x(t)|
≤ −Diss(x(·); [t, tn])

|x(tn)− x(t)|
+ o(1) ≤ −1 + o(1). (3.3)

Consequently, |∂xE (t, x(t))| ≥ 1. On the other hand, |∂xE (t, x(t))| ≤ 1 by (w-LS). Thus
|∂xE (t, x(t))| = 1.

Case 2. Assume that tn ↑ t. From the energy-dissipation upper bound, one has

E (tn, x(tn))− E (t, x(t)) ≥
tn∫
t

∂tE (s, x(s))ds+ Diss(x(·); [tn, t]).

Following the above proof, we obtain

∂xE (t, x(t)) · x(tn)− x(t)

|x(tn)− x(t)|
≥ Diss(x(·); [tn, t])

|x(tn)− x(t)|
+ o(1) ≥ 1 + o(1).

This also implies that |∂xE (t, x(t))| = 1.

Step 2. We show that if t /∈ J and t /∈ int(N ∪ J), then ∂xE (t, x(t)) ∈ {−1, 1}.
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Since t /∈ int(N∪J), there exists a sequence tn → t such that tn /∈ N∪J for all n ≥ 1. By
the previous step, ∂xE (tn, x(tn)) ∈ {−1, 1} for all n ≥ 1. Moreover, since x(·) is continuous
at t, we get

∂xE (tn, x(tn))→ ∂xE (t, x(t)).

Therefore, ∂xE (t, x(t)) ∈ {−1, 1}.

Step 3. Now assume furthermore that x(·) is right-continuous and satisfies the global sta-
bility. We shall show that ∂xE (t, x(t)) ∈ {−1, 1} for all t ∈ J . Then by the same continuity
argument as above, we obtain ∂xE (t, x(t)) ∈ {−1, 1} for all t /∈ int(N).

In fact, since x(t) is right-continuous and t ∈ J , we have

x0 := x(t) = x(t+) 6= x(t−) =: x−.

From the energy-dissipation upper bound, we get

E (t, x−) ≥ E (t, x0) + |x0 − x−|.

On the other hand, from the stability of x(t) we obtain

E (t, x) ≥ E (t, x−)− |x− x−| for all x ∈ R.

Combining them together, we arrive at

E (t, x) ≥ E (t, x0) + |x0 − x−| − |x− x−| for all x ∈ R. (3.4)

We distinguish two cases: x0 < x− and x0 > x−.
Case 1. x0 < x−. In this case, (3.4) implies that

∂xE (t, x0) = lim
x↓x0

E (t, x)− E (t, x0)

x− x0
≥ lim

x↓x0

|x− − x0| − |x− x−|
x− x0

= 1.

Case 2. x0 > x−. Using (3.4) again we get

∂xE (t, x0) = lim
x↑x0

E (t, x)− E (t, x0)

x− x0
≤ lim

x↓x0

|x− − x0| − |x− x−|
x− x0

= −1.

On the other hand, by continuity, we have ∂xE (t, x0) ∈ [−1, 1]. Therefore, in both cases,
we have ∂xE (t, x(t)) = ∂xE (t, x0) ∈ {−1, 1} when t ∈ J .

Lemma 3.14. Assume that x : [0, T ]→ R has bounded variation and satisfies the weak local
stability (w-LS) and the energy-dissipation upper bound (ED-upper). If t /∈ J ∪ int(N ∪ J)
and ∂xxE (t, x(t)) 6= 0, then for any sequence tn → t such that tn /∈ J and tn /∈ int(N ∪ J)
and tn 6= t for all n ≥ 1, one has

lim
n→∞

x(tn)− x(t)

tn − t
= − ∂xtE (t, x(t))

∂xxE (t, x(t))
.

Moreover, if x(·) is right-continuous and satisfies (S) and (ED-upper), then if t /∈ J ∪
int(N) and ∂xxE (t, x(t)) 6= 0, then for any sequence tn → t such that tn /∈ int(N), tn 6= t,
one has

lim
n→∞

x(tn)− x(t)

tn − t
= − ∂xtE (t, x(t))

∂xxE (t, x(t))
.

Here the set N is defined in (3.1).
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Proof. By Lemma 3.13 we have ∂xE (t, x(t)) ∈ {−1, 1} and ∂xE (tn, x(tn)) ∈ {−1, 1} for all
n ≥ 1. Due to the continuity of s 7→ ∂xE (s, x(s)) at s = t, we obtain

∂xE (tn, x(tn)) = ∂xE (t, x(t))

for n large enough. Therefore, by Taylor’s expansion

0 = ∂xE (tn, x(tn))− ∂xE (t, x(t))

= ∂xtE (t, x(t)) · (tn − t) + ∂xxE (t, x(t)) · (x(tn)− x(t)) + o(tn − t) + o(x(tn)− x(t)).

This implies that

lim
n→∞

x(tn)− x(t)

tn − t
= − ∂xtE (t, x(t))

∂xxE (t, x(t))

when ∂xxE (t, x(t)) 6= 0.

Now we are able to show

Proof of Lemma 3.12. Consider the set

E := {t ∈ (0, T ) | ∂xE (t, x(t)) ∈ {−1, 1}, ∂xxE (t, x(t)) = 0}. (3.5)

Recall that we are assuming that ∂xxxE (t, x(t)) 6= 0 for any t ∈ E. Consider an arbitrary t.
Case 1. If t ∈ N ∪ J , then t /∈ B by definition of B and N .
Case 2. If t is an accumulation point of (0, T )\(N ∪ J) and t /∈ E, then we can find a

sequence tn → t such that tn /∈ N ∪ J and tn 6= t for all n ≥ 1. By Lemma 3.14,

lim
n→∞

x(tn)− x(t)

tn − t
= − ∂xtE (t, x(t))

∂xxE (t, x(t))
.

Thus in this case, t /∈ B.
Case 3. If t /∈ J and t is an accumulation point of E, then we can find a sequence

sn ∈ E, sn → t. Using Taylor’s expansion again, we get

0 = ∂xxE (sn, x(sn))− ∂xxE (t, x(t))

= ∂xxtE (t, x(t)) · (sn − t) + ∂xxxE (t, x(t)) · (x(sn)− x(t))

+o(sn − t) + o(x(sn)− x(t)).

Since ∂xxxE (t, x(t)) 6= 0, we arrive at

lim
n→∞

x(sn)− x(t)

sn − t
= − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
,

which is a finite number. Thus t /∈ B.
Conclusion. In summary, if t ∈ B, then either t is an isolated point of (0, T )\(N ∪ J),

or t is an isolated point of E. Therefore, B is at most countable. Since µs({t}) = 0 for any
t ∈ B ⊂ (0, T )\J , we have |µs|(B) = 0. This ends the proof of Lemma 3.12.

Remark. The proof of Theorem 3.3 is unchanged if the set

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xxxE (t, x) = 0}

in condition (H1) is assumed to be countable.
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4 Weak C1 regularity

In this section we shall prove Theorem 3.5. Beside Lemma 3.13 and Lemma 3.14, we have
some other useful preliminaries.

Lemma 3.15. Assume that x : [0, T ] → R is right-continuous, has bounded variation
and satisfies the global stability (S) and the energy-dissipation upper bound (ED-upper).
If t /∈ int(N) and t /∈ J , then ∂xxE (t, x(t)) ≥ 0. Moreover, if t ∈ E, then ∂xE (t, x(t)) ·
∂xxxE (t, x(t)) ≤ 0. Here the set N is defined in (3.1) and the set E is defined in (3.5).

Proof. 1. From the global stability (S)

E (t, x(t)) ≤ E (t, x) + |x− x(t)| for all x ∈ R and for all t ∈ [0, T ],

using Taylor’s expansion for E (t, ·) up to second order, we have

E (t, x(t)) ≤ E (t, x(t)) + |x− x(t)|+ ∂xE (t, x(t)) · (x− x(t))

+∂xxE (t, x(t)) · (x− x(t))2

2
+ o(|x− x(t)|2). (3.6)

By Lemma 3.13, ∂xE (t, x(t)) ∈ {−1, 1} for all t /∈ int(N). If ∂xE (t, x(t)) = −1, then
taking a sequence x ↓ x(t) in (3.6) we get ∂xxE (t, x(t)) ≥ 0. If ∂xE (t, x(t)) = 1, then taking
a sequence x ↑ x(t) in (3.6), we also get ∂xxE (t, x(t)) ≥ 0.

2. Now assuming ∂xxE (t, x(t)) = 0, we shall prove that ∂xE (t, x(t)) · ∂xxxE (t, x(t)) ≤ 0.
Using the above stability and Taylor’s expansion for E (t, ·) up to third order, we get

E (t, x(t)) ≤ E (t, x(t)) + |x− x(t)|+ ∂xE (t, x(t)) · (x− x(t))

+∂xxxE (t, x(t)) · (x− x(t))3

6
+ o(|x− x(t)|3). (3.7)

If ∂xE (t, x(t)) = −1, then taking a sequence xn ↓ x(t) in (3.7) we get ∂xxxE (t, x(t)) ≥ 0. If
∂xE (t, x(t)) = 1, then taking a sequence xn ↑ x(t) in (3.6), we get ∂xxxE (t, x(t)) ≤ 0. Thus
in both cases,

∂xE (t, x(t)) · ∂xxxE (t, x(t)) ≤ 0.

Lemma 3.16. Assume that x : [0, T ] → R has bounded variation and satisfies the weak
local stability (w-LS) and the energy-dissipation upper bound (ED-upper). Then for all t ∈
(0, T )\J , one has

lim sup
s→t

{
∂xE (t, x(t)) · x(s)− x(t)

s− t

}
≤ 0.

Proof. We shall show that for any sequence tn → t and tn 6= t then

lim sup
n→∞

{
∂xE (t, x(t)) · x(tn)− x(t)

tn − t

}
≤ 0.

Of course, we may assume that

lim inf
n→∞

∣∣∣∣x(tn)− x(t)

tn − t

∣∣∣∣ > 0
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and either tn ↓ t or tn ↑ t.
Case 1. If tn ↓ t, then due to the inequality (3.3) in the proof of Lemma 3.13 one has

lim
n→∞

∂xE (t, x(t)) · x(tn)− x(t)

|x(tn)− x(t)|
= −1.

This implies that

lim
n→∞

∂xE (t, x(t)) · sign

(
x(tn)− x(t)

tn − t

)
= −1.

Case 2. If tn ↑ t, then similarly, one has

lim
n→∞

∂xE (t, x(t)) · x(tn)− x(t)

|x(tn)− x(t)|
= 1,

and hence

lim
n→∞

∂xE (t, x(t)) · sign

(
x(tn)− x(t)

tn − t

)
= −1.

Thus in all cases, we have

lim
n→∞

∂xE (t, x(t)) · sign

(
x(tn)− x(t)

tn − t

)
= −1.

and the conclusion follows.

Lemma 3.17. Assume that x : [0, T ] → R is right-continuous, has bounded variation and
satisfies the global stability (S) and the energy-dissipation upper bound (ED-upper). Let
t ∈ int[(0, T )\int(N)], t ∈ E, t /∈ J and ∂xxxE (t, x(t)) 6= 0, then we have ∂xtE (t, x(t)) = 0.
Here we denote N as in (3.1) and E as in (3.5).

Proof. Step 1. Take an arbitrary sequence tn → t, tn 6= t, tn ∈ int[(0, T )\int(N)].
By Lemma 3.13 and the continuity of the function s 7→ ∂xE (s, x(s)) at s = t, we have
∂xE (tn, x(tn)) = ∂xE (t, x(t)). Using Taylor’s expansion and ∂xxE (t, x(t)) = 0, we have

0 = ∂xE (tn, x(tn))− ∂xE (t, x(t))

= ∂xtE (t, x(t)) · (tn − t) + o(x(tn)− x(t))) + o(tn − t). (3.8)

Thus we can conclude that ∂xtE (t, x(t)) = 0 if we can find a sequence tn → t such that

lim sup
n→∞

|x(tn)− x(t)|
|tn − t|

<∞.

Step 2. Since x(·) has bounded variation, it has at most countably many jumps. Moreover,
since t ∈ int[(0, T )\int(N)], we can choose an arbitrary sequence sn ↑ t, sn 6= t, sn ∈
int[(0, T )\int(N)], and sn /∈ J . Therefore, by Lemma 3.15 we have ∂xxE (sn, x(sn)) ≥ 0 =
∂xxE (t, x(t)). Using Taylor’s expansion we have

0 ≤ ∂xxE (sn, x(sn))− ∂xxE (t, x(t))

= ∂xxtE (t, x(t)) · (sn − t) + ∂xxxE (t, x(t)) · (x(sn)− x(t))

+o(x(sn)− x(t)) + o(sn − t).
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Dividing the above inequality by (sn − t) < 0, we have

0 ≥ ∂xxtE (t, x(t)) + (∂xxxE (t, x(t)) + o(1)) · x(sn)− x(t)

sn − t
+ o(1). (3.9)

Note that ∂xxxE (t, x(t)) 6= 0 by our assumption.

Step 3. We distinguish two cases.
Case 1. Assume ∂xE (t, x(t)) = −1. Then ∂xxxE (t, x(t)) > 0 by Lemma 3.15. Therefore,

(3.9) implies that

lim sup
n→∞

x(sn)− x(t)

sn − t
≤ − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
<∞.

On the other hand, by Lemma 3.16,

lim inf
n→∞

{
x(sn)− x(t)

sn − t

}
≥ 0.

Therefore,

lim sup
n→∞

|x(sn)− x(t)|
|sn − t|

<∞.

Case 2. Assume ∂xE (t, x(t)) = 1. Similarly, we have ∂xxxE (t, x(t)) < 0 by Lemma 3.15,
and hence

lim inf
n→∞

x(sn)− x(t)

sn − t
≥ − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
> −∞.

Moreover, by Lemma 3.16,

lim sup
n→∞

{
x(sn)− x(t)

sn − t

}
≤ 0.

Thus

lim sup
n→∞

|x(sn)− x(t)|
|sn − t|

<∞.

Step 4. In summary, if sn ↑ t, then we always have

lim sup
n→∞

|x(sn)− x(t)|
|sn − t|

<∞.

Therefore, choosing tn = sn in (3.8), we conclude that ∂xtE (t, x(t)) = 0.

Lemma 3.18. Assume that x : [0, T ] → R is right-continuous, has bounded variation and
satisfies the global stability (S) and the energy-dissipation upper bound (ED-upper). If t is

an accumulation point of ∂
◦
N and t /∈ J , we have ∂xtE (t, x(t)) = 0. Moreover, if t /∈ E, then

x′(t) = 0 and ∂xttE (t, x(t)) = 0.

Here we denote by ∂
◦
N the boundary of the interior of N , N is defined as in (3.1) and

E is defined as in (3.5).
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Proof. Step 1. Since t is an accumulation point of ∂
◦
N , we can find an → t, bn → t such that

(an, bn) ⊂ int(N) and an, bn ∈ ∂
◦
N . By Lemma 3.13, and the continuity of s 7→ ∂xE (s, x(s))

at s = t, one has, for n large enough,

∂xE (an, x(an)) = ∂xE (t, x(t)) = ∂xE (bn, x(bn)) ∈ {−1, 1}.

Note that for all s ∈ [an, bn], x(s) = cn, a constant independent of s. Consider the
one-variable function

s 7→ fn(s) := ∂xE (s, cn).

Since fn(an) = fn(bn), by Rolle’s Theorem, we can find a number sn ∈ (an, bn) such that
f ′n(sn) = 0. This means ∂xtE (sn, x(sn)) = 0. Since sn → t, one has

0 = ∂xtE (sn, x(sn))→ ∂xtE (t, x(t)).

Step 2. Now we assume that t /∈ E. We distinguish two cases.
Case 1. Let tn /∈ int(N), tn 6= t and tn → t. Then by Lemma 3.14 we have

lim
n→∞

x(tn)− x(t)

tn − t
= − ∂xtE (t, x(t))

∂xxE (t, x(t))
= 0.

Case 2. Let sn ∈ int(N) and sn → t. Since t is an accumulation point of ∂
◦
N , we can

assume that sn ∈ (an, bn) ⊂ int(N) with an, bn ∈ ∂
◦
N . Using Case 1, one has

lim
n→∞

x(an)− x(t)

an − t
= lim

n→∞

x(bn)− x(t)

bn − t
= 0.

On the other hand, since x′(s) = 0 when s ∈ (an, bn), we have x(sn) = x(an) = x(bn).
Therefore, ∣∣∣∣x(sn)− x(t)

sn − t

∣∣∣∣ ≤ max

{∣∣∣∣x(an)− x(t)

an − t

∣∣∣∣ , ∣∣∣∣x(bn)− x(t)

bn − t

∣∣∣∣}→ 0

as n→∞.
Thus in summary, for any sequence tn → t and tn 6= t we always have

lim
n→∞

x(tn)− x(t)

tn − t
→ − ∂xtE (t, x(t))

∂xxE (t, x(t))
= 0.

This means x′(t) = 0.

Step 3. Now we show that if we assume furthermore that t /∈ E, then ∂xttE (t, x(t)) = 0.
Since t /∈ E and the functions s 7→ ∂xE (s, x(s)), s 7→ ∂xxE (s, x(s)) are continuous at

s = t, we have s /∈ E if s is in a neighborhood of t. In particular, if s is in a neighborhood
of t, s ∈ int[(0, T )\int(N)] and s /∈ J , then ∂xxE (s, x(s)) > 0 by Lemma 3.15 and

x′(s) = − ∂xtE (s, x(s))

∂xxE (s, x(s))
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by Lemma 3.14. Using Lemma 3.16, we conclude that

∂xtE (s, x(s)) · ∂xE (s, x(s)) ≥ 0. (3.10)

Let us assume that ∂xE (t, x(t)) = −1 (the other case, ∂xE (t, x(t)) = 1, can be treated
by the same way). If s is in a neighborhood of t, s /∈ J and s ∈ int[(0, T )\int(N)], then
∂xE (s, x(s)) < 0, and hence ∂xtE (s, x(s)) ≤ 0 by (3.10). In particular, we have

∂xtE (an, x(an)) ≤ 0 and ∂xtE (bn, x(bn)) ≤ 0

for n large enough, where {an}, {bn} are taken as in Step 1.
On the other hand, it was already shown in Step 1 that there exists tn ∈ (an, bn) such

that ∂xtE (tn, x(tn)) = 0. Therefore, the function g(s) := ∂xtE (s, x(s)) has a local maximizer
sn ∈ (an, bn). Hence, for n large enough,

∂xttE (sn, x(sn)) = g′(sn) = 0.

Since sn → t, by taking the limit as n→∞ we obtain ∂xttE (t, x(t)) = 0.

Now we are able to give

Proof of Theorem 3.5. Since x(·) has finite jump points and (H1), (H3) hold true, by dividing
(0, T ) into subintervals if necessary, we may further assume that x(·) has no jumps on (0, T )
and

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xxxE (t, x) = 0} = ∅,

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xtE (t, x) = 0} = ∅.

We denote by I1 the set of isolated points of ∂
◦
N . It remains to consider the case t /∈ I1.

We distinguish the following cases.
Case 1. If t ∈ int(N), then x′(t) = 0. Moreover, if s is in a neighborhood of t then

x′(s) = 0. Therefore, x′(·) is continuous at t.
Case 2. If t ∈ int[(0, T )\int(N)], then by Lemma 3.17 we have t /∈ E. Therefore, by

Lemma 3.14,

x′(t) = − ∂xtE (t, x(t))

∂xxE (t, x(t))
.

Since the same formula also holds true for any s in a neighborhood of t, we have that x′(·)
is continuous at t.

Case 3. If t is an accumulation point of ∂
◦
N , then ∂xtE (t, x(t)) = 0 by Lemma 3.18.

Therefore, t /∈ E. By Lemma 3.18 one has x′(t) = 0. Next, we shall show that if tn → t and
tn /∈ I1, then x′(tn)→ x′(t) = 0. Indeed, if tn ∈ int[(0, T )\int(N)], then

x′(tn) = − ∂xtE (tn, x(tn))

∂xxE (tn, x(tn))
→ − ∂xtE (t, x(t))

∂xxE (t, x(t))
= 0.

Otherwise, if tn ∈ int(N) or tn is an accumulation point of ∂
◦
N , then we already have

x′(tn) = 0.
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In summary, if t ∈ (0, T )\I1 one has

x′(t) =

−
∂xtE (t, x(t))

∂xxE (t, x(t))
if t ∈ int[(0, T )\int(N)],

0 otherwise,

and x′(·) is continuous on (0, T )\I1. This completes the proof of Theorem 3.5.

Remark. In general, the set I in the statement of Theorem 3.5 contains the following points:

the isolated points of ∂
◦
N (namely the set I1 in the above proof), the jump points, and the

points t such that ∂xE (t, x(t)) ∈ {−1, 1}, ∂xxE (t, x(t)) = 0 and either ∂xxxE (t, x(t)) = 0 or
∂xtE (t, x(t)) = 0.

5 C1 regularity

Now we prove Theorem 3.6. First, we need the following lemmas.

Lemma 3.19. Assume that x : [0, T ] → R is right-continuous, has bounded variation and
satisfies the global stability (S) and the energy-dissipation upper bound (ED-upper). Assume
furthermore that t /∈ J, t /∈ int(N), ∂xxE (t, x(t)) = ∂xtE (t, x(t)) = 0 and ∂xxxE (t, x(t)) 6= 0.
If there exists a sequence sn /∈ J ∪ int(N) such that sn ↓ t (or sn ↑ t), then the limit

lim
s/∈J∪int(N),s↓t

x(s)− x(t)

s− t

(
or lim

s/∈J∪int(N),s↑t

x(s)− x(t)

s− t
, respectively

)
exists and it is a solution of the equation

∂xttE (t, x(t)) + 2∂xxtE (t, x(t)) ·X + ∂xxxE (t, x(t)) ·X2 = 0. (3.11)

Moreover, if there is a sequence tn → t such that tn 6= t, tn /∈ int(N) and ∂xxE (tn, x(tn)) =
0 for all n ≥ 1, then (3.11) has the unique solution −∂xxtE (t, x(t))/∂xxxE (t, x(t)). Here the
set N is defined as in (3.1).

Proof. Step 1. Let tn → t and tn /∈ J ∪ int(N). We have ∂xE (tn, x(tn)) = ∂xE (t, x(t)) by
Lemma 3.13 and the continuity of s 7→ ∂xE (s, x(s)) at s = t. Using Taylor’s expansion we
obtain

0 = ∂xE (tn, x(tn))− ∂xE (t, x(t))

= ∂xttE (t, x(t)) · (tn − t)2 + 2∂xxtE (t, x(t)) · (x(tn)− x(t)) · (tn − t)
+∂xxxE (t, x(t)) · (x(tn)− x(t))2 + o(|x(tn)− x(t)|2) + o(|tn − t|2).

Dividing this equality by (tn − t)2 and taking the limit as n→∞ we get

∂xttE (t, x(t)) + 2∂xxtE (t, x(t)) · x(tn)− x(t)

tn − t
+ ∂xxxE (t, x(t)) ·

(
x(tn)− x(t)

tn − t

)2

→ 0.(3.12)

Notice that, (3.12) also shows that the solutions of (3.11) are real. Moreover, if we denote
by X1 and X2 the two solutions of the equation (3.11), then

min

{∣∣∣∣x(tn)− x(t)

tn − t
−X1

∣∣∣∣ , ∣∣∣∣x(tn)− x(t)

tn − t
−X2

∣∣∣∣}→ 0
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as n→∞.

Step 2. Using Lemma 3.15 and Taylor’s expansion one has

0 ≤ ∂xxE (tn, x(tn))− ∂xxE (t, x(t))

= ∂xxtE (t, x(t)) · (tn − t) + ∂xxxE (t, x(t)) · (x(tn)− x(t))

+o(tn − t) + o(x(tn)− x(t)). (3.13)

By Lemma 3.13, ∂xE (t, x(t)) ∈ {−1, 1}. We distinguish two cases.
Case 1. ∂xE (t, x(t)) = −1. In this case, by Lemma 3.15 we have ∂xxxE (t, x(t)) > 0.

Therefore, from the inequality (3.13), if tn ↓ t, then

lim inf
n→∞

x(tn)− x(t)

tn − t
≥ − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
; (3.14)

while if tn ↑ t, then

lim sup
n→∞

x(tn)− x(t)

tn − t
≤ − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
. (3.15)

Since

X1 +X2 = − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
,

we have

max{X1, X2} ≥ −
∂xxtE (t, x(t))

∂xxxE (t, x(t))
≥ min{X1, X2},

and then together with (3.14) and (3.15), the convergence in (3.12) reduces to

lim
n→∞

x(tn)− x(t)

tn − t
= max{X1, X2} if tn ↓ t,

and

lim
n→∞

x(tn)− x(t)

tn − t
= min{X1, X2} if tn ↑ t.

Case 2. If ∂xE (t, x(t)) = 1, then similarly,

lim
n→∞

x(tn)− x(t)

tn − t
= min{X1, X2} if tn ↓ t,

and

lim
n→∞

x(tn)− x(t)

tn − t
= max{X1, X2} if tn ↑ t.

In both cases, the first conclusion of Lemma 3.19 follows.

Step 3. Now assume that there is a sequence tn → t such that tn 6= t, tn /∈ int(N) and
∂xxE (tn, x(tn)) = 0 for all n ≥ 1. Using Taylor’s expansion,

0 = ∂xxE (tn, x(tn))− ∂xxE (t, x(t))

= ∂xxtE (t, x(t)) · (tn − t) + ∂xxxE (t, x(t)) · (x(tn)− x(t))

+o(tn − t) + o(x(tn)− x(t)),
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we find that

lim
n→∞

x(tn)− x(t)

tn − t
= − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
.

Thus −∂xxtE (t, x(t))/∂xxxE (t, x(t)) is a solution to (3.11). Substituting this solution into
(3.11) we find that

[∂xxtE (t, x(t))]2 = ∂xttE (t, x(t)) · ∂xxxE (t, x(t)),

which implies that (3.11) has a unique solution.

Lemma 3.20. Assume that x : [0, T ] → R is right-continuous, has bounded variation and
satisfies the global stability (S) and the energy-dissipation upper bound (ED-upper). Let t be

an accumulation point of ∂
◦
N , t /∈ J and either t /∈ E, or t ∈ E and ∂xxxE (t, x(t)) 6= 0.

Then x′(t) = 0, and ∂xttE (t, x(t)) = 0. Here we denote E as in (3.5), N as in (3.1) and ∂
◦
N

the boundary of the interior of N .

Proof. Since t is an accumulation point of ∂
◦
N , Lemma 3.18 ensures that ∂xtE (t, x(t)) = 0.

If t /∈ E, then Lemma 3.18 also implies that x′(t) = 0 and ∂xttE (t, x(t)) = 0. Therefore, it
remains to consider the case when t ∈ E and ∂xxxE (t, x(t)) 6= 0.

Step 1. Since t is an accumulation point of ∂
◦
N , there exists a sequence {(an, bn)} such that

(an, bn) ⊂ int(N), an, bn ∈ ∂
◦
N for all n ≥ 1, and an, bn ↓ t (or an, bn ↑ t). By Lemma 3.19,

we have

lim
n→∞

x(an)− x(t)

an − t
= lim

n→∞

x(bn)− x(t)

bn − t
= X1,

where X1 is a solution to (3.11). Note that x(s) = cn is a constant on [an, bn]. Therefore, if
tn ∈ [an, bn] for all n ≥ 1, then using the fact that x(·) is a constant in [an, bn], one has∣∣∣∣x(tn)− x(t)

tn − t
−X1

∣∣∣∣ ≤ max

{∣∣∣∣x(bn)− x(t)

bn − t
−X1

∣∣∣∣ , ∣∣∣∣x(an)− x(t)

an − t
−X1

∣∣∣∣}→ 0.

Thus if tn ∈ [an, bn], then

lim
n→∞

x(tn)− x(t)

tn − t
= X1.

Step 2. On the other hand, by Lemma 3.13, the fact that an, bn, t /∈ int(N), we have

∂xE (an, x(an)), ∂xE (t, x(t)), ∂xE (bn, x(bn)) ∈ {−1, 1} for all n ∈ N.

Moreover, by the continuity of s 7→ ∂xE (s, x(s)) at s = t, we get

∂xE (an, x(an)) = ∂xE (t, x(t)) = ∂xE (bn, x(bn)) ∈ {−1, 1}. (3.16)

for n large enough. Consider the one-variable function

fn(s) := ∂xE (s, cn) on s ∈ [an, bn], (3.17)
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where recall that x(s) = cn for all s ∈ [an, bn]. Since fn(an) = fn(bn), by applying Rolle’s
Theorem, we can find tn ∈ (an, bn) such that

∂xtE (tn, x(tn)) = f ′n(tn) = 0.

Using Taylor’s expansion we have

0 = ∂xtE (tn, x(tn))− ∂xtE (t, x(t))

= ∂xttE (t, x(t)) · (tn − t) + ∂xxtE (t, x(t)) · (x(tn)− x(t)) + o(tn − t) + o(x(tn)− x(t)).

Dividing this equality by tn − t and taking the limit as n→∞ we obtain

∂xttE (t, x(t)) + ∂xxtE (t, x(t)) ·X1 = 0. (3.18)

Step 3. We show that ∂xttE (t, x(t)) = 0. Assume by contradiction that ∂xttE (t, x(t)) 6= 0.
Then from (3.18), we must have ∂xxtE (t, x(t)) 6= 0 and

X1 = − ∂xttE (t, x(t))

∂xxtE (t, x(t))
6= 0.

Since X1 is a solution to (3.11), we obtain

[∂xxtE (t, x(t))]2 = ∂xttE (t, x(t)) · ∂xxxE (t, x(t)), (3.19)

which in particular implies that X1 is the unique solution to (3.11).
In view of (3.16), we may assume that

∂xE (an, x(an)) = ∂xE (t, x(t)) = ∂xE (bn, x(bn)) = −1

for n large enough (the other case can be treated by the same way).
By Lemma 3.15 one has ∂xxxE (t, x(t)) > 0. From (3.19) one has ∂xttE (t, x(t)) > 0. By

the continuity of s 7→ ∂xttE (s, x(s)) at s = t, we have ∂xttE (s, x(s)) > 0 when s is in a
neighborhood of t. In particular, the function fn(s) defined by (3.17) satisfies

f ′′n(s) = ∂xttE (s, x(s)) > 0 for all s ∈ (an, bn)

for n large enough.
Thus fn is strictly convex on [an, bn]. Consequently, if we choose s := (an + bn)/2, then

∂xE (s, x(s)) = fn(s) <
f(an) + f(bn)

2
= −1.

However, this contradicts the fact that ∂xE (s, x(s)) ≥ −1 for all s /∈ int(N) by Lemma 3.13.
Thus we must have ∂xttE (t, x(t)) = 0.

Step 4. Now we show that X1 = 0. In fact, if ∂xxtE (t, x(t)) 6= 0, then from ∂xttE (t, x(t)) = 0
and (3.18) we must have X1 = 0. Otherwise, if ∂xxtE (t, x(t)) = 0, then 0 is the unique
solution to the equation (3.11), and hence we also have X1 = 0.
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Step 5. Now we show that x′(t) = 0. We distinguish three cases.
Case 1. Assume that there exists a < t such that (a, t) ⊂ int(N). It is obvious that

x′−(t) = 0 = lim
s↑t

x′(s). It remains to show that x′+(t) = 0, namely to show that

lim
n→∞

x(tn)− x(t)

tn − t
= 0

provided that tn ↓ t.
First, we assume that tn ∈ int(N) and tn ↓ t. Note that (t, b) 6⊂ int(N) for all b > t

(otherwise, by the continuity we have x(a) = x(t) = x(b) and t ∈ (a, b) ⊂ int(N), which is
a contradiction). Therefore, as in Step 1, we can choose the sequence {(an, bn)} such that

(an, bn) ⊂ int(N), an, bn ∈ ∂
◦
N for all n ≥ 1, and an, bn ↓ t. Therefore, it follows from Step

1 and the fact that X1 = 0

lim
n→∞

x(tn)− x(t)

tn − t
= lim

n→∞

x(an)− x(t)

an − t
= 0.

Next, assume that tn /∈ int(N) and tn ↓ t. Then by Lemma 3.19 we have

lim
n→∞

x(tn)− x(t)

tn − t
= lim

n→∞

x(an)− x(t)

an − t
= 0.

Thus for any sequence tn ↓ t we obtain

lim
n→∞

x(tn)− x(t)

tn − t
= 0.

Therefore, x′+(t) = 0. Thus x′(t) = 0.
Case 2. If there exists b > t such that (t, b) ⊂ int(N), then similarly to Case 1 we have

x′(t) = 0.
Case 3. Finally, assume that (a, t) 6⊂ int(N) for all a < t, and (t, b) 6⊂ int(N) for all

b > t. Then by the same proof in Case 1, using the fact that (t, b) 6⊂ int(N) for all b > t,
we have x′+(t) = 0. Similarly, using the fact that (a, t) 6⊂ int(N) for all a < t, we obtain
x′−(t) = 0. Thus x′(t) = 0. This completes our proof.

Now we are able to prove the main result of this section.

Proof of Theorem 3.6. Step 1. Since x(·) has only finitely many jumps and (H1), (H3),
(H4) hold true, by dividing (0, T ) into subintervals if necessary, we may assume that x(·)
has no jumps and

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xxxE (t, x) = 0} = ∅,
{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xtE (t, x) = 0} = ∅,
{(t, x) ∈ [0, T ]× R | ∂xE (t, x) ∈ {−1, 1}, ∂xtE (t, x) = ∂xttE (t, x) = 0} = ∅.

Step 2. Assume that ∂
◦
N has an accumulation point t. Then we have ∂xE (t, x(t)) ∈ {−1, 1}

by Lemma 3.13. Note that if t = 0 or t = T , then Lemma 3.13 is not applicable directly to
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t, but because t is an accumulation point of ∂
◦
N , we can apply Lemma 3.13 to the points in

∂
◦
N ∩(0, T ) first, and then take the limit to get the conclusion at t.

Next, we have ∂xtE (t, x(t)) = 0 by Lemma 3.18, and ∂xttE (t, x(t)) = 0 by Lemma 3.18
(when t /∈ E) and Lemma 3.20 (when t ∈ E and ∂xxxE (t, x(t)) 6= 0). Note that these lemmas
apply even if t = 0 or t = T .

Thus
∂xE (t, x(t)) ∈ {−1, 1}, ∂xtE (t, x(t)) = 0, ∂xttE (t, x(t)) = 0.

By condition (H3), this case cannot happen. Therefore, ∂
◦
N has no accumulation point.

Thus ∂
◦
N has finitely many points, and hence int(N) ∪ int[(0, T )\int(N)] is the union of

finitely many open intervals.

Step 3. Finally, if t ∈ int(N), then x′(t) = 0. On the other hand, if t ∈ int[(0, T )\int(N)],
then by Lemma 3.17 we have t /∈ E, and hence

x′(t) = − ∂xtE (t, x(t))

∂xxE (t, x(t))

by Lemma 3.14. Thus we can conclude that x(·) is of class C1 in int(N)∪ int[(0, T )\int(N)].
The proof is completed.

6 Differentiability

Now we prove Theorem 3.4. First we need the following lemma.

Lemma 3.21. Assume that x(·) is continuous, has bounded variation and satisfies the global
stability (S) and the energy-dissipation upper bound (ED-upper). If t ∈ int[(0, T )\int(N)],
t ∈ E and ∂xxxE (t, x(t)) 6= 0, then the right and left derivatives

x′+(t) := lim
s↓t

x(s)− x(t)

s− t
, x′−(t) := lim

s↑t

x(s)− x(t)

s− t
,

exist and they are two solutions of the equation (3.11).
Moreover, if t is an accumulation point of E, then

x′(t) = − ∂xxtE (t, x(t))

∂xxxE (t, x(t))

and it is the unique solution to the equation (3.11).
On the other hand, if t is an isolated point of E, then either

x′(t) = − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
,

or
x′+(t) = lim

s↓t
x′(s), x′−(t) = lim

s↑t
x′(s).

Here the set E is defined as in (3.5) and the set N is defined as in (3.1).
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Proof. Step 1. Since t ∈ int[(0, T )\int(N)] and t ∈ E, Lemma 3.17 ensures that ∂xtE (t, x(t)) =
0. Therefore, by Lemma 3.19, we get that x′+(t), x′−(t) exist and they are two solutions of
the equation (3.11).

Step 2. If t is an accumulation point of E, then by Lemma 3.19 again, the equation (3.11)
has a unique solution −∂xxtE (t, x(t))/∂xxxE (t, x(t)). Therefore,

x′(t) = − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
.

Step 3. Now we assume that t is an isolated point of E. If the equation (3.11) has a unique
solution, then it must be −∂xxtE (t, x(t))/∂xxxE (t, x(t)), and hence

x′(t) = − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
.

Otherwise, if the equation (3.11) has two distinct solutions, then we shall show that

x′+(t) = lim
s↓t

x′(s), x′−(t) = lim
s↑t

x′(s).

In fact, since t is an isolated point of E, when s is in a neighborhood of t we have s /∈ E.
Therefore, using Lemma 3.14 and de L’Hôpital’s rule, we have, as s ↓ t,

x′(s) = − ∂xtE (s, x(s))

∂xxE (s, x(s))
= −

(
∂xtE (s,x(s))−∂xtE (t,x(t))

s−t

)
(
∂xxE (s,x(s))−∂xxE (t,x(t))

s−t

)
→ −

∂xttE (t, x(t)) + ∂xxtE (t, x(t))x′+(t)

∂xxtE (t, x(t)) + ∂xxxE (t, x(t))x′+(t)
= x′+(t).

Here in the last identity we have used that x′+(t) solves the equation (3.11). Note that
∂xxtE (t, x(t))+∂xxxE (t, x(t))x′+(t) 6= 0 because the equation (3.11) has two distinct solutions.

Similarly, as s ↑ t,
x′(s) = − ∂xtE(s, x(s))

∂xxE(s, x(s))
→ x′−(t).

The proof is completed.

Now we are able to prove Theorem 3.4.

Proof of Theorem 3.4. Step 1. Assume that x(·) has only finitely many jumps and (H1)
holds. By dividing (0, T ) into subintervals if necessary, we may further assume that x(·) has
no jumps and

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xxxE (t, x) = 0} = ∅.

Thus either t /∈ E, or t ∈ E and ∂xxxE (t, x(t)) 6= 0. Choose I3 and I1 as follows

I3 := {t ∈ [0, T ] | x(·) is differentiable at t};

I1 := {t ∈ [0, T ]\I3 | t is an isolated point of ∂
◦
N}.
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Now we consider the case t is not an isolated point of ∂
◦
N . We have the following cases.

Case 1. If t ∈ int(N), then x′(t) = 0 by definition.

Case 2. If t is an accumulation point of ∂
◦
N , then x′(t) = 0 by Lemma 3.20.

Case 3. If t ∈ int[(0, T )\int(N)] and t /∈ E, then by Lemma 3.14,

x′(t) = − ∂xtE (t, x(t))

∂xxE (t, x(t))
.

Case 4. If t ∈ int[(0, T )\int(N)] and t is an accumulation point of E, then by Lemma
3.21,

x′(t) = − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
.

Case 5. If t ∈ int[(0, T )\int(N)] and t is an isolated point of E, then by Lemma 3.21,
we have either

x′(t) = − ∂xxtE (t, x(t))

∂xxxE (t, x(t))
,

or there exist x′+(t), x′−(t) and

x′+(t) = lim
s↓t

x′(s), x′−(t) = lim
s↑t

x′(s).

Thus we can choose I2 as follows

I2 := {t ∈ [0, T ]\(I1∪I3) | t is an isolated point of E in int[(0, T )\int(N)] and x′−(t) 6= x′+(t)}.

Step 2. Assume that (H2) also holds. Then by dividing (0, T ) into subintervals again we
may assume further that

{(t, x) ∈ (0, T )× R | ∂xE (t, x) ∈ {−1, 1}, ∂xxE (t, x) = ∂xtE (t, x) = 0,

[∂xxtE (t, x)]2 = ∂xttE (t, x) · ∂xxxE (t, x)
}

= ∅. (3.20)

We show that in this case the set I := I1 ∪ I2 only contains isolated points. Assume
by contradiction that t is an accumulation point of I. Thus we must have a sequence
tn → t ∈ I1 with tn ∈ I2 for all n ≥ 1. By Lemma 3.17 we have ∂xtE (tn, x(tn)) = 0
for all n. Since ∂xxE (tn, x(tn)) = ∂xtE (tn, x(tn)) = 0, taking the limit as n → ∞ we get
∂xxE (t, x(t)) = ∂xtE (t, x(t)) = 0. Therefore, by the second statement of Lemma 3.19, the
equation (3.11) has a unique solution −∂xxtE (t, x(t))/∂xxxE (t, x(t)). This implies that

[∂xxtE (t, x)]2 = ∂xttE (t, x) · ∂xxxE (t, x).

However, since ∂xxE (t, x(t)) = ∂xtE (t, x(t)) = 0 and ∂xE (t, x(t)) ∈ {−1, 1} (by Lemma
3.13), we obtain a contradiction to the assumption (3.20). The proof is completed.
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7 Condition for finite jump set

Now we prove Theorem 3.7.

Proof. Step 1. Since x(·) is a BV function, we have L := sup0≤t≤T |x(t)| < ∞. For any
t ∈ [0, T ], define

F (t) := {x ∈ [−L,L] : |∂xE (t, x)| = 1}.

We shall show that there exists ε > 0 independent of t such that if x, y ∈ F (t) and x 6= y,
then |x− y| ≥ ε.

Indeed, we assume by contradiction that there exists a sequence {tn}∞n=1 ⊂ [0, T ] and
xn, yn ∈ F (tn) such that xn < yn and |xn − yn| → 0. By compactness, after passing to
subsequences if necessary, we may assume that tn → t0, xn → x0 and yn → x0. Using the
continuity of ∂xE , we have |∂xE (t0, x0)| = 1.

On the other hand, since |∂xE (tn, xn)|2 = 1 = |∂xE (tn, yn)|2, by applying Rolle’s The-
orem for the function z 7→ |∂xE (tn, z)|2, we can find an element zn ∈ (xn, yn) such that
∂xxE (tn, zn) = 0. Taking n→∞, we obtain ∂xxE (t0, x0) = 0.

Thus |∂xE (t0, x0)| = 1 and ∂xxE (t0, x0) = 0, which contradict (H5). Therefore, there
exists ε > 0 independent of t, such that |x− y| ≥ ε for all x, y ∈ F (t) and x 6= y.

Step 2. We assume that x(·) jumps at t, namely x(t−) 6= x(t+), here

x(t−) := lim
s↑t

x(s) and x(t+) := lim
s↓t

x(s).

We shall show that |x(t−)− x(t+)| ≥ ε.
From the weak local stability of x(·), we have |∂xE (t, x(t−))| ≤ 1 and |∂xE (t, x(t+))| ≤ 1.

If |∂xE (t, x(t−))| = 1 = |∂xE (t, x(t−))|, then by Step 1 we already get |x(t−) − x(t+)| ≥ ε.
Hence, let us assume that

min{|∂xE (t, x(t−))|, |∂xE (t, x(t+))|} < 1. (3.21)

Using the energy-dissipation upper bound, we get

|x(t+)− x(t−)| ≤ E (t, x(t−))− E (t, x(t+)) =

∣∣∣∣∣
∫ x(t−)

x(t+)

∂xE (t, z)dz

∣∣∣∣∣ ≤
∫
I

|∂xE (t, z)| (3.22)

where I is the closed interval between x(t−) and x(t+).
From (3.21) and (3.22), we conclude that there exists y between x(t−) and x(t+) such

that |∂xE (t, y)| > 1. Since |∂xE (t, x(t−))| ≤ 1 < |∂xE (t, y)|, there exists z− between x(t−)
and y such that |∂xE (t, z−)| = 1 (here z− may be equal to x(t−)). Similarly, there exists
z+ between x(t+) and y such that |∂xE (t, z+)| = 1 (here z+ may be equal to x(t+)). Since
z+ 6= z−, we have |z+ − z−| ≥ ε by Step 1. Thus |x(t+)− x(t−)| ≥ |z+ − z−| ≥ ε.

Step 3. Thus by Step 2, any jump step is not less than ε. Since x(·) is a BV function, it
can only have finitely many jumps.
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8 SBV regularity in the vector-valued case

Now we prove Theorem 3.8. The proof of this Theorem is quite similar to Theorem 3.3.
First, we can assume that x(·) is right-continuous thanks to Proposition 1.5. Since x(·)

is a BV function on [0, T ] which is right-continuous, there is a vector-valued Radon measure
µ such that

x(t) = c + µ((0, t]) for all t ∈ [0, T ] and for some vector c in Rd.

By the Lebesgue Decomposition Theorem we can write

µ = fdx+ µs

where f ∈ L1 and µs = µ|S with

S =

{
t ∈ (0, T ) | lim

h↓0

|µ|(t− h, t+ h)

h
=∞

}
.

Let J be the jump set of x(·). We split µs into the Cantor part µ|S\J and the jump part
µ|J . To show that x(·) is of SBV , we need to prove that µc = 0. This fact follows from the
following two lemmas.

Lemma 3.22. For any BV function x : [0, T ]→ Rd which is right-continuous, the set

A :=

{
t ∈ (0, T )\J | lim inf

h→0

∣∣∣∣x(t+ h)− x(t)

h

∣∣∣∣ <∞}
has |µs|-measure 0.

Lemma 3.23. Assume that x : [0, T ]→ Rd has bounded variation and satisfies (w-LS) and
(ED-upper). If (H6) holds, then the set

B :=

{
t ∈ (0, T )\J | lim

h→0

∣∣∣∣x(t+ h)− x(t)

h

∣∣∣∣ =∞
}

is at most countable. Therefore |µs|(B) = 0.

Since we can write (0, T ) = A∪B∪J , Lemma 3.22 and 3.23 ensure that |µs|((0, T )\J) = 0.
This implies µc = 0. And the proof of Theorem 3.8 is complete.

The proof of Lemma 3.22 is the same as in the one-dimensional case, cf. Lemma 3.11.
Hence, we shall only concentrate on the proof of Lemma 3.23. Our key observation is the
following.

Lemma 3.24. Assume that x(·) satisfies the weak local stability and the energy-dissipation
upper bound. Then for all t ∈ (0, T )\(N ∪ J), we have

|∇xE (t, x(t))| = 1,

where N denotes the null set of the derivative of x(·),

N := {t ∈ (0, T ) | x′(t) exists and x′(t) = 0}.
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Proof. Since t /∈ N , we can find a sequence tn → t and tn 6= t such that

lim inf
n→∞

∣∣∣∣x(tn)− x(t)

tn − t

∣∣∣∣ > 0. (3.23)

By passing to a subsequence if necessary, we can further assume that

lim
n→∞

x(tn)− x(t)

|x(tn)− x(t)|
= b in Rd with |b| = 1. (3.24)

Case 1. Assume that tn ↓ t. From the energy-dissipation upper bound, one has

E (tn, x(tn))− E (t, x(t)) ≤
tn∫
t

∂tE (s, x(s))ds−Diss(x(·); [t, tn]).

Using Taylor’s expansion on the left-hand side, the continuity of s 7→ ∂xE (s, x(s)) at s = t
on the right-hand side, we obtain

∂tE (t, x(t)) · (tn − t) +∇xE (t, x(t)) · (x(tn)− x(t)) + o(|x(tn)− x(t)|) + o(tn − t)
≤ ∂tE (t, x(t)) · (tn − t) + o(tn − t)−Diss(x(·); [t, tn]).

Dividing this inequality by |x(tn)− x(t)| and using (3.23) and (3.24), we obtain

∇xE (t, x(t)) · x(tn)− x(t)

|x(tn)− x(t)|
≤ −Diss(x(·); [t, tn])

|x(tn)− x(t)|
+ o(1) ≤ −1 + o(1).

Hence

∇xE (t, x(t)) · b ≤ −1. (3.25)

On the other hand, due to the Schwarz inequality and the weak local stability of x(·), we
have

−∇xE (t, x(t)) · b ≤ |∇xE (t, x(t)) · b| ≤ |∇xE (t, x(t))| · |b| ≤ 1.

Or equivalently,

∇xE (t, x(t)) · b ≥ −1. (3.26)

Thus from the inequalities (3.25) and (3.26), we conclude that ∇xE (t, x(t)) = −b. In par-
ticular, |∇xE (t, x(t))| = 1.

Case 2. Assume that tn ↑ t. From the energy-dissipation upper bound, one has

E (tn, x(tn))− E (t, x(t)) ≥
tn∫
t

∂tE (s, x(s))ds+ Diss(x(·); [tn, t]).

Following the above proof, we obtain

∇xE (t, x(t)) · x(tn)− x(t)

|x(tn)− x(t)|
≥ Diss(x(·); [tn, t])

|x(tn)− x(t)|
+ o(1) ≥ 1 + o(1).

This also implies that ∇xE (t, x(t)) = b. In particular, |∇xE (t, x(t))| = 1.
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Remark. From the proof, we can see that if t /∈ N ∪ J , then

lim
s↓t

x(s)− x(t)

|x(s)− x(t)|
= −∇xE (t, x(t)).

and

lim
s↑t

x(s)− x(t)

|x(s)− x(t)|
= ∇xE (t, x(t)).

Moreover, if the limit

lim
n→∞

x(tn)− x(t)

tn − t
= v in Rd

exists then v = −c∇xE (t, x(t)) for some number c > 0.

Proof of Lemma 3.23. Denote the “bad set”

E := {t ∈ (0, T ) | |∇xE (t, x(t))| = 1, F (t, x(t)) = 0} ,

where
F (t, x) := (∇xE (t, x)) ·H(t, x) · (∇xE (t, x))T

and
[H(t, x)]ij := (∂xi∂xjE )(t, x).

We distinguish the following cases.
1. If t ∈ N ∪ J , then t /∈ B.
2. If t ∈ (0, T )\(N ∪ J) and t is an isolated point of (0, T )\(N ∪ J), then we can ignore

it, since the set of the isolated points is at most countable.
3. Thus it remains to consider the case when t is an accumulation point of (0, T )\(N∪J).
We show that in this case if t ∈ B, then t ∈ E. In fact, since t is an accumulation point

of (0, T )\(N ∪ J) we can find a sequence tn in (0, T )\(N ∪ J), tn 6= t, and tn → t. Because
|∇xE (s, x(s))|2 = 1 for all s /∈ N ∪ J , using Taylor’s expansion we can write

0 = |∇xE (tn, x(tn))|2 − |∇xE (t, x(t))|2

= 2∇xE (t, x(t)) · ∇x∂tE (t, x(t)) · (tn − t) + 2∇xE (t, x(t)) ·H(t, x(t)) · (x(tn)− x(t))T

+o(|x(tn)− x(t)|) + o(|tn − t|).

Next, we divide the latter equation by |x(tn)− x(t)| and take the limit as tn → t. Since∣∣∣∣x(tn)− x(t)

tn − t

∣∣∣∣→∞ and
x(tn)− x(t)

|x(tn)− x(t)|
→ ±∇xE (t, x(t)),

we obtain
∇xE (t, x(t)) ·H(t, x(t)) · (∇xE (t, x(t)))T = 0,

which implies t ∈ E.
4. If t is an accumulation point of (0, T )\(N ∪ J) and t is an isolated point of E, then

this point can be ignored since there are at most countably many such points.
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5. If t is an accumulation point of (0, T )\(N ∪ J), t is an accumulation point of E and

(∇xE (t, x(t))) · (∇xF (t, x(t))) = 0,

then by (H6) we know that there are at most countably many such points.
6. If t is an accumulation point of (0, T )\(N ∪ J), t is an accumulation point of E and

(∇xE (t, x(t))) · (∇xF (t, x(t))) 6= 0.

In this case, there exists a sequence {tn} in E converging to t. We prove that t /∈ B.
Assume by contradiction that t ∈ B. Since both tn and t belong to E, we have

∇xE (t, x(t))·H(t, x(t))·(∇xE (t, x(t)))T = 0 = ∇xE (tn, x(tn))·H(tn, x(tn))·(∇xE (tn, x(tn)))T .

Or equivalently

d∑
i=1

(∂xiE (t, x(t)))2 · (∂xixiE (t, x(t))) + 2
d∑

i,j=1

∂xiE (t, x(t)) · ∂xjE (t, x(t)) · ∂xixjE (t, x(t))

=
d∑
i=1

(∂xiE (tn, x(tn)))2 · (∂xixiE (tn, x(tn))) + 2
d∑

i,j=1

∂xiE (tn, x(tn)) · ∂xjE (tn, x(tn)) · ∂xixjE (tn, x(tn))

= 0.

Substracting the right-hand side to the left-hand side, and then using Taylor’s expansion we
get

d∑
i=1

(∂xi(tn) + ∂xi) ·

(
(tn − t) · ∂xit +

d∑
k=1

(xk(tn)− xk(t)) · ∂xixk

)
· ∂xixi(tn)

+
d∑
i=1

(∂xi)
2 ·

(
(tn − t) · ∂xixit +

d∑
k=1

(xk(tn)− xk(t)) · ∂xixixk

)

+ 2
d∑

i,j=1

(
(tn − t) · ∂xit +

d∑
k=1

(xk(tn)− xk(t)) · ∂xixk

)
· ∂xj(tn) · ∂xixj(tn)

+ 2
d∑

i,j=1

∂xi ·

(
(tn − t) · ∂xjt +

d∑
k=1

(xk(tn)− xk(t)) · ∂xjxk

)
· ∂xixj(tn)

+ 2
d∑

i,j=1

∂xi · ∂xj ·

(
(tn − t) · ∂xixjt +

d∑
k=1

(xk(tn)− xk(t)) · ∂xixjxk

)
= 0

where ∂xi means ∂xiE (t, x(t)) and ∂xi(tn) means ∂xiE (tn, x(tn)). Dividing this equality by
|x(tn)− x(t)|, taking tn → t, and using

x(tn)− x(t)

|x(tn)− x(t)|
→ ±∇xE (t, x(t)),
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and ∣∣∣∣x(tn)− x(t)

tn − t

∣∣∣∣→∞
we arrive at

d∑
k=1

∂xk ·

(
2

d∑
i=1

∂xixk · ∂xixi · ∂xi

)
+

d∑
k=1

∂xk ·

(
d∑
i=1

∂xixixk · (∂xi)2
)

+
d∑

k=1

∂xk ·

(
2

d∑
i,j=1

∂xixk · ∂xj · ∂xixj

)
+

d∑
k=1

∂xk ·

(
2

d∑
i,j=1

∂xi · ∂xjxk · ∂xixj

)

+
d∑

k=1

∂xk ·

(
2

d∑
i,j=1

∂xi · ∂xj · ∂xixjxk

)
= 0.

This is equivalent to
∇xE (t, x(t)) · (∇xF (t, x(t))) = 0.

Thus t ∈ E and ∇xE (t, x(t)) · (∇xF (t, x(t))) = 0, which is a contradiction. Therefore, we
must have t /∈ B.

Conclusion: The set B is a subset of the union of the following three sets: isolated
points of [(0, T )\(N ∪ J)], isolated points of E, and the set

G := {t ∈ (0, T ) | |∇xE (t, x(t))| = 1, F (t, x(t)) = (∇xE (t, x(t))) · (∇xF (t, x(t))) = 0}.

Consequently, B is at most countable. This completes the proof of Lemma 3.23 in the
d-dimensional case.

92



Chapter 4

Examples

1 Example 4.1

Example 4.1. Consider the system defined by the energy functional E (t, x) := t (x6−x4)−
|x|, where t ∈ [0, 1] and x ∈ R, the dissipation function Ψ(x) := |x|, and the initial value
x0 := 0. We have the following claims.

(i) The energetic solutions constructed by time-discretization are

x(0) = 0, x(t) =
√

2/3 for all t ∈ (0, 1]

and
x(0) = 0, x(t) = −

√
2/3 for all t ∈ (0, 1].

These energetic solutions have “reasonable” jumps and they also satisfy the definition
of BV solutions.

(ii) The BV solution corresponding to the viscous dissipation Ψε(x) = |x|+ ε
2
x2 is

x(t) = 0 for all t ∈ [0, 1].

This solution does not satisfy the strong local stability (s-LS).

Recall that t 7→ x(t) satisfies strong local stability (s-LS) if

x(t) is local minimizer of x 7→ E (t, x) + |x− x(t)| at every continuity point.

(iii) The BV solutions corresponding to the viscous dissipation Ψε(x) = |x| + ε5x6 with
ε−25/18τ →∞ (where τ is the time step in the discretization) are precisely the energetic
solutions. Thus the BV solutions obtained by vanishing viscosity depend on the choice
of the viscosity.

(iv) The epsilon-neighborhood solutions xε are independent of ε when ε ∈ (0,
√

2/3]. The
BV solutions constructed by epsilon-neighborhood are precisely the energetic solutions.

Proof. 1. Energetic solutions. We show that the energetic solutions constructed by
time-discretization are

x(0) = 0, x(t) =
√

2/3 for all t ∈ (0, 1]
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and
x(0) = 0, x(t) = −

√
2/3 for all t ∈ (0, 1].

Fix a small time step τ > 0 and consider a partition {ti}Ni=0 of [0, 1] such that 0 = t0 <
· · · < tN ≤ 1 and ti− ti−1 = τ for all i = 1, 2, . . . , N , here N ∈ N satisfies 1 ∈ [τN, τ(N+1)).
To find the discretized solution xτ (t) when t ∈ [0, 1], it suffices to compute xi := xτ (ti).

Step 1: Given x0 = 0, we calculate x1. By definition, x1 := xτ (t1) minimizes the func-
tional

F1(x) := E (t1, x) + |x| = t1(x
6 − x4)

over x ∈ R.

Figure 1. E (t, x) + |x| with t = 0.1.

A direct computation shows that F1 attains its minimum at x = ±
√

2/3. Thus, we can

choose either x1 =
√

2/3 or x1 = −
√

2/3.

Step 2: Given x1 = ±
√

2/3, we calculate x2. Let us consider the case x1 =
√

2/3 since the
other case can be treated in the same way. By definition, x2 minimizes the functional

F2(x) := E (t2, x) +
∣∣∣x−√2/3

∣∣∣ = t2(x
6 − x4)− |x|+

∣∣∣x−√2/3
∣∣∣

over x ∈ R. If x < 0, then F2(x) > F2(−x). Therefore, it suffices to consider when x ≥ 0.
We distinguish two cases.
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Case 1: If x ≥
√

2/3 then

F2(x) = t2(x
6 − x4)−

√
2/3.

Thus the unique minimizer for F2 when x ≥
√

2/3 is
√

2/3.

Case 2: If 0 ≤ x <
√

2/3 then

F2(x) = t2(x
6 − x4)− x+

√
2/3− x

> t2(x
6 − x4)−

√
2/3 ≥ F2

(√
2/3
)
.

Figure 2. E (t, x) + |x−
√

2/3| with t = 0.1.

We can conclude that the unique minimizer for F2 is x2 =
√

2/3. Thus if x1 =
√

2/3, then

x2 = x1. Similarly, if x1 = −
√

2/3, we also have x2 = x1.

Step 3. By the same way, we have xi = x1 for all i = 1, 2, ..., N . Thus the discretized
solution xτ is either

xτ (t) = 0 when t < τ and xτ (t) =
√

2/3 when t ∈ [τ, 1],

or

xτ (t) = 0 when t < τ and xτ (t) = −
√

2/3 when t ∈ [τ, 1].
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Step 4. Taking the limit of the sequence xτ (t) when τ → 0, we see that the energetic
solution is either

x(0) = 0, x(t) =
√

2/3 for all t ∈ (0, 1],

or

x(0) = 0, x(t) = −
√

2/3 for all t ∈ (0, 1].

2. The energetic solutions are BV solutions. We need to verify that the energetic
solutions satisfy the new energy dissipation balance

E (t, x(t))− E (0, x(0)) =

∫ t

0

∂tE (s, x(s))ds−Dissnew(x; [0, t]) (4.1)

for all t ∈ (0, 1]. For example, we consider the solution

x(0) = 0, x(t) =

√
2

3
for all t ∈ (0, 1].

A direct computation gives us

E (t, x(t))− E (0, x(0)) = − 4

27
t−
√

2

3

and ∫ t

0

∂tE (s, x(s))ds =

∫ t

0

(x(s)6 − x(s)4)ds =

(√2

3

)6

−

(√
2

3

)4
 t = − 4

27
t.

Moreover,

Dissnew(x; [0, t]) = Diss(x; [0, t])−∆(0, x(0), x(0+)) + ∆new(0, x(0), x(0+))

=
√

2/3−
√

2/3 +

∫ √2/3

0

max{1, | − 1|}dy =
√

2/3.

Thus (4.1) holds true.

3. The BV solution for Ψε(x) = |x|+ ε
2
x2 is x(t) = 0 for all t ∈ [0, 1].

First we find the discretized solutions. Fix ε > 0 and τ > 0 such that ε/τ > 2. To
compute the discretized solution xτ,ε(t), we shall calculate xi := xτ,ε(ti) with t0 = 0 and
ti = i/N for i = 1, . . . , N . Here N ∈ N is such that 1 ∈ [τN, τ(N + 1)). We will show that
the incremental problem

xi ∈ argminx∈R{E (ti, x) + |x− xi−1|+
ε

2τ
|x− xi−1|2}

admits the unique minimizer xi = 0 for every i = 1, . . . , N .
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Let us start by considering
x1 ∈ argminx∈RF (x)

where

F (x) := E (t1, x) + |x|+ ε

2τ
|x|2 = t1(x

6 − x4) + ex2

and e := ε
2τ

. Since e > 1 ≥ t1, we have

F (x) = t1(x
6 − x4 + x2) + (e− t1)x2 ≥ 0

for all x ∈ R and x = 0 is the unique minimizer for F . Thus, x1 = 0.
In the above argument, we can replace t1 by any ti ≤ 1 < e. Therefore, by induction, we

obtain easily that xi = 0 for all i = 2, . . . , N . Thus, for every ε > 0, for every τ > 0 such
that ε/τ > 2, the unique discretized solution is defined by xτ,ε(t) = 0 for all t ∈ [0, 1].

By taking the limit when τ → 0 and ε/τ → ∞, we get the BV solution x(t) = 0 for all
t ∈ [0, 1].

4. The BV solution x(t) = 0 does not satisfy the strong local stability (s-LS). Since
the BV solution x(t) = 0 is not a local minimizer for the functional E (t, x) + |x| = t(x6−x4)
for t > 0, we see that it does not satisfy the strong local stability (s-LS) for any t > 0. In
fact, x = 0 is a local maximizer for the functional E (t, x) + |x| = t(x6 − x4) when t > 0 (see
Figure 1).

5. The BV solutions corresponding to Ψε(x) = |x| + ε5x6, with ε−25/18τ → ∞,
are energetic solutions.

Step 1. We start with the discretized solutions. Let ε > 0 and τ > 0 such that τ → 0
and ε−25/18τ →∞. To compute the discretized solution xτ,ε(t), it suffices to calculate xi :=
xτ,ε(ti) with t0 = 0 and ti = i/N for i = 1, . . . , N . Here N ∈ N satisfies 1 ∈ [τN, τ(N + 1)).

The sequence {xi}Ni=0 solves the incremental problem

xi ∈ argminx∈R{E (ti, x) + |x− xi−1|+
ε5

τ 5
|x− xi−1|6}

when i = 1, . . . , N .
When i = 1, since x0 = 0, x1 is a minimizer for

F1(x) := E (t1, x) + |x|+ ε5

τ5
x6 = (τ + e5)x6 − τx4.

with e := ε/τ . A direct computation shows that

x1 = ±

√
2τ

3(τ + e5)
.

In the following, we shall consider the case x1 =
√

2τ
3(τ+e5)

. The other case can be treated in

the same way.
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Step 2. We show that if 0 < x1 ≤
√

2/3, then for all i = 1, 2, ..., N

0 ≤ xi−1 ≤ xi ≤
√

2/3

and

ti(6x
5
i − 4x3i ) + 6e5(xi − xi−1)5 = 0. (4.2)

We assume by induction that xi−1 ≤
√

2/3. Recall that, for any i = 2, ..., N , xi is a minimizer
for

F2(x) := E (ti, x) + |x− xi−1|+ e5|x− xi−1|6

= ti(x
6 − x4)− |x|+ |x− xi−1|+ e5|x− xi−1|6.

We shall show that xi ≥ xi−1. If xi < 0, then F2(xi) > F2(−xi) because xi−1 > 0, which
contradicts the fact that xi is a minimizer for F2. Thus xi ≥ 0.

Now using −|x|+ |xi − xi−1| ≥ −xi−1, we obtain

F2(xi) ≥ g(xi) with g(x) := ti(x
6 − x4)− xi−1 + e5(x− xi−1)6

The minimization problem infx≥0 g(x) has a minimizer y ≥ 0 which satisfies the equation

ti(6y
5 − 4y3) + 6e5(y − xi−1)5 = 0.

It is easy to see that xi−1 ≤ y ≤
√

2/3. In fact, if y < xi−1 ≤
√

2/3, then both 6y5 − 4y3

and (y−xi−1)5 are strictly negative, which is a contradiction. Similarly, if y >
√

2/3 > xi−1,
then both 6y5− 4y3 and (y− xi−1)5 are strictly positive, which is also a contradiction. Thus
xi−1 ≤ y ≤

√
2/3.

Therefore, F2(xi) ≥ g(xi) ≥ g(y) = F2(y). Therefore, we must have xi = y ∈ [xi−1,
√

2/3]
and xi satisfies the equation (4.2).

Step 3. Fix δ > 0. We shall show that for ε and τ small and ε−25/18τ large, we have

xL + δ ≥
√

2/3,

for all L ≥ δN.
We assume by contradiction that xL ≤

√
2/3− δ. From (4.2) we have

xi − xi−1 =

(
ti

6e5
|6x5i − 4x3i |

)1/5

.

For any 1 ≤ i ≤ L, one has x1 ≤ xi ≤
√

2/3− δ. Therefore,

|6x5i − 4x3i | = x3i (4− 6x2i ) ≥ δx31.

Thus

xi − xi−1 ≥
(
δx31ti
6e5

)1/5

98



for all i = 1, 2, ..., L. Taking the sum we obtain

xL ≥
L∑
i=1

(
δx31ti
6e5

)1/5

=

(
δx31τ

6e5

)1/5

L6/5L−1
L∑
i=1

(
i

L

)1/5

≥ 1

2

(
δx31τ

6e5

)1/5

L6/5

∫ 1

0

s1/5ds

=
1

2
· 5

6

(
δx31τ

6e5

)1/5

L6/5.

Here we have used that

L−1
L∑
i=1

(
i

L

)1/5

≥ 1

2

∫ 1

0

s1/5ds

when L is large enough, since

lim
L→∞

L−1
L∑
i=1

(
i

L

)1/5

=

∫ 1

0

s1/5ds.

Finally, replacing L ≥ δN = δ/τ , x1 ≥ 1
2

√
τ/e5 and e = ε/τ , we obtain√

2/3 ≥ xL ≥ Cδ(ε
−25/18τ)9/5

for a constant Cδ > 0 independent of ε and τ . However, this inequality contradicts the
assumption that ε−25/18τ →∞. Thus we must have xL + δ ≥

√
2/3 for all L ≥ δN .

Step 4. After passing to the limit as τ → 0 and ε−25/18τ → ∞, we obtain a BV solu-
tion x(·) satisfying √

2/3− δ ≤ x(t) ≤
√

2/3

for all 1 ≥ t > δ > 0. Therefore, we get x(t) =
√

2/3 for all t ∈ (0, 1].

Similarly, if we have x1 < 0 in Step 2, then we get the BV solution x(t) = −
√

2/3 for all
t ∈ (0, 1]. The two BV solutions are precisely the energetic solutions obtained before.

Numerical computation. To verify the above theoretical argument, we can compute
the discretized solution xτ,ε(t) by using Maple-software as follows.
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Program.

tau := 0.0001; e = 20;N := 1/tau;

f := s ∗ (z6 − z4) + (z − a)6 ∗ e5;

for i from 1 to N do

t[i] := i ∗ tau;

end do;

x[1] := fsolve(subs(s = t[1], a = 0, diff(f, z)), z = exp(−20)..2);

for i from 2 to N do

x[i] := fsolve(subs(s = t[i], a = x[i− 1], diff(f, z)), z = exp(−20)..2);

end do;

plot([seq([t[i], x[i]], i = 1..N)]);

Result.

Figure 3. The discretized solution xτ,ε(t) solution with viscosity ε5x6

when τ = 0.0001 and ε = 0.002.

6. The BV solutions constructed by epsilon-neighborhood are energetic solu-
tions.
Step 1. Let ε > 0 and τ > 0 be small. Let us compute the discretized solution xε,τ (t).
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Denote x0 := 0, it suffices to calculate xi := xε,τ (ti) with ti = i/N for i = 1, . . . , N . Here
N ∈ N is such that 1 ∈ [τN, τ(N + 1)).

By definition, for all i = 1, 2, . . . , N , the value xi is a minimizer for the functional

E (ti, x) + |x− xi−1|

over x ∈ [xi−1 − ε, xi−1 + ε].
Since x0 = 0, x1 is a minimizer for the functional

F1(x) = E (t1, x) + |x| = t1(x
6 − x4)

over x ∈ [−ε, ε]. It is easy to verify (see Figure 1), if ε ≤
√

2/3, then x1 = ±ε.
In the following, we shall concentrate on the case x1 = ε. The other case can be treated

in the same way.

Step 2. We show that if x1 > 0, then

xi = min{xi−1 + ε,
√

2/3}

for all i = 1, 2, ..., N . By induction, we can assume that ε ≤ xi−1 ≤
√

2/3. Recall that xi is
a minimizer for

F2(x) := E (ti, x) + |x− xi−1| = ti(x
6 − x4)− |x|+ |x− xi−1|

over [xi−1 − ε, xi−1 + ε]. Using the inequality −|x| + |x − xi−1| ≥ −xi−1 and the properties
of the function x6 − x4 (see Figure 1), we have

F2(xi) ≥ ti(x
6 − x4)− xi−1 ≥ ti(y

6 − y4)− xi−1 = F (y)

with y := min{xi−1 + ε,
√

2/3}, for all x ∈ [xi−1 − ε, xi−1 + ε]. Therefore, we must have

xi = y = min{xi−1 + ε,
√

2/3}.

Step 3. Now we fix ε ∈ (0,
√

2/3] and passing to the limit when τ → ∞, we see that
the limit xε of xε,τ is

xε(0) = 0, xε(t) =
√

2/3 for all t ∈ (0, 1].

Similarly, if in Step 2 we assume x1 < 0, then we get the epsilon-neighborhood solution

xε(0) = 0, xε(t) = −
√

2/3 for all t ∈ (0, 1].

In fact, these limits are independent of ε and they are precisely the energetic solutions.
Hence, when we take the limit when ε→ 0, we get the same functions.

2 Example 4.2

Example 4.2. Consider the system defined by the energy functional

E (t, x) := x2 − x4 + 0.3x6 + t (1− x2)− |x|, t ∈ [0, 2], x ∈ R,

the dissipation function Ψ(x) := |x|, and the initial value x0 := 0. We have
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(i) The energetic solutions constructed by time-discretization satisfy either

x(t) = 0 if t < 1/6, x(1/6) ∈ {0,
√

5/3}, x(t) =

√
10 +

√
10 + 90t

3
if t > 1/6

or

x(t) = 0 if t < 1/6, x(1/6) ∈ {0,−
√

5/3}, x(t) = −
√

10 +
√

10 + 90t

3
if t > 1/6.

These solutions jump at t = 1/6. This jump point is not reasonable (the reasonable
jump is at t = 1). These energetic solutions are not BV solutions.

(ii) The BV solution corresponding to the viscous dissipation Ψε(x) = |x|+ εx2 is

x(t) = 0 for all t ∈ [0, 2].

(iii) The BV solutions constructed by epsilon-neighborhood satisfy either

x(t) = 0 if t < 1, x(t) =

√
10 +

√
10 + 90t

3
if t > 1

or

x(t) = 0 if t < 1, x(t) = −
√

10 +
√

10 + 90t

3
if t > 1.

The jump point at t = 1 is reasonable. These BV solutions do not satisfy the energy-
dissipation balance (ED).

Proof. 1. Energetic solutions via time-discretization.
Step 1. Fix a time step τ > 0. To find the discretized solution xτ (t), it suffices to calculate
xi := xτ (ti) where 0 = t0 < · · · < tN ≤ 1 and ti− ti−1 = τ for all i = 1, 2, . . . , N. Here N ∈ N
satisfies 1 ∈ [τN, τ(N + 1)).

We have x0 = 0 and for all i = 1, 2, . . . , N , xi is a minimizer of the functional

Fi(x) := E (ti, x) + |x− xi−1|

over x ∈ R.

Step 2. Let us fix t ∈ (0, 2] and consider the functional

F (x) := E (t, x) + |x| = x2 − x4 + 0.3x6 + t(1− x2), x ∈ R.

We have
F ′(x) = x(2− 2t+ 4x2 + 1.8x4).

When t < 1, F (x) has five critical points

x = 0 and x = ±
√

10±
√

10 + 90t

3
.
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Among these five critical points, there are three local minimizers

x = 0 and x = ±y(t),

where

y(t) :=

√
10 +

√
10 + 90t

3
.

On the other hand, when t ≥ 1, F (x) has three critical points x = 0 and x = ±y(t), among
those critical points there are two local minimizers x = ±y(t).

Note that

F (±y(t))− F (0) =
1

243
(10 +

√
10 + 90t)(8− 18t−

√
10 + 90t),

which is positive if t < 1/6 and negative if t > 1/6.
Thus we can conclude that if t < 1/6, then F has the unique minimizer x = 0, and if

1/6 < t ≤ 2, then F has two minimizers at ±y(t). Moreover, if t < 1, then x = 0 is a local
minimizer for F ; and if t > 1, then x = 0 is a local maximizer for F .

Figure 4. The function F (x) with t = 1/6.
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Figure 5. The function F (x) with t = 1.2.

Step 3. Recall that x1 minimizes the functional

E (t1, x) + |x| = x2 − x4 + 0.3x6 + t1(1− x2), x ∈ R.

From the analysis of F (x) above, we have x1 = 0.
More generally, if xi−1 = 0, then xi is a minimizer for the functional

E (ti, x) + |x| = x2 − x4 + 0.3x6 + ti(1− x2), x ∈ R.

Thus we have xi = 0 if ti < 1/6; xi ∈ {±y(ti)} if ti > 1/6; and xi ∈ {0,±y(ti)} ={
0,±

√
5/3
}

if ti = 1/6.

Step 4. Next, we show that if xi−1 = y(ti−1) > 0, then xi = y(ti) (similarly, if xi−1 =
−y(ti−1) < 0, then xi = −y(ti)). Recall that xi is a minimizer for the functional

Fi(x) := E (ti, x) + |x− xi−1| = x2 − x4 + 0.3x6 + ti(1− x2)− |x|+ |x− xi−1|

over R. If x < 0, then Fi(x) > Fi(−x) since xi−1 > 0. Hence xi ≥ 0. Using the inequality
−|x|+ |x− xi−1| ≥ −xi−1 we have

Fi(x) ≥ g(x) := x2 − x4 + 0.3x6 + ti(1− x2)− xi−1.

By the same analysis of F and the fact that ti > ti−1 ≥ 1/6 (since xi−1 6= 0), we can con-
clude that the minimization problem infx≥0 g(x) has the unique minimizer y(ti). Moreover,
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g(y(ti)) = Fi(y(ti)). Therefore, we must have xi = y(ti).

Step 5. Taking the limit of the sequence xτ (t) when τ → 0, we can see that the ener-
getic solution satisfies either

x(t) = 0 if t ∈ [0, 1/6), x(1/6) ∈ {0,
√

5/3}, x(t) = y(t) if t ∈ [1/6, 2],

or

x(t) = 0 if t ∈ [0, 1/6), x(1/6) ∈ {0,−
√

5/3}, x(t) = −y(t) if t ∈ [1/6, 2].

Remark. These solutions jump at t = 1/6, from x = 0 to x = ±
√

5/3. However, according
to Figure 4, we can see that the jump at t = 1/6 is not reasonable, since along the jump
step there is some moment, the energy plus dissipation is increased.

2. The energetic solutions constructed above are not BV solutions.
Let us consider the jump point t = 1/6. We shall show that if x(·) is an energetic solution

constructed in Step 1, then at t = 1/6,

E (t, x(t+))− E (t, x(t−)) > −∆new(t, x(t−), x(t+)).

In fact, a direct computation gives us at t = 1/6,

E (t, x(t+))− E (t, x(t−)) = E (1/6,
√

5/3)− E (1/6, 0) = −
√

5/3.

On the other hand, at t = 1/6 we have

∆new(t, x(t−), x(t+)) =

∫ √15/3
0

max

{
1, |2

3
y − 4y3 + 1.8y5 − 1|

}
dy

=

∫ √5/3
0

1dy +

∫ √
15
3

√
5

3

(−2

3
y + 4y3 − 1.8y5 + 1)dy

=

√
5

3
+

185

486
+

√
15

3
−
√

5

3
=

185

486
+
√

5/3.

Thus, E (t, x(t+))− E (t, x(t−)) > −∆new(t, x(t−), x(t+)) at t = 1/6.

3. BV solutions corresponding to the viscous dissipation Ψε(x) = |x|+ εx2.
We construct the BV solutions via vanishing viscosity with the viscous term εx2. Let

ε > 0 and τ > 0 satisfy e := ε/τ > 2. For t ∈ (0, 2], we consider the function

F (x) := E (t, x) + |x|+ e|x|2 = t+ (1 + e− t)x2 − x4 + 0.3x6, x ∈ R.

Since 1 + e− t ≥ 1, one has

F (x) ≥ t+ x2 − x4 + 0.3x6 = t+
1

6
x2 +

(√
5

6
x−

√
3

10
x3

)2

≥ t = F (0).

Thus F has the unique minimizer x = 0.
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Consequently, the discretized solution xτ,ε is identically equal to 0. Therefore, after pass-
ing to the limit, this BV solution is also identically equal to 0.

4. BV solutions by epsilon-neighborhood.
Step 1. Let ε > 0 and τ > 0 be small. To compute the discretized solution xε,τ (t), it suffices
to calculate xi := xε,τ (ti) with t0 = 0 and ti = i/N for i = 1, . . . , N . Here N ∈ N is such
that 1 ∈ [τN, τ(N + 1)).

By definition, for all i = 1, 2, . . . , N , the value xi is a minimizer for the functional

Fi(x) := E (ti, x) + |x− xi−1| = x2 − x4 + 0.3x6 + ti(1− x2)− |x|+ |x− xi−1|

over x ∈ [xi−1 − ε, xi−1 + ε].

Step 2. In particular, if xi−1 = 0, then xi is a minimizer for

Fi(x) := x2 − x4 + 0.3x6 + ti(1− x2)

over x ∈ [−ε, ε].
If ti < 1, then Fi(x) has a local minimizer at x = 0 (see Figure 4) and the distance from

0 to the closest critical points of Fi is√
10−

√
10 + 90ti

3
=

1

3

√
100− (10 + 90ti)

10 +
√

10 + 90ti
≥
√

1− ti
2

.

Therefore, if ε <
√

(1− ti)/2, then x = 0 is the unique minimizer for Fi(x) on x ∈ [−ε, ε].
Hence xi = 0. By induction, we can conclude that if ti < 1− 2ε2, then xi = 0.

Step 3. We show that if ti ∈ [1 − 2ε2, 1], then xi ∈ [−y(ti), y(ti)]. By induction, we
can assume that xi−1 ∈ [−y(ti−1), y(ti−1)].

We assume by contradiction that xi > y(ti). Because xi−1 ≤ y(ti−1) < y(ti) < xi ≤
xi−1 + ε, there exists a ∈ (y(ti), xi) ∩ [xi−1 − ε, xi−1 + ε]. Then using the fact that the
function x 7→ x2 − x4 + 0.3x6 + ti(1− x2) is strictly increasing on [y(ti),∞) we have

Fi(xi) = x2i − x4i + 0.3x6i + ti(1− x2i )− xi−1
> a2 − a4 + 0.3a6 + ti(1− a2)− xi−1 = Fi(a).

This contradicts the assumption that xi is a minimizer for Fi(x) over x ∈ [xi−1− ε, xi−1 + ε].
Thus we must have xi ≤ y(ti). In the same way we obtain xi ≥ −y(ti).

Step 4. Now assume that ti ∈ (1, 2] and xi−1 ∈ [−y(ti−1), y(ti−1)]. We show that if
xi−1 = 0, then xi ∈ {±ε}; if xi−1 ∈ (0, y(ti−1)], then xi = min{xi−1 + ε, y(ti)}; and if
xi−1 ∈ [−y(ti−1), 0), then xi = max{xi−1 − ε,−y(ti)}.

Case 1. If xi−1 = 0, then xi is a minimizer for

Fi(x) = x2 − x4 + 0.3x6 + ti(1− x2)

over x ∈ [−ε, ε]. Since x = 0 is a local minimizer for Fi and x 7→ Fi(x) is a strictly decreasing
function on x ∈ [−ε, ε] (see Figure 5), we have xi = ±ε.
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Case 2. We consider the case when xi−1 ∈ (0, y(ti−1)]. Recall that xi is a minimizer for

Fi(x) = x2 − x4 + 0.3x6 + ti(1− x2)− |x|+ |x− xi−1|

over [xi−1 − ε, xi−1 + ε]. Using the inequality −|x|+ |x− xi−1| ≥ −xi−1, we have

Fi(x) ≥ g(x) with g(x) := x2 − x4 + 0.3x6 + ti(1− x2)− xi−1.

Since in the interval x ∈ [xi−1− ε, xi−1 + ε], g(x) has the unique minimizer x̃i := min{xi−1 +
ε, y(ti)} (see Figure 5), then

Fi(xi) ≥ g(xi) ≥ g(x̃i) = Fi(x̃i).

Thus we can conclude that xi = x̃i = min{xi−1 + ε, y(ti)}.
Case 3. If xi−1 ∈ [−y(ti−1), 0), then similarly to Case 2, we have xi = max{xi−1 −

ε,−y(ti)}.

Step 5. Taking the limit τ → 0, we obtain that the epsilon-neighborhood solution xε(·)
satisfies xε(t) = 0 if t < 1− 2ε2 and either xε(t) = y(t) or xε(t) = −y(t) for all t ∈ (1, 2].

Taking the limit ε→ 0, we obtain that the BV solution constructed by epsilon-neighborhood
satisfies that x(t) = 0 if t ∈ (0, 1) and either x(t) = y(t) or x(t) = −y(t) for t ∈ (1, 2).

Remark. Thus the BV solutions constructed by epsilon-neighborhood jump at t = 1, from
0 to ±y(1) = ±

√
20/3. This jump is reasonable since x = 0 is a local minimizer for the

corresponding functional if t < 1 (see Figure 4), and x = 0 is a local maximizer when t > 1
(see Figure 5).

5. The BV solutions constructed by epsilon-neighborhood do not satisfy the
energy-dissipation balance (ED).

We consider the solution x(t) = 0 if t ∈ (0, 1) and x(t) = y(t) if t ∈ (1, 2). The other
solution can be treated in the same way.

Indeed, at the jump point t = 1, one has

∆(t, x(t−), x(t+)) = |x(t−)− x(t+)| = 2
√

5

3
.

On the other hand, a direct computation gives us at t = 1,

E (t, x(t+))− E (t, x(t−)) = E (1,
√

20/3)− E (1, 0) = −400

243
−
√

20

3
.

Therefore,

E (t, x(t+))− E (t, x(t−)) < −∆(t, x(t−), x(t+)).

Thus the solutions x(·) do not satisfy the energy-dissipation balance.
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3 Example 4.3

Example 4.3. Consider the system defined by the energy functional

E (t, x) := t

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
− |x|, t ∈ [0, 1], x ∈ R,

the dissipation function Ψ(x) := |x|, and the initial value x0 := 0. We have

(i) The energetic solutions constructed by time-discretization are

x(0) = 0 and x(t) = −1 for all t ∈ (0, 1],

and

x(0) = 0 and x(t) = 2 for all t ∈ (0, 1].

The jump point t = 0 is reasonable. These energetic solutions are also BV solutions.

(ii) The BV solution corresponding to the viscous dissipation Ψε(x) = |x|+ εx2 is

x(0) = 0 and x(t) = −1 for all t ∈ (0, 1].

The BV solution corresponding to

Ψε(x) =

{
|x|+ εx2 if x ≥ 0,

|x|+ 4εx2 if x ≤ 0,

satisfies either x(t) = −1 for all t ∈ (0, 1], or x(t) = 2 for all t ∈ (0, 1].
The BV solution corresponding to

Ψε(x) =

{
|x|+ εx2 if x ≥ 0,

|x|+ 5εx2 if x ≤ 0,

satisfies that x(t) = 2 for all t ∈ (0, 1].

(iii) The BV solution constructed by epsilon-neighborhood with the usual neighborhood
Iε(a) = [a− ε, a+ ε] is

x(0) = 0 and x(t) = −1 for all t ∈ (0, 1].

The BV solution constructed by epsilon-neighborhood with the neighborhood Iε(a) =
[a− ε, a+ 3ε] is

x(0) = 0 and x(t) = 2 for all t ∈ (0, 1].

The BV solution constructed by epsilon-neighborhood with the neighborhood Iε(a) =
[a− ε, a+ 2ε] coincide with the two above solutions.
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Proof. 1. Energetic solutions.
Step 1. Taking a small time step τ > 0, we find the discretized solution xτ (t). It suffices to
calculate xi := xτ (ti) where 0 = t0 < · · · < tN ≤ 1 and ti − ti−1 = τ for all i = 1, 2, . . . , N.
Here N ∈ N satisfies 1 ∈ [τN, τ(N + 1)).

Recall that for all i = 1, 2, . . . , N , xi is a minimizer for the functional E (ti, x) + |x−xi−1|
over x ∈ R.

Step 2. Since x0 = 0, x1 is a minimizer for the functional

F1(x) := E (t1, x) + |x| = t1

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
over x ∈ R. A simple computation shows that x1 ∈ {−1, 2}.

Figure 6. The function F1(x)/t1.

Step 2. We show that if xi−1 = 2, then xi = 2. In fact, xi is a minimizer for the functional

F2(x) := E (ti, x) + |x− xi−1| = ti

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
− |x|+ |x− 2|

over x ∈ R. Using the inequality −|x| + |x − 2| ≥ −2 and the properties of the functional
F1 (see Figure 6) we have

F2(x) =
ti
t1
F1(x)− |x|+ |x− 2| ≥ ti

t1
F1(2)− 2 = F2(2)
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for all x ∈ R. Moreover, x = 2 is the unique minimizer for F2 over R. Thus xi = 2.
Similarly, we can show that if xi−1 = −1, then xi = −1.

Step 3. Taking the limit when τ →∞, we see that the energetic solution is either

x(0) = 0 and x(t) = −1 for all t ∈ (0, 1],

or

x(0) = 0 and x(t) = 2 for all t ∈ (0, 1].

Remark. From Figure 6, we can see that the jump point t = 0 is reasonable.

2. Energetic solutions are also BV solutions.
We consider the case when x(t) = 2 for all t ∈ (0, 1], and the other case can be treated

in the same way. We need to show that at the jump point t = 0 one has

E (t, x(t+))− E (t, x(t−)) = −∆new(t, x(t−), x(t+)).

By a direct computation at t = 0, we have

E (t, x(t+))− E (t, x(t−)) = E (0, 2)− E (0, 0) = −2

and

∆new(t, x(t−), x(t+)) =

∫ 2

0

max{1, |∂xE (t, y)|}dy

=

∫ 2

0

max{1, | − 1|}dy = 2.

Thus, E (t, x(t+))− E (t, x(t−)) = −∆new(t, x(t−), x(t+)) at t = 0.

3. BV solutions constructed by vanishing viscosities Ψε.
Let ε > 0 and τ > 0 satisfy e := ε/τ > 1. We choose ti = i/N for i = 0, . . . , N , where
N ∈ Nis such that 1 ∈ [τN, τ(N + 1)). To compute the discretized solution xτ,ε(t), it suffices
to calculate xi := xτ,ε(ti), where x0 = 0 and xi is a minimizer for the functional

Fi(x) := E (ti, x) + τΨε

(
x− xi−1

τ

)
over x ∈ R. Then we take the limit when ε→ 0, τ → 0, and e := ε/τ → +∞.

(a) We consider Ψε(x) = |x|+ εx2. We shall show that if xi−1 ∈ [−1, 0], then

xi = max

{
−1, xi−1 −

ti
2e

}
for all i = 0, 1, ..., N . We distinguish three cases.
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Case 1. If x ∈ [−1, 0] we have

Fi(x) = ti(x+ 3)− |x|+ |x− xi−1|+ e(x− xi−1)2

≥ ti(x+ 3) + xi−1 + e(x− xi−1)2

= e

(
x− xi−1 +

ti
2e

)2

+ ti(xi−1 + 3) + xi−1 −
t2i
4e

≥ e

(
x̃i − xi−1 +

ti
2e

)2

+ ti(xi−1 + 3) + xi−1 −
t2i
4e

= Fi(x̃i)

where x̃i := max {−1, xi−1 − ti/(2e)}. Moreover, the equality holds if and only if x = x̃i.
Case 2. If x < −1, we have

Fi(x) = ti(1− x) + xi−1 + e(x− xi−1)2

> 2ti + xi−1 + e(1− xi−1)2 = Fi(−1).

Case 3. If x ≥ 0, then

Fi(x) = ti

(
−x

2
+ |x+ 1|+ |x− 2|

)
− xi−1 + ex2

≥ ti

(
−x

2
+ 3
)
ti − xi−1 + e(x− xi−1)2

= e

(
x− xi−1 −

ti
4e

)2

+

(
ti
2
− 1

)
xi−1 + 3ti −

t2i
16e

≥
(
ti
2
− 1

)
xi−1 + 3ti −

t2i
16e

> Fi(x̃i).

Thus we can conclude that Fi(x) has the unique minimizer x̃i. Consequently, xi = x̃i =
max {−1, xi−1 − ti/(2e)}.

After taking the limit when ε → 0, τ → 0 such that e = ε/τ → ∞, we can see that the
BV solution x(·) satisfies that x(t) = −1 for all t ∈ (0, 1].

(b) Now we consider

Ψε(x) =

{
|x|+ εx2 if x ≥ 0,

|x|+ 4εx2 if x ≤ 0,

Step 1. We show that x1 ∈ {−t1/(8e), t1/(4e)}. Recall that x1 is a minimizer for

F1(x) =


t1

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
+ ex2 if x ≥ 0,

t1

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
+ 4ex2 if x ≤ 0.

Similarly to the above argument, we distinguish three cases.
Case 1. If x ∈ [−1, 0] we have

F1(x) =

(
x+

t1
8e

)2

+ 3t1 −
t21

16e
≥ 3t1 −

t21
16e

,
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and we have the equality if and only if x = −t1/8e.
Case 2. If x < −1, we have

F1(x) = t1(1− x) + 4ex2 > 2t1 + 5e.

Case 3. If x ≥ 0, then

F1(x) = t1

(
−x

2
+ |x+ 1|+ |x− 2|

)
+ ex2

≥ t1

(
−x

2
+ 3
)
t1 + ex2

= e

(
x− t1

4e

)2

+ 3t1 −
t21

16e

≥ 3t1 −
t21

16e

and the equality occurs when x = t1/(4e).
Thus x1 is either −t1/(8e) or t1/(4e).

Step 2. By distinguish three cases as above, we can show that if xi−1 ∈ [−1,−t1/(8e)], then

xi = max

{
−1, xi−1 −

ti
8e

}
;

and if xi−1 ∈ [t1/(4e), 2], then

xi = min

{
2, xi−1 +

ti
4e

}
.

Step 3. Taking the limit when ε → 0, τ → 0 such that e = ε/τ → ∞, we can see that the
BV solution x(·) satisfies either x(t) = −1 for all t ∈ (0, 1], or x(t) = 2 for all t ∈ (0, 1].

(c) We consider

Ψε(x) =

{
|x|+ εx2 if x ≥ 0,

|x|+ 5εx2 if x ≤ 0,

By similar computation, we can show that x1 = t1/(4e) and

xi = min

{
2, xi−1 +

ti
4e

}
.

Hence, by taking the limit when ε→ 0, τ → 0 such that e = ε/τ →∞, we can see that the
BV solution x(·) satisfies that x(t) = 2 for all t ∈ (0, 1].

4. BV solutions constructed by epsilon-neighborhood.
Let ε ∈ (0, 1/2) and let τ > 0 be small. Let ti = i/N for i = 0, . . . , N , where N ∈ N is such
that 1 ∈ [τN, τ(N + 1)).

To compute the discretized solution xε,τ (t), it suffices to calculate xi := xε,τ (ti). Recall
that for all i = 1, 2, . . . , N , the value xi is a minimizer for the functional E (ti, x) + |x− xi−1|
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over x ∈ Iε(xi−1).

(a) Let Iε(a) := [a− ε, a+ ε].
Step 1. Since x0 = 0, x1 is a minimizer for the functional

F1(x) := E (t1, x) + |x| = t1

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
over x ∈ [−ε, ε]. Note that when x ∈ [−1, 2], we have |x+ 1|+ |x− 2| = 3. Therefore

F1(x) = t1

(
x

4
− 3

4
|x|+ 3

)
Hence, a simple comparison shows that x1 = −ε (see Figure 6).

Step 2. Next, we shall show that if xi−1 ∈ [−1,−ε], then

xi = max{−1, xi−1 − ε}.

In fact, xi is a minimizer for the functional

F2(x) := E (ti, x) + |x| = ti

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
− |x|+ |x− xi−1|

over x ∈ [xi−1 − ε, xi−1 + ε]. Using the inequality −|x| + |x − xi−1| ≥ −|xi−1| = xi−1, we
obtain

F2(x) ≥ g(x) with g(x) := ti

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
+ xi−1.

Note that when x ∈ [xi−1 − ε, xi−1 + ε] ⊂ (−∞, 0], g(x) has the unique minimizer x̃i :=
max{−1, xi−1 − ε} (see Figure 6). Moreover,

F2(xi) ≥ g(xi) ≥ g(x̃i) = F2(x̃i).

Therefore, we must have xi = x̃i = max{−1, xi−1 − ε}.

Step 3. Taking the limit τ → 0, we obtain the epsilon-neighborhood solution

xε(0) = 0, xε(t) = −1 for all t ∈ (0, 1].

Since the solution xε does not depend on ε ∈ (0, 1/2), when taking the limit ε → 0 we get
the same solution.

(b) Let Iε(a) := [a− ε, a+ 3ε].
Since x0 = 0, x1 is a minimizer for the functional

F1(x) := E (t1, x) + |x| = t1

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
over x ∈ [−ε, 3ε]. A simple comparison shows that x1 = 3ε (see Figure 6).
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By the same argument as in the above proof, we can show that if xi−1 ∈ [3ε, 2], then

xi = min{2, xi−1 + 3ε}.

Therefore, after passing the limit when τ → 0, we obtain the epsilon-neighborhood
solution

xε(0) = 0, xε(t) = 2 for all t ∈ (0, 1].

Taking the limit when ε→ 0, we get the desired BV solution.

(c) Let Iε(a) := [a− ε, a+ 2ε].
Since x0 = 0, x1 is a minimizer for the functional

F1(x) := E (t1, x) + |x| = t1

(
x

4
− 3

4
|x|+ |x+ 1|+ |x− 2|

)
over x ∈ [−ε, 2ε]. A simple comparison shows that x1 ∈ {−ε, 2ε} (see Figure 6).

By the same argument as in the above proof, we can show that if xi−1 ∈ [−1,−ε], then
xi = max{−1, xi−1 − ε}, and if xi−1 ∈ [2ε, 2], then xi = min{2, xi−1 + 2ε}.

Taking the the limit when τ → 0, we see that the epsilon-neighborhood solution xε

satisfies either
xε(0) = 0, xε(t) = −1 for all t ∈ (0, 1],

or
xε(0) = 0, xε(t) = 2 for all t ∈ (0, 1].

Taking the limit when ε→ 0, we get the BV solutions as desired.

4 Example 4.4

Example 4.4. Consider the system defined by the energy functional

E (t, x) := t

(
|x| − 1− |x− 1|

2
+ |x− 2| − 1

)
− |x|, t ∈ [0, 1], x ∈ R,

the dissipation function Ψ(x) := |x|, and the initial value x0 := 0. We have

(i) The energetic solution constructed by time-discretization is

x(0) = 0 and x(t) = 2 for all t ∈ (0, 1].

(ii) All BV solutions constructed by epsilon-neighborhood (with the usual neighborhood
Iε(a) = [a− ε, a+ ε]) satisfy that x(·) is increasing and

x(t) ∈ [0, 1) if t ∈ [0, t0) and x(t) = 2 for all t ∈ (t0, 1].

for an arbitrary t0 ∈ [0, 1].
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(iii) Now we consider the viscous dissipation of the form Ψε(x) := |x| + ε−1Ψ0(εx), where
Ψ0 is convex and satisfies that

lim
x→0

Ψ0(x)

|x|
= 0 and lim

|x|→∞

Ψ0(x)

|x|
=∞

If Ψ0(x) > 0 when x 6= 0, then the BV solution corresponding to Ψε is x(t) =
0 for all t ∈ [0, 1].

On the other hand, if Ψ0(x) = 0 in a neighborhood of x = 0, then the BV solutions
corresponding to Ψε are precisely all BV solutions constructed by epsilon-neighborhood.

Proof. 1. Energetic solutions. Take a small time step τ > 0 and let N ∈ N satisfy
1 ∈ [τN, τ(N + 1)). To find the discretized solution xτ (t), it suffices to calculate xi := xτ (ti)
where 0 = t0 < · · · < tN ≤ 1. Recall that for all i = 1, 2, . . . , N , xi is a minimizer for the
functional E (ti, x) + |x− xi−1| over x ∈ R.

In particular, since x0 = 0, x1 is a global minimizer for the functional

F1(x) = t1 g(x) with g(x) :=
|x| − 1− |x− 1|

2
+ |x− 2| − 1.

A simple calculation (see Figure 7) shows that x1 = 2.

Figure 7. The function g(x) = F1(x)/t1.

Next, we shall show that if xi−1 = 2, then xi = 2 for all i ≥ 1. In fact, xi is a minimizer
for the functional

Fi(x) = ti g(x)− |x|+ |x− 2|
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over x ∈ R. Using the inequality −|x|+ |x− 2| ≥ −2 and the same analysis of F1, we have

Fi(x) ≥ ti g(x)− 2 ≥ ti g(2)− 2 = Fi(2)

and the equality occurs if and only if x = 2. Therefore, xi = 2.
Thus xi = 2 for all i ≥ 1. Hence, after passing the limit τ → 0, we get the energetic

solution x(t) = 2 for all t ∈ (0, 2].

2. BV solutions constructed by epsilon-neighborhood Iε(a) = a+ Iε(0).
Let ε > 0 and τ > 0 be small. Let ti = i/N for i = 0, . . . , N , where N ∈ N satisfies
1 ∈ [τN, τ(N + 1)). We need to compute the discretized solution xε,τ (t) by calculating
xi := xε,τ (ti), where the value xi is a minimizer for the function

Fi(x) := E (ti, x) + |x− xi−1| = ti g(x)− |x|+ |x− xi−1|

over x ∈ Iε(xi−1).

Step 1. We show that if sup Iε(xi−1) ≤ 1, then xi can be chosen arbitrary in [xi−1, 1] ∩
Iε(xi−1).

First, notice that −|x| + |x − xi−1| ≥ −xi−1 and we have the equality if and only if
x ≥ xi−1. Hence,

Fi(x) ≥ ti g(x)− xi−1 ≥ inf
a∈Iε(xi−1)

g(a)− xi−1

for all x ∈ Iε(xi−1). Due to the properties of g(x) (see Figure 7), we have

inf
a∈Iε(xi−1)

g(a) = g(y)

for any y ∈ [xi−1, 1] ∩ Iε(xi−1). Thus we can choose xi arbitrarily in [xi−1, 1] ∩ Iε(xi−1).
Moreover, if x < xi−1, then using the strict inequality−|x|+|x−xi−1| = xi−1−2x > −xi−1

we have
Fi(x) > ti g(x)− xi−1 ≥ ti g(xi−1)− xi−1 = F (xi−1).

Therefore, we cannot choose xi < xi−1. Thus all possible choices of xi are xi ∈ [xi−1, 1] ∩
Iε(xi−1).

Step 2. We show that if sup Iε(xi−1) > 1, then

xi = min{2, sup Iε(xi−1)}.

In fact, since the variational problem infx∈Iε(xi−1) g(x) has the unique minimizer at ai :=
min{2, sup Iε(xi−1)}, we have

Fi(x) ≥ ti g(ai)− xi−1 = Fi(ai)

and the equality occurs if and only if x = ai. Thus xi = ai = min{2, sup Iε(xi−1)}.

Step 3. Note that with the assumption Iε(a) = a + Iε(0), we have sup Iε(xi−1) = xi−1 + δε
where δε := sup Iε(0) > 0. Hence, after passing to the limit τ → 0, and then ε → 0, we
obtain all BV solutions constructed by epsilon-neighborhood as desired.
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3. BV solutions constructed by an arbitrary viscous dissipation Ψε(x) = |x| +
ε−1Ψ0(εx) with a convex function Ψ0 : R → [0,∞) satisfying limx→0 Ψ0(x)/|x| = 0
and lim|x|→∞Ψ0(x)/|x| =∞.
Let ε > 0 and τ > 0. We choose ti = i/N for i = 0, . . . , N , where N ∈ N is such
that 1 ∈ [τN, τ(N + 1)). Let Ψε(x) := |x| + ε−1Ψ0(εx) for some given convex function
Ψ0 : R → [0,∞) satisfying limx→0 Ψ0(x)/|x| = 0 and lim|x|→∞Ψ0(x)/|x| = ∞. To compute
the discretized solution xτ,ε(·), it suffices to calculate xi := xτ,ε(ti), where xi is a minimizer
for the functional

Fi(x) := E (ti, x) + τΨε

(
x− xi−1

τ

)
= tig(x)− |x|+ |x− xi−1|+ e−1Ψ0(e(x− xi−1))

over x ∈ R, where e := ε/τ . BV solutions x(·) are obtained from the discretized solution
xτ,ε(·) after taking the limit as τ → 0, ε→ 0 and e→∞.

(a) We consider the case that Ψ0(x) > 0 if x > 0. We shall show that in this case
the unique BV solution is x(t) = 0 for all t ∈ [0, 1].

It suffices to show that if e := ε/τ is large enough, then xi = 0 for all i ≥ 0. By induction,
we can assume that xi−1 = 0 and xi is a minimizer for the functional

Fi(x) = tig(x) + e−1Ψ0(ex)

over x ∈ R. We have Fi(0) = 0. If x 6= 0, we distinguish two cases.
Case 1. If 0 < x ≤ 1, then using the inequality g(x) ≥ g(0) and Ψ0(ex) > 0, we obtain

Fi(x) > 0 = Fi(0).
Case 2. If x ≥ 1, then using the inequality g(x) ≥ g(2) we have

Fi(x) ≥ g(2) + e−1Ψ0(ex).

Since lim|x|→∞Ψ0(x)/|x| =∞, for e large enough we have

Ψ0(ex)

ex
> |g(2)|.

Therefore, Fi(x) > 0 = Fi(0) for all x ≥ 1.
Thus the unique minimizer for Fi is x = 0. Hence xi = 0. Consequently, the unique BV

solution is x(t) = 0 for all t ∈ [0, 1].

(b) We consider the case when Ψ0(x) = 0 in a neighborhood of 0. We shall show
that the BV solutions in this case are the same with all BV solutions constructed by epsilon-
neighborhood.

Let δ := sup Ψ−10 (0), namely δ > 0 is the largest number such that Ψ0(δ) = 0. Let δ′ > 0
be an arbitrary small number. Note that both δ and δ′ are independent of ε and τ .

Step 1. We show that if xi−1 ∈ [0, 2], then xi ≥ xi−1.
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In fact, if xi < xi−1, then using the inequalities Ψ0 ≥ 0, −|xi|+ |xi−xi−1| = xi−1− 2xi >
−xi−1, and g(xi) ≥ g(xi−1) (since g(x) is decreasing in (−∞, 2], see Figure 7), we have

Fi(xi) = ti g(xi)− |xi|+ |xi − xi−1|+ e−1Ψ0(e (xi − xi−1))
> ti g(xi−1)− xi−1 = Fi(xi−1).

This contradicts the assumption that Fi(xi) = infx∈R Fi(x). Thus xi ≥ xi−1.

Step 2. We show that if xi−1 + δe−1 ∈ (1, 2], then xi ≥ xi−1 + δe−1.
If xi ≤ xi−1 + δe−1, then using the inequalities −|xi| + |xi − xi−1| ≥ xi−1, Ψ0 ≥ 0, and

g(xi) > g(xi−1 + δe−1) (since g(x) is strictly decreasing in [1,2], see Figure 7), we obtain

Fi(xi) > ti g(xi−1 + δe−1)− xi−1 = Fi(xi−1 + δe−1).

This contradicts the assumption that Fi(xi) = infx∈R Fi(x). Thus xi ≥ xi−1 + δe−1.

Remark. Note that although the number δe−1 is small, we have

Nδe−1 =
Nτδ

ε
≥ δ

2ε
→∞

as ε→ 0 and τ → 0.

Step 3. We show that for any given δ′, if e is large enough (namely e is larger than a
constant dependent only on δ′), then xi ≤ xi−1 + δ′ for all i ≥ 1.

We assume by contradiction that xi > xi−1 + δ′. Then

Fi(xi)− Fi(xi−1) = ti(g(xi)− g(xi−1)) + e−1Ψ0(e(xi − xi−1)).

Note that
g(y)− g(x) ≥ −(y − x)

for all y ≥ x. On the other hand, since lim|x|→∞Ψ0(x)/|x| = ∞, there exists L > 0
(dependent only on Ψ0) such that Ψ0(x) ≥ 2x for all x ≥ L. When e ≥ L/δ′, we have
e(xi − xi−1) > eδ′ ≥ L and hence

e−1Ψ0(e(xi − xi−1)) ≥ 2(xi − xi−1).

Thus
Fi(xi)− Fi(xi−1) ≥ (2− ti)(xi − xi−1) > 0.

This contradicts the assumption that Fi(xi) = infx∈R Fi(x). Thus xi ≤ xi−1 + δ′.

Step 4. We show that if xi−1 ≥ 2, then xi ≤ xi−1.
We assume by contradiction that xi > xi−1. Since g(x) is strictly increasing when x ≥ 2,

we obtain

Fi(xi) = ti g(xi)− xi−1 + e−1Ψ0(e(xi − xi−1))
> ti g(xi−1)− xi−1 = Fi(xi−1).
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This contradicts the assumption that Fi(xi) = infx∈R Fi(x). Thus xi ≤ xi−1.

Step 5. Now taking the limit as τ → 0, ε → 0 and e = ε/τ → ∞, we obtain the BV
solutions x(·). These solutions have the property that there exists t0 > 0 (t0 may be larger
than or equal to 1) such that x(t) is increasing on [0, t0) and x(t) ∈ [0, 1) for all t ∈ [0, t0);
moreover, x(t) ∈ [2, 2 + δ′] for all t ∈ (t0, 1].

Since the latter property holds for an arbitrary δ′ > 0, letting δ′ → 0 we conclude that
the BV solutions thus obtained coincide with those constructed by ε-neighborhood.

5 Example 4.5

Example 4.5. Consider the system defined by the energy functional E (t, x) := t g(x) − x
with g(x) := x5 sin(1/x), t ∈ [0, 1], the dissipation function Ψ(x) := |x|, and the initial value
x0 := 0. Note that g(·) has a unique global minimizer z1 = 0.2638367621.... Moreover,

(i) The energetic solution constructed by time-discretization is

x(0) = 0 and x(t) = z1 for all t ∈ (0, 1].

(ii) The BV solution constructed by epsilon-neighborhood is x(t) = 0 for all t ∈ [0, 1].
Here we can choose any neighborhood of the form Iε(a) = a + Iε(0) where Iε(0) is a
closed connected neighborhood of 0 with diameter of order O(ε).

(iii) The BV solution constructed by vanishing viscosity is x(t) = 0 for all t ∈ [0, 1]. Here
we can choose an arbitrary viscous dissipation of the form Ψε(x) = |x| + ε−1Ψ0(εx)
where Ψ0 : R→ [0,∞) is convex and satisfies that

lim
x→0

Ψ0(x)

|x|
= 0, lim

|x|→∞

Ψ0(x)

|x|
=∞.

Proof. 1. Properties of g. Here we list some key properties of the function g, which can
be verified by a direct computation.

First, we have g(x) = g(−x), g(0) = 0 and lim|x|→∞ g(x) =∞. In the region (0,∞), the
set of zeroes of the function

g′(x) = 5x4 sin(1/x)− x3 cos(1/x)

is {zi}∞n=1, where each zn has multiplicity 1 and

z1 > z2 > · · · > lim
n→∞

zn = 0.

Remark. In fact, the numbers z−1n are solutions to the equation 5 sin z = z cos z, which can
be computed numerically: z1 = 0.2638367621..., z2 = 0.1379263106..., z3 = 0.07251993503...
etc.

As a consequence, for every n = 1, 2, . . . , we see that z2n−1 is a local minimizer of g (in
particular, z1 is a global minimizer of g) and z2n is a local maximizer of g (see Figure 8).
Moreover, it is straightforward to check that g(x) + |x| > 0 for every x 6= 0 (see Figure 9).
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Figure 8. The function g(x) = x5 sin(1/x).

Figure 9. The function g(x) + |x| = x5 sin(1/x) + |x|.

2. Energetic solutions. Take a small time step τ > 0 and let N ∈ N satisfy 1 ∈
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[τN, τ(N + 1)). To find the discretized solution xτ (t), it suffices to calculate xi := xτ (ti)
where 0 = t0 < · · · < tN ≤ 1.

Recall that for all i = 1, 2, . . . , N , xi is a minimizer for the functional

E (ti, x) + |x− xi−1| = ti g(x)− x+ |x− xi−1|

over x ∈ R.
First, since x0 = 0, x1 is a minimizer for t1 g(x) − x + |x| over x ∈ R. Note that

g(x) ≥ g(z1) (and the equality occurs if and only if x = ±z1) and −x + |x| ≥ 0 (and the
equality occurs if and only if x ≥ 0). Therefore,

t1 g(x)− x+ |x| ≥ t1 g(z1)

and the equality occurs if and only if x = z1. Thus x1 = z1.
Next, since x1 = z1, x2 is a minimizer for t2 g(x) − x + |x − x1| over x ∈ R. Since

g(x) ≥ g(z1) and −x+ |x− x1| ≥ −x1, we have

t2 g(x)− x+ |x− x1| ≥ t2 g(z1)

and the equality occurs if and only if x = z1. Thus x2 = z1.
In the same way, we get xi = z1 for all i = 1, 2, . . . , N . Thus after passing to the limit as

τ → 0, we obtain the energetic solution x(t) = z1 for all t ∈ (0, 1].

3. BV solutions by epsilon-neighborhood.
Step 1. Let ε > 0 and τ > 0 be small. Let ti = i/N for i = 0, . . . , N , where N ∈ N satis-
fies 1 ∈ [τN, τ(N + 1)). We need to compute the discretized solution xε,τ (t) by calculating
xi := xε,τ (ti), where the value xi is a minimizer for the function

Fi(x) := E (ti, x) + |x− xi−1| = ti g(x)− |x|+ |x− xi−1|

over x ∈ Iε(xi−1).
For every δ > 0 small, let jδ ∈ N be the largest number satisfying

min{|z2jδ−1 − z2jδ |, |z2jδ−1 − z2jδ−2|} ≥ δ.

Note that jδ →∞ as δ → 0.

Step 2. Now fix δ > 0. For ε > 0 small, we have Iε(0) ⊂ [−δ, δ]. We shall show that
the discrete solution

0 ≤ xε,τ (t) ≤ z2jδ−1

for all t ∈ [0, 1]. It suffices to show that xi = xε,τ (ti) ∈ [0, z2jδ−1] for all i ∈ {1, 2, . . . , N}.
First, we show that xi ≥ 0 for all i = 1, 2, . . . , N . Since x0 = 0, x1 is a minimizer for the

function x 7→ t1 g(x)− x+ |x| over Iε(0). If x < 0, then

t1 g(x)− x+ |x| = t1 g(x)− 2x > t1 (g(x)− x) > 0

(see Figure 9). Therefore, we must have x1 ≥ 0. By the same argument, we get xi ≥ 0 for
all i = 1, 2, . . . , N .
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Now we show that xk ≤ z2jδ−1 for all k = 1, 2, . . . , N . Assume by contradiction that xk >
z2jδ−1 for some k ∈ {1, 2, . . . , N}. Then we can choose the smallest number i ∈ {1, 2, . . . , N}
such that z2jδ−1 ∈ [xi−1, xi]. Recall that xi is a minimizer of the function

ti g(x)− x+ |x− xi−1|

over x ∈ Iε(xi−1). Since xi−1 and xi belong to Iε(xi−1), we have z2jδ−1 ∈ [xi−1, xi] ⊂ Iε(xi−1).
Note that Iε(xi−1) ⊂ [z2jδ , z2jδ−2] and the function g is strictly decreasing on [z2jδ , z2jδ−1] and
strictly increasing on [z2jδ−1, z2jδ−2]. Therefore, g(x) has the unique minimizer z2jδ−1 over
x ∈ Iε(xi−1). Hence, there holds

ti g(x)− x+ |x− xi−1| ≥ ti g(z2jδ−1)− z2jδ−1 + |z2jδ−1 − xi−1|

for all x ∈ Iε(xi−1) and the equality occurs if and only if x = z2jδ−1. Thus xi = z2jδ−1.
Similarly, we have xk = z2jδ−1 for all k = i, i+1, . . . , N . On the other hand, it is obviously

that xk ≤ z2jδ−1 for every k ≤ i − 1 (due to the choice of i). Hence, we can conclude that
xk ≤ z2jδ−1 for all k = i, i+ 1, . . . , N .

Thus 0 ≤ xε,τ (t) ≤ z2jδ−1 for all t ∈ [0, 1].

Step 3. After passing to the limit as τ → 0, we see that 0 ≤ xε(t) ≤ z2jδ−1 for all
t ∈ [0, 1], provided ε > 0 is small enough such that Iε(0) ⊂ [−δ, δ]. Then taking the limit as
ε → 0, we obtain the BV solution 0 ≤ x(t) ≤ z2jδ−1 for all t ∈ [0, 1]. Since limδ→0 jδ = ∞
and limn→∞ zn = 0, we can take δ → 0 to obtain that x(t) = 0 for all t ∈ [0, 1].

4. BV solutions by vanishing viscosity.
Step 1. Let ε > 0 and τ > 0. We choose ti = i/N for i = 0, . . . , N , where N ∈ N is such
that 1 ∈ [τN, τ(N + 1)). Let Ψ0 : R→ [0,∞) be a convex function such that Ψ0(0) = 0 and
lim|x|→∞Ψ0(x)/|x| =∞. To compute the discretized solution xτ,ε(t), it suffices to calculate
xi := xτ,ε(ti), where xi is a minimizer for the function

Fi(x) = ti g(x)− x+ |x− xi−1|+ e−1Ψ0(e(x− xi−1))

over x ∈ R, where e := ε/τ .

Step 2. We show that xi ∈ [0, z1] for all i = 1, 2, ..., N .
Assume by contradiction that xi < 0 for some i. If we take the smallest i such that

xi < 0, then xi−1 ≥ 0. We have

Fi(xi)− Fi(xi−1) = ti(g(xi)− g(xi−1)) + 2|xi−1| − 2|xi|+ e−1Ψ0(e(x− xi−1)) > 0

since g(x) + |x| > 0 for all x 6= 0. However, it is a contradiction to the assumption that xi
is a minimizer for Fi. Thus we must have xi ≥ 0 for all i = 1, 2, . . . , N .

Assume by contradiction that xi > z1 for some i. If we take the smallest i such that
xi > z1, then xi−1 ≤ z1. We have

Fi(xi)− Fi(z1) = ti(g(xi)− g(z1)) + e−1 (Ψ0(e(xi − xi−1))−Ψ0(e(z1 − xi−1))) .

Note that g(xi) > g(z1) (see Figure 8). Moreover, since Ψ0 is convex, Ψ0(0) = 0 and
Ψ0(+∞) = +∞, the function Ψ0 is increasing. Hence, Ψ0(e(xi − xi−1)) ≥ Ψ0(e(zi − xi−1))
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because xi−xi−1 ≥ zi−xi−1. Thus Fi(xi)−Fi(z1) > 0. However, it is a contradiction to the
assumption that xi is a minimizer for Fi. Thus we must have xi ≤ z1 for all i = 1, 2, ..., N .

Step 3. Fix δ > 0. We show that if e = ε/τ is large enough, then |xi − xi−1| ≤ δ for
all i = 1, 2, ..., N − 1. We have

Fi(xi)− Fi(xi−1) = ti(g(xi)− g(xi−1))− xi + |xi − xi−1|+ e−1Ψ0(e(xi − xi−1)).

Since xi−1 and xi belong to [0, z1], we have

|ti(g(xi)− g(xi−1))− xi + |xi − xi−1|| ≤ C := 2

(
sup

x∈[0,z1]
|g(x)|+ z1

)
.

On the other hand, since lim|x|→∞Ψ0(x)/|x| =∞, if |xi− xi−1| ≤ δ, by choosing e > 0 large
enough (dependent only on δ, and independent of xi and xi−1), we have

e−1Ψ0(e(xi − xi−1)) ≥ C + 1.

We thus obtain Fi(xi) − Fi(xi−1) ≥ 1 > 0, which is a contradiction to the assumption that
xi is a minimizer for Fi.

Thus we must have |xi − xi−1| ≤ δ for all i = 1, 2, . . . , N − 1, provided that e = ε/τ is
large enough.

Step 4. Now we use the same argument of the proof of BV solutions constructed by
epsilon-neighborhood solutions. Let jδ ∈ N be the largest number satisfying

min{|z2jδ−1 − z2jδ |, |z2jδ−1 − z2jδ−2|} ≥ δ.

We shall show that xi ≤ z2jδ−1 for all i = 1, 2, . . . , N .
Assume by contradiction that there exists i ∈ {1, 2, . . . , N} such that xi−1 ≤ z2jδ−1 < xi.

Then

Fi(xi)− Fi(z2jδ−1) = ti(g(xi)− g(z2jδ−1)) + e−1 (Ψ0(e(xi − xi−1))−Ψ0(e(z2jδ−1 − xi−1))) .

Since |xi − xi−1| ≤ δ, we have

xi−1, xi ∈ [z2jδ−1 − δ, z2jδ−1 + δ] ⊂ [z2jδ , z2jδ−2].

Since the function g(x) has the unique minimizer z2jδ−1 over x ∈ [z2jδ , z2jδ−2], we get g(xi) >
g(z2jδ−1). Moreover, Ψ0(e(xi − xi−1)) ≥ Ψ0(e(z2jδ−1 − xi−1)) since Ψ0 is increasing and xi −
xi−1 ≥ z2jδ−1 − xi−1. Thus Fi(xi) > Fi(z2jδ−1). However, it is a contradiction to the
assumption that xi is a minimizer for Fi.

Thus we must have xi ≤ z2jδ−1 for all i = 1, 2, . . . , N .

Step 5. After passing to the limit as τ → 0, ε → 0 and e = ε/τ → ∞, we obtain the
BV solution x(·) satisfying 0 ≤ x(t) ≤ z2jδ−1 for all t ∈ [0, 1]. Because this bound holds true
for all δ > 0 and limδ→0 z2jδ−1 = 0, we can conclude that x(t) = 0 for all t ∈ [0, 1].
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