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ABSTRACT 
 
This thesis presents the LPV (Linear Parameter Varying) modelling, identification 
and control with fault tolerance mechanisms of a Twin Rotor MIMO System 
(TRMS). 
The non-linear model of the TRMS is transformed into a quasi-LPV model and 
then approximated in a polytopic way. The model parameters are calibrated by 
means of a non-linear least-square identification approach. Once the calibrated 
model is obtained, a simulator is built and validated against real data. 
Using the LPV LMI (Linear Matrix Inequalities) pole placement approach, an LPV 
observer and an LPV controller are designed and tested both in simulation and on 
the real system in order to prove its effectiveness and performance. 
Finally, a Fault Tolerant Control strategy using virtual sensors and virtual actuators 
is applied in an LPV way. In order to implement these approaches, fault estimation 
is required. To this aim, a method to identify the faults is implemented formulating 
a parameter estimation problem. The methodology is tested both in simulation and 
on the real system, showing its effectiveness and its limits. 
 
 
 
SOMMARIO 
 
Questa tesi presenta la modellazione, l’identificazione ed il controllo LPV (Linear 
Parameter Varying, sistemi lineari con parametri varianti) con meccanismi di 
tolleranza ai guasti di un Twin Rotor MIMO System (TRMS). 
Il modello non lineare del TRMS è trasformato in un modello quasi-LPV ed è 
approssimato in maniera politopica. Dopodiché, i parametri del modello sono stati 
identificati con un approccio d’identificazione basato sui minimi quadrati non 
lineari. Una volta ottenuto un modello calibrato, un simulatore è stato costruito e 
validato con dati reali. 
Usando un approccio di piazzamento dei poli mediante risoluzione di 
disuguaglianze matriciali lineari (LMI), sono stati progettati un osservatore ed un 
controllore LPV, e questi sono stati testati sia sul simulatore che sul sistema reale, 
provando la loro efficacia e le loro prestazioni. 
Infine, una strategia di controllo tollerante ai guasti basata sull’idea dei sensori e 
degli attuatori virtuali è stata applicata in maniera LPV. Per implementare tale 
strategia, una stima dei guasti è richiesta; per questo motivo è stato implementato 
un metodo per identificare i guasti attraverso la formulazione di un problema di 
stima dei parametri. La metodologia è stata applicata al simulatore ed al sistema 
reale, mostrando la sua efficacia, ma anche i suoi limiti. 
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1 – INTRODUCTION 
 

1.1 – Background 
 

This thesis describes the LPV modelling, identification and control including fault tolerance 
mechanisms of a Twin-Rotor MIMO System (TRMS) developed by Feedback Instruments 
Limited for control experiments. This system resembles a simplified behaviour of a conventional 
helicopter with less degree of freedom. The system is perceived as a challenging engineering 
problem owing to its high non-linearity, cross-coupling between its two axes, and inaccessibility 
of some of its states and outputs for measurements. 
The modelling of such a system has been addressed in several papers. In particular, in [Rahideh, 
2007] two physical models based on Newtonian and Lagrangian approaches are presented and 
compared. Further modelling improvements can be found in [Gabriel, 2008] and [Christensen, 
2006]. 
The experimental identification of the parameters of the TRMS model has been addressed in 
several papers too. In [Ahmad, 2002], a dynamic model of a one-degree-of-freedom TRMS in 
hover is obtained using a black-box system identification technique. The extracted model is 
employed for designing and implementing a feedforward/open-loop control. In [Darus, 2004], 
the parameters of the TRMS in hovering position are identified through the utilization of a 
genetic algorithm optimization technique based on one-step-ahead prediction. In [Alam, 2007], a 
particle swarm optimization (PSO) algorithm that uses time-varying inertia weight factor and 
time-varying acceleration coefficients is used to extract both 1-DOF models for both vertical 
(pitch) and horizontal (yaw) channels, and a 2-DOF parametric model that takes into account 
cross-coupling between the channels. In [Toha, 2008], an adaptive neuro-fuzzy inference system 
(ANFIS) network design is deployed and used for modelling the TRMS. 
Regarding the control, a nonlinear predictive control has been presented in [Dutka, 2003]. The 
non-linearity is handled by converting the state-dependent state-space representation into the 
linear time-varying representation. In [Lopez, 2003a] and [Lopez, 2004], the control of the twin 
rotor system using feedback linearization techniques (as full state linearization and input output 
linearization) has been suggested. In [Lopez, 2003b], a H  controller for helicopter dynamics is 

proposed. Later, a non linear H  approach for handling the coupling taken as disturbance that 

should be rejected is introduced in [Lopez, 2005]. The resulting controller exhibited attributes of 
a non-linear PID with time-varying constants according to the operating point. In [Ahmed, 
2009], a sliding mode control is considered by defining a sliding surface that allows to deal with 
cross-coupling inherent in the twin rotor dynamics. 
Fault Tolerant Control (FTC) is a new idea recently introduced in the research literature [Blanke, 
2003] which allows keeping current performance close to desirable one and preserving stability 
conditions in presence of components and/or instrument faults. Accommodation capability of a 
control system depends on many factors such as severity of the failure, the robustness of the 
nominal system and mechanisms that introduce redundancy in sensors and/or actuators. From the 
point of view of the control strategies, the literature considers two main groups of techniques: the 
active and the passive ([Zhang, 2008] for a review). Most of the FTC methods have been 
proposed for LTI systems. The LPV theory, used in this thesis, is mainly used for designing 
controllers for non-faulty systems, but recently it has also been used for active FTC [Rodrigues, 
2007]. Recently, virtual sensors and virtual actuators have been proposed as a fault 
accommodation approach [Blanke, 2003]. The main idea of this FTC method is to reconfigure 
the control loop such that the nominal controller could still be used without need of retuning it. 
This means that the faulty plant is adapted to the nominal controller instead of adapting the 
controller to the faulty plant. That is, the faulty plant together with the virtual actuator/sensor 
block allows the controller to see the same plant as before the fault. 
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1.2 – Objectives 
 

The aim of this thesis is to design a controller for the TRMS in an LPV way. The controller will 
comprehend some active fault tolerance mechanisms to avoid loss of stability and to reduce the 
loss of performances due to the occurrence of a fault either in one of the sensors or in one of the 
actuators. To reach this aim, the TRMS dynamics must be modelled and its parameters have to 
be identified. Afterwards, the control strategy and the fault tolerance mechanisms will be 
implemented and tested both on a simulator and on the real system. 
 

1.3 – Contributions 
 

The contributions of this thesis are the following: 
 the Newtonian model of the TRMS proposed in [Rahideh, 2007] is modified and 

transformed into a quasi-LPV model using the transformation method proposed by 
[Shamma, 1992a]; 

 a non-linear identification approach that is based on formulating a non-linear least square 
problem is used to estimate the parameters of the non-linear model of the TRMS. The 
obtained values are then used both for control design purposes and for building a Matlab 
simulator to test the control strategies before applying them to the real set-up; 

 the TRMS model is approximated by a polytopic LPV model such that LPV control 
theory can be applied. This control methodology allows to design a state feedback gain-
scheduling controller that is able to adapt the control gains with the operating point using 
a scheduling function and scheduling variables; 

 an LPV observer is designed to estimate the TRMS states; 
 LPV controllers are designed to control the yaw and the pitch angles, and their 

performances are compared; 
 active fault tolerance mechanisms are designed in an LPV way and added to the control 

loop, so as to give the system fault-rejection property; 
 the designed observer, controller and fault tolerance mechanisms are tested both in the 

simulation environment and with the real system; 
 

1.4 – Outline of the thesis 
 

The thesis is organized as follows: 
 

Chapter 1 – Introduction 
 

Chapter 2 – Preliminaries 
This chapter introduces some basic concepts that are needed later in this thesis. This thesis 
proposes the use of a Linear Parameter Varying (LPV) approach to control a TRMS system. 
Thus, some theory about LPV systems is introduced, and a way to obtain an LPV representation 
from a classical non-linear representation is briefly explained. Two types of LPV models are 
described in this chapter. First, an LPV modelling approach based on “hiding” the non-linearities 
in the time-varying parameter vector (“absolute representation”). Then, another LPV 
representation is presented, based on state transformation, where the equilibrium point is not 
included explicitly, but the new time-varying parameters depend on the equilibrium point 
(“relative representation”). 
Most of the thesis relies heavily on linear matrix inequalities (LMIs) that need to be solved in 
order to place the eigenvalues of some closed-loop system in a desired subregion of the complex 
plane. Concepts dealing with pole placement in an LMI region will be briefly discussed. 
Finally, basic concepts about Fault Tolerant Control will be resumed. 
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Chapter 3 - TRMS Modelling 
 

In this chapter, the Twin Rotor MIMO System, a laboratory setup developed by Feedback 
Instruments Limited for control experiments, is described. At first, a physical model is obtained 
by considering the dynamics of the DC motors, of the propellers and the horizontal and vertical 
subsystem dynamics. Then, techniques described in Chapter 2 will be used to obtain a TRMS 
LPV representation: an LPV absolute representation of the TRMS is used as an intermediate step 
to obtain the so-called “Shamma representation” (based on state transformation) that can be 
approximated by a polytopic LPV representation that is the model used for control design 
purposes in this thesis. 
 

Chapter 4 – TRMS Identification 
 

In this chapter, the unknown parameters that describe the TRMS dynamics are identified. The 
procedure that has been used is explained and the results of the identification are shown. At the 
end of the chapter, some advices to improve the goodness of the model are given, and the 
bounding box approach is used to obtain a polytopic LPV representation for the system, to be 
used for control design purposes. 
 

Chapter 5 – TRMS LPV Control 
 

In this chapter, the TRMS is controlled by an LPV state feedback controller. The controller is 
designed using different LPV models, all obtained from the non-linear model described in 
Chapter 3 and identified in Chapter 4. The effectiveness of the control strategy is shown and 
compared to basic PID control strategy. 
 

Chapter 6 –LPV Fault-Tolerant Control for the TRMS 
 

In this chapter, active fault-tolerance mechanisms are designed in both cases of sensor and 
actuator faults. The fault tolerance mechanisms are tested both in simulation and on the real 
system. 
 

Chapter 7 – Conclusions and Future Works 
 

Appendix A – Tables of TRMS Quantities 
 

Appendix B – Linear Matrix Inequalities 
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2 – PRELIMINARIES 
 

2.1 – Introduction 
 

In recent years an emerging approach to control theory known as Linear Parameter Varying 
(LPV) Control, has been developed as an alternative to classical gain-scheduling techniques. 
Classical gain-scheduling is a method to design controllers for dynamical systems over a wide 
performance envelope. The controller obtained is based on the interpolation of a family of 
locally linearized controllers, but no guarantees are given on its stability and robustness other 
than at the design points. LPV Control synthesis fits into the gain scheduling framework, while 
adding stability and robustness guarantees. The strength of the LPV approach lies in the 
extension of well-known methods for linear optimal control, including the use of linear matrix 
inequalities (LMIs), to the design of gain scheduled LPV controllers. A condition to apply LPV 
control synthesis is to transform the nonlinear model of the system into an LPV model; hence 
LPV modelling becomes a key issue in the design of LPV controllers. Luckily, many nonlinear 
systems of practical interest can be represented as quasi-LPV systems, where quasi is added 
because the scheduling parameters do not depend only on external signals, but on system 
variables too. 
In recent years, Active Fault Tolerant Control (AFTC) has become an important topic in control 
theory, and techniques have been developed to reduce and compensate the effects of the fault on 
the behaviour of the controlled system. Among these techniques, virtual sensors and virtual 
actuators have been created to adapt the faulty plant to the nominal controller, so as to hide the 
fault. 
In Section 2.2, LPV theory will be reviewed; in Section 2.3, some theory about controller design 
with pole placement constraints will be explained. Lastly, in Section 2.4, some basic 
informations about fault tolerant control will be given. 
 

2.2 – LPV Modelling 
 

2.2.1 – Linear Parameter Varying Systems 
 

In gain-scheduling, the basic concept is to linearize the non-linear system model at different 
operating points resulting in a collection of local LTI descriptions of the plant. Then, 
subsequently, LTI controllers are designed for each local operating point considered. These 
controllers are interpolated to give a global control solution to the entire operation regime. The 
used interpolation function is called the scheduling function and it is dependent on the current 
operating point of the plant. To describe the changes of the operating point, a signal is 
introduced, which is called the scheduling signal. In this way, the parameters of the resulting 
controller are dependent on this varying signal; hence the name parameter-varying, while the 
dynamic relation between system signals is still linear. Due to many successful applications of 
this design methodology, gain-scheduling has become popular in industrial applications, even if 
guarantees for overall stability of the designed LPV controllers was not available and the 
possibility of malfunction has existed. This was resolved by the introduction of interpolation 
based methods that guarantee global stability. In the mean time, researchers realized that in 
general many non-linear systems can be converted into an LPV form. Approaches that provided 
direct LPV models for gain-scheduling without the laborious process of NL system modelling or 
identification have appeared. The LPV field has evolved rapidly in the last decades and has 
become a promising framework for modern industrial control with a growing number of 
applications like aircrafts, re-entry vehicles, automobiles, wind turbines, induction motors, servo 
systems, wafer steppers, internet web servers, CD-players and environmental modelling. For 
further informations see [Tóth, 2010]. 
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2.2.2 – Polytopic LPV Representation 
 

In [Shamma, 1992a], linear parameter-varying systems (LPV) are defined as linear time-varying 
plants whose state-space matrices are fixed functions of some vector of varying parameters 

( )kψ . They are described by state-space equations of the form: 
 

   
   

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k k k k k

k k k k k

  


 

x A ψ x B ψ u

y C ψ x D ψ u
               (2.2.1) 

 

where ( ) xnk x   denotes the state vector, ( ) unk u   denotes the control inputs and ( ) yn
k y   

represents the sensor outputs. The matrices have the following dimensions:  ( ) x xn nk A ψ  , 

 ( ) x un nk B ψ   and  ( ) y xn n
k


C ψ  . ( )kψ  is the system vector of time-varying parameters 

of dimension n  that changes with the operating point scheduled by some measured system 

variables ( )kp  that can be estimated using some known function  ( ) ( )k f kψ p , known as 

scheduling function. 
LPV systems can either be viewed as linear time-invariant (LTI) plants subject to time-varying 
parametric uncertainty ( )kψ , or as linear time-varying plants, or as a result from the 

linearization of nonlinear plants along the trajectories of the parameter ψ . 

In [Apkarian, 1995] and [Chilali, 1996], linear matrix inequality techniques are applied for 
gain-scheduled control of LPV systems. These techniques have been developed both for 
continuous-time systems and for discrete-time systems. Since the controller for the Twin Rotor 
MIMO System will be designed as a discrete-time system, only the theory for LPV discrete-time 
systems will be reviewed in the following. 
The kind of LPV systems considered are those whose time-varying parameter vector ( )kψ  

varies within a polytope   and whose input and output matrices B  and C  do not depend on the 
vector ψ . More precisely, in this kind of LPV system, the state matrix ranges in a polytope of 

matrices defined as the convex hull of a finite number N  of matrices. Each polytope vertex 
corresponds to a particular value of the scheduling variable ( )kψ . In other words: 
 

 
 

 
1

( )
, 1,..., : ( )

N
j jj

k
j

k
Co j N k



      
        

      


A B A BA ψ B
ψ

C 0 C 0C 0
      (2.2.2) 

 

with  ( ) 0j
k k ψ  and  

1
( ) 1

N j
kj

k


 ψ , where each thj  model is called a vertex system. 

Because of this property, this type of LPV systems is referred as polytopic. 
A common approach to design a controller/observer for the LPV system (2.2.1) is to 
approximate it by a polytopic LPV system. The simplest polytopic approximation relies on 
bounding each LPV parameter by an interval. This approximation is known as bounding box 
approach. An alternative approach known as small hull approach proposed by [Kumar, 2000] is 
based on the fact that not only the range of varying parameters is known, but also intelligent 
choices can be made about the intermediate values that the varying parameter ( )kψ  can take. 

From this set of parameter values, the convex hull that contains them is obtained using the quick 
hull algorithm [Barber, 1996]. 
Proceeding with one of these two approaches, the polytopic LPV system (2.2.1) can be expressed 
as follows: 
 

  
1

( 1) ( ) ( ) ( )
N

j
k j

j

k k k k


    x ψ A x Bu                (2.2.3) 

 

 ( ) ( )k ky Cx                          (2.2.4) 
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where ( ) xnk x   denotes the state vector, ( ) unk u   denotes the control inputs and 

( ) yn
k y  denotes the sensor outputs. Here x xn n

j
A  , x un nB   and y xn n

C   are time-

invariant matrices defined for thj  model. The polytopic system is scheduled through functions 

designed as follows:  j
k k ψ ,  1,...,j N   that lie in a convex set: 

 

           1

1

( ) , ( ) ( ) ,..., ( ) , ( ) 0, , ( ) 1
NTj N N j j

k k k k k k
j

k k k k k j k     


 
         

 
ψ ψ ψ ψ ψ ψ (2.2.5) 

 

2.2.3 – Types of LPV Models 
 

There are three possible approaches to obtain an LPV model: 
1. Physical modelling: The model is obtained by physical laws taking into account that the 

model parameters vary according to the system states, the operating conditions and/or 
external factors. 

2. Multi-model identification: It is a two-step procedure where: 
 LTI models are identified at several different equilibrium (operating condition) by 

classical methods; 
 a global multi-model is obtained by interpolating among the local LTI models. 

The multiple model approach obtained by physical laws or identification can be viewed 
as a single linear parameter varying (LPV) global model. The parameters of the resultant 
global model are the result of interpolating the local estimated parameters by suitable set-
membership functions. 

3. LPV identification: This procedure is an extension of the classical identification (via 
linear regression). In this case, the varying parameters of the system (external parameters 
and/or space state) are assumed unknown a priori. However, they are measured or 
estimated upon operation of the system. The identified model parameters depend on the 
previous varying parameters. 

The physical modelling will be used in this work to obtain the LPV model through two 
approaches. One is based on [Kwiatkowski, 2006] (denoted as “Absolute LPV” in the 
following) and the other is based on [Shamma, 1992b] (denoted as “Shamma LPV” in the 
following). 
 

2.2.4 – Absolute LPV Representation 
 

This approach is introduced by [Kwiatkowski, 2006]. The method facilitates the construction of 
a suitable LPV model from a given non-linear system: 
 

 
( , )

( , )






x f x u

y g x u


                         (2.2.6) 

 

where x is the state, u is the input and y denotes an available measured output. 
The idea is to express the model (2.2.6) in the following way in order to facilitate the procedure: 
 

 
1

1

( , ), 1,...,

( , ), 1,...,

i

i

rx

i ij x
j

ry

i ij y
j

x f i n

y g i n






 



  






x u

x u



                    (2.2.7) 

 

The integers irx  and iry  denote the number of the terms in each state and output of (2.2.6). In 

the following, there is no difference in handling a state or an output. For this reason, in the 
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following, the state equations are considered. Each term is decomposed into its numerator ij , 

denominator ij  and a constant factor ijk : 
 

 
1

( , )
, 1,...,

( , )

irx
ij

i ij x
j ij

x k i n




 
x u

x u
                    (2.2.8) 

 

The numerator is factored to determine the possibilities of “hiding” the nonlinearities in the 
parameters: 
 

 
1 1

( , )
x u

q r

n n

ij ij q r
q r

h x u
 

 

 x u                      (2.2.9) 

 

where ( , )ijh x u  denotes a “non-factorisable” term, q   and r   are the integer power of 

the state qx  and input ru , respectively. 

The classification of a term is determined by the structure of its numerator. Two classes can be 
distinguished: 

 Non-factorizable numerator, 0K : For a term of this class a factor of the state q

qx


 or input 

r

ru  as an element of the system matrix or input matrix could not be chosen. An example 

of 0K  is 1sinijf x . 

 Positive power of factor, pK : This class consists of terms that have numerators with 

positive integer powers of a state variable q

qx


 or input r

ru . An example of pK  is 
2
14ijf x . 

According to this term classification, parameter components ij  can be chosen as follows: 
 

 
( , )

, 1,
ija

ij ij x

ij l

k l n
x





 

x u
   (2.2.10) 

 

 
( , )

, 1,
ijb

ij ij u

ij l

k l n
u





 

x u
                     (2.2.11) 

 

where if the numerator is 0K , the parameter can be taken using xn  possible assignments to the 

system matrix A and un  possible assignments to the input matrix B. If the numerator is pK  the 

parameter is a factor of the numerator (see details in [Kwiatkowski, 2006]). 
 

2.2.5 – Shamma LPV Representation 
 

The absolute representation has the restriction of giving good performances only in case of slow 
variations in the scheduling variables. This means that a slow variation assumption is necessary 
in order to provide guarantees on the overall design. 
A reformulation of LPV theory to overcome this limitation has been proposed in [Shamma, 
1992b]. This approach is called state transformation because a quasi-LPV model (a system is 
said to be quasi-LPV when some of the scheduling variable are not exogenous but states of the 
system) is obtained through exact transformations of the nonlinear states. 
Consider a nonlinear system of the form: 
 

 

1 1 1 11 1 12 1 1 1 1

2 2 1 21 1 22 1 2 2 1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

         
           

         
 

x f x A x A x x B x
u

x f x A x A x x B x

y x



           (2.2.12) 
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The system is nonlinear, but the nonlinearity is entirely contained in the output variable, 1y x . 

Assume that there exist differentiable functions 2eqx  and equ  such that for every 1x , 
 

 
11 1 1 1

1 1
2 12 1 2 1

( ) ( )0
( ) ( )

( )( ) ( )0
eq

eq

     
       

      

xf x B x
A x u x

x xf x B x
            (2.2.13) 

 

Then, by defining new states and inputs: 
 

 1 1:ξ x                            (2.2.14) 
 

 2 2 2 1: ( )eq ξ x x x                        (2.2.15) 
 

 1: ( )eq v u u x                         (2.2.16) 
 

 

1 1

2

22 1 22 1 12 1

1

( ) : ( ) ( )eqd

d


 
x ξ

x
A ξ A ξ A ξ

x
                  (2.2.17) 

 

 

1 1

2

2 1 2 1 1 1

1

( ) : ( ) ( )eqd

d


 
x ξ

x
B ξ B ξ B ξ

x
                   (2.2.18) 

 

a quasi-LPV system is obtained: 
 

 
12 1 1 1 11

22 1 2 2 12

1

( ) ( )

( ) ( )

       
        

       




0 A ξ ξ B ξξ
v

0 A ξ ξ B ξξ

y ξ



                  (2.2.19) 

 

Although the system representation in (2.2.19) has a linearized appearance, it still exactly 
represents the original nonlinear system. The LPV form is not equivalent to a Jacobian 
linearization around an operating point. For further informations see [Balas, 2002]. 
 

2.3 – Design with Pole Placement Constraints 
 

An LMI approach for pole placement design is described in [Chilali, 1996]. The main 
motivation for seeking pole clustering in specific regions of the complex plane is that, by 
constraining the closed-loop eigenvalues to lie in a prescribed region, stability can be guaranteed 
and a satisfactory transient response can be ensured. 

Let D  be a subregion of the unit circle. A dynamical system ( 1) ( )k k x Ax  is called D -stable 

if all its poles lie in D  (that is, all eigenvalues of the matrix A  lie in D ). By extension, A  is 

then called D -stable. When D  is the entire unit circle, this notion reduces to asymptotic 
stability, which is characterized in LMI terms by the Lyapunov theorem. 

Hereafter,   denotes the Kronecker product of matrices, and the notation  
1 ,kl k l m


 

M  means 

that M  is an m m  matrix with generic entry kl . 
 

Definition (LMI Regions): A subset D  of the complex plane is called an LMI region if there 

exist a symmetric matrix  
1 ,

m m
kl k l m

 

 
 α   and a matrix  

1 ,

m m
kl k l m

 

 
 β   such that: 

 

  : ( ) 0
D

D z z  f                       (2.3.1) 
 

with: 
 

  
1 ,

( ) : T
kl kl lkD k l m

z z z z z  
 

     f α β β               (2.3.2) 
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In other words, an LMI region is a subset of the complex plane that is representable by an LMI 
in z and z . As a result, LMI regions are convex and symmetric with respect to the real axis. 
Using Gutman’s theorem for LMI regions ([Gutman, 1981]), pole location in a given LMI 
region can be characterized in terms of the m m  block matrix 
 

    
1 ,

( , ) :
TT T

kl kl lkD k l m
  

 
          M A X α X β AX β AX X AX XA    (2.3.3) 

 

as follows. 
 

Theorem: The matrix A  is D -stable if and only if there exists a symmetric matrix X  such that: 
 

 
 , 0

0

D





M A X

X
                        (2.3.4) 

 

( , )
D

M A X  in (2.3.3) and ( )
D

zf  in (2.3.2) are related by the substitution 

   , , 1, ,T z zX AX XA . 

The LMI regions which are of some interest for the design of the LPV controller/observer are the 

disk of radius r and center  ,0q  and the vertical strip consisting of complex numbers 

w x jy   such that min maxx x x  . 

The disk of radius r and center  ,0q  is an LMI region with characteristic function: 
 

 ( )
D

r q z
z

q z r

  
    

f                       (2.3.5) 

 

In this case (2.3.4) leads to: 
 

 
0

0

T

r q

q r

   
 

  
 

X X AX

X XA X

X

                   (2.3.6) 

 

The vertical strip consisting of complex numbers w x jy   such that min maxx x x   is an LMI 

region with characteristic function: 
 

 min

max

2 2 0
( )

0 2 2D

x z z
z

x z z

  
  

   
f               (2.3.7) 

 

In this case (2.3.4) leads to: 
 

 

 

 

min

max

1
0

2 0
1

0
2

0

T

T

x

x

 
  

 
     




X AX XA

X AX XA

X

          (2.3.8) 

 

The LMI describing the region of the complex plane obtained through intersection of the circle 
and the vertical strip can be obtained easily, because the class of LMI regions is invariant under 

set intersection. Specifically, given two LMI regions 1D  and 2D  and their associated 

characteristic functions 
1D

f  and 
2D

f , the intersection 1 2D D D   is also an LMI region with 

characteristic function: 
 

  
1 2 1 2

,
D D D D

diag


f f f                       (2.3.9) 
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A consequence of this intersection property is that simultaneous clustering constraints can be 
expressed as a system of LMIs in the same variable X  without introducing any conservatism. 

Given two LMI regions 1D  and 2D , a matrix A  is both 1D -stable and 2D -stable if and only if 

there exists a positive definite matrix X  such that  
1

, 0
D

M A X  and  
2

, 0
D

M A X . 

Consider a linear time-invariant (LTI) system described by: 
 

 
( 1) ( ) ( )

( ) ( )

k k k

k k

  




x Ax Bu

y Cx
                    (2.3.10) 

 

under state-feedback control law ( ) ( )k ku Kx . The problem to be solved consists of finding a 

state-feedback gain K  that places the closed-loop poles in some LMI stability region D  with 
characteristic function (2.3.2). 
The pole-placement constraint is satisfied if and only if there exists 0

D
X  such that: 

 

    
1 ,

0
T

kl kl lkD D D
k l m

  
 

     
 

X A BK X X A BK           (2.3.11) 
 

By means of the auxiliary variable :Γ KX  the matrix inequality (2.3.11) becomes an LMI that 
can be solved through convex optimization techniques: 
 

 
   , , 0

( , ) :

T

kl kl lk      
  

X U X Γ U X Γ

U X Γ AX BΓ
                (2.3.12) 

 

This result can be easily extended to systems described by a polytopic state-space model with the 
structure of (2.2.2). The problem consists in computing state-feedback gains jK  and a single 

Lyapunov matrix 0X  such that ( , ) 0j jD
 M A BK X  for 1,...,j N . The use of a single 

Lyapunov function over the entire operating range guarantees D -stability for each couple of 
state-space matrices ( , )A B  in the polytope (2.2.2). 

Summarising, let D  be any LMI region, and suppose that the LPV system is quadratically D -

stabilizable with Lyapunov matrix X  and state-feedback gains jK , and let j jΓ K X . Writing 

the condition  , 0
D

 M A BK X  at each vertex  ,jA B  of the polytope (2.2.2) yields the 

following necessary conditions on X , jΓ : 
 

 
   

,

0

0

T

kl kl j j lk j j
k l

         
 

X A X BΓ A X BΓ

X

           (2.3.13) 

 

for 1,...,j N . 

Conditions (2.3.13) are necessary and sufficient for quadratic D-stabilizability. 
This result can be used for the design of an LPV observer thanks to the duality property. 
Consider the linear time-invariant (LTI) system with observer described by 
 

 

( 1) ( ) ( )

( ) ( )

ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))

ˆ ˆ( ) ( )

k x k u k

k k

k k k k k

k k

  
 


    
 

x A B

y Cx

x Ax Bu L y y

y Cx

               (2.3.14) 

 

The problem to be solved consists of finding an observer gain L  that places the poles of the 

observer in some LMI stability region D  with characteristic function (2.3.2). 
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This is equivalent to the problem of finding a state-feedback gain TL  that places the poles of the 

closed-loop dual system in D : 
 

 
( 1) ( ) ( )

( ) ( )

T T

T

k k k

k k

   




z A z C v

w B z
                    (2.3.15) 

 

under the state-feedback control law ( ) ( )Tk kv L z . In other words, D -detectability of the pair 

( , )A C  is equivalent to D -stabilizability of ( , )T TA C . 
 

2.4 – Concepts and Basic Principles of Fault Tolerant Control 
 

A Fault Tolerant Control (FTC) system is a control system designed to retain some portion of its 
control integrity in the event of a fault. It is based on some kind of automatic reconfiguration 
made once a malfunction has been detected and isolated. Because of the need of the fault to be 
detected and isolated, FDI (Fault Detection and Isolation) plays an important role in the FTC. 
The main advantage of FTC over other measures for fault tolerance is the fact that FTC makes 
“intelligent” use of the redundancies included in the system. 
There are two ways to approach a fault in FTC, so methods are usually divided into two classes: 
passive (PFTC) and active (AFTC). PFTC is based on robust controller design techniques and 
aims at synthesizing one robust controller that makes the closed-loop system insensitive to 
certain faults. This approach does not need FDI and is computationally simpler, even though the 
price to pay is that there is a loss of performance in the system behaviour when there is no fault. 
On the other hand, the design of AFTC is based on controller redesign, or selecting/mixing of 
pre-designed controllers. It needs the presence of an FDI scheme, responsible for detecting, 
localizing and estimating on-line the fault severity. 
This thesis will focus on two techniques: AFTC using virtual sensors and AFTC using virtual 
actuators. The approaches are similar techniques that have been developed for LTI systems, even 
though hereafter the theory will be adapted to LPV models in order to be applied to a non-linear 
system, that is the Twin Rotor MIMO System. 
For further information about the field of FTC, the reader could find them in [Blanke, 2003], 
[Patton, 1997] and [Zhang, 2008]. 
 

2.4.1 – Control reconfiguration for actuator or sensor failures 
 

Both the virtual sensor technique and the virtual actuator technique belong to the FTC class of 
techniques based on control reconfiguration. When faults appear either in the actuators or in the 
sensors, the control loops brought about by the nominal controllers are modified. The goal of the 
reconfiguration is to stabilise the faulty process and to keep it operational with sufficient 
performance. In particular, instead of adapting the controller to the faulty plant, a reconfiguration 
block is used to adapt the faulty plant to the nominal controller. The faulty plant together with 
the reconfiguration block should produce, for a given input the same (or approximately the same) 
output as the nominal plant. Hence, the controller “sees” the same plant as before the fault and 
reacts in the same way as before. In this way, the nominal controller remains an unchanged block 
of the control loop. 
In case of a sensor break-down, the reconfiguration block results from the application of a 
Luenberger observer to reconstruct the faulty output. It is called a “virtual sensor”, because it 
reconstructs that element iy  of the output vector from the other measured output signals that the 

faulty sensor does no longer measure. 
If an actuator becomes faulty, the reconfiguration block is obtained in a dual way. The 
reconfiguration block is called a “virtual actuator”, because it acts like the faulty actuator but 
replaces the effect of this actuator by using the control input of the other actuators appropriately. 
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The reconfigured controller, which is to be applied to the faulty plant, consists of the nominal 
controller and the reconfiguration block. 
The overall idea is presented in Fig. 1. 
 

 
Fig. 1 - Virtual actuators and virtual sensors 
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3 – TRMS MODELLING 
 

3.1 – The Twin-Rotor MIMO System 
 

The twin-rotor multiple input-multiple output (MIMO) system (TRMS) is a laboratory set-up 
developed by Feedback Instruments Limited [Feedback, 33-007-4M5] for control experiments. 
The system is perceived as a challenging engineering problem owing to its high non-linearity, 
cross-coupling between its two axes, and inaccessibility of some of its states and outputs for 
measurements. An accurate dynamic model of the system is thus required to achieve control 
objectives satisfactorily. 
The TRMS is an aero-dynamical system similar to a helicopter. At both ends of its beam there 
are two propellers driven by DC motors, each perpendicular to the other one. The beam can 
rotate freely in the horizontal and vertical planes, in such a way that its ends move on spherical 
surfaces. The joined beam can be moved by changing the motors supply voltages, thus 
controlling the rotational speed of the propellers. There is a counter-weight fixed to the beam 
which is used for balancing the angular momentum in a stable equilibrium position. 
The rotor generating the vertical movement is called the main rotor. It enables the TRMS to 
pitch, which is a rotation in the vertical plane around the horizontal axes. The rotor generating 
the horizontal movement is called the tail rotor. It enables the TRMS to yaw, which is a rotation 
in the horizontal plane around the vertical axes. 

 
Fig. 2 – The Twin Rotor MIMO System 

 

3.2 – Non-Linear Model of the TRMS 
 

In this section a mathematical model of the TRMS is described. The crude dynamic model of the 
system supplied by the manufacturer does not represent the system dynamic precisely, as all the 
effective forces are not taken into consideration. Accurate models are proposed in [Rahideh, 
2007], [Gabriel, 2008], [López, 1998] and [Christensen, 2006]. Each of these models 
contemplates dynamical effects that have not been considered by the manufacturer, and leads to 
a set of non-linear differential equations. 
The strategy to describe the TRMS is to split the system into simpler subsystems: the DC-
motors, the propellers and the beam. The first two subsystems have independent dynamics, that 
is, the main motor does not affect the behaviour of the tail motor, and vice versa. The same is 
true for the propellers. On the other hand, the dynamics of the beam is strongly non-linear with 
the presence of interaction phenomenons between the horizontal and the vertical dynamics. 
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3.2.1 – DC-Motors 
 

The TRMS possesses two permanent magnet DC motors, one for the main propeller and the 
other for the tail. The motors are considered to be identical, though they work with different 
loads since the propellers are of unequal sizes. 

The electric relationship between the applied motor voltages hu  and vu , the angular velocities of 

the rotors h  and v , and the armature currents of the motors ahi  and avi  can be described by the 

following differential equation: 
 

 1
ah

a a ah a h h

di
L R i k k u

dt
                        (3.2.1) 

 

 2
av

a a av a v v

di
L R i k k u

dt
                        (3.2.2) 

 

The resistance aR  is assumed to be constant, thus neglecting a non-linear phenomenon due to a 

non-linear voltage drop across the carbon brushes of the commutator of the DC motors, that 
would be better approximated using a piecewise constant resistance, as proposed by Knudsen 
and Jensen in [Knudsen, 1995]. 
Moreover, the term a aL di dt  could be disregarded, because the time constant of the electrical 

part is small compared to that of the mechanical part. As a result the dynamics of the system is 
not altered significantly by omitting the inductance of the motor. This leads to the following 
equations: 
 

 1 0a ah a h hR i k k u                         (3.2.3) 
 

 2 0a av a v vR i k k u                         (3.2.4) 
 

3.2.2 – Propellers 
 

The propellers are each hard coupled to the motors so that the composed moments of inertia trJ  

and mrJ  are obtained by combining the moments of inertia of both the propeller and the motor. 

There are four types of frictions affecting the rotation of the propeller (Fig. 3). These frictions 
can be characterized as [Andersen, 2005]: 
 

 The viscous friction B , proportional to the angular speed  ; 

 The Coloumb friction c , constant, which depends on the sign of   when rotating. If the 

motor torque applied is less than n , the Coloumb friction c  is equal to the negative of 

the applied torque; 

 The stiction s  only occurs when   is zero (or very close to zero); 

 The drag friction D  is due to the air resistance experienced by the rotor, and is 

proportional to the square of the angular speed  . 
 

The non-linear Coloumb friction c  and stiction s  can be neglected, thus obtaining a simpler 

model of the propeller that fits almost in the same way the real behaviour, even though it differs 
when the angular speed approaches 0 rad/s. Around 0 rad/s the lack of stiction or Coulomb 
friction in the models is seen, but since the working points of the rotors will not be close to 0 
rad/s, the resulting error will be very small. 
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Fig. 3 - The four types of frictions affecting the rotation of the motor 

 
 

Under these assumptions, the mechanical behaviour of the propellers can be described by the 
following first-order non-linear differential equations: 
 

 1( )h
tr a ah tr h h

d
J k i B f

dt


                       (3.2.5) 

 

 4 ( )v
mr a av mr v v

d
J k i B f

dt


                       (3.2.6) 

 

where: 
 

 

2

1 2

     if 0
( )

   if 0

thp h h

h

thn h h

k
f

k

 


 

 
 

 
                    (3.2.7) 

 

 

2

4 2

     if 0
( )

   if 0

tvp v v

v

tvn v v

k
f

k

 


 

 
 

 
                    (3.2.8) 

 

By disregarding the electrical dynamics, and taking into account (3.2.3) and (3.2.4), equations 
(3.2.5) and (3.2.6) become: 
 

  
2

1
1

h a a
tr h tr h h

a a

d k k k
J u B f

dt R R


 

 
    

 
               (3.2.9) 

 

  
2

2
4

v a a
mr v mr v v

a a

d k k k
J u B f

dt R R


 

 
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3.2.3 – Horizontal dynamics 
 

The horizontal dynamics of the TRMS beam can be described by the following equations: 
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and where: 

  2 cost h vl f    is the propulsive torque due to the tail propeller rotation; 

 oh hk   is the torque due to the viscous friction force, in the horizontal plane; 

  3 hf   is the torque due to the cables connecting the sensors and the motors. Though 

they are lightweighted and hang relatively freely, there is a torsion force in the horizontal 
axis that has to be considered. Although this torque is non-linear, a linear approximation 
provides a satisfactory level of accuracy; 

  6 vf   takes into account a coupling phenomenon that was not described by the model 

defined in [Rahideh, 2007]. Such a phenomenon appeared during the TRMS 
identification (see next chapter). 

  0
v  is the equilibrium point for the vertical angle corresponding to 0vu  ; 

 2 2cos sinv vD E F    is the horizontal moment of inertia. It can be calculated as the 

sum of the following components: 
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8 cosh ms ms ms m vJ m r m l      (shield main rotor)      (3.2.30) 
 

The remaining terms of the equation are due to phenomenona of electro-mechanical coupling, 
because the engines driving the horizontal and the vertical movement, respectively affect the 
other direction. 
 

3.2.4 – Vertical dynamics 
 

The vertical dynamics of the TRMS beam can be described by the following equations: 
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where: 
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  5m vl f   is the propulsive torque due to the main propeller rotation; 

  5 cosg h v vk f    is the torque of the gyroscopic force; 

 ov vk   is the torque due to the viscous friction force in the vertical plane; 

   cos sinv vg A B C    is the torque due to the gravity force that acts perpendicularly 

to the earth’s surface, thus affecting only the angle v ; 

 2 sin cosh v vH    is the torque due to the centrifugal force; 

   1t a ah tr h hk k i B f    is due to an electro-mechanical coupling between the engines 

driving the horizontal and the vertical movement; 

 vJ  is the vertical moment of inertia. It can be calculated as the sum of the following 

components: 
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3.2.5 – The overall model 
 

The TRMS mathematical model can be expressed as a non-linear state space model, where the 

input vector is  
T

h vu uu , with hu  the input voltage of the tail motor and vu  the input voltage 

of the main motor. The system state is the column vector  
T

h h h v v v     x . h  

is the rotational velocity of the tail rotor, v  is the rotational velocity of the main rotor, h  is the 

angular velocity around the horizontal axis, v  is the angular velocity around the vertical axis, 

h  is the yaw angle of the beam and v  is the pitch angle of the beam. 

The mathematical model of the TRMS becomes the set of 6 non-linear differential equations: 
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where constants A, B, C, D, E, F, H  are defined as in (3.2.14), (3.2.15), (3.2.16), (3.2.17), 
(3.2.18), (3.2.19), (3.2.33) and: 
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and the functions if  are defined as in (3.2.7), (3.2.20), (3.2.21), (3.2.8) and (3.2.34). 
 

3.3 – TRMS LPV Representation 
 

In order to design an LPV controller and an LPV observer for the Twin Rotor MIMO System, an 
LPV mathematical model is required. LPV representations of given nonlinear or parameter 
dependent plants are usually not unique, and different models lead to different achievable 
performance when LMI techniques are used to design LPV controllers and observers. The non-
linear model that has been described in Section 3.2.5 can be expressed in an LPV absolute form 
according to the procedure described in Section 2.2.3. The LPV absolute representation can be 
used to obtain another LPV model based on state transformation, according to the procedure 
described in Section 2.2.4. 
 

3.3.1 – TRMS Absolute representation 
 

The non-linear model of TRMS can be transformed in the following LPV representation: 
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A discrete-time LPV model can be obtained using Euler approximation with a sampling time sT : 
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where the dependence of the elements of the matrices on the state vector has been omitted. 
 

3.3.2 – TRMS Shamma Representation 
 

An LPV model for the Twin Rotor MIMO System can be obtained through state transformation 
from (3.3.1) by considering: 
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The first step is to obtain the functions 2eqx  and equ  as defined in (2.2.13), that corresponds, in 

this case, to calculate the equilibrium points for ( , )eq
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where 11, 21 56 11 51,..., , ,...,a a a b b  are defined from (3.3.4) to (3.3.20), and their dependence on ( )tx  

has been omitted. 
Solving (3.3.23) leads to: 
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or, equivalently: 
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By defining new states and inputs, a new LPV model of TRMS can be obtained through (2.2.19). 
Then, this model can be reshaped by changing the order of the state variables, obtaining: 
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A discrete-time LPV model can be obtained using Euler approximation with a sampling time sT : 
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3.3.3 – Polytopic LPV Model of the TRMS 
 

The procedure to obtain an interval polytopic LPV model for the Twin Rotor MIMO System is 
here described. 
Each of the state variables that influence the elements of the state-space matrices (3.3.21) or 
(3.3.30) is assumed to take values in an interval. 
These intervals are defined as: 
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For each of the scheduling parameters 11 12 55 22( ), ( ),..., ( ), ( )d d d d
k k k ka a a bx x x x  their minimum and 

maximum values are calculated as: 
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The scheduling parameter vector is assumed to take values in a hyperrectangle of n  called the 

parameter box, where each parameter d
ija  varies between the extreme values d

ij  and d
ij . When 

each of the scheduling parameters takes an extreme value, one of the vertex systems in (2.2.2) is 
generated. 
The strong nonlinearity of some of the scheduling parameters makes difficult to find the exact 
optima over the entire range of values that the state space variables can take. In the following, 

explicit formulas to calculate d
ija  and d

ija , 22
db  and 22

db  will be given for both the so-called 

Absolute and the Shamma LPV Model. Notice that min and max denote that the optimum for the 
expression inside the brackets has to be found by means of numerical optimization methods. It 

also should be considered that some LPV parameters are not defined when 0h  , and that they 

take very high values when h  is near zero, so an additional limit on h  will be imposed: 
 

 , ,h h h h h              
 

The same is true for v , thus leading to: 
 

 , ,v v v v v              
 

as well as for v  when its value is near to 0
v , leading to: 
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3.3.3.1 – Polytopic Absolute LPV Model of the TRMS 
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3.3.3.2 – Polytopic Shamma LPV Model of the TRMS 
 

As some of the elements of the state space matrices are the same in both the Absolute and the 
Shamma LPV model, formulas to calculate the minimum and maximum value taken by the 
scheduling parameters of the Shamma LPV model are given only for those parameters which are 
different with respect to the Absolute LPV model. Thus: 
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3.4 – Summary 
 

In this chapter a nonlinear model of the Twin-Rotor MIMO System has been described. Such a 
model has been used to obtain the so-called LPV Absolute Representation. Obtaining this kind of 
representation was a necessary step to obtain another LPV model by means of State 
Transformation. Finally, some formulas to obtain the interval polytopic LPV model have been 
given. 
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4 – TRMS IDENTIFICATION 
 

4.1 - Introduction 
 

In this chapter, a procedure to identify the unknown parameters of the TRMS is presented. This 
procedure is based on the same idea that has been used in TRMS modelling, that is to split the 
system into simpler subsystems and identify each model for its own. 
The parameters affect the behaviour of the model of the Twin-Rotor MIMO System that has 
been obtained in the previous chapter. Some of these parameters can be considered to be known, 
as their values have been given by the manufacturer and are supposed to be reliable. Other 
parameters are considered to be unknown, thus they need to be estimated. 
In this way, unknown parameters of the motor/propellers subsystems are identified at first. Then, 
unknown parameters of the aerodynamical part are identified. A numerical value of these 
parameters will be obtained through identification. The identification procedure can be divided 
into stages. Each stage returns the values of some of the unknown parameters, and makes use of 
both the known parameters and the unknown parameters that have been identified in previous 
stages. 
Section 4.2 will resume in a table what is considered to be known and what is not. 
In section 4.3, 4.4, 4.5 and 4.6 each identification stage will be described in detail. 
In section 4.7 the model of the TRMS will be validated. 
At last, in section 4.8, the LPV Polytopic TRMS Model will be obtained. 
 

4.2 – Table of unknown and known parameters 
 

Hereafter, Table 1 lists the parameters that affect the behaviour of the Twin-Rotor MIMO 
System. The values of those parameters that can be considered to be known will be listed too. 
The identification stage in which the unknown parameters will be estimated is indicated by 
means of a number. Stage 1 is the tail propeller identification; stage 2 is the main propeller 
identification; stage 3 is the identification of the horizontal aeromechanical dynamics when the 
TRMS is driven by the tail propeller; stage 4 is the identification of the horizontal 
aeromechanical dynamics when the TRMS is driven by the main propeller; stage 5 is the 
identification of the vertical aeromechanical dynamics when the TRMS is driven by the main 
propeller; and stage 6 is the identification of the vertical aeromechanical dynamics when the 
TRMS is driven by the tail propeller.  
 

Known 
Parameter 

Value Parameter to 
identify 

Identification 
Stage 

aR  8  
trJ  1 

aL  0.86mH  
trB  1 

ak  0.0202 Nm A  thpk  1 

1k  6.5  
thnk  1 

2k  8.5  
mrJ  2 

tl  0.282 m  
mrB  2 

ml  0.246 m  
tvpk  2 

bl  0.290 m  
tvnk  2 

cbl  0.276 m  
fhpk  3 

msr  0.155m  
fhnk  3 
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tsr  0.100 m  
chpk  3 

tm  0.015kg  
chnk  3 

trm  0.221kg  
ohk  3 

tsm  0.119kg  
cvpk  4 

mm  0.014kg  
cvnk  4 

mrm  0.236kg  
mk  4 

msm  0.219kg  
fvpk  5 

bm  0.022kg  
fvnk  5 

cbm  0.068kg  
ovk  5 

gk  0.2 
tk  6 

Table 1 – Parameters of the Twin-Rotor MIMO System 
 
 

4.3 – Tail propeller identification 
 

4.3.1 – Identification procedure 
 

In this section, a procedure to obtain values for the parameters that affect the tail propeller 
dynamics is explained. This procedure is based on the knowledge of the non-linear model of the 
tail propeller (3.2.43)-(3.2.7): 
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It is assumed that all the parameters except trJ , trB , thpk  and thnk  are known, as their values are 

given by the manufacturer. The identification procedure should identify values of the unknown 
parameters in such a manner that the non-linear model behaviour resembles the real behaviour of 
the TRMS. 

It is assumed to have at disposal N  sets of data { ( )i
hu k , ( )i

h k } where 1, ,i N   and 

1, , ik K  . iK  is the number of samples of the i-th set of data. 

The identification procedure tries to find the minimum of the objective function: 
 

  
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1 1

ˆ( ) ( )
iKN

i i
h h

i k

J k k 
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                      (4.3.3) 

 

where ˆ ( )i
h k  is the solution of (4.3.1). 

 

4.3.2 – Results 
 

The identification procedure has been applied to 14 sets of data. It must be noted that while all 

the sets of data can be used to identify trJ  and trB , a numerical value for thpk  can be obtained 

only from those sets of data where the input voltage hu  is positive. Analogously, a numerical 

value for thnk  can be obtained only from those sets of data where the input voltage hu  is 

negative. 
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Each set of data consists of 6000 samples, corresponding to an experiment that lasts 60 seconds, 
i.e., sampling data with a sample period of 0.01 s. Each set of data is the response of the tail 
propeller to an input voltage signal. Such a signal can be of two types: a step signal, that is a 
constant value from 0 to 60 s; or a step signal with a pseudo-random binary sequence overlapped 
from 30 s to 60 s. An example of such a signal, with step amplitude of 0.4 V and PRBS 
amplitude of 0.1 V, is shown in Fig. 4. 
The sets of data used in this identification stage are briefly resumed in Table 2 and Table 3. 
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Pseudo-random binary signal (PRBS) on a step signal

 
Fig. 4 – An example of PRBS (Pseudo-random binary sequence) overlapped on a step signal 

 

 1 2 3 4 5 6 7 8 
Step amplitude (0-60s) (V) 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.3 
PRBS amplitude (30s-60s) (V) 0.1 0 0.1 0 0.1 0 0 0 

Table 2 – Sets of data (positive input voltage hu ) 
 

 9 10 11 12 13 14 
Step amplitude (0-60s) (V) -0.3 -0.4 -0.5 -0.6 -0.7 -0.7 
PRBS amplitude (30s-60s) (V) 0.1 0 0.1 0 0.1 0 

Table 3 – Sets of data (negative input voltage hu ) 
 

The minimum of Eq. (4.3.3) for these sets of data is found by means of fmincon, a Matlab 
function of the Optimization Toolbox. This function attempts to find a constrained minimum of a 
scalar function of several variables (in this case, the unknown parameters). This is generally 
referred to as constrained nonlinear optimization or nonlinear programming. A first constraint 
on the parameters to be found is that they must have positive values. Another constraint on these 
parameters is due to numerical issues: the fmincon function has proved to fail in finding correct 
values for the unknown parameters when no assumption is made on their order of magnitude. 
Therefore, a lower and upper bound for each parameter has to be imposed. 
By imposing these constraints on the unknown parameters: 
 

3 110 ,10trJ F F      

4 1 1 110 ,10trB          

4 1 1 2 1 110 ,5 10thpk V V            
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4 1 1 2 1 110 ,5 10thnk V V            
 

the following results have been obtained using the fmincon function: 
 

0.0101trJ F  
10.0097trB    

1 10.0032thpk V     
4 1 14.8951 10thnk V      

Comparisons between the real data and the simulation of Eq. (4.3.1) with the previous values are 
shown in Fig. 5 and Fig. 6. 
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Fig. 5 - Comparison between real and simulation data (tail propeller - positive input hu ) 
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Fig. 6 - Comparison between real and simulation data (tail propeller - negative input hu ) 

 

Table 4 shows the maximum absolute errors and mean absolute errors for each dataset. As it can 
be seen in the table and in the figures, the identification procedure gives good performance in 
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most cases. However, this is not true for all sets of data, probably due to unmodelled effects as, 

for example, the stiction, that occurs when h  is either zero or very close to zero. As explained 

in Chapter 3, the lack of stiction and Coulomb friction in the model around zero can be seen, but 
since the working points of the rotors will not be close to this value, the resulting error does not 
degrade too much the goodness of the results. 
 
 

Dataset Maximum Absolute Error Mean Absolute Error Mean of the Dataset 
1 0.0853 (16.31%) 0.0406 (7.76%) 0.5231 
2 0.0541 (8.35%) 0.0321 (4.96%) 0.6478 
3 0.0643 (8.44%) 0.0328 (4.30%) 0.7616 
4 0.0482 (5.53%) 0.0254 (2.91%) 0.8726 
5 0.0413 (4.15%) 0.0128 (1.28%) 0.9957 
6 0.0287 (2.63%) 0.0061 (0.56%) 1.0945 
7 0.0389 (3.01%) 0.0085 (0.66%) 1.2919 
8 0.0925 (6.15%) 0.0457 (3.04%) 1.5057 
9 0.1246 (22.35%) 0.0766 (13.74%) -0.5574 
10 0.0585 (9.04%) 0.0070 (1.08%) -0.6478 
11 0.0993 (11.74%) 0.0539 (6.37%) -0.8462 
12 0.0626 (6.64%) 0.0099 (1.05%) -0.9429 
13 0.0758 (6.96%) 0.0169 (1.55%) -1.0886 
14 0.0515 (4.80%) 0.0278 (2.59%) -1.0730 

Table 4 - Maximum Absolute Error and Mean Absolute Error (Tail Propeller Identification) 
 

4.4 – Main propeller identification 
 

4.4.1 – Identification procedure 
 

In this section, a procedure to obtain values for the parameters that affect the main propeller 
dynamics is explained. This procedure is analogous to the one described in the previous section 
for the identification of the tail propeller dynamics parameters, and is based on the knowledge of 
the non-linear model of the main propeller (3.2.46)-(3.2.8): 
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It is assumed that all the parameters except mrJ , mrB , tvpk  and tvnk  are known, as their values are 

given by the manufacturer. The identification procedure should identify some values for the 
unknown parameters in such a manner that the non-linear model behaviour resembles the real 
behaviour of the TRMS. 

It is assumed to have at disposal N  sets of data { ( )i
vu k , ( )i

v k } where 1, ,i N   and 

1, , ik K  . iK  is the number of samples of the i-th set of data. 

The identification procedure finds the minimum of the objective function: 
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where ˆ ( )i
v k  is the solution of Eq. (4.4.1). 
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4.4.2 – Results 
 

The identification procedure has been applied to 10 sets of data. It must be noted that while all 

the sets of data can be used to identify mrJ  and mrB , a numerical value for tvpk  can be obtained 

only from those sets of data where the input voltage vu  is positive and a numerical value for tvnk  

can be obtained only with a negative input voltage vu . 

Each set of data consists of 6000 samples, corresponding to an experiment that lasts 60 seconds, 
i.e., with a sample period of 0.01 s. Each set of data is the response of the main propeller to an 
input voltage signal. Such a signal can be of two types: a step signal, that is a constant value 
from 0 to 60 s; or a step signal with a pseudo-random binary sequence overlapped from 30 s to 
60 s. The sets of data used in this identification stage are briefly resumed in Table 5 and Table 6. 
 

Dataset 1 2 3 4 5 6 7 
Step amplitude (0-60s) (V) 0.6 0.6 0.8 0.8 1.0 1.2 1.4 
PRBS amplitude (30s-60s) (V) 0.1 0 0.1 0 0 0 0 

Table 5 - Sets of data (Positive input voltages vu ) 
 

Dataset 8 9 10 
Step amplitude (0-60s) (V) -0.4 -0.6 -0.8 
PRBS amplitude (30s-60s) (V) 0.1 0.1 0.1 

Table 6 – Sets of data (Negative input voltages vu ) 
 

The implementation of this identification stage is similar to the tail propeller one, and makes use 
of the Matlab function fmincon. Analogously, because of convergence issues, a lower bound and 
an upper bound for each parameter must be imposed. 
These results have been obtained by imposing these constraints on the unknown parameters: 
 

3 110 ,10mrJ F F      

4 1 1 110 ,10mrB          

4 1 1 2 1 110 ,5 10tvpk V V            

4 1 1 2 1 110 ,5 10tvnk V V            
 

The fmincon function has returned the following values: 
 

0.0562mrJ F  
10.0032mrB    

1 10.0177tvpk V     
1 10.0154tvnk V     

A comparison between the real data and the numerical solution of (4.4.1) with such values is 
shown in Fig. 7 and Fig. 8. Table 7 shows the maximum absolute errors and the mean absolute 
errors for each dataset. As it can be seen in the table and in the figures, the identification 
procedure gives good results in most cases. 
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Fig. 7 - Comparison between real and simulation data (main propeller – positive input vu ) 
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Fig. 8 - Comparison between real and simulation data (main propeller - negative input vu ) 
 

Dataset Maximum Absolute Error Mean Absolute Error Mean of the Dataset 
1 0.0763 (10.86%) 0.0342 (4.86%) 0.7026 
2 0.0816 (11.50%) 0.0259 (3.64%) 0.7097 
3 0.0991 (11.72%) 0.0233 (2.75%) 0.8454 
4 0.0739 (8.65%) 0.0126 (1.48%) 0.8536 
5 0.0819 (8.37%) 0.0050 (0.51%) 0.9796 
6 0.0888 (8%) 0.0254 (2.28%) 1.1101 
7 0.1128 (9.28%) 0.0344 (2.83%) 1.2147 
8 0.1274 (20.23%) 0.0204 (3.24%) -0.6295 
9 0.1271 (16.20%) 0.0154 (1.97%) -0.7843 
10 0.1263 (13.76%) 0.0162 (1.76%) -0.9180 

Table 7 - Maximum Absolute Error and Mean Absolute Error (Main Propeller Identification) 
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4.5 – Horizontal aeromechanical identification 
 

4.5.1 – Identification Procedure 
 

In this section, a procedure to obtain values for the parameters that describe the horizontal 
aeromechanical dynamics is explained. This procedure is based on the knowledge of the non-
linear model (3.2.44)-(3.2.45)-(3.2.20)-(3.2.21)-(3.2.22). At first, the horizontal dynamics due to 
an input voltage acting on the tail propeller is identified, that is what has been called 
“Identification stage 3”, and values for the unknown parameters fhpk , fhnk , ohk , chpk , chnk  are 

found. Then, the horizontal dynamics due to an input voltage acting on the main propeller is 
identified, that is what has been called “Identification stage 4”, and the unknown parameters 

mk , cvpk , cvnk  are estimated. 
 

4.5.1.1 – Identification stage 3 
When no input voltage acts on the main propeller, Eqs. (3.2.44) and (3.2.45) simplify to: 
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where 0
v  is the equilibrium value for the vertical angle when no input voltage acts on the main 

propeller. 
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Replacing Eq. (4.5.2) in Eq. (4.5.1) leads to: 
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Laplace transform of (4.5.5) leads to: 
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where ( )h s  is the Laplace transform of 2 ( )h t . 
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Hence, the knowledge of K ,   and wT  can be used for estimation of the unknown parameters: 
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Values for ( )pK  and ( )nK  can be found in a simple way through the knowledge of steady-state 

values of h  and h : 
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Values for ( )p
wT , ( )n

wT , ( )p  and ( )n  can be estimated by means of some optimization method. 

It is assumed to have at disposal N  sets of data { ( )i
h k , ( )i

h k } where 1, ,i N  , 1, , ik K   

and iK  is the number of samples of the i-th set of data. By applying the described procedure to 

each set of data, different values for the unknown parameters can be obtained. Such values can 
be used to define lower bounds and upper bounds for the values of the unknown parameters. 
Then, the minimum of the objective function: 
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where ˆ ( )i
h k  is the solution of Eqs. (4.5.1)-(4.5.2), can be found. 

 

4.5.1.2 – Identification stage 4 
When no input voltage acts on the tail propeller, Eqs. (3.2.44) and (3.2.45) simplify to: 
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It is assumed to have at disposal N  sets of data { ( )i
v k , ( )i

v k , ( )i
h k } where 1, ,i N  , 

1, , ik K   and iK  is the number of samples of the i-th set of data. 

The identification procedure should identify some values for mk , cvpk  and cvnk , as all the other 

parameter values are given by the manufacturer or have been identified previously. 
If the input voltage in the main propeller is a step signal, at steady-state: 
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and Eq. (4.5.19) reduces to: 
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or, equivalently: 
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A first estimation of cvpk  and cvnk  can be obtained from Eqs. (4.5.24) and (4.5.25) as: 
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Later, the minimum over mk , cvpk  and chnk  of the objective function: 
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where ˆ ( )i
h k  is the solution of Eqs. (4.5.19)-(4.5.20), should be found. ˆ

h  can be calculated by 

considering that both v  and v  are data provided by the sensors installed in the TRMS. 
 

4.5.2 – Results 
 

4.5.2.1 – Identification Stage 3 
The identification procedure has been applied to 6 sets of data. It must be noted that while all the 

sets of data can be used to identify ohk , numerical values for fhpk  and chpk  can be obtained only 

from those sets of data where the angular speed of the tail rotor h  is positive. Analogously, 

numerical values for fhnk  and chnk  can be obtained only from those sets of data where the 

angular speed of the tail rotor h  is negative. 

Each set of data consists of 6000 samples, corresponding to an experiment that lasts 60 seconds, 
obtained with a sample period of 0.01 s, obtained as the response of the TRMS to an input 
voltage step signal. The sets of inputs used in this identification stage are briefly resumed in 
Table 8. 
 
 



 48 

Dataset 1 2 3 4 5 6 

Step amplitude (0-60s) (V) 0.7 0.9 1.1 1.3 -0.6 -0.7 

Table 8 - Tail input voltages hu  for horizontal aeromechanical identification 
 

Expressions from Eqs. (4.5.11) to (4.5.16) have been used to obtain a preliminary estimation of 

the unknown parameters. Values for ( )pK  and ( )nK  have been obtained using Eq. (4.5.17). 

Values for ( )p
wT , ( )n

wT , ( )p  and ( )n  have been obtained by means of pem Matlab function. 

Results of this are briefly resumed in Table 9: 
 

Dataset K    
wT  fhpk  fhnk  ohk  chpk  chnk  

1 0.6108 0.4096 2.5782 0.0178  0.0141 0.0067  
2 0.5266 0.3140 2.4196 0.0174  0.0115 0.0076  
3 0.5231 0.3608 2.3816 0.0178  0.0135 0.0078  
4 0.5020 0.4624 2.2250 0.0196  0.0185 0.0090  
5 -1.2331 0.6436 3.1611  0.0239 0.0181  0.0044 
6 -1.6599 0.6754 3.3375  0.0288 0.0180  0.0040 
Table 9 – Preliminary estimation of horizontal aeromechanical parameters 

 

The minimum of (4.5.18) can be found by means of fmincon. The results obtained in the 
previous stage can be used to impose constraints on the unknown parameters: 
 

 2 2 2 2 2 20.0174 ,0.0196fhpk kg m s V kg m s V        

 2 2 2 2 2 20.0239 ,0.0288fhnk kg m s V kg m s V        

 2 2 2 20.0067 ,0.0090chpk kg m s kg m s      

 2 2 2 20.0040 ,0.0044chnk kg m s kg m s      

 2 1 2 10.0115 ,0.0185ohk kg m s kg m s      

The fmincon function has returned the following values: 

 2 2 20.0187fhpk kg m s V   

 2 2 20.0271fhnk kg m s V   

 2 20.0085chpk kg m s  

 2 20.0043chnk kg m s  

 2 10.0154ohk kg m s  

A comparison between the real data and the simulation of Eqs. (4.5.1)-(4.5.2) with such values is 
shown in Fig. 9 and Fig. 10. Table 10 shows the maximum absolute errors, the mean absolute 
errors and the steady-state errors for each dataset. The identification procedure gives good 
performances in most cases. As 4 experiments out of 6 dealt with positive input voltages, the 
best performances are achieved with these sets of data. This is not a problem, as in the following 
chapters the system will be operated with positive set points. 
 



 49 

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]


h
 [

ra
d
]

 

 

Dataset 1 (simulation)

Dataset 1 (real)

Dataset 2 (simulation)

Dataset 2 (real)

Dataset 3 (simulation)

Dataset 3 (real)

Dataset 4 (simulation)

Dataset 4 (real)

 
Fig. 9 - Comparison between real and simulation data – Identification Stage 3 (positive hu ) 
 

Dataset Max Absolute Error Mean Absolute Error Steady-State error 
1 6.3º 3.7º -4.7º 
2 7.4º 2.1º -1.6º 
3 10.7º 2.6º -2º 
4 13.8º 3.1º 0.1º 
5 23.7º 13.4º -11.5º 
6 19.3º 12.5º 17.5º 

Table 10 – Max, Mean and Steady-State errors for Identification Stage 3 
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Fig. 10 - Comparison between real and simulation data – Identification Stage 3 (negative hu ) 

 

4.5.2.2 – Identification Stage 4 
The identification procedure has been applied to 9 sets of data. It must be noted that while all the 

sets of data can be used to identify mk , a numerical value for cvpk  can be obtained only from 
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those sets of data where the input voltage of the main propeller vu  is positive. Analogously, a 

numerical value for cvnk  can be obtained only from those sets of data where the input voltage of 

the main propeller vu  is negative. 

The sets of inputs used in this identification stage are briefly resumed in Table 11. 
 

Dataset 1 2 3 4 5 6 7 8 9 

Step amplitude (0-60s) (V) 0.6 0.8 1.0 1.2 1.4 -0.7 -0.8 -0.9 -1.0 

Table 11 - Main input voltages vu  for horizontal aeromechanical identification 
 

Eq. (4.5.26) has been used to obtain a preliminary estimation of cvpk  and cvnk , as resumed in 

Table 12. 
 

Dataset 1 2 3 4 5 6 7 8 9 

 2 2
cvpk kg m s

 0.0125 0.0163 0.0225 0.0211 0.0208     

 2 2
cvnk kg m s

      0.0031 0.0084 0.0132 0.0145 

Table 12 - Estimation of cvpk  and cvnk  
 

These values can be used to impose some constraint on the unknown parameters as follows: 
3 2 1 1 2 2 1 110 ,5 10mk kg m s V kg m s V          

2 2 2 20.0125 ,0.0225cvpk kg m s kg m s      

2 2 2 20.0031 ,0.0145cvnk kg m s kg m s      

Then, the fmincon has returned the following values: 

 2 1 10.0122mk kg m s V   

 2 20.0207cvpk kg m s  

 2 20.0094cvnk kg m s  

A comparison between the real data and the simulation of Eqs. (4.5.19)-(4.5.20) with such values 
is shown in Fig. 11 and Fig. 12. Table 13 shows the maximum absolute errors, the mean 
absolute errors and the steady-state errors for each dataset. The simulation has proved to give 

worse performance when 0vu   than when 0vu  . This is not a big problem, as in the following 

chapters the system will be operated with positive inputs. 
 

Dataset Max Absolute Error Mean Absolute Error Steady-State error 
1 9.15º 3.63º 3.14º 
2 10.89º 4.49º 3.60º 
3 11.80º 3.13º 2.02º 
4 12.01º 3.15º 2.47º 
5 12.19º 3.02º 2.30º 
6 22.29º 3.94º 1.30º 
7 24.67º 3.61º 0.28º 
8 24.71º 4.24º 1.47º 
9 24.54º 4.86º 2.56º 

Table 13 - Max, Mean and Steady-State errors for Identification Stage 4 
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Fig. 11 - Comparison between real and simulation data – Identification Stage 4 (positive vu ) 
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Fig. 12 - Comparison between real and simulation data – Identification Stage 4 (negative vu ) 

 
4.6 – Vertical aeromechanical identification 
 

4.6.1 – Identification procedure 
 

In this section, a procedure to obtain values for the parameters that describe the vertical 
aeromechanical dynamics is explained. This procedure is based on the knowledge of the non-
linear model (3.2.47)-(3.2.48). At first, the vertical dynamics due to an input voltage acting on 
the main propeller is identified, that is what has been called “Identification Stage 5”, that will 
return values for the unknown parameters fvpk , fvnk  and ovk . Then, the vertical dynamics due to 

an input voltage acting on the tail propeller is identified, that is what has been called 

“Identification Stage 6”, that give a value for the unknown parameter tk . 
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4.6.1.1 – Identification Stage 5 
When no input voltage acts on the tail propeller, Eqs. (3.2.47) and (3.2.48) simplify to: 
 

       2
5 5 cos 0.5 sin 2 cos sinm v g h v v ov v h v v vv

v

l f k f k H g A B Cd

dt J

             
   (4.6.1) 

 

 v
v

d

dt


                            (4.6.2) 

 

  
2

5 2

     if 0

   if 0

fvp v v

v

fvn v v

k
f

k

 


 

 
 

 

                   (4.6.3) 

 

The identification procedure should identify some values for the unknown parameters fvpk , fvnk  

and ovk  in such a manner that the non-linear model behaviour resembles the real behaviour of the 

TRMS. 

At steady-state, as 0h
   and 0v

  , Eq. (4.6.1) reduces to: 
 

 
    5 cos sin

0
m v v v

v

l f g A B C

J

      
               (4.6.4) 

 

Thus, a preliminary estimation of fvpk  and fvnk  can be obtained as: 
 

 
  

 
2

cos sinv v

fvp

m v

g B A C
k

l

 



 



 
                   (4.6.5) 

 

 
  

 
2

cos sinv v

fvn

m v

g B A C
k

l

 



 



 
                   (4.6.6) 

 

Later, the minimum over fvpk , fvnk  and ovk  of the objective function: 
 

  
2

1 1

ˆ( ) ( )
iKN

i i
v v

i k

J k k 
 

                       (4.6.7) 

 

where ˆ ( )i
v k  is the solution of Eq. (4.6.1)-(4.6.2), should be found. ˆ

v  can be calculated by 

considering that both v  and h  are data provided from the sensors. 
 

4.6.1.2 – Identification Stage 6 
It has been noticed experimentally that the coupling effect between the tail propeller and the 
vertical aeromechanical behaviour of the TRMS beam can be ignored, as for each value of hu  

between its minimum value and its maximum value the TRMS has shown to remain in its 

equilibrium vertical angle 0
v . Hence, 0tk   is a good approximation of the real value of this 

constant. 
 

4.6.2 – Results 
 

The identification procedure has been applied to 10 sets of data. It must be noted that while all 

the sets of data can be used to identify ovk , numerical values for fvpk  can be obtained only from 

those sets of data where the angular speed of the main rotor v  is positive. Analogously, 

numerical values for fvnk  can be obtained only from those sets of data where the angular speed of 

the main rotor v  is negative. 
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Each set of data consists of 6000 samples, corresponding to an experiment that lasts 60 seconds, 
with a sample period of 0.01 s, obtained from the response of the TRMS to an input voltage step 
signal. The sets of inputs used in this identification stage are briefly resumed in Table 14. 
 

Dataset 1 2 3 4 5 6 7 8 9 10 

Step amplitude (0-60s) (V) 0.4 0.6 0.8 1.0 1.2 1.4 -0.7 -0.8 -0.9 -1.0 

Table 14 – Main input voltages vu  for vertical aeromechanical identification 
 

Eqs. (4.6.5) and (4.6.6) have been used to obtain a preliminary estimation of fvpk  and fvnk , as 

shown in Table 15: 
 

Dataset 1 2 3 4 5 6 

fvpk  0.3161 0.3873 0.4261 0.4220 0.4301 0.4339 

Dataset 7 8 9 10   

fvnk  0.2392 0.2435 0.2515 0.3461   

Table 15 – Estimation of fvpk  and fvnk  
 

The minimum of (4.6.7) can be found by means of fmincon. The results obtained in the previous 
stage can be used to impose constraints on the unknown parameters: 

 2 2 2 2 2 20.3161 ,0.4339fvpk kg m s V kg m s V        

 2 2 2 2 2 20.2392 ,0.3461fvnk kg m s V kg m s V        

 3 2 1 2 110 ,10ovk kg m s kg m s       

Under the previous considerations, the fmincon has returned the following values: 

 2 2 20.4311fvpk kg m s V   

 2 2 20.2850fvnk kg m s V   

 2 10.0326ovk kg m s  

A comparison between the real data and the simulation of Eqs. (4.6.1)-(4.6.2) with such values is 
shown in Fig. 13 and Fig. 14. Table 16 shows the maximum absolute errors, the mean absolute 
errors and the steady-state error for each dataset. The results prove to be satisfactory, and it is 
hard to improve them without modifying the non-linear model of the system, including some 
non-linear effects that have been neglected. 
 

Dataset Max Absolute Error Mean Absolute Error Steady-State error 
1 4.76º 2.13º 1.95º 
2 6.10º 1.32º 1.32º 
3 8.45º 0.64º 0.17º 
4 12.05º 0.93º 0.48º 
5 13.87º 0.81º 0.06º 
6 17.62º 1.35º 0.45º 
7 5.60º 2.02º 1.91º 
8 5.73º 2.14º 1.97º 
9 6.39º 2.13º 1.83º 
10 6.99º 2.00º 1.67º 

Table 16 – Max, Mean and Steady-State errors for Identification Stage 5 
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Fig. 13 - Comparison between real and simulation data – Identification Stage 5 (positive vu ) 
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Fig. 14 - Comparison between real and simulation data – Identification Stage 5 (negative vu ) 

 

4.7 – Validation and remarks 
 

In order to validate the values obtained for each parameter by means of identification, such 
results have been tested with various inputs. The simulation of the non-linear model has been 
compared to the data obtained from the real system in two different scenarios. In both scenarios, 
the input voltages for both the main and the tail propeller are sinusoidal with mean value 
different from zero (see Table 17). 
 

Scenario Input Mean value Sine amplitude Sine frequency 
1 

hu  0.7 V 0.3 V 0.1 Hz 

1 
vu  0.7 V 0.3 V 0.05 Hz 

2 
hu  0.6 V 0.3 V 0.1 Hz 

2 
vu  0.6 V 0.1 V 0.05 Hz 

Table 17 – Input voltages for validation of the TRMS model 
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The comparisons between the simulation data and the real data for the 1st scenario are shown in 
Fig. 15, Fig. 16, Fig. 17 and Fig. 18. 
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Fig. 15 – Angular velocity of tail rotor in validation scenario 1 
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Fig. 16 - Angular velocity of main rotor in validation scenario 1 
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Fig. 17 – Yaw angle of the beam in validation scenario 1 
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Fig. 18 – Pitch angle v  with respect to its equilibrium 0

v  in validation scenario 1 
 

 
 
Analogously, comparisons between the simulation data and the real data for the 2nd scenario are 
shown in Fig. 19, Fig. 20, Fig. 21 and Fig. 22. 
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Fig. 19 - Angular velocity of tail rotor in validation scenario 2 
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Fig. 20 - Angular velocity of main rotor in validation scenario 2 
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Fig. 21 - Yaw angle in validation scenario 2 
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Fig. 22 - Pitch angle v  with respect to its equilibrium 0

v  in validation scenario 2 
 

The results prove to be quite satisfactory. The validation shows that the model approximates the 
behaviour of both the propellers quite accurately. Nevertheless, the model and the real system 
show slightly different behaviours when the yaw and the pitch angle responses are compared. 
This is not a big problem, as the control will compensate imperfections in the model. 
The goodness of the model could be improved through a better modelling of the non-linearities. 
This will not be done in this thesis, as it deals with LPV modelling and control, and such non-
linearities belong to the class of non-linearities that cannot be modelled in an LPV way. 
However, in the following, some advices are given on how the model could be improved by 
considering such non-linearities. 
Although the model approximates quite well the behaviour of both the propellers, the two 
behaviours diverge when the angular velocities of either the main or the tail propeller are near to 
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zero. This is because the non-linear Coulomb friction and the stiction have been neglected. 
Considering these effects, the quality of the model will be improved. 
In [Rahideh, 2007], the torque of the friction force, covering viscous, Coulomb and static 
frictions, is considered to have a piecewise linear behaviour. When the angular velocities of the 
beam h  and v  are near zero, the gain between the angular velocity and the torque is higher, 

as shown in Fig. 23. These two effects have not been considered in our model, but considering 
them would improve the goodness of the model, even though it would complicate the 
identification of the parameters too. 
 

 
Fig. 23 – Torque of the friction force 

 

4.8 – Construction of the polytopic LPV model 
 

Once the parameters of the non linear model have been identified, a polytopic LPV model can be 
obtained by applying the procedure that has been described in the previous chapter. Each of the 
state variables that influence the values of the elements of the state-space matrices is assumed to 
take values in an interval. The extremes of these intervals are imposed by limitations on the input 
voltages that can be applied to the tail and to the main rotor and by physical constraints on the 
minimum and maximum values that the yaw angle and the pitch angle can take. Such extremes 

can either be found by simulations of the non-linear model ( , , , , ,h h v v h v      ) or by 

measuring the minimum and maximum yaw and pitch angles that the physical constraints allow 

the TRMS beam to reach ( , , ,h h v v    ). 

In the following, it will be considered that  2.5 , 2.5hu V V   and  2.5 , 2.5vu V V  , leading 

to: 
 

  3.5 , 2.5h V V    

  2 / , 2 /h rad s rad s    

  1.8 ,1.8v V V    
 

At the same time, the physical structure of the TRMS imposes that: 
 

  3.4 , 2.4h rad rad    

  0.7 ,1.7v rad rad   
 

As some of the LPV parameters are not defined when 0h  , and they take very high values 

when h  is near zero, some other limits on h  will be imposed, that is: 
 

 3.5 , , 2.5h h hV V             
 

with 0.3h V    and 0.3h V  . 
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The same is true for v  and v , thus leading to: 
 

 1.8 , ,1.8v v vV V             

 0.7 , ,1.7v v vrad rad             
 

with 0.05v V    and 0.05v V  , 0 0.01v v rad     and 0 0.01v v rad    . 

All the models have been obtained with a sample time 0.01sT s . 
 

4.8.1 – Polytopic Absolute LPV Model 
 

The limits lead to the extreme values for each parameter as defined in Table 18. absd
ija  and absd

ija  

have been calculated according to formulas in section [3.3.3.1]. absd
ija  is the mean value of each 

parameter. It has been calculated by dividing the region of the admissible states in the state-space 

in a grid and by calculating absd
ija  at each point of the grid. Afterwards, the mean absd

ija  of all the 

obtained values has been calculated. Finally, absd
ija  is the variation of each LPV parameter, 

calculated as its maximum value minus its minimum value. 
 

 absd absd
ij ija or b  absd absd

ij ija or b  absd absd
ij ija or b  

absd absd
ij ija or b   

11
absda  0.9840 0.9903 0.9881 0.0063 

21
absda  2.5888e-4 0.0048 0.0017 0.0045 

22
absda  0.9895 0.9975 0.9949 0.0079 

23
absda  -0.0058 -7.0366e-4 -0.0020 0.0051 

24
absda  -0.0013 -1.1549e-4 -6.6765e-4 0.0012 

25
absda  -0.0075 0.0070 -8.5261e-6 0.0145 

26
absda  -0.0045 0.0156 0.0018 0.0200 

44
absda  0.9947 0.9994 0.9971 0.0047 

51
absda  0 0 0 0 

52
absda  -0.0092 0.0254 0.0060 0.0346 

54
absda  0 0.0247 0.0109 0.0247 

55
absda  0.9949 0.9949 0.9949 0 

56
absda  -0.0412 -0.0240 -0.0372 0.0171 

11
absdb  0.0163 0.0163 0.0163 0 

22
absdb  7.6242e-4 9.7038e-4 8.7045e-4 2.0796e-4 

42
absdb  0.0038 0.0038 0.0038 0 

51
absdb  0 0 0 0 

Table 18 – Extreme values, mean and variation of the Absolute LPV parameters 
 

Notice that the variability of the parameter 22
absdb  is very small; hence, the matrix ( ( ))abs tB x  can 

be approximated with a constant matrix, where 22 22
absdb b  , and LPV design techniques that make 

use of LMI regions can be applied. 
 

4.8.2 – Polytopic Shamma LPV Model 
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These limits lead to the extreme values for each parameter as defined in Table 19. shad
ija  and 

shad
ija  have been calculated according to formulas in section [3.3.3.2]. shad

ija  is the mean value of 

each parameter. It has been calculated by dividing the region of the admissible states in the state-

space in a grid and by calculating shad
ija  at each point of the grid. Afterwards, the mean shad

ija  of 

all the obtained values has been calculated. Finally, shad
ija  is the variation of each LPV 

parameter, calculated as its maximum value minus its minimum value. 
 

 shad shad
ij ija or b  shad shad

ij ija or b  shad shad
ij ija or b  

shad shad
ij ija or b   

11
shada  0.6802 0.8040 0.7625 0.1238 

12
shada  -4.3202 -0.0375 -0.3976 4.2827 

15
shada  -44.7408 56.3527 2.2551 101.0935 

21
shada  0.0052 0.0955 0.0342 0.0903 

22
shada  0.7907 0.9496 0.9067 0.1589 

24
shada  -0.0269 -0.0029 -0.0131 0.0241 

25
shada  -0.1501 0.1407 -2.27e-4 0.2908 

44
shada  0.8939 0.9857 0.9414 0.0917 

45
shada  -15.0186 1.9448 -2.0167 16.9634 

51
shada  0 0 0 0 

52
shada  -0.1777 0.5079 0.1286 0.6855 

54
shada  0.0109 0.4950 0.2179 0.4841 

22
shadb  0.0152 0.0194 0.0171 0.0042 

Table 19 - Extreme values, mean and variation of the Absolute LPV parameters 
 

Notice that the variability of the parameter 22
shadb  is very small; hence, the matrix ( ( ))sha tB x  can 

be approximated with a constant matrix, where 22 22
shadb b  , and LPV design techniques that make 

use of LMI regions can be applied. 
 

4.9 – Summary 
 

In this chapter the unknown parameters of the model of the Twin-Rotor MIMO System have 
been identified. The results have been validated and some advices of how the quality of the 
model could be improved have been given. However, the model has proved to show good 
performances in approximating the real behaviour of the system. 
Finally, an LPV polytopic model has been obtained by calculating the extreme values for each 
element in the state-space matrices, as explained in the previous chapter. 
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5 – TRMS LPV CONTROL 
 

5.1 – Polytopic LPV control loop 
 

The LPV system can be controlled by a state feedback control with a tracking reference input as 
proposed in [Franklin, 1997]. The feedback control law is based on the classical state feedback, 
even though the feedback matrix is designed in an LPV way and thus scheduled by the vector 

( )kψ : 
 

  ( ) ( ) ( )k k ku K ψ x                       (5.1.1) 
 

A nonlinear function uxN  is added to the state feedback control law (5.1.1). The basic idea in 

determining the function uxN  is that it should transform the reference input ( )kr , expressed as 

either a desired value or a trajectory of the system outputs, to a state reference ( )r kx  and a 

feedforward control action ( )r ku  that correspond to an equilibrium point for this ( )kr . 

Thus, the control law can be expressed as follows: 
 

   ( ) ( ) ( ) ( ) ( )r rk k k k k  u u K ψ x x                 (5.1.2) 
 

It is assumed that ( )kx  is not available and the estimated state ˆ ( )kx  should be used instead. 

Consequently, an LPV state observer is used to provide such state estimation: 
 

     ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k k    x A ψ x Bu L ψ y y           (5.1.3) 
 

 ˆ ˆ( ) ( )k ky Cx                          (5.1.4) 
 

where ˆ( ) xnk x   and ˆ ( ) yn
k y   are the estimated state and output variables, respectively. The 

matrix  ( ) x yn n
k


L ψ   is the gain of the state LPV observer. 

The overall LPV control scheme is represented in Fig. 24. 
 

 
Fig. 24 – LPV Controller/Observer Scheme 
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The control law (5.1.2) can be implemented using the polytopic representation of the system 
(2.2.3)-(2.2.4) as: 
 

    
1

ˆ( ) ( ) ( ) ( ) ( )
N

j
r k j r

j

k k k k k


  u u ψ K x x               (5.1.5) 

 

where u xn n

j

K   is the controller gain for the thj  model, that can be calculated by solving 

(2.3.13): 
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,

0

0

T

kl kl j j lk j j
k l

         
 

X A X BΓ A X BΓ

X

           (5.1.6) 

 

Analogously, the LPV state observer (5.1.3)-(5.1.4) used to estimate ˆ ( )kx  can be implemented 

using the polytopic representation of the system as: 
 

    
1

ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( )
N

j
k j j

j

k k k k k k


      x ψ A x Bu L y y          (5.1.7) 

 

 ˆ ˆ( ) ( )k ky Cx                          (5.1.8) 
 

where ˆ( ) xnk x   and ˆ ( ) yn
k y   are the estimated state and output, respectively. The matrices 

x yn n

j


L   are the state observer gains for each thj  model, that can be calculated by solving 

(2.3.13) for the dual system (2.3.15). 
 

5.2 – LPV state observer 
 

In the following some LPV state observers for the TRMS are designed using the LPV models 
that have been previously obtained and discussed; both the absolute and the Shamma LPV 
representation are used for design purpose and the results obtained with the real TRMS are 
compared and commented.  
 

5.2.1 – LPV state observer design 
 

The LPV state observer is designed with LMIs (2.3.13) assuming that the eigenvalues are placed 

in an LMI region that is the intersection between the disk of radius r and center  ,0q  and a 

vertical strip defined by the extreme values minS  and maxS . The problem is equivalent to that of 

finding state feedback matrices, one for each vertex system, that place the eigenvalues of the 
closed-loop dual vertex system in the LMI region, thus leading to the following LMIs: 
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(5.2.1) 

 

The vertices state observer gains are then obtained as: 
 

  1 T

j j
L Γ X                         (5.2.2) 

 

It must be noted that the application of the LPV theory would need to solve LMIs (5.2.1) for 2N  

vertices, that is, 2 1N   LMIs where N is the number of varying parameters. This leads to some 
computational issues, as the time needed to solve such a number of LMIs could be quite big, as it 
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increases in an exponential way with N, as resumed in Table 20. Hence, the design of the LPV 

observer is made by considering that only the N  most varying parameters vary, and all the 
others are fixed at their mean value. 
 

Number of varying parameters Time needed to solve LMIs 
1 4s  
2 6s  
3 14s  
4 38s  
5 98s  
6 327s  
7 1270s  
8 7150s  

Table 20 – Time needed to solve the LMIs when the number of varying parameters of the polytopic 
model varies 

 

5.2.2 – LPV state observer results 
 

The LMI region where the observer eigenvalues are placed should be chosen in such a way that 
the observer is fast enough to track the data coming from the sensors without loss of information. 
As Matlab simulations are done assuming a perfect knowledge of the TRMS (that is, the system 
and its model match perfectly) and absence of noise in the data coming from the sensors, a 
comparison between the observers is done applying them to the real system, where the observer 
should be able to filter the noise in the data. Indeed, the best observer has been chosen by means 
of a trial and error procedure done on the real TRMS, where the region to place the observer 
poles has been moved until good performances have been obtained. 
Due to computational issues that have been described previously, the design of the LPV state 

observer has been implemented by considering that only the N  most varying parameters vary. 

The selection 6N   has shown to be a good compromise between computation time and 
performance.  
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Fig. 25 – Comparison between sensor and LPV observer estimation – Angular speed of tail rotor 
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Choosing 6N   means that the vector of scheduling parameters is 

22 25 26 52 54 56, , , , ,absd absd absd absd absd absd
abs a a a a a a   ψ  for the Absolute LPV model and 

12 15 25 45 52 54, , , , ,shad shad shad shad shad shad
sha a a a a a a   ψ  for the Shamma LPV model, respectively. 

Good results and satisfactory performances are obtained when the LMI region is chosen as a disk 

with center 0.2 and radius 0.1, that is: 0.2q   , 0.1r  , min 0.1S   and max 0.3S  . 
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Fig. 26 – Comparison between sensor and LPV observer estimation – Yaw angle 
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Fig. 27 – Comparison between sensor and LPV observer estimation – Angular speed of main 

rotor 
 

Fig. 25, Fig. 26, Fig. 27 and Fig. 28 show the behaviour of the observers when no state 
feedback control acts on the TRMS. The both observers show very good performances. Actually, 
this result is not surprising, as the noise corrupting the data collected from the sensors is quite 
small. Anyhow, the presence of an observer in the control loop becomes essential when a fault 
appears, as it will be shown in next chapters. 
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Fig. 28 - Comparison between sensor and LPV observer estimation – Pitch angle 

 

The observers designed using, respectively, the absolute LPV model and the Shamma LPV 
model show good tracking performance. However, it has been noticed that the computation time 
needed to solve the LMIs for the Shamma model is 3-4 times bigger than the computation time 
needed for the absolute model. As the solution of the LMIs is obtained offline, this is not an 
important issue when comparing the efficiency of the two methods to design an LPV observer.  

 

5.3 – 6-States-based LPV Controller 
 

In the following some LPV state controllers for the TRMS are designed using the LPV models 
that have been previously obtained and discussed; both the absolute and the Shamma LPV 
representation are used for design purpose and the results obtained are compared and 
commented. 
 

5.3.1 – The Nux function 
 

The uxN  function transforms the reference trajectory ( )kr  to a state reference ( )r kx  and a 

feedforward control action ( )r ku  that correspond to an equilibrium point for the reference ( )kr . 

The trajectory is given by a desired yaw angle ( )ref
h k  and a desired pitch angle ( )ref

v k . These 

desired angles, along with the actual angles ( )h k  and ( )v k , are used to obtain a reference for 

the horizontal and vertical velocities ( )ref
h k  and ( )ref

v k . The desired horizontal and vertical 

velocities are considered to be the velocities needed to drive the system from the actual angles 

( )h k  and ( )v k  to the desired ones ( )ref
h k  and ( )ref

v k  in the times h  and v , respectively: 
 

  ( ) ( ) ( )ref ref
h h h hk k k                        (5.3.1) 

 

  ( ) ( ) ( )ref ref
v v v vk k k                        (5.3.2) 

 

The state reference ( )r kx  is given by: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
Tref ref ref ref ref ref

r h h h v v vk k k k k k k       x          (5.3.3) 
 

while the feedforward action ( )r ku  is given by: 
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 ( ) ( ) ( )ref ref
r h vk u k u k   u                      (5.3.4) 

 

where ( )ref
h k , ( )ref

v k , ( )ref
hu k and ( )ref

vu k  can be obtained from the set of non-linear differential 

equations that describes the behaviour of the TRMS by imposing all derivatives equal to zero 

and / /( ) ( )ref
h v h vk k   , / /( ) ( )ref

h v h vk k  : 
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Solving (5.3.5) leads to the solution: 
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5.3.2 – LPV state controller design 
 

The LPV state controller is designed with LMIs (2.3.13) assuming that the eigenvalues are 

placed in an LMI region that is the intersection between a disk of radius r and center  ,0q  and 

a vertical strip defined by the extreme values minS  and maxS , thus leading to the following LMIs: 
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(5.3.10) 

 

The vertices state controller gains are then obtained as: 
 

 1
j j

K Γ X                          (5.3.11) 
 

Because of computational issues, the design of the LPV controller is made by considering that 

only the N  most varying parameters vary, and all the others are fixed at their mean value, in the 
same way as the LPV observer was designed. 
 

5.3.3 – Simulation Results 
 

At first, both the controller based on the absolute model and the controller based on the Shamma 
model were tested in simulation. The responses of the overall system in both cases were 
compared to the ones that are obtained without the control loop, that is, by just applying the 
feedforward action calculated by means of the uxN  function. 

The simulation was performed by considering the system to be perfectly described by its non-
linear differential equations, whose parameters had been correctly estimated by the identification 
procedure. However, a saturation was added to reproduce the limits of the control action, that is 

 2.5 , 2.5V V , for both the tail motor voltage hu  and the main motor voltage vu . 

The experiment designed to compare the effectiveness of the control lasts 50 seconds. The 
reference angle trajectory is stepwise and a change in the set-point occurs at 25 seconds: 
 

 
0.5, 0.3 0 25

0.8, 0.5 25 50

ref ref
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              (5.3.12) 

 

In Fig. 29 and in Fig. 30, the yaw and the pitch angle responses are shown, both when no control 
acts on the system and when an LPV controller acts on it. Both figures were obtained using the 
controllers designed by solving (5.3.10) and placing the poles of the closed-loop system in the 
region of the complex plane that is the intersection between the unit circle and the vertical strip 
with values min 0S   and max 1S   (a semicircle). The time constants that appear in (5.3.1) and 

(5.3.2) were chosen as 1h s   and 1v s  . 

In both figures it can be seen that the control system is able to make the system faster and to 
stabilize it at the desired yaw and pitch angles. 
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Fig. 29 - Comparison between the response of the yaw angle without control, with absolute LPV 

control and with Shamma LPV control (simulation data) 
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Fig. 30 – Comparison between the response of the pitch angle without control, with absolute 

LPV control and with Shamma LPV control (simulation data) 
 

Afterwards, the region of the complex plane where to place the poles of the closed-loop system 
was varied, and some simulations were made to compare the effectiveness of the control 
strategy. During this step, it has been noticed that it is not possible to put the poles in whatever 
region. For example, if the desired region is the intersection between the circle with center 

 0.8,0  and radius 0.1r   and the vertical strip with extreme values min 0.8S   and max 0.9S  , 

the LMI constraints are not feasible, and the poles are not correctly placed in the desired region, 
as it can be seen in Fig. 31. This may suggest that, depending on the desired region, the LPV 
models could lose the property of D-stabilizability. 
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In particular, it has been noticed that some of the closed-loop poles tend to remain near the point 

 1,0  of the complex plane. Hence, to avoid the loss of D-stabilizability, it is suggested to 

choose desired regions that contain this point. 
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Fig. 31 - Position of the closed-loop poles with Q=-0.8, R=0.1, Smin=0.8, Smax=0.9 (Absolute 

LPV controller) 
 

Varying the region of the complex plane where to put the poles, the performance of the closed-
loop system changes, as it can be seen in Fig. 32 and Fig. 33. However, there is not a big 
improvement and both the absolute and the Shamma model give similar performance when used 
to design the control matrices jK . 
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Fig. 32 - Comparison between the responses of the yaw angle of the controlled system when the 

region where to place the closed-loop poles varies (simulation data) 
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Fig. 33 - Comparison between the responses of the pitch angle of the controlled system when the 

region where to place the poles varies (simulation data) 
 

Taking a look into the values taken by the input voltages hu  (Fig. 34) and vu  (Fig. 35), it can be 

seen that the motors work at their maximum voltages when a change in the reference angle 
occurs. This puts a limit in the performances of the control system, that cannot be improved 
because of the saturation. 
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Fig. 34 - Tail motor input voltage uh (simulation with Shamma controller with 0.8Q   , 

0.2R  , min 0.8S  , max 1S  ) 
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Fig. 35 - Main motor input voltage uv (simulation with Shamma controller with 0.8Q   , 

0.2R  , min 0.8S  , max 1S  ) 
 

5.3.4 – Practical results 
 

Afterwards, the controller has been tested when applied to the real TRMS. The experiment to 
compare the effectiveness of the control was the same as in simulation experiments. 
The obtained results are shown in Fig. 36, Fig. 37, Fig. 38 and Fig. 39. It can be seen that all the 
controllers make the system stable, even though those obtained using the Absolute LPV model 
for the TRMS show better performances during the transient with respect to those obtained using 
the Shamma LPV model. Hence, starting from this point, the Shamma LPV model will not be 
used anymore. 
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Fig. 36 - Comparison between the response of the yaw angle without control, with absolute LPV 

control and with Shamma LPV control (real experiment) 
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Fig. 37 - Comparison between the response of the pitch angle without control, with absolute LPV 

control and with Shamma LPV control (real experiment) 
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Fig. 38 - Comparison between the responses of the yaw angle of the controlled system when the 

region where to place the closed-loop poles varies (real experiment) 
 



 74 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

P
it

ch
 a

n
g

le
 

v
- 

v0
 [

ra
d]

 

 

Absolute LPV control Q=0 R=1 Smin=0 Smax=1

Absolute LPV control Q=-0.8 R=0.2 Smin=0.8 Smax=1

Shamma LPV control Q=0 R=1 Smin=0 Smax=1

Shamma LPV control Q=-0.8 R=0.2 Smin=0.8 Smax=1

reference

 
Fig. 39 - Comparison between the responses of the pitch angle of the controlled system when the 

region where to place the closed-loop poles varies (real experiment) 
 

5.4 – 4-States-based LPV Controller with Local Control Loops 
 

Another strategy to control the TRMS is to split it into subsystems, as it has been done for 
identification purposes. This allows controlling each subsystem for its own, resulting in the 
scheme of Fig. 40. 
At first, a control loop is designed for the tail rotor, in order to control its angular speed to a 
desired value. In this way, the controlled tail rotor dynamics becomes faster than when there is 
no control loop. Then, the same is made for the main rotor. 
Assuming that the dynamical behaviour of the rotors is fast enough to be negligible, the non-
linear differential equations that describe the aeromechanical part of the TRMS can be rewritten 
in a state-space form by considering the angular speeds of the two rotors as inputs of the system. 
Then, a control loop can be designed in an LPV way. 

 
Fig. 40 - 4-State LPV Controller with local control loops 

 

5.4.1 – Tail rotor local control loop 
 

The equation that describes the dynamical behaviour of the tail rotor (3.2.43) 
 

 
2

1 1( )h a tr a h
h h

tr a tr tr a tr

d k k B k f
u

dt J R J J R J

 


 
    

 
               (5.4.1) 

 

can be rewritten in the LPV absolute form: 
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 ( )abs absh
h h h h h

d
a b u

dt


                        (5.4.2) 

 

where: 
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h h
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k R B f
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J
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 1abs a
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tr a

k k
b

J R
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A polytopic discrete-time LPV model can be generated in an easy way using Euler 

approximation with a sampling time hT . Then, applying the bounding box approach to the 

resulting absd
ha : 
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The tail rotor can be controlled through the following control law: 
 

 ( ) ( ( )) ( ( )) ( ) ( )ff ref ref
h h h h h h hu k u k K k k k                    (5.4.3) 

 

where hK  is a gain designed in an LPV way and scheduled by the current tail rotor angular 

speed ( )h k , obtained directly from the corresponding sensor or, as an alternative, from the 

observer ˆ ( )h k . 

( )ref
h k  is the reference for the angular speed of the tail rotor. It is one of the outputs of the 

controller that drives the aeromechanical part of the TRMS towards the desired ref
h  and ref

v . 

( ( ))ff ref
h hu k  is the feedforward input voltage, calculated from (5.4.1) as: 

 

 
 2

1

1

( ) ( ( ))
( )

ref ref
tr a a h h aff

h

a

B R k k f k R
u k

k k

  
               (5.4.4) 

 

The LPV state controller is designed with LMIs (2.3.13) assuming that the eigenvalue of the 
closed-loop system is placed in an LMI region that is the intersection between the disk of radius 

hr  and center  ,0hq  and a vertical strip defined by the extreme values minhS  and max hS . In this 

case, a single eigenvalue has to be placed. Then, the radius hr  and the extreme values minhS  and 

max hS  can be chosen small enough to reduce the desired region to a point of the real axis, without 

compromising the feasibility of the LMIs. 
The eigenvalue has been moved throughout the segment of the real axis [0,1] until a good 
performance of the closed-loop system was found, that is, the steady-state error in case of a step 
input was close to zero. Moving the eigenvalues towards 0 has the effect of increasing the 
proportional constant hK  of the controller, with the resulting effect of reducing the steady-state 

error. 
After some trials, the controller has shown satisfactory performances when the LMI region was 
chosen as the disk with center 0.9 and radius 0.001, that is: 0.9q   , 0.001r  , min 0.899S   

and max 0.991S  . The controller works with a sampling time 0.01hT s . 
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Fig. 41 shows the results obtained in simulation environment. The presence of the control loop, 
in this case, makes faster the rotor, as the 1% settling time decreases from 3s to 0.5s. Because of 
the presence of an operational limit in the value that hu  can take, it is not possible to decrease 

further the settling time. 
Fig. 42 shows the results obtained when the controller is applied to the real system. In this case, 
the effect of the control loop is not only to make the system faster, but also to compensate the 
errors in modelling, thus driving the rotor to the desired angular velocity with almost zero 
steady-state error. 
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Fig. 41 - Simulation of the tail rotor angular velocity without control and with control 
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Fig. 42 – Time response of the tail rotor angular velocity without control and with control (real 

experiment) 
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5.4.2 – Main rotor local control loop 
 

The equation that describes the dynamical behaviour of the main rotor (3.2.46): 
 

 
2

2 4 ( )v a mr a v
v v

mr a mr mr a mr

d k k B k f
u

dt J R J J R J

 


 
    

 
              (5.4.5) 

 

can be rewritten in the LPV absolute form: 
 

 ( )v
v v v v v

d
a b u

dt


                         (5.4.6) 

 

where: 
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A polytopic discrete-time LPV model can be generated in an easy way using Euler 
approximation with a sampling time vT . Then, applying the bounding box approach to the 

resulting absd
va : 
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The main rotor can be controlled through the following control law: 
 

 ( ) ( ( )) ( ( )) ( ) ( )ff ref ref
v v v v v v vu k u k K k k k                     (5.4.7) 

 

where vK  is a gain designed in an LPV way and scheduled by the main rotor angular speed 

( )v k , obtained directly from the corresponding sensor or, as an alternative, from the observer 

ˆ ( )v k . 

( )ref
v k  is the desired angular speed of the main rotor. It is one of the outputs of the controller 

that drives the aeromechanical part of the TRMS towards the desired ref
h  and ref

v . 

( ( ))ff ref
v vu k  is the feedforward input voltage, calculated from (5.4.5) as: 
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( ) ( ( ))
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ref ref
mr a a v v aff

v

a

B R k k f k R
u k

k k
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               (5.4.8) 

 

The LPV state controller is designed with LMIs (2.3.13) assuming that the eigenvalue is placed 

in an LMI region that is the intersection between the disk of radius vr  and center  ,0vq  and a 

vertical strip defined by the extreme values minvS  and max vS . The radius vr  and the extreme 

values minvS  and max vS  can be chosen small enough to reduce the desired region to a point of the 

real axis, without compromising the feasibility of the LMIs. 
The eigenvalue has been moved throughout the segment of the real axis [0,1] until a good 
performance of the closed-loop system was found, that is, the steady-state error in case of a step 
input was close to zero. Moving the eigenvalues towards 0 has the effect of increasing the 
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proportional constant vK  of the controller, with the resulting effect of reducing the steady-state 

error. 
After some trials, the controller has shown satisfactory performances when the LMI region was 
chosen as the disk with center 0.97 and radius 0.001, that is: 0.97q   , 0.001r  , min 0.969S   

and max 0.971S  . The controller works with a sampling time 0.01vT s . 

Fig. 43 shows results obtained in simulation environment. The presence of the control loop, in 
this case, makes faster the rotor, as the 1% settling time decreases from 7.6s to 1.8s. Because of 
the presence of an operational limit in the value that vu  can take, it is not possible to decrease 

further the settling time. 
Fig. 44 shows the results obtained when the controller is applied to the real system. In this case, 
the effect of the control loop is not only to make the system faster, but also to compensate the 
errors in modelling, thus driving the rotor to the desired angular velocity with almost zero 
steady-state error. 
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Fig. 43 - Simulation of the main motor angular velocity without and with control 
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Fig. 44 - Time response of the main rotor angular velocity without control and with control (real 

experiment) 
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5.4.3 – Aeromechanical control loop: the reduced model 
 

The equations that describe the dynamical behaviour of the aeromechanical part of the TRMS 
(3.2.44), (3.2.45), (3.2.47) and (3.2.48), can be rewritten by neglecting the dynamics of the rotors 
and by considering their angular velocities as inputs of the system. In order to make the system 

linear with respect to the inputs,  2 hf   and  5 vf   are used as inputs instead of h  and v . 

The resulting reduced order model can be rewritten in the following LPV absolute form: 
 

 
 
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2

531 33 34 32
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where: 
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 31( ( )) sin cosh v v va t H J  ψ                   (5.4.14) 
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b t

J
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A polytopic discrete-time LPV model can be generated in an easy way using Euler 
approximation with a sampling time sT , then applying the bounding box approach. Then, the 

parameter-varying elements of the matrix B  can be approximated with their mean value, so as to 
obtain an LPV model with a constant input matrix. 
 

5.4.4 – Aeromechanical control loop: the control signal 
 

The controller has two outputs: ( )ref
h k , reference for the tail rotor angular speed, and ( )ref

v k , 

reference for the main rotor angular speed. Both the outputs are inputs to the local control loops 

that control the tail and the main rotor, and are obtained from the corresponding 2 ( )reff k  and 

5 ( )reff k , taking into account equations (3.2.20) and (3.2.34): 
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Both 2 ( )reff k  and 5 ( )reff k  are the sum of two parts: 
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where: 
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                 (5.4.24) 

 

( ( ))kK ψ is the LPV controller based on the 4-states LPV model (5.4.9). It is designed in the 

same way as the controllers that have been described in the previous paragraphs, by solving 
LMIs (2.3.13). In this case the scheduling vector is: 
 

11 12 13 14 31 34( ) ( ( )), ( ( )), ( ( )), ( ( )), ( ( )), ( ( ))absd absd absd absd absd absdk a k a k a k a k a k a k   ψ x x x x x x   
 

where each element of the scheduling vector is given by (5.4.10)-(5.4.16). 

( )ref
h k  and ( )ref

v k  are determined offline; ( )ref
h k  and ( )ref

v k  are calculated as: 
 

  ( ) ( ) ( )ref ref
h h h hk k k                        (5.4.25) 

 

  ( ) ( ) ( )ref ref
v v v vk k k                        (5.4.26) 

 

where ( )h k  and ( )v k  are the actual yaw and pitch angles. The desired horizontal and vertical 

velocities are chosen to be the velocities needed to drive the system from the actual angles ( )h k  

and ( )v k  to the desired ones ( )ref
h k  and ( )ref

v k  in the times h  and v , respectively. 
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5.4.5 – Aeromechanical control loop: results 
 

At first, the controller of the aeromechanical part of the TRMS has been tested in simulation. 

The sampling time has been chosen as 0.01sT   and the controller has been designed both with 

0q  , 1r  , min 0S  , max 1S  , and with 0.8q   , 0.2r  , min 0.8S  , max 1S  . The references 

for the horizontal and vertical angular speeds of the beam /
ref
h v  have been calculated through 

(5.4.25) and (5.4.26) by assuming that 1h s   and 1v s  . 

In order to compare the effectiveness of this control strategy with the one that was previously 
used based on the 6-states LPV model, the same reference angle trajectory is used: 
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In Fig. 45 and Fig. 46, the response of the system with the 4-states LPV controller is compared 
with the one obtained using the Shamma 6-state LPV Controller designed with 0.8q   , 

0.2r  , min 0.8S   and max 1S  . 
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6-State Shamma Q=-0.8 R=0.2 Smin=0.8 Smax=1
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4-State Absolute Q=-0.8 R=0.2 Smin=0.8 Smax=1

 
Fig. 45 - Comparison between the responses of the yaw angle of the system controlled by a 6-
states LPV controller and the system controlled by a 4-states LPV controller (simulation data) 
 

It can be seen that this control strategy is able to stabilize the system as well as the previous 
strategy, even though there is a loss of performances in the transient response. 
Similar results are obtained when the controller is tested with the real TRMS; as shown in Fig. 
47 and Fig. 48. In this case, the TRMS is driven towards the desired yaw and pitch angles, but 
there is the presence of some oscillations both in the transient and in steady-state. However, it 
could be possible that a change in the region of the complex plane where to place the closed-loop 
poles could lead to better results. 
Reducing the order of the system from 6 to 4 has the consequence of reducing the computation 
time needed to solve the LMIs (2.3.13). This is an important issue when an integral action is 
added to the system, as such an addition increases the order of the system from 6 to 8 and an 8-
states LPV controller would need too much computation time to solve the LMIs. A 4-states LPV 
controller with integral action is described in the next paragraph. 
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Fig. 46 - Comparison between the responses of the pitch angle of the TRMS controlled by a 6-
states LPV controller and the TRMS controlled by a 4-states LPV controller (simulation data) 
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Fig. 47 - Comparison between the responses of the yaw angle of the TRMS controlled by a 6-

states LPV controller and the TRMS controlled by a 4-states LPV controller (real data) 
 

5.5 – 4-States LPV Controller with Integral Action and Local Control Loops 
 

5.5.1 – LPV Integral Control by State Augmentation 
 

Integral control is needed in order to eliminate the steady-state errors due to some imperfections 
in either the modelling or the identification of the TRMS. For this reason, some form of integral 
control is typically included in most control systems. The control that has been used so far is an 
extension of state-space design methods to LPV systems: state-space designs will not naturally 
include an integral action unless additional steps are taken. A method to add an integral action to 
classic state-space control is described in [Franklin, 1997] and it is based on state augmentation: 
the state is augmented in such a way that the control system achieves zero steady-state error for a 
general class of reference and disturbance signals. 
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Fig. 48 - Comparison between the responses of the pitch angle of the TRMS controlled by a 6-

states LPV controller and the TRMS controlled by a 4-states LPV controller (real data) 
 

The idea is to add a state to obtain an integral of the error signal. This integrator is implemented 
as part of the controller equations. Then, the integral is fed-back along with the estimated or 
measured state. To accomplish the design of the feedback gains for both the integral and the 
original state vector, the model of the plant is augmented and an integral error output is added to 
the existing plant state output. This augmented model is then used as before to calculate the 
feedback control gains for the augmented model. 
More specifically, the state of the system: 
 

 
 ( 1) ( ) ( ) ( )

( ) ( )

k k k k
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x A ψ x Bu

y Cx
                  (5.4.27) 

 

is augmented with Ix , the integral of the error,  e y r . The discrete integral is simply a 

summation of all past values of ( )ke , which results in the difference equation: 
 

 ( 1) ( ) ( ) ( ) ( ) ( )I I Ik k k k k k     x x e x Cx r               (5.4.28) 
 

therefore arriving at the augmented plant model: 
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x x 0 IC I
          (5.4.29) 

 

With this revised definition of the system, the design technique already used can be applied 
directly for control law design. 
The addition of extra poles for the integrator state element will typically lead to a deteriorated 
command input response compared to that obtained without integral control. 
 

5.5.2 – Augmented model of the TRMS 
 

The LPV model of TRMS can be modified by augmenting the state in order to add an integral 

action to the control. Using the Euler approximation with a sampling time sT , the model (5.4.9) 

becomes: 
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 (5.4.30) 

 

A polytopic discrete-time LPV model can be generated applying the bounding box approach. 
 

5.5.3 –Results 
 

The controller has been designed with 0.8q   , 0.2r  , min 0.8S  , max 1S  , choosing a 

sampling time of 0.01sT  . The reference for the horizontal and vertical angular speeds of the 

beam /
ref
h v  have been calculated through (5.4.25) and (5.4.26) by assuming that 1h s   and 

1v s  . 

In order to compare the effectiveness of this control with the ones previously designed using the 
6-states LPV model and the 4-states LPV model (without integral action), the same reference 
angle trajectory is used: 
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6-state Shamma Q=-0.8 R=0.2 Smin=0.8 Smax=1

4-state Absolute Q=-0.8 R=0.2 Smin=0.8 Smax=1

4-state Absolute with integral action Q=-0.8 R=0.2 Smin=0.8 Smax=1

 
Fig. 49 - Comparison between different control strategies for the yaw angle h  (simulation data) 
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Fig. 49 and Fig. 50 show results obtained in simulation, compared with those that had been 
obtained previously by applying other control strategies. It can be seen that the introduction of an 
integral action causes a loss of performance in the transient. 
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6-state Shamma Q=-0.8 R=0.2 Smin=0.8 Smax=1

4-state Absolute Q=-0.8 R=0.2 Smin=0.8 Smax=1

4-state Absolute with integral action Q=-0.8 R=0.2 Smin=0.8 Smax=1

 
Fig. 50 - Comparison between different control strategies for the pitch angle v  (simulation data) 

 

Despite the loss of performances appeared in simulation, the presence of an integral action 
eliminates the steady-state error when applied to the real system, as it can be seen in Fig. 51 and 
Fig. 52. 
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Fig. 51 - Comparison between different control strategies for the yaw angle h  (real data) 

 



 86 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

P
it

c
h
 a

n
gl

e
 

v
- 

v0
 [

ra
d]

 

 

6-state Absolute Q=0 R=1 Smin=0 Smax=1

4-state absolute Q=-0.8 R=0.2 Smin=0.8 Smax=1

4-state absolute with integral action Q=-0.8 R=0.2 Smin=0.8 Smax=1

reference

 
Fig. 52 - Comparison between different control strategies for the pitch angle v  (real data) 

 

5.6 – Disturbance rejection 
 

The effectiveness of both the controllers, the 6-states LPV controller and the 4-states one with 
local control loops and integral action, was tested when some disturbances were applied to the 
TRMS. The experiment was done on the real system, where the TRMS had to follow the angle 

references 0.6ref
h   and 0.4ref

v  . Exterior disturbances were provoked manually and the 

control systems proved to be able to reject them. Again, the better transient performances were 
obtained with the 6-states controller (Fig. 53 and Fig. 54), while the 4-states controller with 
integral action could eliminate the steady-state error (Fig. 55 and Fig. 56). Hence, the 6-states 
LPV controller will be the one to be used as the nominal controller in Fault-Tolerant Control 
schemes, that are the subject of the next chapter. 
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Fig. 53 - Disturbance rejection with 6-states LPV controller (yaw angle) 
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Fig. 54 – Disturbance rejection with 6-states LPV controller (pitch angle) 
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Fig. 55 – Disturbance rejection with 4-states LPV controller and integral action (yaw angle) 

 
 

5.7 – Comparison with PID control strategy  
 

In order to evaluate the goodness of the LPV state-feedback control strategy, a comparison with 
a PID control strategy is carried out. 
Two controllers were tuned for both the yaw and the pitch angle, by applying the Ziegler-
Nichols methods for PID tuning. 
The step response of the pitch angle is S-shaped and can be approximated with the time response 
of a first-order system with a time delay as in Fig. 57. Thus, the open-loop Ziegler-Nichols 
method can be used to tune the PID controller. 
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Fig. 56 - Disturbance rejection with 4-states LPV controller and integral action (pitch angle) 

 

The slope of the tangent at the inflection point of the reaction curve is 0.434S  , while the time 

delay is 1.12dt s . Hence, the optimum gains are obtained as 1.2 / 2.47Pk SL  , 

/ / 2 1.10I P I P dk k T k t    and 0.5 0.69D P D P dk k T k t   . 

The step response of the yaw angle is not S-shaped, so the open-loop method can not be used. 
Hence, the closed-loop method must be used: the loop is closed and the proportional gain is 
increased until the system becomes marginally stable and continuous oscillations begin (Fig. 58). 
 
 

 
Fig. 57 – Open-loop Ziegler-Nichols method: step response of pitch angle with uv = 1 V 
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Fig. 58 – Closed-loop Ziegler-Nichols method: response of yaw angle with uK = 1.3 

 

The corresponding gain is 1.3uK   and the period of oscillation is 7uP s . These values lead to 

the following gains of the PID controller: 1.6 2.08p uk k  , 2 / 0.59I P uk k P   and 

/ 8 1.82D P uk k P  . 

The system was tested with the angle trajectory (5.3.12), and results are shown in Fig. 59. In 
order to decrease the oscillations of the yaw angle and to make the response of the pitch angle 
faster, the constants were modified according to Table 21. 
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Fig. 59 – PID control of yaw and pitch angles with constants tuned by Ziegler-Nichols methods 
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Parameter Rise time Overshoot Settling 
time 

Steady-state 
error 

Stability 

Pk  Decrease Increase Small 
change 

Decrease Degrade 

Ik  Decrease Increase Increase Decrease 
significantly 

Degrade 

Dk  Minor 
decrease 

Minor 
decrease 

Minor 
decrease 

No effect in 
theory 

Improve if Dk  is 

small 
Table 21 – Effects of increasing a parameter independently 

 

Constants that assure performances comparable to those obtained with the 6-states LPV 

controller were found: 3.12Phk  , 0.71Ihk  , 4.55Dhk  , 2.96Pvk  , 1.32Ivk   and 1.38Dvk  . 

Results without disturbances are shown in Fig. 60 and Fig. 61, while results when some 
disturbances are applied to the TRMS are shown in Fig. 62 and Fig. 63.  
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Fig. 60 – Comparison between 6-states LPV controller and PID controller (yaw angle) 
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Fig. 61 - Comparison between 6-states LPV controller and PID controller (pitch angle) 
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It can be seen that the system controlled with PIDs fails in rejecting the disturbances even though 
its performances in following a stepwise reference are similar to those of the 6-states LPV 
controller. 
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Fig. 62 - Results with PID controller in presence of disturbances (yaw angle) 
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Fig. 63 - Results with PID controller in presence of disturbances (pitch angle) 

 

5.8 – Summary 
 

In this chapter an observer and a controller have been designed according to the LPV theory. The 
observer proved to work well both when applied to the simulation model and when applied to the 
real TRMS, as the noise corrupting the measurements of the sensors was very small. The 
controller was designed with different LPV models: 
 

 a 6-states LPV model, obtained from the non-linear model by neglecting the dynamics of 
the armature currents; 

 a 4-states LPV model with local control loops for the tail/main rotor, where the problem 
of controlling the TRMS is split into simpler control problems; 

 a 4-states LPV model with local control loops for the tail/main rotor with integral action, 
where the state of the aeromechanical model is augmented in order to add an integral 



 92 

action which permits to drive the system to the desired yaw and pitch angles with zero 
steady-state error. 

 
The 6-states LPV controller proved to give the best transient response even though, when tested 
with the real system, exhibited a steady-state error different from zero. On the other hand, the 4-
states LPV model with local control loops, augmented to add an integral action, had the worst 
transient response but was able to drive the TRMS to the desired angles with zero steady-state 
error. 
The 6-states LPV controller proved to reject rapidly disturbances and to give better results than 
those obtained with PID controllers. Because of all these reasons, it was chosen as the nominal 
controller to which fault tolerance mechanisms will be applied in next chapter. 
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6 –LPV FAULT-TOLERANT CONTROL FOR THE TRMS 
 

6.1 – Introduction 
 

Recently, virtual sensors and virtual actuators for linear systems have been proposed as a fault 
accommodation approach (see, e.g. [Blanke, 2003]). The main idea of this Fault Tolerant 
Control (FTC) method is to reconfigure the control loop such that the nominal controller could 
be still used without need of retuning. The plant with the faulty sensor/actuator is modified 
adding the virtual sensor/actuator block that masks the fault and allows the controller to see the 
same plant as before the fault occurrence. 
In case of a sensor break-down, the reconfiguration block results from the application of a 
Luenberger observer to reconstruct the faulty output. It is called a “virtual sensor”, because it 

reconstructs that element iy  of the output vector from the other measured output signals that the 

faulty sensor does no longer measure. 
In case of an actuator break-down, the reconfiguration block can be obtained in a dual way. In 
this case, it is called “virtual actuator”, because it acts like the faulty actuator but replaces the 
effect of this actuator by using the control input of the other actuators appropriately. The 
reconfigured controller, that will be applied to the faulty plant, consists of the nominal controller 
and the reconfiguration block. 
The faulty process and the reconfiguration block together become the so-called reconfigured 
plant, which is connected to the nominal controller (Fig. 64). If the reconfigured plant behaves 
like the nominal plant, the loop consisting of the reconfigured plant and the controller behaves 
like the nominal closed-loop system. This is true for an arbitrary nominal controller. 
 

 
Fig. 64 – Virtual sensors and virtual actuators 

 

In order to implement an active fault tolerant strategy, a fault estimation algorithm is needed. 
The fault estimation problem can be formulated as a parameter estimation problem in such a way 
that any parameter estimation algorithm (such as least squares, generalized/extended least 
squares, instrumental variables, maximum likelihood, extended Kalman filter and others) could 
be used. 
Hereafter, the virtual sensor/actuator theory will be extended to LPV systems, so that it can be 
applied to the case of study that is the Twin Rotor MIMO System. 
 

6.2 – Reconfiguration problem 
 

Before explaining the reconfiguration method, the problem to be solved is formally stated. The 
model of the nominal process is supposed to be given in state-space LPV discrete-time form: 
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                  (6.2.1) 

 

The nominal process is stabilised by a nominal controller with output ( )ku  and inputs ˆ ( )kx , the 

actual estimated state, and the actual reference state ( )ref kx . The controller is supposed to be an 

LPV feedback controller with a feedforward action: 
 

  ˆ( ) ( ( )) ( ) ( ) ( )c ref ffk k k k k  u K ψ x x u                 (6.2.2) 
 

The state ˆ ( )kx  is supposed to be estimated through the nominal LPV state observer: 
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          (6.2.3) 

 

The process, the observer and the controller form the nominal control loop for ( ) ( )ck ku u  and 

( ) ( )ck ky y : 
 

   

0

0

ˆ( 1) ( ( )) ( ) ( ( )) ( ) ( )

ˆ ˆ ˆ( 1) ( ( )) ( ( )) ( ) ( ) ( ( )) ( ) ( )

( ) ( )

(0)

ˆ(0)

ff

ff

k k k k k k

k k k k k k k k

k k

   


     



 





x A ψ x BK ψ x Bu

x A ψ BK ψ x Bu L ψ Cx y

y Cx

x x

x x

       (6.2.4) 

 

The control loop is assumed to be stable and to satisfy the performance requirements concerning 
the set-point tracking. 
 

6.2.1 – Fault cases 
 

In case of a fault of sensor i, the i-th row of the matrix C  is changed and the new matrix is 

denoted by fC . The faults are considered to be multiplicative, which means that the output of 

sensor i is multiplied by a constant i , thus: 
 

 f C ΦC                           (6.2.5) 
 

with  1 2, ,...,
yndiag   Φ  and 0 1i   such that the extreme values 0i   and 1i   denote 

a total loss of the i-th sensor and the healthy i-th sensor, respectively. 
In case of a fault of actuator j-th, the j-th column of the matrix B  is changed and the new matrix 

is denoted by fB . Analogously, the faults are considered to be multiplicative, that is, the output 

of actuator j is multiplied by a constant j , thus: 
 

 f B Bβ                           (6.2.6) 
 

with  1 2, ,...,
undiag   β  and 0 1j   such that the extreme values 0j   and 1j   

denote a total loss of the j-th actuator and the healthy j-th actuator, respectively. 
It is assumed that the faulty process is still controllable and observable. 

The input and output of the faulty plant are denoted by fu  and fy , respectively. 
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6.2.2 – Reconfiguration task 
 

The goal is to find a reconfigured controller that makes the closed-loop system satisfy the 
following conditions: 
 
Strong reconfiguration goal – The controller should make the reconfigured control loop behave 
in exactly the same way as the nominal control loop, that is, the relation ( ) ( )f k ky y  should 

hold. This strong goal is only feasible in very special cases. Therefore, a weaker goal is defined 
in terms of the dynamical and the static behaviour of the reconfigured loop. 
 
Weak reconfiguration goal – The weak goal consists of a static and a dynamical part. 
Considering the static behaviour, the output fy  of the reconfigured loop should have the same 

value as for the nominal system. This means that the relation ( ) ( )f k ky y  for k    should 

hold. The transient behaviour is determined by the poles and zeros of the system which should 
not differ significantly in the nominal and the reconfigured control loop. Additional poles (and 
zeros) are allowed only if they are fast enough not to dominate the system behaviour. 
 

6.3 – Virtual sensors 
 

Hereafter, a reconfiguration block that reconstructs a measurement iy  when a fault in the i-th 

sensor occurs is described. The main idea is to use an observer for the faulty system, which 
represents the main part of the reconfiguration block to be built. This block is called virtual 
sensor due to its function of replacing a faulty sensor. 
The faulty system under consideration is described by the state-space model: 
 

 

 

0

( 1) ( ) ( ) ( )

( ) ( )

(0)

f f f

f f f

f f

k k k k

k k

   







x A ψ x Bu

y C x

x x

                 (6.3.1) 

 

where the sensor failure is reflected by the matrix fC  and fx , fu  and fy  are the system state, 

input and output vector in faulty conditions. 

If the condition    fKern KernC C  is satisfied, where Kern denotes the kernel of a matrix, 

the complete output vector y  can be reconstructed from fy . This condition means that the 

measurement information obtained by the healthy output vector y  is the same as the information 

obtained by the remaining sensor through fy . The condition can be written in an equivalent 

form as: 
 

  f
f

rank rank
 

  
 

C
C

C
                     (6.3.2) 

 

If condition (6.3.2) is satisfied, then the reconfiguration problem is solved by choosing: 
 

 ( ) ( )fk ky Py                         (6.3.3) 
 

where: 
 

  
1T T

f f f f

 P CC CC C C                     (6.3.4) 
 

Notice that by choosing P  as in (6.3.4), fC PC . 

Situations where the condition (6.3.2) is satisfied include the following: 
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 The fault has changed the sensitivity of the sensor, but the signal is not completely lost. 

Hence fy ay  holds for some scalar a. This is the case when i  in matrix Γ  of (6.2.5) 

is different from zero. 
 The faulty sensor has at least one parallel redundant sensor. The matrix P switches the 

output to the redundant sensor. 
 An analytic relation between the faulty output and several other output values exists, 

which can be reformulated by using the matrix P. 
The later two cases are only possible if C  does not have full rank. 
The new control structure obtained by choosing ( )ky  as in (6.3.3) can be interpreted as 

consisting of a reconfiguration block: 
 

 
( ) ( )

( ) ( )

c f

f c

k k

k k

 



y Py y

u u
                       (6.3.5) 

 

That is, if the condition (6.3.2) holds, the virtual sensor is a static reconfiguration block. 
The general case is, however, when the condition (6.3.2) is violated. In this case, the 
reconfiguration block includes a state observer and a direct feedthrough. 
 

6.3.1 – Definition of the virtual sensor 
 

Consider the faulty plant (6.3.1). The virtual sensor is described as the system: 
 

 

   

0

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

(0)

v v v v c v f

f c

c v v v f

v v

k k k k k k

k k

k k k

   





 
 

x A ψ x B u L ψ y

u u

y C x P y

x x

          (6.3.6) 

 

with the state n
v x   and matrices: 

 

      ( ) ( ) ( )v v fk k k A ψ A ψ L ψ C                  (6.3.7) 
 

 v B B                            (6.3.8) 
 

 v v f C C P C                         (6.3.9) 
 

vP  and vL  denote matrices that can be freely chosen; notice that vL  is scheduled by the vector 

of varying parameters ( )kψ . 

The main part of the virtual sensor is the state observer with the state vector ( )v kx . The 

complete output ( )c ky  of the plant can be approximately determined: ( ) ( )c vk ky Cx . This 

observation result is improved by using the available sensor values and by observing only the 
difference between the nominal and the faulty output. In a generalised form, this approach is 

represented by the output equation of (6.3.6) where the matrix vP  is a design parameter. For 

v P 0  only observed values are used. 
 

6.3.2 – Model of the reconfigured plant 
 

The plant together with the virtual sensor and the nominal state observer is described by 
equations (6.3.1), (6.2.3) and (6.3.6): 
 

 

( 1) ( )( ( ))

( 1) ( ( )) ( ( )) ( ( )) ( ) ( )

ˆ ˆ( 1) ( )( ( )) ( ( )) ( ( )) ( ( ))

f f

v v f v f v c

v f v f

k kk

k k k k k k

k kk k k k

      
      

          
                 

x xA ψ 0 0 B

x L ψ C A ψ L ψ C 0 x B u

Bx xL ψ P C L ψ C P C A ψ L ψ C

(6.3.10) 
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Fig. 65 – Virtual sensor scheme 

 

A state transformation is performed in order to introduce the virtual sensor error 

( ) ( ) ( )v fk k k  x x x  and the observation error ˆ( ) ( ) ( )vk k k  x x x . Then, the system (6.3.10) 

is equivalent to: 
 

 

( 1) ( )( ( ))

( 1) ( ( )) ( ( )) ( ) ( )

( 1) ( )( ( )) ( ( )) ( ( )) ( ( ))

f f

v f c

v f v f

k kk

k k k k k

k kk k k k 

 

      
      

         
               

x xA ψ 0 0 B

x 0 A ψ L ψ C 0 x 0 u

0x x0 L ψ P C L ψ C A ψ L ψ C

(6.3.11) 

 

For the analysis of the closed-loop behaviour the model of the reconfigured plant is combined 
with the linear feedback controller (6.2.2): 
 

 

( 1) ( )( ( )) ( ( )) ( ( )) ( ( ))

( 1) ( ( )) ( ( )) ( )

( 1) ( )( ( )) ( ( )) ( ( )) ( ( ))

( ( ))

( )

f f

v f

v f v f

ref

k kk k k k

k k k k

k kk k k k

k

k

 

 

    
    

      
           

   
  

   
  
   

x xA ψ BK ψ BK ψ BK ψ

x 0 A ψ L ψ C 0 x

x x0 L ψ P C L ψ C A ψ L ψ C

BK ψ B

0 x 0

0 0

( )ff k



u

(6.3.12) 
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The autonomous closed-loop behaviour can be analysed by imposing ff u 0  and ref x 0 , thus 

(6.3.12) simplifies to: 
 

 

( 1) ( )( ( )) ( ( )) ( ( ))

( 1) ( ( )) ( ( )) ( )

( 1) ( )( ( )) ( ( )) ( ( )) ( ( ))

f f

v f

v f v f

k kk k k

k k k k

k kk k k k 

 

    
    

      
           

x xA BK ψ BK ψ BK ψ

x 0 A ψ L ψ C 0 x

x x0 L ψ P C L ψ C A ψ L ψ C

 (6.3.13) 

 

Looking at this model, the separation principle can be applied: the matrix  ( )kK ψ  influences 

the behaviour of the process state ( )f kx  through the submatrix    ( ) ( )k kA ψ BK ψ  (nominal 

controller).  ( )v kL ψ  affects the behaviour of the virtual sensor error ( )kx  through the 

submatrix    ( ) ( )v fk kA ψ L ψ C  (LPV virtual sensor). Finally, the observer error x  is 

affected by the matrix  ( )kL ψ  through the submatrix    ( ) ( )k kA ψ L ψ C  (LPV state 

observer). 
The set   of eigenvalues of the reconfigured closed-loop system (6.3.13) consists of the set of 
eigenvalues of the nominal closed-loop system (6.2.4) plus the set of eigenvalues of the virtual 
sensor (6.3.6) and the set of eigenvalues of the LPV observer (6.2.3): 
 

      v f        A BK A L C A LC  
 

Thus, the closed loop LPV controller, the LPV virtual sensor and LPV state observer can be 
designed independently. 
The analysis has shown how the virtual sensor works. The direct feedthrough P  reconstructs or 

at least approximates the output cy  of the faultless plant from the remaining output fy . If the 

condition (6.3.2) is satisfied and P  is chosen according to (6.3.4), the virtual sensor shrinks to a 
static reconfiguration block because v C 0 . This solution to the reconfiguration problem 

coincides with the solution obtained by the model-matching approach. The strong 
reconfiguration goal is satisfied. If the condition (6.3.2) is not satisfied, the virtual sensor 
reconstructs the missing sensor information. 
 

6.3.3 – Polytopic LPV Virtual Sensor 
 

The LPV virtual sensor (6.3.6) can be defined in a polytopic way as: 
 

 
   ,

1

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( )

N
j

v k j v v j v f
j

v f v

k k k k k k

k k





       


 

x ψ A x Bu L y y

y C x

       (6.3.14) 

 

where ( ) xn
v k x   and ( ) yn

v k y   are the virtual state and output, respectively. The matrices 

,
x yn n

v jL


  are the gains of the LPV virtual sensor defined for each thj  model. 

The reconstruction of the system output vector ( )c ky  is given by: 
 

 ( ) ( ) ( ) ( )c f v f vk k k k  y Py Cx PC x                  (6.3.15) 
 

 

6.3.4 – LPV Virtual Sensor Design 
 

Resuming, the design of LPV virtual sensor implies selecting: 

 matrices jK  of (5.1.5) in order to guarantee closed-loop stability of the original system 

assuming that the pair  ( ( )),kA ψ B  is stabilizable for all ψ Ψ ; 
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 matrices ,v jL  of (6.3.14) in order to correct the LPV virtual sensor error of the 

reconfigured system assuming that the pair  ( ( )), fkA ψ C  is detectable for all ψ Ψ ; 

 matrices jL  of (5.1.7) in order to correct the LPV state observer error of the reconfigured 

system assuming that the pair  ( ( )),kA ψ C  is detectable for all ψ Ψ ; 

 a matrix P  such that fC PC  assuming that the rank condition (6.3.2) is satisfied. 

The design of the LPV virtual sensor is done by applying LMI techniques described in Chapter 2 
to place the poles in a desired region of the complex plane. Thus, equation (2.3.13) becomes: 
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X A Γ C X
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X A X XA C Γ Γ C

X

(6.3.16) 

 

Finally, the vertices of the virtual sensor gains are then obtained as: 
 

  1
,

T

v j j
L Γ X                         (6.3.17) 

 

 

6.3.6 – Sensor fault isolation and estimation 
 

Hereafter, the procedure to isolate and estimate the multiplicative sensor faults is explained. The 
hypothesis of having at disposal a fault detection algorithm is made. This means that, as soon as 
a fault appears in the system, the fault detection algorithm is able to detect that there is a fault, 
and the procedure for fault isolation and estimation is started. 
This procedure is based on the fact that, in presence of an abrupt fault in a sensor, there is a 
difference between the output of the sensor and the corresponding output of the state observer. 
Such a difference can be used to estimate the magnitude of the fault through a parameter 
estimation approach. 
The approach to be used is the so-called “recursive least-square method” with a forgetting factor 

( )k  [Ljung, 1987]. The linear regression is written down as: 
 

 , ,
1

ˆ ( )
y

n

f i i i l l
l

y c x k


                         (6.3.18) 

 

where ,f iy  is the thi  output sensor when a fault i  occurs and ic  is the thi  row of matrix C . 
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The fault estimation is thus given by: 
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           (6.3.19) 

 

where ( )iP k  is the variance of the fault estimation ˆ ( )i k  and ( )i k  is the gain of the algorithm  

at instant k. It should be noticed that if no fault tolerance mechanism is used, the output of the 
state observer would eventually converge to the sensor one resulting in a fault estimation 
approximately equal to 1 (no fault) even when a fault occurs in the system. However, the 
presence of the fault tolerance mechanism holds the two outputs at different values. 
The method explained here has proved to be able not only to estimate the fault magnitude, but 
also to isolate the fault (that is, to identify which sensor is faulty), taking into account that a fault 
in a sensor has been detected. 
 

6.3.7 – Application to TRMS 
 

The Twin Rotor MIMO System has 4 sensors, for measuring , , ,h h v v     respectively. When a 

fault occurs (denoted with 1 2 3 4, , ,     respectively), the fault identification/estimation approach 

is applied to discover which sensor is faulty and which is the corresponding magnitude. As each 
sensor corresponds to a state-space variable, equation (6.3.19) can be rewritten in a simplified 
way. For example, to estimate the magnitude of the fault in the h  sensor 1 , equation (6.3.19) 

reduces to: 
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           (6.3.20) 

 

The values provided from the fault estimation 1 2 3 4
ˆ ˆ ˆ ˆ, , ,     are used to apply the virtual sensor 

mechanism, so obtaining tolerance to the fault. In particular, if the faulty sensor is not 
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completely broken, the rank condition (6.3.2) satisfies and the virtual sensor reduces to a static 
block designed in a model matching way. On the other hand, if the faulty sensor is completely 
broken, the rank condition (6.3.2) is no longer satisfied, hence there is the need to activate the 
corresponding virtual sensor. 
In the first case (virtual sensor through model matching), equation (6.3.4) gives: 
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1 0 0 0ˆ

10 0 0ˆ

10 0 0ˆ
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 
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P                    (6.3.21) 

  

In the second case (virtual sensor through observer), the LPV virtual sensors (one for each 
sensor) are obtained by solving (6.3.16) where fC  is obtained from C  by eliminating the row 

corresponding to the faulty sensor. For example, if the sensor that measures the tail rotor angular 

speed h  breaks ( 1 0  ), the corresponding fC  is: 
 

 

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1
f

 
 

  
 
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C                      (6.3.22) 

 

In this case, as ˆ
i  converges to 0 without taking the exact value, a threshold is used to determine 

if it is the model matching or the observer that has to be applied. 
 

6.4 – Virtual sensors results 
 

6.4.1 – Sensor fault scenarios 
 

Different fault scenarios have been designed to test the effectiveness of the fault tolerance 
mechanism. In all the scenarios, the TRMS is asked to follow the angle references (5.3.12): 
 

 
0.5, 0.3 0 25

0.8, 0.5 25 50

ref ref
h v

ref ref
h v

if s t s

if s t s

 

 

    


   
              (6.4.1) 

 

The faults always occur at time 20t s . Fault scenarios differ in which sensor is faulty and 
which is its magnitude, as resumed in the following table: 
 

Scenario 1 2 3 4 5 6 7 8 
Faulty sensor 

h  h  h  h  v  v  v  v  

Fault magnitude 0.5 0 0.5 0 0.5 0 0.5 0 
Table 22 – Fault scenarios (virtual sensors) 

 

The forgetting factors in (6.3.19) have been chosen as 1 2 3 4( ) ( ) ( ) ( ) 0.99k k k k k        . 

The virtual sensor observers design parameters have been chosen as resumed in Table 23. 
 

6.4.2 – Simulation results 
 

Hereafter results obtained in simulation environment are presented. For each scenario four 
figures are shown. The first figure shows the fault and its estimation. The second figure shows 
the state variable that corresponds to the faulty sensor: the real value, the measured value (with 
fault) and the reconstructed value are compared. The third figure shows the response of the yaw 
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angle both when a fault tolerance mechanism is implemented and when there is not such a 
mechanism. Analogously, the fourth figure shows the response of the pitch angle with the same 
comparison. 
 

 
h  virtual sensor h  virtual sensor v  virtual sensor v  virtual sensor 

q  -0.9 -0.95 -0.7 0 

r  0.05 0.05 0.3 1 

minS  0.9 0.95 0.7 0 

maxS  0.95 1 1 1 

Table 23 – Virtual sensor observers design parameters 
 

To prove the convergence of the virtual sensor observer to the real state, when a fault appears the 
state of the virtual sensor is set to half the state of the nominal observer. This will not be done 
when the virtual sensor will be applied to the real TRMS, as the most intelligent choice for the 
virtual sensor initial condition is to set it at the nominal observer condition at the moment the 
fault appears. 
 

6.4.2.1 – Fault scenario 1 
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Fig. 66 – Fault scenario 1 (simulation): fault estimation 
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Fig. 67 – Fault scenario 1 (simulation): faulty output reconstruction 
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Fig. 68 – Fault scenario 1 (simulation): yaw angle response 
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Fig. 69 – Fault scenario 1 (simulation): pitch angle response 

 

6.4.2.2 – Fault scenario 2 
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Fig. 70 – Fault scenario 2 (simulation): fault estimation 
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Fig. 71 – Fault scenario 2 (simulation): faulty output reconstruction 
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Fig. 72 – Fault scenario 2 (simulation): yaw angle response 
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Fig. 73 – Fault scenario 2 (simulation): pitch angle response 
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6.4.2.3 – Fault scenario 3 
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Fig. 74 – Fault scenario 3 (simulation): fault estimation 
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Fig. 75 – Fault scenario 3 (simulation): faulty output reconstruction 
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Fig. 76 – Fault scenario 3 (simulation): yaw angle response 
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Fig. 77 – Fault scenario 3 (simulation): pitch angle response 

 

6.4.2.4 – Fault scenario 4 
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Fig. 78 – Fault scenario 4 (simulation): fault estimation 
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Fig. 79 – Fault scenario 4 (simulation): faulty output reconstruction 
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Fig. 80 – Fault scenario 4 (simulation): yaw angle response 
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Fig. 81 – Fault scenario 4 (simulation): pitch angle response 

 

6.4.2.5 – Fault scenario 5 
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Fig. 82 – Fault scenario 5 (simulation): fault estimation 
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Fig. 83 – Fault scenario 5 (simulation): faulty output reconstruction 
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Fig. 84 – Fault scenario 5 (simulation): yaw angle response 
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Fig. 85 – Fault scenario 5 (simulation): pitch angle response 
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6.4.2.6 – Fault scenario 6 
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Fig. 86 – Fault scenario 6 (simulation) – Fault estimation 
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Fig. 87 – Fault scenario 6 (simulation): faulty output reconstruction 
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Fig. 88 – Fault scenario 6 (simulation): yaw angle response 
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Fig. 89 - Fault scenario 6 (simulation): pitch angle response 
 

6.4.2.7 – Fault scenario 7 
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Fig. 90 – Fault scenario 7 (simulation): fault estimation 
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Fig. 91 – Fault scenario 7 (simulation): faulty output reconstruction 
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Fig. 92 – Fault scenario 7 (simulation): yaw angle response 
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Fig. 93 – Fault scenario 7 (simulation): pitch angle response 

 

6.4.2.8 – Fault scenario 8 
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Fig. 94 – Fault scenario 8 (simulation): fault estimation 
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Fig. 95 – Fault scenario 8 (simulation): faulty output reconstruction 
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Fig. 96 – Fault scenario 8 (simulation): yaw angle response 
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Fig. 97 – Fault scenario 8 (simulation): pitch angle response 
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6.4.3 – Practical results 
 

In this section, the results obtained with the real TRMS are presented. Analogously to the 
previous section “Simulation results”, four figures are shown for each scenario. When a fault 
occurs, the virtual sensor block is activated. It can behave either as a static block (that is the 
same of Model Matching), or as a dynamic observer. In the second case, the state of the virtual 
sensor must be initialized as soon as the fault appears. The most intelligent choice is to set its 
value to the same as the one of the nominal observer. 
 
 
 

6.4.3.1 – Fault scenario 1 
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Fig. 98 – Fault scenario 1 (real): fault estimation 
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Fig. 99 - Fault scenario 1 (real): faulty output reconstruction 
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Fig. 100 – Fault scenario 1 (real): yaw angle response 
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Fig. 101 – Fault scenario 1 (real): pitch angle response 

 

6.4.3.2 – Fault scenario 2 
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Fig. 102 – Fault scenario 2 (real): fault estimation 
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Fig. 103 – Fault scenario 2 (real): faulty output reconstruction 
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Fig. 104 – Fault scenario 2 (real): yaw angle response 
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Fig. 105 – Fault scenario 2 (real): pitch angle response 
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6.4.3.3 – Fault scenario 3 
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Fig. 106 – Fault scenario 3 (real): fault estimation 
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Fig. 107 – Fault scenario 3 (real): faulty output reconstruction 
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Fig. 108 – Fault scenario 3 (real): yaw angle response 
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Fig. 109 – Fault scenario 3 (real): pitch angle response 

 

6.4.3.4 – Fault scenario 4 
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Fig. 110 – Fault scenario 4 (real): fault estimation 
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Fig. 111 – Fault scenario 4 (real): faulty output reconstruction 
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Fig. 112 – Fault scenario 4 (real): yaw angle response 
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Fig. 113 – Fault scenario 4 (real): pitch angle response 

 

6.4.3.5 – Fault scenario 5 
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Fig. 114 – Fault scenario 5 (real): fault estimation 
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Fig. 115 – Fault scenario 5 (real): faulty output reconstruction 
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Fig. 116 – Fault scenario 5 (real): yaw angle response 
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Fig. 117 – Fault scenario 5 (real): pitch angle response 
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6.4.3.6 – Fault scenario 6 
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Fig. 118 – Fault scenario 6 (real): fault estimation 
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Fig. 119 – Fault scenario 6 (real): faulty output reconstruction 
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Fig. 120 – Fault scenario 6 (real): yaw angle response 
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Fig. 121 – Fault scenario 6 (real): pitch angle response 

 
 

6.4.3.7 – Fault scenario 7 
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Fig. 122 – Fault scenario 7 (real): fault estimation 
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Fig. 123 – Fault scenario 7 (real): faulty output reconstruction 
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Fig. 124 – Fault scenario 7 (real): yaw angle response 
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Fig. 125 – Fault scenario 7 (real): pitch angle response 

 

6.4.3.8 – Fault scenario 8 
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Fig. 126 – Fault scenario 8 (real): fault estimation 
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Fig. 127 – Fault scenario 8 (real): faulty output reconstruction 
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Fig. 128 – Fault scenario 8 (real): yaw angle response 
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Fig. 129 – Fault scenario 8 (real): pitch angle response 
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6.4.4 – Comments 
 

The fault identification/estimation strategy proved to work efficiently both in the simulation 
environment (e.g. Fig. 66) and when applied to the real system (e.g. Fig. 98). 
The virtual sensor strategy for Fault Tolerant Control showed to improve the performance of the 
control system in all cases when applied in a simulation environment. When the sensor was not 
completely broken, the goodness of the faulty output reconstruction depended on the fault 
estimation result. Sometimes the reconstruction was almost perfect, as in scenario 1 (partial fault 
in h  sensor, Fig. 67); sometimes it was not, as in scenario 3 (partial fault in h  sensor, Fig. 75), 

and this led to a small offset between the real output of the plant and the corresponding virtual 
sensor output. When the sensor was completely broken, the performance of the control system 
depended on the convergence of the virtual sensor observer to the real state. It proved to 
converge in all cases, as it was supposed to be because the system is observable also when 3 
sensors are used instead of 4. Moreover, the presence of the FTC strategy avoided the loss of 
stability due to the loss of some sensor outputs, as in scenario 4, 5 and 6, where instability 
occurred (e.g. Fig. 80 and Fig. 81). This proved that, as long as the system is observable and the 
model is considered to match perfectly the behaviour of the real plant, the FTC strategy gives 
very good performances. 
The virtual sensor strategy proved to work quite efficiently also when applied to the real system. 
However, a big loss of performances in scenario 4 was noticed (Fig. 80), even though it was not 
so big as when no fault tolerance mechanism was implemented, leading the system to instability. 
This loss of performance was due to the biggest limit of virtual sensor strategy, that is the fact of 
being an FTC strategy based on the model of the system. In presence of strong differences 
between the real behaviour of the TRMS and the model behaviour, an offset appeared between 
the desired angle and the real one, as the one to be controlled was not the real angle but the 
virtual sensor angle. Such a difference could be reduced through a better identification of the 
model parameters, even though it has been noticed that some of the parameters are strongly time-
varying (e.g. the constants , , ,chp chn cvp cvnk k k k  that take into account dynamical effects due to the 

cables and that influence the steady-state gain of the system). 
 

6.5 – Virtual actuators 
 

This section describes a solution to the reconfiguration problem for actuator failures by 
introducing the notion of virtual actuators, that are the dual systems of virtual sensors. 
The system under consideration is described by the state-space model: 
 

 

 

0

( 1) ( ) ( ) ( )

( ) ( )

(0)

f f f f

f f

f f

k k k k

k k

   







x A ψ x B u

y Cx

x x

                (6.5.1) 

 

where the actuator failure is reflected by the matrix fB . 

If the condition    Im Imf B B  is satisfied, where Im denotes the image of a matrix, exact 

model-matching can be reached. The condition can be written in an equivalent form as: 
 

    f frank rankB B B                     (6.5.2) 
 

If condition (6.5.2) is satisfied, the reconfigured controller is given by a static reconfiguration 
block: 
 

 ( ) ( )ck ku Nu                         (6.5.3) 
 

where: 
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  
1T T

f f f f

 N B B B B B B                     (6.5.4) 
 

Notice that by choosing N  as in (6.5.4), f B N B . 

However, the general case is when the condition (6.5.2) is violated. 
 

6.5.1 – Definition of the virtual actuator 
 

Consider the faulty plant (6.5.1). The virtual actuator is defined as the system: 
 

 

 

 

0

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

(0)

v v v v c

f v v v c

c v f

v v

k k k k

k k k k

k k k

   


 


 
 

x A ψ x B u

u C ψ x D u

y Cx y

x x

                (6.5.5) 

 

with the state n
v x   and matrices: 

 

      ( ) ( ) ( )v f vk k k A ψ A ψ B M ψ                  (6.5.6) 
 

 v f v B B B N                         (6.5.7) 
 

    ( ) ( )v vk kC ψ M ψ                      (6.5.8) 
 

 v vD N                            (6.5.9) 
 

vM  and vN  denote matrices that can be freely chosen. Notice that vM  is scheduled by the 

vector of varying parameters ( )kψ . 
 

 
Fig. 130 – Virtual actuator scheme 
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6.5.2 – Model of the reconfigured plant 
 

The plant together with the virtual actuator leads to the following model of the reconfigured 
plant: 
 

 

 

( 1) ( ( )) ( ( )) ( )

( 1) ( ( )) ( ( )) ( ) ( )

ˆ ˆ( 1) ( ( )) ( ( )) ( ( )) ( ( )) ( )

( )

( ) ( )

ˆ( )

f f v f f v

v f v v f v c

f

c v

k k k k

k k k k k

k k k k k k

k

k k

k

      
                
               

 
   
 
 

x A ψ B M ψ 0 x B N

x 0 A ψ B M ψ 0 x B B N u

x L ψ C L ψ C A ψ L ψ C x B

x

y C C 0 x

x











(6.5.10) 

 

The introduction of the new state ( ) ( ) ( )w f vk k k x x x  leads to the following equivalent model: 
 

 

( 1) ( ( )) ( )

( 1) ( ( )) ( ( )) ( ) ( )

ˆ ˆ( 1) ( ( )) ( ( )) ( ( )) ( )

( )

( ) ( )

ˆ ( )

w w

v f v v f v c

w

c v

k k k

k k k k k

k k k k k

k

k k

k

       
                
               
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x A ψ 0 0 x B

x 0 A ψ B M ψ 0 x B B N u

x L ψ C 0 A ψ L ψ C x B

x

y C 0 0 x

x

(6.5.11) 

 

Note that the state ( )v kx  of the second subsystem is not observable by cy . Hence, this state does 

not influence the input-output behaviour of the reconfigured plant, whose model can be reduced 
to: 
 

 
( 1) ( ( )) ( ) ( )

( ) ( )

c

c

k k k k

k k
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



x A ψ x Bu

y Cx
                  (6.5.12) 

 

The model has the same input-output behaviour as the nominal plant for arbitrary parameter 
matrices vM  and vN . Hence, the virtual actuator yields to a reconfigured plant that satisfies the 

fault-hiding goal. 
 

6.5.3 – Separation principle for the virtual actuator 
 

The reconfigured closed-loop system consists of the reconfigured plant and the controller (6.2.2). 
If the transformed model is used, the reconfigured closed-loop system is described by: 
 

( 1) ( ( )) ( ( )) ( )

( 1) ( ( )) ( ( )) ( ) ( ( )) ( )

ˆ ˆ( 1) ( ( )) ( ( )) ( ( )) ( ( )) ( )

( ( ))

( ) ( ( ))

( ( ))

w w

v f v f v v

f v re

k k k k

k k k k k

k k k k k k

k

k

k

    
    

       
           

 
 

   
  

x A ψ 0 BK ψ x

x 0 A ψ B M ψ B B N K ψ x

x L ψ C 0 A ψ L ψ C BK ψ x

BK ψ

B B N K ψ x

BK ψ

( ) ( )f f v ffk k

 
 

  
 
 

B

B B N u

B

  (6.5.13) 

 

The autonomous closed-loop behaviour can be analysed by imposing 0ff u  and 0ref x , thus 

(6.5.13) simplifies to: 
 

( 1) ( ( )) ( ( )) ( )

( 1) ( ( )) ( ( )) ( ) ( ( )) ( )

ˆ ˆ( 1) ( ( )) ( ( )) ( ( )) ( ( )) ( )

w w

v f v f v v

k k k k

k k k k k

k k k k k k

    
    

       
           

x A ψ 0 BK ψ x

x 0 A ψ B M ψ B B N K ψ x

x L ψ C 0 A ψ L ψ C BK ψ x

(6.5.14) 

 

A state transformation is performed in order to introduce the observation error 
ˆ ˆ( ) ( ) ( )wk k k e x x : 
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( 1) ( ( )) ( ( )) ( ( )) ( )

( 1) ( ) ( ( )) ( ( )) ( ( )) ( ) ( ( )) ( )

ˆ ˆ( 1) ( ( )) ( ( )) ( )

w w

v f v f v f v v

k k k k k

k k k k k k

k k k k

     
            
         

x A ψ BK ψ 0 BK ψ x

x B B N K ψ A ψ B M ψ B B N K ψ x

e 0 0 A ψ L ψ C e

(6.5.15) 

 

Looking at this model, the separation principle can be applied: the matrix  ( )kK ψ  influences 

the behaviour of the state ( )w kx  through the submatrix    ( ) ( )k kA ψ BK ψ  (nominal 

controller).  ( )v kM ψ  affects the behaviour of the virtual actuator state ( )v kx  through the 

submatrix    ( ) ( )f vk kA ψ B M ψ  (LPV virtual actuator). Finally, the observer error ˆ( )ke  is 

affected by the matrix  ( )kL ψ  through the submatrix    ( ) ( )k kA ψ L ψ C  (LPV state 

observer). 
The set   of the reconfigured closed-loop system (6.5.15) consists of the set of eigenvalues of 
the nominal closed-loop system (6.2.4) plus the set of eigenvalues of the virtual actuator (6.5.5) 
and the set of eigenvalues of the LPV observer (6.2.3): 
 

      f v        A BK A B M A LC  
 

Thus, the closed loop LPV controller, the LPV virtual actuator and the LPV state observer can be 
designed independently. This is true for arbitrary matrices vM  and vN  of the virtual actuator. 

Clearly, the matrix vM  has to be chosen so that the matrix f vA B M  has eigenvalues with 

negative real parts in order to ensure the stability of the reconfigured closed-loop system. This 

can be done if and only if the pair  , fA B  is stabilizable. 

The matrices vM  and vN  can be chosen in such a way that the difference between the behaviour 

of the nominal and the reconfigured closed-loop system is minimized. A complete 
reconfiguration is possible if the matrix vN  can be chosen such that the matrix vB  vanishes. This 

is the case when the virtual actuator reduces to the static reconfiguration block. If this is not true, 
the static reconfiguration block does not solve the reconfiguration problem, and the dynamical 
part of the virtual actuator becomes active. The generalised virtual actuator permits reducing the 

effect of the virtual actuator if the matrix vB  can be made very small by choosing the matrix vN  

appropriately. 
 

6.5.4 – Polytopic LPV Virtual Actuator 
 

The LPV virtual actuator (6.5.5) can be defined in a polytopic way as: 
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       (6.5.16) 

 

The matrices ,
u xn n

v j
M   are the gains of the LPV virtual actuator defined for each thj  model. 

 

6.5.5 – LPV Virtual Actuator Design 
 

Resuming, the design of the LPV virtual actuator implies selecting: 

 matrices jK  of (5.1.5) in order to guarantee closed-loop stability of the original system 

assuming that the pair  ( ( )),kA ψ B  is stabilizable for all ψ Ψ ; 
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 matrices ,v jM  of (6.5.16) assuming that the pair  ( ( )), fkA ψ B  is stabilizable for all 

ψ Ψ ; 

 matrices jL  of (5.1.7) in order to correct the LPV state observer error of the reconfigured 

system assuming that the pair  ( ( )),kA ψ C  is detectable for all ψ Ψ ; 

 matrix vN  such that f vB B N  assuming that the rank condition (6.5.2) is satisfied. 

The design of the LPV virtual actuator is done by applying LMI techniques described in Chapter 
2 to place the poles in a desired region of the complex plane. Thus, equation (2.3.13) becomes: 
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(6.5.17) 

 

Finally, the vertices of the virtual actuator gains are then obtained as: 
 

 1
,v j j

M Γ X                          (6.5.18) 
 

 

6.5.6 – Fault isolation and estimation for the TRMS actuators 
 

Hereafter, the procedure to isolate and estimate the multiplicative actuator faults is explained. 
We suppose having at disposal a Fault Detection device. This means that, as soon as a fault 
appears in the system, the Fault Detection device is able to detect that there is a fault, and the 
procedure for fault isolation and estimation is started. 
This procedure is based on the fact that, in presence of a fault in an actuator, there appears a 
difference between the behaviour of the real actuator and the behaviour of its model. Such a 
difference can be used to estimate the magnitude of the fault through a parameter estimation 
approach. 
The approach to be used is the so-called “Recursive Least Square method” with a forgetting 
factor ( )k  [Ljung, 1987]. 

The model behaviour of the actuator is assumed to be described by the following LPV discrete-
time equation: 
 

  ( 1) ( ) ( ) ( )sim sim simk a k k bu k                     (6.5.19) 
 

where a  is given by (3.3.4) for the tail rotor and (3.3.11) for the main rotor and b  is given by 
(3.3.17) for the tail rotor and (3.3.19) for the main rotor, respectively. 
The faulty behaviour of the actuator is assumed to be described by (   is the fault magnitude): 
 

  ( 1) ( ) ( ) ( )fault fault faultk a k k bu k                     (6.5.20) 
 

The assumptions ( 1) ( )sim simk k    and ( 1) ( )fault faultk k    lead to: 
 

   ( ) 1 ( ) ( )sim simk a k bu k                      (6.5.21) 
 

   ( ) 1 ( ) ( )fault faultk a k bu k                     (6.5.22) 

Thus, the regression equation can be written as: 
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The fault estimation is thus given by: 
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        (6.5.24) 

 

where ( )iP k  is the variance of the fault estimation ˆ ( )i k  and ( )i k  is the gain of the algorithm  

at instant k. The Twin Rotor MIMO System has 2 actuators, that directly affect the dynamics of 

h  and v  respectively, through the input voltages hu  and vu . When a fault occurs (denoted by 

1  and 2 , respectively), the fault isolation/estimation approach is applied to discover which 

actuator is faulty and which is the corresponding magnitude. The values provided from the fault 

estimation 1̂  and 2̂  are used to apply the virtual actuator mechanism, thus obtaining fault 

tolerance. It has been noticed that a complete loss of an actuator leads the system to the loss of 
the stabilizability property; hence, a fault tolerance approach for faults in the actuators of the 
TRMS is possible only as long as the fault is partial. In this case, the rank condition (6.5.2) is 
satisfied and the virtual actuator reduces to a static block designed in a model-matching way. 
In this case, equation (6.5.4) gives: 
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6.6 – Virtual actuator results 
 

6.6.1 – Actuator fault scenarios 
 

Different fault scenarios have been designed to test the effectiveness of the fault tolerance 
mechanism. In all the scenarios, the TRMS is asked to follow the angle references (5.3.12): 
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ref ref
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h v
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 

    


   
              (6.6.1) 

 

Faults always occur at time 20t s . Fault scenarios differ in which actuator is faulty and which 
is its magnitude, as resumed in the following table: 
 

Scenario 9 10 
Faulty actuator 

hu  vu  

Fault magnitude 0.5 0.5 
Fig. 131 – Fault scenarios (virtual actuators) 

 

The forgetting factors in (6.5.24) have been chosen as 1 2( ) ( ) 0.9k k k    .  
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6.6.2 – Simulation results 
 

Hereafter, the results obtained in simulation environment are presented. For each scenario four 
figures are shown. The first figure shows the fault and its estimation. The second figure shows 
the system input variable that corresponds to the faulty actuator: the output of the nominal 
controller, the faulty value and the virtual actuator value are compared (the desired behaviour is 
when the output of the nominal controller and the virtual actuator value are the same). The third 
figure shows the response of the yaw angle both when a fault tolerance mechanism is 
implemented and when there is not such a mechanism. Analogously, the fourth figure shows the 
response of the pitch angle with the same comparison. 
 

6.6.2.1 – Fault scenario 9 
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Fig. 132 – Fault scenario 9 (simulation): fault estimation 
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Fig. 133 – Fault scenario 9 (simulation): faulty input reconstruction 
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Fig. 134 – Fault scenario 9 (simulation): yaw angle response 
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Fig. 135 – Fault scenario 9 (simulation): pitch angle response 

 

6.6.2.2 – Fault scenario 10 
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Fig. 136 – Fault scenario 10 (simulation): fault estimation 
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Fig. 137 – Fault scenario 10 (simulation): faulty input reconstruction 
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Fig. 138 – Fault scenario 10 (simulation): yaw angle response 
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Fig. 139 – Fault scenario 10 (simulation): pitch angle response 
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6.6.3 – Practical results 
 

In this section, the results obtained with the real TRMS are presented. Analogously to the 
previous section “Simulation results”, four figures are shown for each scenario. When a fault 
occurs, the virtual actuator static block is activated. 
 
 

6.6.3.1 – Fault scenario 9 
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Fig. 140 – Fault scenario 9 (real): fault estimation 
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Fig. 141 – Fault scenario 9 (real): faulty input reconstruction 
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Fig. 142 – Fault scenario 9 (real): yaw angle response 
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Fig. 143 – Fault scenario 9 (real): pitch angle response 

 

6.6.3.2 – Fault scenario 10 
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Fig. 144 – Fault scenario 10 (real): fault estimation 
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Fig. 145 – Fault scenario 10 (real): faulty input reconstruction 
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Fig. 146 – Fault scenario 10 (real): yaw angle response 
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Fig. 147 – Fault scenario 10 (real): pitch angle response 
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6.4.4 – Comments 
 

The fault isolation/estimation strategy proved to work efficiently both in simulation environment 
(Fig. 132 and Fig. 136) and when applied to the real system (Fig. 140 and Fig. 144). 
A gain fault in the tail actuator showed not to be critical for the control performance in both 
cases. However, in simulation, the fault occurrence made the control model to differ from the 
controlled one, and this caused the appearance of a steady-state error that was eliminated by the 
fault tolerance mechanism (Fig. 134). 
A gain fault in the main actuator showed to cause a big loss of performance in the control 
system, which demonstrated not to be able to control the system at the desired yaw and pitch 
angles as long as no fault tolerance mechanism was implemented. The virtual actuator strategy 
proved to work efficiently both in simulation environment (Fig. 138 and Fig. 139) and when 
applied to the real system (Fig. 146 and Fig. 147). 
 

6.7 – Summary 
 

In this chapter a Fault Tolerant LPV virtual sensor and actuator approach for non-linear systems 
that can be approximated by an LPV model has been proposed. This FTC method adapts the 
faulty plant to the nominal LPV controller instead of adapting the LPV controller to the faulty 
plant. In this way, the faulty plant together with the LPV virtual sensor or actuator block allows 
the LPV controller to see the same plant as before the fault. The LPV virtual sensor and the LPV 
virtual actuator are designed using polytopic LPV techniques and LMI regions. 
Virtual sensors and virtual actuators belong to the so-called Active FTC methods. In order to 
apply this kind of methods, fault detection, isolation and estimation are needed. Assuming that 
the fault had already been detected, a procedure for isolating which sensor/actuator is faulty and 
for estimating the magnitude of the fault has been proposed. Such a method is based on recursive 
least squares, as the fault is considered to be a parameter that needs to be estimated. 
The fault isolation and estimation method and the virtual sensor and virtual actuator strategy 
have been tested both in a simulation framework and by applying them to the real system. 
The proposed methodology showed to work well in most cases, even though there appeared 
limits due to modelling imperfections and to the characteristics of the TRMS system.  
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7 – CONCLUSIONS AND FUTURE WORKS 
 

7.1 – Conclusions 
 

The main idea behind this thesis was the design of a control with fault tolerance mechanisms for 
non-linear systems that can be represented as LPV models, with application to a Twin Rotor 
MIMO System (TRMS). To reach this aim, an LPV model was obtained and identified with real 
data. 
The conclusions that have been extracted in this thesis are the following: 
 

 Modelling non-linear MIMO systems in an LPV fashion is an efficient approach that 
permits the use of linear methodologies for designing a controller and an observer, taking 
into account both coupling and non-linear effects; 

 Least-squares methods proved to be a simple and anyway good strategy for identifying 
the parameters of a non-linear model through comparison of the output of a non-linear 
simulator with data coming from the real system; 

 The proposed control strategy has shown its effectiveness and performance both to drive 
the system to the desired yaw and pitch angles from the equilibrium and when an external 
disturbance was applied. Different LPV models were used and the one that gave the best 
performances was the Absolute LPV model with 6 states. In addition, the LPV controller 
showed better performances when compared with a PID controller tuned through Ziegler-
Nichols empirical methods; 

 The proposed fault tolerance mechanisms worked well in simulation, even though they 
showed their limits when applied to the real system. In particular, as the proposed fault 
tolerance mechanisms are based on the model of the plant, the model should fit the reality 
as well as possible. Moreover, the virtual actuator strategy could not be applied when one 
of the TRMS actuators was completely broken. This suggests that the proposed strategy 
would give better performances if applied to systems where there is a strong redundancy 
of both sensors and actuators. 

 

7.2 – Future works 
 

To continue the research proposed in this thesis, some ideas are outlined below: 
 

 Some improvements in the control performances could be obtained through a better 
modelling of the TRMS. Some effects were not considered in the non-linear model used 
in this thesis, and including them could lead to better performances, even though this 
would make more difficult the identification procedure, as the number of parameters to 
be estimated would increase; 

 The TRMS showed a time-varying behaviour; in particular, there were some parameters 
of the model (e.g. those related with the cable effects) whose value could vary strongly. 
This would suggest adding an adaptive mechanism to the control. For example, the LPV 
box could be calculated by assuming that those parameters take values in an interval, and 
the aim of the adaptive mechanism would be to estimate online the parameters values and 
use them both for LPV scheduling and for calculating the feedforward control action. 
Alternatively, robustness could be added offline to the control, by extending robust 
control methods to LPV systems; 

 The approach used for obtaining a polytopic LPV model was the bounding box; wrapping 
the varying parameters into a box is a conservative approach that leads to considering 
combinations of parameters that would never appear; hence, a convex hull approach 
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could lead to a less conservative model that better fits the reality, thus increasing the 
control performances; 

 The region where to place the poles of the closed-loop system and of the observer could 
be chosen through optimum control techniques. Moreover, the presence of the saturation 
in the control loop can be taken into account to choose properly the LMI regions; 

 In this thesis it has been assumed that fault detection was already available, and only a 
fault isolation and estimation method was developed. A fault detection mechanism 
should be developed and integrated to the overall scheme; 

 The developed fault isolation and estimation method proved to be sufficient to identify 
where a fault occurred and which was the magnitude of the fault; however, no robustness 
guarantee has been given and more complex strategies could be investigated to assure a 
robust fault diagnosis (these strategies could implicitly include fault detection); 

 The applied fault tolerance strategies showed limits in their application to the TRMS 
because of the scarcity of sensors and actuators in the chosen case of study: virtual sensor 
and virtual actuators could lead to better performances when applied to systems where a 
strong redundance of sensors and actuators is available. It would be of interest to apply 
these techniques to systems that are similar to the TRMS, but that have the advantage of 
having at disposal more sensors or actuators (e.g. the quadrotor, an aircraft propelled by 
four rotors; in this case, a complete fault in one of the rotors would presumably not lead 
to the loss of stabilizability, and the dynamical part of the virtual actuator could be used). 
Another interesting application could be a distributed system, where lots of sensors and 
actuators are available (e.g. a water supply network). 
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APPENDIX A – TABLES OF TRMS QUANTITIES 
 

TABLE OF DC MOTOR QUANTITIES AND PARAMETERS 
 

Symbol Description Unit 

ai  Armature current of a DC motor A 

ahi  Armature current of tail DC motor A 

avi  Armature current of main DC motor A 

aR  Armature resistance of a DC motor   

ahR  Armature resistance of tail DC motor   

avR  Armature resistance of main DC motor   

aL  Armature inductance of a DC motor H 

ahL  Armature inductance of tail DC motor H 

avL  Armature inductance of main DC motor H 

ak  Motor constant of a DC motor  

ahk  Motor constant of tail DC motor  

avk  Motor constant of main DC motor  

h  Angular speed of tail rotor V 

v  Angular speed of main rotor V 

1k  Positive constant of tail motor  

2k  Positive constant of main motor  

hu  Horizontal voltage control input V 

vu  Vertical voltage control input V 

trB  Viscous friction coefficient of the tail DC motor 1  

mrB  Viscous friction coefficient of the main DC motor 1  

/thp nk  Drag friction coefficients of the tail DC motor 1 1V    

/tvp nk  Drag friction coefficients of the main DC motor 1 1V    
 

TABLE OF LENGTHS AND MASSES OF THE TRMS 
 

Symbol Description Unit 

tl  Length of the tail part of the beam m 

ml  Length of the main part of the beam m 

bl  Length of the counterweight beam m 

cbl  Distance between the counterweight and the joint m 

tm  Mass of the tail part of the beam kg 

trm  Mass of the tail DC motor kg 

tsm  Mass of the tail shield kg 

mm  Mass of the main part of the beam kg 

mrm  Mass of the main DC motor kg 

msm  Mass of the main shield kg 
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bm  Mass of the counterweight beam kg 

cbm  Mass of the counterweight kg 

msr  Radius of the main shield m 

tsr  Radius of the tail shield m 

g Gravitational acceleration 2/m s  
 

TABLE OF THE QUANTITIES OF THE TRMS MECHANICS AND AERODYNAMICS 
 

Symbol Description Unit 

trJ  Moment of inertia in the tail DC motor F 

mrJ  Moment of inertia in the main DC motor F 

hJ  Horizontal moment of inertia 2kg m  

vJ  Vertical moment of inertia 2kg m  

fvpk  Positive constant 2 2kg m s V   

fvnk  Positive constant 2 2kg m s V   

fhpk  Positive constant 2 2kg m s V   

fhnk  Positive constant 2 2kg m s V   

chpk  Positive constant 2 2kg m s  

chnk  Positive constant 2 2kg m s  

ohk  Viscous friction coefficient, positive constant 2 1kg m s  

ovk  Viscous friction coefficient, positive constant 2 1kg m s  

mk  Positive constant 2 1 1kg m s V   

tk  Positive constant 2 1 1kg m s V   

gk  Gyroscopic constant m s 

g  Gravitational torque Nm 

c  Centripetal torque Nm 

,f v  Friction torque from bearings, etc. in vertical plane Nm 

v  Angular position of the TRMS in the vertical plane rad 

h  Angular position of the TRMS in the horizontal plane rad 

v  Angular velocity of the TRMS in the vertical plane rad/s 

h  Angular velocity of the TRMS in the horizontal plane rad/s 

1f  Drag friction non-linear function of the tail propeller  

2f  Non-linear function of the aerodynamic force from the tail rotor N 

3f  Torque of the flat cable force Nm 

4f  Drag friction non-linear function of the main propeller  

5f  Non-linear function of the aerodynamic force from the main rotor N 

 



 145 

 

APPENDIX B – LINEAR MATRIX INEQUALITIES 
 

MATRIX INEQUALITIES 
 

A square matrix X  is Hermitian if TX X . Let F  be a Hermitian matrix and nh  , the 
quadratic form is defined as: 
 

 
2 H

F
h h Fh                          (7.1.1) 

 

F  is said to be positive semidefinite if: 
 

 
2

0
F

 h h                          (7.1.2) 
 

and F  is said to be positive definite if: 
 

 
2 2

0 :
F

    h h h                      (7.1.3) 
 

Negative semidefinite and negative definite matrices are defined similarly. 

Now let F  be a hermitian matrix function of a vector of decision variables x .   0F x  is called 

a matrix inequality in x . The feasibility set of a matrix inequality is defined as: 
 

   : 0feas X x F x                       (7.1.4) 
 

and the matrix inequality is said to be feasible if feasX  is non-empty. 

Matrix inequalities arise in many control analysis and synthesis problems. There is no general 
way to solve them, except when F  depends affinely on x . In this case, the affine matrix 
inequlity can be solved with convex methods and it is called a Linear Matrix Inequality (LMI) 
and fast and efficient numerical solvers are available. If a problem can be cast as a finite-
dimensional LMI it can therefore be considered practically solved. 
 

THE YALMIP TOOLBOX 
 

YALMIP is a modelling language for advanced modelling and solution of convex and 
nonconvex optimization problems. It is implemented as a free toolbox for MATLAB. The 
language is consistent with standard MATLAB syntax, thus making it extremely simple to use 
for anyone familiar with the Mathworks software. It implements a large amount of modelling 
tricks, allowing the user to concentrate on the high-level model, while YALMIP takes care of the 
low-level modelling. 
The modelling language supports a large number of optimization classes, such as linear, 
quadratic, second order cone, semidefinite, mixed integer conic, geometric, local and global 
polynomial, multiparametric, bilevel and robust programming. 
One of the central ideas in YALMIP is to concentrate on the language and the higher level 
algorithms, while relying on external solvers for the actual computations. However, YALMIP 
also implements internal algorithms for global optimization, mixed integer programming, 
multiparametric programming, sum-of-squares programming and robust optimization. 
 

A YALMIP EXAMPLE: SEMIDEFINITE PROGRAMMING 
 

This example illustrates the definition and solution of a simple semidefinite programming 
problem. 
Given a linear dynamic system x Ax , the goal is to prove stability by finding a symmetric 
matrix P  satisfying: 
 

 
0

0T




 

P

A P PA
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At first, a stable matrix A  and symmetric matrix P  have to be defined (square matrices are 
symmetric by default): 
 

A = [-1 2 0 ; -3 -4 1 ; 0 0 -2]; 
P = sdpvar(3,3); 
 

Later, the constraints must be defined: 
 

F = [P >= 0, A’*P+P*A <= 0]; 
 

To avoid the zero solution or an unbounded solution, the trace of the matrix is constrained: 
 

F = [F, trace(P) == 1]; 
 

At this point, the problem can be solved. A feasible solution is needed, so one argument is 
sufficient when solvesdp is called to solve the problem: 
 

solvesdp(F); 
Pfeasible = double(P); 
 
 
 

For more informations about YALMIP, check http://users.isy.liu.se/johanl/yalmip/ 
 
 


