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Notation

In this paper, the following notations and conventions for common phys-

ical quantities are used: e is the electron’s charge with its sign, m is the elec-

tron’s mass unless otherwise specified, c is the speed of light, ω = 2π/T =

2πc/λ is the laser frequency (T is the laser period and λ is the laser wave-

length), n is the electron numerical density, ω2
p = 4πne2/m is the plasma

frequency, α = e2/~c ≈ 1/137 is the fine-structure constant, re = e2/mc2 ≈
2.82 × 10−13 cm is the classical electron radius, λC = ~/mc = reα

−1 ≈
3.86 × 10−11 cm is the Compton wavelength, ECr = BCr = m2c3/~|e| ≈
4.4 × 1013 G ≈ 1.32 × 1016 V cm−1 is the critical field of quantum electrody-

namics and a0 ≡ |e|E/mωc is the normalized laser amplitude where E is the

peak of the laser field. In ‘practical’ units a0 ≈ 8.5×10−10λµm

√
IW cm−2 for a

linearly polarized monochromatic plane wave and a0 ≈ 6×10−10λµm

√
IW cm−2

for a circularly polarized monochromatic plane wave.

Gaussian units or normalized units are used. When employing normalized

units, time is in units of ω−1, space is in units of k−1 = cω−1, velocities in

units of c, momenta in units of mc, fields in units of mcω/|e| and densities

in units of the critical density nc = mω2/4πe2 ≈ 1.1 × 1021 λ−2
µm cm−3.

Greek tensorial indices indicate four-dimensional quantities µ = {0, 1, 2, 3},
Latin tensorial indices indicate three-dimensional quantities i = {1, 2, 3}.
The metric is gµν = (+,−,−,−) and the total antisymmetric tensor of the

fourth-rank εαβγδ is defined such that ε0123 = +1 (therefore ε0123 = −1).
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Introduction

The past twenty years have witnessed a six orders of magnitude increase

in available laser intensity (Fig. 1). The record intensity of 2× 1022 W cm−2

has been obtained [1] and intensities of the order of 1024 − 1026 W cm−2 are

envisaged at the Extreme-Light-Infrastructure [2] (ELI).

Figure 1: Sketch of the evolution of the maximum achievable laser intensity,

from Ref. [2]. The expected scaling for the last decade turned out to be

over-optimistic. The present record intensity is 2 × 1022 W cm−2 [1].

The great interest in laser-matter interaction at superintense laser intensi-

ties is justified both by their importance for fundamental physics, where new

exotic regimes can be tested [4, 5], and by their applications ranging from

new avenues for particle acceleration suitable e.g. for oncology treatment [6],

medical imaging and fast ignition [3, 5] or for the reproduction on the labora-

tory scale of extreme processes typical of astrophysical plasmas [5, 9]. Enter-
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ing the relativistic regime I & 1018 W cm−2, several novel physical effects has

been already observed such as relativistic self-focusing, high-harmonic gener-

ation [7] and acceleration of macroscopic quantities of electrons and ions [8].

Approaching the ultra-relativistic regime I & 1023 W cm−2 as foreseen with

the ELI project, many other exotic phenomena such as strong radiation reac-

tion (RR) effects [10, 11, 18], copious electron-positron pair production [14]

and nonlinear quantum electrodynamic (QED) effects are expected [2, 5].

Of special importance for a number of foreseen applications, ion accelera-

tion driven by superintense laser pulses has attracted an increasing interest in

the last decade [8]. The unique features of laser produced ion beams such as

large number of accelerated ions, ultrashort duration, high brilliance and high

collimation has generated enormous interest and stimulated both theoretical

and experimental research on new promising ion acceleration regimes using

different laser and plasma parameters [8]. In particular, a theoretical study by

Esirkepov et al. [19] has shown that at ultra-high intensities (I > 1023 W cm−2

for ‘optical’ laser wavelengths λ ∼ µm) the radiation pressure of a laser pulse

can efficiently drive the acceleration of a thin foil1 up to relativistic (GeV)

energies. This new ion acceleration mechanism was named as the Radiation

Pressure Dominated Acceleration (RPDA) (or “laser-piston”) regime and its

promising features such as its foreseen high efficiency2, linear scaling with

the laser intensity3, and the quasi-monoenergetic features expected in the

ion energy spectrum have stimulated a growing number of studies aimed to

control such features and to improve the expected qualities of the generated

beams [8]. In this thesis, we mainly focus our studies on the case of inter-

action of a superintense laser-pulse with a thin plasma slab in the RPDA

regime.

1For a thin foil we mean that the foil thickness ℓ is smaller or comparable with the

laser wavelength λ i.e. ℓ . λ.
2The acceleration efficiency tends to 100% in the relativistic limit as the laser pulse

and the thin foil become almost phase-locked and the intensity of the wave reflected by

the thin foil tends to vanish with a significant transfer of momentum from the laser pulse

to the foil.
3For instance, in the previously studied ion acceleration mechanism named Target

Normal Sheath Acceleration (TNSA), the ion energy roughly scales with the square root

of the laser intensity, see Ref. [8].
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At the extremely high optical laser intensities needed for relativistic (GeV)

ion production and radiation pressure dominance I & 1023 W cm−2, the laser

field performs a work hundreds of times larger than the electron rest energy

mc2 in a single laser period. Electrons therefore become ultra-relativistic

within a fraction of the wave period experiencing superstrong accelerations

and emitting large amounts of electromagnetic radiation. Such emission may

affect the dynamics of the electron itself and, in the classical framework,

can be conveniently described by the so called radiation reaction (RR) force.

The RR force therefore describes the back-action of the radiation emitted

by an accelerated electron on the motion of the electron itself and accounts

for the loss of the electron energy and momentum due to the emission of

such radiation. Some proposals have been put forward to test RR effects

experimentally and are in principle possible with currently available laser

technology [10, 17, 15]. For the first time, RR effects may play a dominant

role in the electron dynamics providing an opportunity to test this old and

controversial prediction of classical electrodynamics experimentally.

As discussed above, RR effects are expected to strongly affect the electron

dynamics in next generation laser-matter interaction experiments at extreme

intensities such as those foreseen with the ELI project. A comprehension of

the features of the RR force and of its effects on the collective dynamics

of a many-body system i.e. a plasma is therefore crucial to both test this

important prediction of classical electrodynamics experimentally and above

all to plan and design next generation laser-matter experiments. To this aim

and in particular to unfold the strongly non-linear dynamics of a plasma

where a macroscopic number of electrons and ions interact through their

collective self-consistent fields, a statistical approach for the description of

the system with RR effects included and large scale computer simulations

are mandatory. In fact, the collective dynamics of a plasma is described

by the coupled system of kinetic and Maxwell equations for the distribution

function and the self-consistent mean fields and RR effects have therefore

to be accounted including the RR force into a new ‘generalized’ coupled

system of kinetic and Maxwell equations. This system of partial differential

equations is strongly non-linear and a new numerical approach compatible

with existing numerical schemes is needed to solve such equations efficiently
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with large scale computer simulations which, at least for three-dimensional

simulations, often require the use of thousands of processors and terabytes

of memory to obtain reliable results.

A widely used approach suitable to efficiently simulate laser-plasma in-

teractions with high-performance computer facilities has been developed in

the past decades and was named as the particle-in-cell (PIC) approach [65].

In some sense the PIC approach reduces the laser-plasma simulation to the

simplest possible model: Maxwell’s equations plus Newton’s equations for

‘computational’ particles (see Ref. [65] for details). One may think that PIC

is the most straightforward and ‘elementary’ description of a plasma in terms

of individual charged particles moving under the action of self-consistent elec-

tromagnetic fields. However, in almost any physical system of interest, the

total number of electrons and ions exceeds by many orders of magnitude

the number of ‘computational’ particles that can be included in a feasible

simulation. The PIC approach therefore consists in assuming a discrete rep-

resentation of the unknown statistical distribution function i.e. the distri-

bution function is assumed to be a sum of large number of overlapping and

spatially extended ‘clouds’ or ‘computational’ particles each representing a

large number of the actual physical particles [65]. Once inserted this discrete

representation of the distribution into the kinetic equations, the problem of

solving the kinetic equation reduces to the problem of solving a set of ‘equa-

tions of motion’ for the computational particles which are formally identical

to the usual Newton’s equation of motion except that the force is averaged

on the size of the computational particle (see appendix B.3). After intro-

ducing a suitable discretization of space and time i.e. an appropriate lattice,

a numerical integrator (in jargon, a “pusher”) that solves the finite differ-

ence approximation of Newton’s and Maxwell’s equations is used to advance

computational particles and self-consistent fields respectively. The problem

of including RR effects into the kinetic description of a plasma therefore

reduces to develop a suitable pusher for the RR force that have to be com-

patible with well-tested existing numerical schemes such as the pusher for

the Lorentz force.

The problem of finding a satisfactory equation of motion that accounts

for RR effects has been a controversial and much disputed subject in clas-
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sical electrodynamics from the beginning of the twentieth-century (see the

review [28] and the recent books [29, 30]). This issue has grown in importance

in light of recent progresses in the achievable laser intensity that makes possi-

ble to test it experimentally [10, 17, 15] and for its foreseen relevance in next

generation laser-matter experiments [24, 11, 12, 13, 25, 27, 26]. Recently,

literature has emerged that offers a satisfactory equation of motion with RR

both from the physical [30, 31, 32] (see also Refs. [33, 34] for a different

approach) and from the mathematical point of view (see Refs. [35, 29] and

in particular the recent Ref. [36]). In the classical framework, the so called

Landau-Lifshitz [37] (LL) equation describes the motion of an electron in

the presence of an external electromagnetic field accounting for RR effects.

Moreover, exact analytical solutions of the LL equation have been found

for many important cases, from constant and uniform magnetic fields [29],

Coulomb field [38], constant crossed fields [39], and for the motion in a plane

wave of arbitrary shape and polarization [39]. It is therefore possible to test

and validate proposed numerical approaches to the inclusion of the RR force

into PIC codes with such exact solutions.

The main purpose of this thesis is to develop an understanding of RR ef-

fects in superintense laser-thin plasma foil interactions in the RPDA regime

mainly by multi-dimensional PIC simulations. PIC simulations are used to

investigate the basic physical processes, establish when RR effects become

important and to identify the relevant parameters. To this aim, a simple suit-

able approximation of the LL force and a novel and efficient particle pusher

for the LL force have been developed and tested comparing the numerical

prediction with the analytical solution for the plane wave case. From the an-

alytical side, the general properties of the fully relativistic kinetic equations

of an optically thin plasmas including RR effects have been studied and it

was shown that the RR force leads to a contraction of the available phase-

space. The physical interpretation of this property is that the RR force acts

as a cooling mechanism for the system: part of the energy, momentum and

entropy are radiated away and the spread in both momentum and coordi-

nate space may be reduced. This prediction is in agreement with the results

of our multi-dimensional PIC simulations where we found that RR effects

lead to both an increased bunching in space and to a noticeable cooling of
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high-energy electrons.

In this thesis, we limit our study to the classical framework. The role

of quantum effects and the conditions of validity of classical mechanics are

briefly discussed. A final a posteriori check of the validity of the classical

approach to RR effects has been performed in 1D PIC simulations. Similar

trends have been observed in 2D and 3D simulations confirming that 1D

results are reliable.
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Chapter 1

Electron dynamics with

radiation reaction

Since the beginning of the twentieth-century, a considerable amount of

literature has been published on the equation of motion of a single particle

subject to its own electromagnetic field [28, 29]. The purpose of this chapter

is to review the recent attempts conducted to obtain a physically satisfactory

and self-consistent equation of motion with RR effects and to briefly discuss

the restrictions to a classical treatment due to the onset of quantum effects.

The basic problem when we deal with self-fields of elementary particles

is that classical electrodynamics becomes patently insubstantial at the point

limit (more precisely, at sizes below 2/3 the classical electron radius re ≡
e2/mc2 ≈ 2.82×10−13 cm [48, 52]). In fact, classical electrodynamics ceases to

be valid at sizes of the order of the Compton wavelength λC ≡ ~/mc ≈ 3.86×
10−11 cm where QED effects such as creation of electron-positron pairs yield

an effective extended charge distribution. Many typical problems of classical

electrodynamics of point particles disappear in the quantum framework as

shown in Ref. [52] where the quantum point particle has been studied.

The problem of RR has been rigorously addressed in the classical frame-

work by Gralla et al. in Ref. [36] and we briefly summarize their arguments

here after a rapid survey of other results with a particular emphasis on the

Landau-Lifshitz argument which has been made mathematically rigorous by

Spohn using geometric perturbation theory [35].
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1.1 The equation(s) of motion with RR

In classical electrodynamics, Maxwell’s equations

∂βFµν + ∂µFνβ + ∂νFβµ = 0 (1.1)

∂αF
αµ =

4π

c
jµ (1.2)

have a well-posed initial value formulation provided that the charge current

source jµ is a specified function of the space-time coordinates xµ = (ct,x)

which satisfies the local conservation law

∂µj
µ = 0 (1.3)

In particular, solutions to Maxwell’s equations exist for an arbitrary point

particle source

jµ = euµc δ3(x − r(t))
dτ

dt
(1.4)

where uµ = (γ, γv/c) is the four-velocity and τ is the proper time, provided

only that the worldline is timelike and that e is constant along the worldline.

The complementary problem of the motion of a point particle in a given

external field F µν by the Lorentz force equation

mc
duµ

dτ
= eF µνuν (1.5)

has also a well-posed initial value formulation being a system of second-

order ordinary differential equation that admits a unique solution for any

F µν . However, it is easily seen that the coupled system of equations (1.1),

(1.2) and (1.4) together with the equation of motion

mc
duµ

dτ
= eF T

µνu
ν (1.6)

where F T
µν is the full electromagnetic field i.e. the sum of the external fields

and of the particle’s self-fields, do not make neither physical nor mathe-

matical sense. From the physical point of view, both energy and momentum

diverges and we have to proceed formally by introducing a renormalized mass

that makes the observable mass a finite quantity.
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In classical electrodynamics, matter must be modeled as a continuum

and self-interactions depend on the internal composition, internal forces1,

structure and initial state of the body. These difficulties are usually avoided

assuming a rigid charge distribution in the instantaneous rest frame. This

approximation is consistent if the variation of the velocity, in the time it takes

a light ray to cross the diameter of the particle’s charge distribution, is much

smaller than c in the instantaneous rest frame. In general, this extended rigid

charge models lead to a self-force that is expressed as an infinite series [53]

that cannot be summed except for the case of a spherical charged shell [48].

It has been shown that the self-force for this extended charge distributions

does not lead neither to self-acceleration nor to preacceleration solutions

provided that the radius r of the charge distribution in the instantaneous

rest frame is larger than 2/3 the classical electron radius re [51, 52]. It

may be worth noticing that the point particle limit of the expectation value

of the quantum mechanical equations provides an equation of motion that is

formally equivalent to the equation of motion of a classical charge distribution

with an effective size of the order of the Compton wavelength λC ∼ 137re

and is therefore free of the drawbacks of the Lorentz-Abraham-Dirac (LAD)

equation [52] (see below for details). From the physical point of view, this

picture is a rather natural result as we expect that QED effects strongly

modify the classical picture of a point particle when we probe distances below

the Compton wavelength.

Returning to our original aim of getting a physically well-founded and

self-consistent equation of motion for a classical charged particle, from a

fundamental point of view the previous results provide a quite satisfactory

answer. We may think that we just need to couple the Maxwell’s equation

with an extended charge distribution choosing a radius of the order of the

Compton wavelength. However, it is at least unpractical and almost in every

physical situation impossible to have a full control of physical quantities

such as position and time from the laboratory scale deep into the Compton

scale. Furthermore, we want to derive universal properties of the motion of

small bodies that do not depend upon the details of any particular matter

model. When all the distances involved are large compared to the radius

1In order to avoid the stability problem, see Ref. [53].
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r of a charged distribution, the result ought to be independent of r. The

usual approach is therefore to take a limit to zero size of the extended charge

distribution at fixed charge and mass. This approach leads to the LAD

equation [53, 37, 30, 48]

duβ

dτ
=

e

mc
F βαuα +

2e2

3mc3

(

d2uβ

dτ 2
+
duα

dτ

duα

dτ
uβ

)

(1.7)

with its associated difficulties. In fact, the LAD equation (1.7) is a third-

order differential equation and has well known serious drawbacks such as

preacceleration and runaway solutions [53, 37].

Landau and Lifshitz pointed out [37] that the inequality

τ0
d

dτ
≪ 1 (1.8)

where τ0 ≡ 2e2/3mc3 = 2re/3c ≈ 6.27×10−24 s is strictly satisfied in the clas-

sical framework. The inequality (1.8) implies that all the relative changes of

physical quantities must be small on a time scale of order τ0 in the instanta-

neous rest frame of the electron. This is a basic restriction for the dynamics

of a classical charged particle because quantum effects become important on

scales of the order of λC/c ≈ 1.29 × 10−21 s. In the classical framework, the

problem of what happens outside the boundaries of (1.8) is physically mean-

ingless and also the possible presence of physically absurd solutions [63, 64]

when (1.8) is violated do not question the validity of a classical equation of

motion.

As a consequence of (1.8), the Lorentz force fL = eE + e(v/c× B) must

satisfy the inequality
∣

∣

∣

∣

τ0
d

dt
fL

∣

∣

∣

∣

≪ |fL| (1.9)

in the instantaneous rest frame of the electron or, with the same accuracy

(see Ref. [37])

τ0

∣

∣

∣

∣

eĖ +
e2

mc
E× B

∣

∣

∣

∣

≪ |eE| (1.10)

For the fields, (1.10) implies that the wavelength of the incident or emitted

radiation λ must satisfy λ ≫ cτ0 ≈ 1.88 × 10−13 cm and the strength of the
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fields must satisfy |B| ≪ 3m2c4/2|e|3 ≈ 9 × 1015 G in the instantaneous rest

frame of the electron2.

It is convenient to recast the restriction (1.9) in a manifestly Lorentz-

invariant form replacing τ0 with λC/c = ~/mc2 in order to account for the

stronger bounds from QED effects. Introducing the projector on the four-

velocity P µν = gµν − uµuν and the four-dimensional Lorentz force fµ
L , then

we have3

λ2
C

c2

∣

∣

∣

∣

∣

P µ
α

dfα
L

dτ
Pµβ

dfβ
L

dτ

∣

∣

∣

∣

∣

≪ |fµ
Lf

ν
Lgµν | (1.11)

The restriction (1.8) allows to perform a perturbative reduction of order

of the LAD equation, i.e. the zero order equation

duβ

dτ
=

e

mc
F βαuα + O

(

τ0
d

dt

)

(1.12)

is used to estimate duβ/dτ and d2uβ/dτ 2 in the right hand side of the LAD

equation (1.7) leading to the Landau-Lifshitz (LL) equation [37]

duµ

dτ
=

e

mc
F µνuν+

2e3

3m2c3
∂αF

µνuνu
α+

2e4

3m3c5
(

F µνFναu
α + (F νβuβFναu

α)uµ
)

(1.13)

The LL equation has a standard second-order initial value formulation and it

is free from the preacceleration and runaway solutions that plague the LAD

equation. Moreover, it differs from the LAD equation by terms of order

O (τ 2
0 d

2/dt2) which are insignificant in the classical domain.

The LL approach has been made mathematically rigorous by Spohn

[35, 29] who derived the LL equation from the LAD equation through geo-

metric perturbation theory. Spohn proved that the physical solutions4 of the

LAD equation lie on a critical surface which is repelling, i.e. any slight devi-

ation from it is amplified and as a result the solution runs away. Moreover,

2The actual bounds from QED are λ ≫ ~/mc ≈ 3.86×10−11 cm and |B| ≪ m2c3/~|e| ≈
4.4 × 1013 G.

3The four-velocity is uµ = (γ, γv/c) where γ = 1/
√

1 − v2/c2 is the relativistic factor,

fµ
L = (γfL ·v/c, γfL) is the four-dimensional Lorentz force and fL = e(E+v/c×B) is the

three-dimensional Lorentz force.
4The Dirac’s asymptotic condition limt→∞ v̇(t) = 0 is used to identify the critical

manifold of the physical solutions of the LAD equation.
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the physical solutions lying on the critical surface can be singled out by an

effective second-order equation which is exactly the LL equation.

Recently, the issue of particle motion including self-fields has been ad-

dressed in a new and rigorous way by Gralla et al. in Ref.[36]. In short,

they start arguing that the attempt to couple classical Maxwell’s equations

(1.1) and (1.2) together with point particle sources (1.4) and the Lorentz

equation of motion (1.6) fails on both mathematical and physical grounds.

Thus, they remove from any fundamental status both the point charge source

(1.4) and the Lorentz force equation (1.6) and assume only the existence of

a matter stress-energy tensor TM
µν which couples to the electromagnetic field

via conservation of the total stress-energy tensor

∂ν
(

TM
µν + TEM

µν

)

= 0 (1.14)

where the electromagnetic stress-energy tensor TEM
µν is

TEM
µν =

1

4π

(

−FµαF
α

ν +
1

4
gµνFαβF

αβ

)

(1.15)

The coupled system of Maxwell’s equations (1.1) and (1.2) together with

the conservation law (1.14) is assumed as the fundamental description of

all realistic bodies composed of continuum matter thus every result must be

derived from these equations solely. In their approach, the charge distribution

is not assumed to be rigid in the instantaneous rest frame. In order to

obtain a simple and universal description of the motion of small bodies,

they considered a modified point particle limit where not only the size of

the body goes to zero but its charge e and mass m also go to zero while

their ratio e/m is fixed. Using this modified limit they found no divergent

physical quantities. In their approach, the Lorentz force equation emerges

as a lowest order description of the bulk motion of a small but extended

body whereas self-force effects (i.e. RR effects) as well as the dipole force

and spin force effects arise as a first-order correction to the motion of the

body. As a result of their derivation, they got the LL equation (1.13) as the

correct approximation of the equation of motion with RR for a particle with

negligible magnetic and electric dipole momentum.

For completeness, we mention that several other possible equation of mo-

tion with RR effects have been proposed, which have been derived in very
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different ways but lead to nearly the same results within the boundaries of

classical mechanics. Among these, the most popular are the Eliezer [62] or

Ford-O’Connell [33, 34] equation and the Sokolov [20] equation.

The Eliezer or Ford-O’Connell equation is

duµ

dτ
=

e

mc
F µνuν+

eτ0
m
∂αF

µνuνu
α+

eτ0
mc

(

F µν duν

dτ
+ (F ναuα

duν

dτ
)uµ

)

(1.16)

This equation can be obtained substituting in the right hand side of the LAD

equation (1.7) the estimate (1.12) only once and it therefore differs from the

LAD and LL equations for terms of the order O (τ 2
0 d

2/dt2). As pointed out

by Ford and O’Connell, who derived Eq.(1.16) with an approach based on

the use of the generalized quantum Langevin equation [33], this equation

does not lead to either runaway solutions or acausal behavior.

Recently, Sokolov et al. proposed a different couple of classical equations

of motion that are derived phenomenologically [20]. The phenomenological

equations proposed by Sokolov et al. are (see Eqs. (6, 7) in Ref. [20])

dPµ

ds
=
e

c
F µν dxν

ds
− IPµ

mc2
(1.17)

dxµ

ds
=

Pµ

m
+ τ0

I

IE

eF µνPν

m2c
(1.18)

where Pµ is a generalized momentum5, s is the time in the “momentarily

comoving Lorentz frame (MCLF) such that the spatial components of Pµ

vanish”6, I is the “total emission intensity” and IE is the “dipole emission

intensity” (see Ref. [20]). In Ref. [20], it is suggested that I can be chosen

phenomenologically i.e. I “can be a random function with its average equal

to IE in order to trace the quantum theory limit or to include emission with

large photon energy” (see Ref. [20] for details). Anyway, at least for the

single electron dynamics in the classical framework, the value I = IE should

be chosen. In this latter case, the system of equations (1.17, 1.18) differs

from the LL equation for small terms. In section 1.2, it is shown that the LL

5This generalized momentum is not collinear with the four-velocity uµ = c−1dxµ/dτ .
6In general, since Pµ is not proportional to the four-velocity uµ, the time in the MCLF

s is not the proper time τ i.e. it is not the time measured in the instantaneous rest frame

of the electron where the spatial components of uµ vanish.
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equation (1.13) and the Sokolov equation (with I = IE in Eqs. (1.17, 1.18))

have nearly the same leading term even for fields well beyond the classical

framework such as |E|, |B| ∼ m2c3/~|e|.
Substituting Eq. (1.18) in Eq. (1.17) we get the momentum equation for

an electron7

dPµ

ds
=

e

mc
F µνPν +

τ0e
2

m2c2
I

IE
F µνFναPα − IPµ

mc2
(1.19)

and multiplying Eq. (1.19) for Pµ and recalling that

IE =
τ0e

2

m3c2
(PνF

νµFµαPα) (1.20)

we get

Pµ
dPµ

ds
= mI

(

1 − PµPµ

m2c2

)

. (1.21)

When the electron is free (i.e. F νµ = 0) from Eqs. (1.17, 1.18)) we have

PµPµ = m2c2, then from Eq. (1.21) we get that the condition PµPµ =

m2c2 is preserved. We mention that while the LL equation (1.13) preserves

the on-shell condition on the four velocity uµuµ = 1, the Sokolov equations

(1.17, 1.18)) preserve the condition on the generalized momentum PµPµ =

m2c2 (see also the discussion in section 4 on page 4 of Ref. [21]).

Finally, we point out that the condition uµdu
µ/dτ = 0 is identically

fulfilled by the LL equation (1.13) while from Eq. (1.21) we get that the

condition PµdPµ/ds = 0 is fulfilled only when PµPµ = m2c2. In a computer

simulation of a laser pulse interacting with a plasma such as those performed

using the particle-in-cell (PIC) method, numerical effects may lead to small

deviations from PµPµ = m2c2. Since from Eq. (1.21) PµdPµ/ds 6= 0 if

PµPµ 6= m2c2 then a small deviation due to numerical effects may be enlarged

during the simulation.

1.2 The physical picture

In order to investigate the physical properties of the RR force as well as

to determine the relative importance of each term and to develop possible

7Compare with Eq.(5) in Ref. [20].
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suitable approximations, it is useful to consider the components of the four-

dimensional LL equation (1.13). From the temporal component of the four-

dimensional LL equation we get the rate of change of the electron’s energy

dγ

dt
=

e

mc2
(v · E) +

2e3

3m2c4
γ

[

∂E

∂t
+ (v · ∇)E

]

· v

c
+

+
2e4

3m3c5

[

(

E +
v

c
× B

)

· E − γ2

[

(

E +
v

c
× B

)2

−
(v

c
· E

)2
]]

(1.22)

while from the spatial components we get the three-dimensional form of the

LL equation

dp

dt
= e

(

E +
v

c
× B

)

+
2e3

3mc3
γ
[( ∂

∂t
+ v · ∇

)

E +
v

c
×

( ∂

∂t
+ v · ∇

)

B
]

+
2e4

3m2c4

{

(

E +
v

c
×B

)

×B +
(v

c
· E

)

E

− γ2
[(

E +
v

c
×B

)2

−
(v

c
· E

)2]v

c

}

(1.23)

where v = dx/dt is the three-dimensional velocity, p = γmv is electron’s

momentum and γ =
√

1 + p2/m2c2 is the relativistic factor.

Since in the following we mostly refer to the case of interaction with a

quasi-monochromatic wave i.e. a laser pulse, in order to highlight the relevant

scales as well as to include the RR force in a numerical code, it is useful to

employ dimensionless quantities by normalizing time in units of ω−1, space

in units of cω−1, momenta in units of mc and fields in units of mωc/|e|
where ω = 2πc/λ is the laser frequency and λ is the laser wavelength. Then,

Eq. (1.23) becomes

dp

dt
= − (E + v × B) −

(

4πre

3λ

) {

γ
[

(

∂

∂t
+ v · ∇

)

E

+ v ×
(

∂

∂t
+ v · ∇

)

B
]

− [(E + v × B) ×B + (v · E)E]

+ γ2
[

(E + v ×B)2 − (v · E)2
]

v

}

(1.24)

The LL equation (1.24) is strongly non-linear both in the fields and in the

electron momentum. In general, the importance of RR effects on the electron
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motion depends on the strength and geometry of the electromagnetic fields,

as well as on the electron energy, which is a function of the amplitude and fre-

quency of the field itself. In a plasma with many relativistic electrons which

are subject both to the laser field and to the self-generated fields, it is very

difficult to asses a priori the relevance of RR effects; however one would need

to estimate at least the scaling of RR effects with the laser pulse parameters.

From Eq. (1.24) we find that the strength of the RR force depends on the

ratio of the ‘effective’ electron radius 4πre/3 by the laser wavelength λ. For

a typical laser wavelength λ ∼ 0.8µm and therefore 4πre/3λ ≈ 1.47 × 10−8.

This implies that RR effects are significant, i.e. the RR force is comparable

with the Lorentz force, only when ultrarelativistic electrons γ ≫ 1 move

inside superintense fields
√

(E2 + B2)/2 ≫ 1 (normalized units).

It is useful to consider the qualitative properties of the RR force in the

special case of electron motion in a plane wave. For this problem, the LL

equation has an exact analytical solution for arbitrary pulse shape and polar-

ization of the plane wave [39] and is considered in detail in section 2.2. Hence,

the plane wave case may provide a useful benchmark and reference for RR

effects in superstrong laser fields and, in the following discussion, we mostly

refer to a plane wave. In a many-particle system such as a high-density

plasma, the collective fields are generally much more complicated but the

plane wave results may still provide some guidance for their interpretation.

When an ultrarelativistic electron is moving into a strong laser pulse and

is not co-propagating with the pulse itself (when co-propagating the RR

force tends to vanish, see below for details), the last term of the RR force in

Eq. (1.24) (proportional to γ2) is approximately γ2 larger than the preceding

one and is approximately γ
√

(E2 + B2)/2 larger than the term containing

the derivatives of the fields. This suggests that the effect of the RR force

is almost completely determined by the last term of Eq. (1.24) while the

smaller terms may often be neglected. Moreover, at least for the case of

a plane wave, it is possible to show (see Ref. [11] and section 1.2.1) that

the force related to the electron spin is about 137γ larger than the term of

Eq. (1.24) containing the derivatives of the fields. This ‘derivative’ term in

Eq.(1.24) must therefore be neglected as effects of the order or smaller than

quantum effects are neglected. It is therefore possible to consider a reduced
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LL equation

dp

dt
= − (E + v ×B) +

(

4πre

3λ

) {

[(E + v ×B) × B + (v · E)E]

− γ2
[

(E + v × B)2 − (v · E)2]v

}

(1.25)

where the term containing the derivatives has been removed. The smallness

of the contribution of the removed term was confirmed up to optical laser

intensities of the order of I ∼ 1024 W cm−2 comparing the results of one-

electron simulations in a plane wave with versus without this term using a

fourth-order Runge-Kutta method. In our PIC simulations, the reduced LL

equation (1.25) was always used instead of the full LL equation (1.24).

We point out that even though the term in Eq.(1.25) that is proportional

to γ2 is typically much larger than the previous one, which is often of the

same order of magnitude of the neglected ‘derivative’ term, both terms in

Eq.(1.25) are essential to preserve the on-shell condition8 uµu
µ = 1. In fact,

the term proportional to γ2 is zero in the instantaneous rest frame. However,

from a practical point of view, PIC simulations with the RR force included

are performed in the laboratory frame, i.e. the frame where the plasma target

is initially at rest. It is therefore possibly instructive to neglect for a moment

the smaller term and write down an ‘effective’ reduced LL equation in the

laboratory frame
dp

dt
= fL − dv (1.26)

where fL = − (E + v × B) is the Lorentz force and d is

d ≡
(

4πre

3λ

)

γ2
[

(E + v × B)2 − (v ·E)2]

=

(

4πre

3λ

)

γ2
[

E2 − (v · E)2 + v2B2 − (v · B)2 − 2v · (E ×B)
]

(1.27)

It is straightforward to show that d is always non-negative as Eq.(1.27) can

be rewritten as

d =

(

4πre

3λ

)

γ2
[

f2
L − (v · fL)2

]

=

(

4πre

3λ

)

γ2f2
L

(

1 − v2 cos2(θ)
)

≥ 0 (1.28)

8This is immediately clear looking at the four-dimensional expression of the LL force

Eq. (1.13). On the contrary, the derivative terms can be safely neglected.
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where 1 > |v| ≥ 0 and θ is the angle between v and fL.

In equation (1.26), RR effects appear as a ‘friction’ force with a nonlinear

and anisotropic friction coefficient given by d. When an electron moves in an

electromagnetic field, it feels a viscous force opposite to its velocity. Since the

RR force in the laboratory frame is mainly a ‘friction’ force, in simple cases it

is possible to estimate when RR effects become important with the dominant

friction term of Eq. (1.22) evaluating the energy losses in the characteristic

time scale of the system e.g. the cyclotron period or the laser period [10].

In the laboratory frame and for an ultra-relativistic electron, the friction

coefficient d may be used as a measure of the strength of the RR force in units

of mωc. In the case of electron motion in a plane wave, d may be compared

directly with the normalized wave amplitude a0 (a0 = |e|E/mωc in Gaussian

units, where E is the peak value of the electric field). Setting E×B along the

positive x-axis, the RR force is large for transverse motion (d → (4πre

3λ
)γ2a2

0

when v2
y + v2

z → 1), tends to vanish (d→ 0) when the electron co-propagates

with the wave (vx → 1) and has its maximum value (d→ (4πre

3λ
)γ24a2

0) when

the electron counter-propagates with the wave (vx → −1). In the interaction

of a laser-pulse with a solid-density plasma, the dynamics of the particles as

well as the dynamics of the fields are much more complicated and the local

value of d(x,p,E,B) must be obtained from the simulation data. In fact, as

a result of our PIC simulations (see Ref. [11] and chapter 5), we found that

the value of d can change by four orders of magnitude just changing the laser

polarization with the other parameters fixed.

The friction effect of the RR force physically corresponds to the single

particle ‘incoherent’ emission of high-frequency radiation by ultra-relativistic

electrons. When the RR force is included in the numerical simulation of a

collisionless, relativistic plasma, it is typically not feasible to resolve electro-

magnetic waves at such high frequencies, much larger than the inverse of the

temporal resolution. Thus, it is assumed that such radiation escapes from the

system without re-interacting with other electrons. Note that even a solid-

density plasma is transparent to such radiation, since in the RPA regime

(a0 & 300) the RR effect is mostly due to the emission of radiation with

photon energies in the MeV range, while the plasma frequency corresponds

to at most a few hundreds of eV. In fact, for a plane wave with a0 ≫ 1,
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the instantaneous emission spectrum is approximately synchrotron-like and

therefore the main part of the emitted radiation is concentrated in the re-

gion of frequencies ωe ∼ γ2|e|E/mc = γ2a0 ω while the plasma frequency

is ωp =
√

n/nc ω and the ratio ωe/ωp = γ2a0

√

nc/n is typically of the or-

der of ∼ 105 for solid-density targets (n ∼ 100nc) and superintense pulses

(a0 ∼ 300). From the point of view of the energy balance of the system,

the energy radiated at high frequencies appears as a loss term or ‘dissipa-

tion’. In our PIC simulations, the percentage of radiative loss is measured by

comparing the energy balance of the same simulation9 with versus without

RR.

Finally, we compare the three-dimensional LL equation (1.23) with the

three-dimensional Sokolov equation (see Eqs. (12, 13) in Ref. [20])

dp

dt
= fL +

e

c
[δu× B] − uγ2

c2
(δu · fL)

dx

dt
= u + δu (1.29)

where

u =
p

√

m2 + p2/c2
, fL = eE +

e

c
[u ×B] (1.30)

and

δu =
τ0
m

fL − u(u · fL)/c2

1 + τ0(u · fL)/(mc2)
(1.31)

Eq.(1.29) differs from the LL equation (1.23) for terms that are small even

for QED fields |E|, |B| ∼ m2c3/~|e|. In fact, τ0(u · fL)/(mc2) ≤ τ0|e||E|/mc
and for |E| = m2c3/~|e| we have τ0|e||E|/mc = 2e2/3~c ∼ 1/205 and there-

fore δu ≪ u for a relativistic electron10. Hence, Eq.(1.29) reduces to

dp

dt
≃ fL +

eτ0
mc

[fL ×B − (u · fL)(u× B)/c2] − τ0γ
2

mc2
(f2

L − (u · fL)2/c2)u

dx

dt
≃ u (1.32)

9In a PIC code, the total energy of fields and particles is conserved within the limits

of numerical accuracy, typically within 1% in our 1D PIC simulations.
10This is not an actual restriction as RR effects are negligible for non-relativistic elec-

trons and, for QED strong fields, an electron initially at rest becomes relativistic in a

Compton time λC/c ≈ 1.29 × 10−21 s.
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while the reduced LL equation (1.25) is (using the same notation of Eq.1.32)

dp

dt
= fL +

eτ0
mc

[fL × B + (u · fL)E/c] − τ0γ
2

mc2
(f2

L − (u · fL)2/c2)u

dx

dt
= u (1.33)

Eq.(1.32) and Eq.(1.33) have the same leading friction-like term and they

differ for terms that are smaller than quantum effects.

1.2.1 The RR force versus the spin force

In this section we compare the order of magnitude of the RR force

Eq. (1.13) and of the force due to the magnetic dipole associated with the

electron spin.

The correct relativistic generalization of the spin force for an electron has

been discussed in Ref. [16] (see also Ref. [36] for a different derivation) and

its expression is

gµ = −1

2
Qγδ∂µFγδ +

1

2

(

Qγδ∂αFγδu
α
)

uµ (1.34)

where Qγδ = εγδαβuαmβ and we recall the definition of the four-velocity

uα = (γ, γv/c) and of the magnetic dipole moment four-vector

mα =
(

γm · v

c
, γm

)

(1.35)

where

m =
m0

γ
+
γ(v

c
· m0)

1 + γ

v

c
(1.36)

and m0 is the magnetic dipole moment in the instantaneous rest frame

m0 = g
e~

2mc

(

S

~

)

(1.37)

where g ≈ 2 is the gyromagnetic ratio and S = ~〈~σ〉/2 is the expectation

value of the spin vector and ~σ are the Pauli matrices.

It may be convenient to introduce the dual tensor of the electromagnetic

field Fαβ = εαβγδFγδ/2 then the spin force Eq. (1.34) becomes

gµ = −∂µFαβuαmβ + (∂γFαβuαmβu
γ)uµ (1.38)
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In the non-relativistic limit Eq. (1.38) becomes

gj = mi∂jBi = ∂jmiBi (1.39)

or equivalently

g = ∇(m · B) (1.40)

which is the usual non-relativistic force for a magnetic dipole.

Eq. (1.34) or equivalently Eq. (1.38) have to be compared with the RR

force which can be conveniently split into two four-forces

fµ
R1 =

2e3

3mc2
(∂αF

µνuνu
α) (1.41)

fµ
R2 =

2e4

3m2c4
(

F µνFναu
α + (F νβuβFναu

α)uµ
)

(1.42)

In the classical framework and in the laboratory frame11, both the RR

force and the spin force significantly affect the dynamics only in the ultra-

relativistic limit while their contribution is negligible in the non-relativistic

limit. In the ultra-relativistic limit, the spin force is dominated by the last

term of Eq. (1.38) i.e. it is directed along the velocity and its strength is

[

∂γFαβuαmβu
γ
]

= γ3
[

(DtB · m) + (DtE× v

c
) · m− (DtB · v

c
)(

v

c
· m)

]

(1.43)

where we have introduced the operator

Dt ≡
(

1

c

∂

∂t
+

(v

c
· ∇

)

)

(1.44)

which is the ‘total’ time derivative.

In the ultra-relativistic limit γ ≫ 1 and from Eq. (1.36)

m ≈ (
v

c
·m0)

v

c
+

m0

γ
= (

v

c
·m)

v

c
+

m0

γ
. (1.45)

since (v · m0) = (v · m) and from Eq. (1.45) we get for the first term of

Eq. (1.43)

(DtB · m) ≈ (DtB · v

c
)(

v

c
· m) +

(DtB · m0)

γ
. (1.46)

11That is in the frame where the plasma target is initially at rest, this discussion is

similar to that of the effective reduced LL equation (1.26).
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The first term of Eq. (1.46) cancels the last term of Eq. (1.43) and substi-

tuting Eq. (1.36) in the second term of Eq. (1.43) we get

(DtE× v

c
) · m = (DtE× v

c
) · m0

γ
(1.47)

and in the ultra-relativistic limit Eq. (1.43) becomes

[

∂γFαβuαmβu
γ
]

≈ γ2
(

DtB − v

c
×DtE

)

· m0 (1.48)

Since in the following we mostly refer to the case of a plane wave, it is

convenient to use normalized quantities, then Eq. (1.48) becomes

−
(

πλC

λ

)

γ2 (DtB − v ×DtE) · 〈~σ〉 (1.49)

while the normalized spatial components of Eq.(1.41) are

−
(

4πre

3λ

)

γ (DtE + v ×DtB) (1.50)

and the dominant term of Eq. (1.42) (i.e. the friction-like term) is directed

along the velocity and its strength in normalized units is

−
(

4πre

3λ

)

γ2
[

(E + v × B)2 − (v · E)2] (1.51)

Considering an ultra-relativistic electron interacting with a plane wave

with normalized laser amplitude a0:

1. From Eq. (1.49) the order of magnitude of the spin force is ∼ πλCγ
2a0/λ

and we recall that λC = reα
−1 and α ∼ 1/137.

2. From Eq. (1.50) the order of magnitude of the ‘derivative’ term of the

RR force is ∼ 4πreγa0/3λ.

3. From Eq. (1.51) the order of magnitude of the main friction-like term

of the RR force is ∼ 4πreγ
2a2

0/3λ.

4. The order of magnitude of the Lorentz force is a0.

In conclusion, in the interaction of an ultra-relativistic electron with a

plane wave in the classical framework:
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1. The spin force is roughly α−1γ ∼ 137γ larger than the ‘derivative’ term

of the RR force. Both forces have an oscillatory behavior and tend to

average to zero after a wave cycle. The ‘derivative’ term of the RR

force should therefore be neglected as its effect is much smaller than

quantum effects such as spin effects which are neglected in the classical

framework.

2. The dominant friction-like term of the RR force is is roughly αa0 ∼
a0/137 times the spin force, since in our simulations a0 & 300 the

RR force dominates over the spin force. Moreover, the effect of the

friction-like term of the RR force cumulates with the number of wave-

cycles while the effect of the spin force tends to average to zero after a

wave-cycle.

3. The Lorentz force is is roughly λ/πλCγ
2 times the spin force. When

γ &
√

λ/πλC the spin force is comparable with the Lorentz force and

the effect of spin degrees of freedom may become important. The order

of magnitude of the threshold for spin effects is
√

λ/πλC ∼ 812 for a

typical laser wavelength λ ∼ 0.8µm.

Finally, we mention that even though the issue of quantum effects in

laser-plasma interaction at ultra-high intensities is currently much debated,

it seems that the role of the spin degrees of freedom as well as their effect

on the electron dynamics have not been considered yet. As discussed above,

spin effects may become important when the order of magnitude of the spin

force and of the Lorentz force are comparable during a wave-cycle.
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Chapter 2

Electron motion in strong

electromagnetic fields

The study of the motion of a single electron in a strong electromagnetic

field is a natural starting point for a preliminary investigation of non-linear

laser-plasma interactions. In fact, the study of the orbits of a single elec-

tron provides a reference picture in order to test suitable numerical schemes,

interpret more complex systems and identify the relevant physical quantities.

2.1 Constant and uniform magnetic field

We begin our study focusing on the simple case of zero electric field

and a constant and uniform magnetic field1 along the z axis B = (0, 0, B).

The temporal component (1.22) of the four-dimensional LL equation (1.13)

provides the energy equation

dγ

dt
= −ω2

cτ0γ
2

(

v2
⊥

c2

)

(2.1)

while the spatial components (1.23) become

1

c

d(γv)

dt
=

e

mc

(v⊥

c
×B

)

− ω2
cτ0

(v⊥

c

)

− ω2
cτ0γ

2

(

v2
⊥

c2

)

v

c
(2.2)

where ωc = |e|B/mc is the cyclotron frequency, v2
⊥ = v2

x + v2
y and v =

v⊥+vzẑ. In order to make computations as simple as possible while retaining

1This problem can be fully solved and has been studied in detail in [29].
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the physical content, we discuss the case vz = 0. In this case, exploiting the

identity v2
⊥/c

2 = (1 − 1/γ2), the energy equation (2.1) gives

dγ

dt
= − 1

τc

(

γ2 − 1
)

(2.3)

where τc = 1/(ω2
cτ0) is a characteristic time of the damping process due to

radiation losses. The general solution of (2.3) is:

γ(t) =
e2(t/τc) + e2c

e2(t/τc) − e2c
= coth

(

t

τc
− C

)

(2.4)

where

C = −1

2
ln

(

γ(0) + 1

γ(0) − 1

)

(2.5)

In order to highlight the relevant scale of RR effects, we consider the

simpler case of an initially ultrarelativistic electron γ(0) = γ0 ≫ 1 then

Eq.(2.3) reduces to
dγ

dt
= − 1

τc
γ2 (2.6)

and the general solution is:

γ(t)

γ0

=
1

1 + tγ0/τc
(2.7)

The function γ(t) decreases quickly (see Fig. 2.1) within a characteristic time

τc/γ0. Physically, this implies that the electron loses a significant fraction of

its initial energy in a time τc/γ0; more precisely, the energy halves γ(t) ≃ γ0/2

after a time t = τc/γ0.

It’s well known from standard textbooks [37] that in absence of RR an

electron performs a circular motion with constant energy ε = γmc2 = ε0

and the gyration frequency is ω = ωc/γ0. In order to estimate the relevance

of RR effects, the characteristic time of revolution due to the Lorentz force

T = γ0Tc where Tc = 2π/ωc has to be compared with the characteristic

damping time of the RR force τc/γ0. When the time of revolution is larger

that the damping time T > τc/γ0 i.e. when γ0 > (1/2π)
√

Tc/τ0, then the

RR force dominates the electron motion.

However, there is an important constraint that comes from the require-

ment that we are not outside the boundaries of classical mechanics: the
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relative change of the Lorentz force in a time λC/c must be small in the in-

stantaneous rest frame i.e. the basic restriction (1.11) must be fulfilled. The

restriction (1.11) divided by m2c2 after some lengthly calculations yields

∣

∣

∣

∣

1 − γ2

(

v2
⊥

c2

)

(γ2 − 2) +

(

v4
⊥

c4

)

γ4

∣

∣

∣

∣

≪ c2

ω2
cλ

2
C

(2.8)

and exploiting v2
⊥/c

2 = (1 − 1/γ2) we finally get the simple inequality

γ ≪ c

ωcλC
=

αTc

3πτ0
(2.9)

The RR force damps the motion thus γ(t) ≤ γ0 and it is sufficient to require

that γ0 ≪ αTc/3πτ0. In conclusion, the energy interval

1

2π

√

Tc

τ0
< γ0 ≪

α

3π

Tc

τ0
(2.10)

defines the strong radiation damping regime in the framework of classical

mechanics; the larger the ratio Tc/τ0 the larger the interval of energies where

RR effects are dominant in the classical framework. For instance, for a

magnetic field of the order of B ∼ 104 G we have Tc ∼ 3.57 × 10−11 s while

τ0 ∼ 6.27 × 10−24 s and from (2.10) we have: 3.8 × 105 < γ0 ≪ 4.4 × 109.

Figure 2.1: Plot of γ(x)/γ0 where x = t/(τc/γ0) for γ0 = 15. The black line

is the solution (2.4) and the red line is the solution (2.7).
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2.2 Single electron in an electromagnetic plane

wave

In this section, we consider the exact analytical solution of the LL equa-

tion for the case of an arbitrary plane wave [39]. This analytical solution

is used in chapter 4 as a benchmark to test our leap-frog pusher with RR

effects included.

As discussed previously, in order to highlight the relevant physical scales

and to implement the equation of motion into numerical codes, normalized

quantities are used










t 7→ ωt

x 7→ kx

v 7→ v/c

{

p 7→ p

mc

A 7→ |e|
mc2

A

{

E 7→ |e|
mcω

E

B 7→ |e|
mcω

B

{

ω = c2π
λ

k = 2π
λ

(2.11)

This implies that time is in units of ω−1, space is in units of k−1 = cω−1,

velocities in units of c, momenta in units of mc and fields in units of mcω/|e|.
We also recall the ‘practical’ relation between the normalized laser amplitude

a0 and the laser intensity I

a0 ≡
|e|E
mωc

≈ 0.85

√

Iλ2

1018 W cm−2 µm2
(2.12)

Let’s consider an arbitrary plane wave moving along the positive x-axis,

we introduce the phase of the wave at the particle position ϕ = t − x(t) as

the independent variable. The four-vector potential in the Coulomb gauge is

Aµ(ϕ) = (0, 0, a0ψ1(ϕ), a0ψ2(ϕ)) (2.13)

thus the electric and magnetic fields are

E = (0,−a0ψ
′
1(ϕ),−a0ψ

′
2(ϕ)) (2.14)

B = (0, a0ψ
′
2(ϕ),−a0ψ

′
1(ϕ)) (2.15)

where ψ1(ϕ) and ψ2(ϕ) are two arbitrary scalar functions of ϕ and the prime

indicates the derivative respect to ϕ. In the special case of a monochromatic

plane wave

ψ1(ϕ) = δ cos(ϕ); ψ2(ϕ) =
√

1 − δ2 sin(ϕ) (2.16)
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where δ is the polarization parameter, δ = {±1, 0} for linear polarization

and δ = {±1/
√

2} for circular polarization.

First, we introduce the components γ(ϕ), px(ϕ), py(ϕ), pz(ϕ) of the exact

solution with the auxiliary functions h(ϕ) and Ii(ϕ) and then we discuss their

physical interpretation in terms of the electric (2.14) and magnetic (2.15)

fields. The components of the exact solutions are

γ(ϕ) =
1

h(ϕ)

[

γ0 +
1

ρ0

(

I1(ϕ)py0
+ I2(ϕ)pz0

)

+
1

2ρ0

(h2(ϕ) − 1) +
1

2ρ0

(

I2
1 (ϕ) + I2

2 (ϕ)
)

]

(2.17)

px(ϕ) =
1

h(ϕ)

[

px0
+

1

ρ0

(

I1(ϕ)py0
+ I2(ϕ)pz0

)

+
1

2ρ0
(h2(ϕ) − 1) +

1

2ρ0

(

I2
1 (ϕ) + I2

2 (ϕ)
)

]

(2.18)

py(ϕ) =
1

h(ϕ)

[

py0
+ I1(ϕ)

]

(2.19)

pz(ϕ) =
1

h(ϕ)

[

pz0
+ I2(ϕ)

]

(2.20)

where the subscript zero indicates quantities at t = 0 and we have introduced

the Doppler factor

ρ0 ≡ γ0(1 − vx0
) (2.21)

that accounts for the change in the wavelength. In fact, in the case vy0
=

vz0
= 0 the formula (2.21) reduces to the well-known expression

ρ0 =

√

1 − vx0

1 + vx0

. (2.22)

We have also introduced the following auxiliary functions

h(ϕ) = 1 +

(

4

3
π
re

λ

)

ρ0

∫ ϕ

ϕ0

[E(φ) × B(φ)]x dφ (2.23)

and

Ii(ϕ) = −
∫ ϕ

ϕ0

Ei(φ)dφ

−
(

4

3
π
re

λ

)

ρ0

[

Ei(ϕ) − Ei(ϕ0)
]
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−
(

4

3
π
re

λ

)

ρ0

∫ ϕ

ϕ0

dφEi(φ)

∫ φ

ϕ0

dϑ
(

E(ϑ) × B(ϑ)
)

x
(2.24)

where the suffix x indicates the component x of the vector E ×B.

In order to identify the relevant terms and parameters, we substitute

in equations (2.23) and (2.24) the components of the electric (2.14) and

magnetic (2.15) fields

h(ϕ) = 1 +R

∫ ϕ

ϕ0

dφ
[

(ψ′
1(φ))2 + (ψ′

2(φ))2
]

(2.25)

and

Ii(ϕ) = a0

[

ψi(ϕ) − ψi(ϕ0)
]

+
R

a0

[

ψ′
i(ϕ) − ψ′

i(ϕ0)
]

+ Ra0

∫ ϕ

ϕ0

dφψ′(φ)

∫ φ

ϕ0

dϑ
[

(ψ′
1(ϑ))2 + (ψ′

2(ϑ))2
]

(2.26)

where we have introduced the RR parameter

R ≡
(

4

3
π
re

λ

)

ρ0 a
2
0 (2.27)

that signals the onset of the strong RR regime (see Refs.[17, 10]). The usual

solution without RR effects is recovered formally2 in the limit re/λ → 0 or

equivalently R → 0 so it is easy to identify the new terms due to the presence

of the RR force. By inspection of equations (2.17 - 2.20), we see that the most

relevant factors are h(ϕ) and I2
i (ϕ). We provide a physical interpretation of

each term and discuss how it affects the electron motion.

2.2.1 The physical picture and the relevant parameters

We start discussing the function h(ϕ), it is essentially an energy-momentum

suppression factor due to the irreversible four-momentum loss by emission

2This does not imply that the RR force vanishes in the limit λ → ∞ i.e. constant

uniform fields as we are using normalized units that are implicit functions of λ.
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of radiation. In fact, in equations (2.17 - 2.20) h(ϕ) appears at the denom-

inator suppressing the initial electron energy and momentum. Subtracting

Eq.(2.18) from Eq.(2.17) we get

γ(ϕ) − px(ϕ) =
1

h(ϕ)
(γ0 − px0

) (2.28)

and therefore 1 − h(ϕ)−1 provides the percentage of violation of the usual

conservation law γ(ϕ)−px(ϕ) = (γ0 − px0
) and of the Lawson-Woodward the-

orem (see Ref. [22] and references therein). Since h(ϕ0) = 1, then Eq.(2.28)

can be recast as a ‘modified conservation law’

h(ϕ) (γ(ϕ) − px(ϕ)) = h(ϕ0) (γ0 − px0
) (2.29)

and, since Ii(ϕ0) = 0, from Eqs. (2.19, 2.20) a similar ‘modified conservation

law’ can be written for the transverse momentum

h(ϕ)py, z(ϕ) − I1, 2(ϕ) = h(ϕ0)py0, z0
− I1, 2(ϕ0) (2.30)

and therefore if h(ϕ) 6= 1 or I1, 2(ϕ) 6= 0 after the electron-plane wave inter-

action phase, then the electron has gained a net longitudinal (see Eq. (2.18))

and transverse momentum (see Eq. (2.19, 2.20)). The fact that the RR force

allows the electron to gain a net momentum after the interaction with a

plane wave is not an intrinsic property of the RR force; it is known that

a simple constant friction force in Newton’s equations allows a net gain

of energy and momentum in the interaction with a plane wave. For in-

stance, for a non-relativistic electron in a linearly polarized plane wave with

a constant friction term k > 0 we have dv/dt = −(E + v × B) − kv with

E = (0, E0 sin(t), 0) and B = (0, 0, E0 sin(t)). Assuming |v| ≪ 1 then

vy ≃ E0(cos(t) − 1) + vy0
and substituting into the equation for vx we have

dvx/dt ≃ −E0vy0
sin(t) + E2

0(sin(t) − sin(2t)/2) − kvx and if k > 0 then the

value of vx is not zero after an integer number of laser periods.

Figure 2.2 shows the trajectory of an electron during the interaction with

a monochromatic linearly polarized plane wave in the so called “average rest

frame” i.e. in the frame where the electron describes a ‘figure of eight’ when

the RR force is neglected. The red curve describes the electron trajectory

without RR effects while the black curve describes the electron trajectory
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with RR effects. When RR effects are accounted, the ‘figure of eight’ begins

to open and the electron drifts with increasing velocity along the plane wave

propagation direction.

From equation (2.23) we see that the RR contribution is
(

4

3
π
re

λ

)

ρ0

∫ ϕ

ϕ0

[E(φ) × B(φ)]x dφ (2.31)

which is the normalized fluence times the Doppler factor times the ratio of

the effective electron size with the laser wavelength. This implies that what is

really important for the final RR contribution is the ratio between the effec-

tive electron size and the laser wavelength in the initial rest frame times the

electromagnetic momentum integrated along the electron’s worldline. From

equation (2.25) we see that the RR contribution is relevant if

R

∫ ϕ

ϕ0

dφ
[

(ψ′
1(φ))2 + (ψ′

2(φ))2
]

& 1 (2.32)

The two following regimes are possible:

1. The radiation damping regime R ≪ 1 and the integral contribution is

much larger than the unity so that the total result is

R

∫ ϕ

ϕ0

dφ
[

(ψ′
1(φ))2 + (ψ′

2(φ))2
]

& 1

which implies that the laser pulse is very long and the RR contribu-

tion becomes important only as a cumulative effect so that the total

integrated electromagnetic momentum is large. At fixed wavelength

λ, peak intensity I and initial electron conditions, two pulses that dif-

fer for the total energy-momentum content produce different final RR

effects.

2. The strong radiation damping regime R & 1. This implies that the RR

force dominates the electron dynamics and

R

∫ ϕ

ϕ0

dφ
[

(ψ′
1(φ))2 + (ψ′

2(φ))2
]

& 1

the electron loses a large fraction of its initial energy even after a single

wave cycle. Even in the case that the final RR contribution is the same
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Figure 2.2: Electron trajectory during the interaction with a monochromatic

linearly polarized plane wave in the so called “average rest frame”. The

normalized amplitude of the plane wave is a0 = 100 with a wavelength

λ = 0.8µm that corresponds to an intensity I ∼ 2.2 × 1022 W cm−2. The

plane wave is propagating along the positive x-axis while the electron is

initially counter-propagating with the plane wave with initial momentum

px0
= −35.35mc. The red curve describes the electron trajectory without

RR effects while the black curve describes the electron trajectory with RR

effects.
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obtained by a less intense but longer laser pulse, the dynamics during

the electron-pulse interaction, the physical scales and the emitted spec-

trum are very different.

We point out that the temporal scales required to have significant RR

effects for fixed RR parameter R are strongly dependent on the motion since

the integral contribution in Eq. (2.32) can grow very quickly or very slowly

in time compared to the wave period depending on the electron worldline.

For instance, in the interaction of an electron initially at rest with a plane

wave with wavelength λ = 0.8µm and normalized amplitude a0 = 1000, from

Eq. (2.27) we have R ∼ 0.015. The same value is obtained in the interaction

of an electron with initial momentum px0
= −50mc and a plane wave with

λ = 0.8µm and a0 = 100. However, in the first case the integral in Eq. (2.32)

grows slowly in time because the phase ϕ grows slowly in time. In fact, in the

first case the electron is immediately pushed along the positive x-direction

by the Lorentz force, then ϕ = t − x(t) ≃ ϕ0 for many waveperiods and

the RR contribution in Eq. (2.32) grows slowly in time (see the left frame

of Fig. 2.3). In the second case, the electron collides head-on with the laser

pulse and both the phase ϕ = t−x(t) and the RR contribution in Eq. (2.32)

grow quickly (see the right frame of Fig. 2.3).

The other important functions in Eqs. (2.17 - 2.20) are I1, 2(ϕ). These

functions give the dominant contribution to RR effects during the electron-

wave interaction as they appear squared in Eqs. (2.17, 2.18) and they contain

a term that depends on the third power of the normalized laser amplitude

a0. The formal role of I1, 2(ϕ) in equations (2.19 - 2.20) suggests to interpret

these functions as terms of a ‘modified’ generalized canonical momentum.

From equation (2.24) we see that the first term of Ii(ϕ)

−
∫ ϕ

ϕ0

Ei(φ)dφ (2.33)

is the change in transverse momentum carried out by the electric field, comes

from Lorentz force and it always vanishes after the interaction with the wave

(except in the case ω = 0 i.e. there are constant crossed fields superimposed

with the propagating wave). The second term

−
(

4

3
π
re

λ

)

ρ0

[

Ei(ϕ) − Ei(ϕ0)
]

(2.34)
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is the variation of the electric field seen by the moving particle. This term

comes from the term of the LL equation (1.23) that depends on the derivatives

of the fields, gives a negligible contribution and always vanishes after the

interaction as the fields before Ei(ϕ0) and after Ei(ϕ) the interaction are

zero. The third term

−
(

4

3
π
re

λ

)

ρ0

∫ ϕ

ϕ0

dφEi(φ)

∫ φ

ϕ0

dϑ
(

E(ϑ) × B(ϑ)
)

x
(2.35)

is the change in transverse momentum carried out by the electric field av-

eraged by the normalized fluence and comes from the irreversible friction-

like term of the RR force. This term is usually strongly oscillatory and

for monochromatic-like laser pulses its final contribution is almost zero but

it can significantly affect the motion during the interaction. In fact, using

the components of the electric and magnetic fields Eq. (2.35) becomes (see

Eq. (2.26))

Ra0

∫ ϕ

ϕ0

dφψ′(φ)

∫ φ

ϕ0

dϑ
[

(ψ′
1(ϑ))2 + (ψ′

2(ϑ))2
]

(2.36)

This implies that even thoughR ≪ 1, the RR force can significantly affect the

motion when a0 ≫ 1 and Ra0 > 1. Since γ(ϕ) and px(ϕ) in Eqs. (2.17, 2.18)

depend on the square of Ii(ϕ) (more precisely on I2
i (ϕ)/2ρ0), the two leading

RR term in Eqs. (2.17, 2.18) are

Ra2
0

ρ0

[

ψi(ϕ) − ψi(ϕ0)
]

∫ ϕ

ϕ0

dφψ′(φ)

∫ φ

ϕ0

dϑ
[

(ψ′
1(ϑ))2 + (ψ′

2(ϑ))2
]

(2.37)

which comes from the double product of (2.36) with the Lorentz term (2.33)

and
R2a2

0

2ρ0

[
∫ ϕ

ϕ0

dφψ′(φ)

∫ φ

ϕ0

dϑ
[

(ψ′
1(ϑ))2 + (ψ′

2(ϑ))2
]

]2

(2.38)

which comes from the square of (2.36).

The term in Eq. (2.37) is proportional to the fourth power of a0 and

is independent on ρ0 as Ra2
0/ρ0 = (4πre/3λ)a4

0 (see Eq. (2.27)). Since for

a propagating wave (i.e. when there is no ω = 0 component) the final

contribution of [ψi(ϕ) − ψi(ϕ0)] is zero, this term does not lead to a net

gain of momentum. However, when R < 1 this is the dominant contribution
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due to RR effects during the electron-wave interaction and it can reach peak

values comparable or larger than the initial momentum px0
.

The term in Eq. (2.38) is proportional to the sixth power of a0 and is

proportional to ρ0 as R2a2
0/2ρ0 = (4πre/3λ)2ρ0a

6
0/2 and when R > 1 this

is the dominant contribution due to RR effects. Indeed when R > 1, it

reaches values that are larger than the Lorentz term and the electron motion

is dominated by the RR force.

Figure 2.3: Plots of the longitudinal electron momentum px as a function of

the phase φ in the interaction with a monochromatic linearly polarized plane

wave propagating along the positive x-axis. The red curve is the trajectory

without RR while the black curve is the trajectory with RR. A fourth-order

Runge-Kutta method was used with timestep ∆T = ω−1/1000 and in both

cases the simulation lasted in total 100ω−1. Left frame: the laser wavelength

is λ = 0.8µm and the normalized amplitude is a0 = 1000 corresponding to an

intensity I ∼ 2.2 × 1024 W cm−2, the electron is initially at rest. In this case

the phase φ grows slowly and RR effects do not play an appreciable role, yet.

In fact, the red and the black curves are almost superimposed. Right frame:

the laser wavelength is λ = 0.8µm and the normalized amplitude is a0 = 100

corresponding to an intensity I ∼ 2.2 × 1022 W cm−2, the electron has an

initial momentum px0
= −50mc. In this case the phase ϕ grows quickly and

RR effects are apparent. Comparing the left and the right frames, notice the

different range for the phase φ although the total run time is the same.
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Chapter 3

Kinetic theory for a plasma

with radiation reaction

In this chapter we briefly discuss the kinetic theory of an optically thin

plasma with RR effects included. We determine a few basic properties of the

kinetic equation pointing out the peculiarities of the RR force whose main

new feature is that it does not conserve the phase-space volume. Generalized

kinetic equations for non-conservative forces and in particular for the RR

force have been known since late sixties for the LAD equation [40, 41] and late

seventies for the LL equation [46]. Recently, the generalized kinetic equation

has been used to study the RR effects on thermal electrons in a magnetically

confined plasma [42] and to develop a set of closed fluid equations with RR

effects included [43, 44, 45].

We start recalling the basic physical assumption that allows to replace the

many-body description of a plasma as a discrete system of interacting point-

like particles with a smooth statistical distribution function f = f(x,p, t)

evolving with self-consistent fields in the mean field approximation. The

assumption is that the mean interparticle distance n−1/3, where n is the elec-

tron density, is much smaller than the other relevant spatial scales such as

the wavelength of the emitted or absorbed radiation. When distances below

n−1/3 are probed, the predictions of the statistical theory in the mean field

approximation are no longer valid and effects below n−1/3 must be included

into the kinetic equation with some suitable approach. In particular, when
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the wavelength of the radiation emitted by a plasma λe is much larger than

the interparticle distance i.e. λe ≫ n−1/3, the process of emission as well as

the ‘back-reaction’ due to such emission is accounted self-consistently by the

usual coupled system of kinetic and Maxwell equations in the mean field ap-

proximation. On the contrary, when the wavelength of the emitted radiation

is smaller the mean interparticle distance λe . n−1/3, the emission becomes

a single particle ‘incoherent’ process and such emission must be included in

the kinetic equation with some suitable approach1.

Assuming an optical laser wavelength λ ∼ 1µm and a typical solid-density

plasma of the order of n ∼ 100nc where

nc ≡
mω2

4πe2
=

π

reλ2
≈ 1.115 × 109

(

1µm

λ

)2

µm−3 (3.1)

is the critical density, the mean interparticle distance if of the order of n−1/3 ∼
(100nc)

−1/3 ∼ 2×10−4 µm or equivalently n−1/3 ∼ 2×10−4λ since λ ∼ 1µm.

As discussed in the first chapter, the instantaneous emission spectrum of

an ultra-relativistic electron is approximately synchrotron-like and the main

part of the emitted radiation is concentrated in the region of frequencies

ωe ∼ γ2|e|E/mc = γ2a0 ω which corresponds to an emitted radiation with

wavelength λe ∼ λ/γ2a0. In regimes where RR effects are important a0 ∼
3 × 102 and the electron energy is typically of the same order of magnitude

of a0 (see e.g. the results of our simulations in chapter 5). Hence, the

spectrum of the emitted radiation is peaked around a wavelength of the

order of λe ∼ 4×10−8λ i.e. around a wavelength that is about four -orders of

magnitude smaller than the typical mean electron distance n−1/3 ∼ 2×10−4λ.

The back-reaction due to the emission of such high-energy photons with

wavelength much smaller than the mean electron distance is therefore a single

particle process that is not accounted by the usual system of kinetic and

Maxwell equations in the mean field approximation.

Finally, we mention that the inclusion in the kinetic equation of a new

term that accounts for the single electron emission of high-frequency radiation

1We recall that the ‘coherent back-reaction’ included in the mean field description of

a plasma scales with the square of the number of particles while the ‘incoherent back-

reaction’ or RR scales linearly with the number of particles.
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leads to a ‘double-counting’ of the contribution to the ‘back-reaction’ of all

the wavelengths λ̄ in the range λ̄ & n−1/3. In fact, the emission and the

consequent ‘back-reaction’ of radiation with wavelength λ̄ & n−1/3 is already

accounted by the coupled system of kinetic and Maxwell equation in the mean

field approximation. On the other side, the ‘friction’ term of the RR force

(Eq. 1.26) is proportional to the total intensity emitted by a single electron

that contains also a contribution from wavelengths in the range λ̄ & n−1/3

that is therefore double-counted. However, the contribution to the intensity

emitted by a single electron from wavelengths in the range λ̄ & n−1/3 is small

since the emission is peaked at much smaller wavelengths.

Moreover, a suitable mesh for space and time has to be used in PIC simu-

lations. This mesh introduces a cut-off wavelength of the order of the spatial

space-step ∆x of the mesh that is typically orders of magnitude larger than

the physical cut-off wavelength n−1/3 for the self-consistent fields in the mean

field approximation2. Hence, in a PIC simulation the range of wavelengths

contributing to both the strength of the RR force and to the back-reaction

from the coupled kinetic and Maxwell equations for self-consistent fields is

λ̄ & ∆x ≫ n−1/3 ≫ λe. We recall that the contribution to the strength of the

RR force mainly comes from wavelengths peaked around λe ∼ λ/γ2a0 while

the contribution from comparatively much longer wavelengths is very small

and therefore the issue of double-counting is of little practical relevance3.

3.1 Basic properties of the kinetic equation

In this section, a fully relativistic kinetic equation that includes RR ef-

fects is discussed and original results of the author about the evolution of

the phase-space are reported. We provide the kinetic equation in a non-

manifestly covariant form, see Ref. [46] for a discussion of the Bogolyubov

2A possible exception might be the study of high-harmonic generation where 1D sim-

ulations with very high spatial and temporal resolution can be performed.
3To summarize the typical relevant scales in a PIC simulation of the interaction of a

laser pulse with an overdense plasma, λ > δ > ∆x ≫ n−1/3 ≫ λe where λ is the laser

wavelength, δ = c/ωp is the skin depth (ωp is the plasma frequency), ∆x is the space-step

in the PIC simulation, n−1/3 is the mean electron distance and λe ∼ λ/γ2a0 is the typical

wavelength of the radiation emitted incoherently by a single electron.
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hierarchy of equations with RR in a manifestly Lorentz-covariant form and

Ref. [42] for an application of the manifestly covariant equation to thermal

electrons in a magnetically confined plasma.

In order to keep the notation as simple as possible we use the dimension-

less quantities introduced in Eq. (2.11). The relativistic distribution function

f = f(x,p, t) evolves according to the collisionless transport equation

∂f

∂t
+ ∇x · (f v) + ∇p · (f F) = 0 , (3.2)

where x are the spatial coordinates, v = p/γ is the three-dimensional veloc-

ity, γ =
√

1 + p2 is the relativistic factor and F = FL +FR is the mean force

due to external and collective fields (FL ≡ −(E+v×B) is the Lorentz force

and FR is the LL force introduced in Eq. (1.24)).

We remark that the kinetic equation (3.2) only requires a system of equa-

tions of motion and does not require that these equations of motion are

derived from an Hamiltonian. Physically, Eq.(3.2) implies the conservation

of the number of particles as easily found integrating Eq.(3.2) in the phase-

space and using the divergence theorem. An equivalent expression of (3.2)

is
∂f

∂t
+ v · ∇xf + F · ∇pf + f∇p · F = 0 (3.3)

The new key feature compared to the usual Vlasov equation is that for the

RR force FR we have ∇p · FR 6= 0.

Considering a small phase-space volume element, it is convenient to use

Lagrangian coordinates x(t), p(t) that describe the position of the volume

element in the phase-space at a given time t in order to follow its evolution

as it moves through the phase-space. Then, Eq.(3.3) can be recast in the

equivalent form
df

dt
= −f ∇p · F (3.4)

or equivalently
d ln f

dt
= −∇p · F . (3.5)

According to Eq.(3.5), ∇p ·F provides the percentage of variation of the dis-

tribution function f within the characteristic time scale ω−1 (as normalized

units are used). Integrating Eq.(3.5) along its characteristics, we find that
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the distribution function f remains positive as required4

f = f0 e
−

R t
t0

∇p·F dt
(3.6)

since the exponential is never zero or negative for any real value.

Introducing the entropy density in the phase space

s(x,p, t) = −f(x,p, t) ln f(x,p, t) , (3.7)

taking the partial derivative respect to time of s(x,p, t) and using the kinetic

equation (3.2) we straightforwardly get the equation for the evolution of the

entropy density

∂s

∂t
+ ∇x · (sv) + ∇p · (sF) = f ∇p · F . (3.8)

Integrating Eq.(3.8) in the phase space, we get the rate of variation of the

total entropy S(t) =
∫

d3x d3p s(x,p, t)

dS(t)

dt
=

∫

d3x d3p f ∇p · F . (3.9)

The Lorentz force FL ≡ −(E + v × B) gives ∇p · FL = 0 identically thus

∇p · F = ∇p · FR. Moreover, the distribution function f(x,p, t) is always

non-negative f ≥ 0 thus the sign of dS/dt is given by ∇p · FR solely.

From the expression of the LL force in Eq.(1.24) and using the following

identities

∂γ

∂pi
= vi (3.10)

∂vj

∂pi
=

1

γ

(

δij − vivj

)

(3.11)

after a lengthy but straightforward calculation, we get

∇p · FR = −
(

4π

3

re

λ

) {

[

∇x · E− v ·
(

∇x × B − ∂E

∂t

)]

+

2
[E2 + B2

γ

]

+ 4γ
[(

v ×E
)2

+
(

v × B
)2

− 2v ·
(

E ×B
)]

}

. (3.12)

4This can be shown in another way: if the right hand side of Eq.(3.4) is a regular

function of (f, t) such that it satisfies the hypothesis of the Picard theorem of existence

and uniqueness of solutions of differential equations, then an initially positive f will always

remain strictly positive as f = 0 is a solution of Eq.(3.4) and for the uniqueness two

different solutions cannot meet in the plane (f, t).

41



In a plasma, the kinetic equation is coupled with the Maxwell equations for

the self-consistent fields

∇x · E =
ρ

ρc

=
1

nc

∑

j=e,i

Zj

∫

d3p fj(x,p, t) (3.13)

∇x ×B − ∂E

∂t
=

j

jc
=

1

ncc

∑

j=e,i

Zj

∫

d3p vfj(x,p, t), (3.14)

where ρc ≡ |e|nc, jc ≡ |e|ncc,
∫

d3q d3p fj(x,p, t) = Nj is the total number

of particles for each species (j = e electrons, j = i ions) and Zj is the charge

of the particle species in units of |e| (for electrons Ze = −1). For a plasma,

Eq.(3.12) can be recast as

∇p · FR = −
(

4π

3

re

λ

) {

[ ρ

ρc
− v · j

jc

]

+ 2
[E2 + B2

γ

]

+ 4γ
[(

v × E
)2

+
(

v × B
)2

− 2v ·
(

E ×B
)]

}

. (3.15)

The terms of Eq.(3.15) proportional to the charge density ρ and to the

current density j come from the term of the LL force (1.24) containing the

derivatives of the fields. In general, these terms can give either a positive

or negative contribution to ∇p · FR. The second term of Eq.(3.15) i.e. the

term proportional to (E2+B2) has always a negative sign, its effect decreases

with increasing electron energy and it is roughly γ2 times smaller the third

term. The third term of Eq.(3.15) comes from the strongly anisotropic ‘fric-

tion’ term of the LL force i.e. the term proportional to γ2 in Eq.(1.24) and

dominates in the ultra-relativistic limit γ ≫ 1.

In appendix B we prove the following statement: for arbitrary fields and

for any v such that 1 > |v| ≥ 0 then

4γ
[(

v ×E
)2

+
(

v × B
)2

− 2v ·
(

E × B
)]

+ 2
[E2 + B2

γ

]

≥ 0 , (3.16)

therefore according with Eqs. (3.9, 3.15), the terms of the LL force Eq. (1.24)

that do not depend on the derivatives of the fields always lead to a decrease of

the entropy i.e. to a contraction of the available phase space volume. In fact,

the phase-space volume element J evolves according to dJ/dt = J ∇p·FR (see

appendix B.2 for a derivation of this equation). In a few special cases, the

42



effect of the terms of the LL force Eq.(1.24) that depend on the derivatives

of the fields (i.e. the terms proportional to ρ and j in Eq.(3.15)) might lead

to an expansion of the phase space volume. Anyway, their effect should

be negligible compared to quantum effects as discussed in Ref. [11] and in

section 1.2.1 and tends to vanish when the system is dominated by external

fields i.e. collective fields are much smaller than external fields.

The physical interpretation of the above properties is that the RR force

acts as a cooling mechanism for the system: part of the energy and momen-

tum are radiated away and the spread in both momentum and coordinate

space may be reduced. This prediction is confirmed by our PIC simulations

(see chapter 5) where we found that RR effects lead to both an increased

bunching in space and to a noticeable cooling of hot electrons.

It is instructive to discuss the contraction of the phase space in the spe-

cial case of a small bunch of electrons interacting with a plane wave where

collective fields are assumed to be negligible compared with the plane wave

fields. Assuming an initial distribution f = g(x) δ3(p − p0), from Eqs.(3.9,

3.15) we have

dS(t)

dt
= −

(

4π

3

re

λ

)
∫

d3q g(x)

{

2

[

E2 + B2

γ(p0)

]

+

+ 4γ(p0)
[

(v0 × E)2 + (v0 × B)2 − 2v0 · (E ×B)
]}

, (3.17)

where v0 = p0/γ(p0). If the electron bunch counter-propagates with the

plane wave ([v0 · (E× B)] < 0) or propagates in the transverse direction

([v0 · (E ×B)] = 0), from Eq.(3.17) it follows that RR leads to a contraction

of the phase space. In particular, in the case of counter-propagation (using

|E| = |B|, E · B = 0) we have

∇p · FR = − (4πre/3λ) 4E2 [2γ(p0)|v0|(1 + |v0|) + 1/γ(p0)] . (3.18)

On the other hand, if the bunch propagates in the same direction of the

plane wave (v0 parallel to E×B), then the contribution of the friction term

(proportional to γ in Eq.(3.15)) becomes comparable with the contribution

of the second term (proportional to (E2 + B2) in Eq.(3.15)) and we have

∇p · FR = − (4πre/3λ)
[

4E2/(1 + |v0|)2γ3(p0)
]

(3.19)
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which still leads to a contraction of the phase space but with a rate γ4

smaller than the case of counter-propagation. This reinforces the evidence

of the strongly anisotropic features of the LL force Eq.(1.24) as discussed in

section 1.2.

Finally, we recall that Eq.(3.2) is more general than the usual collisionless

kinetic equation (namely the Vlasov equation) but the PIC approach is still

valid i.e. the PIC approach provides a solution for Eq.(3.2) and it is not

limited to the Vlasov equation (see appendix B.3 for a derivation).
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Chapter 4

Numerical approach

In this chapter we develop a compact algorithm that allows to include the

RR force into existing PIC codes. We recall that in the PIC approach fields

and computational particles1 are advanced in time using a ‘pusher’ i.e. a

numerical scheme to integrate the equations of motion. In fact, a ‘pusher’ is a

numerical method to solve a system of first-order differential equations where

derivatives are approximated with finite differences and differential equations

are turned into algebraic equations. The classic, second order numerical

accuracy, particle pusher is the ‘leap-frog’ algorithm. In this scheme positions

and momenta are shifted in such a way that they ‘leap-frog’ over each other

(see Fig. 4.1 for a sketch of a leap-frog advance); for example, the position is

known at integer time steps and the velocity is known at integer plus half time

steps (see Ref. [65] for further details). Leap-frog pushers are relatively simple

compared to higher-order schemes, and most of all they are fast and require

a minimal amount of storage memory while a good accuracy is retained.

The PIC method and leap-frog schemes are well-developed, well-tested

and highly optimized numerical approaches for the study of many-body sys-

tems of charged particles subject to self-consistent fields i.e. a plasma. In

the PIC approach each quasi-particle has to be advanced separately by the

pusher, due to the large number of quasi-particles commonly used (& 106),

the particle pusher usually represents the most expensive part of the compu-

1We recall these computational particles provide a discrete representation of the con-

tinuous distribution function in the phase-space.
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Figure 4.1: Sketch of leap-frog integration method. The two first-order dif-

ferential equations mdv/dt = F and dx/dt = v are replace by the finite-

difference equations m(vnew − vold)/∆t = Fold and (xnew − xold)/∆t = vnew.

From Ref. [65].

tational cycle on which most efforts of optimization needs to be performed

both to reduce the amount of data to be stored in memory and to improve

the computational performance. In order to study RR effects in laser-plasma

interactions, especially when multi-dimensional simulations are required, it

is therefore crucial to look for an approach that is compatible with standard

leap-frog schemes preserving their accuracy without requiring significant ex-

tra memory storage or computational effort. To this aim, we remark that

the possibility to replace the full LL equation (1.24) with the reduced LL

equation (1.25) as discussed in section 1.2 is greatly advantageous in PIC

simulations. Indeed, the ‘derivative’ term in the full LL equation (1.24) does

not lead to significant extra computational effort when the fields are given

known functions of the position and time such as in the case of an electron

in an external plane wave but a noticeable extra computational effort is re-

quired when they have to be calculated self-consistently. In fact, in PIC

simulations fields are defined on a fixed grid, derivatives of the fields have

therefore to be calculated using the value of fields on multiple grid-points in
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order to approximate the derivative with the required numerical accuracy. In

particular, time derivatives are challenging since the fields at least one step

forward in time have to be estimated to approximate the time derivative with

an acceptable accuracy.

In the following, we introduce our modular approach that allows to in-

clude RR effects without changing the existing leap-frog schemes for the

Lorentz force and field advance, then simulations of a single electron in a

plane wave are used as a testing bench comparing the numerical result with

the exact analytical solution discussed in section 2.2 and with a fourth-order

Runge-Kutta approach. This is a necessary check in order to be confident in

the results of our PIC simulations of laser-plasma interaction where we do

not have an analytical benchmark.

4.1 A modular leap-frog pusher

We briefly recall some basic concepts of a leap-frog pusher. If we consider

a smooth function p(t) of a parameter t, using a Taylor expansion we have

p

(

t0 ±
∆

2

)

= p(t0) ±
dp(t)

dt

∣

∣

∣

∣

t0

∆

2
+

1

2

d2p(t)

dt2

∣

∣

∣

∣

t0

∆2

4
+ O(∆3) (4.1)

therefore

p

(

t0 +
∆

2

)

− p

(

t0 −
∆

2

)

=
dp(t)

dt

∣

∣

∣

∣

t0

∆ + O(∆3) . (4.2)

Thus, a first order differential equation

dp(t)

dt
= f(t) (4.3)

can be approximated with

p

(

t0 +
∆

2

)

− p

(

t0 −
∆

2

)

= f (t0) ∆ + O(∆3) (4.4)

or, using a simpler notation, starting with p(t0 − ∆/2) = pn−1/2 we can get

p(t0 + ∆/2) = pn+1/2 up to an error of order O(∆3) if f(t0) = fn and the

step ∆ are known. The generalization to a system of first order differential
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equations is straightforward. Since N = (t − t0)/∆ steps are required to

reach a fixed time t from time t0 then the global error after N steps is O(∆2)

and the leap-frog is a second order accuracy method.

In our approach, the key idea is to exploit the superposition property

of the force that allows to write the total force by vectorial addition of the

Lorentz and RR force. In fact, supposing that the total force fT is the sum

of two forces f1 and f2

fT = f1 + f2 (4.5)

then the full equation of motion is

dpT

dt
= fT = f1 + f2 (4.6)

and the full leap-frog step is

p
n+1/2
T − p

n−1/2
T

∆t
= fn

T = fn
1 + fn

2 (4.7)

We consider the following set of equations of motion where only one of the

two forces works

{

dp1

dt
= f1

dp2

dt
= f2

−→







p
n+1/2

1
−p

n−1/2

1

∆t
= fn

1

p
n+1/2

2
−p

n−1/2

2

∆t
= fn

2

(4.8)

If in the full (4.7) and partial (4.8) leap-frog equations we start with the

same initial condition pn−1/2 ≡ p
n−1/2
T = p

n−1/2
1 = p

n−1/2
2 then the two

partial leap-frog equations (4.8) become

{

p
n+1/2
1 − pn−1/2 = fn

1 ∆t

p
n+1/2
2 − pn−1/2 = fn

2 ∆t
(4.9)

Then, we sum the two partial leap-frog equations (4.9) getting

p
n+1/2
1 + p

n+1/2
2 − 2pn−1/2 = (fn

1 + fn
2 )∆t (4.10)

while the full leap-frog equation (4.7) becomes

p
n+1/2
T − pn−1/2 = fn

T ∆t = (fn
1 + fn

2 )∆t (4.11)
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Therefore, by comparing the equation (4.10) with equation (4.11) we get for

the full leap-frog step

p
n+1/2
T = p

n+1/2
1 + p

n+1/2
2 − pn−1/2 (4.12)

This means, starting at time tn and position xn with pn−1/2, first advance

pn−1/2 to p
n+1/2
1 by fn

1 alone. Then advance independently pn−1/2 to p
n+1/2
2 by

fn
2 alone and finally use equation (4.12) to get the full leap-frog step p

n+1/2
T .

The generalization of (4.12) to i forces fT = f1 + . . .+ fi is straightforward

p
n+1/2
T = p

n+1/2
1 + . . .+ p

n+1/2
i − (i− 1)pn−1/2 (4.13)

Using (4.9) we can recast (4.12) as

p
n+1/2
T = p

n+1/2
1 + fn

2 ∆t = p
n+1/2
2 + fn

1 ∆t (4.14)

In principle, the previous algorithm allows us to keep our current leap-

frog pusher for the Lorentz force and to develop an independent pusher for

the RR force alone. However, since our forces depend on the momentum of

the particle, an estimate of the momentum at half-step is needed to compute

the forces at half-step (i.e fn
1 and fn

2 ). Assuming that the RR force fR is

a perturbation to the electron motion, we can use the Lorentz force fL to

estimate the velocity and momentum at half time-step and evaluate the RR

force directly using the estimated momentum. According to the previous

assumption, the initial momentum pn−1/2 is advanced to p
n+1/2
L using our

existing pusher for the Lorentz force2. Then p
n+1/2
L is used to estimate the

total momentum pn and velocity vn at half time step

pn ≈ p
n+1/2
L + pn−1/2

2
(4.15)

vn ≈ pn

γn
(4.16)

where

γn =

√

1 + (pn)2 (4.17)

2We implemented our numerical algorithm into existing PIC codes where the Boris

particle pusher is used (see appendix A) and therefore the Boris particle pusher is used in

our single electron simulations.
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Next Eqs. (4.15-4.17) are used together with the fields En, Bn and their

derivatives at half time-step to compute the estimate of the RR force at half-

step fn
R. This task is particularly simple because many terms of fR such as the

friction term can be written using fL directly. In fact, the full3 dimensionless

LL equation (1.24) can be written in a more concise way as

dp

dt
= fL +

(

4

3
π
re

λ

)

[

g1 + g2 + g3

]

(4.18)

where

fL = −
(

E + v × B
)

(4.19)

g1 = −γ
[( ∂

∂t
+ v · ∇

)

E + v ×
( ∂

∂t
+ v · ∇

)

B
]

(4.20)

g2 =
[

− fL × B + (v · E)E
]

(4.21)

g3 = −γ2
[

f2
L − (v · E)2

]

v (4.22)

Finally, recalling that fn
L is

fn
L =

p
n+1/2
L − pn−1/2

∆t
(4.23)

we apply (4.14) to compute p
n+1/2
T using p

n+1/2
L and

fn
R =

(

4

3
π
re

λ

)

[

gn
1 + gn

2 + gn
3

]

(4.24)

gn
1 = −γn

[( ∂

∂t
+ vn · ∇

)

En + vn ×
( ∂

∂t
+ vn · ∇

)

Bn
]

(4.25)

gn
2 =

[

− fn
L × Bn + (vn ·En)En

]

(4.26)

gn
3 = −(γn)2

[

(fn
L)2 − (vn ·En)2

]

vn (4.27)

where we used the expressions (4.15 - 4.17) and (4.23).

3In our single particle tests, we used the full LL equation (1.24) in order to compare the

results with the analytical solution. However, further tests confirmed that the contribution

of both the term of the LL force that depends on the derivatives of the fields (i.e. g1) and

of the term that does not depend on γ2 (i.e. g2) is negligible to all practical purposes on

relevant simulation time scales (hundreds of time periods).
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Summarizing, assuming that the RR force is a perturbation to the Lorentz

force, first the full leap-frog step advance is split into two step advances due

to the Lorentz and RR force separately ; then the RR force is computed

directly using the unperturbed momentum due to the Lorentz force alone

as an estimate of the full momentum at half-step. This keeps the numerical

code simple and fast while both a good numerical accuracy (see our tests

in next section) and the existing code developed for the Lorentz force are

retained.

4.2 Tests and results

In order to test our numerical approach, we performed several simulations

of a single electron in a monochromatic plane wave with a wide range of phys-

ical parameters such as polarization parameter δ (see 2.16), normalized laser

amplitude a0 and initial electron momentum p0 comparing the numerical

with the analytical result. In our simulations, we used a ω−1/100 timestep

and a run time of 500ω−1. We summarize here our main conclusions

• Neither a large initial value of the ratio between the modulus of the RR

force |fR| and the modulus of the Lorentz force |fL| nor a large value of

the RR parameter R (see (2.27)) yield a significant discrepancy between

the numerical prediction and the analytical solution. Simulations with

an initial |fR| to |fL| ratio of the order of |fR|/|fL| & 1140 or RR param-

eter up to R ∼ 68 were performed with very good agreement between

the numerical and the analytical prediction (see Figs. 4.2 - 4.5).

Figure 4.2 shows a plot of the longitudinal momentum px as a function

of the phase φ = ω(t− x(t)/c) for an electron with initial momentum

px0
= −200mc interacting with a plane wave of intensity I ∼ 2.6 ×

1023 W cm−2. In this case |fR|/|fL| ∼ 0.4 initially and R ∼ 0.72, the

agreement between the numerical prediction and the analytical solution

is excellent. Figure 4.3 shows a comparison of the trajectories obtained

using a fourth-order Runge-Kutta and our leap-frog pusher with the

same physical and numerical parameters of Figure 4.2, the relative

difference is of the order of 10−4.
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Figures 4.4 and 4.5 show the longitudinal momentum px as a function

of the phase φ = ω(t− x(t)/c) for an electron with initial momentum

px0
= −5000mc and px0

= −9000mc respectively. In figure 4.4 the

intensity of the plane wave is I ∼ 1024 W cm−2, the initial ratio of

the RR to the Lorentz force is |fR|/|fL| ∼ 501 and the RR parameter

is R ∼ 68 while in figure 4.5 the intensity of the plane wave is I ∼
5 × 1023 W cm−2, the initial ratio of the RR to the Lorentz force is

|fR|/|fL| ∼ 1147 and the RR parameter is R ∼ 61. In both cases the

agreement between the numerical and the analytical solution is good

even though the dynamics is dominated by the RR force.

• Our tests have shown that our approach to the inclusion of the RR force

into a numerical code provides reliable results even when the RR force

is not small compared to the Lorentz force. We provide an heuristic

argument to explain such good agreement:

1. As a consequence of the smallness of the ratio between the effective

electron radius and the typical laser wavelength (4πre/3λ ∼ 10−8),

the terms g1 (Eq. (4.20)) and g2 (Eq. (4.21)) are much smaller

than the Lorentz force (Eq. (4.19)) in the classical framework.

For these terms of the RR force a perturbative approach is always

suitable in the classical framework.

2. The dominant friction-like term g3 (Eq. (4.22)) is directed along

the velocity v. This implies that, at a given time, the effect of

the friction-like term amounts to a change of the modulus of the

momentum |p| without changing its direction.

3. Since the friction-like term g3 (Eq. (4.22)) is large only for ultra-

relativistic electrons γ ≫ 1 and |p| ∼ γ for γ ≫ 1, in the cases

when the friction term g3 is large, the variation of the modulus of

the momentum due to g3 is approximately equal to the variation

of the electron energy due to g3.

4. If the percentage of variation of the modulus of the momentum, or

equivalently the percentage of variation of the energy, due to the

friction-like term g3 is small in a single leap-frog step ∆ = ω−1/N
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i.e.
∣

∣

∣

∣

∣

∆

γ

dγ

dt

∣

∣

∣

∣

g3

∣

∣

∣

∣

∣

≪ 1 (4.28)

then the momentum at half-step can be estimated self-consistently

neglecting the contribution of the friction-like term g3 i.e. using

Eq. (4.15) although g3 is not small compared to the Lorentz force.

5. Taking the scalar product of Eq.(4.22) and v and using v2 =

1 − 1/γ2 we have (normalized units)

dγ

dt

∣

∣

∣

∣

g3

≃ −
(

4πre

3λ

)

γ2
[(

E + v × B
)2

− (v · E)2
]

(4.29)

and therefore the percentage of variation of the energy in a single

step due to g3 is
∣

∣

∣

∣

∣

∆

γ

dγ

dt

∣

∣

∣

∣

g3

∣

∣

∣

∣

∣

≃ 1

N

(

4πre

3λ

)

γ
[(

E + v × B
)2

− (v · E)2
]

(4.30)

which is at most
∣

∣

∣

∣

∣

∆

γ

dγ

dt

∣

∣

∣

∣

g3

∣

∣

∣

∣

∣

.
1

N

(

4πre

3λ

)

γ(E2 + B2) (4.31)

and assuming N ∼ 100, λ ∼ 1µm, γ ∼ |E| ∼ |B| ∼ 300 then

(4πre/3λN) γ(E2 + B2) ∼ 6 × 10−3.

In conclusion, our perturbative approach turns out to be suitable even

when the RR force is not small compared to the Lorentz force because the

percentage of variation of the momentum due to the RR force in a single

leap-frog step is small and therefore the full momentum at half-step can

be approximated self-consistently with the momentum at half-step obtained

neglecting the RR force i.e. using Eqs. (4.15 - 4.17). An analogous estimate of

the percentage of variation of the momentum in a single step for the Lorentz

force leads to
∣

∣

∣

∣

∣

∆

γ

dp

dt

∣

∣

∣

∣

fL

∣

∣

∣

∣

∣

.
1

N

√

E2 + B2

2γ2
(4.32)

For γ ∼ |E| ∼ |B| then
∣

∣(∆/γ) dp/dt|fL
∣

∣ ∼ 1/N but if the electron energy

is much smaller than the normalized field strength i.e. |E| ≫ γ then the
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percentage of variation of the momentum in a single timestep is large and

may lead to a significant deviation from the exact solution. For instance,

in Fig. 4.6 the numerical and the analytical prediction (both without RR

effects) of the longitudinal momentum px as a function of the phase φ are

compared for an electron initially at rest interacting with a plane wave of

intensity I ∼ 1023 W cm−2. It is found that using a time-step ω−1/100, the

standard Boris particle pusher lead to a significant deviation from the ana-

lytical solution according with the estimate (4.32). However, in this case the

electron is initially at rest while the fields are at their maximum a0 = 215; in

realistic simulations fields grow smoothly and electrons gain energy gradu-

ally so that
∣

∣(∆/γ) dp/dt|fL
∣

∣ . 1/N and the numerical prediction traces the

exact solution.

Our tests confirmed that the inclusion of the RR force according to our

approach preserves the accuracy and stability of the (unmodified) particle

pusher for the Lorentz force (the standard Boris particle pusher in our code).

Finally, we remark that this approach to the inclusion of the RR force have

led to a less than 10% increment of the computing time compared to the

case without RR in our PIC simulations reported in chapter 5. As discussed

above, this relatively modest increase of the computational time may be

crucial to perform large scale PIC simulations with RR effects included.
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Figure 4.2: Plot of px as a function of the phase φ for an electron with initial

momentum py0
= pz0

= 0 and px0
= −200mc interacting with a monochro-

matic linearly polarized plane wave with normalized amplitude a0 = 350 and

wavelength λ = 0.8µm (corresponding to an intensity I ∼ 2.6×1023 W cm−2).

The black curve reports the numerical result obtained with our leap-frog

pusher with the RR force included while the red crosses report the analytical

solution. The initial ratio of the modulus of RR force to the modulus of the

Lorentz force is |fR|/|fL| ∼ 0.4, the RR parameter (see (2.27)) is R ∼ 0.72,

the time-step is ω−1/100, the run time is 500ω−1, the polarization parameter

(see (2.16)) is δ = 1 and the electron is initially located at x = 0.
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Figure 4.3: Comparison of single electron trajectories with RR in the (x, y)

plane obtained with a fourth-order Runge-Kutta method (red curve) and our

leap-frog method (black curve). The physical and numerical parameters are

the same of the case reported in Fig.(4.2). A zoom of a small region of the

trajectory in the lower-right corner of the plot is also reported.
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Figure 4.4: Plot of px as a function of the phase φ for an electron with initial

momentum py0
= pz0

= 0 and px0
= −5000mc interacting with a monochro-

matic linearly polarized plane wave with normalized amplitude a0 = 680 and

wavelength λ = 0.8µm (corresponding to an intensity I ∼ 1024 W cm−2).

The black curve reports the numerical result obtained with our leap-frog

pusher with the RR force included while the red crosses report the analytical

solution. The initial ratio of the modulus of RR force to the modulus of the

Lorentz force is |fR|/|fL| ∼ 501, the RR parameter (see (2.27)) is R ∼ 68,

the time-step is ω−1/100, the run time is 500ω−1, the polarization parameter

(see (2.16)) is δ = 1 and the electron is initially located at x = 0.
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Figure 4.5: Plot of px as a function of the phase φ for an electron with initial

momentum py0
= pz0

= 0 and px0
= −9000mc interacting with a monochro-

matic linearly polarized plane wave with normalized amplitude a0 = 480 and

wavelength λ = 0.8µm (corresponding to an intensity I ∼ 5× 1023 W cm−2).

The black curve reports the numerical result obtained with our leap-frog

pusher with the RR force included while the red crosses report the analytical

solution. The initial ratio of the modulus of RR force to the modulus of the

Lorentz force is |fR|/|fL| ∼ 1147, the RR parameter (see (2.27)) is R ∼ 61,

the time-step is ω−1/100, the run time is 500ω−1, the polarization parameter

(see (2.16)) is δ = 1 and the electron is initially located at x = 0.
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Figure 4.6: Plot of px as a function of the phase φ for an electron with

initial momentum p = 0 interacting with a monochromatic linearly polarized

plane wave with polarization parameter δ = 0 (see (2.16)) and normalized

amplitude a0 = 215 (corresponding to an intensity I ∼ 1023 W cm−2 for

λ = 0.8µm). In this example, the time-step is ω−1/100, the run time is

300ω−1 and the electron is initially located at x = 0. The black curve reports

the numerical result obtained with the standard Boris particle pusher for the

Lorentz force (the RR force is switched off) while the red crosses report the

analytical solution. In this case the electron is initially at rest γ = 1 while the

fields are at their maximum a0 = 215 and the deviation from the analytical

solution is large according with the estimate (4.32).
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Chapter 5

Simulations of radiation

pressure dominated

acceleration

In this chapter, RR effects on ion acceleration in the interaction of a su-

perintense laser pulse (I & 1023 W cm−2) with a thin plasma foil (ℓ . λ) in

the radiation pressure dominated acceleration (RPDA) regime are investi-

gated with multi-dimensional particle-in-cell (PIC) simulations.

The radiation pressure dominated regime

Before proceeding any further, it may be useful to briefly recall some

basic concepts of ion acceleration in the RPDA regime as well as some of its

foreseen appealing features (see the recent review [8] for details). It is known

that an electromagnetic wave carries momentum which can be exchanged

with either a reflecting or absorbing medium leading to an effective radiation

pressure. Radiation pressure acceleration of a thin foil may be essentially

described as a light mirror or light ‘sail’ boosted by an electromagnetic wave;

this model is indeed customary named the “light sail” model (see Ref. [57]).

In the case of a plane wave normally incident on a flat surface, radiation

pressure physically arises from the cycle-averaged value of the non-linear

magnetic term of the Lorentz force e(v/c × B). The effect of the magnetic

term can be qualitatively described using a simple perturbative approach
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and recalling that for a plasma with density n much higher than the critical

density nc the penetration of an electromagnetic wave into the plasma is

limited to a skin layer of thickness of the order of the skin depth δ = c/ωp.

Considering an elliptically polarized electromagnetic wave normally incident

on a plasma slab with a step profile, the vector potential inside the plasma

can be approximated as (see Ref. [55])

A(x, t) =
A0√
1 + ǫ2

e−x/ds (ŷ cos(ωt) + ǫẑ sin(ωt)) (5.1)

where ds = c/
√

ω2
p − ω2 and 0 ≤ ǫ ≤ 1. Using B = ∇×A and neglecting rel-

ativistic effects, the transverse velocity is vT = −eA/mc and the longitudinal

component of the fx = evT /c×B force is estimated as

fx = f0e
−2x/ds

(

1 +
1 − ǫ2

1 + ǫ2
cos(2ωt)

)

(5.2)

where f0 = e2A2
0/2dsmc

2 (see Ref. [55] or Ref. [8] and references therein). The

integral over x of the electron density n times the cycle-averaged magnetic

force 〈fx〉 is customary called the ponderomotive force and gives the total

radiation pressure on the surface.

The force fx mainly operates on electrons due to their higher charge to

mass ratio. The effect of this force is to push electrons inside the plasma

generating a charge separation and consequently an electrostatic field Ex.

In a steady state, the ponderomotive force on electrons is balanced by the

averaged electrostatic field 〈Ex〉 due to the charge separation so that 〈fx〉 =

e 〈Ex〉. The steady electrostatic field 〈Ex〉 accelerates ions so that the momen-

tum of the impinging wave is mostly transferred to ions due to their higher

mass, even though radiation pressure operates on electrons. We mention

that if the electromagnetic wave interacts with a plasma foil with thickness

ℓ comparable or smaller than the laser wavelength λ then the penetration of

the laser pulse into the plasma depends also on the foil thickness. In the case

of a delta-like density profile, the transmission and reflection coefficients can

be calculated analytically [56]. This simple model may be useful to describe

ultra-thin foils where the thickness is a small fraction of the laser wavelength,

in this cases the foil is transparent when a0 > ζ where ζ = πnℓ/ncλ is the

normalized surface density [56].
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Eq. (5.2) illustrates the differences between circular and linear polariza-

tion of the electromagnetic wave. In fact, for circular polarization ǫ = 1 and

the 2ω frequency term vanishes in Eq. (5.2); in this case only the steady com-

ponent i.e. the ponderomotive term of the longitudinal force fx is present.

In the case of linear polarization ǫ = 0 and the 2ω term of the force fx in

Eq. (5.2) coupled with the longitudinal electric field generated by the charge

separation drives strong density oscillations at the surface. Since the laser

pulse cannot penetrate much into a solid-density target, the energy absorbed

at the surface due to such oscillations is then transferred into inner regions

by ‘fast’ electrons i.e. electrons with energies of the order or beyond the nor-

malized laser amplitude γ & a0 (a0 ≫ 1). It has become customary to name

such mechanism of fast electron generation due to the oscillating component

of fx as the J ×B heating mechanism.

We mention that in the so called Target Normal Sheath Acceleration

(TNSA) model, ion acceleration is driven by the space-charge field generated

at the rear surface of the target by fast electrons generated at the front sur-

face and then attempting to escape in vacuum from the rear side (see Ref. [8]

for details). For a linearly polarized laser pulse normally incident on a plasma

slab, the TNSA acceleration mechanism and the radiation pressure accelera-

tion mechanism are therefore simultaneously present and radiation pressure

acceleration dominates only at ultra-high intensities I > 1023 W cm−2 (see

Ref. [19]). The qualitative prediction from Eq. (5.2) therefore suggests that

a ‘pure’ radiation pressure acceleration regime requires normal incidence and

the use of circularly polarized electromagnetic waves in order to suppress the

electron heating due to the 2ω component of the J × B force. The strong

suppression of the longitudinal oscillations in the case of circularly polarized

laser pulses was confirmed with PIC simulations. In fact, PIC simulations

have shown that the use of circular polarization instead of linear polarization

and normal incidence quenches the generation of high-energy electrons and

leads to a steady acceleration [54, 58, 59, 60].

In 2004, Esirkepov et al. suggested that radiation pressure may efficiently

drive the acceleration of a thin plasma foil yielding a quasi-monoenergetic

spectrum in contrast with other previously studied mechanisms such as TNSA

where the spectrum is typically very broad. In fact, using a three-dimensional

62



PIC simulation Esirkepov et al. have shown that at intensities exceeding

1023 W cm−2 and for linear polarization the radiation pressure of a laser pulse

can accelerate a thin foil nearly as a whole with a gain in kinetic energy that

agrees with the prediction obtained modeling the foil as a perfectly reflecting

mirror boosted by the radiation pressure of the laser pulse. In Fig. 5.1 the

peak of the ion kinetic energy as a function of time is compared with the

prediction of the “light sail” model (see Ref. [19]) showing a fair agreement.

Indeed, such agreement between the “light sail” model and the PIC simula-

tion data was used to infer that at intensities exceeding I & 1023 W cm−2 the

radiation pressure dominates the acceleration. The light sail model allows

to deduce the relevant scaling laws for given laser and plasma parameters

as well as to choose such laser and plasma parameters for ‘optimal’ acceler-

ation [57, 56]. In particular, a linear scaling with the laser pulse intensity,

an high efficiency in the relativistic limit and quasi-monoenergetic features

in the ion energy spectrum are expected (see [57, 56]). These promising fea-

tures as well as the foreseen possibility to accelerate a large number of ions

up to energies of the order of several hundred of MeVs per nucleon make the

RPDA regime very appealing for applications such as hadron therapy and

have stimulated a steadily growing interest (see the review [8]).

RR effects on radiation pressure acceleration

According to Ref. [19], radiation pressure becomes the dominant mech-

anism of ion acceleration when the laser intensity is I > 1023 W cm−2. At

these ultra-high intensities the normalized laser amplitude for typical optical

wavelengths is a0 & 250 and electrons become ultra-relativistic in a fraction

of the wave period losing large amounts of energy by emission of electro-

magnetic radiation. Such strong emission and its back-reaction or radiation

reaction (RR) may in turn lead to a significant deviation from the predic-

tion of the Lorentz force alone. Hence, RR effects may significantly affect

the collective dynamics of electron and ions and must be included in PIC

simulations of laser-plasma interactions at ultra-high intensities in order to

have reliable qualitative and quantitative predictions of the dynamics and in

particular of the ion energy spectrum. This may also be of relevance for the
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Figure 5.1: The maximum ion (proton) kinetic energy as a function of time

and the ion phase-space projection (x, px) at t = 80T obtained with a three-

dimensional PIC simulation of thin foil acceleration in the radiation pressure

dominated regime. The solid line reports the analytical prediction according

to the light sail model. From Ref.[19].

design of future experiments at ultra-high intensity such that those foreseen

with the construction of the ELI facility [2].

In 2002, pioneering PIC simulations of RR effects (included via the LL

equation) in laser-plasma interaction were performed by Zhidkov et al. (see

Ref. [24]) for the case of a thick plasma slab and a linearly polarized laser

pulse. It was found that RR effects depend non-linearly from the laser inten-

sity I and lead to a noticeable dissipation of the laser pulse energy. Further

studies of RR effects for the case of thick targets either using the Sokolov

equation or using a different RR modelling were performed recently both for

thick targets [23, 26, 27] and for laser and plasma parameters such that the

plasma foil is transparent to the laser pulse [25] showing that RR effects lead

to a beneficial effect reducing the fraction of hot electrons and increasing the

number of accelerated ions.

Concerning RR effects in the case of interaction with thin plasma foils in

the RPDA regime, in Ref. [19] it was conjectured that the higher the velocity

to which the plasma foil is accelerated, the lower the RR force becomes

because of the relativistic increase of the laser wavelength λ′ in the rest

frame of the foil, making the RR strength parameter ∼ re/λ
′ increasingly
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small (see 1.24, each term of the RR force is proportional to ∼ re/λ). This

mechanism of quenching of RR effects may also be explained with the help

of the effective reduced LL equation (1.26) in the laboratory frame: when

the foil moves coherently with a velocity close to c, the amplitude of the

reflected wave is strongly reduced at any time in the laboratory frame; thus,

the electrons at the surface of the foil can be considered as moving in the

field of the incident plane wave and parallel to its propagation direction with

a velocity vx ∼ c and the RR force almost vanishes (see the discussion in

section 1.2). However, our multi-dimensional simulations have shown that

this picture holds only in the case of circular polarization and for laser and

plasma parameters such that the laser pulse does not break through the

foil. In other cases, RR effects strongly affect the dynamics leading to an

increased spatial bunching of both electrons and ions and to a noticeable

cooling of hot electrons with a beneficial effect on the quality of the ion

spectrum [11, 12, 13].

5.1 1D simulations: role of the laser polar-

ization

PIC simulations with a plasma slab of ions (protons) with uniform initial

density n0 were performed. Since our main aim is to evaluate the importance

of RR effects on laser-plasma dynamics and ion acceleration in the regime

of radiation pressure dominance, we begin with a 1D geometry for the sake

of simplicity and the possibility of using high numerical resolution. The role

of multi-dimensional effects is investigated in section 5.2 with fully three-

dimensional PIC simulations; it is shown that the trends of RR effects found

in 1D simulations hold qualitatively even in this case. We remark that for

1D (2D) simulations we mean that the space is one (two) dimensional while

the momentum space is always fully three-dimensional.

We considered a total of three laser intensities I = 2.3 × 1023 W cm−2,

I = 5.5 × 1023 W cm−2 and I = 1024 W cm−2 for both circular polarization

(CP) and linear polarization (LP) and a laser wavelength λ = 0.8µm. In

the following, we mainly focus on results for a laser intensity I = 2.3 ×
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1023 W cm−2 corresponding to a normalized laser amplitude a0 = 328 for LP

(a0 = 232 for CP). In all the simulations, the initial density is n0 = 100nc

and the profile of the laser field amplitude has a trapezoidal shape in time

with one-cycle, sin2-function rise and fall and a five-cycle constant plateau.

The laser pulse front reaches the edge of the plasma foil at t = 0. The foil

thickness is ℓ = 1 λ in all the simulations except for the transparency case

reported below, for which ℓ = 0.3 λ. The parameters are similar to those of

the 3D simulations in Ref. [19], where the laser pulse was linearly polarized.

In the CP case, we found that RR effects on the ion spectrum (distri-

bution of protons per unit energy) are negligible as shown in Fig. 5.2 at

t = 46T where T = λ/c ≈ 2.67 fs is the laser period. Even at higher inten-

sities, RR effects on the ion spectrum are weak provided that there is not a

strong transmission of the laser pulse through the foil (see Fig. 5.3). These

results may be explained noticing that e.g. in the simulation corresponding

to Fig. 5.2, the laser pulse penetrates into the plasma for a small distance of

the order of λ/20, the fields in the plasma are much smaller than the fields in

vacuum and the order of magnitude of the electron energy γ is some tens (see

Fig. 5.4). As a consequence of the relatively small fields and electron energy,

the order of magnitude of the friction coefficient introduced in Eq. (1.27) is

d ∼ 10−2. We recall that the friction coefficient d provides a measure of the

strength of the RR force in normalized units, RR effects are significant when

the values of d are comparable with the Lorentz force in normalized units,

which is of the order of the values of the normalized fields inside the plasma.

The spatial profiles of both the fields and the coefficient d in the skin layer

are shown in Fig. 5.4. We remark that Fig.5.4 shows a snapshot at t = 1.7 T ,

but the typical values of the friction coefficient d are always of the same order

of magnitude for CP.

Reducing the foil density or thickness, the laser pulse may break through

the foil. In this case a significant fraction of electrons move in a strong elec-

tromagnetic field becoming ultrarelativistic in a fraction of the wave cycle and

RR effects strongly affect the ion spectrum, as shown in Fig. 5.5. In partic-

ular, when RR is included, peaks in the energy spectrum appear at energies

higher than in the case without RR. This result is similar to that obtained

in Ref. [25] at lower intensities (∼ 1022 W cm−2), where it was suggested that
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Figure 5.2: Ion energy spectrum f(E) at t = 46T with (red) and without

(black) RR for CP. The laser intensity is I = 2.3 × 1023 W cm−2 and the

target thickness is ℓ = 1λ.

67



Figure 5.3: Ion energy spectra at t = 66T with (top) and without (bot-

tom) RR for CP. The laser intensity I is 2.3 × 1023 W cm−2 (yellow),

5.5 × 1023 W cm−2 (blue), 1024 W cm−2 (red) and the target thickness is

ℓ = 1λ.
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Figure 5.4: Snapshot at t = 1.7 T of the ‘skin’ layer of the foil for CP

and intensity I = 2.3 × 1023 W cm−2. The foil was initially placed between

x = 14λ and x = 15λ. (a) The electron density (black), the modulus of the

transverse electric ET =
√

E2
y + E2

z (blue) and magnetic BT =
√

B2
y +B2

z

(red) fields. Distribution of (b) the longitudinal momentum px, (c) modulus

of the transverse momentum pT =
√

p2
y + p2

z and (d) friction coefficient d.
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Figure 5.5: Ion energy spectrum f(E) at t = 46T for a simulation with the

same parameters as Fig. 5.2 but with a target thickness ℓ = 0.3λ. In this

case the laser pulse breaks through the foil and RR effects are evident.
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RR effects ‘improve’ the ion spectrum in the optical transparency regime.

This may be explained recalling that the RR force reaches its maximum for

electrons counter-propagating with the laser pulse therefore impeding the

electron backward motion. This leads to an increased electron bunching and

to a later breakthrough of the laser pulse through the foil with a longer and

more efficient radiation pressure stage. However, comparing Fig. 5.5 with the

thicker target case in Fig. 5.2, it is evident that the spectrum becomes far

from monoenergetic, while the maximum ion energy increases only slightly.

Hence, in our simulations ‘optimal’ conditions for ion acceleration are found

for the case of Fig. 5.2; for the corresponding laser and plasma parameters,

RR effects are negligible.

In the LP case, the foil is accelerated by radiation pressure too but unlike

the CP case, the laser pulse does penetrate up to a fraction of the order of

λ/4 at the front surface of the foil, as shown in Fig. 5.6. For LP, it is found

that a significant fraction of electrons at the front surface move in a strong

electromagnetic field of the same order as the vacuum fields. In this case, the

friction coefficient function d reaches values of d ≈ 102 (see Fig. 5.6), which

are comparable with the Lorentz force. The deeper penetration of the laser

pulse is correlated with the strong longitudinal oscillatory motion driven by

the oscillating component of the J × B force, which is suppressed for CP.

In fact, large numbers of electrons are pushed periodically inside the foil,

producing strong fluctuations of the electron density (see Fig. 5.6, part (a)).

For LP, the ion energy spectrum is significantly affected by RR effects

(see Figs. 5.7, 5.8). In the lower intensity case, the spectrum is fairly peaked

during the acceleration phase with a smaller energy spread and a lower peak

energy than in the case without RR (Fig. 5.7). In general, as observed in

many simulations, the energy distribution broadens with increasing electron

‘temperature’, since hot electrons drive the expansion of the plasma, leading

to additional, non-monoenergetic ion acceleration. The smaller energy spread

observed when RR is included can thus be traced back to the radiative cooling

of the most energetic electrons.

Moreover, a significant fraction of ions on the low-energy tail of the spec-

trum is observed in the case without RR, but disappears when RR is in-

cluded (Fig. 5.7). To explain this effect, we recall that ions are accelerated
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Figure 5.6: Snapshot at t = 1.7 T of the ‘skin’ layer of the foil for LP and

intensity I = 2.3×1023 W cm−2. The foil was initially placed between x = 14λ

and x = 15λ. The strong longitudinal oscillations driven by the J × B force

allow a deeper penetration of the laser pulse into the foil compared to the CP

case reported in Fig.5.4. (a) The electron density (black), the modulus of the

transverse electric |Ey| (blue) and magnetic |Bz| (red) fields. Distribution of

(b) the longitudinal momentum px, (c) modulus of the transverse momentum

pT = |py| and (d) friction coefficient d.
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Figure 5.7: Ion energy spectrum f(E) at t = 12T with (red) and without

(black) RR for LP. The laser intensity is I = 2.33 × 1023 W cm−2 and the

target thickness is ℓ = 1λ.

73



Figure 5.8: Ion energy spectra at t = 14T with (top) and without (bottom)

RR for Linear Polarization. The laser intensity I is 2.3 × 1023 W cm−2 (yel-

low), 5.5 × 1023 W cm−2 (blue), 1024 W cm−2 (red) and the target thickness

is ℓ = 1λ.
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by the steady electric field generated by the charge separation; if a significant

fraction of fast electron moving backward is generated during the laser-foil

interaction, then a corresponding fraction of ions may be neutralized and

remains at lower energies. When the foil is still non-relativistic in the labora-

tory frame, the RR force has larger values when electrons counter-propagate

with respect to the laser pulse and therefore the electron backward motion

is strongly impeded with RR force included. This effect prevents an efficient

neutralization of lower energy ions by returning electrons, these ions can be

therefore accelerated by the charge separation field explaining why a lower

number of low-energy ions is observed with RR.

The fractional difference in ion energy with RR versus without RR is of

the order of the fraction of the laser pulse energy that is lost as incoherent

emission (Fig. 5.9). For I = 2.3 × 1023 W cm−2, about 20% of the total

pulse energy is dissipated by the RR force during the laser-foil interaction

(Fig. 5.9), which lasts about 22 cycles (30 cycles without RR). As discussed

in section 1.2, such dissipated energy accounts for the incoherent radiation

escaping from the plasma. During the laser-foil interaction, such a flux of

incoherent radiation shows itself in a missing pulse energy, while ions have

almost the same total energy in both cases and their spectrum is quasi-

monochromatic (Fig. 5.7). However, after the acceleration phase by the

radiation pressure of the laser pulse, a 20% missing pulse energy implies

nearly the same amount of missing final ion energy (Fig. 5.9).

We remark that just changing the laser polarization from CP to LP,

the friction coefficient d increases by up to four-orders of magnitude due the

enhanced laser pulse penetration into the foil by the J×B-driven longitudinal

oscillations. Then, the electrons on the ‘skin’ layer of the foil move in strong

electromagnetic fields of the same order of vacuum fields becoming ultra-

relativistic and the friction term of the RR force becomes comparable with

the Lorentz force.

As discussed previously, these results are a relevant test of the conjecture

in Ref. [19] that RR effects would be weak as the foil motion becomes rela-

tivistic. Our simulations suggest that this picture strictly holds only in the

CP case, where almost all of the foil moves at relativistic speed in the same

direction as the laser pulse. In the LP case, a substantial fraction of elec-
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Figure 5.9: Fractional energy absorption as a function of time for LP and

intensity I = 2.3×1023 W cm−2. Electron kinetic energy with RR (blue) and

without RR (black), ion kinetic energy with RR (orange) and without RR

(red) and the fraction of energy lost in the system (green).

76



trons has both an ultra-relativistic motion in the transverse direction and a

strong oscillatory motion in the longitudinal direction, leading to significant

RR effects.

The dependence of RR effects on the pulse polarization was also studied

in Refs. [23, 26, 27] for thick targets and long pulse durations. It was also

found that RR effects are stronger for LP, although they are not negligible

for CP [27]. These results cannot be compared straightforwardly to our

findings because of the quite different laser and plasma parameters, leading

to different dynamics. For instance, in the thick target case the laser-plasma

surface oscillates also for CP (‘piston oscillations’ [27]) and a return current

of electrons counter-propagating with respect to the laser pulse is generated;

this effect is likely to enhance radiative losses.

Summarizing, the differences between LP and CP appear to be related

to the different fraction of electrons moving into superintense fields. For LP,

longitudinal electron oscillations driven by the J × B force allow a deeper

penetration of the laser pulse into the foil enhancing the effect of the RR force

on electrons. In the CP case, the oscillating component of the J × B force

is suppressed [54], then electrons on the front surface pile-up, the numerical

density grows exceeding thousand of times the critical density nc and the laser

pulse cannot penetrate into the foil significantly (i.e. the effective skin depth

is a small fraction of both the foil thickness and the laser wavelength). For

CP, significant RR effects are found only for laser and plasma parameters such

that the laser pulse breaks through the foil due to nonlinear transparency,

similar to what was found in previous studies [25]. In this latter case, RR

effects are important for both LP and CP and higher ion energies are achieved

in the case with RR included since the increased electron bunching delays

the breakthrough of the laser pulse and leads to a longer and more efficient

RPA phase.

5.2 Three-dimensional PIC simulation results

In this section, RR effects in the interaction of a superintense laser pulse

with a thin plasma foil as well as their relationship with the laser pulse

polarization are investigated with multi-dimensional PIC simulations.

77



A systematic comparison of LP versus CP in the RPDA regime where

the radiation pressure of the laser pulse becomes the dominant mechanism

of ion acceleration both for CP and LP has not been performed yet. To

this aim, a three-dimensional (3D) approach is important because e.g. in 2D

simulations and for LP the laser-plasma coupling is different for S- and P -

polarization (i.e. for the electric field of the laser pulse either perpendicular

or parallel to the simulation plane, respectively) suggesting a complex and

asymmetric target deformation and expansion in 3D and the constraint of

the conservation of angular momentum carried by CP pulses holds in 3D

only. Multi-dimensional effects in the RPDA regime may play a crucial role

as found in previous 2D simulations which have both shown the onset of

instabilities [49] but also a potentially ‘unlimited’ energy gain for the fraction

of ions that are phase-locked with the laser-pulse [50].

Preliminary 2D studies

Large-scale 3D PIC simulations are limited by the size and availability of

computational resources both in the numerical resolution and in the number

of runs that may be performed. These issues may raise doubts on the accu-

racy of 3D results. To gain confidence on this side, 2D simulations both with

numerical parameters similar to those of 3D runs and with higher accuracy

were performed prior to 3D runs.

We recall that in 2D simulations and for LP the electric field of the

laser pulse can be directed either in the direction perpendicular to the sim-

ulation plane (“S”-polarization) or parallel to the simulation plane (“P”-

polarization). These two different possibilities lead to a very different dy-

namics (see Fig. 5.10) as in the “P”-polarization case the electric field of

the laser pulse strongly disperses electrons and ions along the polarization

direction which lies in the simulation plane while in the “S”-polarization case

electrons and ions tend to be collected in clumps which may be generated

by transverse instabilities such as those studied in Ref. [49]. Hence, in full

3D simulations and for LP strong anisotropies in the electron and ion spatial

distribution are expected as a consequence of the very different laser-plasma

coupling in the plane perpendicular or parallel to the polarization axis; such

78



strong anisotropies are indeed found in our 3D simulations (see below).

Results of 2D simulations for the three different polarization cases (CP,

LP-S and LP-P ) with and without RR are reported in Fig. 5.10 which shows

the color contours of
√

E2 + B2 (in normalized units) with black contours

of the ion and electron densities superimposed. In these 2D simulations,

the physical parameters are the same of the 3D case reported below while

both numerical parameters analogous to the 3D simulations (left column)

and numerical parameters with an increased accuracy (right column) are

reported. Increasing the numerical accuracy leads to small differences in the

CP case (third row in Fig. 5.10) where the formation of a parabolic-like shell

moving at relativistic velocity is observed. The reflection of the impinging

pulse from the walls of such parabolic-like shell moving at relativistic velocity

generates the observed regular interference pattern and may be explained

recalling that in the instantaneous rest frame the shell appears stretched

along the direction of motion and its walls are therefore similar to two nearly

parallel mirrors with the impinging pulse reflected between them. For CP,

the RR force leads to negligible effects in agreement with the results of 1D

simulations.

Numerical effects lead to larger differences for P - and S-polarized pulses

compared to CP although the main qualitative features are preserved also

for these cases (see Fig. 5.10). For S- and P -polarization, the interference

pattern observed for CP is not present since the parabolic-like shell is not

generated. For P -polarization the foil is completely dispersed and electrons

are grouped into structures stretched and aligned along the polarization axis

while only a relatively small fraction of ions is accelerated effectively. For

P -polarization RR effects are apparent and lead to an increased bunching

of electrons and ions therefore reducing the foil transparency and delaying

the foil breakthrough (compare frames (a1) with (b1) and (c1) with (d1) in

Fig. 5.10). In the case of S-polarization noticeable modulations appear in

the foil density with the formation of clumps both in the electron and ion

densities. In particular, two main clumps are observed near the central region

of the foil; increasing the resolution these clumps are denser and shifted closer

to the central axis while the penetration of the laser pulse into the foil as

well as RR effects are reduced. The formation of such clumps is presumably
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Figure 5.10: 2D simulations of the laser pulse-foil interaction at t = 20T .

Each frame reports the color contours of
√

E2 + B2 (normalized units) with-

out RR (a1-3 and c1-3) and with RR (b1-3 and d1-3). Black contours of

the ion density are superimposed for the case without RR (a1-3) and with

(b1-3) RR. Black contours of the electron density are superimposed for the

case without RR (c1-3) and with (d1-3) RR. Left column: simulations with

numerical parameters analogous to those of 3D simulations i.e. spatial step

λ/44 for each direction and 256 particles-per-cell. Right column: the same

simulations of left column with spatial step λ/80 for each direction and

625 particles-per-cell. First row, “P”-polarization case; second row, “S”-

polarization case; third row, CP case.

80



Figure 5.11: Ion spectra from 2D [a)-c)] and 3D [d)-e)] simulations with same

physical parameters, all at t = 20T . The 2D spectra are reported for circular

(CP, frame a)) and linear (LP) “S” (frame b)) and “P” (frame c)) polariza-

tion cases (i.e. for the electric field of the laser pulse either perpendicular or

parallel to the simulation plane, respectively). In each plot, the blue and red

curves correspond to simulations without and with radiation reaction (RR)

effects, respectively. In the upper plots of frames a)-c) the numerical resolu-

tion (number of particles per cell and of points per wavelength) is similar to

those of the 3D simulations in d)-e), while in the lower plots the results for

higher resolution are shown.
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driven by transverse inhomogeneities in the J × B force which may lead to

instabilities as observed in previous studies [49].

The effect of increasing resolution and particle number on the ion spectra

in 2D simulations is shown in Fig. 5.11 where 2D results are reported for the

three different polarization cases (CP, LP-S and LP-P ) and compared with

the results obtained with 3D simulations for both LP and CP. In the CP

case both numerical and RR effects on the spectrum are smaller while in the

P -polarization case these effects are larger. Changing the spatial resolution

from λ/44 to λ/80 and increasing the number of particles-per-cell (ppc) for

each species from 256 to 625 shifts the energy cut-off by ∼ 2% in the CP

case and by ∼ 15% (∼ 20%) in the P -polarization case without RR (with

RR). The stronger effect of the inclusion of RR for the higher resolution

case may be explained by noticing that RR mostly affects the highest energy

electrons, which are located in the tail of the distribution function that needs

a very high number of particles to be resolved properly. However, the limited

resolution does not qualitatively affect prominent features such as the higher

energy for CP and the relevance of RR effects for LP only, leading for this

latter case to an higher energy of ions as observed in 1D simulations in the

regime of foil transparency [11]. At the same time, 2D and 3D spectra show

new features such as an higher cut-off energy in 3D than in the 2D case,

and the fact that P -polarization leads to a much stronger RR effect than the

S-polarization case.

Full 3D simulations

Set up

We present a total of four 3D simulations each with the same physical and

numerical parameters but different polarization, with and without RR effects.

In these simulations, the laser field amplitude has a sin2-function longitudinal

profile with 8λ FWHM (where λ = 0.8 µm is the laser wavelength) while

the transverse radial profile is Gaussian with 10λ FWHM and the laser pulse

front reaches the edge of the plasma foil at t = 0. The peak intensity at the

focus is I = 1.7× 1023 W cm−2 which corresponds to a normalized amplitude

a0 = 280 for LP and a0 = 198 for CP. The target is a plasma foil of electrons
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and protons with uniform initial density n0 = 64nc (where nc = πmec
2/e2λ2

is the critical density), thickness ℓ = 1λ and initially located in the region

10λ ≤ x ≤ 11λ. The simulation box is 30λ (x) × 20.36λ (y) × 20.36λ (z)

while the grid is 1320 (x)× 896 (y)× 896 (z); consequently the spatial step is

λ/44 for each direction. The timestep is T/100 where T = λ/c = 2.67 fs is

the laser period. We use 216 particles-per-cell for each species and the total

number of particles is 1.526 × 1010.

We remark that such 3D simulations are very challenging from the com-

putational point of view since thousands of CPUs and at least one TB of

RAM memory are required for several hours to complete a relatively short

simulation which may last in all 15-20 laser periods. The subsequent issue

of data analysis and visualization is also challenging as large datasets of the

order of some TB have to be managed and the relevant information has to

be presented in a clear and meaningful way usually with three-dimensional

plots or suitable 2D sections.

Polarization and anisotropy effects

Figures (5.12, 5.13) shows the ion and the electron 3D spatial distributions

at t = 20T for the LP case without (a) and with (b) RR and for the CP

case without (c) and with (d) RR. The color corresponds to the range in

kinetic energy. In the LP case the most energetic ions are grouped into two

off-axis clumps lengthened and aligned along the polarization direction. The

second most energetic ion population is also stretched along the polarization

direction with two off-axis clumps and a widespread central clump, in which

ions are grouped asymmetrically. The density of this latter population is

smaller than that of the two higher-energy clumps.

RR effects are much stronger for LP, where the density and the total num-

ber of ions grouped into the highest energy populations is strongly enhanced

in the case with RR as seen by the comparison of Figs. 5.12 a) and b) and

also in Figs .5.14 a1), a2) and b1), b2) where sections of the ion density in

the (x, y) and (x, z) planes are shown. The contours of the electromagnetic

(EM) energy density in Figs. 5.14 a1), a2) and b1), b2) show that near the

axis most of the laser pulse have been transmitted through the target.
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Figure 5.12: Spatial distributions of ions at t = 20T and in the region −5.7 ≤
(y, z)/λ ≤ 5.7, for LP without (a) and with (b) RR and for CP without (c)

and with (d) RR. Ions are divided into seven populations according to their

kinetic energy, with the color-bar reporting the lower bound of the energy

interval. In the LP case (frames (a,b)), the polarization is along the y axis.
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Figure 5.13: Spatial distributions of electrons at t = 20T and in the re-

gion −5.7 ≤ (y, z)/λ ≤ 5.7, for LP without (a) and with (b) RR and for

CP without (c) and with (d) RR. Electrons are divided into seven popula-

tions according to their kinetic energy, with the color-bar reporting the lower

bound of the energy interval. In the LP case (frames (a,b)), the polarization

is along the y axis.
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The increased bunching and higher density observed in the case with

RR may be related to the higher ion energies since the local increase of the

density and therefore of the reflectivity leads to a longer and more efficient

RPDA phase. This is consistent with observing in Figs. 5.14 b1) and b2) that

the EM energy density is higher off-axis and behind the high-density clumps,

which correspond to the most energetic ions. The high-energy clumps ob-

served in the LP case are also similar to the ion lobes observed in Ref. [61]

at lower intensity but still in a regime of strong pulse penetration through

the foil. RR effects play a minor role for CP affecting only a small fraction

of ultra-relativistic electrons with almost no influence on the ion distribution

as seen in Figs. 5.12, 5.12, frames c),d). For CP, the ion spatial distribution

follows the spatial intensity profile of the initial laser pulse, has rotational

symmetry around the central axis, and a distribution in energy monoton-

ically decreasing with increasing radial distance. The most energetic ions

(E ≥ 1100 MeV) are located near the axis. No population in the same en-

ergy interval is present in the LP case (compare frames (a,b) with (c,d) in

Fig.5.12). The electron spatial distribution has an helicoidal shape with step

λ Fig. 5.13 (c), (d).

The differences between CP and LP can be explained by the absence of

the oscillating component of the J × B force for CP [54]. Thus, in the CP

case we have a steady push of the foil with weak penetration of the laser

pulse in the plasma. Most of the electrons move coherently with the foil

and in the same direction as the laser pulse so that the RR force may also

becomes very small [19, 11]. For LP pulses, the longitudinal oscillations

driven by the 2ω component of the J × B force result into a strong electron

dispersion and heating yielding a significant decrease of the electron density

and penetration of the pulse. The much stronger RR effects in the LP case

are accounted for by both the strongest penetration of the laser pulse and

the J × B-driven oscillations of the electrons causing them to collide with

the counter-propagating laser pulse twice per cycle [11].

Our 2D and 3D results confirm the strong differences between CP and LP

also for a focused laser pulse and a strongly bent target. At the same time,

the 2D and 3D results suggest that the “P” component of the electric field

E (not present in 1D geometry) strongly contributes to enhanced electron
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heating and dispersion, pulse penetration and RR effects. Such component

is present both in the LP case and in the 2D case with P -polarization and its

importance accounts for the similarity between the corresponding spectra in

Fig.5.11 c) and e). For LP, the laser pulse significantly penetrates into the

foil from the beginning of the interaction. After this initial phase, electrons

and ions are dispersed laterally and asymmetrically by the y-component of

the electric field. This lateral dispersion leads to a further decrease of the

electron density and eventually the laser pulse breaks through the foil as

seen in Fig. 5.14, frames (a1-d1) and (a2-d2). Electrons thus move into

strong fields of the same order of the vacuum fields and clear signs of RR

effects appear both in the electron and in the ion distribution. As shown

in frames (a,b) of Fig. 5.13, the spatial distribution electrons also show a

quasi-periodical distribution with a ∼ λ/2 wavelength.

Pulse focusing effects

The 2D sections of the total electromagnetic energy density and of the

electron and ion densities in Fig. 5.14 show a self-generated parabolic shell

wrapping the laser pulse. The formation of such parabolic-like shell is similar

to previous results obtained in 2D simulations and for CP although in 3D

this focusing effect is much stronger, is present also for LP and leads to

a qualitatively different distribution of the electromagnetic energy density

(compare Fig. 5.14 with Fig. 5.10).

In the CP case, a mark of the helicoidal electron distribution is present in

the form of strong modulations of the shell (much stronger than in the cor-

responding 2D simulations) while in the LP case the two denser and higher-

energy clumps are clearly visible in the x − z plane. In the CP case, this

self-generated parabola focuses the impinging laser pulse up to nearly a λ3

scale and both the energy and the momentum densities at the focus reach

values more than eight times their peak value in the initial laser pulse. The

self-generated parabola is present also in the LP case even though its focus-

ing effect is slightly reduced as the laser pulse breaks through the parabolic

shell and both the energy and momentum densities reach values more than

five times their peak value in the initial laser pulse.
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Figure 5.14: 2D sections of the laser pulse-foil interaction at t = 20T . Each

frame reports the color contours of
√

E2 + B2 (normalized units) in the x−y
plane at z = 0 (a1-3 and c1-3) and in the x−z plane at y = 0 (b1-3 and d1-3).

Black contours of the ion density are superimposed for LP without (a1,b1)

and with (a2,b2) RR and for CP without RR (a3,b3). Black contours of the

electron density are superimposed for LP without (c1,d1) and with (c2,d2)

RR and for CP without RR (c3,d3). The CP case with RR is almost identical

to the CP case without RR and it is not reported.
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The focusing effect is significantly stronger in 3D where the energy density

at the focus is more than tripled (doubled) for linear (circular) polarization

compared to the analogous 2D case (compare Fig. 5.14 with Fig. 5.10). This

effect may explain the higher peak energy on axis observed in 3D, Fig. 5.11 d)

with respect to the 2D case, Fig. 5.11 a).
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Conclusions

In this thesis, we have provided a simple and suitable approximation of

the Landau-Lifshitz equation for the radiation reaction force and we have

developed a simple numerical approach to insert the radiation reaction force

into existing Particle-In-Cell (PIC) codes while keeping the standard numer-

ical solver for the Lorentz force unchanged. Our numerical approach was

tested comparing the numerical prediction with the exact analytical solu-

tion for a monochromatic plane wave and with a fourth-order Runge-Kutta

method with very good agreement. Inclusion of radiation reaction effects

in PIC simulations via our numerical approach yielded a less than 10% in-

crease in computational time, which is essential in order to perform large

scale multi-dimensional simulations with limited computing power. Then,

radiation reaction effects on the electron dynamics in the interaction of an

ultra-intense laser pulse with a thin plasma foil were studied using multi-

dimensional PIC simulations. To our knowledge, these are the first 2D and

3D PIC simulations of ion acceleration with radiation reaction effects in-

cluded.

We summarize the results of our simulations as follows. In one-dimensional

simulations, we checked radiation reaction effects for three different intensi-

ties: I = 2.3 × 1023 W cm−2, I = 5.5 × 1023 W cm−2 and I = 1024 W cm−2

comparing the results for circular and linear polarization of the laser pulse.

For circular polarization, we found that radiation reaction effects are not

relevant even at intensity of I = 1024 W cm−2 provided that the laser pulse

does not break through the foil. For laser and plasma parameters such that

the laser pulse breaks through the foil the inclusion of radiation reaction

effects leads to an increase of the ion energy. This may be explained recalling

that the radiation reaction force mainly operates on high-energy electrons
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counter-propagating with the laser field therefore reducing the dispersion of

the foil which is mainly driven by the expansion of hot electrons. This leads

to a longer and more efficient radiation pressure acceleration stage with a

beneficial effect on the ion spectrum. However, the ion energy increase in

the transparency regime is not very significant with respect to the case with

the same laser parameters but a thicker target, for which the breakthrough

of the laser pulse does not occur and radiation reaction effects are negligible.

For linear polarization radiation reaction effects are significant, leading

to some tens of per cent of energy loss by incoherent emission of radiation

and to a similar percentage of reduction of the peak ion energy. This may

be explained noticing that part of the laser pulse energy is converted into

high-energy photons that escape from the system freely reducing the energy

available for ion acceleration. However, the quality of the ion spectrum is

improved since the spread in the ion spectrum is reduced due to the strong

cooling of hot electrons by the radiation reaction force.

Then, polarization and radiation reaction effects on ion acceleration in

the radiation pressure dominant regime were studied with three-dimensional

particle-in-cell simulations confirming the trends for radiation reaction ef-

fects observed in 1D simulations. In particular, the strong dependence of

radiation reaction effects on the laser pulse polarization is observed also

in three-dimensional simulations. However, three-dimensional simulations

showed new qualitative features compared to lower dimensional simulations.

In the linear polarization case strong anisotropies are observed, the most en-

ergetic ions are grouped into two off-axis clumps in the plane perpendicular

to the propagation direction and radiation reaction effects significantly af-

fect the energy spectrum. On the contrary, for circular polarization the ion

spatial distribution follows the spatial intensity distribution of the impinging

laser pulse with the most energetic ions on the symmetry axis and almost no

radiation reaction effects. In both cases, we found that the deformation of

the initially flat plasma foil due to the transverse inhomogeneity of the in-

tensity leads to the self-formation of a quasi-parabolic shell that focuses the

impinging laser pulse up to energy and momentum densities nearly one order

of magnitude higher than the initial peak values. These may also explain the

higher ion energies achieved in 3D simulations compared to lower dimensional
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simulations even though the fraction of accelerated ions is reduced. These

findings may be of relevance for the design of future experiments on laser

acceleration of ions up to relativistic (GeV) energy.

Finally, a generalized relativistic kinetic equation including radiation re-

action effects has been discussed and we have shown that the radiation re-

action force leads to a contraction of the available phase space volume. This

prediction is in agreement with the results of our PIC simulations where

we observed that radiation reaction effects lead both to an increased spatial

bunching of electrons and ions and to a significant cooling of hot electrons.

Outlook

Future studies of relevant laser-plasma interaction regimes where radi-

ation reaction effects may play a crucial role include: the role of radia-

tion reaction on electron acceleration in the interaction with an underdense

plasma where a noticeable fraction of ultra-relativistic electrons move into

superintense laser fields, high-harmonic generation in the interaction of an

ultra-intense laser pulse obliquely incident on a solid-density plasma slab

where radiation reaction effects may strongly affect the electron dynamics at

the front surface (where harmonics are generated) and collective non-linear

Thomson scattering where a large number of electrons can be accelerated

with a first laser pulse and then interact with a second counter-propagating

laser pulse therefore maximizing the strength of the radiation reaction force

and yielding an ultra-bright gamma-ray flash.

Above all, the main issue that has to be studied in depth is the role and the

onset of quantum effects in the electron dynamics. Quantum effects include

the role of spin degrees of freedom as we have discussed in section 1.2.1 and

especially the transition from the continuum classical emission of radiation

to the stochastic emission of photons with energies comparable with the

electron rest energy in the instantaneous rest frame of the electron. This

issue is indeed almost completely unexplored and partial results exist only

for simple cases such as single photon emission from a single electron in a

constant and uniform external magnetic field [67], or in constant and uniform

crossed fields [66] or in a plane wave field [66]. We remark that at ultra-high
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laser pulse intensities (normalized laser amplitude a0 ≫ 1) the external field

must be included in the quantum description exactly i.e. perturbation theory

is used to deal with the photon emission but cannot be used to deal with the

external field making the issue quantum effects very hard to be dealt with

for arbitrary external fields.

Furthermore, it has been shown recently that single photon emission does

not account for “quantum radiation reaction” effects which amount to multi-

ple photon emissions [18]. More precisely, it has been shown that the classical

limit of a single photon emission from an electron in an external plane wave

reproduces the result for the classical emission spectrum but without “clas-

sical radiation reaction” effects i.e. using the Lorentz force alone instead

of the Lorentz and radiation reaction force to deduce the motion and the

emission spectrum. Quantum radiation reaction effects have been therefore

identified with multiple photon emissions and it has been shown by numer-

ical integration that this multiple photon emission may lead to a significant

deviation from the quantum prediction of the emission spectrum in the single

photon emission approximation [18]. This suggests that even the few analyt-

ical results for the special cases mentioned above should be considered with

caution.
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Appendix A

Comparison of particle pushers

In this chapter, three leap-frog particle pushers for the Lorentz force are

briefly discussed and compared from the point of view of both the numerical

accuracy and the computational performance.

The Lorentz equations of motion for a particle of mass m and charge q

are

du

dt
=

q

m

(

E +
u

γc
×B

)

(A.1)

dx

dt
=

u

γ
(A.2)

where u ≡ γv and γ =
√

1 + (u/c)2. The corresponding leap-frog equations

are

un+1/2 − un−1/2

∆t
=

q

m

(

En +
v̄n

c
×Bn

)

(A.3)

xn+1 − xn

∆t
=

un+1/2

γn+1/2
(A.4)

where γn+1/2 =
√

1 + (un+1/2/c)2. In the Boris approach (see Ref. [65])

v̄n =
un+1/2 + un−1/2

2γn
(A.5)

and introducing the auxiliary vectors

u− = un−1/2 +
q∆tEn

2m
(A.6)

u+ = un+1/2 − q∆tEn

2m
(A.7)
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and substituting Eqs. (A.6, A.7) into Eq. (A.3) with the Boris choice for v̄n

in Eq. (A.5), we get

u+ − u−

∆t
=

q

2γnmc

(

u+ + u−
)

× Bn . (A.8)

Taking the scalar product of Eq. (A.8) with (u+ + u−) we get (u+)2 = (u−)2

and therefore γn =
√

1 + (u−/c)2 =
√

1 + (u+/c)2. Since we start with

un−1/2 then γn =
√

1 + (u−/c)2 is used in practice.

Eq. (A.8) results in a rotation about an axis parallel to B through an angle

θ = −2 arctan(q∆t|Bn|/2γnmc) and can be performed with the usual Boris’

rotation (see Ref. [65] for details). In summary, a single Boris step-advance

consists of the following sub-steps:

Step 1: Start with un−1/2, half boost by the electric field

u− = un−1/2 +
q∆tEn

2m
(A.9)

Step 2: Full rotation by the magnetic field

γn =
√

1 + (u−)2 (A.10)

t =
qBn∆t

2γnmc
(A.11)

s =
2t

1 + t2
(A.12)

then

u′ = u− + u− × t (A.13)

u+ = u− + u′ × s (A.14)

Step 3: Half boost by the electric field

un+1/2 = u+ + qEn∆t

2
(A.15)

Another possible approach is to algebraically solve Eq. (A.8). In fact,

since γn =
√

1 + (u−/c)2 is a known given quantity, we have to solve a

linear system of algebraic equations Eq. (A.8) in the unknown u+. Recasting

Eq. (A.8) as

u+ = u′ + (u+ × t) (A.16)
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where t = q∆tBn/2γnmc and u′ = u− + u− × t, then the solution of

Eq. (A.16) is

u+ = s [u′ + (u′ · t)t + (u′ × t)] = s
[

u′ + (u− · t)t + (u′ × t)
]

(A.17)

where s = 1/(1+t2) and Eq. (A.17) replaces the step 2 of the Boris approach.

Another pusher has been proposed by Vay in Ref. [68] where the following

velocity average

v̄n =
vn+1/2 + vn−1/2

2
=

1

2

(

un+1/2

γn+1/2
+

un−1/2

γn−1/2

)

(A.18)

substitutes the Boris velocity average in Eq. (A.5). Then, Eq. (A.3) with

the velocity average in Eq. (A.18) is algebraically solved using γn+1/2 =
√

1 + (un+1/2/c)2 as a known given quantity. Finally, γn+1/2 is deduced solv-

ing a fourth-order algebraic equation obtained1 from γ2 = 1 + (u/c)2 (see

Ref. [68] for details).

We report the steps of the Vay approach:

Step 1: Get un from un−1/2 using

un = un−1/2 +
q∆t

2m

(

En +
un−1/2

γn−1/2
× Bn

)

(A.19)

Step 2: Get un+1/2 from un using

γn+1/2 =

√

σ +
√

σ2 + 4(~τ 2 + u∗2)

2
(A.20)

and

un+1/2 = s[u′ + (u′ · t)t + u′ × t] (A.21)

where ~τ = (q∆t/2m)Bn, u∗ = u′ · ~τ/c, σ = γ′2 − ~τ 2, γ′ =
√

1 + u′2/c2,

t = ~τ/γn+1/2, s = 1/(1 + t2), and u′ = un + (q∆t/2m)En.

Finally, in every pusher the position is advanced according to

xn+1 = xn +
pn+1/2

γn+1/2
∆t . (A.22)

1Actually, the scalar product of the previously found solution with a suitable known

quantity is taken, however this is conceptually the same approach.
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We remark that the Vay pusher is comparatively much more complex

and computationally expensive than the previously discussed pushers since

more quantities have to be computed and in particular multiple square roots

have to be computed for a single step-advance (see e.g. Eq. (A.20) and

the computation of γ′). Furthermore, comparing the numerical prediction

for an electron in a monochromatic plane wave using the same physical and

numerical parameters, we have found that the Boris pusher and our modified

pusher lead to nearly the same results while the Vay pusher leads to larger

deviations from the analytical prediction.

Fig. A.1 shows the trajectory of an electron in a monochromatic plane

wave in the “average rest frame” computed with a fourth-order Runge-Kutta

method (black curve) and with the previously discussed leap-frog methods

(red curve). In these simulations, the normalized laser intensity is a0 = 100,

the polarization parameter is δ = 0 (see Eq. (2.16)) and the initial momentum

is px0
= −35.35mc. It is apparent that the Vay method yields the largest

deviations from the expected “figure of eight” although the simulations last

the same time and have the same time-step ∆t = ω−1/100.
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Figure A.1: First row: fourth-order Runge-Kutta prediction (black) and

Boris pusher prediction (red). Second row: fourth-order Runge-Kutta pre-

diction (black) and our modified pusher prediction (red). Third row: fourth-

order Runge-Kutta prediction (black) and Vay pusher prediction (red).
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Appendix B

Mathematical proofs

B.1 Contraction of the phase space: proof of

the inequality

In this section we prove that for any E and B in the real domain and for

any v such that 1 > |v| ≥ 0 then

4γ
[

(v ×E)2 + (v × B)2 − 2v · (E ×B)
]

+ 2

[

E2 + B2

γ

]

≥ 0 . (B.1)

It is always possible to decompose the electromagnetic fields in the fol-

lowing way

E = E⊥ + E‖ B = B⊥ + B‖ (B.2)

i.e. the field can be written as a superposition of the component perpen-

dicular to v and of the component parallel to v. It immediately follows

that
[

E2 + B2

γ

]

=

[

E2
⊥ + B2

⊥

γ

]

+

[

E2
‖ + B2

‖

γ

]

. (B.3)

If

4γ
[

(v × E)2 + (v × B)2 − 2v · (E × B)
]

+ 2

[

E2
⊥ + B2

⊥

γ

]

≥ 0 (B.4)

then Eq. (B.1) is fulfilled i.e. Eq. (B.4) is a sufficient condition for the validity

of Eq. (B.1). From our previous definitions we have

4γ
[

(v ×E)2 + (v × B)2 − 2v · (E ×B)
]

=
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= 4γ
[

v2E2
⊥ + v2B2

⊥ ∓ 2|v||E⊥||B⊥| sin(φ)
]

(B.5)

where sin(φ) with φ ∈ [0, π] is the angle included between E⊥ and B⊥ which

lie in the plane perpendicular to v and we used the identity

v · (E ×B) = v ·
[

(E⊥ + E‖) × (B⊥ + B‖)
]

= v · (E⊥ ×B⊥) =

= ±|v| |E⊥ ×B⊥| = ±|v||E⊥||B⊥| sin(φ) (B.6)

which follows from the distributive property and from
(

E‖ × B‖

)

= 0 from

the definition (B.2), v ·
(

E‖ ×B⊥

)

= B⊥ ·
(

v × E‖

)

= 0 from the defini-

tion (B.2) and the same v ·
(

E⊥ × B‖

)

= −E⊥ ·
(

v × B‖

)

= 0 from the

definition (B.2).

Using Eq. (B.5) we have that Eq. (B.4) becomes

4γ
[

v2E2
⊥ + v2B2

⊥ ∓ 2|v||E⊥||B⊥| sin(φ)
]

+ 2

[

E2
⊥ + B2

⊥

γ

]

≥ 0 (B.7)

Each term of Eq. (B.7) is positive except when (E⊥ × B⊥) is parallel to v.

In this last case we have a negative sign term −2|v||E⊥||B⊥| sin(φ). It is

clear that −2|v||E⊥||B⊥| sin(φ) ≥ −2|v||E⊥||B⊥| and therefore in order to

prove Eq. (B.7) it is sufficient to prove

4γ
[

v2E2
⊥ + v2B2

⊥ − 2|v||E⊥||B⊥|
]

+ 2

[

E2
⊥ + B2

⊥

γ

]

≥ 0 (B.8)

If v = 0 the inequality (B.8) is fulfilled so we have to prove Eq. (B.8) when

1 > |v| > 0. Dividing Eq. (B.8) by 4γ

[

v2(E2
⊥ + B2

⊥) − 2|v||E⊥||B⊥|
]

+

[

E2
⊥ + B2

⊥

2γ2

]

≥ 0 (B.9)

and using the identity v2 = 1 − 1/γ2 then Eq. (B.9) becomes

(E2
⊥ + B2

⊥)

[

1 − 1

2γ2

]

≥ 2|v||E⊥||B⊥| . (B.10)

We already showed that if |v| = 0 then Eq. (B.8) is fulfilled, the same is true

for |E| = 0 or |B| = 0. We can therefore assume that |v| > 0 and |E| > 0

and |B| > 0 and rewrite Eq. (B.10) as

1

|v|

[

1 − 1

2γ2

]

≥ 2|E⊥||B⊥|
(E2

⊥ + B2
⊥)

(B.11)
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It is straightforward to prove that

1 ≥ 2|E⊥||B⊥|
(E2

⊥ + B2
⊥)

since (|E⊥| − |B⊥|)2 ≥ 0. In order to prove Eq. (B.11) it is therefore sufficient

to prove that
1

|v|

[

1 − 1

2γ2

]

=
1

|v|

[

1

2
+
γ2 − 1

2γ2

]

≥ 1 . (B.12)

Using

γ2 − 1 =
v2

1 − v2

then Eq. (B.12) becomes

1

2|v|

[

1 +
v2

γ2(1 − v2)

]

=

[

1

2|v| +
|v|
2

]

≥ 1 (B.13)

The function
[

1

2|v| +
|v|
2

]

(B.14)

is regular in the domain 1 > |v| > 0. It is straightforward to prove that

[

1

2|v| +
|v|
2

]

→ +∞ for |v| → 0+

[

1

2|v| +
|v|
2

]

→ +1 for |v| → 1

Calculating the derivative

d

d|v|

[

1

2|v| +
|v|
2

]

=
|v|2 − 1

2|v|2 ≤ 0 in the domain 1 > |v| > 0

it follows that the function (B.14) is monotonically decreasing and the lower

bound is +1, hence Eq. (B.13) is fulfilled. Q.E.D.

B.2 Evolution of the phase space volume

In this section we deduce the equation that provides the temporal evolu-

tion of an infinitesimal volume of a 6n-dimensional phase-space where n is

the number of particles.
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Temporal evolution can be considered as a coordinate transformation in

the phase space and is described by the equations of motion that we assume

to be (normalizing momenta in units of mc and velocities in units of c):

q̇l(t) = pl(t)/
√

1 + p2
l (t) (B.15)

ṗl(t) = F(ql,pl, t) l = 1, . . . , n (B.16)

where q̇l(t) depends only on pl(t) and does not depend on ql(t). We mention

that in Hamiltonian mechanics q̇l(t) may be a function of both the canonical

momentum Pl(t) and the canonical coordinate ql(t). For instance, in non-

relativistic mechanics the equation q̇(t) = ∂H
∂P

for an electron in an external

electromagnetic field becomes

q̇(t) = P(t) − e

mc
A(q, t) (B.17)

The infinitesimal volume element at t = 0

dx0 = dq1(0) . . . dqn(0) dp1(0) . . . dpn(0) (B.18)

evolves in the infinitesimal volume at time t

dxt = dq1(t) . . . dqn(t) dp1(t) . . . dpn(t) . (B.19)

The relationship between the two volumes is given by the modulus of the

Jacobian

dxt = |J |dx0 (B.20)

with

J ≡ det(M) (B.21)

where

Mij =
∂xi

t

∂xj
0

(B.22)

From Eq.(B.20) or equivalently from Eq.(B.22) it follows that J = 1 at t = 0,

which provides the initial condition.

Taking the time derivative of J and using Jacobi’s formula for the deriva-

tive of a determinant we get

dJ

dt
= tr

(

adj(M)
dM

dt

)

(B.23)
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where adj(M) is the classical adjoint (or “adjugate”) ofM i.e. the transposed

of the cofactor matrix of M .

Assuming J(0) = 1 then M is invertible at least in a neighborhood of

t = 0 and from the Cramer rule and Laplace expansion for the determinant

M−1 =
adj(M)

det(M)
= J−1adj(M) (B.24)

Substituting Eq. (B.24) in Eq. (B.23) and using the linearity of the trace

we have
dJ

dt
= J tr

(

M−1dM

dt

)

(B.25)

and recalling that

M−1
ij =

∂xi
0

∂xj
t

(B.26)

and
dMij

dt
=
∂ẋi

t

∂xj
0

(B.27)

we get

tr

(

M−1dM

dt

)

=

6n
∑

i,j=1

M−1
ij

dMj,i

dt
=

6n
∑

i,j=1

∂xi
0

∂xj
t

∂ẋj
t

∂xi
0

=

6n
∑

j=1

∂ẋj
t

∂xj
t

= ∇xt · ẋt

(B.28)

that is a divergence in the 6n-dimensional phase-space. Eq. (B.25) therefore

becomes
dJ

dt
= J ∇xt · ẋt (B.29)

or equivalently in terms of q(t) and p(t)

∇xt · ẋt =

3n
∑

i=1

∂q̇i
∂qi

+

3n
∑

i=1

∂ṗi

∂pi
=

n
∑

l=1

∇ql
· q̇l +

n
∑

l=1

∇pl
· ṗl (B.30)

For an Hamiltonian system

q̇l(t) =
∂H

∂Pl

(B.31)

Ṗl(t) = −∂H
∂ql

l = 1, . . . , n (B.32)
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then
3n
∑

i=1

∂q̇i
∂qi

+
3n
∑

i=1

∂Ṗi

∂Pi

=
3n
∑

i=1

∂2H

∂qi∂Pi

−
3n
∑

i=1

∂2H

∂Pi∂qi
= 0 (B.33)

and the phase-space volume is conserved.

In our case, from Eqs. (B.15, B.16) and from Eq. (B.29) we have

dJ

dt
= J

n
∑

l=1

∇pl
· F(ql,pl, t) , J(0) = 1 (B.34)

since ∇ql
· q̇l = 0 because q̇l depends only on pl. Q.E.D.

B.3 The PIC method with RR

In this section we prove that the standard particle-in-cell (PIC) approach

holds even when ∇p · F 6= 0 where F = F(x,p, t) is the total force.

In order to keep the notation as simple as possible we use the dimension-

less quantities introduced in Eq. (2.11). The relativistic distribution function

f = f(x,p, t) evolves according to the collisionless transport equation

∂f

∂t
+ ∇x · (f v) + ∇p · (f F) = 0 , (B.35)

where x are the spatial coordinates, v = p/γ(p) is the three-dimensional

velocity and γ =
√

1 + p2 is the relativistic factor.

In the PIC approach a discrete representation of the distribution function

is assumed

f(x,p, t) = f0

N
∑

i=1

g[x − xi(t)]δ[p − pi(t)] (B.36)

where N is the number of computational particles or quasi-particles that

provide a representation of the distribution function f , the constant f0 is a

proper normalization factor, xi(t) and pi(t) are the quasi-particle trajecto-

ries in the phase-space, g[x−xi(t)] is the spatial ‘shape’ of the quasi-particle

while δ[p − pi(t)] it the Dirac delta. The typical choice is therefore to have

a point-like ‘shape’ in the momentum space and an extended ‘shape’ in the

real space. In principle, the choice g[x − xi(t)] = δ[x − xi(t)] is also possi-

ble although not convenient in practice since it would lead to an increased
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‘numerical noise’ in the current and in the fields (when the current is in-

serted in Maxwell’s equations). In fact, Maxwell’s equations are solved with

an ‘Eulerian’ approach i.e. on a grid or ‘mesh’ with a well defined spatial

and temporal step so that when a point-like particle cross from a cell to an-

other cell of the mesh it yields a sudden jump in the current. This issue is

not present for momentum coordinates since a ‘Lagrangian’ approach is used

for the evolution of the computational particles and the momentum space is

continuous (i.e. no grid is used for momentum space).

The discrete representation (B.36) is a simple way to switch from an Eule-

rian description to a Lagrangian description where we follow the trajectories

of the quasi-particles in the phase-space. Hence, in this description the un-

known quantities are the Lagrangian coordinates xi(t) and pi(t) and their

temporal evolution has to be deduced substituting Eq. (B.36) into Eq. (B.35).

Taking the partial time derivative of f

∂tf = −f0

N
∑

i=1

{

δ[p− pi(t)]ẋi(t) · ∇xg[x − xi(t)]

+ g[x − xi(t)]ṗi(t) · ∇pδ[p− pi(t)]
}

= −f0

N
∑

i=1

{

∇x ·
(

ẋi(t)g[x− xi(t)]δ[p − pi(t)]
)

+ ∇p ·
(

ṗi(t)g[x − xi(t)]δ[p − pi(t)]
)}

(B.37)

and Eq. (B.35) becomes

N
∑

i=1

{

∇x ·
[

( p

γ(p)
− ẋi(t)

)

g[x − xi(t)]δ[p− pi(t)]

]

+

+∇p ·
[

(

F(x,p, t) − ṗi(t)
)

g[x − xi(t)]δ[p − pi(t)]

]}

= 0 (B.38)

Integrating Eq. (B.38) in momentum space dp, using the divergence theorem

and recalling that the flux of

[

(

F(x,p, t)− ṗi(t)
)

g[x− xi(t)]δ[p− pi(t)]

]

is

zero for |p| → ∞ then

N
∑

i=1

∇x ·
[

( pi(t)

γ(pi(t))
− ẋi(t)

)

g[x − xi(t)]

]

=
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=
N

∑

i=1

[

( pi(t)

γ(pi(t))
− ẋi(t)

)

]

· ∇xg[x− xi(t)] = 0 (B.39)

Since ∇xg 6= 0, the solution of Eq. (B.39) is:

ẋi(t) =
pi(t)

γ(pi(t))
(B.40)

because coordinates corresponding to a different index i are independent.

Integrating Eq. (B.38) in space dx, using the divergence theorem and recalling

that the flux of

[

(

p/γ(p)− ẋi(t)
)

g[x−xi(t)]δ[p−pi(t)]

]

is zero for |x| → ∞
then

N
∑

i=1

∇p ·
[

∫

(

F(x,p, t) − ṗi(t)
)

g[x − xi(t)]δ[p − pi(t)] dx

]

=

=

N
∑

i=1

∇p ·
[

∫

F(x,p, t)g[x − xi(t)]δ[p − pi(t)] dx − ṗi(t)δ[p− pi(t)]

]

=

=

N
∑

i=1

[
∫

F(x,pi(t), t)g[x− xi(t)] dx − ṗi(t)

]

· ∇pδ[p − pi(t)] = 0 (B.41)

where we have assumed that
∫

g[x − xi(t)] dx = 1 and we have used the

following result for a distribution

∇p ·
[

F(x,p, t)δ[p − pi(t)]
]

= F(x,pi(t), t) · ∇pδ[p − pi(t)] (B.42)

The solution of Eq. (B.41) is

ṗi(t) =

∫

F(x,pi(t), t)g[x − xi(t)] dx (B.43)

because coordinates corresponding to a different index i are independent.

The problem of solving the kinetic equation for the distribution function

f is therefore reduced to the problem of solving a system of 2N ordinary

differential equations i.e. Eqs. (B.40, B.43) for the computational particles.

Q.E.D.
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HPC-Europa2 project,

publications, talks and schools

HPC-Europa2 project

Title: UMKAupgrade Abstract appl. 711

• Objectives:

One of the main research activities of both our group and of the host

institution is to investigate the strongly non-linear dynamics of super-

intense laser-plasma interactions with multi-dimensional particle-in-cell

simulations (PIC). To this aim, we already performed multi-D PIC

simulations of laser-foil interaction at ultra-high intensities using the

FORTRAN77 based PIC code “UMKA” which was developed by one of

the members of the host institution (T. Liseykina). However, this code

needed to be improved in order to make it more suitable for larger high

resolution simulations. In particular, a more efficient I/O management

and load balancing strategy had to be developed in order to enhance

the efficiency and flexibility of the code e.g. allowing a restart with

a different number of computational elements and to make the data

portable on different platforms.

The objectives of this project were therefore twofold: the first was to

improve the existing PIC code “UMKA”, in particular the I/O man-

agement by implementing the HDF5 library and performing tests of

scalability; the second was to strengthen our collaboration with the

host institution by starting up a joint project of code upgrade and de-
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velopment, which may eventually allow to present a large joint project

to be performed in one of the European supercomputing facilities.

• Achievements:

The code improvement were performed on the 2D version of the particle-

in-cell code “UMKA”. In particular:

1. A new procedure that performs an automatic backup of data forc-

ing a checkpoint before reaching the wall-clock time or when some

processing element is overloaded was introduced to avoid crash

with loss of data and waste of computational resources.

2. The whole I/O management is performed using the HDF5 library.

A single file is generated for each checkpoint instead of a file for

each processing element for each checkpoint. This assures efficient

parallel I/O and data portability. Moreover, there is no longer

need to restart with the same number of processing elements.

3. A dynamic domain management and a simple load balancing strat-

egy were developed and implemented in the code at the checkpoint

level. It is possible to restart from checkpoint with a different

number of processing elements. The domain for the fields as well

as the number of particles managed by each processing element is

assigned at restart in order to have an initial load balanced set-up.

Several other improvements and optimizations are left for future work

continuing our joint project of code development in collaboration with

the host institution. In particular, the new dynamic domain manage-

ment implemented in the code allows to introduce a simple dynamic

load balancing strategy at run-time. Furthermore, communication and

memory management may be improved, the code should be fully ported

from FORTRAN77 to FORTRAN90.
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Other research projects and grants

• February 2011 - August 2011: research grant from CNR-INO, “Teoria e

simulazione Particle-In-Cell dell’accelerazione di ioni in regimi di inten-

sità estreme” in the framework of the project SULDIS - “Superintense

Laser-Driven Ion Sources”.

• July 2010 - July 2011: ISCRA-CINECA “Class A” Supercomputing

Project TOFUSEX - Towards Full-Scale Simulations of Laser-Plasma

Interaction Experiments, as a staff member of the local research unity

of Pisa. Principal investigator Dr. Andrea Macchi (CNR-INO Pisa,

Italy).

Publications in peer reviewed journals

1. M. Tamburini, T. V. Liseykina, F. Pegoraro and A. Macchi, “Radia-

tion pressure dominant acceleration: polarization and radiation reac-

tion effects in three dimensional particle-in-cell simulations”, submitted,

arXiv:1108.2372v2 (2011).

2. M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, T. V. Liseykina,

A. Macchi, “Radiation reaction effects on electron nonlinear dynamics

and ion acceleration in laser-solid interaction”, Nuclear Instruments

and Methods in Physics Research A 653 181-185 (2011).

3. M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel and A. Macchi,

“Radiation reaction effects on radiation pressure acceleration”, New

Journal of Physics 12, 123005 (2010).

Conference Proceedings

1. A. Macchi, M. Tamburini, F. Pegoraro, T. V. Liseykina, “Radiation

friction modeling in superintense laser-plasma interactions”, Harness-

ing Relativistic Plasma Waves as Novel Radiation Sources from Tera-
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hertz to X-Rays and Beyond II. Proceedings SPIE 8075, 807509 (2011);

doi:10.1117/12.889127

2. A. Macchi, M. Tamburini, S. Veghini, F. Pegoraro, A. Di Piazza, C.

H. Keitel, “Radiation pressure and radiation reaction effects in laser-

solid interaction”, LAT 2010: International Conference on Lasers, Ap-

plications, and Technologies, Proceedings SPIE 7994, 799421 (2010);

doi:10.1117/12.881906

Talks and Seminars

• Seminar, Institute of Physics, University of Rostock, Germany, 1st July

2011. “Radiation Reaction Effects in Superintense Laser-Plasma Inter-

action”.

• Invited talk (as a substitute for A. Macchi), SPIE International Sym-

posium, 18th - 21st April 2011, Prague. “Radiation Friction Modeling

in Superintense Laser-Plasma Interactions”.

• Talk, DPG Conference, Kiel, Germany, 28th-31st March 2011. “Radi-

ation Reaction Effects on Ion Acceleration in Laser-Solid Interaction”.

• Seminar, LULI, École Polytechnique, Palaiseau Cedex, France, 2nd

March 2011. “Radiation Reaction Effects in Laser-Plasma Interaction

at Extreme Intensities”.

• Talk, Fourth International Conference on Superstrong Fields in Plas-

mas, Varenna, Italy, 3rd-9th October 2010. “Radiation Reaction Ef-

fects on Electron Nonlinear Dynamics and Ion Acceleration in Laser-

solid Interaction”.

Poster contributions

• 37th EPS Conference on Plasma Physics, 21st - 25th June 2010, Dublin,

Ireland. “Radiation Reaction Effects in Relativistic Laser-Produced

Plasmas”.
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• SILMI Workshop, Frontiers in Intense Laser-Matter Interaction The-

ory, Garching, Germany, 1st-3rd March 2010. “A Study of Radiation

Reaction Effects in Superintense Laser-Plasma Interaction”.

Schools and courses

• Course on: Standard formats for scientific data (HDF5 library), CINECA

supercomputing facility, Bologna, Italy, 2nd - 3rd December 2010, prac-

tice on CINECA HPC systems.

• 19th Summer School of Parallel Computing, 5-16 July 2010, CINECA,

Italy. Topics: parallel architectures, models of parallel programming,

parallel algorithms, programming environments, code optimization tech-

niques, practice on CINECA HPC systems.

• 46th International School of Quantum Electronics: “Atoms and Plas-

mas in Super-Intense Laser Fields”, 10th - 17th July 2009, Erice, Italy.
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