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Introduction

The aim of this work is to give a concise introduction to the Weinstein
conjecture and to analyze a proof of the conjecture in a particular case.
The Weinstein conjecture is a meeting point between two important �elds
of mathematics: dynamical systems and contact-symplectic geometry. On a
closed compact odd-dimensional manifold Σ, endowed with a contact 1-form
α, it is well-de�ned a nowhere vanishing vector �eld Rα, called the Reeb
vector �eld of α. The Weinstein conjecture claims that Rα has a periodic
solution.

As regard the dynamical point of view, when Σ = S3 we can interpret
this statement as a particular case of the Seifert conjecture, which asserts
that every nowhere vanishing smooth vector �eld on S3 has a periodic orbit.
The Seifert conjecture was disproven in 1994 by K. Kuperberg, who showed
that nowhere vanishing vector �elds without periodic orbits do exist on any
compact closed odd-dimensional manifold.

If we restrict the class of vector �eld a little more, entering in the realm
of symplectic geometry, we come to the Hamiltonian vector �eld. Suppose
that Σ can be embedded in a symplectic manifold (M,ω) and that there
exists a function H : M → R, such that Σ = H−1(0) (i.e. Σ is the 0 energy
level) and 0 is a regular value for H. Then the Hamiltonian vector �eld XH

onM associated to H, resticts to a nowhere vanishing vector �eld on Σ. The
corresponding existence conjecture for vector �elds of this kind is called the
Hamiltonian Seifert conjecture and was disproved in 1999 by Herman when
the dimension of M is strictly bigger than 4.

On the other hand, positive results under additional hypotheses were
known from the end of the Seventies. In 1978 Alan Weinstein proved that
if the energy level Σ is the boundary of a convex domain in R2n, then it
carries periodic orbits. In the same year Rabinowitz generalized this the-
orem proving that it is su�cient to suppose that Σ is the boundary of a
star-shaped domain. These achievements deeply impressed the mathemati-
cians who worked on Hamiltonian dynamics. Many thought that these theo-
rems could prelude to further developments. However, as Weinstein himself
pointed out, the hypotheses used to prove the existence of periodic orbits
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were not satisfactory. The dynamics of a Hamiltonian system in a symplectic
manifold is invariant under di�eomorphisms which preserve the symplectic
structure, hence the notion of having a periodic orbit is invariant under the
action of this group. On the contrary both the convexity and the star-like
assumptions are not invariant. Weinstein introduced in 1979 a property that
on the one hand could generalized the star-shaped hypothesis and on the
other hand were well-de�ned in an abstract symplectic context. This is the
notion of hypersurfaces of contact type, that allowed Weinstein to state his
famous conjecture:

(Original Weinstein Conjecture). Let (M,ω) be a symplectic manifold
and H : M → R a smooth function. Suppose that 0 is regular value for H
and Σ := H−1(0) a hypersurface of contact type, with H1(Σ,R) = 0. Then
the Hamiltonian �eld on Σ carries a periodic orbit.

Nowadays the homological hypothesis has been abandoned since reputed
unnecessary and the problem has been reformulated within a genuine con-
tact geometric framework in the following way:

(Weinstein Conjecture). Let Σ be a compact closed manifold endowed with
a contact form α. manifold. The Reeb vector �eld of α carries a periodic
orbit.

The conjecture in this generality is still open. In this thesis we are going
to prove only a particular case.

Main Theorem. Every compact hypersurface, which is restricted contact
type and displaceable in an exact and convex at in�nity symplectic manifold
carries a closed Reeb orbit.

For the convenience of the reader we include here a short summary of
the content of each chapter.

In the �rst chapter we give an introduction to basic notions in contact
and symplectic geometry and describe some concrete and important exam-
ples, where the conjecture is mainly studied: Stein manifold and the particle
in a magnetic �eld are the two most relevant instances.

In Chapter 2, we give an account of the approaches to the proof, which
have been developed so far. In particular we dwell on methods based on a
theorem of existence on almost every energy level, due to Hofer and Zehnder.
The interest to this technique relies on the fact that the hypotheses at the
ground can be compared to those of the Main THeorem introduced above.

The proof of the Main Theorem itself is developed from Chapter 3 to 6.
In chapter 3 we de�ne A, the Hamiltonian action functional on E0, the

space of loops with values in M and with arbitrary period. A was exploited
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by Rabinowitz in the proof of his already mentioned theorem. It is interesting
for the following reason: its nontrivial critical points are the periodic orbits
we seek. In order to study the critical set we consider the spaceM, composed
by paths w from R to E0, solving a gradient-like equation

dw

ds
= −∇A(w), (∗)

and satisfying particular boundedness conditions for the derivative and with
a prescribed behaviour at in�nity. Expliciting (∗) we �nd that it is an order
0 perturbation of the equation of J-holomorphic curves from the cylinder
T× R in M :

∂su+ Ju∂tu = 0,

where J is an almost complex structure on M , compatible with ω. This
partial derivative equation has been studied for the �rst time in 1985 by
Gromov and its properties are essential throughout the proof.

In the fourth chapter we endowM with the C∞loc-topology and show that
the topological space we get is sequentially relatively compact. The
calculations needed to arrive to this result are a generalization of those used
by Cieliebak and Frauenfelder in 2009 for the de�nition of the Rabinowitz
Floer Homology of an hypersurface. However, our proof is direct and does
not require the construction of such homology, which relies on cumbersome
transversality arguments.

In Chapter 5 we investigate the asymptotic propertis of elements inM.
Morse-Bott theory turns out to be applicable in this case.

Finally in chapter 6 we use Fredholm Theory to show thatM is not a
C∞loc-closed space. Putting together the results from the preceding chapters,
we arrive to the existence of a limit point ŵ not belonging toM. Analyzing
the behavior at in�nity of the function ŵ, we succeed in �nding a periodic
orbit and thus in proving the Main Theorem.
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Chapter 1

Preliminaries

This chapter aims to construct the language and the environment needed
to understand the conjecture in its full generality. Therefore we begin with an
introduction to the basic de�nitions and guiding examples from symplectic
and contact geometry.

1.1 An introduction to symplectic geometry

The Hamiltonian formulation of the dynamics' problem was a fruitful
approach in the study of classic physical systems. It is enough to mention
here KAM theory (`50 -`60) which has become the cornerstone of the theory
of perturbation. Symplectic geometry was born to give a coordinate-free
description of the Hamilton equation when the phase space is an abstract
manifold and not only a domain in an Euclidean space.

Within this chapter all the objects belong to the smooth category.

De�nition 1.1.1. A symplectic manifold is a couple (M,ω) where M is
a manifold and ω is a closed 2-form on M which is nondegenerate, i.e. the
following implication holds ∀z ∈M :

∃v ∈ TzM, ∀u ∈ TzM ωz(u, v) = 0 ⇒ v = 0 .

In the following discussion we use the notations:

� If V is a subbundle of TM then V ω is the subbundle whose �bers are
de�ned by

(V ω)z := {u ∈ TzM | ∀v ∈ Vz, ωz(u, v) = 0} .

� If v ∈ TM and η is a k-form on M , then

ιvη := η(v, ·)

is the (k − 1)-form obtained by contraction of η on v.
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Then the nondegeneracy condition can be written more concisely as

(TM)ω = 0 or ιvω = 0 ⇒ v = 0

and it establishes the following linear isomorphism

TM → T ∗M
v 7→ ιvω.

Remark 1.1.2. We have de�ned the form ω by two properties.

a) The nondegeneracy is a punctual property. It is a condition for ωz as a
bilinear antisymmetric form on TzM and can be generalised to arbitrary
vector bundles.
We call (E,ω) a symplectic vector bundle if E → M is a vector
bundle over a manifold and ω : E × E → R is a bilinear nondegenerate
antisymmetric form on each �ber. Since ω is nondegenerate the rank of E
is even. Indeed, suppose E 6= 0 and �x a point z ∈M . The dimension of
Ez can't be one because every antisymmetric form on R is zero. So we can
pick in Ez two linearly independent vectors u1, v1 such that ω(u1, v1) = 1.
Then the nondegeneracy yields

Ez = Span(u1, v1)⊕ Span(u1, v1)ω

and ω restricted to both this subspaces is nondegenerate. Now the con-
clusion follows from induction. In this way we get as a byproduct a basis
for Ez made by vectors (u1, v1, . . . , un, vn) such that, if (u1, v1, . . . , un, vn)
is the dual basis, we can write

ωz =
n∑
k=1

uk ∧ vk.

Since we can perform this construction smoothly in a neighbourhood of
z we have found canonical local frames in which the symplectic vector
bundle has a simple model.
From this model we see that a symplectic vector bundle is orientable (and
so the same is true for a symplectic manifold).
In fact ω ∧ ω ∧ . . . ∧ ω︸ ︷︷ ︸

n times

is a volume form on E. Its expression using coor-

dinates induced from a local frame is

n!
(
u1∧ v1∧ · · · ∧ un∧ vn

)
,

which is nowhere vanishing.

b) The closedness of ω is a local property. It describes how the forms on each
�ber �t together and it is responsible for the existence of canonical local
coordinates. Namely it is possible to choose the frames described above
as coordinate vectors frames. This is the content of Darboux's Theorem.
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Theorem 1.1.3 (Darboux). Let (M,ω) be a symplectic manifold and z ∈M .
Then there exists coordinates (p1, q1, . . . , pn, qn) in a neighbourhood U of z
such that

ω|U =
n∑
k=1

dpk ∧ dqk.

Darboux's Theorem says that there is a unique local model for symplectic
manifold. So now we will take a closer look to this standard structure.

Example 1.1.4. Consider Cn as a complex vector space. The moltiplication
by a scalar is made componentwise. Let us denote by J the moltiplication by
the imaginary unit: it is a C-linear automorphism of Cn such that J2 = −1.
Consider now the n standard coordinate vectors ∂zk and their dual basis dzk

so that a vector can be written as u =
∑

k dz
k(u)∂zk . Then de�ne

dpk := <(dzk) and dqk := =(dzk)

and an R-linear isomorphism with R2n as follows:

u 7→ (dp1(u), dq1(u), · · · , dpn(u), dqn(u)).

If we set
∂pk := ∂zk and ∂qk := J∂zk ,

then this isomorphism gives the coordinates of a vector in Cn with respect
to this R-basis. From now on we always consider Cn as a real vector space
equipped with an endomorphism J that acts on it as follows:

J∂pk = ∂qk J∂qk = −∂pk .

Consider the following two additional structure on Cn.

1. Euclidean: a real scalar product

g(u, v) =
∑
k

(
dpk(u)dpk(v) + dqk(u)dqk(v)

)
.

2. Symplectic: a bilinear antisymmetric form

ω(u, v) =
∑
k

dpk∧ dqk(u, v).

The complex structure relates these bilinear forms by the formula

g(u, v) = ω(Ju, v).

So we only need two among g, ωandJ in order to �nd the last one.
This construction was made for a �nite dimensional vector space but we can
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take an open set V ⊂ Cn, regarded as a real manifold, and use the canonical
isomorphism between TzV and Cn in order to transfer the above structures on
TV (here we mean the real tangent space). If zk are the complex coordinates
and pk := <(zk), qk := =(zk) are the real coordinates then the notations
used above for vectors and forms �ts with the usual meaning those symbols
have in di�erential geometry, for example dpk indicates the di�erential of the
real function pk.
The form ω we obtain becomes a symplectic form on TV . Indeed, since w
is constant, dω = 0.

In this case we have found that the symplectic form and the complex
structure on V are compatible in some sense. This can be generalized as
follows.

De�nition 1.1.5. Let (M,ω) be a symplectic manifold and J : TM → TM
an almost complex structure, i.e. J is a bundle map such that J2 =
− idTM . J is said to be compatible with ω if

gz(u, v) := ωz(Jzu, v), u, v ∈ TzM

is a metric on M (in other words (M, g) becomes a Riemannian manifold).

For every �xed symplectic manifold (M,ω) the set

Jω := {J is compatible with ω}

is nonempty and contractible, so TM is a well-de�ned complex vector bundle
(see (34) for further details). Every complex manifold M carries a natural
almost complex structure (and if a map J arises in this way is said inte-

grable), however if M is also symplectic, this does not imply that the two
structures are compatible in the sense given above. If this turns out to be
the case M is called a Kähler manifold. A distinguished class of Kähler
manifolds is described in the next example.

Example 1.1.6 (Stein manifolds). Let V be a complex open manifold and
let J be the associated integrable structure on TV . A function f : V → R
is exhausting if it is proper and bounded from below and is strictly plurisub-
harmonic if the exact 2-form ω= d (df ◦ J) is such that

ωz(Jzv, v) > 0, ∀v ∈ TzV, v 6= 0.

If V admits an exhausting strictly plurisubharmonic function f then it is
called a Stein manifold and we will write (V, J, f) to denote it.
Observe that the above inequality implies that ω is nondegenerate and, since
it is also exact, it is actually a symplectic form and hence V is a symplectic
manifold. Since J is integrable ω is of type (1, 1) with respect to the splitting
of TCV induced by J . Then J is ω-compatible since

ω(Ju, Jv) = ω(u, v).
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In Cn the function z 7→ |z|2 is an exhausting plurisubharmonic function.
Indeed

d
(
d|z|2◦ J

)
= d
(
(2pdp)◦ J + (2qdq)◦ J

)
= 2d

(
pdq − qdp

)
= 4dp ∧ dq.

Therefore up to a constant factor we get the standard symplectic form.

Let us continue now with an example from classical physics.

Example 1.1.7 (Cotangent bundles). Let M be a smooth manifold and
π: T ∗M →M the cotangent vector bundle. We de�ne a 1-form λ on T (T ∗M)
as follows:

∀η ∈ T ∗M, ∀v ∈ Tη (T ∗M) , λη(v) = ηπ(η)(dηπ(v)).

λ is characterised by the following property:

∀η : M → T ∗M, η∗(λ) = η.

Then (T ∗M,dλ) is a symplectic manifold. Indeed dλ is a closed form and
if we choose coordinates (pk, qk) on T ∗M that are induced from coordinates
(qk) on M then we �nd that locally λ =

∑
k p

kdqk. Its di�erential is locally∑
k dp

k ∧ dqk, which we have seen to be nondegenerate.
This class of examples encloses also the case of Cn because R2n ∼= T ∗Rn.

In the previous examples the symplectic form was actually exact. This
additional property will be relevant in what follows and so we include it in
a de�nition.

De�nition 1.1.8. A symplectic manifold (M,ω) is said to be exact if exists
a 1-form λ on TM (called a Liouville form), such that ω = dλ. Since often
the 1-form itself is more important than its symplectic di�erential we shall
denote an exact manifold by (M,λ) rather than (M,dλ).

Remark 1.1.9. The exactness of ω implies the exactness of ωn, which is
a volume form on M . This fact implies that an exact manifold can't be
closed. For the same reason if we rotate the perspective, a closed manifold
with H2

dR = 0 cannot carry any symplectic structure.

We de�ne now the di�eomorphisms and the vector �elds compatible with
the symplectic structure.

De�nition 1.1.10. A di�eomorphism F : M → M ′ between (M,ω) and
(M ′, ω′) is a symplectomorphism (or is symplectic) if

F ∗ω′ = ω.

A vector �eld X on (M,ω) is a symplectic vector �eld if

LXω = 0.

Here F ∗ is the pullback by the function F and L denotes the Lie derivative.
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Remark 1.1.11. We make the following two observations regarding this
de�nition.

� Darboux's Theorem is equivalent to saying that locally every symplec-
tic manifold is symplectomorphic to an open set in Cn with the stan-
dard symplectic structure. So from a local point of view all symplectic
manifolds look the same.

� Vector �elds can be seen as the in�nitesimal counterpart of di�eomor-
phism. For every real t we can consider Φt the �ow at time t associated
to X. This is a di�eomorphism between two open sets in M (possibly
empty) and is symplectic if and only if X is symplectic too. Indeed, if
t ≥ 0 and z is a point in the domain of Φt, then is in the domain of Φs

for 0 ≤ s ≤ t, too. Since Φ0 = Id, Φ0 is obviously symplectic. So,

∀t (Φ∗tω)z = ωz ⇐⇒ d
dt (Φ∗tω)z = 0

⇐⇒ Φ∗t

(
(LXω)Φt(z)

)
= 0

⇐⇒ LXω = 0.

Moreover Cartan's formula yields:

LXω = ιXdω + d(ιXω) = d(ιXω) .

This allows us to rewrite the condition of being symplectic:

LXω = 0 ⇐⇒ d (ιXω) = 0 .

At the beginning of this section we have pointed out that ω establishes
an isomorphism between vector �elds and 1-forms. Therefore if we
want to construct a symplectic vector �eld we only need to pick a
closed form η and then get X from the equality η = ιXω.
The easiest closed forms are the di�erentials of functions on M . This
will give the vector �elds which we are interested in.

De�nition 1.1.12. Let (M,ω) be a symplectic manifold and H : M → R a
function on it. We call the vector �eld XH de�ned by

ιXHω = −dH

an Hamiltonian vector �eld and H the Hamiltonian of the system.

Then the equation
ż = XH(z). (1.1)

represents the Hamiltonian formulation of the problem of dynamics for a
classical physical system.
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The function H can be viewed as the energy of the system and it is preserved
during the motion. Indeed, if z is a trajectory, then

dH

dt
(z(t)) = dH (XH(z(t))) = −ω (XH(z(t)), XH(z(t))) = 0.

In this sense we say that autonomous Hamiltonian systems are conservative.
The study of Equation 1.1 can be carried out along di�erent lines de-

pending on what is the goal one person has in mind. For example one may
be concerned with quantitative estimates as well as stability issues or topo-
logical properties of trajectories. The focus of our enquiry will be on the last
class of problems. In particular we shall investigate which general hypotheses
can be imposed in order to guarantee

the existence of periodic solutions for the ordinary

di�erential equation (1.1) associated to an Hamiltonian H
in a given energy level.

However before starting with an analysis of the problem from an abstract
point of view we will dwell a little more on the connection between symplectic
geometry and physics.

1.2 From Newton's law to the Hamilton equations

Consider a particle (or a physical system) that moves in a Riemannian
manifold (M, g) under the action of a force f , where f : TM → TM is an
arbitrary function. If we set ∇ for the Levi-Civita connection on π : TM →
M induced by g, then an admissible trajectory γ : (a, b) → M satis�es the
Newton's law:

∇γ̇ γ̇ = f(γ̇), (1.2)

where ∇γ̇ is the covariant derivative for vector �elds along γ. This is a second
order di�erential equation for curves on M , but we can �nd an equivalent
�rst order equation for its velocity γ̇.

On T (TM) is canonically de�ned the vertical subbundle V whose �ber at
v ∈ TqM is the image of the injective linear maps

Iv : TqM → Tv(TM)

u 7→ d

dt

∣∣∣
t=0

(v + tu).

Equivalently V is the kernel of the bundle map dπ : T (TM)→ TM .
Moreover the connection gives rise to a subbundle H of T (TM) which

is called the horizontal subbundle and which is a direct summand of V, i.e.
T (TM) = V ⊕H. It can be de�ned through the injective maps

Lv : TqM → Tv(TM)

u 7→ dṽ(u)− Iv(∇uṽ),

13



where ṽ : M → TM is an arbitrary extension of v to a vector �eld on M .
Then

Hv := Lv(TqM)

and Lv is a right inverse for dvπ, namely

dvπ ◦ Lv = idTqM . (1.3)

Set now v := γ̇ and apply Iγ̇ to both sides of Equation (1.2) obtaining the
equivalent equation

Ivf(v) = Iv(∇vv) = dv(v)− Lv(v), (1.4)

where we have substituted for ∇vv using the de�nition of Lv. Set

F (v) := Ivf(v)

and de�ne the geodesic vector �eld G : TM → T (TM) as

G(v) := Lv(v).

Then (1.4) can be rearranged into

v̇ = G(v) + F (v). (1.5)

Remark 1.2.1.

� Observe that, since G is horizontal and F is vertical, the vector �eld on
the right hand side of (1.5) respects the splitting on T (TM) induced
by g.

� Furthermore if F = 0 the solutions are precisely the geodesics of (M, g),
hence the adjective g̀eodesic' for G.

It is interesting to notice that g gives rise to the bundle isomorphisms

T ∗M
]→ TM, TM

[→ T ∗M.

Then we can

� endow T ∗M with the pullback metric k := ]∗g,

� obtain an equation for η := [v on T ∗M that is equivalent to (1.5),

η̇ = d(]η)[(G(]η) + F (]η)) = d(]η)[(G(]η)) + d(]η)[(F (]η)). (1.6)

As is clear from (1.6) we can analyse the pushforward of F and G separately.
For brevity we set {

Ĝ(η) := d(]η)[(G(]η)),

F̂ (η) := d(]η)[(F (]η)).

The crucial point is that these vector �elds are indeed Hamiltonian with
respect to the standard structure we de�ned in Example 1.1.7.
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Proposition 1.2.2. Let (T ∗M,dλ) be the standard symplectic structure on
the cotangent bundle π̂ : T ∗M →M of a Riemannian manifold (M, g).
Using the previous notations we de�ne K(η) := 1

2kπ̂(η)(η, η) and we suppose
that f = −(∇V ) ◦ π, where V : M → R is a real function. Then

Ĝ = XK , F̂ = XV◦π̂.

Setting H := K+V◦π̂, we see that (1.5) can be written as

η̇ = XH(η).

Remark 1.2.3. K represents the kinetic energy of the system. K is convex
along the �bers.
V ◦ π̂ represents the potential energy. When f admits a potential physicists
say that the force is conservative.

If we write down this equation using local coordinates (p, q), we recover
the Hamilton equation of classical physics. The following identity holds:

ιXHdλ = ιXH (dp ∧ dq) = dp(XH) · dq − dq(XH) · dp.

Furthermore,

−dH = −∂H
∂p
· dp− ∂H

∂q
· dq.

From these equations we obtain the components of XH . Substituting in (1.1)
we get the familiar 

ṗ = −∂H
∂q

q̇ =
∂H

∂p
.

During the Eighties the case of a charged particle immersed in a magnetic
�eld became the subject of an intensive research. The Lagrangian (which
we will not discuss here) and the Hamiltonian approach were carried out
by Novikov and Tamainov, who used a generalization of Morse theory to
multivalued functionals (37; 38), and by Arnol'd, who in addition exploited
techniques from symplectic geometry (6). Their research was continued fur-
ther by scholars such as V. Ginzburg (21; 22), G. Contreras (12) and G. P.
Paternain (13). Since the Weinstein conjecture has been proven positively
for systems belonging to this category, now we shall describe shortly what
the problem is about.

Example 1.2.4 (Particle in a magnetic �eld). In the three-dimensional
Euclidean space the Maxwell equations for the magnetic �eld B yield

divB = 0.
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If we de�ne
σ := ιB(dq1∧ dq2∧ dq3),

then σ is a closed 2-form on R3.
Moreover a particle which has a unitary charge is subject to the Lorentz force

f(q̇) = q̇ ×B.

A simple calculation shows

q̇ ×B = ] (ιq̇σ) .

So we can generalize this situation to an arbitrary triple (M, g, σ), where
(M, g) is a Riemannian manifold and σ is a closed 2-form on M . With the
notation as above the corresponding vector �eld F̂ on T ∗M is given by

F̂ = Îη(ι]ησ),

where Î is the vertical lift from M to the cotangent bundle T ∗M . Further-
more we can use σ to de�ne the twisted 2-form on T ∗M

ωσ := dλ− π̂∗σ,

which is easily seen to be symplectic. The following proposition shows the
connection between magnetic �elds and symplectic geometry.

Proposition 1.2.5. Let (M, g, σ) be de�ned as before and consider a charged
particle on M subjected to a force of the form

f(v) := −∇V (π(v)) + ] (ιvσ) . (1.7)

Then the corresponding Newton's equation is equivalent to a Hamilton equa-
tion with respect to the twisted symplectic structure (T ∗M,ωσ). The Hamil-
tonian of the system is H = K + V ◦ π̂.

Moreover if the magnetic �eld is exact, i.e. σ = dα, the following trans-
lation map is a symplectomorphism

Ψα : (T ∗M,dλ) → (T ∗M,ωdα)

η 7→ η + απ̂(η).

Therefore we get an equivalent Hamiltonian system on (T ∗M,dλ) with the
Hamiltonian function obtained by substitution

Hα(η) := K(η + α(π̂(η))) + V (π̂(η)).
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Proof. First notice that for every vertical vector �eld X on T ∗M , we have{
ιX(π̂∗σ)η = 0 ,

ιX(dλ)η = π̂∗(Î−1
η (X)) .

(1.8)

Furthermore from Equation (1.3) we �nd(
ιĜπ̂

∗σ
)
η

= (π̂∗σ)η (Ĝ(η), ·)

= σπ̂(η)(dηπ̂(Ĝ(η)), dηπ̂(·))
= σπ̂(η)(d(]η)π(G(]η)), dηπ̂(·))
= σπ̂(η)(]η, dηπ̂(·))
= π̂∗

(
ι(]η)σ

)
η
.

We calculate now ιĜ+F̂ωσ.

ιĜ+F̂ωσ = ιĜωσ + ιF̂ωσ = ιĜdλ− ιĜπ̂
∗σ + ιF̂dλ− ιF̂ωσ

= −dK − ιĜπ̂
∗σ + ιÎ(·)(ι](·)σ)dλ− d(V ◦ π̂)

= −dK − π̂∗
(
ι(]·)σ

)
+ π̂∗

(
Î−1

(·) Î(·)(ι](·)σ)
)
− d(V ◦ π̂)

= −dK − d(V ◦ π̂)

Suppose now that σ = dα. First we �nd that

(Ψ∗αλ)η (ξ) = λΨα(η)(dηΨα(ξ))

= Ψα(η)(dΨα(η)π̂dηΨα(ξ))

= Ψα(η)(dηπ̂(ξ))

= η(dηπ̂(ξ)) + απ̂(η)(dηπ̂(ξ))

= (λ+ π̂∗α)η (ξ).

Using this identity we get

Ψ∗α(ωdα) = Ψ∗α (dλ)−Ψ∗α (π̂∗σ)

= d (Ψ∗αλ)− (Ψα◦ π̂)∗σ

= d(λ+ π̂∗α)− π̂∗σ
= dλ.

Remark 1.2.6. The �rst part of the proposition indicates that the intro-
duction of a magnetic term in the force a�ects the symplectic geometry of
the cotangent bundle while the Hamiltonian function remains unchanged.

As regard the second part we �nd the following byproduct: if α is closed,
i.e. σ = 0, Ψα is a symplectomorphism from the standard symplectic struc-
ture (T ∗M,dλ) to itself.
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1.3 The contact hypothesis

As we have said at the end of the previous section we are looking for
periodic solutions of Equation (1.1). The �rst task will be to describe the
additional hypotheses Weinstein included in the formulation of his conjec-
ture about the existence of a periodic orbit.
We have observed before that H is a constant of the motion. Thus we can
focus our attention on a �xed set Σc := {H = c}, because it is invariant
under the �ow of XH .
The �rst hypothesis on Σc that seems reasonable to include is its compact-

ness. In fact if we consider on Cn the function

H(p, q) := q1,

we get the following vector �eld, whose orbits are open:

XH = ∂p1 .

Furthermore we would like to remain in the smooth category in order to
use techniques coming from di�erential geometry. Therefore we assume that
c is a regular value for H. Then Σc is a smooth submanifold by the implicit
function theorem. On the contrary if c would be a critical value on the one
hand we would have z0 ∈ Σc such that d(z0)H = 0. Then XH(z0) = 0 and
we would have the trivial solution z(t) ≡ z0. On the other hand the comple-
ment of critical points would be invariant under the �ow and noncompact.
So, as we have said above, we cannot expect the existence of periodic orbits
in general.

The next step is to take a closer look to the relationship between ω and
Σc. The nondegeneracy of ω implies that

R := (TΣc)
ω

is a one-dimensional subbundle of TM . Since the dimension of Σc is odd,
the restriction ω′ of ω to TΣc is degenerate. Thus its kernel must be R and
so R ⊂ TΣc. The importance of this bundle relies in the next result.

Proposition 1.3.1. If c is a regular value of an Hamiltonian function H
and Σc and R are de�ned as above, then

XH ∈ R.

Therefore periodic orbits correspond to closed leaves of the distribution R,
i.e. embeddings γ : S1 → Σc such that γ̇ ∈ R.

Proof. Let v ∈ TΣc. Then dH(v) = 0 yields −ω(XH , v) = 0 and so XH ∈ R.
Clearly a periodic orbit is a closed leaf: XH never vanishes on Σc and if we
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have an autointersection point, then the two tangent vectors are equal at the
intersection since the system (1.1) is autonomous.

Conversely assume that γ is a closed leaf and regard γ as a 1-periodic
function. γ̇ and XH are parallel and we assume that they point in the same
direction by changing the orientation of γ if necessary. Then exists a positive
1-periodic function f such that

f(t)γ̇(t) = XH(γ(t)).

Then we consider the real function g de�ned by the following equations
dg

ds
(s) = f(g(s))

g(0) = 0 .

Since f is positiveand bounded, g is a di�eomorphism de�ned on all R. Then

dγ

ds
(g(s)) = f(g(s))γ̇(g(s)) = XH(γ(g(s))).

Therefore γ(g(s)) is a periodic solution. Its period is the smallest positive
value s0 such that g(s0) = 1.

The proposition shows that the existence problem can be formulated only
in terms of the relative position between ω and Σc. However it has been
proved that we cannot solve the problem in the a�rmative for a generic hy-
pesurface (Σ,R) ⊂ (M,ω): see for example (25; 20). Weinstein's point of
view is a compromise between the approach based upon Hamiltonian equa-
tions and the one which relies exclusively on the distribution R. Its success
is rooted in its connection with another important �eld: contact geometry.
Therefore we begin with some introductory de�nitions from the contact set-
ting.

De�nition 1.3.2. A contact form α on a manifold Σ is a nowhere vanishing
1-form on TΣ such that dα is a symplectic form on the subbundle ξ := kerα.

Remark 1.3.3. The de�nition immediately implies that Σ is odd-dimensional
and, since dα is symplectic on ξ,

TΣ = (TΣ)dα ⊕ ξ.

We can choose a generator R of (TΣ)dα by requiring that α(R) = 1.
R is uniquely determined by the conditions{

ιRdα = 0 ,

α(R) = 1 .

R is called the Reeb vector �eld of α.
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The de�nitions and propositions below lie the ground for the connection
between symplectic and contact geometry.

De�nition 1.3.4. Let Σ ⊂ (M,ω) be a hypersurface in a symplectic mani-
fold. A vector �eld Y de�ned in a neighbourhood of Σ and transverse to Σ
is a Liouville vector �eld for Σ if

LY ω = ω.

(In what follows we shall abbreviate the transversality condition as Y t Σ.)

De�nition 1.3.5. Let (Σ, α) be a contact manifold and (M,ω) a symplectic
manifold. We say that (Σ, α) is a contact submanifold of (M,ω), and we
write (Σ, α) ⊂ (M,ω), if there exists an embedding j : Σ → M of Σ as a
hypersurface in M such that

j∗ω = dα.

From this de�nition is clear that being a contact submanifold is invariant
under symplectomorphism.

Proposition 1.3.6. If (Σ, α) ⊂ (M,ω), then R ∈ R.

Proof. Since j∗ω = dα the conclusion follows from the very de�nitions of R
and R.

Proposition 1.3.7. Let Σ ⊂ (M,ω) be a compact hypersurface. The follow-
ing conditions are equivalent:

i) there exists a contact form α on Σ such that (Σ, α) ⊂ (M,ω),

ii) Σ has a Liouville vector �eld Y ,

iii) exists a contact form α on Σ, a neighbourhood U of Σ and a di�eomor-
phism Ψ: Σ× (−ε, ε)→ U which is the identity on Σ, such that

Ψ∗ω = d(etα).

Moreover any of them implies that there is a neighbourhood U of Σ and a
function H : U → R such that 0 is a regular value for H and

Σ = {H = 0}, XH |Σ = R .

Proof.

i)⇒ ii) First we observe that an application of the generalized Poincaré lemma
gives the equivalence between i) and the apparently stronger condition:

i') there is a neighbourhood of Σ and a 1-form λ on it such that
(Σ, j∗λ) is a contact manifold and ω = dλ.
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So we can de�ne Y from the equation ιY ω = λ. Then

LY ω = ιY dω + d(ιY ω) = dλ = ω.

The transversality of Y can be seen as follows. Let R be the Reeb
�eld of j∗λ. Then 1 = λ(R) = ω(Y,R). Unless Y /∈ TΣ, this leads
to a contradiction because (TΣ)ω = R. As a byproduct we �nd the
symplectic splitting

TM |Σ = Span(Y,R)⊕ ξ,

since ιY ω|ξ = λ|ξ = 0.

ii)⇒ iii) We set λ := ιY ω. Then dλ = ω and LY λ = λ.
Let Φt be the �ow of Y . It is well de�ned for small t in a neighbourhood
U of Σ, since Σ is compact. We can construct the di�eomorphism

Ψ : Σ× (−ε0, ε0) → U
(x, t) 7→ Φt(x).

Let ρt be the �ow of the coordinate vector �eld ∂t on Σ × (−ε0, ε0).
Then Ψ carries ∂t upon Y and coniugates their �ows.
Let π : Σ × (−ε0, ε0) → Σ be the projection on the �rst factor and
jt : Σ→ Σ× (−ε0, ε0) the embedding of Σ at height t, then jt = ρtj0.
De�ne

α := Ψ∗λ.

Then α(∂t) = λ(Y ) = 0 and so α(x,t) = π∗j∗t α(x,t).
Now compute

d

dt
(j∗t α) = j∗0

d

dt
(ρ∗tΨ

∗λ) = j∗0Ψ∗LY λ = j∗0Ψ∗λ = j∗0α.

Therefore j∗t α = etj∗0α. Applying π
∗ to this equation we �nd at last

αx,t = et(j0π)∗α.

Taking the di�erential on both sides yields the conclusion.

iii)⇒ i) It is enough to put λ = (Ψ−1)∗(etα). Then

(Σ× 0, α) ⊂ (Σ× (−ε, ε), d(etα)) ⇒ (Σ, λ) ⊂ (M,ω).

In order to �nish the proof we have to exhibit the function H. Let π′ be the
projection upon the second factor in Σ× (−ε, ε). The function H such that

H ◦Ψ = π′
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has the desired property. Since Ψ is a symplectomorphism it carries Xπ′ to
XH and identi�es Σ × {0} with Σ embedded in M . Therefore it is enough
to show that Xπ′ = R:

ιRd(etα)|t=0 = dt(R)− α(R)dt+ ιRdα = −dt

Remark 1.3.8. Condition (ii) implies that being a contact submanifold
is property which is resistant to C1 perturbation, as long as Y remains
transverse to the hypersurface.
Condition (iii) is also interesting because gives a neighbourhood of Σ which is
foliated by contact hypersurfaces di�eomorphic to Σ. Moreover Reeb vector
�elds over two of such hypersurfaces are conjugated up to a constant factor
and so they share the same dynamical properties. For instance if one of them
has a closed characteristic so does the Reeb �eld over any other leaf of the
foliation.

We will now exhibit a relevant class of contact manifolds within the
setting already described in Section 1.2.

Example 1.3.9 (Cotangent bundles). If the particle moves freely on (M, g),
the only term in the Hamiltonian is the kinetic energy K. Then the zero-
section is made by stationary point of the system whereas all the hypersur-
faces {K = c, c > 0} are of contact-type. Indeed, the vertical vector �eld
Y (η) := Îη(η) is transverse to each nonzero level since

dηK(Y (η)) =
d

dt

∣∣∣
t=0

K(η + tη) = kπ̂(η)(η, η) = 2K(η) (1.9)

(N.B. this identity can be seen as an application of Euler's theorem for ho-
mogeneous function on vector bundles).
Finally K(η) > 0 provided η 6= 0. Using local coordinates we get the two
equalities {

ιY λ = 0 ,

ιY dλ = λ .

The latter is equivalent to LY dλ = dλ, remembering Cartan's formula.
Then one of the criteria in Proposition 1.3.7 is satis�ed and so every nonzero
energy level is a contact submanifold. Furthermore if Rc is the Reeb vector
�eld at energy c and η ∈ {K = c}, we know that dλ(Y (η), Rc) = 1. In order
to �nd the relation between XK and Rc is su�cient to compute

dλ(Y (η), XK(η)) = dηK(Y (η)) = 2K(η) = 2c.

Then,

XK |{K=c} = 2cRc.
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We point out that not only all levels are of contact-type but also that the
dynamics upon them is conjugated up to a constant positive factor. If we
call Φt the �ow of Y at time t, then

LY dλ = dλ ⇒ Φ∗t (dλ) = etdλ.

From this and the homogeneity of K we �nd

dλ(dηΦt(XK(η)), dηΦt(ξ))Φt(η) = Φ∗tdλ(XK(η), ξ)

= etdλ(XK(η), ξ)

= −etdηK(ξ)

= −etdη(K ◦ Φ−1
t ◦ Φt)(ξ)

= −etdΦt(η)(K ◦ Φ−t)(dηΦt(ξ))

= −e−tdΦt(η)K(dηΦt(ξ)).

Therefore from the de�nition of XK we �nally get

XK(Φt(η)) = etdηΦt(XK(η)).

Introduce now a non-zero magnetic �eld σ and endow T ∗M with the sym-
plectic structure ωσ as in Example 1.2.4. Then the zero-section is still made
by stationary point and Y is still transverse to the other energy levels, how-
ever Y fails to satisfy the condition about the Lie derivative. In fact since
Y is vertical, from (1.8) we have

LY ωσ = dλ

and so Y is not a Liouville vector �eld for ωσ. One attempt could be to �nd
a vertical vector �eld Z(η) = Îη(α(π̂(η)), where α : M → T ∗M is a 1-form,
such that {

(Y + Z) t {K = c} ,

LZdλ = π̂∗σ .
(1.10)

Mimicking the calculations (1.9), the �rst condition can be rewritten as

kπ̂(η)

(
η, η + απ̂(η))

)
6= 0.

Moreover the second equation (1.8) yields

LZdλ = π̂∗(dα) .

Using the injectivity of π̂∗ the couple of conditions (1.10) rewrites as{
kπ̂(η)

(
η, η + απ̂(η)

)
6= 0 ,

dα = σ .
(1.11)
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So the second condition forces us to reduce to the case of exact magnetic �elds
whereas the �rst one tells us that the system is expected to behave di�erently
on di�erent energy levels. In fact consider an energy level {K = c} such that
exists a primitive α of σ such that

∀η ∈ {K = c}, K(η) > K(απ̂(η)).

Then this hypothesis and the Cauchy-Schwarz inequality imply

kπ̂(η)

(
η, η + απ̂(η)

)
= kπ̂(η) (η, η) + kπ̂(η)

(
η, απ̂(η)

)
> 2K(η)− 2

√
K(η)

√
K(απ̂(η)) > 0 .

The quantity that has a crucial role here is the Mañé critical value c0:

c0 = c0(k, σ) := inf
α | dα=σ

(
sup
q∈M

K(αq)
)
. (1.12)

The analysis we have made so far for exact magnetic �elds yields

c > c0 ⇒ {K = c} is contact-type .

A detailed analysis about how the dynamics changes with the energy level
can be found in the recent article by K. Cieliebak, U. Frauenfelder and G.P.
Paternain (10).

The opposite situation, namely the case in which σ is symplectic, was
studied by V. Ginzburg and E. Kerman (31) as well. They have studied the
existence of periodic orbits on low energy levels, trying to generalize the so-
called Weinstein-Moser conjecture (47; 35) to this class of twisted cotangent
bundles.
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Chapter 2

The conjecture

Alan Weinstein proposed his famous conjecture for the �rst time in 1979
(48) inspired by the recent work of P. Rabinowitz (40), who established the
existence of periodic orbits when Σ is the boundary of star-shaped domains
in Cn. This result deeply impressed matematicians involved in Hamiltonian
systems, however Weinstein was not satis�ed with the hypothesis of the
theorem since it was not invariant under symplectomorphisms. His intuition
was to recognize that the radial vector �eld r∂r was one of the main ingredient
of the proof and that the properties of r∂r, which were essential for the proof,
were actually symplectic (i.e. preserved by symplectomorphisms). r∂r is the
prototype of what we have called a Liouville vector �eld and turns Σ into a
contact hypersurface.

2.1 The statement

We are now in position to state precisely the

(Weinstein conjecture). Let (M,ω) be a symplectic manifold and Σ ⊂M
a compact hypersurface. If Σ is a contact submanifold of M then it carries
a closed characteristic.

Remark 2.1.1.

i) The conjecture is still open today, although it is commonly believed to
be true since it was proven in the a�rmative in many particular cases.

ii) The original formulation of the Weinstein conjecture included the addi-
tional assumption

H1(Σ,R) = 0.

However, subsequently the condition on the �rst cohomology group was
dropped since almost all the approaches to the proof tempted so far do
not rely on it.
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The presence of the hypothesis on the vanishing of H1(Σ,R) in the
early statement is due to the fact that it can be used as a substitutive
requirement in some instances as we will say later when we discuss
Liouville domains.

iii) The conjecture can be stated equivalently without any reference to the
symplectic environment:

Any compact contact manifold (Σ, α) carries a closed characteristic.

Indeed every contact manifold can be embedded in its symplectization:

(Σ× R, d(etα)).

iv) The conjecture becomes false if the contact hypothesis is removed with-
out replacing it with something else. M.-R. Herman showed in (25) that
exists a proper smooth function on Cn (n > 2), which has an energy
level without closed trajectories. Later the counterexample was re�ned
by Ginzburg and Gürel in (20) exhibiting a C2 function on C2 with the
same properties.

The conjecture with this degree of generality is still open. However, it
was proven to be true for several classes of contact submanifolds. In the next
section we shall give a brief account of some of the techniques used through
the years.

2.2 Approaches to the proof

One of the main guideline has been to regard the conjecture exclusively
as a problem in contact geometry. However since the problem is too general
the starting point has been to �x a class C of manifolds characterized by
some properties (of topological nature, for instance) and accordingly a class
of contact forms Λ on the elements of C. This method works well with
three-dimensional manifolds where contact forms were intensively studied
and classi�ed (see Giroux (23) and Eliashberg (17)) and culminated in the
full answer given by Taubes in 2007.
Beginning from the early Nineties the Weinstein conjecture has been proven
in the a�ermative for the following cases:

Case 1. Hofer (27):

CH0 =
{

dim Σ = 3
}
, ΛH0 =

{
λ | kerλ is overtwisted

}
.

Case 2. Hofer (27):

CH1 =
{

dim Σ = 3, π2(Σ) 6= 0
}
, ΛH1 =

{
λ | kerλ is tight

}
.
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Case 3. Abbas, Cieliebak and Hofer (1):

CACH =
{

dim Σ = 3
}
, ΛACH =

{
λ

∣∣∣∣ kerλ is supported
by a planar open book

}
.

Case 4. Taubes (45):

CT =
{

dim Σ = 3
}
, ΛT =

{
λ is an arbitrary contact form

}
.

However recently improvements in higher dimensions were made too. The
following two results generalize Case 1 and Case 2 respectively.

Case 5. Albers and Hofer (5):

CAH =
{

dim Σ = 2n+ 1
}
,

ΛAH =
{
λ| kerλ is Plastikstufe-overtwisted

}
.

Case 6. Niederkrüger and Rechtman (36):

CNR =
{

dim Σ = 2n+ 1
}
,

ΛNR =

{
λ

∣∣∣∣ ∃ N ↪→ Σ | 0 6= [N ]∈Hn+1(Σ,F2),
N carries a Legendrian open book

}
.

The following scheme summarizes the implications which hold between the
results listed above.

(H1) ⇐ (T ) ⇒ (ACH) ⇒ (H0)
⇑ ⇑

(NR) (AH)

For further insights the reader can consult Hofer (26) and Hutchings (30).

The other big guiding principle towards a proof of the conjecture is to
investigate the presence of periodic orbits for a given Hamiltonian system
as the energy level changes. The typical results that are available with this
approach are the existence on {H = a} for almost all values a, with respect
to the Lebesgue measure in R, or for a belonging to a dense subset of R.
Theorems of the �rst kind are called `almost existence theorems' whereas
the others are called `nearby existence theorems'. These results rely on
the de�nition of symplectic capacities. These are symplectic invariants
de�ned axiomatically for symplectic manifolds in the following way.

De�nition 2.2.1. A map c which associates to every symplectic manifold
of �xed dimension 2n a number in [0,+∞] is a symplectic capacity if satis�es
the three properties:
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C1. Monotonicity: c(M,ω) ≤ c(M ′, ω′),
if there is a symplectic embedding (M,ω) ↪→ (M ′, ω′).

C2. Conformality: c(M, sω) = |s|c(M,ω), ∀s ∈ (0,∞).

C3. Nontriviality: c(B(1), dλ) = π = c(Z(1), dλ), where

• dλ is the standard contact structure on R2n,
• B(1) ⊂ Cn is the open unit ball,

• Z(1) ⊂ Cn is the open cylinder
{(
q1
)2

+
(
p1
)2

= 1
}
.

The notion of capacity was introduced by Ekeland and Hofer in 1990
((14; 15)). In the same year Hofer and Zehnder constructed an explicit
capacity cHZ in (29), whose value depends essentially on the existence of
periodic solutions of certain Hamiltonian systems on M . Let (M,ω) be a
symplectic manifold and denote by H(M,ω) the space of real functions H
on M satisfying:

P1. there exist UH open, KH compact and a constant m(H) such that

UH ⊂ KH ⊂ (M \ ∂M), H(UH) ≡ 0, H(M \KH) ≡ m(H),

P2. ∀x ∈M, 0 ≤ H(x) ≤ m(H).

Here m(H) can be interpreted as the oscillation of the function. Consider
the subset Ha(M,ω)⊂H(M,ω) whose elements are called admissible and
characterized by the property that all the periodic solutions for the associated
Hamiltonian system (1.1) are constant or have period strictly greater than 1.
These Hamiltonians can be seen as the ones having periodic solutions with
`bad' properties. In fact it is interesting to know when there are functions
on the complement set H(M,ω)\Ha(M,ω), namely functions that have a
periodic solutions with small non zero period T , 0 < T ≤ 1. This information
is provided by the Hofer-Zehnder capacity de�ned by

cHZ(M,ω) := sup
Ha(M,ω)

m(H).

In fact if C ≥ 0, then

cHZ(M,ω) ≤ C ⇐⇒
(
∀H∈H(M,ω), m(H) > C ⇒ H /∈Ha(M,ω)

)
.

Therefore if cHZ is �nite H has a fast periodic solution, provided its oscilla-
tion is big enough. The connection with the Weinstein conjecture relies on
the following

Theorem 2.2.2 (Nearby existence). Let Σ ⊂ (M,ω) be a compact hypersur-
face and let Σ×(−ε0, ε0) ↪→M be an embedding onto an open neighbourhood
U of Σ, in other words we are choosing a tubular neighbourhood for Σ. Then

cHZ(U, ω) <∞ ⇒ for a.e. ε ∈ (−ε0, ε0), Σ×{ε} carries a periodic orbit.
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Remark 2.2.3. The preceding theorem tells us that the Weinstein con-
jecture holds true when we make the further assumption that Σ has an
open neighbourhood with �nite capacity cHZ . Indeed, Remark 1.3.8 im-
plies that the dynamics of the Reeb �eld on Σ is conjugated, up to a time
reparametrization, to the dynamics on Σ × {ε}, for every ε. Then, the ex-
istence of a periodic orbit on Σ follows from the fact that, thanks to the
theorem, there is a periodic orbits on some Σ × {ε0}. This line of reason
leads us to consider the larger class of stable hypersurfaces, which contains
the contact ones.

De�nition 2.2.4. An hypersurface Σ is called stable if there exists an
embedding Σ×(−ε0, ε0) ↪→M such that characteristic bundle Rε on Σ×{ε}
is independent of ε.

Cieliebak and Mohnke in (11) show that stability is equivalent to the
existence of a stabilizing 1-form α on Σ, such that

R ⊂ Σdα, α|R 6= 0.

The discussion made so far proves that

Corollary 2.2.5. A compact stable hypersurface Σ with �nite capacity cHZ
carries a closed characteristic.

Remark 2.2.6. Properties (C.1) and (C.3) implies that every bounded open
set in an Euclidean space has �nite capacity and so the conjecture is fully
established for hypersurfaces in Cn. This result dates back to Viterbo, who
however used variational arguments for the proof (46).

Remark 2.2.7. We have seen how the introduction of a special kind of
capacity can be a useful tool for a solution of the conjecture. However the
capacity is not unique and many deep results in symplectic geometry are
enclosed within the properties (C.1)-(C.3): maybe rigidity phenomena for
symplectomorphisms are the most important. They were investigated by
Gromov (24) and Eliashberg (16) during the Seventies and the Eighties.
Furthermore proving the existence of a capacity is in general a di�cult task,
which requires hard analitycal and variational tecnhiques. See (28) if you
want to know more about this topic.

After this short survey (more on the state of art can be found in (19)), let
us start with the proof of the Weinstein conjecture, which we have worked
on. The main ingredient is the free period action functional which was
used by Rabinowitz in his already mentioned proof of the conjecture (40).
Recently this functional was rediscovered by Cieliebak and Frauenfelder (8)
in order to de�ne a Morse-Bott homology for a class of symplectic mani-
folds. They called this homological theory Rabinowitz-Floer Homology

(the shorthand is RFH) and used it to �nd obstructions to certain kind
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of embeddings or to prove the existence of closed characteristics. Moreover
very soon it was clear that RFH could be applied equally well to solve
several classical problems in symplectic geometry. Albers and Frauenfelder
exploited it to solve Moser's problem about leafwise intersections (3). Pa-
pers by Cieliebak, Frauenfelder and Oancea (9) and by Abbondandolo and
Schwartz (2) developed explicit calculations for cotangent bundles �nding
rehlations with the well known symplectic (co-)homology. Finally Cieliebak,
Frauenfelder and Paternain extended these results to more general manifolds
(the so-called stable tame case) and combined them with the theory of Mañé
critical values on twisteed cotangent bundles (10). For a survey about RFH
and its applications the reader can see (4). The scheme of the proof that we
are going to describe is inspired by these papers (see in particular (3) and
Section 4.3 in (10)) and uses ideas from RFH, although is self-contained
and does not require the transversality theory which is essential in the con-
struction of RFH.
The �rst step will be to state what are the additional assumptions we need.
The actual line of reasoning will be developed in the subsequent chapters.

2.3 The additional hypotheses

We have highlighted in Remark 2.1.1.ii that every contact manifold (Σ, α)
can be embedded as a contact submanifold in its symplectization(

Σ×R, d(etα)
)
.

However it would be nice if the ambient symplectic manifold for Σ could be
chosen with some compactness property. The following de�nition goes in
this direction and sets up a class of manifolds which are interesting for our
purposes.

De�nition 2.3.1. A compact exact symplectic manifold with boundary
(V, λ) is called a Liouville domain, if (Σ := ∂V, α := λ|∂V ) is a contact
submanifold.

Every Liouville domain carries a Liouville vector �eld Y de�ned by the
equation ιY dλ = λ. Then the contact condition implies that Y points out-
wards through Σ and its �ow gives coordinates (x, t) ∈ Σ×(−ε, 0] on a collar
of Σ. LY λ = λ implies that λ = etα in these coordinates.
Hence we can paste along the boundary an exterior piece Vext := Σ×[0,+∞),
de�ne on it the 1-form λext := etα and construct the completion V̂ of V ,
that is the exact symplectic manifold without boundary

(V̂ , λ̂) := (V qY Vext, λqY λext).

Every (Σ×{t}, etα) is contact and thus V is the monotone union of Liouville
domains. Furthermore the Liouville �eld is simply ∂t on the exterior and
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so its �ow is complete on V̂ and without critical points in the exterior.
These properties characterizes the manifolds that are completions of Liouville
domains, as we see in the next proposition which we state without proof.

De�nition 2.3.2. Let (M,λ) be an exact symplectic manifold. Then

� if there exists an exhaustion of Liouville domains (Vk, λ|Vk), such that

Vk ⊂ Vk+1, M =
⋃
k∈N

Vk,

then M is called an exact convex symplectic manifold,

� if the �ow of its Liouville �eld Y is complete, then M is said to be
complete;

� if Y 6= 0 outside a compact set, then M has bounded topology.

Proposition 2.3.3. An exact convex symplectic manifold is complete and
has bounded topology if and only if it is the completion of some Liouville
domain.

Example 2.3.4 (Stein manifolds). A Stein manifold (V, J, f) is a classical
example of an exact convex manifold. We have seen in Example 1.1.6 that
is exact with Liouville form λ := −df ◦ J . Suppose that a is a regular value
and consider the manifold with boundary

Va := {f ≤ a.}

Then Va is a Liouville domain. This can be seen as follows. Let g be the
compatible Riemann metric de�ned by

g(u, v) = d(λ)(Ju, v)

and compute the Hamiltonian vector �eld Xf through its very de�nition:

−df(u) = df ◦ J(Ju) = λ(Ju) = dλ(Y, Ju) = −dλ(JY, u).

So we get
Xf = −JY, ∇f = Y,

where ∇f is the gradient of f with respect to g. Hence we �nd that Y
points outward through ∂Va as we wanted. Since the set of critical values
is negligible we �nd that V is an exact convex manifold. Furthermore if all
the critical points of f are cointaned in a single compact set we get also that
V has bounded topology. The completeness can always be achieved after a
suitable reparametrization f 7→ β ◦ f (see Biran and Cieliebak (7)).
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It is convenient to de�ne morphisms between exact convex symplectic
manifolds that are not merely symplectomorphisms. In fact we shall require
that the 1-forms can change only up to a summand that is the di�erential
of a compactly supported function.

De�nition 2.3.5. Let ψ : (M,λ) → (M ′, λ′) be a map between two exact
symplectic manifolds. ψ is called exact if there exists a compactly supported
function h on M , such that

ψ∗λ′ = λ+ dh.

Remark 2.3.6. Since the support of h is assumed to be compact if an exact
manifold M embeds through an exact map into an exact convex manifold
than M is convex, too. As a result convexity is a property which is well-
de�ned up to exact di�eomorphisms.

The ideal candidate class for the ambient symplectic manifolds are com-
pletions of Liouville manifolds since they are exact and they behave nicely
at in�nity.
The former feature allows for the de�nition of the period-free action for loops
onM and, during the proof, it will give apriori estimates for the �rst deriva-
tive for functions belonging to a speci�c moduli spaceM. The latter feature
will be important in �nding C0-bounds on the same setM.

Remark 2.3.7. Every compact hypersurface Σ in an exact convex sym-
plectic manifold M can be embedded in V̂Σ,M the completion of a Liouville

manifold in such a way that the neighbourhoods of Σ (in M and in V̂Σ,M )
are isomorphic. Indeed, it su�ces to choose V := Vk with k su�ciently large.
So we can work in the larger class of exact convex symplectic manifold.

Now that we have said what the ambient manifold looks like we have
to impose some further condition on Σ. We actually ask for two kinds of
properties. The former is needed to develop tools necessary for the proof,
such as the de�ning Hamiltonian and the action-period equality. The latter
is composed by the displaceability condition only. It re�ects a symplectic
geometry relationship between Σ and M and in fact it is related to other
symplectic quantities such as cHZ .

Restricted contact type submanifolds

As far as the �rst kind of properties is concerned, we have found out in
Proposition 1.3.7 that if a hypersurface Σ in a symplectic manifold (M,ω)
is contact then there exists a neighbourhood U of Σ such that:

� ω is exact on U with a primitive λ which is a contact form on Σ,

32



� there exists a proper function H : U → (−ε0, ε0) such that

Σ = {H =0 } and R = XH .

The hypersurfaces we are looking for are those for which λ andH are globally
de�ned so that the free period action functional can be calculated for loops
with values in the whole M . In other words we can pick U = M above.

De�nition 2.3.8. An hypersurface Σ in an exact convex symplectic man-
ifold (M,λ) is called of restricted contact type if there exists an exact
embedding of a Liouville domain (V, λ′) in (M,λ), with Σ = ∂V .

This is equivalent to saying that

i) Σ is bounding, i.e. M \Σ is made by two connected componets and one
of them has compact closure. We call this one the interior of Σ, the
other the exterior ;

ii) there exists a compactly supported function h on M such that(
Σ, (λ+ dh)|Σ

)
is of contact type.

So if Σ is restricted contact type the �rst point tells us that the function H
provided by Proposition 1.3.7 can be extended from a small neighbourhood
of Σ to the whole M in such a way that

� H is proper,

� H < 0 on the interior, H > 0 on the exterior,

� dH is compactly supported.

One such function is called a de�ning Hamiltonian for Σ. In order to
ful�ll this requirement take simply H : Σ×(−ε0, ε0) → (−ε0, ε0) that is the
projection on the second factor. Then extend smoothly on the complement
of Σ×(−ε0, ε0), putting

H ≡ −ε0 in the interior and H ≡ ε0 in the exterior.

The point b) gives a globally de�ned 1-form λ̂ := λ+ dh which is contact on
Σ and which still makes M into an exact convex manifold. By the means of
λ̂ we can de�ne the free period action functional A for a loop γ := R/TZ→M
of arbitrary period T as follows:

γ 7→
∫
R/TZ

γ∗λ̂−
∫
R/TZ
H◦ γ dt.

Then if, γ is a curve on Σ which satis�es γ̇ = XH(γ),

A(γ) =

∫
R/TZ

λ̂γ(t)

(
γ̇(t)

)
dt−

∫
R/TZ

0 dt
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=

∫
R/TZ

λ̂γ(t)

(
XH(γ̇(t))

)
dt

=

∫
R/TZ

λ̂γ(t)

(
R(γ̇(t))

)
dt

=

∫
R/TZ

1 dt = T.

Hence we have got the action-period equality for closed orbits:

A(γ) = T. (2.1)

Remark 2.3.9. If (Σ, α)⊂(M,λ) is a contact submanifold then the follow-
ing couple of homological conditions is su�cient in order to guarantee that
Σ is of restricted contact type.

� 0=[Σ]∈H2n−1(M,R): this implies that Σ is bounding. In codimension
1 singular homology is the same as the cobordism category. So there
exists a smooth compact 2n manifold N which realizes the homology
of Σ to 0: in other words Σ = ∂N . The other component is simply
M \N , which is unbounded.

� H1
dR(Σ,R) = 0 (this is the condition Weinstein included in the original

statement of the conjecture). Condition i') in Proposition 1.3.7 yields
a 1-form λ′ on a neighbourhood U of Σ such that

dλ′ = ω = dλ (2.2)

and λ′ is contact on Σ. Then Equation (2.2) implies that

d(λ′ − λ) = dλ′ − dλ = ω − ω = 0.

The vanishing of the �rst de Rham cohomology group therefore yields
a function h such that λ′ = λ+dh. Multiplying h by a function χ that
is equal to 1 near Σ and compactly supported in U gives the function
ĥ := χh which is de�ned on the whole M and compactly supported.
Finally λ̂ := λ+ dĥ is the required 1-form.

Displaceability

An important subset of symplectomorphisms are those which can be writ-
ten as time 1-maps of Hamiltonian �ows. We are interested in having a large
set available and so we allow for non-autonomous Hamiltonian functions,
even though with a periodic dependance on the parameter.
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De�nition 2.3.10. Let Φ : (M,ω) → (M,ω) be a symplectic di�eomor-
phism. Φ is calledHamiltonian if there exists a function H : [0, 1]×M → R
such that:

a) there exists a compact set K ofM , such that, for every t, Ht has support
in K;

b) if ΦH is the �ow at time 1 of XH , then Φ = ΦH .

In the following discussion we will assume that H can be extended to a
function H : R/Z ×M → R, since every Hamiltonian di�eomorphism arises
from a periodic Hamiltonian. If H : [0, 1]×M → R is a generic function such
that Φ = ΦH , then we can de�ne Ĥ(t, z) := h(t)H(t, z), where h : [0, 1]→ R
is a non-negative function, with support in (0, 1) and

∫ 1
0 hdt = 1. This last

condition implies Φ
Ĥ

= ΦH = Φ. The condition on the support tells us that

Ĥ has a periodic extension.
We will denote by Hc(M) the set of functions that satisfy a) and by

Ham(M,ω) the set of Hamiltonian di�eomorphisms. Then b) gives a surjec-
tive map

π : Hc(M) → Ham(M,ω)
H 7→ ΦH .

The �ber upon a di�eomorphism represents the possible ways to realize it
as a periodic mechanical movement. The energy of such a movement can be
de�ned using the associated Hamiltonian.

De�nition 2.3.11. Let H ∈ Hc(M) and de�ne the function osc(H) as
follows.

osc(H) : R/Z → [ 0,+∞)

t 7→ max
z∈M

Ht(z)− min
z∈M

Ht(z).

Then de�ne,

‖H‖ :=

∫
R/Z

osc(H) dt. (2.3)

‖ ·‖ induces a corresponding function on Ham(M,ω) through the map π:

‖Φ‖ := inf
H∈Hc(M)

{
‖H‖

∣∣ H∈π−1(Φ)
}
. (2.4)

So ‖Φ‖ expresses the `minimum' amount of energy which makes the mechan-
ical movement Ψ possible. We call this new function the Hofer's norm.
We stress the fact that this is not a norm (since Ham(M,ω) is not a vector
space). However ‖Φ‖ represents the distance between the identity map and
Φ when we endow Ham(M,ω) with a suitable distance, called the Hofer's
metric. An account of the properties of this metric can be found in (28) as
well as in the monograph by L. Polterovich (39).

We are now ready to give the de�nition of displaceability.
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De�nition 2.3.12. Let A be a subset of (M,ω). The displacement en-

ergy of A is given by

eω(A) := inf
Φ∈Ham(M,ω)

{
‖Φ‖| Φ(A) ∩ A = ∅

}
. (2.5)

A is called displaceable if eω(A) < +∞, namely there exists Φ such that
Φ(A) ∩A = ∅.

Remark 2.3.13. Here are some observations about the displacement energy.

� Since the Hamiltonian functions considered are compactly supported,
a displaceable set is bounded, i.e. contained in a compact subset.

� The displacement energy decreases under the action of symplectic em-
beddings. Suppose Ψ : (M,ω) ↪→ (M ′, ω′) is one such embedding and
Φ is in Ham(M,ω). Then Ψ ◦ Φ ◦Ψ−1 de�ned on the image of Ψ can
be extended to an element Φ′ of Ham(M ′, ω′) simply imposing

Φ′(z) = z, z /∈ Ψ(M).

This new element satis�es ‖Φ′‖ ≤ ‖Φ‖ because we have also an exten-
sion map Hc(M) → Hc(M ′) which maps H to an H ′ de�ned in the
obvious way. Then ‖H‖ = ‖H ′‖ and the commutativity relation

π′(H ′) = (π(H))′

yields ‖Φ′‖ ≤ ‖Φ‖. Furthermore if Φ displaces A, then Φ′ displaces
Ψ(A) and so

eω(A) ≥ eω′(Ψ(A)).

� In a �xed symplectic manifold (M,ω) the displacement energy is mono-
tone:

A ⊂ B ⇒ eω(A) ≤ eω(B).

� The Hofer's norm and, hence, the displacement energy are positively
homogeneous with respect to the symplectic form:

∀a > 0, eaω = |a|eω.

� The displacement energy is outer regular. Namely if eω(A) < +∞ and
ε > 0 is �xed, then there exists a neighbourhood Uε of A such that

eω(Uε) < eω(A) + ε.
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� As we have mentioned few pages ago the displacement energy is tied to
another important geometric quantity, namely the Hofer-Zehnder ca-
pacity. This is done via the energy-capacity inequality. Several results
of this kind are obtained under distinct assumptions. F. Schlenk stud-
ied this problem in (43). One of the corollaries he gets is the following
one.

Theorem 2.3.14. Let (M,ω) be a symplectic manifold geometrically
bounded (M the completion of a Liouville domain is su�cient). If A
is a subset of M , then

cHZ(A) ≤ 4eω(A).

Example 2.3.15 (Bounded sets in linear spaces). Every bounded set B in
Cn is easily seen to be displaceable. Any translation by a vector v where v
is of the form v =

∑
k v

k∂qk is in Ham(Cn, dλ). It is enough to take

H(p, q) =
∑
k

vkqk.

Call Φt the �ow of XH . In order to �nd a compactly supported function,
whose �ow at time 1 displaces B, simply multiply H by a cut-o� function
which is constantly equal to 1 in a neighbourhood of the bounded set⋃

t∈[0,1]

Φt(B).

2.4 The main theorem

We are now ready to state the theorem we are going to prove in the
subsequent chapters.

Theorem 2.4.1. Let (M,λ) be an exact convex symplectic manifold and let
Σ be a compact hypersurface contained in M . If Σ is restricted contact

type and displaceable then it carries a contractible closed characteristic
whose period is smaller than edλ(Σ).

The manifolds which best suit the hypotheses of the theorem are subcrit-
ical Stein manifolds. For a generic Stein manifold (V, J, f) it is possible to
choose f as a Morse function whose critical points have index less or equal
to half the dimension of V . If the inequality is strict, then V is called sub-
critical. These manifolds has been studied by Biran and Cieliebak (7), who
discovered that every compact subset is displaceable.

Remark 2.4.2. In Remark 2.3.13 we have mentioned the energy-capacity
inequality. This inequality allows for a comparison between the theorem
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presented here and the theorem of nearby existence developed by Hofer and
Zehnder, which is easily seen to be stronger. Indeed,

• eω(Σ) < +∞ ⇒ cHZ(Σ) < +∞,
• Σ restricted contact type ⇒ Σ stable submanifold.

Therefore the hypotheses of Theorem 2.4.1 implies those of Corollary 2.2.5,
which was a consequence of the Nearby Existence Theorem 2.2.2. On the
other hand, recently Cieliebak, Frauenfelder and Paternain have succeeded in
extending the de�nition of RFH to the larger class of stable tame manifolds.
As a byproduct they improved Theorem 2.4.1 substituting the restricted
contact type hypothesis with the slightly relaxed stable tame hypothesis.
However the gap between the energy-capacity inequality methods and those
based on the free period action functional is still wide and it is likely to
remain so. We have decided to not present the theorem in this strong and
up-to-date version because new ideas come into play in its proof that are not
merely a generalization of the simple case.
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Chapter 3

The free period action

functional

We have described in the �rst chapter how Newton's physics can be
encoded in the language of Hamiltonian systems. The latter formulation
presents some advantages respect to an approach merely based on the Sec-
ond Law of Dynamics: there is a group of transformation which preserves
the dynamics (symplectic di�eomorphism) and many stability results are
known. But perhaps the most appealing feature is the possibility to get
Hamilton equations via a variational argument. The `admissable' or phys-
ical motions are characterized by the fact that they are critical points of a
suitable functional de�ned on a space of smooth paths in the con�guration
space. However, since the domain of the functional is in�nite-dimensional,
establishing the existence of critical points is quite a di�cult task. Several
properties were singled out which are su�cient for a functional in order to
have critical points (the most important are probably the direct method and
the minimax method), but unfortunately these do not apply directly to the
action functional of classical mechanics on the space of loops. The major
di�culty is that the critical points of the action do not have �nite Morse
index. Rabinowitz was the �rst in 1978 (40) to circumvent the problem and
to exploit variational properties of the action. However it was only with the
work of A. Floer that a general theory has been available. Floer in (18) con-
structed an homology theory, whose complex is generated by critical points.
Therefore if we can compute the homology, we will gain information also
about the critical points. Although we will not construct an homology the-
ory for the action à la Floer, the proof will share some basic lemmas with
Floer's theory. In this �rst chapter we will de�ne a family of free period
action functionals, see that they admit a gradient-like system and establish
some properties of the solutions with �nite energy.
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3.1 The space of loops

Suppose that the hypotheses of Theorem 2.4.1 are ful�lled. From the
observations in Remark 2.3.7 and Remark 2.3.13 follows that we can work
with the completion of a Liouville manifold as ambient space. The following
notations are �xed till the end of this exposition. Let (V, λ) be a Liouville
domain,M := V̂ its completion, Y the Liouville vector �eld and the function
ρ de�ned on its exterior

ρ : Vext → R
(x, t) 7→ t.

It is convenient to give a name also to the exhaustion of Liouville domains
whose union is M :

Va := V ∪ {ρ ≤ a}, a ≥ 0. (3.1)

On M we can construct an almost complex structure J compatible with dλ
and with the further property that

dρ◦J = λ, on Vext. (3.2)

To this aim is su�cient to choose J as the direct sum J1 ⊕ J2 with respect
to the splitting

T(x,t)M = ξ ⊕ Span(Xρ, Y ), ξ := kerλ∣∣T{ρ=t}
.

J1 is an almost complex structure compatible with dλξ and J2 acts in the
following way:

J2Xρ = Y, J2Y = −Xρ.

Then Equation (3.2) is easily seen to be true separatedly for ξ, Y and Xρ.
Let g(·, ·) = dλ(J ·, ·) the Riemannian metric associated with dλ and J and
remember that g has an extension to the whole tensor algebra of TzM .
Moreover let Σ be a hypersurface of restricted contact type in M so that λ
is a contact form when restricted to Σ and let H : M → R be a de�ning
Hamiltonian for Σ chosen as in Section 2.3. From that discussion is clear
that the support of dH can be made arbitrarily close to Σ. This is important
because we can suppose that any displacing Hamiltonian F for Σ displaces
the support of dH as well (see Section 4.6.3).
At the end of the previous chapter we have de�ned the free period action
functional for a loop γ : R/TZ→M in the following way

A(γ) :=

∫
R/TZ

γ∗λ−
∫
R/TZ
H◦ γ dt.

However we would like to have a functional de�ned on loops with �xed period.
To this purpose consider the standard one-dimensional torus T := R/Z and
the di�eomorphism

φT : T → R/TZ

y 7→ Ty.
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Setting u : T→M as u := γ ◦ φT we get

A(γ) =

∫
R/TZ

γ∗λ−
∫
R/TZ
H◦ γ dt

=

∫
R/TZ

(φ−1
T )∗ (u∗λ)−

∫
R/TZ
H◦ u ◦φ−1

T dt

=

∫
T
u∗λ− T

∫
R/TZ

(φ−1
T )∗ (H◦ u dt)

=

∫
T
u∗λ− T

∫
T
H◦ u dt.

Then we can de�ne A on E0 := Λ0×R, where Λ0 ⊂ Λ := C∞(T,M) is the
space of contractible loops:

A : E0 → R

(u, T ) 7→
∫
T
u∗λ− T

∫
T
H◦ u dt.

Take now a closer look to the loop space. On Λ we put the C∞-topology.
A prebase is made by the sets U(u, ψ, ψ′,K, ε,m), where u ∈ Λ, (V, ψ) and
(V ′, ψ′) are coordinate charts in T and M respectively, K ⊂ V is a compact
set such that u(K) ⊂ V ′, ε is a positive real number and m is a natural
number. Then

U(u, ψ, ψ′,K, ε,m) :=

v ∈ Λ

∣∣∣∣∣
v(K) ⊂ V ′, ∀k ≤ m,∥∥∥ dk
dtk

(ψ′◦ v◦ ψ−1)− dk

dtk
(ψ′◦ u◦ ψ−1)

∥∥∥<ε
 .

Alternatively we can embed M in RN , thanks to the Whitney embedding
theorem, and regard Λ as a closed subset of C∞(T,RN ), which is a Fréchet
space. In any case Λ0 is easily seen to be a connected component of Λ.
E0 is equipped with the product topology, but it has some kind of weak dif-
ferentiable structure. This structure is speci�ed by assigning to each element
of E0 a set of admissible variations.

De�nition 3.1.1. Let w = (u, T )∈E0. An admissible variation for w is
a couple of smooth functions

ŵ :=
(
û : T× (−ε, ε)→M, T̂ : (−ε, ε)→ R

)
such that

û(t, 0) = u(t), T̂ (0) = T.

The variation gives also a path (−ε, ε)→ E0, that we still call ŵ with a little
abuse of notation:

ŵ(s) = (û(·, s), T̂ (s)).
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We can associate to ŵ the element

dŵ

ds
(0) :=

( d
ds

∣∣∣∣
s=0

û(t, s),
d

ds

∣∣∣∣
s=0

T̂ (s)
)
.

This is an element of Γ(u∗TM)×R, where the �rst factor is the space of
smooth sections of the pull-back bundle u∗TM .
We call TwE0 := Γ(u∗TM)×R the tangent space at w.

Remark 3.1.2. Here are some observations about the notions just intro-
duced.

� Every element (X, η) in TwE0 comes from an admissible variation. It
is enough to consider the maps (well-de�ned for small s)

û : (t, s) 7→ expu(t)(sX), T̂ : s 7→ T + sη.

The claim follows from the fact that dOexpz = idTzM .

� We can endow TwE0 with an L2-scalar product using the metric g.

〈(X, η), (X ′, η′)〉w :=

∫
T
g(X,X ′) dt+ η · η′ (3.3)

and we denote by ‖ · ‖w the induced norm. Then 〈·, ·〉 induces an
injective map:

[ : TwE0 → HomR(TwE0,R)

(X, η) 7→ 〈(X, η), ·〉w.

3.2 Closed characteristics as critical points

Now we can test the di�erentiability of functionals on E0 using admis-
sible variations. A functional f is Gateaux di�erentiable at a point w, if
there exists a linear map dwf : TwΛ0 → R such that, for every variation
ŵ, the function s 7→ f(ŵ(s)) de�ned in an open neighbourhood of 0 ∈ R is
di�erentiable at 0 and the following relation holds:

d

ds

∣∣∣∣
s=0

f
(
ŵ(s)

)
= dwf

(
dŵ

ds
(0)

)
.

A point w such that dwf = 0 is a critical point for f .

Proposition 3.2.1. A is Gateaux di�erentiable at every point of E0 and

dwA(X ′, η′) = 〈
(
Ju
(
u̇− TXH(u)

)
,

∫
T
H(u(t)) dt

)
,
(
X ′, η′

)
〉w.

So dwf is in the image of [ and we set

∇A(w) := [−1(dwA) =

(
Ju(u̇− TXH(u)),−

∫
T
H(u(t)) dt

)
.

We call ∇A : E0 → E0 the gradient of A.
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Proof. Since A is the sum of two pieces, we make two separate estimates.
Let ŵ be an admissible variation and compute∫

T
(û(s))∗λ. (3.4)

On T there is a global form dt, therefore the 1-form in (3.4) is equal to

(û(s))∗λ(∂t) dt. (3.5)

The real number (û(s))∗λ(∂t) is a function of the two variables (t, s) and a
moment's thought shows that it is equal to

û∗λ(∂t), (3.6)

where û and ∂t are de�ned on a open neighbourhood of T×{0}⊂T×R. Let
Φs be the �ow of the vector �eld ∂s, de�ned on a smaller neighbourhood of
T×{0}, then (t, s) = Φs(t, 0). Di�erentiating (3.6) with respect to s yields

d

ds

∣∣∣
s=0

(û∗λ)(t,s) (∂t|(t,s)) =
d

ds

∣∣∣
s=0

(û∗λ)Φs(t,0)

(
d(t,0)Φs∂t|(t,0)

)
= L∂s (û∗λ)(t,0) (∂t)

= û∗ (dλ) (∂s, ∂t) + d (û∗λ)(t,0) (∂t)

= dλ

(
∂û

∂s
(0), u̇

)
+ d (u∗λ) (∂t)

Using the fact that the derivative commutes with the integral sign we �nd
that the function (3.4) is di�erentiable for s = 0 and its derivative is equal
to ∫

T
dλ

(
∂û

∂s
(0), u̇

)
dt, (3.7)

since d (u∗λ) (∂t)dt is exact on T. The computation of the second summand
is easier

d

ds

∣∣∣
s=0
− T̂ (s)

∫
T
H(û(t, s))dt = −dT̂

ds
(0)

∫
T
H◦u dt− T

∫
T
dH(

∂û

∂s
(0))dt

= −dT̂
ds

(0)

∫
T
H◦u dt+ T

∫
T
dλ

(
XH(u),

∂û

∂s
(0)

)
dt.

Putting all together we �nd∫
T
dλ

(
∂û

∂s
(0), u̇− TXH(u)

)
dt− dT̂

ds
(0)

∫
T
H◦u dt. (3.8)

Alternatively using the scalar product g,∫
T
g

(
∂û

∂s
(0), J(u̇− TXH(u))

)
dt− dT̂

ds
(0)

∫
T
H◦u dt. (3.9)

Recalling the de�nition of 〈·, ·〉, the proposition is thus proved.
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The previous proposition allows for a simple calculation of the critical
points of A.

Corollary 3.2.2. The critical points of A are of two kinds:

a) (z, 0), with z a constant path on Σ and A((z, 0)) = 0,

b) (u, T ), with T 6= 0 and u ◦ φ1/T is a periodic orbit of XH contained in Σ
and A((u, T )) = T .

Proof. Proposition 3.2.1 shows that

dwf

(
∂û

∂s
(0),

dT̂

ds
(0)

)
= 〈∇A(w),

(
∂û

∂s
(0),

dT̂

ds
(0)

)
〉.

Moreover the �rst observation in Remark 3.1.2 says that
(
∂û
∂s (0), dT̂ds (0)

)
in

(3.9) can be any element in TwE0. So the fact that 〈·, ·〉 is nondegenerate
implies that

dwA = 0 ⇐⇒ ∇A(w) = 0.

A(w) = 0 is in turn equivalent to the couple of equations
u̇ = TXH(u),

0 =

∫
T
H(u(t)) dt.

Let's consider separatedly the cases T = 0 and T 6= 0.

� T = 0. The �rst equation becomes u̇ = 0 and hence u ≡ z ∈ M is
constant. Hence the second equation is simplyH(z) = 0, which implies
z ∈ Σ.

� T 6= 0. The �rst equation implies that u
(
t
T

)
is a closed orbit of period

T . The energy conservation then yields H(u
(
t
T

)
) ≡ h ∈ R, i.e. H(u) is

constant. Then the second equation implies that h = 0 and, therefore,
u is a loop on Σ.

The Corollary 3.2.2 shows that inside the critical set, the points of type
a) form a copy of the hypersurface Σ. On the other hand we are interested
in the existence of points of type b). When a functional f is de�ned on a
�nite dimensional manifold N , one of the standard techniques in order to
�nd critical points is to consider the gradient �ow of f with respect to
some metric µ. The gradient vector �eld is de�ned as before using the map
[:

∇f = [−1(df).
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The gradient �ow is generated by the ordinary equation

ż = −∇f(z). (3.10)

Then one sees how the topology of energy levels {f = a} depends on a. In
particular if one knows that two levels are not homeomorphic, this forces
the existence of a critical point. Re�ned arguments are provided by Morse
theory, which guarantees that under an apriori non-degeneracy assumption
for the critical points, the cardinality of the critical set is bounded from
below by the sum of the Betti numbers.

However for A things are quite di�erent. Its domain is neither �nite
dimensional nor at least is a manifold modeled on some Banach space, where
an ODE theory is still available. On the contrary if we consider in this case
the equation

dw

ds
= −∇A(w), (3.11)

we saw that the right hand side can be de�ned, however the only way to
de�ne the left hand side we have found so far is by the means of admissible
variations. We de�ned a variation as a couple of functions and one of them
depends on two variables: therefore we must shift from anODE-based theory
to a PDE-based theory. For this reason we shall say that a couple of smooth
functions

w =
(
u : T× (a, b)→M, T : (a, b)→ R

)
is a solution of (3.11) if and only if

∂u

∂s
+ Ju

(
∂u

∂t
− TXH(u)

)
= 0,

dT

ds
+

∫
T
H(u) dt = 0.

(3.12)

Remark 3.2.3.

� Obviously such a couple gives rise in a natural way also to a contin-
uous curve w : (a, b)→E0 (the naturality justifying the little abuse of
notation).

� The �rst equation in (3.12) is a perturbation of order 0 of the J-

holomorphic curves equation

∂u

∂s
+ Ju

∂u

∂t
= 0. (3.13)

The solutions of this equation are a generalization of holomorphic
curves to the case of a non-integrable J since the operator

∂J :=
∂

∂s
+ J

∂

∂t
.
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is the analogous of the classic ∂ operator for maps between complex
manifolds and shares with it some important regularity properties,
which will be crucial in the proof.

The analogy with the �nite-dimensional case pushes us to focus the at-
tention on Equation (3.12), but now we have to understand how solutions
of this equation can reveal something about the structure of the critical set.
Continuing further the analogy we observe that when the underlying man-
ifold N is compact and the function f is Morse, all the solutions of (3.10)
are de�ned for all s ∈ R and they tend to a pair of critical points z+ and z−
as s goes to −∞ and +∞ respectively. Therefore it is convenient to group
the solutions using couples of critical points and de�ne the sets

M(f, g, z+, z−) := {z ∈ C∞(R, N) | ż = −∇f(z), z(±∞) = z±}.

For a generic metric g these sets (also called moduli spaces turn out to be
smooth �nite-dimensional manifolds and, what is extremely important, they
interact together by the means of a phoenomenon called the breaking of

gradient �ow lines, which re�ects the fact that Equation (3.10) is preserved
under C∞loc-limits and time shifts (if z satis�es (3.10), then so does z(· + σ)
while the boundary conditions are not. In fact when a moduli space is not
compact a sequence of points (zk) happens to exist in M(f, g, z+, z−) that
tends in the C∞loc-topology to a solution z which belongs to another moduli
space. If this is the case, then there is a positive natural number m such
that:

a) there exist m couples of critical points (z1
−, z

1
+), . . . , (zm− , z

m
+ ) with

z1
− = z−, z

1
+ = z2

−, . . . zh+ = zh+1
− , . . . z1

+ = z+.

b) there exist m sequences of time shifts(
σhk

)1≤h≤m

k∈N
and σh0k ≡ 0 for some h0, 1 ≤ h0 ≤ m.

Furthermore these sequences have a growth that increases as h ranges
from 1 to m:

lim
k→+∞

(σh+1
k − σhk ) = +∞,

c) the sequences
zhk := zk(·+ σhk )

tend in the C∞loc-topology to trajectories

zh := lim
k→+∞

zhk ,

which belong toM(f, g, zh−, z
h
+).
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One can visualize this behaviour thinking that the sequence of whole lines zk
comes nearer and nearer to the set of critical point described in a) breaking
eventually in a chain of several lines which connect the couple of original
critical points (z−, z+). This phenomenon hidden in the loss of compactness
is revealed by suitable shifts in time.

The important principle to retain from the preceding reasoning is that
the lack of compactness for a moduli space implies the existence of other
critical points. In the case of the free period functional we know that there
is a trivial critical subset isomorphic to Σ, therefore our aim is to use it in
order to build a noncompact moduli space and hope that this will give rise
to a break of the �ow lines just as in the �nite-dimensional case. However
in our case there are some additional di�culties to overcome.

First of all even if we are interested in a noncompact moduli space we
want that its C∞loc-closure is compact in order to �nd a candidate sequence
zk that breaks. In order to achieve this compactness we need di�erent ingre-
dients such as the exactness of the symplectic form, the contact hypothesis
and the structure at in�nity of M .

Secondly once a suitable sequence is available, additional hypotheses
must be ful�lled in order to have the breaking. In the �nite-dimensional
theory the common assumption that one makes is that the functional is
Morse. This implies, for instance, that the critical set is discrete. However
the free period functional does not meet this requirement. On the one hand
we have noticed that the trivial critical points form a copy of Σ on the other
hand, since the system is autonomous, the nontrivial critical points are di-
vided into subsets and each of them is isomorphic to S1 (every such subset is
simply made by the time shifts of a �xed closed characteristics). Therefore
the components of CritA are manifolds of positive dimension and so A is
necessarily not Morse. However it still satis�es a weaker condition, which is
enough to break the �ow lines. In fact we will show in a subsequent chapter
that the trivial critical points of A form a Morse-Bott component: in
short this means that the �ow lines come from and go to the trivial critical
set fast and transversally.

3.3 The moduli space

Now that we have established the guiding principles to follow, it is time
to construct explicitly the moduli space. The �rst thing to do is to use the
displaceability condition in order to de�ne an homotopy of functionals Aβ
such that CritA0 ' CritA and A1 is a functional without critical points.
By assumption Σ is displaced by F ∈ Ham(M,dλ). Furthermore we claim
that we can pick F such that F (·, t) = 0 for all t whose fractional part is
in [0, 1

2 ] without changing the integral which de�nes the Hofer norm (2.3).
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Consider a function χ : R→ R such that

• χ(t) = 0, when t ∈ [0,
1

2
] , • dχ

dt
≥ 0 , • χ(t+ 1) = χ(t) + 1 .

χ passes to a map from T to itself, which we shall denote with the letter χ,
too. Then de�ne

Fχ(t, z) :=
dχ

dt
(t)F (χ(t), z).

A simple calculation shows that

• ΦFχ = ΦF , • ‖Fχ‖ = ‖F‖

and the claim is thus proved. In what follows we will indicate the displacing
function with this additional property simply by F . In a similar fashion we
can �nd a function χ̃ such that

• χ̃(t) = 1, when t ∈ [
1

2
, 1] , • dχ̃

dt
≥ 0 , • χ̃(t+ 1) = χ̃(t) + 1 .

Set

H̃(t, z) :=
dχ̃

dt
(t)H(z)

and for every β in [0, 1] de�ne the functional

Aβ(w) :=

∫
T
u∗λ− T

∫
T
H̃(t, u) dt− β

∫
T
F (t, u) dt. (3.14)

Proposition 3.3.1. Each Aβ is di�erentiable and furthermore admits the
gradient

∇Aβ(w) :=

(
Ju
(
u̇− TXH̃(t, u)− βXF (t, u)

)
,−
∫
T
H̃(t, u(t)) dt

)
(3.15)

Furthermore:

� there is a one-to-one correspondence between CritA and CritA0

(u(t), T )→ (u(χ̃(t)), T ),

� CritA1 is empty.

Proof. The �rst part of the proposition can be proven in the same way as
Proposition 3.2.1. Therefore the critical points of A0 can be described equally
well by Corollary 3.2.2, if we substitute H with H̃. Then we observe that if
u : R → M is an integral curve for XH , then u ◦ χ̃ is an integral curve for
XH̃ and

u(k) = u(χ̃(k)), ∀k ∈ Z (3.16)
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and all the integral curves are of this kind. In fact suppose that ũ satis�es

˙̃u = XH̃(t, ũ),

with ũ(0) = u0. If u is an integral curve for XH , such that u(0) = u0, then

ũ = u ◦ χ̃.

Once this correspondence has been established we notice that solutions with
integer period are carried to solutions with the same integer period bijectively
because of Equation 3.16. It remains to show that A1 does not have critical
points. The equations in this case read

u̇ = TXH̃(t, u) +XF (t, u),

0 = −
∫
T

˙̃χ(t)H(u(t)) dt

Now we use the fact that for t ∈ [0, 1
2 ] + Z, F (t, ·) = 0 and for t ∈ [1

2 , 1] + Z,
H̃(t, ·) = 0 and consider the equations separatedly on this two intervals of
times. What we obtain are the following equations for a couple of functions(

u1 : [0,
1

2
]→M, u2 : [

1

2
, 1]→M

)
,

u̇1(t) = TXH̃(t, u1(t)),

0 = −
∫ 1

2

0

˙̃χ(t)H(u1(t)) dt;

{
u̇2(t) = XF (t, u2(t)),

0 = 0;

with the boundary conditions

u1(0) = u2(1), u1(
1

2
) = u2(

1

2
).

The �rst set implies that u1 lies entirely on Σ, whereas the second set yields
u2(1) = ΦF

(
u2(1

2)
)
. This means that

u1(0) = ΦF

(
u1(

1

2
)

)
∈ Σ ∩ ΦF (Σ).

Since ΦF displaces Σ the critical set of A1 is empty and thus the proposition
is proved.

Now that we have the homotopy of functionals we must use it to construct
a correspondent homotopy of gradient-like equations. We refer to this as
a stretching-the-neck homotopy, since not only the functional changes
with the parameter, but also the times during which a functional of the
family operates dynamically through its gradient. For this purpose we need
a function

β : [0,+∞)×R → [0, 1]
(r , s) 7→ βr(s)

with the following properties
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1. ∀s ≥ 0,
dβr
ds
≤ 0;

2. ∀s ≤ 0,
dβr
ds
≥ 0;

3. ∀r ≥ 1,

• if |s| ≤ r − 1, βr(s) = 1, • if |s| ≥ r, βr(s) = 0;

4. ∀r ≤ 1,

• if |s| ≥ 1, βr(s) = 0, • βr(s) ≤ r.

The existence of such a function β (or of a smooth family of functions βr)
is easy and can be achieved for example taking dilations and scalar multiple
of a �xed bump function.

Now we are in position to de�ne the gradient-like equation that charac-
terizes the moduli space.

De�nition 3.3.2. Let r ∈ [0,+∞) be a real number and we consider the
set F0 made by couples of smooth functions

w =
(
u : T× R→M, T : R→ R

)
.

We endow both C∞(T×R,M) and C∞(R,R) with the topology of the uni-
form convergence of all derivatives on every compact subset. This is the
so-called C∞loc-topology. Then F0 is given the product topology.
w∈F0 is said to satisfy the r-Equation or to be a r-Solution if and only
if

dw

ds
(s) = −∇Aβ(r,s) (w(s)) (3.17)

holds. The r-Equation can be expanded into the couple

∂u

∂s
(t, s) + Ju(t,s)

(
∂u

∂t
(t, s)− T (s)XH̃(t, u(t, s))− β(r, s)XF (t, u(t, s))

)
= 0,

dT

ds
(s)−

∫
T
H̃(t, u(t, s)) dt = 0. (3.18)

Remark 3.3.3. The 0-Equation reduces to the Equation(3.11) for A0. As r
increases the interval of times during which the Equation 3.11 is perturbed
widens and its width is roughly proportional to r. However for every r the
solutions of the r-Equation satisfy the gradient equation for the functional
A0 as s approaches in�nity.

From now on let z0 be a distinguished point on Σ. Then the moduli
spaceM we are interested in is so de�ned:

M :=

(r, w) ∈ [0,+∞)×F0

∣∣∣∣∣∣∣∣
w satis�es the r-Equation,

w(−∞) := lim
s→−∞

w(s) = (z0, 0),

w(+∞) := lim
s→+∞

w(s) ∈ Σ×0.

 (3.19)
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As we notice in Remark 3.2.3 every element of F0 gives rise to a path in E0

and thus the limits in (3.19) are intended in the topology of E0. Fur-
thermoreM inherits from [0,+∞)×F0 the product topology, the topology
of F0 being the C∞loc-topology described above.
Obviously the subset of r-Solutions is closed in [0,+∞)×F0, namely if
(rk, wk)→ (r, w) then

wk satis�es the rk-Equation ⇒ w satis�es the r-Equation.

HoweverM is not a closed subspace since the boundary conditions are not al-
ways preserved. Nevertheless the asymptotic behaviour can still be controlled
although in a weaker sense. This is achieved by introducing an important
quantity, called the energy. On the one hand the limit of a C∞loc-convergent
sequence of maps with bounded energy has �nite energy and on the other
hand we will see that in some cases a map with �nite energy admits asymp-
tots, which are critical points. This last phaenomenon will be investigated
in Chapter 5.

3.4 Energy

De�nition 3.4.1. Let w be a map in F0. Its energy is de�ned by the formula

E(w) :=

∫
R

∥∥∥∥dwds (s)

∥∥∥∥2

w(s)

ds ∈ [0,+∞], (3.20)

or after expanding the norm in the integral

E(w) =

∫
R

(∫
T

∣∣∣∣∂u∂s (t, s)

∣∣∣∣2
u(t,s)

dt

)
ds+

∫
R

∣∣∣∣dTds (s)

∣∣∣∣2ds. (3.21)

The next proposition establishes some inequalities for the energy of r-
Solutions, which demonstrate as the action and the energy are linked to-
gether.

Proposition 3.4.2. Let w be an r-Solution. Then,

A0 ◦ w∣∣{s≤−r}, A0 ◦ w∣∣{s≥r} are non-increasing functions.

Moreover if we de�ne

A0(w±) := lim
s→±∞

A0(w(s)),

the following inequalities hold:

E(w) ≤ A0(w−)− A0(w+) + ‖F‖, (3.22)

∀s ∈ R, |Aβ(r,s)(w(s))| ≤ max{A0(w−),−A0(w+)}+ ‖F‖. (3.23)
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Proof. Let s0 ≤ s1 and set

∆(s0, s1) := Aβ(r,s0)(w(s0))− Aβ(r,s1)(w(s1)).

Then compute

∆(s0, s1) = −
∫ s1

s0

dAβ(r,s)(w(s))

ds
(s) ds

= −
∫ s1

s0

(
∂Aβ(r,s)

∂s
(s)

)
(w(s)) ds−

∫ s1

s0

dw(s)Aβ(r,s)

(
dw

ds
(s)

)
ds.

Writing explicitly
∂Aβ(r,s)

∂s
and using the fact that w is an r-Solution we �nd

∆(s0, s1) =

∫ s1

s0

dβr
ds

(s)

(∫
T
F (t, u(t, s))dt

)
ds+

∫ s1

s0

∥∥∥∥dwds (s)

∥∥∥∥2

w(s)

ds. (3.24)

Set

θ(s0, s1) :=

∫ s1

s0

dβr
ds

(s)

(∫
T
F (t, u(t, s))dt

)
ds

and �rst show that
− θ(s0, s1) ≤ ‖F‖. (3.25)

We consider separatedly the cases s0 ≤ s1 ≤ 0 and 0 ≤ s0 ≤ s1 since dβr
ds has

constant sign on the positive ray and on the negative ray. For the �rst case
we �nd

−θ(s0, s1) =

∫ s1

s0

−dβr
ds

(s)

(∫
T
F (t, u(t, s))dt

)
ds

≤
∫ s1

s0

−dβr
ds

(s)

(∫
T

min
z∈M

F (t, z)dt

)
ds

= (βr(s1)− βr(s0))

∫
T
−min
z∈M

F (t, z)dt

The second possibility yields

−θ(s0, s1) ≤ (βr(s0)− βr(s1))

∫
T

max
z∈M

F (t, z)dt.

Recall now the de�nition of the Hofer's norm and keep in mind that in any
case

|βr(s0)− βr(s1)| ≤ 1.

Then for the two cases considered above (3.25) follows immediately. If s0 and
s1 have di�erent signs then (3.25) follows again by the splitting θ(s0, s1) =
θ(s0, 0) + θ(0, s1). This concludes the proof of the inequality 3.25.
For the proof of the �rst inequality we let s0 → −∞ and s1 → +∞ and get

A0(w−)− A0(w+) = θ(−∞,+∞) + E(w) ≥ E(w)− ‖F‖.
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For the second inequality we get from (3.24)

θ(s0, s1) ≤ ∆(s0, s1), (3.26)

Now pick s′ ∈ R and make the two di�erent substitutions in (3.26):(
s0 → −∞, s1 = s′

)
,

(
s0 = s′, s1 → +∞

)
.

As a result we obtain the couple of inequalities{
θ(−∞, s′)≤ A0(w−)− Aβ(r,s′)(s

′) ≤ max{A0(w−),−A0(w+)}− Aβ(r,s′)(s
′),

θ(s′,+∞)≤ Aβ(r,s′)(s
′)− A0(w+) ≤ max{A0(w−),−A0(w+)}+ Aβ(r,s′)(s

′).

That can be rearranged into{
Aβ(r,s′)(s

′) ≤ max{A0(w−),−A0(w+)} − θ(−∞, s′),

−Aβ(r,s′)(s
′) ≤ max{A0(w−),−A0(w+)} − θ(s′,+∞)}.

Using again (3.25) we get the desired inequality.

We know from the very de�nition ofM that w has limits for s that tends
to in�nity. So the continuity of A0 on E0 implies that, if (r, w) ∈M, then

A0(w±) = A0(w(±∞)) = 0.

Therefore we have the uniform estimates onM

E(w) ≤ ‖F‖, (3.27)

∀s ∈ R, |Aβ(r,s)(w(s))| ≤ ‖F‖. (3.28)

We have said that the energy has a better behaviour under C∞loc-limits than
the asymptotic conditions. This is the content of the next simple proposition
that closes this chapter. In the fourth chapter we will focus on the compact-
ness property of M and we will prove that the moduli space is relatively
compact, despite not being closed.

Proposition 3.4.3. Suppose wk → w in the C∞loc-topology. Then

E(w) ≤ lim inf
k→+∞

E(wk) (3.29)

Proof. The proposition follows from the calculation:

E(w) = lim
a→+∞

∫ a

−a

∥∥∥∥dwds (s)

∥∥∥∥2

w(s)

ds

= lim
a→+∞

lim
k→+∞

∫ a

−a

∥∥∥∥dwkds (s)

∥∥∥∥2

wk(s)

ds
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= lim
a→+∞

lim inf
k→+∞

∫ a

−a

∥∥∥∥dwkds (s)

∥∥∥∥2

wk(s)

ds

≤ lim
a→+∞

lim inf
k→+∞

∫
R

∥∥∥∥dwkds (s)

∥∥∥∥2

wk(s)

ds = lim inf
k→+∞

E(wk).
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Chapter 4

C∞loc-compactness

In the preceding chapter we have de�ned the family of r-Equations 3.17

dw

ds
(s) = −∇Aβ(r,s) (w(s))

and starting from them a moduli spaceM of solutions:

M :=

(r, w) ∈ [0,+∞)×F0

∣∣∣∣∣∣∣∣
w satis�es the r-Equation,

w(−∞) := lim
s→−∞

w(s) = (z0, 0),

w(+∞) := lim
s→+∞

w(s) ∈ Σ×0.


An element (r, w) ∈M is composed by a positive real number r and a couple
of smooth functions w =

(
u : T× R → M, T : R → R

)
. We have called the

space of these couples F0 and we have endowed it with the C∞loc-topology.
The purpose of the present chapter is to prove that M is relatively

compact with respect to the product topology of [0,+∞)×F0. This
result will follow from a more general compactness theorem, whose proof is
the main content of this chapter.

4.1 Bounded solutions

We need a re�nement of the concept of r-Solution, introduced in the
preceding chapter.

De�nition 4.1.1. Let r ∈ [0,+∞). We call w a bounded r-Solution if

� w is an r-Solution;

� there exists a compact set Kw, such that the image of u is contained
in Kw for large s;

� the asymptotic values of the action A0 are �nite, i. e.

max {|A0(w−)|, |A0(w+)|} < +∞.
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In the following discussion suppose we are given a generic set N , whose
elements are of the form (r, w), where w is a bounded r-Solution for some
r ∈ [0,∞) (we point out that r is not �xed on this set so that two elements
of N can have di�erent values of the parameter) with uniform bounds on the
asymptotic values of the action. This means that there exists A ≥ 0 such
that, for every (r, w) ∈ N , we have

max {|A0(w−)|, |A0(w+)|} ≥ A.

Then Proposition 3.4.2 implies that

• E(w) ≤ 2A+ ‖F‖, • |Aβr(w)| ≤ A+ ‖F‖.

Clearly M belongs to the class of sets just de�ned, hence a compactness
theorem for a generic N will apply alsoM.

The main theorem relies on the elliptic estimates for the Cauchy-Riemann
operator and the joint work of Sobolev embeddings and the Arzelà-Ascoli
theorem. However in order to make the mechanism start working we need
as an input a priori estimates for low derivatives. In our case we have to
prove three kinds of uniform estimates for an element (r, (u, T )) of N :

1. C0-bound for u,

2. C0-bound for the period T ,

3. C1-bound for u.

Obviously it is understood that the bounds does not depend on the particular
w and the constant are universal in N . Once this estimates are proven we
will need a little additional argument in order to control also the parameter
r: this will be the content of the �fth section of this chapter. First we make
use of the elliptic regularity of the classic ∂ operator, in order to prove a
corresponding regularity theorem for u.

4.2 Sobolev estimates

We have to recall the three cornerstones on which we are going to build
this section: Arzelà-Ascoli Theorem, a version of the Sobolev Embedding
Theorem and the elliptic estimates for the operator ∂.

Theorem 4.2.1. Let uν : (X0, d0) → (X1, d1) be a sequence of continuous
functions between two metric spaces, such that X0 is compact and X1 is
complete. Assume that

� there exists a compact set K ⊂ X1 such that

uν(X0) ⊂ K;

56



� the sequence is uniformly equicontinuous. In other words, ∀ε > 0, there
exists δε > 0 such that

d0(x, x′) < δε =⇒ d1(uν(x), uν(x′)) < ε.

Then there exists a subsequence converging uniformly on X0.

Let p be a real number such that 1 ≤ p < +∞ and let U ⊂ C be
a bounded open set with smooth boundary. Consider the Sobolev spaces
W k,p(U,R2n) for every k ∈ N. Each of these spaces is the completion of
C∞(U,R2n) with respect to the norm

‖u‖p
Wk,p(U)

:=

∫
U

∑
|α|≤k

|Dαu|p
 dsdt,

where α is a multiindex. Moreover denote by ‖ · ‖Ck(U) the norm de�ned for

functions in Ck(U) by the formula

‖u‖Ck(U) :=
∑
|α|≤k

sup
x∈U
|Dαu(x)|.

Often we will use the shorthand ‖ · ‖k,p and ‖ · ‖Ck when the domain is clear
from the context and we will indicate simply by ‖ · ‖∞ the norm in C0.

Theorem 4.2.2. If p > 2 and U is a bounded open subset of C with smooth
boundary. Then there exist constants Bk,p,U such that

‖u‖Ck−1(U) ≤ Bk,p,U‖u‖Wk,p(U).

Furthermore the inclusion W k,p(U) ↪→ Ck−1(U) is compact.

The elliptic regularity for the Cauchy-Riemann operator in the integrable
case reads in the following way.

Theorem 4.2.3. Let J0 be any constant complex structure on R2n and let
us denote by ∂J0 the usual Cauchy-Riemann operator associated with J0

∂J0 =
∂

∂s
+ J0

∂

∂t
.

Then, for every k ∈ N and p ∈ R such that 1 < p < +∞, there exists
a constant Ak,p such that, for every smooth function with compact support
u : C→ R2n, we have

‖u‖Wk+1,p(C) ≤ Ak,p‖∂J0u‖Wk,p(C). (4.1)
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The proof of these results can be found in many textbook and will not
included here: for example the reader can consult Appendix B in (33) for
the last two results.
With this theorem at our disposal we wish to prove a regularity theorem
for J-holomorphic curves, when J is not constant. The next lemma helps
us in �nding a useful inequality that goes in this direction. In the following
discussion we suppose p > 2.

Lemma 4.2.4. Let Q be a bounded open set in C and W an open set of Cn,
endowed with an almost complex structure J . Fix α : Q → [0, 1] a smooth
function with compact support. Let (k, p) be a couple de�ned as before and
let J0 be a constant almost complex structure on W . Then, there exists a
constant Ck,p,Q,α, such that, for every smooth function u : Q→W , we have

(1−Ak,p‖J0−Ju‖∞)‖αu‖k+1,p≤Ck,p,Q,α(1+‖Ju‖k,p)‖u‖C1+

+ Ck,p,Q,α(1+‖Ju‖∞)‖u‖k,p+Ak,p‖∂J(u)‖k,p.

Proof. In what follows the �rst inequality is given by Theorem 4.2.3 and the
same symbol C is used to indicate a generic constant which can depend on
Q, α, k and p.

‖αu‖k+1,p ≤ Ak,p‖∂J0(αu)‖k,p
≤ C‖u‖k,p +Ak,p‖α∂J0u‖k,p
≤ C‖u‖k,p +Ak,p‖α∂J(u)‖k,p +Ak,p‖α(J0 − Ju)∂tu‖k,p
= C‖u‖k,p + C‖∂J(u)‖k,p+

+Ak,p‖(J0 − Ju)∂t(αu)− ∂tα(J0 − Ju)u‖k,p
≤ C‖u‖k,p + C‖∂J(u)‖k,p+

+Ak,p‖(J0 − Ju)∂t(αu)‖k,p +Ak,p‖∂tα(J0 − Ju)u‖k,p.

We make two separate calculations for the last terms

θ1 := ‖(J0 − Ju)∂t(αu)‖k,p, θ2 := ‖∂tα(J0 − Ju)u‖k,p.

We use the following inequality for a product of two functions

‖φψ‖k,p ≤ ‖φ‖∞‖ψ‖k,p + ‖ψ‖∞‖φ‖k,p.

θ1 ≤ ‖J0 − Ju‖∞‖∂t(αu)‖k,p + ‖J0 − Ju‖k,p‖∂t(αu)‖∞
≤ ‖J0 − Ju‖∞‖αu‖k+1,p + C(1 + ‖Ju‖k,p)‖u‖C1 .

Whereas for the second term we have

θ2 ≤ C‖(J0 − Ju)u‖k,p
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≤ C‖u‖∞‖J0 − Ju‖k,p + C‖u‖k,p‖J0 − Ju‖∞
≤ C‖u‖∞(‖Ju‖k,p + 1) + C(1 + ‖Ju‖∞)‖u‖k,p
≤ C (‖u‖C1(‖Ju‖k,p + 1) + (1 + ‖Ju‖∞)‖u‖k,p) .

Putting these two inequalities in the preceding calculation we get the desired
inequality.

Now we are ready to state the regularity theorem. Since its natural
formulation is for curves whose domain is contained in an arbitrary Riemann
surface, �rst we need to generalize the notion of Cauchy-Riemann operator
to this case. Indeed, we point out that the expression

∂J :=
∂

∂s
+ J

∂

∂t

is meaningful only in a coordinate chart. The corresponding global object is
described by the next de�nition.

De�nition 4.2.5. Let G be a Riemann surface endowed with complex struc-
ture  and M a manifold endowed with an almost complex structure J . For
each u ∈ C∞(G,M), is de�ned ∂J(u), an antilinear form on G, with values
in the bundle u∗TM :

∂Ju := du+ J ◦ du ◦  ∈ Ω0,1(G, u∗TM). (4.2)

Remark 4.2.6. If (t, s) are holomorphic coordinates, then (4.2) becomes

∂Ju =
(
∂su+ Ju∂tu

)
ds+

(
∂tu− Ju∂su

)
dt

and by antilinearity

∂Ju = 0 ⇐⇒ ∂su+ Ju∂tu = 0.

Theorem 4.2.7. Let G be a Riemannian surface without boundary and let
Uν be an increasing sequence of open sets whose union is G.
Let ` ∈ N≥1 ∪ {+∞} and uν : Uν → M be a sequence of C`-functions with
values in a manifold M and let Jν be a sequence of almost complex structure
on M of class C`. Suppose that there exists an almost complex structure J
of class C0 such that on every compact set

Jν
C0

−→ J.

Furthermore the following assumptions hold

1. there exists a compact set K ⊂M such that uν(Uν) ⊂ K;

2. there is b > 0 such that ‖duν‖∞ ≤ b, for all ν;
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3. uν is a Jν-holomorphic curve

∂Jνuν = 0. (4.3)

4. every z in M has a local coordinate chart W z such that if w : U →W z

is a C`-function from some open subset of C, we have

‖Jνw‖Wk,p(U) ≤ ck,p,x(1 + ‖w‖Wk,p(U)). (4.4)

Then for every point x ∈ G there exists a neighbourhood Qx of x and a
subsequence uxνµ such that

‖uxνµ‖W `+1,p(Qx) ≤ C`,p,x. (4.5)

As a consequence of this, there exists a subsequence uνµ converging to a J-
holomorphic curve u ∈ C`(G,M) in the C`loc-topology.

Proof. Let's �x x ∈ G, then the �rst two assumptions allows for an appli-
cation of the Arzelá-Ascoli theorem. We get a subsequence, which we will
still denote by uν , that is uniformly convergent on some compact neigh-
bourhood of Qx0 to a continuous function u. Letting W := W u(x) the co-
ordinate chart given by Assumption 4, we can shrink Qx0 and suppose that
uν(Qx) ⊂ W , for every ν. Then we can �nd a sequence of compact neigh-
bourhoods Qxk ⊂ G, 0 ≤ k ≤ `, such that

� Qxk+1 ⊂
◦
Qxk and there exists Qx a compact neighbourhood of x such

that Qx ⊂
◦
Qxk for every k ≤ `;

� if Ak,p is the constant contained in Theorem 4.2.3 then

1

2Ak,p
≥ ‖Ju(x) − Jνuν‖C0(Qx0 );

The last point stems out from the fact that Jνuν converges uniformly to Ju,
and Ju is uniformly continuous. Furthermore by Assumption 4 there is a
constant ck,p,x such that

‖Jνuν‖Wk,p(Qxk) ≤ ak,p,x(‖u‖Wk,p(Qxk) + 1).

Now we use Assumption 3 and apply Lemma 4.2.4 with Q= Qxk and α= αk
having the additional property: αk ≡ 1 on Qxk+1. We get

‖uν‖Wk+1,p(Qxk+1) ≤ 2Ck,p,x‖uν‖C1(1 + ‖uν‖Wk,p(Qxk))+

+2Ck,p,x(1 + ‖Jν‖∞)‖uν‖Wk,p(Qxk).
(4.6)
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Since the terms ‖uν‖C1 and ‖Jν‖∞ are uniformly bounded too and ‖uν‖W 1,p(Qx)

is bounded by Assumption 1, a repeated use of (4.6) yields

‖uν‖Wk+1,p(Qx) ≤ C ′k,p,x, 1 ≤ k ≤ `. (4.7)

This establishes the �rst part of the theorem. As regard the second state-
ment observe that, thanks to (4.7), an application of Theorem 4.2.2 yields a
convergent subsequence on Qx. This is su�cient to �nish the proof. Indeed,
as a second step we can choose an exhaustion of G by compact sets Kj . The
compactness of each Kj guarantees that the theorem holds for Kj . Finally
the theorem is proved by extracting a diagonal subsequence from the subse-
quences we have found for each Kj .

Now we will see how a clever trick allows for an an application of the
preceding theorem to the case of a sequence of perturbed J-holomorphic
equation. The hypotheses are the same except those regarding the sequence
of almost complex structures Jν .

Corollary 4.2.8. Let G be a Riemannian surface without boundary and let
Uν be an increasing sequence of open sets whose union is G.
Let ` ∈ N≥1 ∪ {+∞} and uν : Uν → M be a sequence of C`-functions with
values in a manifold M and let J be an almost complex structure on M
of class C`. Let Λν : Uν ×M ∈ TM be a sequence of C`-maps such that
for every x ∈ C, Λν(x, ·) is a section of TM . Suppose that there exists a
continuous map Λ: G×M ∈ TM such that on every compact set

Λν
C0

−→ Λ.

Furthermore the following assumptions hold

1. there exists a compact set K ⊂M such that uν(Uν) ⊂ K;

2. there is b > 0 such that ‖duν‖∞ ≤ b, for all ν;

3. uν satis�es the perturbed J-holomorphic equation

∂Juν + Λν(·, uν) = 0. (4.8)

4. for every (x, z) in M there exist local coordinate charts Ux, W z around
these points such that if w : U ′ →W z is a C`-function from some open
set U ′ ⊂ Ux, we have

‖Λν(·, w)‖Wk,p(U ′) ≤ ck,p,x(1 + ‖w‖Wk,p(U ′)). (4.9)
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Then for every point x ∈ G there exists a neighbourhood Qx of x and a
subsequence uxνµ such that

‖uxνµ‖W `+1,p(Qx) ≤ C`,p,x. (4.10)

As a consequence of this, there exists a subsequence uνµ converging to u ∈
C`(G,M) in the C`loc-topology. u satis�es the equation

∂Ju+ Λ(·, u) = 0. (4.11)

Proof. We want to apply Theorem 4.2.7 and so we need a little trick in order
to transform perturbed J-holomorphic equations into genuine Jν-equations.
We consider the manifold C×M endowed with the almost complex structures

Jν(x,z)(ht, hs, v) :=
(
− hs, ht, Jzv + htΛ

ν(x, z) + hsJzΛν(x, z)
)
.

Setting wν(t, s)= (t, s, uν(t, s)), a simple calculation shows

∂Jνwν =
(

0, 0, ∂Juν + Λν(·, uν)
)
. (4.12)

Then

Jν
C0

−→ Ĵ

where Ĵ(x,z)(ht, hs, v)=
(
− hs, ht, Jz(v) + htΛ(x, z) + hsJzΛ(x, z)

)
.

The Assumption 4 for Λν implies that Jν satis�es Assumption 4 in 4.2.7.
Finally assumption 3 of the preceding theorem is ful�lled since (4.12) implies
that wν is a Jν-holomorphic curve. Hence Theorem 4.2.7 gives a subsequence
wνµ that satis�es

‖wνµ‖W `+1,p(Qx) ≤ C`,p,x.

This implies a similar estimate for uνµ and therefore �rst statement of the
theorem is proved. Then the reasoning for the second assertion goes like
before.

Remark 4.2.9. We can substitute the fourth assumptions in the preceding
theorems respectively with the stronger hypotheses

Jν
C`−→ J Λν

C`−→ Λ.

Now we can start with the �rst estimate concerning low derivatives. It
relies on a maximum principle for subharmonic functions.
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4.3 Uniform estimates for u

Since XH̃ and XF are compactly supported in M , uniformly in t, there
exists b > 0 such that on the complement of Vb

• XH̃ ≡ 0, • XF ≡ 0

and b is the smallest real number with this property. Let w be an r-Solution.
In particular w satis�es the �rst equation in (3.18). Thus on the open set

Ub := u−1(M \ Vb) ⊂ T× R,

u satis�es the Cauchy-Riemann equation

∂u

∂s
(t, s) + Ju(t,s)

∂u

∂t
(t, s) = 0.

Consider the real function uρ := ρ◦u de�ned on Ub. Then uρ is subharmonic.

Lemma 4.3.1. The function uρ = ρ ◦ u satis�es

∆uρ ≥ 0, on Ub.

Proof. For the inequalities we need two ingredients. First recall that the
complex structure on M is of a very special kind. J satis�es the Equation
3.2

dρ ◦ J = λ, on Vext.

Secondly we have the following identity for a 1-form α and vectors (v1, v2)

dα(v1, v2) = v1

(
α(v2)

)
− v2

(
α(v1)

)
− α ([v1, v2]) .

Now we can begin

∆uρ =
∂2uρ
∂t2

+
∂2uρ
∂s2

=
∂

∂t

(
∂uρ
∂t

)
+

∂

∂s

(
∂uρ
∂s

)
=

∂

∂t

(
duρ

(
∂u

∂t

))
+

∂

∂s

(
duρ

(
∂u

∂s

))
=

∂

∂t

(
λu

(
−Ju

∂u

∂t

))
+

∂

∂s

(
λu

(
−Ju

∂u

∂s

))
=

∂

∂t

(
λu

(
∂u

∂s

))
− ∂

∂s

(
λu

(
∂u

∂t

))
=

∂

∂t

(
u∗λ

(
∂

∂s

))
− ∂

∂s

(
u∗λ

(
∂

∂t

))
= d (u∗λ)

(
∂

∂t
,
∂

∂s

)
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= u∗dλ

(
∂

∂t
,
∂

∂s

)
= dλu

(
∂u

∂t
,
∂u

∂s

)
= dλu

(
Ju
∂u

∂s
,
∂u

∂s

)
= gu

(
∂u

∂s
,
∂u

∂s

)
≥ 0.

With this lemma the uniform bound follows.

Proposition 4.3.2. There exists a positive number b, such that for any
(r, w) ∈ N we have

u(T× R) ⊂ Vb.

Proof. Let w = (u, T ) be an r-Solution. As we have done before we can
associate with u the open set Ub. If on the one hand this set is empty then
u(T× R) ∩ (M \ Vb) = ∅ and therefore

u(T× R) ⊂ Vb.

On the other hand suppose that Ub is not empty. We can apply the previous
lemma and �nd that uρ is subharmonic on Ub. Moreover we know that Ub is
bounded by the assumption we made onN . Then we can apply themaximum
principle to uρ and �nd that it attains its maximum on the boundary of Ub.
This means that

ρ ◦ u ≡ b, on Ub,

hence the thesis.

In other words Proposition 4.3.2 tells us that there exists a �xed compact
set Vb, which contains every cylinder u.

We can deal now with the second estimate: it is a variant of results that
was established for the �rst time in (8). The contact hypothesis will make
the argument work.

4.4 Uniform estimates for the period

We observed immediately before Remark 2.3.9 that for critical points we
have the action-period equality (2.1). Since the critical points are charac-
terized by the vanishing of the gradient, we hope that when the gradient is
small we can still control the size of the period with the action. This in turn
was proved to be uniformly bounded in Proposition 3.4.2.
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On the other hand when the gradient is large the period is bounded since
the amount of time in which we have ‖∇Aβ(r,s)(w(s))‖ ≥ ε is controlled by
the energy via a Markov inequality and the magnitude of period derivative
is controlled by the second equation in (3.18).

Small gradient: period-action inequality

The main result of this paragraph is the following one.

Proposition 4.4.1. There exist ε > 0 and a positive constant Ca depending
on a ≥ 0 such that if β is a positive real number and w = (u, T ) ∈ E0, with
u(T) ⊂ Va, the following implication holds

‖∇Aβ(w)‖ ≤ ε =⇒ |T | ≤ 2(|Aβ(w)|+ ‖F‖+ Ca).

For the proof we need two lemmata. In the following discussion we use
the notation Uδ := {H ∈ (−δ, δ)}.

Lemma 4.4.2. For every δ > 0 there exists an ε > 0 such that for every
w = (u, T ) ∈ E0 we have

‖∇Aβ(w)‖ ≤ ε =⇒ u(t) ∈ Uδ, ∀t ∈ [0,
1

2
] + Z.

Lemma 4.4.3. There exists δ > 0 such that if w = (u, T ) ∈ E0 with

• u(T) ⊂ Va, • u(t) ∈ Uδ ∀t ∈ [0,
1

2
] + Z,

then ∀β > 0

|T | ≤2|Aβ(w)|+ 2‖λ‖L∞(Va)‖∇Aβ(w)‖+ 2‖F‖+ 2‖λ‖L∞(Va)‖XF ‖L∞(T×Va).

Proof of Lemma 4.4.2. We prove the equivalent implication:

∃ t ∈ [0,
1

2
] + Z, |H(u(t)| > δ ⇒ ‖∇Aβ(w)‖ > ε.

Suppose H(u(t)) > δ, the other case is completely analoguous. There are
two possibilities:

1. ∀t ∈ [0,
1

2
], H(u(t)) >

δ

2
.

On the other hand if there exists t̃ ∈ [0, 1
2 ], such that H(u(t̃)) ≤ 1

2 , then

the connected component of the set {t ∈ [0, 1
2 ] | H(t) > δ

2}, which passes
through t is an interval I ′ and one of its extreme points t′ is not 0 nor 1

2 .

Then H(t′) = δ
2 . Hence if we consider the interval I with extreme points t, t′

we see that, if the posiibility 1. does not hold, then
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2. there exists an interval I = [t0, t1] ⊂ [0, 1
2 ] such that

• ∀t ∈ I, H(u(t)) ≥ δ

2
, •

∣∣H(u(t1))−H(u(t0))
∣∣ ≥ δ

2
.

In the �rst case we use the second summand in the gradient

‖∇Aβ(w)‖ ≥
∣∣∣∣∫

T
˙̃χ(t)H(u(t))dt

∣∣∣∣ > δ

2
.

While in the second case we use the �rst summand

‖∇Aβ(w)‖ ≥
∫ t1

t0

∣∣∣u̇(t)− ˙̃χ(t)XH(u(t))
∣∣∣dt

≥ 1

‖XH‖∞

∫ t1

t0

∣∣∣u̇(t)− ˙̃χ(t)XH(u(t))
∣∣∣ · ∣∣∣Ju(t)XH(u(t))

∣∣∣dt
≥ 1

‖XH‖∞

∣∣∣∣∫ t1

t0

gu(t)

(
u̇(t)− ˙̃χ(t)XH(u(t))),∇H(u(t))

)
dt

∣∣∣∣
=

1

‖XH‖∞

∣∣∣∣∫ t1

t0

gu(t)(u̇(t),∇H(u(t)))dt

∣∣∣∣
=

1

‖XH‖∞

∣∣∣∣∫ t1

t0

du(t)H(u̇(t))dt

∣∣∣∣
=

1

‖XH‖∞
∣∣H(u(t1))−H(u(t0))

∣∣
≥ 1

‖XH‖∞
· δ

2
,

where |XH |∞ := ‖XH‖L∞(M). To sum up the lemma holds with

ε :=
δ

2
·min

{
1,

1

‖XH‖∞

}
.

Proof of Lemma 4.4.3.

|Aβ(w)| =
∣∣∣∣∫

T
u∗λ− T

∫
T
H̃(t, u) dt− β

∫
T
F (t, u) dt

∣∣∣∣
≥
∣∣∣∣∫

T
λu(u̇)dt

∣∣∣∣− |T |∫
T

˙̃χ(t)|H(u)|dt− ‖F‖

≥
∣∣∣∣∫

T
λu(u̇)dt

∣∣∣∣− δ|T | − ‖F‖
=

∣∣∣∣∫
T
λu(u̇−TXH̃(t, u)−βXF (t, u))+λu(TXH̃(t, u)+βXF (t, u))dt

∣∣∣∣+
− δ|T |− ‖F‖
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≥ |T |
(∣∣∣∣∫

T
˙̃χ(t)λu(XH(u))dt

∣∣∣∣− δ)−‖F‖−‖λ‖L∞(Va)‖XF ‖L∞(T×Va)+

−
∣∣∣∣∫

T
λu(u̇− TXH̃(t, u)− βXF (t, u))dt

∣∣∣∣
≥ |T |

(∣∣∣∣∫
T

˙̃χ(t)λu(XH(u))dt

∣∣∣∣− δ)+

− ‖λ‖L∞(Va)‖∇Aβ(w)‖ − ‖F‖ − ‖XF ‖L∞(T×Va).

Now the contact hypothesis implies that on Σ, λ(XH) = 1 and so if δ is
su�ciently small the following inequalities hold

• δ < 1

4
, • λu(XH(u)) >

3

4
, on Uδ.

They give ∣∣∣∣∫
T

˙̃χ(t)λu(XH(u))dt

∣∣∣∣− δ ≥ ∣∣∣∣∫
T

3

4
˙̃χ(t)dt

∣∣∣∣− 1

4
=

1

2
.

Substituting in the preceding chain of inequalities and rearranging the terms
the �rst lemma is proved.

Remark 4.4.4. Before proving the proposition we need to highlight a byprod-
uct of Lemma 4.4.2 which we will use later on in order to establish the bound
for the parameter r.
If t0 and t1 are numbers in [0, 1

2 ], then the last chain of inequalities implies

∣∣H(u(t1))−H(u(t0))
∣∣ ≤ ‖XH‖∞

(∫
T

∣∣∣u̇−XH̃(t, u)−XF (t, u)
∣∣∣2dt) 1

2

.

(4.13)

Proof of Proposition 4.4.1. Choose δ as in Lemma 4.4.3 and use Lemma 4.4.2
to �nd a corresponding ε. Then if w ∈ E0 is such that u(T) ⊂ Va and
‖∇Aβ(w)‖ ≤ ε, Lemma 4.4.2 applies to w and thus it satis�es the hypotheses
of Lemma 4.4.3. This gives the inequality

|T | ≤ 2|Aβ(w)|+2‖F‖+2‖λ‖L∞(Va)‖∇Aβ(w)‖+2‖λ‖L∞(Va)‖XF ‖L∞(T×Va)

≤ 2|Aβ(w)|+ 2‖F‖+ 2‖λ‖L∞(Va) · ε+ ‖λ‖L∞(Va)‖XF ‖L∞(T×Va)

≤ 2(|Aβ(w)|+ ‖F‖+ Ca),

where we have set

Ca := ‖λ‖L∞(Va)(ε+ ‖XF ‖L∞(T×Va)).
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Large gradient: Markov inequality

Lemma 4.4.5. Let w be an r-Solution with �nite energy and let ε > 0 be
an arbitrary real number. Then we have the Markov inequality

measure
{
s ∈ R

∣∣ ‖∇Aβ(w(s))‖ > ε
}
≤ E(w)

ε2
.

Proof. Integrating the following pointwise inequality between functions

ε2 · 1{
s∈R

∣∣ ‖∇Aβ(w(s))‖(s)>ε
}(s) ≤

∥∥∥∥dwds (s)

∥∥∥∥2

,

(with 1B we denote the characteristic function of the set B) we get the
estimate

ε2 ·measure
{
s ∈ R

∣∣ ‖∇Aβ(w(s))‖ > ε
}
≤
∫
R

∥∥∥∥dwds (s)

∥∥∥∥2

ds = E(w).

Now we can put together the results of the preceding paragraph and come
up with the bound for the period.

Proposition 4.4.6. There exists a constant C, such that for any (r, w) ∈ N
we have

‖T‖∞ ≤ C.

Proof. Proposition 4.4.1 give an ε > 0 such that, ‖∇Aβ(w(s))‖ ≤ ε implies

|T (s)| ≤ 2(|Aβ(w(s))|+ ‖F‖+ Cb) ≤ 2A+ 4‖F‖+ 2Cb,

where b is given by Proposition 4.3.2 and the second inequality is given by
the discussion immediately after the de�nition of N . On the other hand if
s′ is such that ‖∇Aβ(w(s′))‖ > ε, then there exists an interval I such that

measure(I) ≤ E(w)

2ε2

and one extreme is s′ and the other is a point s′′ such that ‖∇Aβ(w(s′′))‖ ≤ ε.
This is a consequence of Lemma 4.4.5. Then the second equation in (3.18)
yields ∣∣∣∣dTds (s)

∣∣∣∣ =

∣∣∣∣∫
T

˙̃χ(t)H(u(t))dt

∣∣∣∣ ≤ ‖H‖∞.
Thus we get

|T (s′′)− T (s′)| =
∣∣∣∣∫
I

dT

ds
(s)ds

∣∣∣∣ ≤ measure(I) · ‖dT
ds
‖∞ ≤ ‖H‖∞ ·

2A+ ‖F‖
2ε2

,
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where in the last inequality we have used the bound for E(w) in N . Then
∀s ∈ R we have

|T (s)| ≤ 2A+ 4‖F‖+ 2Cb + ‖H‖∞ ·
2A+ ‖F‖

2ε2
. (4.14)

This proposition concludes the period estimates: now it is the turn of
the �rst derivatives of u.

4.5 Uniform bounds for ∇u
In this section the exactness of the symplectic form plays a crucial role.

Actually the asphericity of ω would have been enough in order to carry on the
argument. ω is said to be aspherical if for every smooth map u : S2 → M
we have ∫

S2

u∗ω = 0. (4.15)

The relevance of this hypothesis becomos clear in the light of the next result.

Proposition 4.5.1. Let u : N → (M,ω) be a J-holomorphic curve from a
Riemannian surface to a symplectic manifold M endowed with a compatible
almost complex structure J . Let g be the associated metric on M . Then

(u∗w)(t,s) =

∣∣∣∣∂u∂t (t, s)

∣∣∣∣2 dt ∧ ds =

∣∣∣∣∂u∂s (t, s)

∣∣∣∣2 dt ∧ ds. (4.16)

If furthermore ω is aspherical and N = S2, then u is a constant map.

Proof. The second equality in (4.16) stems out from the fact that J is an
orthogonal map with respect to g. The �rst follows simply from the de�nition
of J-holomorphic curves

u∗ω

(
∂

∂t
,
∂

∂s

)
= ω

(
∂u

∂t
,
∂u

∂s

)
= ω

(
J
∂u

∂s
,
∂u

∂s

)
= g

(
∂u

∂s
,
∂u

∂s

)
.

Use (4.15) to conclude the proof:

0 =

∫
S2

u∗ω =

∫
S2

∣∣∣∣∂u∂t
∣∣∣∣2dt ∧ ds =

∫
S2

∣∣∣∣∂u∂s
∣∣∣∣2dt ∧ ds.

This implies du ≡ 0 and �nishes the proof.

In our case we will use a slight modi�cation of this argument due to the
fact that ω is exact.
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Proposition 4.5.2. Let u : C → (M,ω) be a J-holomorphic curve, where
J is an almost complex structure on M . Suppose that the image of u is
contained in some compact set, that ω is exact and that the energy of u is
�nite, i.e. ∫

C
u∗ω =

∫
C

∣∣∣∣∂u∂s
∣∣∣∣2dt ∧ ds < +∞.

Then u is a constant map.

Proof. Using polar coordinates we can rewrite the energy as∫ +∞

0
2πm

(∫
T

∣∣∣∣∂u∂s (γm(θ))

∣∣∣∣2dθ
)
dm,

where γm is the curve de�ned by γm(θ) = m cos(2πθ) + m sin(2πθ). The
�niteness of the energy then implies that the function f : [0,+∞)→ [0,+∞)
de�ned by

f(m) := 2πm

∫
T

∣∣∣∣∂u∂s (γm(θ))

∣∣∣∣2dθ
is integrable. Hence ∀ε > 0 the following inequality holds for large m:

f(m) ≤ ε

m

(because ε
m is not integrable). Therefore there is a sequence (mj) such that

mj ↗ +∞, (2πmj)
2

∫
T

∣∣∣∣∂u∂s (γm(θ))

∣∣∣∣2 dθ → 0.

Using Jensen inequality this implies

0 ≤ 2πmj

∫
T

∣∣∣∣∂u∂s (γmj (θ))

∣∣∣∣ dθ ≤
(

(2πmj)
2

∫
T

∣∣∣∣∂u∂s (γmj (θ))

∣∣∣∣2dθ
) 1

2

−→ 0.

Let Dj be the closed ball in C of radius mj centered in 0. Then γmj is a
curve which parametrizes ∂Dj and a simple calculation yields∣∣∣∣d(u ◦ γmj )

dθ

∣∣∣∣ = 2πmj

∣∣∣∣∂u∂s
∣∣∣∣ ◦ γmj . (4.17)

Stoke's Theorem �nishes the work:∣∣∣∣∣
∫
Dj

u∗(dλ)

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂Dj

u∗λ

∣∣∣∣∣ =

∣∣∣∣∫
T
λ

(
d(u ◦ γmj )

dθ

)
dθ

∣∣∣∣
≤ ‖λ‖L∞(u(∂Dj))2πmj

∫
T

∣∣∣∣∂u∂s (γmj )

∣∣∣∣ .
Letting j goes to in�nity we get that the energy is zero.
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In order to prove a C1 bound for u in M we argue by contradiction.
Assuming that there exists a sequence of functions uj whose �rst derivative
norm goes to in�nity as j goes to in�nity. Then a clever use of the Com-
pactness Theorem 4.2.7 will give a nonconstant limit function that satis�es
the hypotheses of Proposition 4.5.2. This contradiction will �nish the proof.

Proposition 4.5.3. There exists a positive constant b such that for any(
r, (u, T )

)
∈ N we have

‖du‖∞ ≤ b (4.18)

Proof. Within this proof we will consider functions on the cylinder T × R
as function in R2 that are 1-periodic in the t variable. As we have outlined
before we assume by contradiction that there exist a sequence

(
rν , (uν , Tν)

)
and a corresponding sequence of points (tν , sν) such that

|duν(tν , sν)| −→ +∞. (4.19)

For each ν we make a translation of the domain so that the the point in
which the derivate blows up remains �xed. De�ne

ũν(t, s) := uν(t+ tν , s+ sν).

Then
aν := |dũν(0, 0)| −→ +∞.

Since uν satisfy a perturbed J-holomorphic equation, the same is true of ũν .
If we de�ne

Λν
(
(t, s), z

)
:= −Jz

(
Tν(s)XH̃(t, z) + β(rν , s)XF (t, z)

)
,

and the translated operators

Λ̃ν
(
(t, s), z

)
:= Λν

(
(t+ tν , s+ sν), z

)
then we have

∂Juν + Λν
(
(t, s), uν

)
= 0, (4.20)

∂J ũν + Λ̃ν
(
(t, s), uν

)
= 0. (4.21)

Since the �rst derivative diverges the ∂Juν term in (4.21) dominates the
term of order 0, (remember that we have already bounded the periods in
M). This suggests to perform a rescaling of the functions ũν in order to �nd
a further sequence of functions

ûν(t, s)= ũ

(
1

aν
(t, s)

)
. (4.22)
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Then ûν satis�es the equation

∂J ûν + Λ̂ν
(
(t, s), uν

)
= 0, (4.23)

with Λ̂ν
(
(t, s), z

)
:= 1

aν
Λ̃ν
(

1
aν

(t, s), z
)
. We want to apply the compactness

corollary 4.2.8 with ` = 1 and so we need to ful�ll the assumptions contained
therein. We claim that the maps

Λ̂ν = − 1

aν
Jz

(
Tν(

s

aν
+ sν)XH̃(

t

aν
+ tν , uν) + β(rν ,

s

aν
+ sν)XF (

s

tν
+ tν , uν)

)
converge in the C1-topology to 0. Indeed, since aν diverges then

Λ̂ν
C0

−→ 0.

The only thing to check for the C1 estimate is that

1

a2
ν

dTν
ds

C0

−→ 0.

However this is true since
dTν
ds

is uniformly bounded by the equation

dTν
ds

(s) = −
∫
T
H̃(t, uν(t, s)) dt.

The only thing that remains to establish is the uniform boundedness of dû.
Since |dũν(0, 0)| = aν , we have a bound |duν(t, s)| ≤ 2aν , when |(t, s)| ≤ εν .
We want εν to satisfy the crucial property ενaν → +∞, so that ûν will
satisfy |dûν | ≤ 2 on an exhausting sequence of open balls whose union is the
whole plane (with the notation of Theorem 4.2.7 we have Uν := Bενaν (0, 0)
and we need G := C in order to apply Proposition 4.5.2). To achieve this we
need a lemma which yields a sequence εν with the desired property, although
it might change the blow-up points (tν , sν). The proof is contained in the
sixth chapter of (28).

Lemma 4.5.4. Let (X, d) be a complete metric space and g : X → [0,+∞)
a continuous map. Assume x0 ∈ X and ε0 > 0 are given. Then there exists
x ∈ X and ε > 0 such that

� 0 < ε ≤ ε0;

� g(x)ε ≥ g(x0)ε0;

� d(x, x0) ≤ 2g(x) for all y satysfying d(y, x) ≤ ε.
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Let's apply Lemma 4.5.4 with g = |dũν | and ε0 = 1. Then we replace
the old blow-up points with the new ones but we keep the notation and
symbols used so far as if these new points were chosen from the beginning
of our discussion. Then ûν and Λ̂ν satisfy the hypotheses of Corollary 4.2.8.
Thus a subsequence of ûν (which we will still denote by ûν) converges to a
J-holomorphic plane û in the C1

loc-topology. We claim that the energy of
this plane is �nite. This is due to the fact that the energy behaves well with
respect to translations and rescaling in the domain. Let K be an arbitrary
compact subset of C. Then∫

K

∣∣∣∣∂û∂s
∣∣∣∣2dsdt = lim

ν→+∞

∫
K

∣∣∣∣∂ûν∂s
∣∣∣∣2dsdt

= lim
ν→+∞

∫
K
aν

∣∣∣∣∂ũν∂s
∣∣∣∣2dtds

= lim
ν→+∞

∫
K
aν

+(tν ,sν)

∣∣∣∣∂uν∂s
∣∣∣∣2dtds

≤ lim sup
ν→+∞

E(uν)

≤ 2A+ ‖F‖.

The hipotheses of Proposition 4.5.2 are satis�ed and therefore û is constant.
On the other hand

|dû(0, 0)| = lim
ν→+∞

|dûν(0, 0)| = 1

gives a contradiction. The proposition is thus proved.

4.6 An upper bound for the parameter r

The main tool is the following proposition. It strengthens the fact that
CritA1 = ∅. This in turn was proved making use of displaceability.

Proposition 4.6.1. There exists a positive constant µ, such that for any
w ∈ E0

‖∇A1(w)‖ ≥ µ.

We begin with a lemma. Let

S := supp(XH),

namely the closure of the points z ∈M , such that XH(z) 6= 0. By hypothesis
this is a compact set, futhermore its complement M \S is disjoint from Σ,
since Σ is a regular hypersurface. Therefore

δH := inf
z∈M\S

|H(z)| > 0
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and if we construct the de�ning Hamiltonian H as we did in the discussion
following De�nition 2.3.8 this is nothing but the supremum of H:

δH = ‖H‖∞.

Finally we can assume
ΦF (S) ∩S = ∅ (4.24)

as we have noticed in Section 3.1.

Lemma 4.6.2. There exists ε0 > 0 such that if (u, T ) ∈ E0 satis�es(
u(

1

2
), u(1)

)
∈ S×S,

then ∥∥u̇− TXH̃(t, u)−XF (t, u)
∥∥ ≥ ε0.

Proof. We use F to de�ne a new metric on M . If v belongs to TzM , then

|v|Fz := min
t∈[0,1]

|dzΦt
F v|ΦtF (z). (4.25)

Remember that |v|z =
√
gz(v, v) and Φt

F is the �ow of XF starting at time
0 and ending at time t.
This new metric induces a distance on M in the usual way

dF (z0, z1)= inf
γ∈Γ

z1
z0

∫
I
|γ̇|Fγ(t)dt, (4.26)

where Γz1z0 is the space of smooth path from some interval I in M , which
connects the points z0 and z1. Since F is 1-periodic, (4.24) is equivalent to

S ∩ Φ−1
F (S) = ∅. (4.27)

Since these two sets are compact, (4.27) implies that their distance is a
positive number ε0. In other words

(z0, z1) ∈ S× Φ−1
F (S) =⇒ dF (z0, z1) ≥ ε0, (4.28)

and ε0 is the largest number with this property. Use u|[ 1
2
,1] to construct

ũ : [1
2 , 1] → M

t 7→
(
Φt
F

)−1
(u(t)).

This is a path that connects the points

� ũ(1
2) =

(
Φ

1
2
F

)−1
(u(1

2)) = u(1
2) (recall that F ≡ 0 on [0, 1

2 ] + Z) and

� ũ(1) = Φ−1
F (u(1))

(
recall that the periodicity implies

(
Φ1
F

)−1
= Φ−1

F

)
.
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The hypothesis of the lemma gives(
ũ(

1

2
), ũ(1)

)
∈ S× Φ−1

F (S).

Therefore (4.28) implies that

dF (ũ(
1

2
), ũ(1)) ≥ ε0.

Now using the de�nition of ũ and the formula

d

dt

(
Φt
F

)−1
(z)
∣∣∣
t=t0

= −dz
(
Φt0
F

)−1
XF (t0, z),

We di�erentiate and get

dũ

dt
(t) = du(t)

(
Φt
F

)−1
(
u̇(t)−XF (t, u(t))

)
.

Then∣∣∣∣dũdt
∣∣∣∣F= min

t′∈[0,1]

∣∣∣dΦt′
F

(
dΦt

F

)−1
(
u̇(t)−XF (t, u(t))

)∣∣∣≤ ∣∣u̇(t)−XF (t, u(t))
∣∣,

(4.29)
having chosen t′ = t. The de�nition of the distance dF then gives

ε0 ≤ dF
(
ũ(

1

2
), ũ(1)

)
≤
∫ 1

1
2

∣∣∣∣dũdt
∣∣∣∣Fdt ≤ ∫ 1

1
2

|u̇(t)−XF (t, u(t))|dt

≤
∫ 1

0
|u̇(t)− TXH̃(t, u(t))−XF (t, u(t))|dt

≤
∥∥u̇(t)− TXH̃(t, u(t))−XF (t, u(t))

∥∥
Proof of Proposition 4.6.1. Take ε0 from the previous lemma and suppose

∥∥u̇− TXH̃(t, u)−XF (t, u)
∥∥ ≤ ε′ := min

{
ε0,

δH
2‖XH‖∞

}
. (4.30)

Then Remark 4.4.4 tells us that, for t0, t1 in [0, 1
2 ],

∣∣H(u(t1))−H(u(t0))
∣∣ ≤ δH

2
,

and Lemma 4.6.2 yields

max

{
|H(u(0))|, |H(u(

1

2
))|
}
≥ δH .
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Combining these formulae we get for t0, t1 in [0, 1
2 ]

|H(u(t))| ≥ δH
2
.

This in turn implies that the second part of the gradient satis�es∣∣∣∣∫
T
H̃(t, u)dt

∣∣∣∣ ≥ δH
2
.

Therefore the proposition holds if we set

µ := min

{
ε′,
δH
2

}
.

Indeed
∥∥u̇− TXH̃(t, u)−XF (t, u)

∥∥ ≥ µ easily implies ‖∇A1(w)‖ ≥ µ.

Whereas
∥∥u̇− TXH̃(t, u)−XF (t, u)

∥∥ < µ ≤ ε′ yields∣∣∣∣∫
T
H̃(t, u)dt

∣∣∣∣ ≥ δH
2
≥ µ ⇒ ‖∇A1(w)‖ ≥ µ.

As a corollary we get the bound on the parameter.

Proposition 4.6.3. Let (r, w) be an element of N . Then

r ≤ 2A+ ‖F‖
2µ2

+ 1 (4.31)

Proof. For r greater than one we have

2A+ ‖F‖ ≥ E(w) ≥
∫ r−1

−(r−1)
‖∇A1(w(s))‖2w(s)ds ≥ 2µ2(r − 1).

Rearranging the terms we get what we need.

4.7 The relative compactness of N
In this �nal section we will prove the compactness theorem for the ab-

stract space N and discuss some consequences descending from it. In order
to simplify the notation in the proofs, every time we pass to a subsequence
and discard the whole sequence in the subsequent discussion we will not
change the indexing and no additional subscript will be added.

Theorem 4.7.1. Let (rν , wν)) be a sequence in N and sν → s ∈ [−∞,+∞]
and tν → t, two sequences of real numbers. De�ne the translated sequence

ŵν(t, s) := (ûν(t, s), T̂ν(s)) := (uν(t+ tν , s+ sν), Tν(s+ sν))
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Then there exists a subsequence (rνµ , ŵνµ) such that

(rνµ , ŵνµ)
C∞loc
−−−−→ (r, ŵ).

Moreover if t = 0 and s = 0, then ŵ is an r-Solution, whereas if t = 0 and
s ∈ {−∞,+∞}, ŵ is a 0-Solution. In any case

E(ŵ) ≤ 2A+ ‖F‖.

Proof. We will prove only the case tν ≡ 0, sν ≡ 0. The general case is con-
ceptually identical since the only additional feature is that the Hamiltonian
terms depend on ν in the following way: Hν(t, z) := H(t+tν , z), βν(s)F ν(t, z) :=
β(rν , s+ sν)F (t+ tν , z). However since H and βF have uniform bounds this
is not an obstacle to get the estimates we need. Now we can start the argu-
ment.
Proposition 4.6.3 implies that rν is bounded and therefore we can assume
rν → r. Proposition 4.4.6 and the second equation in (3.18) imply that Tν is
uniformly bounded with its �rst derivatives and therefore using Arzelà-Ascoli
theorem, we can assume that

Tν
C0

−→ T.

De�ne the maps

• Λν
(
(t, s), z) := −Jz

(
Tν(s)XH̃(t, z) + βrν (s)XF (t, z)

)
, (4.32)

• Λ
(
(t, s), z) := −Jz

(
T (s)XH̃(t, z) + βr(s)XF (t, z)

)
. (4.33)

Then uν and Λν satisfy

∂Juν + Λν(·, uν) = 0, Λν
C0

−→ Λ.

Furthermore another application of the Arzelá-Ascoli theorem yields a sub-
sequence uν converging C0

loc to a continuous function u.
In order to prove the theorem we wish to have the following estimates for
each compact subset K ∈ C and every natural number k

‖uν‖Wk,p(K) ≤ Ck,p,K .

We aim to use Corollary 4.2.8. However we have to be careful since the
regularity of Λν depends essentially on the regularity of Tν and this in turn
relies on the regularity of uν via the equation

dTν
ds

(s) = −
∫
T
H̃(t, uν(t, s)) dt. (4.34)
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Therefore we have to work following the inductive scheme represented below.

‖u‖k,p ≤ C //

��

,,

Equation 4.34 +3 ‖T‖k+1,p ≤ C

{{

��

Equation 4.32

u}

‖Λ(·, u)‖k,p ≤ C

yy
Corollary 4.2.8

v~

‖u‖k+1,p ≤ C // Equation 4.34 +3 ‖T‖k+2,p ≤ C

We cannot use immediately the second part of Corollary 4.2.8, but before we
use the estimate (4.10) into the above scheme and only at the end, when the
regularity is higher enough, we can apply the part of the corollary concerning
the uniform convergence on compact sets.
Thus we want to �ndW k,p-boundsnear a point (t, s). Let Is ⊂ be a compact
neighbourhood for s. The �rst di�culty we encounter is that (4.34) shows
that the estimate for Tν on Is depends on the value of u on the set T × Is,
which contains points that are far from our �xed point (t, s). This fact is
unpleasant since there might not exist a single local chart in M , containing
all the images of uν(T× Is). However since T× Is is compact we can cover
it with a �nite number of open sets of the form Uj × Is, where j is an index
ranging within a �nite set. Then we can suppose that for each j, uν(Uj× Is)
is contained in some chart Wj and we can try to estimate the Sobolev norms
of uν on all these sets simultaneously. This will be possible since a bound
for Tν on Is gives bounds for Λν over each Uj .
By assumption we have the initial estimates∑

j

‖uν‖W 1,p(Uj×Is) ≤ C, ‖Tν‖W 1,p(Is) ≤ C.

Then let's work along the lines of the schemes represented above. In the
following discussion C denotes a generic positive constant.
Start with

∑
j ‖uν‖Wk,p(Uj×Is) ≤ C. Then we �nd

� ‖Tν‖Wk+1,p(Is) ≤ C.
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Set

fνk+1 :=

(∫
Is

∣∣∣∣∣d
k+1

Tν

dsk+1

∣∣∣∣∣
p) 1

p

gνk(t, s)=
dk

dsk

(
XH̃(t, uν(t, s))

)
.

Thus we have

fνk+1 =

(∫
Is

∣∣∣∣∫
T
gνk(t, s)dt

∣∣∣∣p ds) 1
p

≤
∑
j

(∫
Is

∣∣∣∣∣
∫
Uj

gνk(t, s)dt

∣∣∣∣∣
p

ds

) 1
p

≤ C
∑
j

(∫
Uj×Is

|gνk(t, s)|p dtds

) 1
p

≤ C
∑
j

‖gνk‖Lp(Uj×Is).

Then a simple inspection shows

‖gνk‖Lp(Uj×Is) ≤ C‖uν‖Wk,p(Uj×Is).

� ‖Λν(t, uν)‖Wk+1,p(Uj×Is) ≤ C.

The only quantity that need a careful estimate is

hνk := ‖TνJuνXH̃(t, uν)‖Wk,p(Uj×Is).

hνk ≤ C‖Tν‖Ck(Is)‖JuνXH̃(t, uν)‖Wk,p(Uj×Is)

≤ C‖Tν‖Ck(Is)

(
sup
t∈Uj
‖JzXH̃(t, z)‖Ck(Wj)

)
(1 + ‖uν‖Wk,p(Uj×Is)).

The uniform bound now follows, since the preceding point and the
Sobolev inequality give a bound for ‖Tν‖Ck(Is).

� ‖uν‖Wk+1,p(Uj×Is) ≤ C.

We are in position to apply Corollary 4.2.8, with ` := k. Here there is
another subtlety, since the corollary gives the estimate for the W k+1,p-
norm of uν on a smaller neighbourhood U ′j , but we want that the new
sets still cover T. However, if we look at the proof of Theorem 4.2.7, the
shrinking of the neighbourhood is needed for the construction of the
chain Qxk and the di�erence between U ′j and Uj can be made arbitrarily
small, so that U ′j still cover T.
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Then we have completed the inductive step of the scheme and we have uni-
form bounds for the derivative of wν in each order. An application of the
Sobolev Embedding Theorem 4.2.2 then gives a convergent subsequence.
Passing to the limit in

∂Juν + Λν(·, uν) = 0

and in Equation 4.34 we �nd that the limit function is an r-Solution.

Corollary 4.7.2. For each couple of natural numbers (h, k) and each natural
number m, there exist positive constants Ch,k and Cm such that, for every
(r, (u, T )) ∈ N ,

|∂hs ∂kt u(t, s)| ≤ Ch,k,
∣∣∣∣dmTdsm

∣∣∣∣ ≤ Cm. (4.35)

Proof. Arguing by contradiction, there exist a multiindex (h, k), a sequence
of functions (uν , Tν) in N and a sequence of points (tν , sν) such that

lim
ν→+∞

|∂hs ∂kt uν(tν , sν)| = +∞.

By compactness of T × [−∞,+∞] we can suppose that (tν , sν) → (t, s).
Hence applying the preceding theorem we �nd that the translated sequence
has a subsequence (ûν , T̂ν) converging on compact sets. However this is a
contradiction since

|∂hs ∂kt ûν(0)| = |∂hs ∂kt uν(tν , sν)| → +∞.

Corollary 4.7.3. Let (rν , wν)) be a sequence inM and sν → s ∈ [−∞,+∞]
and tν → t, two sequences of real numbers. De�ne the translated sequence

ŵν(t, s) := (ûν(t, s), T̂ν(s)) := (uν(t+ tν , s+ sν), Tν(s+ sν))

Then there exists a subsequence (rνµ , ŵνµ) such that

(rνµ , ŵνµ)
C∞loc
−−−−→ (r, ŵ).

Moreover if t = 0 and s = 0, then ŵ is an r-Solution, whereas if t = 0 and
s ∈ {−∞,+∞}, then ŵ is a 0-Solution. In any case

E(ŵ) ≤ ‖F‖.

Corollary 4.7.4. For each couple of natural numbers (h, k) and each natural
number m, there exist positive constants Ch,k and Cm such that, for every
(r, (u, T )) ∈M,

|∂hs ∂kt u(t, s)| ≤ Ch,k,
∣∣∣∣dmTdsm

∣∣∣∣ ≤ Cm. (4.36)
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Proof of Corollaries 4.7.3 and 4.7.4. As we have pointed out before we can
take N :=M.

Let us tell something about the asymptotic behavior of elements in N . In
particular the next proposition shows that every bounded r-Solution yields
a number of critical points for A0. We hope to �nd Reeb orbits among them.

Proposition 4.7.5. Let w = (u, T ) be a bounded r-Solution. Moreover let
sν → +∞ (the case sν → −∞ is identical) and let tν → t. Then there exists
a subsequence sνµ and (u, T ) a constant path in E0 (i.e.

(
u(t, s), T (s)

)
≡(

u(t), T
)
), such that

(
u(·+ tνµ , ·+ sνµ), T (·+ sνµ)

) C∞loc
−−−−→ (u, T ).

This implies in particular that(
u(·+ tνµ , sνµ), T (sνµ)

) E0

−−−−→ (u, T ).

If furthermore t = 0, (u, T ) ∈ CritA0 and the following equality holds

A0(u, T ) = A0(w+).

Proof. Set wν(t, s) := w(t + tν , s + sν). Then we can apply the point 2 of

Theorem 4.7.1 to N := {w} and �nd wνµ
C∞loc−→ ŵ. We claim that ŵ is constant

in the variable s. If K is a compact subset of C, then, since the energy is
�nite: ∫

K
|∂sŵ|2dtds = lim

µ→+∞

∫
K
|∂swνµ |2dtds

= lim
µ→+∞

∫
K+(tνµ ,sνµ

|∂sw|2dtds = 0.

So
ŵ(s) ≡ ŵ0 = (û0, T̂0).

The uniform convergence of wνµ on the compact set T× 0 yields the desired
conclusion on the convergence in E0.

The statement regarding the case t = 0 is obvious.

Corollary 4.7.6. Let w = (u, T ) be a bounded r-Solution and set

a− := A(w−), a+ := A(w+).

Let s ≥ max{|a−|,|a+|}+‖F‖
2µ2

+ 1 be a real number, then
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1. for any ε > 0 and any couple of integers h ≥ 1, k ≥ 0, there exists
δh,k > 0 depending only on a−, a+, h, k, such that if

A0(−s) ≥ a− − δh,k, A0(s) ≤ a+ + δh,k,

hold true, then
sup

t∈T×{|s|≥s}
|∂hs ∂kt u(t, s)| ≤ ε; (4.37)

2. for any ε > 0 and any integer h ≥ 1, there exists δh > 0 depending
only on a−, a+, h, such that if

A0(−s) ≥ a− − δh, A0(s) ≤ a+ + δh,

hold true, then

sup
s≥s

∣∣∣∣dhTdsh (s)

∣∣∣∣ ≤ ε; (4.38)

3. for any Ua− , Ua+ couple of neighborhoods of CritA0 ∩ A−1
0 (a−) and

CritA0 ∩ A−1
0 (a+) respectively, there exists δUa− ,Ua+ > 0 depending

only on Ua− , Ua+, such that if

A0(−s) ≥ a− − δUa− ,Ua+ , A0(s) ≤ a+ + δUa− ,Ua+ ,

hold true, then

w(s) ∈ Ua− , for s ≤ −s, w(s) ∈ Ua+ , for s ≥ s. (4.39)

Proof. We consider only the case of positive values of s. We argue by contra-
diction and suppose that for some couple (h, k), there exist ε0 and sequences
rν , wν and sν ≥ s such that

� rν ≤ max{|a−|, |a+|}+ ‖F‖ ≤ s,

� wν is a rν-Solution,

� A0(wν−) = a−, A0(wν+) = a+,

� limν→+∞A0(w(sν)) = a+,

� sν → s ∈ [s0,+∞],

� |∂hs ∂kt uν(t, s)| ≥ ε0.

By Corollary 4.7.3 the translated sequence wν(· + sν) admit a convergent
subsequence wνµ → w. Since w is a C∞loc-limit we have

|∂hs ∂kt u(t, s)| ≥ ε0, A0(w(0)) = a+
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and since sν ≥ s, w is a 0-solution for positive values of s. Furthermore if
s ≥ 0, then

A0(w(s)) = lim
µ→+∞

A0(wνµ(s+ sνµ)) ≥ a+.

Then A0(w(s)) ≡ a+, for s ≥ 0. This implies

0 =
d

ds
A0(w(s)) = −‖∂sw‖2.

Finally ∂sw ≡ 0 implies the contradiction

0 = |∂hs ∂kt uν(t, s)| ≥ ε0.

The estimates for the derivatives of T can be found following the same recipe.
As regard the last point of the corollary we observe that arguing by

contradiction one more time we �nd a function w such that for s ≥ 0,

• w is a 0-Solution, • w ≡ w(0) /∈ Ua+ , • A0(w) ≡ a+.

The �rst and third point imply that w(0) ∈ CritA0∩A−1
0 (a+) ⊂ Ua+ , which

contadicts the second point.

Remark 4.7.7. It is not true without further assumptions that there exists
(u±, T±) ∈ CritA0 such that

(
u(·+ tνµ , s), T (s)

) E0

−−−−→ (u±, T±), as s→ ±∞.

The problem is that even if w gets closer and closer to the critical subsets
CritA0 ∩ A−1

0 (a) and CritA0 ∩ A−1
0 (b) it may winds tangentially around

them without converging to a speci�c critical point. We will see in the next
chapter that this problem can be �xed by assuming that CritA0 ∩ A−1

0 (a)
and CritA0 ∩ A−1

0 (b) are Morse-Bott component for the functional A0.
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Chapter 5

Morse-Bott theory

Using the results from the preceding chapter we wish to study the asymp-
totic behavior of the class N0 of smooth functions w = (u : T× R → M,T :
R→ R), having the properties:

1. w is a bounded r-Solution,

2. A(w+) = A(w−) = 0.

Obviously we haveM⊂ N0, hence all the statements we are going to prove
for elements in N0, are true also for elements inM.

The results of Section 4.7 apply to N0 and they will be important in
several points of the discussion. However the convergence results we are
going to �nd rely on an additional crucial property, namely the fact that 0 is
a Morse-Bott critical value for A0. This is a generalization of the notion
of Morse critical value.

5.1 Generalities

We say that b is a Morse critical value for a functional φ if, at the critical
subset Critφ ∩ φ−1(b), the Hessian of φ is nondegenerate. This can be seen
as a particular case of the following notion.

De�nition 5.1.1. Let φ : N → R a functional of class C2 on some Banach
manifold. A real number b ∈ R is called a Morse-Bott critical value, if
the set Nb := Critφ ∩ φ−1(b) is a Banach submanifold of N and for every
q ∈ Nb

kerHφ(q) = TqNb,

where Hφ is the Hessian of φ. In this case Nb is called a Morse-Bott

component for φ.

The fact that 0 is a Morse-Bott critical value for A0 corresponding to the
component Σ × 0 is the essential ingredient to prove the main theorem of
this chapter.
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Theorem 5.1.2. For each w ∈ N0 there are two points z− and z+ in Σ,
such that

w
E0−→ (z±, 0), as s→ ±∞.

Moreover there exist three positive constants δ, C, a not depending on w and
U− ⊂ M , U+ ⊂ M two coordinate neighborhoods of z− and z+ respectively,
such that, if for some s ≥ r the conditions

A0(w(−s)) ≥ −δ, A0(w(s)) ≤ δ,

hold true, then
u∣∣T×{±s≥s} ⊂ U±.

and we have the exponential decay

max

{
|u− z±| , |T | , |∂su| , |∂tu| ,

∣∣∣∣dTds
∣∣∣∣} ≤ Cea2 (s−|s|), for ± s ≥ s. (5.1)

We will carry out the discussion for the positive asymptot only. The
other case can be treated in a similar fashion.

As a �rst step observe that for some y > 0, Σ has an open neighborhood
in M of the form {H ∈ (−y, y)} and such that

{H ∈ (−y, y)} =
⋃
z∈Σ

Uz.

For each z ∈ Σ, Uz ⊂ M is a coordinate neighborhood of z, di�eomorphic
to Ũz × (−y, y) ⊂ R2n−1×R and such that the coordinate map extends to a
neighborhood of the closure of Uz. Furthermore if x is the coordinate on the
R2n−1-factor and y the coordinate on the R-factor, then the following three
conditions hold

• U ∩ Σ = {y = 0}, • H(x, y) = y, • Jz = J0,

where J0 is the standard complex structure in R2n.

Remark 5.1.3. Observe that the y-coordinate of a point in Uz does not
depend on z.

Suppose we are given an element w = (u, T ) in N0 and an interval I =
[s0, s1], such that u(T× I) ⊂ Uz. Since by Proposition 4.6.3

r ≤ ‖F‖
2µ2

+ 1,

we assume from now on that s0 ≥ ‖F‖
2µ2

+ 1, so that w is a 0-solution on I.

Then using the coordinates on Uz, we split u in its components (ux, uy) and
write the 0-Equation in these coordinates:(

∂su+ Ju∂tu− Tf∂y,
dT

ds
−
∫
T
uyfdt

)
= (0, 0) (5.2)
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(where f := ˙̃χ and ∂y is the y-coordinate vector).
In this equation we isolate the terms involving s-derivates from the others.

Then if we consider w as a path w : I → C∞(T, Uz) × R we see that the
latter terms operate on each w(s) ∈ C∞(T,R2n) × R separatedly. Thus we
are led to consider the path of linear maps, de�ned for s ∈ I,

A(s) : C∞(T,R2n)× R → C∞(T,R2n)× R

(v, S) 7→
(
Juv̇ − Sf∂y,−

∫
T
vyfdt

)
.

(5.3)

We notice that the dependance on s is due to the fact that the matrix Ju is
dependent on u. Since u takes value in Uz (in other words near z), we hope
that investigating the properties of the single operator

A0 : C∞(T,R2n)× R → C∞(T,R2n)× R

(v, S) 7→
(
J0v̇ − Sf∂y,−

∫
T
vyfdt

)
(5.4)

will give enough information on this path of operators.

5.2 The Hessian operator A0

The �rst thing to do is to extend A(s) to a continuous linear map between
two suitable Hilbert space completions of C∞(T,R2n)×R. The norms that
we will use to de�ne the completions have to

� take into account also the derivatives of w (in view of (5.1)),

� be induced by a scalar product (in order to write explicitly their deriva-
tives).

Let k ∈ N and endow C∞(T,R2n)× R with the W k,2-scalar product:

〈(u1, T1), (u1, T2)〉 :=
∫
T

∑
j≤k

g0(
dju1

dtj
,
dju2

dtj
)dt+ T1T2,

where g0(·, ·) is a scalar product compatible with J0 (the standard scalar
product on R2n will do):

g0(J0u1, J0u2) = g0(u1, u2).

Then, we choose W k+1,2(T,R2n) × R as the domain and W k,2(T,R2n) × R
as codomain, for some k ∈ N (we will see that k = 2 will su�ce). We
denote still by A(s) and A0 the extended operators and notice that we can
regard them both as continuous linear map between these two spaces, and
as unbounded operators in W k,2(T,R2n) × R de�ned on the dense domain
W k+1,2(T,R2n) × R. A0 and A(s) belong to an important class of linear
operators, they are Fredholm operators.
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De�nition 5.2.1. Let L : E1 → E2 be a continuous linear operator between
two Banach spaces. L is said to be a Fredholm operator if the following
three conditions hold:

• dim kerL <∞, • imL is closed, • dim cokerL <∞.

We can associate to each Fredholm operator an integer number ı(L) called
the Fredholm index of L:

ı(L) := dim kerL− dim cokerL.

In the next proposition we collect all the facts we need about these op-
erators. For a proof of these statements the reader can consult (32).

Proposition 5.2.2. Let E1, E2 be two Banach spaces and denote by F(E1, E2)
the set of Fredholm operators from E1 to E2. Then

� F(E1, E2) is an open subset of all the linear operators from E1 to E2

with respect to the topology of uniform convergence,

� the index function is continuous with respect to the uniform topology,
hence constant on the connected components of F(E1, E2),

� if K is a compact operator and L ∈ F(E1, E2), then

F +K ∈ F(E1, E2), ı(F +K) = ı(F ),

� F ∈ F(E1, E2) if and only if there exist L1 and L2, bounded operators
from E2 to E1, and two compact operatorsi K1 : E1 → E1, K2 : E2 →
E2, such that

L1F = idE1 +K1 FL2 = idE2 +K2.

We are now ready to prove the following statement about A0.

Lemma 5.2.3. Let A0 be the operator de�ned above. Then

1. A0 is symmetric with respect to the W k,2-scalar product,

2. kerA0 =
{

(v, 0) | v ≡ (x0, 0) ∈ R2n−1× 0
}
,

imA0 = kerA⊥0 =

{∫
T
vxdt = 0

}
,

where kerA⊥0 is the orthogonal in W k,2(T,R2n)× R,

3. A0 is an invertible operator between the Banach spaces kerA⊥0 ∩W k+1,2

and imA0.
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Proof. Let (v1, S1), (v2, S2) ∈W k+1,2(T,R2n)× R, then

〈A0(v1, S1),(v2, S2)〉=
∑
j≤k

(∫
T
g0

( dj
dtj

(J0v̇1−S1f∂y),
dj

dtj
v2

)
dt

)
−S2

∫
T
(v1)yfdt

=
∑
j≤k

(∫
T
g0

(
J0
dj+1

dtj+1
v1,

dj

dtj
v2

)
dt

)
+

−
∫
T
g0

(
S1f∂y, v2

)
dt− S2

∫
T
(v1)yfdt

=
∑
j≤k

(∫
T
g0

(
J0
dj+1

dtj+1
v1,

dj

dtj
v2

)
dt

)
+

− S1

∫
T
(v2)yfdt− S2

∫
T
(v1)yfdt.

The symmetry in the second and third term is clear. The symmetry in the
�rst summatory is a consequence of the compatibility between g0 and J0:∫

T
g0

(
J0
dj+1

dtj+1
v1,

dj

dtj
v2

)
dt =

∫
T

d

dt

(
g0

(
J0
dj

dtj
v1,

dj

dtj
v2

))
dt+

−
∫
T
g0

(
J0
dj

dtj
v1,

dj+1

dtj+1
v2

)
dt

= 0 +

∫
T
g0

( dj
dtj

v1, J0
dj+1

dtj+1
v2

)
dt.

Now calculate kerA0. (v, S) ∈ kerA0 if and only if
0 = v̇ − Sf∂y

0 = −
∫
T
vyfdt.

(5.5)

Integrating the �rst equation in (5.5) we �nd

v(t) = v(0) + S

(∫ t

0
f(t′)dt′

)
∂y.

Bearing in mind that
∫
T f = 1 and v(0) = v(1), this implies S = 0 and hence

v(t) ≡ v0 = (x0, y0). Then the second equation in (5.5) becomes

0 = y0

∫
T
f = y0.

Thus we arrive to the conclusion

kerA0 =
{

(v, 0) | v ≡ (x0, 0) ∈ R2n−1× 0
}
.
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We claim that the symmetry implies the inclusion imA0 ⊂ kerA⊥0 . Indeed,
if (v, S) ∈ W k+1,2(T,R2n) × R and (ṽ, S̃) ∈ kerA0 ∩W k+1,2(T,R2n) × R,
then

〈A0(v, S), (ṽ, S̃)〉 = 〈(v, S), A0(ṽ, S̃)〉 = 0.

Since kerA0 ∩W k+1,2(T,R2n)× R = kerA0, the claim is proven.
We wish to show that the injective operator

A0
∣∣ kerA⊥0

: kerA⊥0 ∩W k+1,2(T,R2n)× R→ kerA⊥0

is invertible. To this purpose is enough to prove that A0 is Fredholm with
index zero. Using Proposition 5.2.2, the following couple of facts is su�cient:

� (v, S) 7→ (J0v̇, 0) is Fredholm with index 0,

� (v, S) 7→ (−Sf∂y,−
∫
T
vyfdt) is compact.

The former point is proven by an explicit calculation and the latter by the
Arzelà-Ascoli and Sobolev Embedding Theorem.
Finally let us characterize the elements (v, S) in kerA⊥0 :

0 = 〈(v, S), ((x0, 0), 0)〉 =

∫
T
g0(v, (x0, 0))dt

= g0

(∫
T
vdt, (x0, 0)

)
, ∀x0 ∈ R2n−1.

This chain of equalities implies

kerA⊥0 =

{∫
T
vxdt = 0

}
. (5.6)

Remark 5.2.4. It is easy to show that A0 is the Hessian operator of A0,
as soon as we express the elements of E0 near the constant loop (z, 0) using
the coordinate chart Uz. Then, the previous proposition tells us that kerA0

is exactly the tangent space of the trivial critical set of A0. Hence 0 is a
Morse-Bott critical value for A0.

Denote by P0 the orthogonal projection on kerA0 and by Q0 := 1 − P0

the projection on kerA⊥0 . Then we have

P0(v, S) =

(∫
T
vxdt, 0

)
and there exists a > 0 such that

‖A0Q0(v, S)‖k ≥ a‖Q0(v, S)‖k+1, (5.7)
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where ‖ · ‖k is the norm in the space W k,2(T,R2n) × R. Furthermore for
every s ∈ I we have kerA0 ⊂ kerA(s). This can be stated using one of the
equivalent equations

A(s)P0 = 0, A(s) = A(s)Q0.

5.3 An application of the Maximum Principle

Let us resume the notation of the �rst section. We have a path w :
I → C∞(T, Uz) × R, which solves the 0-Equation. Composing with the
inclusion C∞(T,R2n) × R ↪→ W k+1,2(T,R2n) × R we get a di�erentiable
path w : R→W k+1,2(T,R2n)× R. The 0-Equation for w rewrites as

dw

ds
+A(s)w = 0. (5.8)

De�ne the following function

ϕ : I → [0,+∞)

s 7→ 1

2
‖Q0w‖2k,

(5.9)

We aim to �nd a di�erential inequality for ϕ. In order to do this we will see
that we must have a control on the following quantity:

Θw(s) := ‖∂sA(s)‖k+1,k + ‖A(s)‖k+1,k‖(A(s)−A0)∗‖k+1,k

+ ‖A0‖k+1,k‖A(s)−A0‖k+1,k

(where (A(s) − A0)∗ is the adjoint with respect to the W k,2-scalar product
and ‖ · ‖k+1,k is the uniform norm for operators from W k+1,2(T,R2n)×R to
W k,2(T,R2n)× R). Let us analyze separatedly the di�erent terms in Θw.

1. ‖A0‖k+1,k is a constant, which does not depend on w or s.

2. A(s) depends on s in the term Ju∂t only. The norm of this piece
involves the t-derivatives of u up to order k. By Corollary 4.7.2 these
are uniformly bounded and therefore are independent of s.

3. The norm of ∂sA(s) is bounded by a sum of terms of the form

C‖∂s∂ht u‖∞‖∂h
′
t u‖∞, 0 ≤ h ≤ k, 1 ≤ h′ ≤ k.

Combining Corollaries 4.7.2 and the �rst point in 4.7.6 we get that this
quantity is small if A0(s0) is su�ciently near to 0.

4. (A(s)−A0)(v, S) = ((Ju − J0)v̇, 0). The �rst factor is the composition
of two bounded operators:
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� v1 7→ v̇1, fromW k+1,2(T,R2n) toW k,2(T,R2n) and is independent
of s;

� v2 7→ (Ju − J0)v2, from W k,2(T,R2n) into itself. Its norm is
bounded by the sum

‖Ju − J0‖∞ +
∑

1≤h≤k
C‖∂ht u‖∞.

We have ‖Ju − J0‖∞ ≤ C|u − z|∞. Thus, this number is small
provided the diameter of Uz is su�ciently small. Moreover by
the third point of Corollary 4.7.6 we know that ‖∂ht u‖∞ is small
if A0(s0) is su�ciently small, since {‖∂ht u‖∞ < ε} is an open
neighborhood of Σ× 0 in E0.

5. Finally we deal with (A(s)−A0)∗. We have to study the adjoint of

v 7→ Bv̇, B := Ju − J0

with respect to the W k,2(T,R2n)-scalar product. As we have said be-
fore, this operator is a composition. Hence,

〈v1, B
d

dt
v2〉 = 〈B∗v1,

d

dt
v2〉

= 〈− d

dt
(B∗v1) , v2〉

= 〈−∂t (B∗) v1 −B∗
d

dt
v1, v2〉.

We claim that ∂t (B∗) = (∂tB)∗. Indeed,

〈v1, ∂t (B∗) v2〉 = −〈v1, B
∗v̇2〉 − 〈v̇1, B

∗v2〉
= −〈Bv1, v̇2〉 − 〈Bv̇1, v2〉

= 〈 d
dt

(Bv1) , v2〉 − 〈Bv̇1, v2〉

= 〈(∂tB) v1, v2〉+ 〈Bv̇1, v2〉 − 〈Bv̇1, v2〉
= 〈(∂tB) v1, v2〉.

Then we have to bound the norm of− (∂tB)∗−B∗ ddt fromW k+1,2(T,R2n)
to W k,2(T,R2n).∥∥∥∥− (∂tB)∗ −B∗ d

dt

∥∥∥∥
k+1,k

≤ ‖(∂tB)∗‖k+1,k +

∥∥∥∥B∗ ddt
∥∥∥∥
k+1,k

≤ ‖(∂tB)∗‖k,k + ‖B∗‖k,k

∥∥∥∥ ddt
∥∥∥∥
k+1,k

= ‖∂tB‖k,k + ‖B‖k,k.
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The latter term has been studied in the preceding point and the for-
mer can be treated in a similar way. To sum up also in this case
‖A(s)∗−A0‖k+1,k is small provided the diameter of Uz and A0(s0) are
su�ciently small.

Thus we get the following lemma.

Lemma 5.3.1. Let a be the positive constant introduced in (5.7). There exist
a positive constant δa, which is universal in N0, such that if the diameter
of Uz is su�ciently small (and hence y) and w = (u, T ) ∈ N0 is such that
u(T× [s0, s1]) ⊂ Uz, then

A0(w(s0)) ≤ δa =⇒ Θw(s) ≤ a2

2
. (5.10)

In the subsequent discussion we will always assume that Uz is small
enough, so that we can apply the preceding lemma. This allows to prove a
crucial estimate for ϕ.

Proposition 5.3.2. Let I = [s0, s1] be an interval, z ∈ Σ. Suppose that
w ∈ N0 is such that w|I is a 0-Solution and A0(w(s0)) ≤ δa. Then we have

ϕ′′ ≥ a2ϕ,

where ϕ is the function de�ned in (5.9).
This implies that

ϕ(s) ≤ max{ϕ(s0), ϕ(s1)}
cosh(a(s− s0+s1

2 ))

cosh(a s1−s02 )
. (5.11)

Proof. A derivation under the integral sign yields

ϕ′′ = ‖Q0w
′‖2k+1 + 〈Q0w,Q0w

′′〉k+1 ≥ 〈Q0w,Q0w
′′〉k+1.

Then using the following three facts (see point 1 in Proposition 5.2.3, the
discussion following Remark 5.2.4 and Equation 5.8):

� A0 is symmetric,

� A(s) = A(s)Q0 and ∂sA(s) = ∂sA(s)Q0,

� w′ = −A(s)w and di�erentiating,

w′′ = −A(s)w′ − (∂sA(s))w

and the inequalities (see (5.7) and the preceding lemma)

• a2‖Q0w‖2k+1 ≤ ‖A0Q0w‖2k, • Θw ≤
a2

2
,
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we �nd

〈Q0w,Q0w
′′〉 = 〈Q0w, (−A(s)Q0w

′ − (∂sA(s))Q0w)〉

= − 〈Q0w, (A(s)−A0)Q0w
′〉 − 〈Q0w,A0Q0w

′〉+
− 〈Q0w, (∂sA(s))Q0w〉

= − 〈(A(s)−A0)∗Q0w,Q0w
′〉+ 〈A0Q0w,A(s)Q0w〉+

− 〈Q0w, (∂sA(s))Q0w〉

= − 〈(A(s)−A0)∗Q0w,A(s)Q0w〉+ 〈A0Q0w,A0Q0w〉+
+ 〈A0Q0w, (A(s)−A0)Q0w〉 − 〈Q0w, (∂sA(s))Q0w〉

≥ − ‖(A(s)−A0)∗‖k+1,k‖A(s)‖k+1,k‖Q0w‖2k+1+

+ ‖A0Q0w‖2k − ‖A0‖k+1,k‖A(s)−A0‖k+1,k‖Q0w‖2k+1+

− ‖∂sA(s)‖k+1,k‖Q0w‖2k+1

= ‖A0Q0w‖2k −Θw‖Q0w‖2k+1

≥ (a2 −Θw)‖Q0w‖2k+1

≥ a2

2
‖Q0w‖2k+1

≥ a2

2
‖Q0w‖2k

= a2ϕ.

Set

ψ(s) := max{φ(s0), φ(s1)}
cosh(a(s− s0+s1

2 )

cosh(a s1−s02 )
.

Then ψ′′ = a2ψ and, since cosh is an even function,

ψ(a) = ψ(b) = max{φ(s0), φ(s1)}.

Thus the function ϕ̂= ϕ− ψ still satis�es ϕ̂′′ ≥ a2ϕ̂ and furthermore is not
positive on the boundary of I. Then the maximum of ϕ̂ cannot be positive.
Arguing by contradiction, if the point of maximum s̃ were in the interior of
I and ϕ̂(s̃) > 0, we would have the impossible inequality

0 ≥ ϕ̂′′(s̃) ≥ ϕ̂(s̃) > 0.

Therefore we get the desired inequality

0 ≥ ϕ̂ = ϕ− ψ, on I.
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The previous proposition allows to give a bound on the space u travels
during the interval I.

Proposition 5.3.3. With the notation as above we have

|u(t, s)− u(t, s0)| ≤ C

a
max {‖Qw(s0)‖k, ‖Qw(s1)‖k} , (5.12)

for some constant C > 0.

Proof. Remember that Q0w = (u−
∫
T uxdt, T ), then

|T | ≤ ‖Q0w‖k
and, when k ≥ 2, the Sobolev Embedding Theorem yields also a constant C
such that

|∂tu| = |∂tQ0w| ≤ C‖Q0w‖k.
Now get ∂su from Equation 5.2 and use the two estimates just found in order
to obtain

|u(s)− u(s0)| ≤
∫ s

s0

|∂su(s′)|ds′ ≤ C ′
∫ s

s0

‖Q0w(s′)‖kds′. (5.13)

Using (5.11) we know that

‖Q0w(s)‖k ≤ max{‖Q0w(s0)‖k, ‖Q0w(s1)‖k}

√
cosh(a(s− s0+s1

2 ))

cosh(a s1−s02 )
.

The subadditive inequality√
b1 + b2 ≤

√
b1 +

√
b2, b1, b2 ≥ 0

yields

•
√

cosh s ≤
√

2 cosh
s

2
, • sinh s ≤ 1√

2

√
cosh(2s).

Then we get the bound∫ s

s0

√
cosh

(
a

(
s′ − s0 + s1

2

))
ds′ ≤

√
2

∫ s

s0

cosh

(
a

2

(
s′ − s0 + s1

2

))
ds

=
4
√

2

a
sinh

(
a

2

s1 − s0

2

)
≤ 4

a

√
cosh

(
a
s1 − s0

2

)
.

Continuing the chain of inequality in (5.13), we get the thesis

|u(s)− u(s0)| ≤ max{‖Q0w(s0)‖k, ‖Q0w(s1)‖k}
4C ′

a

√
cosh(a s1−s02 )√
cosh(a s1−s02 )

=
4C ′

a
max{‖Q0w(s0)‖k, ‖Q0w(s1)‖k}.
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5.4 Exponential decay

This last section will be entirely devoted to the proof of Theorem 5.1.2.

Lemma 5.4.1. For every real number ŷ with 0 ≤ ŷ < y there exists a real
number c > 0 such that if we have a point z0 ∈ M with |H(z0)| ≤ ŷ, then
there exist z ∈ Σ such that

• z0 ∈ Uz, • inf
z′∈∂Uz

|z0 − z′| ≥ c,

where | · | is the standard Euclidean metric in the coordinate induced by Uz.

Proof. The set {H ∈ [−ŷ, ŷ]} admits the open cover{
Uz ∩ {H ∈ [−ŷ, ŷ]}

}
z∈Σ

.

Since {H ∈ [−ŷ, ŷ]} is compact, the open cover admits a positive Lebesgue
number. This fact and y − ŷ > 0 together imply that there exists c > 0
such that the ball centered in z0 with radius c is compactly contained in
some Uz. Since the metric ofM restricted to Uz and the standard Euclidean
metric, which the coordinates (x, y) bring on Uz, di�er by a constant factor
independent of z, the lemma follows.

Proof of Theorem 5.1.2. First we apply Lemma 5.4.1 with ŷ := y
2 and get a

positive constant c. Then we observe that, for every ε > 0, the set

{w ∈ E0 | u ⊂ Uz for some z ∈ Σ, ‖Q0w‖k ≤ ε}

is a neighborhood of Σ×0 in E0. By Corollary 4.7.6, there exists δε > 0 such
that if A0(w(s0)) ≤ δε, for some s0 ≥ r, then, for every s ≥ s0, there exist
Uz (that may depend on s), such that u(s) lies in Uz and ‖Q0w(s)‖k ≤ ε.
Since we have the bound

max{|u̇|, |uy|, |T |} ≤ C‖Q0w‖k, (5.14)

then, for ε su�ciently small,

|uy(t, s)| ≤
y

2
, for s ≥ s0.

This means that there exists ε0 > 0 su�ciently small and a corresponding
δε0 , such that if A0(w(s0)) ≤ δε0 holds, then

1. there exists z ∈ Σ such that u(s0) ⊂ Uz and

inf
z′∈∂Uz

|u(t, s0)− z′| ≥ c;
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2. ε0 ≤
ac

2C
, with C the constant contained in Proposition 5.3.3;

3. ‖Q0w‖k ≤ ε0.

Suppose now that, for every w ∈ N0, an s0 is chosen in such a way that
A0(w(s0)) ≤ δε0 (observe that s0 may depend on w). We claim that for
every s ≥ s0, u(s) ⊂ Uz, z being given from the �rst point of the preceding
list. Uz will be the neighborhood U+ mentioned in the statement of the
theorem. Assume by contradiction that u(s) exits Uz, for some s ≥ s0.
Then there exists a couple (t̃, s̃), with s̃ ≥ s0 such that

• u(t, s) ∈ Uz, for t ∈ T, s0 ≤ s < s̃, • u(t̃, s̃) ∈ ∂Uz.

Then we can use Proposition 5.3.3 with I = [s0, s], s < s̃, �nding

|u(t̃, s)− u(t̃, s0)| ≤ C

a
max {‖Qw(s0)‖k, ‖Qw(s)‖k} ≤

C

a
ε0 ≤

c

2
.

Taking the limit s→ s̃ we get

|u(t̃, s̃)− u(t̃, s0)| ≤ c

2
.

This is a contradiction because u(t̃, s̃) ∈ ∂Uz. Now that we have proven
that u(·, s) ⊂ Uz for every s ≥ s0, the function ‖Q0w(s)‖k is well de�ned
for s ≥ s0. By Corollary 4.7.6 we know that ‖Q0w(s)‖k tends to zero as s
goes to +∞. If s1, s2 ≥ s0, we can apply once more Proposition 5.3.3, with
I = [s1, s2], and get

|u(t, s1)− u(t, s2)| ≤ C

a
max {‖Q0w(s1)‖k, ‖Q0w(s2)‖k} .

Since ‖Q0w(s)‖k tends to zero, we have

u(t, s)→ û(t) and T (s)→ 0, as s goes to +∞.

By Proposition 4.7.5 we have that û(t) ≡ z′ ∈ Σ ∩ Uz and

w(s)
E0−→ (z′, 0).

Let us study now the asymptotic behaviour of ‖Q0w(s)‖k. The hypothe-
ses of Proposition 5.3.2 are satis�ed for every I = [s0, s1], with s1 ≥ s0. Thus
we get

‖Q0w(s)‖k ≤ max{‖Q0w(s0)‖k, ‖Q0w(s1)‖k}

√
cosh(a(s− s0+s1

2 ))

cosh(a( s1−s02 ))
.

Letting s1 go to +∞ we have

• max{‖Q0w(s0)‖k, ‖Q0w(s1)‖k} −→ ‖Q0w(s0)‖k
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•
cosh(a(s− s0+s1

2 ))

cosh(a s1−s02 )
= ea(

s1+s0
2
−s)e−a

s1−s0
2 + ρ(s1) = ea(s0−s) + ρ(s1)

and ρ(s1)→ 0, as s1 → +∞. Hence we get the exponential decay:

‖Q0w(s)‖k ≤ ‖Q0w(s0)‖ke
a
2

(s0−s). (5.15)

The exponential decay of u̇, uy and T follows from the inequality 5.14. The
exponential decay of these three quantities imply that of ∂su and dT

ds via the
0-Equation 5.2. At last, the exponential decay of u − z′ follows integrating
the inequality

|∂su(t, s)| ≤ Ce
a
2

(s0−s)

we have just found.
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Chapter 6

A noncompactness theorem:

the conclusion of the argument

In this �nal chapter we shall prove the Main Theorem 2.4.1, stated at the
end of the second chapter. The next step to reach our goal is to giveM an
alternative topology τp that turns it into a noncompact set. In the end this
result will be combined with the C∞loc-relative compactness and Morse-Bott
theory in order to conclude the argument. For the sake of simplicity, in this
chapter we will carry out the details when M is R2n.

6.1 The Sobolev setting

In general,M can be seen as the zero set of a map F : [0,+∞)×X̂ → E,
where E → X̂ is a Banach vector bundle and each slice

Fr := F∣∣{r}×X̂
is a Fredholm section of this bundle. Then τp is simply the topology that

[0,+∞) × X̂ induces on its subset M. The topological features of (M, τp)
can be investigated making use of some important properties of Fredholm
maps. When M is R2n, the space X̂ is simply chosen as

X̂ := Σ×X,

where X is some Banach space, the bundle E is trivial and its �bers are
isomorphic to a Banach space Y . Hence F can be seen as a Fredholm map
F : [0,+∞)× X̂ → Y andM becomes the counterimage of the value 0. Let
us now describe in a precise manner this analytical setting.

Let a be the constant introduced in (5.7) of the preceding chapter and,
for each p > 2, set

bp :=
ap

4
.
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Then de�ne

X := W 1,p(T× R,R2n; ebp|s|dtds)×W 1,p(R,R; ebp|s|ds),

(the need for an exponential weight will be clear in the proof of Lemma
6.3.2). Moreover let

Y := Lp(T× R,R2n; ebp|s|dtds)× Lp(R,R; ebp|s|ds).

We can endow these Sobolev spaces with the obvious product norms:

• ‖(u, T )‖pX := ‖u‖p1,p + ‖T‖p1,p, where

‖u‖p1,p :=

∫
T×R

(
|u|p + |∂tu|p + |∂su|p

)
ebp|s|dtds,

‖T‖p1,p :=

∫
R

(
|T |p +

∣∣∣∣dTds
∣∣∣∣p )ebp|s|ds;

• ‖(u, T )‖pY := ‖u‖pp + ‖T‖pp, where

‖u‖pp :=

∫
T×R
|u|pebp|s|dtds, ‖T‖pp :=

∫
R
|T |pebp|s|ds.

We can suppose after a suitable translation that the distinguished point used
in the de�nition ofM is z0 = 0. Furthermore, let us consider a smooth step
function σ : R→ [0, 1] such that σ(s) = 0, for s ≤ 0 and σ(s) = 1, for s ≥ 1.
Then every element (z, u, T ) of the set

X̂ := Σ×X

gives rise to a couple of continuous maps (this is a consequence of p > 2 and
the Sobolev Embedding Theorem 4.2.2)

(z, u, T ) 7→
(
uz, T

)
:=
(
σ(s)z + u(t, s), T (s)

)
.

The function σ(s)z+u(t, s) is a cylinder in R2n, whose uniform limit at −∞
is the constant path z0 = 0 and whose uniform limit at +∞ is the constant
path z. T belongs to the class of real continuous functions, that go to 0 at
in�nity. We notice that also the elements of M are continuous and satisfy
the same asymptotic conditions. They can be written as (r, σz + u, T ), for
some z ∈ Σ. By Theorem 5.1.2 we know that there exists s > 0, (possibly
depending on the element ofM we are considering) such that

max

{
|u|, |∂su|, |∂tu|, |T |.

∣∣∣∣dTds
∣∣∣∣} ≤ Cea2 (s−|s|), |s| ≥ s. (6.1)

This imply ‖(u, T )‖X < +∞. Then, we can identify M with a subset of
[0,+∞)× X̂.
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Remark 6.1.1. We point out that in the case M = R2n, is not necessary
to pick p > 2. The argument works in the simpler Hilbert case p = 2, as
well. However in general we assume higher integrability because, in order
to construct an atlas for the manifold X̂, we need to deal with continuous
functions. See (42) for an overview of the general construction.

In the realm of smooth functions,M is characterized as being the set of
solutions of the r-Equations

dw

ds
(s) +∇Aβ(r,s) (w(s)) = 0,

with certain asymptotic properties. We can regard the last equation as the
de�ning equation for the zero set of a map Gr, indexed by a parameter r

Gr(u, T ) :=

(
∂su+Ju

(
∂tu−TXH̃(t, u)−βrXF (t, u)

)
, T ′−

∫
T
H̃(t, u)dt

)
(6.2)

(here T ′ indicates the derivative of T ). We see that Gr can be de�ned using
the same formula (substituting u with uz) as a function between the spaces
X̂ and Y . This family of maps can be gathered in a single one:

G : [0,+∞)× X̂ → Y
(r, z, u, T ) 7→ Gr(uz, T ).

(6.3)

De�ne the zero set of G:

Mp := G−1(0) =
⋃

r∈[0,+∞)

{r} ×G−1
r (0) (6.4)

We know thatM⊂Mp and we may wonder if the inclusion is strict or not.
We claim that

M =Mp.

In order to prove this, we must show that if w ∈ X̂ solves Gr(w) = 0, then
w is indeed smooth. This follows from a regularity theorem similar to 4.2.7.
We will not prove this result and invite the interested reader to read the
Appendix B in (33). The precise statement is the following.

Theorem 6.1.2. Let w = (z, u, T ) ∈ X̂ a solution of the equation

Gr(w) = 0.

Then uz and T are smooth functions such that(
uz(·, s), T (s)

) E0

−−−−→ (0, 0), as s→ −∞,(
uz(·, s), T (s)

) E0

−−−−→ (z, 0), as s→ +∞

and therefore (r, uz, T ) ∈M.
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To sum up we have found thatM is also the zero setMp of the function

G. Thus, we can endow it with the topology τp induced by [0,+∞) × X̂.
When this is the case, we will use the notationMp instead ofM. We wish
to investigate the topological properties of Mp. We already know that is
closed (since it is the zero set of a continuous function) and we aim to show
that is noncompact. This is the content of the next two sections.

6.2 The Implicit Function Theorem and

the Sard-Smale Theorem

First we notice that a simple calculation shows that Gr is of class C
1. Its

di�erential at a point w = (z, (u, T )) acts in the following way on a vector(
v, (ξ, η)

)
∈ TzΣ×X:

dwGr
(
v, ξ, η

)
=
(
d1
wGr(v, ξ, η), d2

wGr(v, ξ, η)
)
,

We �nd that

d1
wGr

(
v, ξ, η

)
= σ′v+∂sξ+Juz

(
∂tξ − ηXH̃(t, uz)−T (d(t,uz)XH̃)(ξ + σv)

)
+

− Juz
(
βr(d(t,uz)XF )(ξ + σv)

)
+

+ (duzJ)(ξ + σv)
(
∂tu− TXH̃(t, uz)− βrXF (t, uz)

)
.

Rewrite the equation as

d1
wGr

(
ρ, v, (ξ, η)

)
= ∂sξ+Juz

(
∂tξ − ηXH̃(t, uz)− T (d(t,uz)XH̃)(ξ + σv)

)
+

+ (duzJ)(ξ + σv)
(
∂tu− TXH̃(t, uz)

)
+ Sr(t,s,uz ,T )(v, ξ),

where

Sr(t,s,uz ,T )(v, ξ) : = σ′v − Juz
(
βr(d(t,uz)XF )(ξ + σv)

)
+

− (duzJ)(ξ + σv)
(
βrXF (t, uz)

)
is a term that vanish identically for s large.
For the second factor we have simply

d2
wGr(v, ξ, η) = η′ −

∫
T
(d(t,uz)H̃)(ξ + σv)dt.

Since the dependance on the parameter r is smooth, the fact that Gr is of
class C1 implies that G has the same regularity.

From the �nite dimensional analysis we know that a way to investigate
the properties of a zero set of a continuously di�erentiable map is to study
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its di�erential at the points of the zero set. If the di�erential is surjective
then by the implicit function theorem we can deduce that this set is actually
a smooth manifold. Therefore our �rst task will be to study dG. In short
we will see that it turns out to be a Fredholm operator.

Thus is convenient to give the nonlinear counterpart of De�nition 5.2.1.

De�nition 6.2.1. A map Λ : N1 → N2 of class C1 between two Banach
manifolds modeled on the Banach spaces E1, E2 is said to be a Fredholm
map if at every point q ∈ N1 its di�erential

dqΛ: TqN1 → TΛ(q)N2

is a Fredholm operator.

From Proposition 5.2.2 descends that the index of dqΛ is locally constant
in q, hence on every connected component N ′1 ⊂ N1 the index of the map
Λ is well de�ned. This index ı(Λ) is simply de�ned as ı(dqΛ), where q is an
arbitrary point in N ′1. For Fredholm maps an in�nite dimensional analogue
of the implicit function theorem is available. Before we need a de�nition.

De�nition 6.2.2. Let Λ: N1 → N2 a map of class C1 between two Banach
manifolds. A point q ∈ N1 is called a regular point if dqΛ has a right
inverse. A point p ∈ N2 is called a regular value if every q ∈ Λ−1(p) is a
regular point.

A proof of the next theorem can be found in the Appendix A of (33).

Theorem 6.2.3 (Implicit Function Theorem). Let Λ : N1 → N2 be a Fred-
holm map of class C1, let N1 be connected (so that the index ı(Λ) is well
de�ned) and let p ∈ N2 be a regular value. Then Λ−1(p) is a smooth sub-
manifold of N1. Its dimension is ı(Λ).

At this point it might seem strange that we have de�ned the larger class
of Fredholm map, when the implicit function theorem we need holds only if
the di�erential has a right inverse. However we will see that the theorems at
our disposal yield only the Fredholm property of dG and not the existence of
a right inverse. Luckily this gap is bridged by an analogue of Sard's Theorem
for Fredholm maps, proved by Smale in (44). Before, we need to recall the
Baire's Category Theorem.

De�nition 6.2.4. Let N be a topological space. A set N ′ ⊂ N is called
a residual set in N if it contains a countable intersections of open dense
subsets of N .

Theorem 6.2.5 (Baire's Category Theorem). Every residual set in a com-
plete metric space is dense.
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Theorem 6.2.6 (Sard-Smale Theorem). Let Λ: N1 → N2 a Fredholm map
of class Ck between two separable Banach manifolds. Let N1 be connected.
If k ≥ max{1, ı(Λ) + 1}, then the set of regular values of Λ is residual in N2.

Remark 6.2.7. Since every Banach manifold is locally homeomorphic to a
complete metric space, using Baire's Category Theorem, we get that the set
of regular values of Λ is actually dense in N2.

In order to apply Theorem 6.2.6 and hence Theorem 6.2.3, we have to
prove that dG is Fredholm. This will be the content of the next section

6.3 The Fredholm property

In this section we prove the following statement.

Proposition 6.3.1. Let G : [0,+∞)× X̂ → Y de�ned by formula 6.3. Then

1. d(0,(0,0))G0 : T(0,0)X̂ → T(0,0)Y is bijective,

2. G is a Fredholm map,

3. ı(G) = 1.

We begin with a preliminary result.

Lemma 6.3.2. dGr is a Fredholm operator and d(0,(0,0))G0 is bijective.

Proof. Fix some r ∈ [0,+∞) and consider the operator d(z,u,T )Gr restricted
to 0×X ⊂ TzΣ×X. It has the form

Dr(ξ, η) := (∂sξ, η
′) +At,s,r(ξ, η).

Since the remaining factor TzΣ× 0 is �nite dimensional, d(z,u,T )Gr is Fred-
holm if and only if Dr is Fredholm.
The operator At,s,r tends to A0 when s → ∞. We know that A0 is not in-
vertible, however the introduction of the exponential weight in the de�nition
of the Sobolev spaces allows to construct an isomorphism with the standard
spaces

W 1,p(T×R,R2n; dtds)×W 1,p(R,R; ds), Lp(T×R,R2n; dtds)×Lp(R,R; ds).

The isomorphism is obtained simply by mapping (u, T ) in (eφ(s)u, eφ(s)T ),
where φ is a smooth function coinciding with a

4 |s| for |s| large. We obtain an
operator, conjugated with Dr, between these new spaces. It is of the form

D̂r(ξ, η) := (∂sξ, η
′) +At,s,r(ξ, η, v) + φ′ ·(ξ, η). (6.5)

The new limit operators are

A0 −
a

4
, Az +

a

4
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and are invertible from W 1,2(T,R2n)×R to L2(T,R2n)×R. Indeed, A0− bp
p

preserves the splitting imQ0 ⊕ imP0. The inequality 5.7 yields that

A0Q0 −
a

4
Q0 is invertible on the image of Q0.

On the second factor the map is simply the scalar multiplication by −a
4 ,

which is invertible, since a 6= 0.
Linear mappings of the kind 6.5 were intensively studied, for instance in

the second lecture of D. Salamon in (42). The discussion contained therein
implies that an operator of this type is Fredholm and hence so is

dGr, because the Fredholm property is preserved by conjugacy.

Prove now the second part of the lemma and start analyzing d(0,(0,0))G0.

The operator D̂0 in this case is simply

D̂0(ξ, η) = (∂sξ, η
′) +A0(ξ, η) + φ′ ·(ξ, η).

We aim to �nd its index. Still referring to Salamon's lectures, we know that

ı(D̂0) is minus the spectral �ow of the path of operators A0 + φ′,
considered as self-adjoint operator on L2(T,R2n)× R.

Intuitively, the spectral �ow counts with multeplicity the number of times
the following situation occurs:

an eigenvalue γ(s) for A0 + φ′ is negative in s ∈ (s0 − ε, s0) and
positive in (s0, s0 + ε), for some real numbers ε > 0, s0.

Many things should be checked in order to prove that this de�nition makes
sense. The most evident is that one is able to select all the eigenvalues of
(A0 + φ′)(s) in a smooth way with respect to the s-variable, in such a way
that functions s 7→ γ(s) are de�ned and they describe all the eigenvalues of
(A0 +φ′)(s) (this is essentially the content of Kato Selection Theorem). For
a rigourous treatment of the spectral �ow and its application to the setting
we are dealing with, we suggest to take a look at (41).

Here we need only some basic properties that can be inferred from the
following discussion and that we give for granted. Thus, let us begin the line
of reasoning.

Since each element of the path preserves the splitting imQ0 ⊕ imP0 the
spectral �ow we need is the sum of the spectral �ows on the two separated
factors. We need to calculate the spectral �ow of A0 +φ′ and of φ′ on imQ0

and imP0 respectively.
In order to compute the former we use the fact that the spectral �ow is

preserved under homotopies, which leave the endpoints in the space of self
adjoint invertible operators. Then we can de�ne a homotopy of 6.5 depending
on a parameter δ:

A0 + δQ0φ
′.
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As before we can see that as δ goes to 0, the limit operators remain invertible.
Since the new path we obtain is constant, the spectral �ow is zero.

As regard the path φ′ on imP0, we notice that the limit operators are
simply −a

4 and a
4 , so that all the 2n eigenvalues pass from being negative to

being positive. Thus the spectral �ow is 2n. Putting all together:

ı(D0) = ı(D̂0) = −2n. (6.6)

Furthermore we claim that D0 is injective. Indeed, if D0(ξ, η) = 0, then

(∂sξ, η
′) = −A0(ξ, η) (6.7)

implies that (ξ, η) is smooth. We thus can apply Proposition 5.3.2, get the
inequality 5.11 for an arbitrary I = [s0, s1] and then I go to the whole R.
As a result we �nd that Q0(ξ, η) = 0. Moreover taking the projection P0 in
(6.7), the function ψ := P0(ξ, η) satis�es the equation

ψ′ = 0.

Since ψ tends to zero at in�nity, we get ψ ≡ 0 and therefore

(ξ, η) = Q0(ξ, η) + P0(ξ, η) = 0 + 0 = 0.

Observe now that:

d(0,(0,0))G0(v, ξ, η) = D0(ξ, η) + σ′v.

The map  : v 7→ σ′v is clearly injective. This implies that its range is 2n-
dimensional. We claim that im  ∩ imD0 = 0. This yields that d(0,(0,0))G0

is bijective. In order to prove the claim consider the linear continuous map
from Y to R2n

(ξ, η) 7→
∫
R
P0ξds.

Notice that it is well de�ned because P0 makes sense also when p 6= 2 and

P0ξ is in L
1(R,R2n) since it belongs to Lp(R,R2n; e

bp
| s|ds). We have

•
∫
R
P0

(
(∂sξ, η

′) +A0(ξ, η)
)
ds =

∫
R

(P0ξ)
′ds = 0,

•
∫
R
Pvds =

∫
R
σ′vds = v.

This equalities yields the claim and prove the lemma.

Proof of Proposition 6.3.1. The �rst point was proven in the Lemma 6.3.2.
The second point stems out from the fact that dGr is the restriction of

dG to a closed subspace of �nite codimension.
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Finally, the index of G can be computed on an arbitrary point. We
choose (0, (0, (0, 0))). Then

coker d(0,(0,0))G0 = 0, =⇒ coker d(0,(0,(0,0)))G = 0.

If w ∈ X̂ and c ∈ R we have

d(0,(0,(0,0)))G(c∂r, w) ⇐⇒ 0 = c∂rG+ d(0,(0,0))G0w

⇐⇒ w = −c
(
d(0,(0,0))G0

)−1
∂rG.

Thus ker d(0,(0,(0,0)))G = Span
( (
d(0,(0,0))G0

)−1
∂rG

)
has dimension one.

6.4 A topological obstruction

In this section we use the previous results in order to prove thatMp is
not a compact set. First we need to investigate a bit further Fredholm maps.

De�nition 6.4.1. Let Λ : N1 → N2 be a continuous map between two
topological spaces. Λ is said locally proper if for each point q ∈ N2 there
exists Uq a neighbourhood of q such that Λ|Uq is a proper map (i.e. if K ⊂ N2

is compact, then Λ−1(K) is compact as well).

Remark 6.4.2. If Λ is locally proper then each compact set K ′ ⊂ N1 has a
neighbourhood UK such that Λ|UK is proper.

Lemma 6.4.3. Fredholm maps are locally proper.

Proof. Let Λ: E1 → E2 a Fredholm map. Fix a point q0 ∈ E1. Without loss
of generality we can assume q0 = 0, Λ(q0) = 0. Since d0Λ is Fredholm we
know by Proposition 5.2.2 that there exist a bounded operator L : E2 → E1

and a compact operator K : E1 → E1 such that

Ld0Λ = idE1 +K. (6.8)

De�ne the map
Γ: E1 → E1

q 7→ LΛ(q)−Kq.
(6.9)

Γ is of class C1 and by (6.8) we have

d0Γ = idE1 .

The inverse function theorem yields a neighbourhood U of 0 ∈ E1 and a
neighbourhood V of 0 ∈ E1 such that Γ is a homeomorphism between U
and V . Furthermore we can choose both neighbourhoods to be bounded and
closed.
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The lemma follows once we show that Λ̂ := Λ ◦ Γ−1 is proper. Substituting
q = Γ−1(p) in the de�nition of Γ (6.9), we �nd the equation

p = LΛ̂(p)− K̂(p), K̂ := K ◦ Γ−1. (6.10)

Thus
LΛ̂ = idE1 +K̂.

Since V and U are bounded, the map K̂ is compact, i.e. the image of every
subset is relatively compact in E1 and hence in V (since V is closed). Con-
sider now C ⊂ E2 a compact set. We aim to show that Λ̂−1(C) is compact.
As a preliminary observation we �nd that for every set A ⊂ E1

(id +K̂)−1(A) ⊂ A− K̂
(

(id +K̂)−1(A)
)
.

Indeed, let x ∈ V be such that

p+K(p) = p′ ∈ A.

Then p = p′ −K(p) ∈ A−K
(

(id +K̂)−1(A)
)
. Now compute

Λ̂−1(C) ⊂ Λ̂−1(L−1LC) = (LΛ̂)−1(LC)

= (id +K̂)−1(LC)

⊂ LC − K̂
(

(id +K̂)−1(LC)
)

⊂ LC − K̂
(

(id +K̂)−1(LC)
)
.

Both LC and K̂
(

(id +K̂)−1(LC)
)
are compact and therefore also their dif-

ference is compact. Thus we have found that Λ̂−1(C) is closed and contained
in a compact set, hence it is compact.

With this lemma at our disposal we can prove the desired proposition.

Proposition 6.4.4. Mp is not compact.

Proof. LetM′p the connected component ofMp passing through the point
(0, (0, (0, 0))). Assume thatM′p is compact: we will see that this leads to a
contradiction. By Lemma 6.4.3 and Remark 6.4.2 there exists a closed neigh-
bourhood U of M′p such that G|U is proper. Since d(0,(0,0))G0 is invertible

we can shrink U if necessary and suppose that G0 is bijective on U ∩ 0× X̂.
Observe that

M′p ∩
(
∂U \ 0× X̂

)
= ∅. (6.11)

By Sard-Smale Theorem 6.2.6 and the remark following it, we can �nd a
sequence cν ⊂ Y , such that
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� cν → 0,

� cν is a regular value for G,

� there exists a unique qν ∈ U ∩ 0× X̂, such that G(qν) = cν .

Consider the following sequence of decreasing compact subsets of Y :

Cν := {0} ∪
⋃
µ≥ν
{cµ}.

Then C ′ν :=
(
∂U \ 0× X̂

)
∩ G−1

|U (Cν) is a decreasing sequence of compact

subsets in [0,+∞)× X̂. They are such that⋂
ν

C ′ν =
(
∂U \ 0× X̂

)
∩
⋂
ν

Cν =
(
∂U \ 0× X̂

)
∩G−1(0) = ∅.

Therefore there exists ν such that C ′ν = ∅. This implies that

G−1
|U (cν) ∩ ∂U = F−1

|U (cν) ∩
(
∂U \ 0× X̂

)
∪ G−1

|U (cν) ∩ 0× X̂

= ∅ ∪ {qν}
= {qν}.

By the Implicit Function Theorem 6.2.3 we �nd that G−1
|U (cν) is a compact

manifold of dimension 1, whose boundary has a single element qν . However
every compact manifold of dimension 1 is homeomorphic to a disjoint union
of closed segments and circles, hence the cardinality of its boundary must be
even. This contradiction proves the theorem.

6.5 Conclusion

We begin with the fundamental proposition.

Proposition 6.5.1. Let (rν , wν) a sequence of elements inM such that

(rν , wν)
C∞loc

−−−−−−−→ (r, w).

The following alternative holds

1. there exists δ0, a subsequence (rν′ , wν′) and a sequence of time sν′ pos-
itively or negatively diverging such that

|A0(wν′(sν′))| ≥ δ0.

In this case w is a bounded r-Solution, with

δ0 ≤ max{|A0(w−)|, |A0(w+)|} ≤ ‖F‖. (6.12)
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2. for every δ > 0, there exists sδ ≥ ‖F‖2µ2
+ 1, such that

max{A0(wν(−sδ)),A0(wν(sδ))} ≤ δ, ∀ν ∈ N. (6.13)

In this case

• (r, w) ∈M, • lim
ν→+∞

wν(+∞) = w(+∞), • (rν , wν)
τp−→ (r, w)

(where the last convergence is in the space [0,+∞)× X̂).

Proof. Let us deal with the �rst case. By the C∞loc-convergence we know that

w is a bounded r-Solution. Fix s ∈ R, with |s| ≥ ‖F‖
2µ2

+ 1. Then Proposition
3.4.2 implies that

|A0(wν(s))| ≤ ‖F‖.

Passing to the limit in ν we get

|A0(w(s))| ≤ ‖F‖.

Letting |s| go to in�nity we have the right inequality in 6.12.

Suppose now without loss of generality that sν′ → +∞. If s ≥ ‖F‖
2µ2

+ 1,

we have s ≤ sν′ for ν
′ bigger than some natural number ν ′(s). Then, since

A0(w) is decreasing on the ray [s,+∞), we get

A0(w(s)) = lim
ν′→+∞

A0(wν′(s)) ≥ lim sup
ν′→+∞

A0(wν′(sν′)) ≥ δ0.

Letting s go to +∞, we get the left inequality.
Examine now the second case. Set w = (u, T ). Remembering the discus-

sion in the �rst section of this chapter, we know that the elements ofM can
be written as quadruple (rν , wν) = (rν , uν(+∞), uν , Tν). Theorem 5.1.2 and

the hypothesis of this case yield a δ1 > 0 and an sδ1 ≥
‖F‖
2µ2

+ 1 that does not
depend on ν, such that we have

max{−A0(wν(−sδ1)),A0(wν(sδ1)} ≤ δ,

and

max

{
|uν | , |Tν | , |∂suν | , |∂tuν | ,

∣∣∣∣dTνds
∣∣∣∣} ≤ Cea2 (sδ1−|s|), for ± s ≥ sδ1 .

We point out that in the terms involving uν , in the preceding inequality we
can substitute the norm induced by the local charts U± (as it was required
by Theorem 5.1.2) with the Euclidean norm on M = R2n and on the �ber
of TM ≡ R2n × R2n. The price we pay is a constant factor that can be
absorbed in C.

The second and third point of the statement we aim to prove are equiv-
alent to showing that any subsequence of (rν , wν) has a further subsequence
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such that the two limits hold. We suppose from now on to have �xed a
subsequence of (rν , wν) and we shall denote this new sequence by the same
subscripts ν. Then, since Σ is compact, after passing to a subsequence ν ′

we can suppose that uν′(+∞)→ z. This means that (uν′ , Tν′) converges to
(u−σz, T ) with respect to the C∞loc-topology Indeed, we know by assumption
that uν′ + σuν′(+∞) is convergent in the C∞loc-topology to u.

On the other hand we claim that (uν′(+∞), uν′ , Tν′) is convergent to
(z, u−σz, T ) also in the topology of X̂ and thus (z, u−σz, T ) ∈ X̂. Indeed,
we know already that uν′(+∞) → z. Then, (uν′ , Tν′) is a Cauchy sequence
in X. In order to show this we have to study the behavior of the norms

‖(uν′ − uν′′ , Tν′ − Tν′′)‖X , ν ′, ν ′′ su�ciently large.

Compute for example:

‖uν′−uν′′‖p1,p=

∫
T×R

(
|uν′−uν′′ |p+|∂t(uν′−uν′′)|p+|∂s(uν′−uν′′)|p

)
ebp|s|dtds.

Let us deal with the �rst summand only:

∆0(ν ′, ν ′′) :=

∫
T×R
|uν′−uν′′ |pebp|s|dtds.

If ŝ ≥ sδ1 , then

∆0(ν ′, ν ′′) =

∫
T×R
|uν′−uν′′ |pebp|s|dtds

=

∫
T×{|s|≤ŝ}

|uν′−uν′′ |pebp|s|dtds +

∫
T×{|s|≥ŝ}

|uν′−uν′′ |pebp|s|dtds

≤ 2ŝebpŝ sup
T×{|s|≤ŝ}

|uν′−uν′′ |p + 2p
∫

T×{|s|≥ŝ}

(
|uν′ |p + |uν′′ |p

)
ebp|s|dtds

≤ 2ŝebpŝ sup
T×{|s|≤ŝ}

|uν′−uν′′ |p + 2p+1Cpe
ap
2
sδ1

∫
T×{|s|≥ŝ}

e(bp−ap2 )|s|dtds

≤ 2ŝebpŝ sup
T×{|s|≤ŝ}

|uν′−uν′′ |p +
2p+4

ap
Cpe

ap
2
sδ1e−

ap
4
ŝ.

For every ε > 0 we can choose ŝ su�ciently large in order to make the
latter summand smaller than ε

2 . Then we exploit the C∞-convergence on
the compact set T×{|s| ≤ ŝ} and �nd a νε such that if ν ′, ν ′′ ≥ νε then also
the former summand is smaller than ε

2 . Arguing in a similar manner for all
the other terms we �nd that (uν′ , Tν′) is a Cauchy sequence in X. Since

(uν′ , Tν′)
C∞loc

−−−−−−−→ (u− σz, T )
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we deduce

• (u− σz, T ) ∈ X, • (uν′ , Tν′)
X

−−−−→ (u− σz, T ).

From this we �nd that

� w = (z, u− σz, T ) ∈ X̂,

� w(+∞) = (z, 0) = lim
ν′→+∞

(uν′(+∞), Tν′(+∞)),

� (rν′ , wν′)
τp−→ (r, w).

The proposition is thus proven.

Before proving the Main Theorem we need a last result, which holds
under general assumptions.

Proposition 6.5.2. Let Σ a compact closed manifold and W ∈ Γ(TΣ), a
vector �eld without zeros. Then there exists η0 ∈ (0,+∞) such that every
periodic orbit has period bigger than η0. As a consequence the set

PW := {η > 0 | there exists a closed orbit of period η}

is closed.

Proof. Consider a sequence of orbits γν : R/ηνZ → Σ with period ην and

ην → η. De�nining the reparametrized curves γ∗ν(t) := γ
(
t
ην

)
we get a

sequence of 1-periodic functions γ∗ν : T → Σ from the standard torus in Σ.
They satisfy

γ̇∗ν = ηνW (γ∗ν). (6.14)

Since Σ is compact and the sequence γ∗ν is equicontinuous, by the Arzelà-
Ascoli Theorem, after extracting a subsequence we can suppose γ∗ν → γ∗.
Using (6.14), we �nd that also γ̇∗ν converges uniformly. Then, γ∗ is di�eren-
tiable and γ̇∗ν → γ̇∗. Passing to the limit in Equation 6.14, we get

γ̇∗ = ηW (γ∗). (6.15)

Thus η ∈ PW , provided η 6= 0. In order to show this last statement argue by
contradiction and assume η = 0. This implies that γ∗ ≡ z, for some z ∈ Σ
and hence γ̇∗ ≡ 0. By hypothesis W (z) 6= 0 and therefore there exists a
coordinate neighborhood of z, Uz, such that W is a coordinate vector �eld
in Uz. This implies that all the �ow lines of W , and hence of ηνW , are open
on Uz. This is a contradiction since, when ν is large enough, γ∗ν is contained
in Uz and it is a closed trajectory of the vector �eld ηνW .

Now we can easily get the proof of the main theorem.
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Proof of Theorem 2.4.1. We know by Proposition 6.4.4, that M with the
τp-topology is non-compact. Hence there exists a sequence (rν , wν) ∈ M
without τp-convergent subsequences. Combining this fact with Corollary
4.7.3 we see that there exist a subsequence (rν′ , wν′), an r ∈ R and a bounded
r-Solution w, such that

(rν′ , wν′)
C∞loc
−−−−→ (r, w)

and (rν′ , wν′) is not convergent in the τp-topology. Then we see that for
(rν′ , wν′) the second alternative in Proposition 6.5.1 cannot occur. As a result
the �rst alternative tells us that one among |A0(w−)| and |A0(w+)| is di�erent
from zero and smaller than ‖F‖. Proposition 4.7.5 yields (u, T ) ∈ CritA0,
whose action is non-zero and with modulus smaller than ‖F‖. The Action-
Period Equality in 3.2.2 implies that (u, T ) is a Reeb orbit with period
smaller than ‖F‖.

Consider the set

P := {T > 0 | there exists a Reeb orbit on Σ with period T}.

By Proposition 6.5.2, the very de�nition of displacement energy (2.5) and
the discussion just made, we know that

minP = inf P ≤ inf{‖F‖ | ΦF displaces Σ } = edλ(Σ). (6.16)

The Reeb orbit corresponding to the minimum of P, satis�es the require-
ments of the Main Theorem. This concludes the proof and hence our expo-
sition
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