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Introduction

The aim of this work is to give a concise introduction to the Weinstein
conjecture and to analyze a proof of the conjecture in a particular case.
The Weinstein conjecture is a meeting point between two important fields
of mathematics: dynamical systems and contact-symplectic geometry. On a
closed compact odd-dimensional manifold X, endowed with a contact 1-form
«, it is well-defined a nowhere vanishing vector field R, called the Reeb
vector field of a. The Weinstein conjecture claims that R, has a periodic
solution.

As regard the dynamical point of view, when ¥ = S3 we can interpret
this statement as a particular case of the Seifert conjecture, which asserts
that every nowhere vanishing smooth vector field on S® has a periodic orbit.
The Seifert conjecture was disproven in 1994 by K. Kuperberg, who showed
that nowhere vanishing vector fields without periodic orbits do exist on any
compact closed odd-dimensional manifold.

If we restrict the class of vector field a little more, entering in the realm
of symplectic geometry, we come to the Hamiltonian vector field. Suppose
that ¥ can be embedded in a symplectic manifold (M,w) and that there
exists a function H: M — R, such that ¥ = H~1(0) (i.e. X is the 0 energy
level) and 0 is a regular value for H. Then the Hamiltonian vector field Xp
on M associated to H, resticts to a nowhere vanishing vector field on 3. The
corresponding existence conjecture for vector fields of this kind is called the
Hamiltonian Seifert conjecture and was disproved in 1999 by Herman when
the dimension of M is strictly bigger than 4.

On the other hand, positive results under additional hypotheses were
known from the end of the Seventies. In 1978 Alan Weinstein proved that
if the energy level ¥ is the boundary of a convex domain in R?", then it
carries periodic orbits. In the same year Rabinowitz generalized this the-
orem proving that it is sufficient to suppose that X is the boundary of a
star-shaped domain. These achievements deeply impressed the mathemati-
cians who worked on Hamiltonian dynamics. Many thought that these theo-
rems could prelude to further developments. However, as Weinstein himself
pointed out, the hypotheses used to prove the existence of periodic orbits



were not satisfactory. The dynamics of a Hamiltonian system in a symplectic
manifold is invariant under diffeomorphisms which preserve the symplectic
structure, hence the notion of having a periodic orbit is invariant under the
action of this group. On the contrary both the convexity and the star-like
assumptions are not invariant. Weinstein introduced in 1979 a property that
on the one hand could generalized the star-shaped hypothesis and on the
other hand were well-defined in an abstract symplectic context. This is the
notion of hypersurfaces of contact type, that allowed Weinstein to state his
famous conjecture:

(Original Weinstein Conjecture). Let (M,w) be a symplectic manifold
and H: M — R a smooth function. Suppose that 0 is reqular value for H
and ¥ := H=Y(0) a hypersurface of contact type, with H*(X,R) = 0. Then
the Hamiltonian field on 3 carries a periodic orbit.

Nowadays the homological hypothesis has been abandoned since reputed
unnecessary and the problem has been reformulated within a genuine con-
tact geometric framework in the following way:

(Weinstein Conjecture). Let X be a compact closed manifold endowed with
a contact form «. manifold. The Reeb vector field of a carries a periodic
orbit.

The conjecture in this generality is still open. In this thesis we are going
to prove only a particular case.

Main Theorem. Every compact hypersurface, which is restricted contact
type and displaceable in an exact and convez at infinity symplectic manifold
carries a closed Reeb orbit.

For the convenience of the reader we include here a short summary of
the content of each chapter.

In the first chapter we give an introduction to basic notions in contact
and symplectic geometry and describe some concrete and important exam-
ples, where the conjecture is mainly studied: Stein manifold and the particle
in a magnetic field are the two most relevant instances.

In Chapter 2, we give an account of the approaches to the proof, which
have been developed so far. In particular we dwell on methods based on a
theorem of existence on almost every energy level, due to Hofer and Zehnder.
The interest to this technique relies on the fact that the hypotheses at the
ground can be compared to those of the Main THeorem introduced above.

The proof of the Main Theorem itself is developed from Chapter 3 to 6.
In chapter 3 we define A, the Hamiltonian action functional on Ej, the
space of loops with values in M and with arbitrary period. A was exploited



by Rabinowitz in the proof of his already mentioned theorem. It is interesting
for the following reason: its nontrivial critical points are the periodic orbits
we seek. In order to study the critical set we consider the space M, composed
by paths w from R to FEjy, solving a gradient-like equation

dw

— = —VA(w), *

- (w) (¥
and satisfying particular boundedness conditions for the derivative and with
a prescribed behaviour at infinity. Expliciting (%) we find that it is an order
0 perturbation of the equation of J-holomorphic curves from the cylinder
T xR in M:

Osu + J,0iu = 0,

where J is an almost complex structure on M, compatible with w. This
partial derivative equation has been studied for the first time in 1985 by
Gromov and its properties are essential throughout the proof.

In the fourth chapter we endow M with the C} -topology and show that
the topological space we get is sequentially relatively compact. The
calculations needed to arrive to this result are a generalization of those used
by Cieliebak and Frauenfelder in 2009 for the definition of the Rabinowitz
Floer Homology of an hypersurface. However, our proof is direct and does
not require the construction of such homology, which relies on cumbersome

transversality arguments.

In Chapter 5 we investigate the asymptotic propertis of elements in M.
Morse-Bott theory turns out to be applicable in this case.

Finally in chapter 6 we use Fredholm Theory to show that M is not a
Che-closed space. Putting together the results from the preceding chapters,
we arrive to the existence of a limit point @ not belonging to M. Analyzing
the behavior at infinity of the function w, we succeed in finding a periodic

orbit and thus in proving the Main Theorem.



Chapter 1

Preliminaries

This chapter aims to construct the language and the environment needed
to understand the conjecture in its full generality. Therefore we begin with an
introduction to the basic definitions and guiding examples from symplectic
and contact geometry.

1.1 An introduction to symplectic geometry

The Hamiltonian formulation of the dynamics’ problem was a fruitful
approach in the study of classic physical systems. It is enough to mention
here KAM theory (‘50-‘60) which has become the cornerstone of the theory
of perturbation. Symplectic geometry was born to give a coordinate-free
description of the Hamilton equation when the phase space is an abstract
manifold and not only a domain in an Euclidean space.

Within this chapter all the objects belong to the smooth category.

Definition 1.1.1. A symplectic manifold is a couple (M,w) where M is
a manifold and w is a closed 2-form on M which is nondegenerate, i.e. the
following implication holds Vz € M:

el ,M,YueT,M wy,(u,v) =0 = ov=0.
In the following discussion we use the notations:

e If V is a subbundle of TM then V¥ is the subbundle whose fibers are
defined by

(V) ={ue T M| Yv eV, w,(u,v)=0}.
e If v € TM and 7 is a k-form on M, then

Lo = 1(v, )

is the (k — 1)-form obtained by contraction of 1 on v.



Then the nondegeneracy condition can be written more concisely as

(TM)* =0 or Lw=0 = v=0

and it establishes the following linear isomorphism

™ — T*M
Vo LW,

Remark 1.1.2. We have defined the form w by two properties.

a)

The nondegeneracy is a punctual property. It is a condition for w, as a
bilinear antisymmetric form on T, M and can be generalised to arbitrary
vector bundles.

We call (F,w) a symplectic vector bundle if £ — M is a vector
bundle over a manifold and w: E x E — R is a bilinear nondegenerate
antisymmetric form on each fiber. Since w is nondegenerate the rank of £
is even. Indeed, suppose E # 0 and fix a point z € M. The dimension of
E, can’t be one because every antisymmetric form on R is zero. So we can
pick in E, two linearly independent vectors uy, v1 such that w(ui,v) = 1.
Then the nondegeneracy yields

E, = Span(uq,v1) @ Span(uy, v1)*

and w restricted to both this subspaces is nondegenerate. Now the con-
clusion follows from induction. In this way we get as a byproduct a basis
for E, made by vectors (uy,v1, ..., Upn, vy ) such that, if (u!, o', ... u", v")
is the dual basis, we can write

n
W, = Zuk A VR,
k=1

Since we can perform this construction smoothly in a neighbourhood of
z we have found canonical local frames in which the symplectic vector
bundle has a simple model.

From this model we see that a symplectic vector bundle is orientable (and
so the same is true for a symplectic manifold).

In fact W Aw A ... Aw is a volume form on E. Its expression using coor-

n times
dinates induced from a local frame is
n! (ul/\ VIA - AUTA v”) ,

which is nowhere vanishing.

The closedness of w is a local property. It describes how the forms on each
fiber fit together and it is responsible for the existence of canonical local
coordinates. Namely it is possible to choose the frames described above
as coordinate vectors frames. This is the content of Darboux’s Theorem.



Theorem 1.1.3 (Darboux). Let (M,w) be a symplectic manifold and z € M.
Then there exists coordinates (p',q,....p" q") in a neighbourhood U of z
such that

n
Wy = Z dp® A dg”.
k=1
Darboux’s Theorem says that there is a unique local model for symplectic
manifold. So now we will take a closer look to this standard structure.

Example 1.1.4. Consider C" as a complex vector space. The moltiplication
by a scalar is made componentwise. Let us denote by J the moltiplication by
the imaginary unit: it is a C-linear automorphism of C” such that J? = —1.
Consider now the n standard coordinate vectors 0, and their dual basis dz*
so that a vector can be written as u = Y, dz*(u)0,x. Then define

dp® == R(dz*) and dg® = 3(dzF)
and an R-linear isomorphism with R?" as follows:
w i (dp(u),dg" (), -~ -, dp"(u),dg" ().

If we set
Ope =0 and Oy == JOn

then this isomorphism gives the coordinates of a vector in C" with respect
to this R-basis. From now on we always consider C™ as a real vector space
equipped with an endomorphism J that acts on it as follows:

JOpe = Oy JOp = —0Opk.
Cousider the following two additional structure on C™.

1. Euclidean: a real scalar product

g(u,v) =Y (dp’“ (w)dp"(v) + dg" (u)dg" (v))-

k

2. Symplectic: a bilinear antisymmetric form

w(u,v) = Z dp® A dg"(u,v).
k

The complex structure relates these bilinear forms by the formula
g(u,v) = w(Ju,v).

So we only need two among g, wandJ in order to find the last one.
This construction was made for a finite dimensional vector space but we can



take an open set V' C C”, regarded as a real manifold, and use the canonical
isomorphism between T,V and C™ in order to transfer the above structures on
TV (here we mean the real tangent space). If z¥ are the complex coordinates
and pF := N(2¥), ¢ := F(2*) are the real coordinates then the notations
used above for vectors and forms fits with the usual meaning those symbols
have in differential geometry, for example dp* indicates the differential of the
real function p”.

The form w we obtain becomes a symplectic form on T'V. Indeed, since w
is constant, dw = 0.

In this case we have found that the symplectic form and the complex
structure on V are compatible in some sense. This can be generalized as
follows.

Definition 1.1.5. Let (M,w) be a symplectic manifold and J: TM — TM
an almost complex structure, i.e. J is a bundle map such that J? =
—idpp. J is said to be compatible with w if

9z(u,v) = w;(J;u,v), u,vel,M
is a metric on M (in other words (M, g) becomes a Riemannian manifold).

For every fixed symplectic manifold (M,w) the set
Jw:={J is compatible with w}

is nonempty and contractible, so T'M is a well-defined complex vector bundle
(see (34)) for further details). Every complex manifold M carries a natural
almost complex structure (and if a map J arises in this way is said inte-
grable), however if M is also symplectic, this does not imply that the two
structures are compatible in the sense given above. If this turns out to be
the case M is called a Kdhler manifold. A distinguished class of Kéahler
manifolds is described in the next example.

Example 1.1.6 (Stein manifolds). Let V be a complex open manifold and
let J be the associated integrable structure on TV. A function f: V — R
is exhausting if it is proper and bounded from below and is strictly plurisub-
harmonic if the exact 2-form w= d (dfo J) is such that

wy(Jv,0) >0, YoeT,V, v#0.

If V admits an exhausting strictly plurisubharmonic function f then it is
called a Stein manifold and we will write (V,J, f) to denote it.

Observe that the above inequality implies that w is nondegenerate and, since
it is also exact, it is actually a symplectic form and hence V' is a symplectic
manifold. Since J is integrable w is of type (1, 1) with respect to the splitting
of T.V induced by J. Then J is w-compatible since

w(Ju, Jv) = w(u,v).

10



In C" the function z ~ |z|? is an exhausting plurisubharmonic function.

Indeed
d(d|z|*o J) = d((2pdp)o J + (2¢dq)o J) = 2d(pdq — qdp) = 4dp A dg.
Therefore up to a constant factor we get the standard symplectic form.

Let us continue now with an example from classical physics.

Example 1.1.7 (Cotangent bundles). Let M be a smooth manifold and
m T*M — M the cotangent vector bundle. We define a 1-form A on T'(T*M)
as follows:

Ve T"M, Yv € T, (T"M),  A\y(v) = () (dym(v)).
A is characterised by the following property:
Vn: M — T*M, n*(\) =n.

Then (T*M,d)) is a symplectic manifold. Indeed d is a closed form and
if we choose coordinates (pk , qk) on T*M that are induced from coordinates
(¢*) on M then we find that locally \ = Dok pFdg®. Tts differential is locally
ok dp”® A dg¥, which we have seen to be nondegenerate.

This class of examples encloses also the case of C* because R?" = T*R",

In the previous examples the symplectic form was actually exact. This
additional property will be relevant in what follows and so we include it in
a definition.

Definition 1.1.8. A symplectic manifold (M, w) is said to be exact if exists
a 1-form A on TM (called a Liouville form), such that w = d\. Since often
the 1-form itself is more important than its symplectic differential we shall
denote an exact manifold by (M, \) rather than (M, dX\).

Remark 1.1.9. The exactness of w implies the exactness of w™, which is
a volume form on M. This fact implies that an exact manifold can’t be
closed. For the same reason if we rotate the perspective, a closed manifold
with HgR = 0 cannot carry any symplectic structure.

We define now the diffeomorphisms and the vector fields compatible with
the symplectic structure.

Definition 1.1.10. A diffeomorphism F : M — M’ between (M,w) and
(M',w') is a symplectomorphism (or is symplectic) if

F*o' = w.
A vector field X on (M,w) is a symplectic vector field if
Lxw =0.

Here F* is the pullback by the function F' and L denotes the Lie derivative.

11



Remark 1.1.11. We make the following two observations regarding this
definition.

e Darboux’s Theorem is equivalent to saying that locally every symplec-
tic manifold is symplectomorphic to an open set in C” with the stan-
dard symplectic structure. So from a local point of view all symplectic
manifolds look the same.

e Vector fields can be seen as the infinitesimal counterpart of diffeomor-
phism. For every real ¢t we can consider ®; the flow at time ¢ associated
to X. This is a diffeomorphism between two open sets in M (possibly
empty) and is symplectic if and only if X is symplectic too. Indeed, if
t > 0 and z is a point in the domain of ®;, then is in the domain of ®4
for 0 < s <'t, too. Since &g = Id, P is obviously symplectic. So,

vt (Pjw), =w, <+ L (Pjw),=0
— @ ((L‘Xw)@t(z)> ~0
<— Lxw=0.

Moreover Cartan’s formula yields:
Lxw=1xdw+d(ixw)=d(txw).

This allows us to rewrite the condition of being symplectic:
Lxw=0 <= d(xw)=0.

At the beginning of this section we have pointed out that w establishes
an isomorphism between vector fields and 1-forms. Therefore if we
want to construct a symplectic vector field we only need to pick a
closed form 7 and then get X from the equality n = txw.

The easiest closed forms are the differentials of functions on M. This
will give the vector fields which we are interested in.

Definition 1.1.12. Let (M,w) be a symplectic manifold and H: M — R a
function on it. We call the vector field X defined by

txyw=—dH
an Hamiltonian vector field and H the Hamiltonian of the system.

Then the equation
2= Xpg(2). (1.1)

represents the Hamiltonian formulation of the problem of dynamics for a
classical physical system.

12



The function H can be viewed as the energy of the system and it is preserved
during the motion. Indeed, if z is a trajectory, then

dH

dt

In this sense we say that autonomous Hamiltonian systems are conservative.

The study of Equation can be carried out along different lines de-

pending on what is the goal one person has in mind. For example one may

be concerned with quantitative estimates as well as stability issues or topo-

logical properties of trajectories. The focus of our enquiry will be on the last

class of problems. In particular we shall investigate which general hypotheses
can be imposed in order to guarantee

(2(8)) = dH (Xu(=(1))) = —w (X (2(8)), Xpr (1)) = 0.

the existence of periodic solutions for the ordinary
differential equation (1.1) associated to an Hamiltonian H
in a given energy level.

However before starting with an analysis of the problem from an abstract
point of view we will dwell a little more on the connection between symplectic
geometry and physics.

1.2 From Newton’s law to the Hamilton equations

Consider a particle (or a physical system) that moves in a Riemannian
manifold (M, g) under the action of a force f, where f: TM — TM is an
arbitrary function. If we set V for the Levi-Civita connection on 7: TM —
M induced by g, then an admissible trajectory v: (a,b) — M satisfies the
Newton’s law:

Vg = f(9), (1.2)
where V is the covariant derivative for vector fields along . This is a second
order differential equation for curves on M, but we can find an equivalent
first order equation for its velocity 7.

On T(T'M) is canonically defined the vertical subbundle V whose fiber at
v € Ty M is the image of the injective linear maps

I,: T,M — T,(TM)

u 4 (v + tu)
dt lt=0 '

Equivalently V is the kernel of the bundle map dr: T(TM) — T M.
Moreover the connection gives rise to a subbundle H of T(T'M) which
is called the horizontal subbundle and which is a direct summand of V, i.e.
T(TM) =Y @& H. It can be defined through the injective maps
L,:T,M — T,(TM)
u = do(u) — I,(V,0),

13



where v: M — T'M is an arbitrary extension of v to a vector field on M.
Then

Hy:= Ly(TyM)
and L, is a right inverse for d,m, namely
dv7r 9] LU = iquM . (13)

Set now v:= 4 and apply I; to both sides of Equation ([1.2]) obtaining the
equivalent equation

Lf(0) = L(Vy0) = dv(v) — Ly (o), (1.4)

where we have substituted for V,v using the definition of L,. Set
F(v):=1L,f(v)

and define the geodesic vector field G: TM — T(TM) as

G(v):= Ly(v).
Then (|1.4) can be rearranged into
v =G(v) + F(v). (1.5)

Remark 1.2.1.

e Observe that, since G is horizontal and F' is vertical, the vector field on
the right hand side of (1.5)) respects the splitting on T(T'M) induced
by g.

e Furthermore if F' = 0 the solutions are precisely the geodesics of (M, g),
hence the adjective ‘geodesic’ for G.

It is interesting to notice that g gives rise to the bundle isomorphisms
M 5 TM, TM 2 TM.
Then we can
e endow 7™M with the pullback metric k:= £*g,
e obtain an equation for n:=bv on T*M that is equivalent to ,
i = digp (G ) + F () = digp (Gim) + dp(F (). (16)

As is clear from (|1.6]) we can analyse the pushforward of F' and G separately.

For brevity we set )
{ G(n) := digyb(G(n)),

F(n) := dgb(F(in))-
The crucial point is that these vector fields are indeed Hamiltonian with
respect to the standard structure we defined in Example

14



Proposition 1.2.2. Let (T*M,d\) be the standard symplectic structure on
the cotangent bundle w: T*M — M of a Riemannian manifold (M, g).

Using the previous notations we define K(n):= %kﬁ(n)(n,n) and we suppose
that f = —(VV)om, where V: M — R is a real function. Then

Setting H := K+Vom, we see that (1.5) can be written as
1= Xu(n).

Remark 1.2.3. K represents the kinetic energy of the system. K is convex
along the fibers.

Vo @ represents the potential energy. When f admits a potential physicists
say that the force is conservative.

If we write down this equation using local coordinates (p, q), we recover
the Hamilton equation of classical physics. The following identity holds:

Lxpd\=tx, (dpANdq) = dp(Xg) - dg — dg(Xg) - dp.

Furthermore,

From these equations we obtain the components of Xp. Substituting in (1.1
we get the familiar

. OH
P= o
)
1= o

During the Eighties the case of a charged particle immersed in a magnetic
field became the subject of an intensive research. The Lagrangian (which
we will not discuss here) and the Hamiltonian approach were carried out
by Novikov and Tamainov, who used a generalization of Morse theory to
multivalued functionals (37; 38), and by Arnol’d, who in addition exploited
techniques from symplectic geometry (6)). Their research was continued fur-
ther by scholars such as V. Ginzburg (21} 22), G. Contreras (12)) and G. P.
Paternain (I3). Since the Weinstein conjecture has been proven positively
for systems belonging to this category, now we shall describe shortly what
the problem is about.

Example 1.2.4 (Particle in a magnetic field). In the three-dimensional
Euclidean space the Maxwell equations for the magnetic field B yield

divB = 0.

15



If we define
o:=1g(dg' A dg®* A dgP),

then o is a closed 2-form on R3.
Moreover a particle which has a unitary charge is subject to the Lorentz force

f(@) = ¢ xB.
A simple calculation shows
g xB=1(,0).

So we can generalize this situation to an arbitrary triple (M, g, o), where
(M, g) is a Riemannian manifold and o is a closed 2-form on M. With the
notation as above the corresponding vector field F' on T*M is given by

~

F= jn(LﬁUU)’

where I is the vertical lift from M to the cotangent bundle T*M. Further-
more we can use o to define the twisted 2-form on T*M

Wg:=d\ — 7'o,

which is easily seen to be symplectic. The following proposition shows the
connection between magnetic fields and symplectic geometry.

Proposition 1.2.5. Let (M, g,0) be defined as before and consider a charged
particle on M subjected to a force of the form

fw):==VV(n(v)) + £ (tv0) . (1.7)

Then the corresponding Newton’s equation is equivalent to a Hamilton equa-
tion with respect to the twisted symplectic structure (T*M,w,). The Hamil-
tonian of the system is H = K + Vo 7.

Moreover if the magnetic field is exact, i.e. 0 = da, the following trans-
lation map is a symplectomorphism

Uy: (T*M,dN) — (T™M,wqq)
no= Nt Qi)

Therefore we get an equivalent Hamiltonian system on (T*M,d)\) with the
Hamiltonian function obtained by substitution

Hu(n):= K(n+a(r(n))) + V(7(n)).

16



Proof. First notice that for every vertical vector field X on T*M, we have
Lx (ﬁ*U) = 0 N
{ ! o (1.8)
ix(@y), = (X))
Furthermore from Equation (1.3)) we find

We calculate now Léy pWor-

Ly pWo = LaWo + LpWe = LEdA — LGTI' O+ LpdN — Lpws
= —dK — 147" 0'—|—LI( (15090)
=—dK —7 (L(ﬁ) ) + 7 (f( )lf(.)(bﬁ(.)O')) —d(Vor)
=—dK —d(Von)

Suppose now that ¢ = da. First we find that

(W), (&) = A, () (dn¥al§))

a(m)(dy,, o Tdn¥a(§))

() (dy7(£))

n(dy ( ) + () (dy 7 (§))

= (A+7"a), (§).

LG
LG

Using this identity we get
Ve (waa) = V5 (dA) v, (A* )

O]

Remark 1.2.6. The first part of the proposition indicates that the intro-
duction of a magnetic term in the force affects the symplectic geometry of
the cotangent bundle while the Hamiltonian function remains unchanged.

As regard the second part we find the following byproduct: if « is closed,
i.e. 0 =0, ¥, is a symplectomorphism from the standard symplectic struc-
ture (T™M,d\) to itself.

17



1.3 The contact hypothesis

As we have said at the end of the previous section we are looking for
periodic solutions of Equation . The first task will be to describe the
additional hypotheses Weinstein included in the formulation of his conjec-
ture about the existence of a periodic orbit.

We have observed before that H is a constant of the motion. Thus we can
focus our attention on a fixed set ¥, := {H = c}, because it is invariant
under the flow of Xg.

The first hypothesis on Y. that seems reasonable to include is its compact-
ness. In fact if we consider on C" the function

H(p,q):=q,
we get the following vector field, whose orbits are open:
Xy = 6p1 .

Furthermore we would like to remain in the smooth category in order to
use techniques coming from differential geometry. Therefore we assume that
c is a regular value for H. Then X, is a smooth submanifold by the implicit
function theorem. On the contrary if ¢ would be a critical value on the one
hand we would have 2y € ¥ such that d(z9)H = 0. Then Xp(29) = 0 and
we would have the trivial solution z(t) = zg. On the other hand the comple-
ment of critical points would be invariant under the flow and noncompact.
So, as we have said above, we cannot expect the existence of periodic orbits
in general.

The next step is to take a closer look to the relationship between w and
Ylc. The nondegeneracy of w implies that

R:= (T%.)"

is a one-dimensional subbundle of T'M. Since the dimension of Y. is odd,
the restriction w’ of w to T, is degenerate. Thus its kernel must be R and
so R C TX,. The importance of this bundle relies in the next result.

Proposition 1.3.1. If ¢ is a reqular value of an Hamiltonian function H
and Y. and R are defined as above, then

Xy eR.

Therefore periodic orbits correspond to closed leaves of the distribution R,
i.e. embeddings v : S — X, such that ¥ € R.

Proof. Let v € TY,.. Then dH (v) = 0 yields —w(Xpg,v) =0 and so Xy € R.
Clearly a periodic orbit is a closed leaf: Xy never vanishes on ¥, and if we
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have an autointersection point, then the two tangent vectors are equal at the
intersection since the system is autonomous.

Conversely assume that ~ is a closed leaf and regard ~ as a 1-periodic
function. 4 and X are parallel and we assume that they point in the same
direction by changing the orientation of  if necessary. Then exists a positive
1-periodic function f such that

FOA() = Xu(y(1)).
Then we consider the real function g defined by the following equations

Yis) = Flols))

g(0) = 0.

Since f is positiveand bounded, g is a diffeomorphism defined on all R. Then

D g(s)) = Fla(s)ia(s)) = X (1(g(5))).

ds
Therefore (g(s)) is a periodic solution. Its period is the smallest positive
value sg such that g(sg) = 1. O

The proposition shows that the existence problem can be formulated only
in terms of the relative position between w and .. However it has been
proved that we cannot solve the problem in the affirmative for a generic hy-
pesurface (X, R) C (M,w): see for example (25; 20). Weinstein’s point of
view is a compromise between the approach based upon Hamiltonian equa-
tions and the one which relies exclusively on the distribution R. Its success
is rooted in its connection with another important field: contact geometry.
Therefore we begin with some introductory definitions from the contact set-
ting.

Definition 1.3.2. A contact form « on a manifold X is a nowhere vanishing
1-form on T'¥ such that da is a symplectic form on the subbundle £ := ker a.

Remark 1.3.3. The definition immediately implies that ¥ is odd-dimensional
and, since da is symplectic on &,

TS = (TL)™ ¢ €.

We can choose a generator R of (T'S)% by requiring that a(R) = 1.
R is uniquely determined by the conditions

tpdae = 0,
a(R) = 1.
R is called the Reeb vector field of «.
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The definitions and propositions below lie the ground for the connection
between symplectic and contact geometry.

Definition 1.3.4. Let ¥ C (M,w) be a hypersurface in a symplectic mani-
fold. A vector field Y defined in a neighbourhood of ¥ and transverse to X
is a Liouville vector field for X if

Lyw = w.
(In what follows we shall abbreviate the transversality condition as Y M X.)

Definition 1.3.5. Let (X, ) be a contact manifold and (M, w) a symplectic
manifold. We say that (X, «) is a contact submanifold of (M,w), and we
write (3,a) C (M,w), if there exists an embedding j : ¥ — M of ¥ as a
hypersurface in M such that

jfw = dao.

From this definition is clear that being a contact submanifold is invariant
under symplectomorphism.

Proposition 1.3.6. If (X,a) C (M,w), then R € R.

Proof. Since j*w = da the conclusion follows from the very definitions of R
and R. O

Proposition 1.3.7. Let ¥ C (M,w) be a compact hypersurface. The follow-
ing conditions are equivalent:

i) there exists a contact form a on X such that (X, ) C (M, w),

i1) ¥ has a Liouville vector field Y,

i11) exists a contact form a on X, a neighbourhood U of ¥ and a diffeomor-
phism V: Y X (—e,e) — U which is the identity on X, such that

U*w = d(ea).

Moreover any of them implies that there is a neighbourhood U of ¥ and a
function H: U — R such that 0 is a regular value for H and
Y={H=0}, Xglx=R.
Proof.

i) = 14i) First we observe that an application of the generalized Poincaré lemma
gives the equivalence between i) and the apparently stronger condition:

i’) there is a neighbourhood of ¥ and a 1-form X on it such that
(3,7*A) is a contact manifold and w = dX.
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ii) = iii)

iii) = i)

So we can define Y from the equation tyw = A. Then
Lyw = tydw+ d(tyw) = d\ = w.

The transversality of Y can be seen as follows. Let R be the Reeb
field of j7*A. Then 1 = A(R) = w(Y,R). Unless Y ¢ TY, this leads
to a contradiction because (TX)“ = R. As a byproduct we find the
symplectic splitting

TM|s = Span(Y, R) & ¢,
since tywle = Alg = 0.

We set A:= tyw. Then d\ = w and Ly A = A
Let &, be the flow of Y. It is well defined for small ¢ in a neighbourhood
U of X, since X is compact. We can construct the diffeomorphism

\I/:EX(—Eo,eSo) - U
(x,t) — Dy(x).

Let p; be the flow of the coordinate vector field 9; on ¥ x (—&g,¢€p).
Then ¥ carries 0; upon Y and coniugates their flows.
Let m : 3 x (—€0,e0) — X be the projection on the first factor and
Jt : X = X x (—eg,e0) the embedding of ¥ at height ¢, then j; = pijo.
Define

a:=TU*\

Then a(0;) = AMY) = 0 and 50 0y 4) = 77 05 4)-
Now compute

a(ha) =J0@(pt‘1’ A) = Jo VU Ly A = joU* A = jyau.

Therefore j;a = e'jia. Applying 7* to this equation we find at last
gt = et (jor)*av.

Taking the differential on both sides yields the conclusion.

It is enough to put A = (U~1)*(e’a). Then

(X x0,a) C(Zx (—¢ge),d(ca)) = (%, C (M,w).

In order to finish the proof we have to exhibit the function H. Let «’ be the
projection upon the second factor in ¥ x (—¢,€). The function H such that

HoU =7
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has the desired property. Since ¥ is a symplectomorphism it carries X, to
Xp and identifies ¥ x {0} with ¥ embedded in M. Therefore it is enough
to show that X = R:

vrd(e'a)j—g = dt(R) — a(R)dt + 1pda = —dt
O

Remark 1.3.8. Condition (i) implies that being a contact submanifold
is property which is resistant to C' perturbation, as long as Y remains
transverse to the hypersurface.

Condition (éi7) is also interesting because gives a neighbourhood of ¥ which is
foliated by contact hypersurfaces diffeomorphic to 3. Moreover Reeb vector
fields over two of such hypersurfaces are conjugated up to a constant factor
and so they share the same dynamical properties. For instance if one of them
has a closed characteristic so does the Reeb field over any other leaf of the
foliation.

We will now exhibit a relevant class of contact manifolds within the
setting already described in Section

Example 1.3.9 (Cotangent bundles). If the particle moves freely on (M, g),
the only term in the Hamiltonian is the kinetic energy K. Then the zero-
section is made by stationary point of the system whereas all the hypersur-
faces {K = ¢, ¢ > 0} are of contact-type. Indeed, the vertical vector field
Y (n):= I,,(n) is transverse to each nonzero level since

dpK(Y (1)) K(n+1tn) = k) (n,n) = 2K(n) (1.9)

~ dtli=o

(N.B. this identity can be seen as an application of Euler’s theorem for ho-
mogeneous function on vector bundles).
Finally K(n) > 0 provided n # 0. Using local coordinates we get the two

equalities
Ly/\ = 0 y
tydh = A.

The latter is equivalent to Lyd\ = d\, remembering Cartan’s formula.
Then one of the criteria in Proposition [1.3.7]is satisfied and so every nonzero
energy level is a contact submanifold. Furthermore if R, is the Reeb vector
field at energy ¢ and n € {K = ¢}, we know that d\(Y (1), R.) = 1. In order
to find the relation between X and R, is sufficient to compute

dA(Y (n), Xk (1)) = dy K (Y (1)) = 2K (n) = 2c.

Then,
XK‘{K:c} = 2CRC.
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We point out that not only all levels are of contact-type but also that the
dynamics upon them is conjugated up to a constant positive factor. If we
call ®, the flow of Y at time ¢, then

Lyd\=d\ = & (d\) = eld.
From this and the homogeneity of K we find

dNdy®@e(X K (1)), dy®e(§)) o) = PLANXK (1), €)
= 'd\(Xk(n),§)
= —etdnK(f)
= —e'dy(K o ®; " 0 ®)(€)
= —etdqn(n) (Ko (I)—t)(dnq)t(f))
= —e g, K (dy®4(8)).

Therefore from the definition of X we finally get
X (D4(n)) = e'dy®y(Xx ().

Introduce now a non-zero magnetic field ¢ and endow T*M with the sym-
plectic structure w, as in Example Then the zero-section is still made
by stationary point and Y is still transverse to the other energy levels, how-
ever Y fails to satisfy the condition about the Lie derivative. In fact since
Y is vertical, from we have

Lyws = dA

and so Y is not a Liouville vector field for w,. One attempt could be to find
a vertical vector field Z(n) = I,(a(7(n)), where a: M — T*M is a 1-form,

such that .
Y+Z2 K =c},
( ) M { } (1.10)
Lzd\ =70 .

Mimicking the calculations (1.9)), the first condition can be rewritten as
Feto) (11 + @) 7 0-
Moreover the second equation (1.8 yields
Lzd\ = 7*(da) .

Using the injectivity of 7* the couple of conditions ((1.10]) rewrites as

kfr ) +afr Oa
{ () (1,1 + Qi) 7 111)

doo=o0.
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So the second condition forces us to reduce to the case of exact magnetic fields
whereas the first one tells us that the system is expected to behave differently
on different energy levels. In fact consider an energy level { K = ¢} such that
exists a primitive a of o such that

Vne{K =ct, K(n) > K(azy))
Then this hypothesis and the Cauchy-Schwarz inequality imply

Kty (01 + () = ke (0,1) + kagy) (0, 0z )
> 2K(’I7) - 2\/K(77)1 /K(Oéﬁ-(n)) > 0.

The quantity that has a crucial role here is the Mané critical value cg:

co =co(k,0):= |idnf_ ( sg]\p4 K(aq)). (1.12)
« =0 q

The analysis we have made so far for exact magnetic fields yields
c>cyp = {K =c} is contact-type .

A detailed analysis about how the dynamics changes with the energy level
can be found in the recent article by K. Cieliebak, U. Frauenfelder and G.P.
Paternain (10).

The opposite situation, namely the case in which ¢ is symplectic, was
studied by V. Ginzburg and E. Kerman (31)) as well. They have studied the
existence of periodic orbits on low energy levels, trying to generalize the so-
called Weinstein-Moser conjecture (47, 35)) to this class of twisted cotangent
bundles.
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Chapter 2

The conjecture

Alan Weinstein proposed his famous conjecture for the first time in 1979
(48)) inspired by the recent work of P. Rabinowitz (40)), who established the
existence of periodic orbits when X is the boundary of star-shaped domains
in C". This result deeply impressed matematicians involved in Hamiltonian
systems, however Weinstein was not satisfied with the hypothesis of the
theorem since it was not invariant under symplectomorphisms. His intuition
was to recognize that the radial vector field 79, was one of the main ingredient
of the proof and that the properties of 79,, which were essential for the proof,
were actually symplectic (i.e. preserved by symplectomorphisms). rd, is the
prototype of what we have called a Liouville vector field and turns ¥ into a
contact hypersurface.

2.1 The statement

We are now in position to state precisely the

(Weinstein conjecture). Let (M,w) be a symplectic manifold and ¥ C M
a compact hypersurface. If 3 is a contact submanifold of M then it carries
a closed characteristic.

Remark 2.1.1.

i) The conjecture is still open today, although it is commonly believed to
be true since it was proven in the affirmative in many particular cases.

i1) The original formulation of the Weinstein conjecture included the addi-
tional assumption

HY(Z,R) = 0.

However, subsequently the condition on the first cohomology group was
dropped since almost all the approaches to the proof tempted so far do
not rely on it.
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The presence of the hypothesis on the vanishing of H'(X,R) in the
early statement is due to the fact that it can be used as a substitutive
requirement in some instances as we will say later when we discuss
Liouville domains.

i11) The conjecture can be stated equivalently without any reference to the
symplectic environment:

Any compact contact manifold (X, «) carries a closed characteristic.

Indeed every contact manifold can be embedded in its symplectization:
(T x R, d(e'a)).

iv) The conjecture becomes false if the contact hypothesis is removed with-
out replacing it with something else. M.-R. Herman showed in (25) that
exists a proper smooth function on C™ (n > 2), which has an energy
level without closed trajectories. Later the counterexample was refined
by Ginzburg and Giirel in (20) exhibiting a C? function on C? with the
same properties.

The conjecture with this degree of generality is still open. However, it
was proven to be true for several classes of contact submanifolds. In the next
section we shall give a brief account of some of the techniques used through
the years.

2.2 Approaches to the proof

One of the main guideline has been to regard the conjecture exclusively
as a problem in contact geometry. However since the problem is too general
the starting point has been to fix a class C of manifolds characterized by
some properties (of topological nature, for instance) and accordingly a class
of contact forms A on the elements of C. This method works well with
three-dimensional manifolds where contact forms were intensively studied
and classified (see Giroux (23) and Eliashberg (17)) and culminated in the
full answer given by Taubes in 2007.

Beginning from the early Nineties the Weinstein conjecture has been proven
in the affermative for the following cases:

Case 1. Hofer (27):

Cho = {dim¥ =3}, Apgo={X| ker\ is overtwisted }.

Case 2. Hofer (27):

Cin = {dim¥ =3, m(X) #0}, Ag = {A]| ker\ is tight }.
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Case 3. Abbas, Cieliebak and Hofer (I)):

Cacr = {dim¥ =3}, Aucy = {)\ ' ker A is supported }

by a planar open book

Case 4. Taubes (45):

Cr= {dim = 3}7 Ap = {)\ is an arbitrary contact form}.

However recently improvements in higher dimensions were made too. The
following two results generalize Case 1 and Case 2 respectively.

Case 5. Albers and Hofer (5):

Capg = {dim¥ = 2n + 1},
Aag = {/\| ker A is Plastikstufe—overtwisted}.

Case 6. Niederkriiger and Rechtman (36):

Cng = {dim¥ = 2n + 1},

Ave = I AN =X |0#[N|€eHp1(E,Fa),
NR N carries a Legendrian open book |~

The following scheme summarizes the implications which hold between the

results listed above.

(HY) < (T) = (ACH) = (H")
T T
(NR) (AH)

For further insights the reader can consult Hofer (26) and Hutchings (30).

The other big guiding principle towards a proof of the conjecture is to
investigate the presence of periodic orbits for a given Hamiltonian system
as the energy level changes. The typical results that are available with this
approach are the existence on {H = a} for almost all values a, with respect
to the Lebesgue measure in R, or for a belonging to a dense subset of R.
Theorems of the first kind are called ‘almost existence theorems’ whereas
the others are called ‘nearby existence theorems’. These results rely on
the definition of symplectic capacities. These are symplectic invariants
defined axiomatically for symplectic manifolds in the following way.

Definition 2.2.1. A map ¢ which associates to every symplectic manifold
of fixed dimension 2n a number in [0, +00] is a symplectic capacity if satisfies
the three properties:
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C1. Monotonicity: ¢(M,w) < c¢(M',w'),
if there is a symplectic embedding (M, w) < (M’,").

C2. Conformality: c¢(M, sw) = |s|c(M,w), Vs € (0,00).

C3. Nontriviality: ¢(B(1),d\) = = ¢(Z(1),d)\), where
e d)\ is the standard contact structure on R??,
e B(1) C C™ is the open unit ball,
e Z(1) C C™ is the open cylinder {(ql)2 + (p1)2 =1}

The notion of capacity was introduced by Ekeland and Hofer in 1990
((I£ 15)). In the same year Hofer and Zehnder constructed an explicit
capacity cgz in (29), whose value depends essentially on the existence of
periodic solutions of certain Hamiltonian systems on M. Let (M,w) be a
symplectic manifold and denote by H(M,w) the space of real functions H
on M satisfying:

P1. there exist Uy open, Ky compact and a constant m(H) such that

Uy C Ky c(M\oM), HUyg)=0, H(M\Kg)=m(H),

P2. Vx e M, 0<H(x)<m(H).

Here m(H) can be interpreted as the oscillation of the function. Consider
the subset Hq(M,w)CH(M,w) whose elements are called admissible and
characterized by the property that all the periodic solutions for the associated
Hamiltonian system are constant or have period strictly greater than 1.
These Hamiltonians can be seen as the ones having periodic solutions with
‘bad’ properties. In fact it is interesting to know when there are functions
on the complement set H(M,w)\ Hq(M,w), namely functions that have a
periodic solutions with small non zero period T', 0 < T" < 1. This information
is provided by the Hofer-Zehnder capacity defined by

caz(M,w):= sup m(H).
Ha(M,w)

In fact if C' > 0, then
cgz(M,w) <C <+~ <VH6H(M,w), m(H) > C = Hgé’}{a(M,w)).

Therefore if cyy is finite H has a fast periodic solution, provided its oscilla-
tion is big enough. The connection with the Weinstein conjecture relies on
the following

Theorem 2.2.2 (Nearby existence). Let ¥ C (M,w) be a compact hypersur-
face and let X x (—eg,e9) < M be an embedding onto an open neighbourhood
U of ¥, in other words we are choosing a tubular neighbourhood for . Then

cuz(Uyw) <oco = fora.e. € € (—ep,e0), Ex{e} carries a periodic orbit.
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Remark 2.2.3. The preceding theorem tells us that the Weinstein con-
jecture holds true when we make the further assumption that > has an
open neighbourhood with finite capacity cyz. Indeed, Remark im-
plies that the dynamics of the Reeb field on ¥ is conjugated, up to a time
reparametrization, to the dynamics on ¥ x {e}, for every €. Then, the ex-
istence of a periodic orbit on ¥ follows from the fact that, thanks to the
theorem, there is a periodic orbits on some ¥ x {g¢}. This line of reason
leads us to consider the larger class of stable hypersurfaces, which contains
the contact ones.

Definition 2.2.4. An hypersurface ¥ is called stable if there exists an
embedding ¥x(—eg,e9) < M such that characteristic bundle R, on ¥ x {e}
is independent of ¢.

Cieliebak and Mohnke in (I1I)) show that stability is equivalent to the
existence of a stabilizing 1-form « on X, such that

R C 2% qp #0.
The discussion made so far proves that

Corollary 2.2.5. A compact stable hypersurface ¥ with finite capacity cpz
carries a closed characteristic.

Remark 2.2.6. Properties (C.1) and (C.3) implies that every bounded open
set in an Euclidean space has finite capacity and so the conjecture is fully
established for hypersurfaces in C". This result dates back to Viterbo, who
however used variational arguments for the proof (46)).

Remark 2.2.7. We have seen how the introduction of a special kind of
capacity can be a useful tool for a solution of the conjecture. However the
capacity is not unique and many deep results in symplectic geometry are
enclosed within the properties (C.1)-(C.3): maybe rigidity phenomena for
symplectomorphisms are the most important. They were investigated by
Gromov (24) and Eliashberg (16) during the Seventies and the FEighties.
Furthermore proving the existence of a capacity is in general a difficult task,
which requires hard analitycal and variational tecnhiques. See (28) if you
want to know more about this topic.

After this short survey (more on the state of art can be found in (19)), let
us start with the proof of the Weinstein conjecture, which we have worked
on. The main ingredient is the free period action functional which was
used by Rabinowitz in his already mentioned proof of the conjecture (40)).
Recently this functional was rediscovered by Cieliebak and Frauenfelder ()
in order to define a Morse-Bott homology for a class of symplectic mani-
folds. They called this homological theory Rabinowitz-Floer Homology
(the shorthand is RFH) and used it to find obstructions to certain kind
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of embeddings or to prove the existence of closed characteristics. Moreover
very soon it was clear that RF'H could be applied equally well to solve
several classical problems in symplectic geometry. Albers and Frauenfelder
exploited it to solve Moser’s problem about leafwise intersections (3)). Pa-
pers by Cieliebak, Frauenfelder and Oancea (9) and by Abbondandolo and
Schwartz (2)) developed explicit calculations for cotangent bundles finding
rehlations with the well known symplectic (co-)homology. Finally Cieliebak,
Frauenfelder and Paternain extended these results to more general manifolds
(the so-called stable tame case) and combined them with the theory of Mané
critical values on twisteed cotangent bundles (10). For a survey about RFH
and its applications the reader can see (4]). The scheme of the proof that we
are going to describe is inspired by these papers (see in particular (3]) and
Section 4.3 in (10)) and uses ideas from RFH, although is self-contained
and does not require the transversality theory which is essential in the con-
struction of RFH.

The first step will be to state what are the additional assumptions we need.
The actual line of reasoning will be developed in the subsequent chapters.

2.3 The additional hypotheses

We have highlighted in Remark ii that every contact manifold (3, &)
can be embedded as a contact submanifold in its symplectization

(ExR,d(e'a)) .

However it would be nice if the ambient symplectic manifold for X could be
chosen with some compactness property. The following definition goes in
this direction and sets up a class of manifolds which are interesting for our
purposes.

Definition 2.3.1. A compact exact symplectic manifold with boundary
(V,A) is called a Liouville domain, if (X := dV,a:= \gy) is a contact
submanifold.

Every Liouville domain carries a Liouville vector field Y defined by the
equation tyd\ = X. Then the contact condition implies that Y points out-
wards through ¥ and its flow gives coordinates (z,t) € ¥x(—e&,0] on a collar
of ¥. Ly X = ) implies that A = e’a in these coordinates.

Hence we can paste along the boundary an exterior piece Vey:= X X [0, +00),
define on it the 1-form Ay := e'a and construct the completion V of vV,
that is the exact symplectic manifold without boundary

(V,A)i= (V Iy Ve, Ay Aer)-

Every (£x{t}, e'a) is contact and thus V is the monotone union of Liouville
domains. Furthermore the Liouville field is simply J; on the exterior and
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so its flow is complete on V and without critical points in the exterior.
These properties characterizes the manifolds that are completions of Liouville
domains, as we see in the next proposition which we state without proof.

Definition 2.3.2. Let (M, \) be an exact symplectic manifold. Then

e if there exists an exhaustion of Liouville domains (Vj, Ay, ), such that
Vk C Vk+1, M = UVka
keN

then M is called an exact convex symplectic manifold,

e if the flow of its Liouville field Y is complete, then M is said to be
complete;

e if Y # 0 outside a compact set, then M has bounded topology.

Proposition 2.3.3. An exact convex symplectic manifold is complete and
has bounded topology if and only if it is the completion of some Liouville
domain.

Example 2.3.4 (Stein manifolds). A Stein manifold (V,J, f) is a classical
example of an exact convex manifold. We have seen in Example that
is exact with Liouville form A:= —df o J. Suppose that a is a regular value
and consider the manifold with boundary

Var=A{f <a.}

Then V, is a Liouville domain. This can be seen as follows. Let g be the
compatible Riemann metric defined by

9(u,v) = d(X)(Ju,v)
and compute the Hamiltonian vector field X, through its very definition:
—df (u) = df o J(Ju) = XMJu) = dA(Y, Ju) = —dA(JY, u).
So we get
Xy=-JY, Vf=Y,

where Vf is the gradient of f with respect to g. Hence we find that Y
points outward through 0V, as we wanted. Since the set of critical values
is negligible we find that V is an exact convex manifold. Furthermore if all
the critical points of f are cointaned in a single compact set we get also that
V has bounded topology. The completeness can always be achieved after a
suitable reparametrization f — o f (see Biran and Cieliebak (7).
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It is convenient to define morphisms between exact convex symplectic
manifolds that are not merely symplectomorphisms. In fact we shall require
that the 1-forms can change only up to a summand that is the differential
of a compactly supported function.

Definition 2.3.5. Let ¢: (M,\) — (M’,\) be a map between two exact
symplectic manifolds. ) is called exact if there exists a compactly supported
function h on M, such that

VN = A\ + dh.

Remark 2.3.6. Since the support of A is assumed to be compact if an exact
manifold M embeds through an exact map into an exact convex manifold
than M is convex, too. As a result convexity is a property which is well-
defined up to exact diffeomorphisms.

The ideal candidate class for the ambient symplectic manifolds are com-

pletions of Liouville manifolds since they are exact and they behave nicely
at infinity.
The former feature allows for the definition of the period-free action for loops
on M and, during the proof, it will give apriori estimates for the first deriva-
tive for functions belonging to a specific moduli space M. The latter feature
will be important in finding C°-bounds on the same set M.

Remark 2.3.7. Every compact hypersurface ¥ in an exact convex sym-
plectic manifold M can be embedded in Vg, M the completion of a Liouville
manifold in such a way that the neighbourhoods of ¥ (in M and in f/g, M)
are isomorphic. Indeed, it suffices to choose V := Vj with k sufficiently large.
So we can work in the larger class of exact convex symplectic manifold.

Now that we have said what the ambient manifold looks like we have
to impose some further condition on . We actually ask for two kinds of
properties. The former is needed to develop tools necessary for the proof,
such as the defining Hamiltonian and the action-period equality. The latter
is composed by the displaceability condition only. It reflects a symplectic
geometry relationship between > and M and in fact it is related to other
symplectic quantities such as cgz.

Restricted contact type submanifolds
As far as the first kind of properties is concerned, we have found out in

Proposition that if a hypersurface ¥ in a symplectic manifold (M,w)
is contact then there exists a neighbourhood U of ¥ such that:

e w is exact on U with a primitive A which is a contact form on ¥,
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e there exists a proper function H: U — (—¢q, &) such that
Y={H=0}and R= Xg.
The hypersurfaces we are looking for are those for which A and H are globally

defined so that the free period action functional can be calculated for loops
with values in the whole M. In other words we can pick U = M above.

Definition 2.3.8. An hypersurface X in an exact convex symplectic man-
ifold (M, ) is called of restricted contact type if there exists an exact
embedding of a Liouville domain (V, ') in (M, \), with ¥ = 9V

This is equivalent to saying that

i) X is bounding, i.e. M\ X is made by two connected componets and one
of them has compact closure. We call this one the interior of 3, the
other the exterior;

i1) there exists a compactly supported function h on M such that

(27 A+ dh)|2) is of contact type.
So if ¥ is restricted contact type the first point tells us that the function H

provided by Proposition [I.3.7] can be extended from a small neighbourhood
of 3 to the whole M in such a way that

e H is proper,
e H < 0 on the interior, H > 0 on the exterior,
e dH is compactly supported.

One such function is called a defining Hamiltonian for . In order to
fulfill this requirement take simply H: X X (—¢eg,e0) — (—¢0,€0) that is the
projection on the second factor. Then extend smoothly on the complement
of ¥ x(—ep,€0), putting

= —¢g in the interior and H = ¢y in the exterior.

The point b) gives a globally defined 1-form A:= A+ dh which is contact on
3} and which still makes M into an exact convex manifold. By the means of
\ we can define the free period action functional A for a loop v:=R/rz — M
of arbitrary period T as follows:

*y»—>/ TN — Ho~ydt.
R/17, R/T7,

Then if, v is a curve on ¥ which satisfies ¥ = Xg(7),

A(y) = A Aoy (3(1)) dt — A 0 dt

TZ TZ
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= A/T;w(t) (Xu(3(1))) dt
- / e (RGW) a

—/ 1dt="T.
R /17

Hence we have got the action-period equality for closed orbits:

A(y) =T. (2.1)

Remark 2.3.9. If (X, a) C (M, )) is a contact submanifold then the follow-
ing couple of homological conditions is sufficient in order to guarantee that
3l is of restricted contact type.

e 0=[X] € Hap—1(M,R): this implies that ¥ is bounding. In codimension
1 singular homology is the same as the cobordism category. So there
exists a smooth compact 2n manifold N which realizes the homology
of ¥ to 0: in other words > = dN. The other component is simply
M\ N, which is unbounded.

H}-(3,R) = 0 (this is the condition Weinstein included in the original
statement of the conjecture). Condition ¢’) in Proposition yields
a 1-form )\ on a neighbourhood U of ¥ such that

AN = w = d) (2.2)
and ) is contact on ¥. Then Equation (2.2) implies that
AN —N) =dN —d\=w —w = 0.

The vanishing of the first de Rham cohomology group therefore yields
a function h such that N = XA+ dh. Multiplying h by a function x that
is equal to 1 near ¥ and compactly supported in U gives the function
h = xh which is defined on the whole M and compactly supported.
Finally Xi= X+ dh is the required 1-form.

Displaceability

An important subset of symplectomorphisms are those which can be writ-

ten as time 1-maps of Hamiltonian flows. We are interested in having a large
set available and so we allow for non-autonomous Hamiltonian functions,
even though with a periodic dependance on the parameter.
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Definition 2.3.10. Let ¢ : (M,w) — (M,w) be a symplectic diffeomor-
phism. @ is called Hamiltonian if there exists a function H: [0,1]x M — R
such that:

a) there exists a compact set K of M, such that, for every ¢, H; has support
in K;

b) if @y is the flow at time 1 of Xy, then ® = &y

In the following discussion we will assume that H can be extended to a
function H: R/z x M — R, since every Hamiltonian diffeomorphism arises
from a periodic Hamiltonian. If H: [0, 1] x M — R is a generic function such
that ® = @y, then we can define H(t,z):= h(t)H(t,z), where h: [0,1] — R
is a non-negative function, with support in (0,1) and fol hdt = 1. This last
condition implies ® 5 = & = ®. The condition on the support tells us that

H has a periodic extension.

We will denote by H.(M) the set of functions that satisfy a) and by
Ham(M,w) the set of Hamiltonian diffeomorphisms. Then b) gives a surjec-
tive map

m:Ho(M) — Ham(M,w)
H — ‘I>H.

The fiber upon a diffeomorphism represents the possible ways to realize it
as a periodic mechanical movement. The energy of such a movement can be
defined using the associated Hamiltonian.

Definition 2.3.11. Let H € H.(M) and define the function osc(H) as
follows.
osc(H): Rz — [0,+00)

t = Hi(z) — min Hy(z).
g )~ 1 )

Then define,
HHH::A@ osc(H) dt. (2.3)

/z
I -]| induces a corresponding function on Ham(M,w) through the map

— —1 )
1®}:= A {IH|]| Hex™(®)}. (2.4)
So ||®|| expresses the ‘minimum’ amount of energy which makes the mechan-
ical movement W possible. We call this new function the Hofer’s norm.
We stress the fact that this is not a norm (since Ham(M,w) is not a vector
space). However ||®|| represents the distance between the identity map and
® when we endow Ham(M,w) with a suitable distance, called the Hofer’s
metric. An account of the properties of this metric can be found in (28)) as
well as in the monograph by L. Polterovich (39).
We are now ready to give the definition of displaceability.
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Definition 2.3.12. Let A be a subset of (M,w). The displacement en-
ergy of A is given by

eo(A)i= inf  {[|®]| D(A)NA=0}. (2.5)

dcHam(M,w)

A is called displaceable if e, (A) < 400, namely there exists ® such that
DA NA=10.

Remark 2.3.13. Here are some observations about the displacement energy.

e Since the Hamiltonian functions considered are compactly supported,
a displaceable set is bounded, i.e. contained in a compact subset.

e The displacement energy decreases under the action of symplectic em-
beddings. Suppose ¥: (M,w) < (M’,w') is one such embedding and
® is in Ham(M,w). Then ¥ o ® o U1 defined on the image of ¥ can
be extended to an element ® of Ham(M’, ') simply imposing

D'(2) =2z, z¢ U(M).

This new element satisfies ||®’|| < ||®|| because we have also an exten-
sion map H.(M) — H.(M') which maps H to an H' defined in the
obvious way. Then ||H|| = ||[H’|| and the commutativity relation

m'(H') = (w(H))'

vields ||®’|| < ||®||. Furthermore if ® displaces A, then @ displaces
U(A) and so
eu(4) > e (W(A)).

e In a fixed symplectic manifold (M, w) the displacement energy is mono-
tone:

ACB = ey(A) <eu(B).

e The Hofer’'s norm and, hence, the displacement energy are positively
homogeneous with respect to the symplectic form:

Va > 0, eqn = |aley.

e The displacement energy is outer regular. Namely if e,,(A4) < 400 and
e > 0 is fixed, then there exists a neighbourhood U of A such that

ew(Us) < ey(A) +e.
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e As we have mentioned few pages ago the displacement energy is tied to
another important geometric quantity, namely the Hofer-Zehnder ca-
pacity. This is done via the energy-capacity inequality. Several results
of this kind are obtained under distinct assumptions. F. Schlenk stud-
ied this problem in (43)). One of the corollaries he gets is the following
one.

Theorem 2.3.14. Let (M,w) be a symplectic manifold geometrically
bounded (M the completion of a Liouville domain is sufficient). If A
1s a subset of M, then

CHz(A) < 4ew(A).

Example 2.3.15 (Bounded sets in linear spaces). Every bounded set B in
C™ is easily seen to be displaceable. Any translation by a vector v where v

is of the form v =", vkﬁqk is in Ham(C™, d\). Tt is enough to take

H(p,q) =) v*q".
k

Call ®; the flow of Xp. In order to find a compactly supported function,
whose flow at time 1 displaces B, simply multiply H by a cut-off function
which is constantly equal to 1 in a neighbourhood of the bounded set

U @uB).

t€[0,1]

2.4 The main theorem

We are now ready to state the theorem we are going to prove in the
subsequent chapters.

Theorem 2.4.1. Let (M, \) be an exact convex symplectic manifold and let
31 be a compact hypersurface contained in M. If ¥ is restricted contact
type and displaceable then it carries a contractible closed characteristic
whose period is smaller than egy(X).

The manifolds which best suit the hypotheses of the theorem are subcrit-
ical Stein manifolds. For a generic Stein manifold (V, J, f) it is possible to
choose f as a Morse function whose critical points have index less or equal
to half the dimension of V. If the inequality is strict, then V is called sub-
critical. These manifolds has been studied by Biran and Cieliebak (7)), who
discovered that every compact subset is displaceable.

Remark 2.4.2. In Remark [2.3.13| we have mentioned the energy-capacity
inequality. This inequality allows for a comparison between the theorem
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presented here and the theorem of nearby existence developed by Hofer and
Zehnder, which is easily seen to be stronger. Indeed,

e ¢,(X)<4+0 = cyz(¥) < +oo,
e Y restricted contact type = X stable submanifold.

Therefore the hypotheses of Theorem implies those of Corollary [2.2.5]
which was a consequence of the Nearby Existence Theorem [2.2.2] On the
other hand, recently Cieliebak, Frauenfelder and Paternain have succeeded in
extending the definition of RF' H to the larger class of stable tame manifolds.
As a byproduct they improved Theorem substituting the restricted
contact type hypothesis with the slightly relaxed stable tame hypothesis.
However the gap between the energy-capacity inequality methods and those
based on the free period action functional is still wide and it is likely to
remain so. We have decided to not present the theorem in this strong and
up-to-date version because new ideas come into play in its proof that are not
merely a generalization of the simple case.
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Chapter 3

The free period action
functional

We have described in the first chapter how Newton’s physics can be
encoded in the language of Hamiltonian systems. The latter formulation
presents some advantages respect to an approach merely based on the Sec-
ond Law of Dynamics: there is a group of transformation which preserves
the dynamics (symplectic diffecomorphism) and many stability results are
known. But perhaps the most appealing feature is the possibility to get
Hamilton equations via a variational argument. The ‘admissable’ or phys-
ical motions are characterized by the fact that they are critical points of a
suitable functional defined on a space of smooth paths in the configuration
space. However, since the domain of the functional is infinite-dimensional,
establishing the existence of critical points is quite a difficult task. Several
properties were singled out which are sufficient for a functional in order to
have critical points (the most important are probably the direct method and
the minimaz method), but unfortunately these do not apply directly to the
action functional of classical mechanics on the space of loops. The major
difficulty is that the critical points of the action do not have finite Morse
index. Rabinowitz was the first in 1978 (40) to circumvent the problem and
to exploit variational properties of the action. However it was only with the
work of A. Floer that a general theory has been available. Floer in (I8) con-
structed an homology theory, whose complex is generated by critical points.
Therefore if we can compute the homology, we will gain information also
about the critical points. Although we will not construct an homology the-
ory for the action a la Floer, the proof will share some basic lemmas with
Floer’s theory. In this first chapter we will define a family of free period
action functionals, see that they admit a gradient-like system and establish
some properties of the solutions with finite energy.
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3.1 The space of loops

Suppose that the hypotheses of Theorem are fulfilled. From the
observations in Remark 2.3.7 and Remark 2.3.13] follows that we can work
with the completion of a Liouville manifold as ambient space. The following
notations are fixed till the end of this exposition. Let (V, ) be a Liouville
domain, M := V its completion, Y the Liouville vector field and the function
p defined on its exterior

p: Vext — R
(z,t) — t.
It is convenient to give a name also to the exhaustion of Liouville domains

whose union is M:
Vo=V U{p<a}, a>0. (3.1)

On M we can construct an almost complex structure J compatible with dA
and with the further property that

dpod =\, on V. (3.2)

To this aim is sufficient to choose J as the direct sum J; & Jo with respect
to the splitting

TepyM = § ® Span(X,,Y), §:=ker )\‘T{p:t}.
Jp is an almost complex structure compatible with d\¢ and Jp acts in the

following way:
Jo X, =Y, LY =-X,

Then Equation is easily seen to be true separatedly for £, Y and X,,.
Let g(-,-) = dA(J+,-) the Riemannian metric associated with d\ and J and
remember that g has an extension to the whole tensor algebra of T, M.
Moreover let 3 be a hypersurface of restricted contact type in M so that A
is a contact form when restricted to X and let H: M — R be a defining
Hamiltonian for > chosen as in Section From that discussion is clear
that the support of dH can be made arbitrarily close to 3. This is important
because we can suppose that any displacing Hamiltonian F' for X displaces
the support of dH as well (see Section .

At the end of the previous chapter we have defined the free period action
functional for a loop 7v: R/1z — M in the following way

AV::/ YN — Ho~dt.
) R/Tz, R/T7,

However we would like to have a functional defined on loops with fixed period.
To this purpose consider the standard one-dimensional torus T := R/z and
the diffeomorphism

or: T — Ri1z

y — Ty.
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Setting u: T — M as u:= vy o ¢r we get
Ay :/ YN — Ho~dt
) R/T7 R/T7,

:A (p71)* (u* ) —%R/T;Iouogb;l dt

/17

_ /Tu*A _ T/R/Té¢51)* (Ho udt)

:/u*/\—T Houdt.
T T

Then we can define A on Ey:= AgxR, where Ay C A:= C>*(T, M) is the
space of contractible loops:

A E0—>R

(u,T) /u*/\—T Howudt.
T T
Take now a closer look to the loop space. On A we put the C°°-topology.
A prebase is made by the sets U (u, 9,1, K,e,m), where u € A, (V,1) and
(V',4)") are coordinate charts in T and M respectively, K C V is a compact
set such that u(K) C V', € is a positive real number and m is a natural
number. Then

v(K) Cc V', Vk <m,
u(u7¢7wvi7€7m):: veEA dk dk :
| @ ovew™) = Zeouoy)| <

Alternatively we can embed M in RY, thanks to the Whitney embedding
theorem, and regard A as a closed subset of C°°(T,RY), which is a Fréchet
space. In any case Ag is easily seen to be a connected component of A.

Ejy is equipped with the product topology, but it has some kind of weak dif-
ferentiable structure. This structure is specified by assigning to each element
of Ey a set of admissible variations.

Definition 3.1.1. Let w = (u,T) € Ey. An admissible variation for w is
a couple of smooth functions

W= (u T x (—e,e) — M, T:(—¢,¢) — ]R)

such that R
a(t,0) =u(t), T(0)="T.

The variation gives also a path (—¢,e) — Ey, that we still call @ with a little
abuse of notation:

w(s) = (a(,5), T(s)).
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We can associate to w the element

i | al .
—=(0):= (£ it 5), - T(s)).
This is an element of T'(u*T'M) xR, where the first factor is the space of
smooth sections of the pull-back bundle w*T M.

We call T, Ep:=T'(v*TM) xR the tangent space at w.

s=0 s=0

Remark 3.1.2. Here are some observations about the notions just intro-
duced.

e Every element (X,n) in T3, Ey comes from an admissible variation. It
is enough to consider the maps (well-defined for small s)

U (t,8) > expy) (sX), T:s— T+ sn.
The claim follows from the fact that d, exp, = idr, ar.

e We can endow Ty, Eg with an L?-scalar product using the metric g.
((X,n),(X’,n’))w::/Tg(X,X’)dt—i—n‘n' (3.3)

and we denote by || - ||, the induced norm. Then (-, ) induces an
injective map:

b: TwEy — Homg(T,FEy R)
(XJI) = <(X,77)7>w

3.2 Closed characteristics as critical points

Now we can test the differentiability of functionals on Ey using admis-
sible variations. A functional f is Gateauz differentiable at a point w, if
there exists a linear map dy f : TwAg — R such that, for every variation
w, the function s — f(w(s)) defined in an open neighbourhood of 0 € R is
differentiable at 0 and the following relation holds:

L) =4 (0).

ds
A point w such that d,, f = 0 is a critical point for f.

s=0

Proposition 3.2.1. A s Gateaux differentiable at every point of Ey and
dAXK ) = ((Tula = TXu(w), [ Hu®)de), (X))o
T

So dy f is in the image of b and we set

VAW) = b~ (dwh) = (Ju(u X (), — /T H(u(t))dt) .

We call VA: Ey — Ey the gradient of A.
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Proof. Since A is the sum of two pieces, we make two separate estimates.
Let w be an admissible variation and compute

/T (i(s))* 2. (3.4)
On T there is a global form dt, therefore the 1-form in (3.4)) is equal to
(a(s))*N(0y) dt. (3.5)

The real number (4(s))*A(;) is a function of the two variables (¢,s) and a
moment’s thought shows that it is equal to

WA Dy), (3-6)

where 4 and 0; are defined on a open neighbourhood of Tx{0} C TxR. Let
®; be the flow of the vector field Js, defined on a smaller neighbourhood of
Tx {0}, then (¢,s) = ®4(t,0). Differentiating (3.6|) with respect to s yields

d d .
)= %L:O (@) g, (1,0) (t,0) P50l 1,0))

% s=0
= Lo, (W) ,0) (1)
— " (dN) (95, 00) + A (@N) ) ()

- dA(?Z(O), u> +d (1) (8y)

Using the fact that the derivative commutes with the integral sign we find
that the function (3.4)) is differentiable for s = 0 and its derivative is equal

’ /T d>\<g; (0),u> dt, (3.7)

since d (u*\) (0¢)dt is exact on T. The computation of the second summand
is easier

2 S;OT(S)/TH(ﬂ(t,s))dt _ —Z(O)AHoudt _ T/TdH(gg(O))dt

dT ot
=-=(0) THoudt + T/d)\ <XH<U)7 85(0)>dt'

T

(@) (1,6 (O

Putting all together we find

/Td)\ <g“( )i — TXpr(u >dt— /Houdt (3.8)

S

Alternatively using the scalar product g,

Ag(?i(O),J(u—TXH( )dt— /Houdt (3.9)

Recalling the definition of (-,-), the proposition is thus proved. O
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The previous proposition allows for a simple calculation of the critical
points of A.

Corollary 3.2.2. The critical points of A are of two kinds:
a) (z,0), with z a constant path on X and A((z,0)) =0,

b) (u,T), with T # 0 and u o ¢i/r is a periodic orbit of Xy contained in ¥
and A((u,T)) =T.

Proof. Proposition shows that
dT ou, . dT
wf< .%o >) ~ (VA(w), (as<o>,d8<o>>>.
dT’

Moreover the first observation in Remark |3.1.2| says that (%(0), E(())) in

(3.9) can be any element in T3, Ep. So the fact that (-,-) is nondegenerate
implies that

dyA=0 <= VAw)=

A(w) = 0 is in turn equivalent to the couple of equations
« = TXg(u

0 = / H(u

Let’s consider separatedly the cases T'=0 and T # 0.

e 7' = 0. The first equation becomes & = 0 and hence u = z € M is
constant. Hence the second equation is simply H(z) = 0, which implies
z € X.

e T # 0. The first equation implies that u (%) is a closed orbit of period
T. The energy conservation then yields H(u (%)) = h € R, i.e. H(u) is
constant. Then the second equation implies that h = 0 and, therefore,
u is a loop on X.

O]

The Corollary shows that inside the critical set, the points of type
a) form a copy of the hypersurface 3. On the other hand we are interested
in the existence of points of type b). When a functional f is defined on a
finite dimensional manifold N, one of the standard techniques in order to
find critical points is to consider the gradient flow of f with respect to
some metric u. The gradient vector field is defined as before using the map
b:

Vi =b"Ydf).
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The gradient flow is generated by the ordinary equation
z2=-=Vf(z). (3.10)

Then one sees how the topology of energy levels {f = a} depends on a. In
particular if one knows that two levels are not homeomorphic, this forces
the existence of a critical point. Refined arguments are provided by Morse
theory, which guarantees that under an apriori non-degeneracy assumption
for the critical points, the cardinality of the critical set is bounded from
below by the sum of the Betti numbers.

However for A things are quite different. Its domain is neither finite
dimensional nor at least is a manifold modeled on some Banach space, where
an ODFE theory is still available. On the contrary if we consider in this case

the equation

dw
- = —VA(uw), (3.11)

we saw that the right hand side can be defined, however the only way to
define the left hand side we have found so far is by the means of admissible
variations. We defined a variation as a couple of functions and one of them
depends on two variables: therefore we must shift from an O D E-based theory
to a PDFE-based theory. For this reason we shall say that a couple of smooth

functions
w= (u:Tx (a,b) = M, T: (a,b) = R)
is a solution of (3.11)) if and only if
% + Ju ((?;: — TXH(U)> = 0,
(3.12)

drT
— H(u)dt = 0.
7 + /11‘ (u) 0

Remark 3.2.3.

e Obviously such a couple gives rise in a natural way also to a contin-
uous curve w: (a,b) — Ey (the naturality justifying the little abuse of
notation).

e The first equation in (3.12)) is a perturbation of order 0 of the J-
holomorphic curves equation

ou ou
&—FJU— =0. (3.13)

The solutions of this equation are a generalization of holomorphic
curves to the case of a non-integrable J since the operator

= 0 0
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is the analogous of the classic @ operator for maps between complex
manifolds and shares with it some important regularity properties,
which will be crucial in the proof.

The analogy with the finite-dimensional case pushes us to focus the at-
tention on Equation , but now we have to understand how solutions
of this equation can reveal something about the structure of the critical set.
Continuing further the analogy we observe that when the underlying man-
ifold N is compact and the function f is Morse, all the solutions of
are defined for all s € R and they tend to a pair of critical points z; and z_
as s goes to —oo and +oo respectively. Therefore it is convenient to group
the solutions using couples of critical points and define the sets

M(f,9,24,2-):i={2 € C°(R,N) | 2= -V f(2), 2(£o0) = 24 }.

For a generic metric g these sets (also called moduli spaces turn out to be
smooth finite-dimensional manifolds and, what is extremely important, they
interact together by the means of a phoenomenon called the breaking of
gradient flow lines, which reflects the fact that Equation is preserved
under Cf2-limits and time shifts (if z satisfies (3.10]), then so does z(- + o)
while the boundary conditions are not. In fact when a moduli space is not
compact a sequence of points (zx) happens to exist in M(f, g, z4+,2_) that
tends in the C72-topology to a solution z which belongs to another moduli
space. If this is the case, then there is a positive natural number m such

that:

a) there exist m couples of critical points (z1,z1),..., (2™, 27) with
t=a, =22 0 A= =

b) there exist m sequences of time shifts

h 1<h<m A
o and 0;° =0 for some hg, 1 < hg < m.
*) ken k ’
Furthermore these sequences have a growth that increases as h ranges
from 1 to m:
- h+1 h
kEToo(JkJr —0y) = +o0,
¢) the sequences

Z]Z = zi(- + O'Z)

tend in the Cy -topology to trajectories

M= lim z,}j,
k—+00

which belong to M(f, g, 2", zﬁﬁ)
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One can visualize this behaviour thinking that the sequence of whole lines zy,
comes nearer and nearer to the set of critical point described in a) breaking
eventually in a chain of several lines which connect the couple of original
critical points (z_, z4). This phenomenon hidden in the loss of compactness
is revealed by suitable shifts in time.

The important principle to retain from the preceding reasoning is that
the lack of compactness for a moduli space implies the existence of other
critical points. In the case of the free period functional we know that there
is a trivial critical subset isomorphic to 3, therefore our aim is to use it in
order to build a noncompact moduli space and hope that this will give rise
to a break of the flow lines just as in the finite-dimensional case. However
in our case there are some additional difficulties to overcome.

First of all even if we are interested in a noncompact moduli space we
want that its C7-closure is compact in order to find a candidate sequence
zr, that breaks. In order to achieve this compactness we need different ingre-
dients such as the exactness of the symplectic form, the contact hypothesis
and the structure at infinity of M.

Secondly once a suitable sequence is available, additional hypotheses
must be fulfilled in order to have the breaking. In the finite-dimensional
theory the common assumption that one makes is that the functional is
Morse. This implies, for instance, that the critical set is discrete. However
the free period functional does not meet this requirement. On the one hand
we have noticed that the trivial critical points form a copy of ¥ on the other
hand, since the system is autonomous, the nontrivial critical points are di-
vided into subsets and each of them is isomorphic to S (every such subset is
simply made by the time shifts of a fixed closed characteristics). Therefore
the components of Crit A are manifolds of positive dimension and so A is
necessarily not Morse. However it still satisfies a weaker condition, which is
enough to break the flow lines. In fact we will show in a subsequent chapter
that the trivial critical points of A form a Morse-Bott component: in
short this means that the flow lines come from and go to the trivial critical
set fast and transversally.

3.3 The moduli space

Now that we have established the guiding principles to follow, it is time
to construct explicitly the moduli space. The first thing to do is to use the
displaceability condition in order to define an homotopy of functionals Ag
such that Crit Ag ~ Crit A and A, is a functional without critical points.
By assumption X is displaced by F' € Ham(M,d\). Furthermore we claim
that we can pick F such that F(-,t) = 0 for all ¢ whose fractional part is

in [0, %] without changing the integral which defines the Hofer norm (2.3]).
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Consider a function x: R — R such that

1}, od—x>0 o x(t+1)=x(t)+1.

e x(t) =0, whent € [0, 5 0t

X passes to a map from T to itself, which we shall denote with the letter y,
too. Then define

dx
FX(t,2):= — () F(x(t), 2).
A simple calculation shows that
o Ppx =0p, o ||FX]|=|F]

and the claim is thus proved. In what follows we will indicate the displacing
function with this additional property simply by F. In a similar fashion we
can find a function y such that

o V() =1, whente[%,l}, .%20, o V(t+1)=x(t)+1.
Set .
X
A(t,2)= S () H ()

and for every (3 in [0, 1] define the functional

As(w)i= /Tu*)\ -1 At ﬁ/T F(t,u) dt. (3.14)

Proposition 3.3.1. Each Ag is differentiable and furthermore admits the
gradient

VAgz(w):= (Ju(u—TXH( u) — BXFp(t,u) /H (t,ult dt> (3.15)

Furthermore:

e there is a one-to-one correspondence between Crit A and Crit Ay
(u(®), T) = (u(x(t)),T),
o Crit Ay is empty.

Proof. The ﬁrst part of the proposition can be proven in the same way as
Proposition 3. Therefore the critical points of Ag can be described equally
well by Corollary - if we substitute H with H. Then we observe that if
u: R — M is an integral curve for Xpg, then w o x is an integral curve for
Xz and

u(k) =u(x(k)), VkeZ (3.16)
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and all the integral curves are of this kind. In fact suppose that 4 satisfies
U= Xpg(t,1),
with @(0) = up. If u is an integral curve for X, such that w(0) = wp, then
U=1U0YX.

Once this correspondence has been established we notice that solutions with
integer period are carried to solutions with the same integer period bijectively
because of Equation It remains to show that A; does not have critical
points. The equations in this case read

U = TXg(t,u)—}—XF(t,u),
0= - /T S H(u(t)) dt

Now we use the fact that for ¢ € [0, 3] +Z, F(t,-) =0 and for t € [, 1]+ Z,
H(t,-) = 0 and consider the equations separatedly on this two intervals of
times. What we obtain are the following equations for a couple of functions

2

wu(t) = TXp(tu(t), {uzm = Xp(tua(t)),

0= - / SO H (1) dts

with the boundary conditions

<u1: 0,515 M, uy: [;,1]—>M>,

1 1

u(0) = u2(1),  wi(5) = ua(3)-

The first set implies that u; lies entirely on X, whereas the second set yields
us(1) = ®F (u2(3)). This means that

w(0) = B (ul(;)> €SN Dp(x).

Since & displaces X the critical set of A; is empty and thus the proposition
is proved. O

Now that we have the homotopy of functionals we must use it to construct
a correspondent homotopy of gradient-like equations. We refer to this as
a stretching-the-neck homotopy, since not only the functional changes
with the parameter, but also the times during which a functional of the
family operates dynamically through its gradient. For this purpose we need

a function
B:[0,+00)xR — [0,1]

(r,s) — Br(s)
with the following properties
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B,

1. > <0:

Vs > 0, 15 = 0;

2. Vs <0, dby > 0;
ds

3. Vr > 1,

i lf’S’ Sr_lv BT(S):17 (] 1f|S| 27", BT(S):O7

4. Vr <1,
o if[s| >1, Br(s)=0, o 5o(s)<r

The existence of such a function 8 (or of a smooth family of functions ;)
is easy and can be achieved for example taking dilations and scalar multiple
of a fixed bump function.

Now we are in position to define the gradient-like equation that charac-
terizes the moduli space.

Definition 3.3.2. Let r € [0,+00) be a real number and we consider the
set Fp made by couples of smooth functions

w:(u:']I‘xR—>M, T:R—)R).

We endow both C*°(Tx R, M) and C*°(R,R) with the topology of the uni-
form convergence of all derivatives on every compact subset. This is the
so-called CyX -topology. Then Fp is given the product topology.

w € Fy is said to satisfy the r-Equation or to be a r-Solution if and only

if

dw

E(S) = —VAg, 4 (w(s)) (3.17)
holds. The r-Equation can be expanded into the couple

gZ(t,S) + J“(t’s)<gt( 5) =T (s)Xz(t,u(t,s)) — B(r,s) Xp(t,u(t, 3))) 0,

/Htuts =0. (3.18)

Remark 3.3.3. The 0-Equation reduces to the Equatlon for Ag. Asr
increases the interval of times during which the Equation is perturbed
widens and its width is roughly proportional to r. However for every r the
solutions of the r-Equation satisfy the gradient equation for the functional
Ag as s approaches infinity.

From now on let zy be a distinguished point on . Then the moduli
space M we are interested in is so defined:

w satisfies the r-FEquation,

M:={ (r,w) € [0, 400) x Fp | w(=00):= lim w(s) = (20,0), & (3.19)
w(+400) ::SEI_POOIU(S) € X x0.
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As we notice in Remark every element of Fj gives rise to a path in Ej
and thus the limits in (3.19)) are intended in the topology of Ej. Fur-
thermore M inherits from [0, +00) x Fyy the product topology, the topology
of Iy being the C°-topology described above.

Obviously the subset of r-Solutions is closed in [0,400) X Fy, namely if

(rg, w) — (r,w) then
wy, satisfies the rp-Equation = w satisfies the r-Equation.

However M is not a closed subspace since the boundary conditions are not al-
ways preserved. Nevertheless the asymptotic behaviour can still be controlled
although in a weaker sense. This is achieved by introducing an important
quantity, called the energy. On the one hand the limit of a C-convergent
sequence of maps with bounded energy has finite energy and on the other
hand we will see that in some cases a map with finite energy admits asymp-
tots, which are critical points. This last phaenomenon will be investigated
in Chapter

3.4 Energy
Definition 3.4.1. Let w be amap in Fy. Its energy is defined by the formula
dw 2
E(w)::/ W ds €10, +00], (3.20)
R ds w(s)

or after expanding the norm in the integral

B - | ( / i(tvgt)dﬁ i

The next proposition establishes some inequalities for the energy of r-
Solutions, which demonstrate as the action and the energy are linked to-
gether.

2

Ou ds. (3.21)

dT
%(h 3) o

75 (5)

Proposition 3.4.2. Let w be an r-Solution. Then,

Agow are non-increasing functions.

A
[ts<—ry? 20 Y gszn)
Moreover if we define
Ao(ws):= lim Ag(w(s)),
the following inequalities hold:

Ao(w_) — Ao(ws) + |F, (3.22)

<
Vs € R, [Agg g (w(s))| < max{Ao(w-), —Ao(w)} + | FIl.  (3.23)



Proof. Let sop < s1 and set

A(s0,51) = Ag(r.s0) (W(50)) — Ag(rs,)(w(s1))-

Then compute

A(sp, s1) = —/S1 M(S) ds

S0 ds

s1 aAﬁ(T,S) s1 dw
:_/SO <88(s)>(w(s))d8—/so duo(s)Dp(r,s) <d8(s))ds.

.. .. aAﬁ(r,s) . . .
Writing explicitly s and using the fact that w is an r-Solution we find
s

S1 S1 2
A(s0, 51) :/ dj; (s) </T F(t,ult, s))dt> ds +/ %(5) flf (3.24)
Set ey
0(s0,51):= / f;(s) (/T F(t,u(t, s))dt> ds
and first show that
—0(s0,51) < || FJ. (3.25)

We consider separatedly the cases sp < s71 < 0and 0 < sp < s7 since dd; has

constant sign on the positive ray and on the negative ray. For the first case

we find
—0(s0,51) = /:i ddiT (s) </T Pt ult, s))dt> ds

0

</Sid6r( ) min F'(t, z)dt |d
Js ds s T 2€M ’ s

0

= (Br(s1) — Br(s0)) /T — min F(t, 2)dt

The second possibility yields

—0(s0,51) < (Br(s0) — Br(s1)) TrzréaA}(F(t, z)dt.

Recall now the definition of the Hofer’s norm and keep in mind that in any
case

|Br(s0) — Br(s1)] < 1.

Then for the two cases considered above follows immediately. If sg and
s1 have different signs then follows again by the splitting 6(so, s1) =
0(s0,0) + 6(0, s1). This concludes the proof of the inequality

For the proof of the first inequality we let so — —o0 and s; — 400 and get

Ag(w-) — Ag(wy) = 0(—00,+00) + E(w) > E(w) — || F.
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For the second inequality we get from ([3.24])
0(s0,s1) < A(so,s1), (3.26)
Now pick s’ € R and make the two different substitutions in (3.26]):
(so — —00, 81 = s’), (so = s’, 81 — +oo).
As a result we obtain the couple of inequalities
0(—00,s") < Ao(w-) — Ag(r5(s') < max{Ao(w-), —Ao(wi)}— Apgs (s),
{9(8'7 +00) < Ag(r e (") — Ao(wy) < max{Ag(w-), —Ag(wi)}+ A5 (s).
That can be rearranged into
A (') < max{Ao(w_), —Ao(ws)} — B(—o0, ),
{ —Ag(,e) (s") < max{Ag(w-), —Ao(wy)} — 0(s, +00)}.
Using again we get the desired inequality. O

We know from the very definition of M that w has limits for s that tends
to infinity. So the continuity of Ay on Ey implies that, if (r,w) € M, then

Ao(ws) = Ag(w(+oc)) = 0.
Therefore we have the uniform estimates on M

E(w) <[], (3.27)
Vs €R,  [Agg,q)(w(s))| < [[F| (3.28)

We have said that the energy has a better behaviour under C°-limits than
the asymptotic conditions. This is the content of the next simple proposition
that closes this chapter. In the fourth chapter we will focus on the compact-
ness property of M and we will prove that the moduli space is relatively
compact, despite not being closed.

Proposition 3.4.3. Suppose wy, — w in the Cy -topology. Then

E(w) < lkim inf E(wg) (3.29)

—+00

Proof. The proposition follows from the calculation:

a | d 2
b=t [ |
= lim lim %(5)
a——+00 k:—)-‘rOO —a dS wk(s)
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“|ld
= lim liminf ﬂ(s)
a—+00 k—+oo J_, || ds wi(s)
2
< lim liminf/ %(s) ds = liminf E(wy).
a—+00 k—+oo Jr || ds wi(s) koo
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Chapter 4

Cpo-compactness

In the preceding chapter we have defined the family of r-Equations

W 5) = ~ T (w(s)

and starting from them a moduli space M of solutions:

w satisfies the r-Equation,

M= (r,w) € [0, +00) x Fp | w(=00):= lim w(s) = (20,0),
w(+o00):= lim w(s) € ¥ x0.
S——+00

An element (r,w) € M is composed by a positive real number r and a couple
of smooth functions w = (u: TxR—-M, T:R — R). We have called the
space of these couples Iy and we have endowed it with the CY%-topology.

The purpose of the present chapter is to prove that M is relatively
compact with respect to the product topology of [0, +00) x Fy. This

result will follow from a more general compactness theorem, whose proof is
the main content of this chapter.

4.1 Bounded solutions

We need a refinement of the concept of r-Solution, introduced in the
preceding chapter.

Definition 4.1.1. Let r € [0, +00). We call w a bounded r-Solution if
e w is an r-Solution;

e there exists a compact set K, such that the image of u is contained
in K, for large s;

e the asymptotic values of the action A are finite, i. e.

masx {|Ao(w_)]; [Ao(ws)[} < +oo.
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In the following discussion suppose we are given a generic set A/, whose
elements are of the form (r,w), where w is a bounded r-Solution for some
r € [0,00) (we point out that r is not fixed on this set so that two elements
of N can have different values of the parameter) with uniform bounds on the
asymptotic values of the action. This means that there exists A > 0 such
that, for every (r,w) € N, we have

max {[Ao(w-)|, [Ao(wy)[} = A.
Then Proposition implies that
o B(w) <24+ |F|, o [Ag(w)]<A+]F].

Clearly M belongs to the class of sets just defined, hence a compactness
theorem for a generic N will apply also M.

The main theorem relies on the elliptic estimates for the Cauchy-Riemann
operator and the joint work of Sobolev embeddings and the Arzela-Ascoli
theorem. However in order to make the mechanism start working we need
as an input a priori estimates for low derivatives. In our case we have to
prove three kinds of uniform estimates for an element (r, (u,T")) of N:

1. C%bound for u,
2. C%bound for the period T,
3. C'-bound for u.

Obviously it is understood that the bounds does not depend on the particular
w and the constant are universal in A/. Once this estimates are proven we
will need a little additional argument in order to control also the parameter
r: this will be the content of the fifth section of this chapter. First we make
use of the elliptic regularity of the classic 0 operator, in order to prove a
corresponding regularity theorem for w.

4.2 Sobolev estimates

We have to recall the three cornerstones on which we are going to build
this section: Arzela-Ascoli Theorem, a version of the Sobolev Embedding
Theorem and the elliptic estimates for the operator 0.

Theorem 4.2.1. Let u, : (Xo,dy) — (X1,d1) be a sequence of continuous
functions between two metric spaces, such that Xo is compact and X is
complete. Assume that

e there exists a compact set K C X1 such that

u, (Xo) C K;
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e the sequence is uniformly equicontinuous. In other words, Ve > 0, there
exists 6z > 0 such that

do(z,2") < 6. = di(uy(z),u,(2")) <e.

Then there exists a subsequence converging uniformly on Xj.

Let p be a real number such that 1 < p < 400 and let U C C be
a bounded open set with smooth boundary. Consider the Sobolev spaces
WkP(U,R*™) for every k € N. Each of these spaces is the completion of
C>=(U,R?") with respect to the norm

llyrsyi= [ | 3 1%l | dsdt,
Y \Jol<k

where o is a multiindex. Moreover denote by | - ||k 7, the norm defined for
functions in C*(U) by the formula

luller@y= D sup [Du(x)].

o<k zeU
Often we will use the shorthand || - ||x, and || - ||+ when the domain is clear
from the context and we will indicate simply by || - ||o the norm in C°.

Theorem 4.2.2. [fp > 2 and U is a bounded open subset of C with smooth
boundary. Then there exist constants By py such that

HUHC”“*(U) < Bk,p,U”“HW’fsP(U)'
Furthermore the inclusion WEP(U) — C*Y(U) is compact.

The elliptic regularity for the Cauchy-Riemann operator in the integrable
case reads in the following way.

Theorem 4.2.3. Let Jy be any constant complex structure on R?" and let
us denote by 0, the usual Cauchy-Riemann operator associated with Jo

= 0 0
6]0 - % + JO&

Then, for every k € N and p € R such that 1 < p < 400, there exists
a constant Ay, such that, for every smooth function with compact support
u: C = R?", we have

ullwrrrocy < Akplldsullwrrc)- (4.1)
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The proof of these results can be found in many textbook and will not

included here: for example the reader can consult Appendix B in (33) for
the last two results.
With this theorem at our disposal we wish to prove a regularity theorem
for J-holomorphic curves, when J is not constant. The next lemma helps
us in finding a useful inequality that goes in this direction. In the following
discussion we suppose p > 2.

Lemma 4.2.4. Let Q) be a bounded open set in C and W an open set of C",
endowed with an almost complex structure J. Fiz a: Q — [0,1] a smooth
function with compact support. Let (k,p) be a couple defined as before and
let Jo be a constant almost complex structure on W. Then, there exists a
constant Ci 0.« such that, for every smooth function u: Q@ — W, we have

(1=AppllJo= Julloo) lull+1.p < Ch p,@ua(1+ 1 ullkp) [l o1+
+ Crp,@a(1+[[Tulloo) [ullkptArpll 07 (w) [k p-
Proof. In what follows the first inequality is given by Theorem and the

same symbol C is used to indicate a generic constant which can depend on
Q, a, k and p.

loullksip < Arpll@o () ||k p
< Cllu

kp Tt Ak,pHagJoU”k,p
< Cllullip + Agpllads (W)llkp + Arplla(Jo = Ju)Oullk p
= Cllullep + CllOs (W) ]lkp+

+ Appll(Jo = Ju) O (au) = pa(Jo — Ju)ullkp
< Cllullep + Cl19s(w)llkpt

+ Akpll (Jo = Ju)Or(au)[kp + Arp

Ora(Jo — Ju)ullrp-
We make two separate calculations for the last terms

Ori=[|(Jo — J)s(aw)lkp,  O2i=[[Frcr(Jo — Ju)ullip.

We use the following inequality for a product of two functions

[0Ullkp < Qllcoll®llip + ([P lloo |0l -

01 < |[Jo = Jullool|O(w)l|r.p +[[Jo = Jullpll O (tt) [l oo
< 9o = Julloolleullrrp + CO+ | Jullrp) [wflor-

Whereas for the second term we have

02 < C[(Jo — Ju)ullkp
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< CllulloollJo = Jullkp + CllullkpllJo = Julloo
< Cllufloo([[ullep +1) + C 4 [[ulloo) lullk.p
< C(fluller (ullep +1) 4+ (14 [ Sulloo) 1ull.p) -

Putting these two inequalities in the preceding calculation we get the desired
inequality. O

Now we are ready to state the regularity theorem. Since its natural
formulation is for curves whose domain is contained in an arbitrary Riemann
surface, first we need to generalize the notion of Cauchy-Riemann operator
to this case. Indeed, we point out that the expression

= 0 0

is meaningful only in a coordinate chart. The corresponding global object is
described by the next definition.

Definition 4.2.5. Let GG be a Riemann surface endowed with complex struc-
ture 7 and M a manifold endowed with an almost complex structure J. For
each u € C*°(G, M), is defined d;(u), an antilinear form on G, with values
in the bundle uw*TM:

dyu:=du+ Joduoy € Q"Y G, u*TM). (4.2)
Remark 4.2.6. If (¢, s) are holomorphic coordinates, then becomes
Dju = ((‘%u + Ju&gu) ds + (8tu - Ju85u> dt
and by antilinearity
dju=0 <=  Oyu+ J,0m =0.

Theorem 4.2.7. Let G be a Riemannian surface without boundary and let
U, be an increasing sequence of open sets whose union is G.

Let ¢ € N>j U {+o0} and u,: U, — M be a sequence of C’z—functions with
values in a manifold M and let J¥ be a sequence of almost complex structure
on M of class C*. Suppose that there exists an almost complez structure J
of class CO such that on every compact set

RNy

Furthermore the following assumptions hold
1. there exists a compact set K C M such that u,(U,) C K;

2. there is b > 0 such that ||du,||sc < b, for all v;
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3. uy is a J¥-holomorphic curve

dvuy, = 0. (4.3)

4. every z in M has a local coordinate chart W? such that if w: U — W?#
is a Ct-function from some open subset of C, we have

[ Tsllwre @) < crpa(l+ [wllwes)- (4.4)

Then for every point x € G there exists a neighbourhood Q% of x and «
subsequence uy, = such that

xT
vu

HU WZ«{»I,p(Qz) S Cf,p,x' (45)

As a consequence of this, there exists a subsequence u,, converging to a J-
holomorphic curve u € C*(G, M) in the CL _-topology.

loc

Proof. Let’s fix x € G, then the first two assumptions allows for an appli-
cation of the Arzeld-Ascoli theorem. We get a subsequence, which we will
still denote by w,, that is uniformly convergent on some compact neigh-
bourhood of Q¢ to a continuous function u. Letting W := W*®) the co-
ordinate chart given by Assumption 4, we can shrink Qf and suppose that
u, (Q¥) C W, for every v. Then we can find a sequence of compact neigh-
bourhoods Q7 C G, 0 < k </, such that

¢ Qi1 C éi and there exists Q* a compact neighbourhood of x such
that Q% C Cji for every k < ¢;

e if A, is the constant contained in Theorem then
1 . )
24, > [ u@) — Ju, llcoqz);

The last point stems out from the fact that J,, converges uniformly to J,,
and J,, is uniformly continuous. Furthermore by Assumption 4 there is a
constant cg p . such that
12, lwee gy < arpalllullwes e +1)-
Now we use Assumption & and apply Lemma with Q= QF and a= ay,
having the additional property: ax =1 on Qf,,. We get
lusllwerrng, ) < 2Ckpalluwller (T + [luw llwrsgz))+

(4.6)
+2Ck,p7$(1 + ”JVHOO>||UVHV[/k,p(QaI§)
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Since the terms ||uy, || o1 and [|.J, [|oc are uniformly bounded too and ||u,, ||y1.p (g
is bounded by Assumption 1, a repeated use of (4.6)) yields

up [lyrs1p(gey < Chpar 1<k <L (4.7)

This establishes the first part of the theorem. As regard the second state-
ment observe that, thanks to , an application of Theorem yields a
convergent subsequence on *. This is sufficient to finish the proof. Indeed,
as a second step we can choose an exhaustion of G' by compact sets K;. The
compactness of each K; guarantees that the theorem holds for K;. Finally
the theorem is proved by extracting a diagonal subsequence from the subse-
quences we have found for each K;.

O

Now we will see how a clever trick allows for an an application of the
preceding theorem to the case of a sequence of perturbed J-holomorphic
equation. The hypotheses are the same except those regarding the sequence
of almost complex structures JV.

Corollary 4.2.8. Let G be a Riemannian surface without boundary and let
U, be an increasing sequence of open sets whose union is G.

Let £ € N>j U {400} and u,: U, — M be a sequence of C*-functions with
values in a manifold M and let J be an almost complex structure on M
of class Ct. Let AV : U, x M € TM be a sequence of C*-maps such that
for every x € C, Ay(x,-) is a section of TM. Suppose that there exists a
continuous map A: G x M € TM such that on every compact set

0
A S A
Furthermore the following assumptions hold
1. there exists a compact set K C M such that u,(U,) C K;

2. there is b > 0 such that ||du,||e < b, for all v;

3. w, satisfies the perturbed J-holomorphic equation
dyuy + A (- u,) = 0. (4.8)
4. for every (z,z) in M there exist local coordinate charts U*, W# around
these points such that if w: U’ — W? is a C'-function from some open

set U' C U*, we have

IA” Gy w)llwrr @y < ehpa(l+ [wllwnewn)- (4.9)
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Then for every point © € G there exists a neighbourhood QF of x and a
subsequence uy, ~such that

Huza/cuHWZ‘H:P(Qm) < Crpa- (4.10)

As a consequence of this, there exists a subsequence u,, converging to u €
CYG, M) in the C _-topology. u satisfies the equation

loc
dju+ A(-,u) = 0. (4.11)

Proof. We want to apply Theorem and so we need a little trick in order
to transform perturbed J-holomorphic equations into genuine J"-equations.
We consider the manifold Cx M endowed with the almost complex structures

Ty (has oy v)i= (= s by Jov + A (2, 2) + hoJoA (2, 2) ).

Setting w, (t,s)= (t,s,u,(t,s)), a simple calculation shows

9w, = (0, 0,91, + A”(-,u,,)). (4.12)

Then .
75
where j(xyz)(ht, hs,v)= (— hsy hey (V) + hiA(x, z) + hsJ,A(z, z))
The Assumption 4 for AY implies that JV satisfies Assumption 4 in [4.2.7]
Finally assumption 3 of the preceding theorem is fulfilled since (4.12]) implies

that w, is a J,-holomorphic curve. Hence Theorem gives a subsequence
wy,, that satisfies

le/p, WLP(Qy) < Cf,p,x-

This implies a similar estimate for u,, and therefore first statement of the
theorem is proved. Then the reasoning for the second assertion goes like
before. O

Remark 4.2.9. We can substitute the fourth assumptions in the preceding
theorems respectively with the stronger hypotheses

gv < A 5 A,

Now we can start with the first estimate concerning low derivatives. It
relies on a maximum principle for subharmonic functions.
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4.3 Uniform estimates for u

Since X7 and Xp are compactly supported in M, uniformly in ¢, there
exists b > 0 such that on the complement of V;

e X7=0, e Xr=0

and b is the smallest real number with this property. Let w be an r-Solution.
In particular w satisfies the first equation in (3.18)). Thus on the open set

Up:=u"Y(M\ V) CTxR,
u satisfies the Cauchy-Riemann equation

@ ou

Os (ta S) + Ju(t,s)a(tv 5) = 0.

Consider the real function u,:= pou defined on Uj. Then u,, is subharmonic.
Lemma 4.3.1. The function u, = p o u satisfies
Au, >0, onU,.

Proof. For the inequalities we need two ingredients. First recall that the
complex structure on M is of a very special kind. J satisfies the Equation

3.2
dpod =X, on Vext.

Secondly we have the following identity for a 1-form « and vectors (v, v2)
da(vy,v2) = v1 (a(vg)) — 1)2(04(1)1)) — a (v, v]) .

Now we can begin
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& Q
o~



TR
ou Ou

:d)\u YRR
((‘% 85)

Ju Ou
= d\, (Juas, as>

(o
=9 0s’0s) —

With this lemma the uniform bound follows.

Proposition 4.3.2. There exists a positive number b, such that for any
(r,w) € N we have
u(T x R) C V4.

Proof. Let w = (u,T) be an r-Solution. As we have done before we can
associate with u the open set Uy. If on the one hand this set is empty then
w(T x R) N (M \ V,) =0 and therefore

w(T x R) C V.

On the other hand suppose that Uy is not empty. We can apply the previous
lemma and find that u, is subharmonic on Uj,. Moreover we know that U, is
bounded by the assumption we made on N. Then we can apply the mazimum
principle to u, and find that it attains its maximum on the boundary of Uy,.
This means that

pou=>b, on Up,

hence the thesis. O

In other words Proposition tells us that there exists a fixed compact
set V3, which contains every cylinder u.

We can deal now with the second estimate: it is a variant of results that
was established for the first time in (8). The contact hypothesis will make
the argument work.

4.4 Uniform estimates for the period

We observed immediately before Remark that for critical points we
have the action-period equality . Since the critical points are charac-
terized by the vanishing of the gradient, we hope that when the gradient is
small we can still control the size of the period with the action. This in turn
was proved to be uniformly bounded in Proposition [3.4.2]
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On the other hand when the gradient is large the period is bounded since
the amount of time in which we have [[VAg ;) (w(s))|| > € is controlled by
the energy via a Markov inequality and the magnitude of period derivative
is controlled by the second equation in (3.18]).

Small gradient: period-action inequality

The main result of this paragraph is the following one.

Proposition 4.4.1. There exist € > 0 and a positive constant C, depending
on a > 0 such that if B is a positive real number and w = (u,T) € Ey, with
u(T) C Vg, the following implication holds

IVAg(w)| <& = [T] < 2(JAg(w)| + [ Fl| + Ca).

For the proof we need two lemmata. In the following discussion we use
the notation Us:= {H € (—4,6)}.
Lemma 4.4.2. For every 6 > 0 there exists an € > 0 such that for every
w = (u,T) € Ey we have
1
IVAg(w)|| <e = u(t) €Us Vtelo, 5] + Z.

Lemma 4.4.3. There exists 6 > 0 such that if w = (u,T) € Ey with

1
e u(T) C V,, e u(t) e Us Vtelo, 5] + 7,

then V3 >0
T] <2[Ag(w)] + 2/ Al oo (v) IVAg (W) 4 2 Fl| + 2/ Al oo v ) [ X P l| oo (1) -

Proof of Lemma[{.4.3 We prove the equivalent implication:

_ 1 _
3t € [0, 5} +Z, |[Hu(t) >0 = |[|[VAg(w)|| >e.
Suppose H(u(t)) > 0, the other case is completely analoguous. There are
two possibilities:

1 vte o, %], H(u(t)) >

N S

On the other hand if there exists £ € [0, 3], such that H(u(f)) < 3, then
the connected component of the set {t € [0,3] | H(t) > %}, which passes

through t is an interval I’ and one of its extreme points ¢’ is not 0 nor %

Then H(#') = . Hence if we consider the interval I with extreme points #,
we see that, if the posiibility 1. does not hold, then
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2. there exists an interval I = [to,t1] C [0, 3] such that
eviel Hu(®) >3, e |H(u(h) - Hu(w)] >
In the first case we use the second summand in the gradient
Va5l | [ foro)a]> 3
While in the second case we use the first summand

Vsl = [ i) = XOXn(u(e)|a

1 h
Tl
Xt llo Jt,

lt) = X)X (u(t)| - | X (ult)) |t

1 t . .
> [ suotie) —x(t)XH<u<t>>>7vmu(t)))dt\
Xl |
! / (1), VH(u(t)))
= Gu)(0(t), VH (u(t dt’
1Xrlloo [ Sy 7
L] "t H(1) ‘
= dyoyH (0(t))dt
1Xelloo [ Sy,
1
— ——|H(u(t)) — H(u(t))
ol |
1 1)
>
Xelowo 2
where |Xp|oo:= || Xul| oo (ar)- To sum up the lemma holds with
6'*§ min{l 1}
T2 Xl S
|
Proof of Lemma[{.4.3.

|Ag(w)] = /Tu*)\—T TH(t,u) dt—B/TF(t,u) dt’

Y

/TAu(it)dt‘ IT/ch(t)\H(U)Idt L]

v

/ Au<u>dt1 — oy - )

_ /T)\u(u—TXH(t,u)—ﬂXF(t,u))—i—/\u(TXg(t,u)+BXF(t,u))dt+

—o|T|=||F]]
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> 7] (\ / >z<t>xu<XH<u>>dt'— 5)—||Fu—\Aum(va)|rXFer(m>+

/T)\u(u — TXp(tu) — BXp(t, u))dt‘

> yT|< /Ti(t)Au(XH(u))dt'— 5) -

— Mo vy IVAg ()| = [[F]] = [[XEll oo (rxvi)-

Now the contact hypothesis implies that on X, A(Xg) = 1 and so if ¢ is
sufficiently small the following inequalities hold

1
i< e h(Xu(w) > Z on Us.

They give

/ >‘<<t>Au<XH<u>>dt' 5>

3 . 1 1

)Z(t)dt‘ - =_.
/T 4 4 2
Substituting in the preceding chain of inequalities and rearranging the terms
the first lemma is proved. O

Remark 4.4.4. Before proving the proposition we need to highlight a byprod-
uct of Lemma [4.4.2] which we will use later on in order to establish the bound
for the parameter r.

If tp and ¢; are numbers in [0, 4

, 5, then the last chain of inequalities implies

|H (u(t1)) — H(u(to))| < | X#llso </ ‘u — X5(t,u) — Xp(t, u)fdt>5 .
: (4.13)

Proof of Proposition[4.4.1 Choose ¢ asin Lemma[4.4.3]and use Lemma[d.4.2
to find a corresponding €. Then if w € Ey is such that «(T) C V, and
[VAg(w)|| < e, Lemma4.4.2applies to w and thus it satisfies the hypotheses
of Lemma [£.4.3] This gives the inequality

T < 2|Ag(w) [+ 2[LF[|+2[All oo (vo) VA (W) |+ 2] Al oo (v I X F [l Lo (v
< 2[{Ag(w)] 4+ 2| F[ + 2/ Ml oo (va) - € + 1Ml oo v I X F [ £oo (v
< 2([Ag(w)| + [ Fl| + Ca),

where we have set

Ca= M=y (& + Xl oqrsvay).
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Large gradient: Markov inequality

Lemma 4.4.5. Let w be an r-Solution with finite energy and let € > 0 be
an arbitrary real number. Then we have the Markov inequality

measure {s € R | |[VAg(w(s))|| > e} < ES(;U)

Proof. Integrating the following pointwise inequality between functions

dw 2
2.1 et
€ I (s)

)

{SGR ’ HVAB(W(S))H(3)>E}(S) < '

(with 15 we denote the characteristic function of the set B) we get the
estimate

dw 2
2 . measure { s w(s (s s = E(w).
: (s e | VAt >} < [ |52 as = B

O]

Now we can put together the results of the preceding paragraph and come
up with the bound for the period.

Proposition 4.4.6. There exists a constant C, such that for any (r,w) € N
we have

1T loe < C.
Proof. Proposition give an € > 0 such that, ||[VAg(w(s))|| < e implies
T(s)] < 2(|Ap(w(s))| + | FIl + Cp) < 24 + 4[| F|| + 2Cy,

where b is given by Proposition [£.3.2] and the second inequality is given by
the discussion immediately after the definition of N. On the other hand if
s" is such that [[VAg(w(s"))|| > €, then there exists an interval I such that

E(w)
2e2

measure() <

and one extreme is s’ and the other is a point s” such that [|[VAg(w(s”))| < e.
This is a consequence of Lemma [4.4.5] Then the second equation in ([3.18])
yields

dr -
0| =| LR < ).
T
Thus we get
dT T 24+ ||F|
mo_ N — at < ¢t < ceaT el
1) = 7)) = | [ S (5)ds| < measure(r) - [ < 11]c - 221,
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where in the last inequality we have used the bound for E(w) in A/. Then
Vs € R we have

2A 4+ ||F||

T(s)] < 2A + 4[| Fl| +2Cp + [[Hlloo - —

(4.14)

O]

This proposition concludes the period estimates: now it is the turn of
the first derivatives of u.

4.5 Uniform bounds for Vu

In this section the exactness of the symplectic form plays a crucial role.
Actually the asphericity of w would have been enough in order to carry on the
argument. w is said to be aspherical if for every smooth map u: $? — M

we have
/ u'w = 0. (4.15)
SQ

The relevance of this hypothesis becomos clear in the light of the next result.

Proposition 4.5.1. Let u: N — (M,w) be a J-holomorphic curve from a
Riemannian surface to a symplectic manifold M endowed with a compatible
almost complex structure J. Let g be the associated metric on M. Then

ou
—(t
at( ’S)

du

2 2
dt Nds = ' 3 (t,s)| dtAds. (4.16)
s

(u*w)(t7s) —

If furthermore w is aspherical and N = S?, then u is a constant map.

Proof. The second equality in (4.16) stems out from the fact that J is an
orthogonal map with respect to g. The first follows simply from the definition
of J-holomorphic curves

(2D o (Pu Y _ (0 o (0w
9 \ovas) " \oas) ¥ \Tas as) T\ 05705 )
Use (4.15)) to conclude the proof:

2

N ou? ou
0= Uw = — | dt Nds = —| dt ANds.
S2 S2 8t S2 (95
This implies du = 0 and finishes the proof. O

In our case we will use a slight modification of this argument due to the
fact that w is exact.
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Proposition 4.5.2. Let u: C — (M,w) be a J-holomorphic curve, where
J is an almost compler structure on M. Suppose that the image of u is
contained in some compact set, that w is exact and that the energy of u is

finite, i.e.
e
C C

Then u is a constant map.

ou |
—| dt Nds < +o00.
0s

Proof. Using polar coordinates we can rewrite the energy as

+oo 2
/ 2mm / do | dm,
0 T

where v, is the curve defined by ~,,(0) = mcos(2n6) + msin(276). The
finiteness of the energy then implies that the function f: [0, +00) — [0, +00)
defined by

ou

% (’Ym(g))

2

f(m) = 2mm /T O m(0))] 0

is integrable. Hence Ve > 0 the following inequality holds for large m:

f(m) <

Slo

(because = is not integrable). Therefore there is a sequence (m;) such that

2
do — 0.

Ou

my 7 +o0, - (2mmy) [ 22 0(6)

Using Jensen inequality this implies

ou

S (s (0)) 2d«9> "o

Let Dj be the closed ball in C of radius m; centered in 0. Then v, is a
curve which parametrizes dD; and a simple calculation yields

0< 2mm, [ \gijwmjw))\ a6 < (<2ij>2 /

u
52| © m,- (4.17)

fo ()

ou
< Ilecuony2mms | |5 m,)|

'd(uovmj) = 2mm;
- J

db

Stoke’s Theorem finishes the work:

/D.u*(d)\) /(9;:*)\

J

Letting j goes to infinity we get that the energy is zero. O
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In order to prove a C! bound for u in M we argue by contradiction.
Assuming that there exists a sequence of functions u; whose first derivative
norm goes to infinity as j goes to infinity. Then a clever use of the Com-
pactness Theorem will give a nonconstant limit function that satisfies
the hypotheses of Proposition [£.5.2] This contradiction will finish the proof.

Proposition 4.5.3. There exists a positive constant b such that for any
(r,(u,T)) € N we have
ldullec < b (4.18)

Proof. Within this proof we will consider functions on the cylinder T x R
as function in R? that are 1-periodic in the ¢ variable. As we have outlined
before we assume by contradiction that there exist a sequence (r,,, (uy, T,,))
and a corresponding sequence of points (¢,,s,) such that

|duy (ty, s,)| — +o0. (4.19)

For each v we make a translation of the domain so that the the point in
which the derivate blows up remains fixed. Define

Uy (t,s):= uy(t +t,, s + s,).

Then
a, := |du,(0,0)] — 4o00.

Since u, satisfy a perturbed J-holomorphic equation, the same is true of u,.
If we define

Ay((t,s),z) = —J, (TV(S)XH(t,z) + B(ry, s) Xp(t, z)) ,

and the translated operators

Ay ((t,8),2):= Ay ((E+ tu, s+ 50), 2)
then we have

Oyu, + AV((t, s), uy)
5Jﬂu + K1/((157 5)7 ul/)

0, (4.20)
0. (4.21)

Since the first derivative diverges the 0 u, term in dominates the
term of order 0, (remember that we have already bounded the periods in
M). This suggests to perform a rescaling of the functions 4, in order to find
a further sequence of functions

aga@:a(l(ag>. (4.92)

ay
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Then w, satisfies the equation

Aty + Ay ((t,5),w,) =0, (4.23)

with /AXV((t, s),z) = L Kl,(é(t,s),z). We want to apply the compactness

_ay

corollary with £ = 1 and so we need to fulfill the assumptions contained
therein. We claim that the maps

~ 1 t
Ay=——1J, (Tu(i + Su)Xg(* + tu’uu) +/B(TI/7 ai + SV)XF(; +t1/7uu))

Qay Qay ay v
converge in the C'-topology to 0. Indeed, since a, diverges then

o~ (0]
A, <o

The only thing to check for the C! estimate is that

1dT, ¢o
— —0
a? ds

dir,
However this is true since d—” is uniformly bounded by the equation
S

{ﬁ@:-éﬁ@wmmﬁ.

The only thing that remains to establish is the uniform boundedness of du.
Since |dt,(0,0)| = a,, we have a bound |du,(t, s)| < 2a,, when |(t, s)| < e,.
We want ¢, to satisfy the crucial property e,a, — 400, so that u, will
satisfy |du,| < 2 on an exhausting sequence of open balls whose union is the
whole plane (with the notation of Theorem we have U, := B¢ q,(0,0)
and we need G:= C in order to apply Proposition . To achieve this we
need a lemma which yields a sequence ¢, with the desired property, although
it might change the blow-up points (t,,s,). The proof is contained in the
sixth chapter of (28).

Lemma 4.5.4. Let (X,d) be a complete metric space and g: X — [0, +00)
a continuous map. Assume rg € X and g > 0 are given. Then there exists
x € X and € > 0 such that

e 0 <e < g
e g(x)e > g(xo)eo;

o d(z,z0) < 2g(x) for all y satysfying d(y,x) < e.
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Let’s apply Lemma with ¢ = |du,| and 9 = 1. Then we replace
the old blow-up points with the new ones but we keep the notation and
symbols used so far as if these new points were chosen from the beginning
of our discussion. Then @, and A, satisfy the hypotheses of Corollary
Thus a subsequence of 4, (which we will still denote by u,) converges to a
J-holomorphic plane % in the C -topology. We claim that the energy of
this plane is finite. This is due to the fact that the energy behaves well with
respect to translations and rescaling in the domain. Let K be an arbitrary
compact subset of C. Then

—~12 ~ 12
/ ‘6“ dsdt = lim / ’au” dsdt
K 0s v—+00 J Os
~ 2
— lim Dty |” s
v—+oo J K | Os
2
— lim Ouv " i
v——+00 £+(tu,sy) 85

< limsup E(u,)

v—400

<24+ ||F|.

The hipotheses of Proposition are satisfied and therefore w is constant.
On the other hand

|du(0,0)| = Vgl_il_loo |du,(0,0)] =1

gives a contradiction. The proposition is thus proved. O

4.6 An upper bound for the parameter r

The main tool is the following proposition. It strengthens the fact that
Crit Ay = (0. This in turn was proved making use of displaceability.

Proposition 4.6.1. There exists a positive constant u, such that for any
w € Ey
VAL (w)] = p.

We begin with a lemma. Let
& := supp(Xn),

namely the closure of the points z € M, such that Xy (z) # 0. By hypothesis
this is a compact set, futhermore its complement M \ & is disjoint from X,
since Y is a regular hypersurface. Therefore



and if we construct the defining Hamiltonian H as we did in the discussion
following Definition this is nothing but the supremum of H:

Oor = [|H]|oo-

Finally we can assume

Pp(6)NG =0 (4.24)
as we have noticed in Section

Lemma 4.6.2. There exists g > 0 such that if (u,T) € Ey satisfies

(u(%),u(l)) €6 x 6,

then
| —TX g (t,u) — Xp(t,u)|| > <o

Proof. We use F' to define a new metric on M. If v belongs to T, M, then

F : t
= min |d.PEv|gr (- 4.25
|v]; min, |d-Ppvlge () (4.25)

Remember that |v]|, = 1/g:(v,v) and @} is the flow of Xp starting at time
0 and ending at time ¢.
This new metric induces a distance on M in the usual way

d¥(zg,2z1)= inf /|f’y|5(t)dt, (4.26)

verz J1
where I'Zl is the space of smooth path from some interval I in M, which
connects the points zp and z;. Since F' is 1-periodic, (4.24) is equivalent to
G NaH(&) = 0. (4.27)

Since these two sets are compact, (4.27) implies that their distance is a
positive number £3. In other words

(Zo,zl) €6 x @;1(6) — dF(Zo,Zl) > €0, (4.28)

and gg is the largest number with this property. Use u|[ 1 1) to construct
27
a: (3,1 - M
-1
t o= (Dh) (u)).

This is a path that connects the points
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The hypothesis of the lemma gives

(a(%),au)) €6 x ;1(6).

Therefore (4.28) implies that

4" (a(3), #(1)) > o

Now using the definition of @ and the formula

d - -
GO = (o) Xelt0.2),

We differentiate and get

B4 = (@)~ (al1) — Xr(t.u(0).
Then
~ 1 F
| = min [aF (a0) " (i(0) - X (e o) < fi0) = Xete, ),

(4.29)
having chosen ¢ = t. The definition of the distance d¥" then gives

Y da
qo < dffaly).am) <[ |

F 1
it < / lalt) — Xp(t, u(t)]dt

1
</0 [a(t) = TX (¢, u(t)) — Xp (L, u(t))|dt
< ||a(t) = TX 5(t,u(t)) — Xp(t,ul®))]|
L]

Proof of Proposition[{.6.1 Take €y from the previous lemma and suppose

o
Hu —TXg(tu) - Xp(t, u)H < ¢':= min {50, H} . (4.30)
2[[ Xrrloo

Then Remark [4.4.4] tells us that, for ¢, #; in [0, 3],

[H(u(t2)) ~ Hu(ro))] < 2,

and Lemma yields

oo {F ). 1 Cu()] | = 0
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Combining these formulae we get for g, 1 in [0, %]

o
[H (u(t)] = 7

This in turn implies that the second part of the gradient satisfies

~ 4]
/H(t,u)dt‘ > A
T 2

Therefore the proposition holds if we set

o
/4= min {5/, H} .
2

Indeed Hu —TXg(tu) — Xp(t,u)H > p easily implies ||VA(w)|| > u.
Whereas i — TX g (t,u) — Xp(t,u)|| < p <€ yields

- )
/MMMz§ZM: 191 ()] > g
T

As a corollary we get the bound on the parameter.
Proposition 4.6.3. Let (r,w) be an element of N'. Then

2A+ ||F
L PATIFL

2 1 (4.31)

Proof. For r greater than one we have

r—1
24+ ||F| = E(w) = / IV AL (w($)) |17y ds = 2u°(r — 1)
—(r-1)

Rearranging the terms we get what we need. O

4.7 The relative compactness of N/

In this final section we will prove the compactness theorem for the ab-
stract space N and discuss some consequences descending from it. In order
to simplify the notation in the proofs, every time we pass to a subsequence
and discard the whole sequence in the subsequent discussion we will not
change the indexing and no additional subscript will be added.

Theorem 4.7.1. Let (r,,w,)) be a sequence in N and s, — 5 € [—00, +9]
and t, — t, two sequences of real numbers. Define the translated sequence

Dy (t, s):= (A (t, 5), T(5)) = (up(t+ ty, s + 5,), Ty (5 + 5,))
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Then there exists a subsequence (r,,,wW,,) such that

COO

loc

(10, Wy, ) —— (1, D).

Moreover if t =0 and 5 = 0, then @ is an r-Solution, whereas if t = 0 and
5 € {—00,400}, W is a 0-Solution. In any case

E(w) <2A+||F.

Proof. We will prove only the case t, =0, s, = 0. The general case is con-
ceptually identical since the only additional feature is that the Hamiltonian
terms depend on v in the following way: H"(t,z):= H(t+t,, z), Bu(s)F"(t,2):
B(ry,s+s,)F(t+t,,z). However since H and SF have uniform bounds this
is not an obstacle to get the estimates we need. Now we can start the argu-
ment.

Proposition implies that r, is bounded and therefore we can assume
r, — 7. Proposition and the second equation in imply that T, is
uniformly bounded with its first derivatives and therefore using Arzela-Ascoli
theorem, we can assume that

T, —T.
Define the maps
o A((t,s),2):=—J. <Ty(s)Xg(t, 2) + Br, (5)XF(t, z)), (4.32)
o A((ts),2)=—J. (T(S)Xg(t, 2) + Bo(s) Xp(t, z)). (4.33)

Then u, and A" satisfy
— CO
djuy, + A (-, uy) =0, A = A.

Furthermore another application of the Arzela-Ascoli theorem yields a sub-
sequence u, converging C'I%C to a continuous function w.

In order to prove the theorem we wish to have the following estimates for
each compact subset K € C and every natural number &

uwllwrr )y < Crp k-

We aim to use Corollary However we have to be careful since the
regularity of A¥ depends essentially on the regularity of 7}, and this in turn
relies on the regularity of u, via the equation

d;;” (s) = — /T H(t,u,(t, ) dt. (4.34)
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Therefore we have to work following the inductive scheme represented below.

|ullr, < C Equation 34| —=> ||T||k1+1, < C
/
Equation {232
/
IAC w)lkp < C
/
Corollary 2.8
/
[ulletrp < C Equation {31 ————== ||T[j42, < C

We cannot use immediately the second part of Corollary £.2.8] but before we
use the estimate into the above scheme and only at the end, when the
regularity is higher enough, we can apply the part of the corollary concerning
the uniform convergence on compact sets.

Thus we want to find W*P-boundsnear a point (,5). Let I5 C be a compact
neighbourhood for 5. The first difficulty we encounter is that shows
that the estimate for T, on Is depends on the value of v on the set T x I,
which contains points that are far from our fixed point (¢,5). This fact is
unpleasant since there might not exist a single local chart in M, containing
all the images of u, (T x I5). However since T x I3 is compact we can cover
it with a finite number of open sets of the form U; x I5, where j is an index
ranging within a finite set. Then we can suppose that for each j, u, (U; x I5)
is contained in some chart W; and we can try to estimate the Sobolev norms
of u, on all these sets simultaneously. This will be possible since a bound
for T, on Iz gives bounds for A" over each Uj.

By assumption we have the initial estimates

Z H“VHW“’(ijIg) <G T llwirey < C.
J

Then let’s work along the lines of the schemes represented above. In the
following discussion C' denotes a generic positive constant.
Start with > |luy [y, xz;) < C. Then we find

o |Tllwrtrnry < C.
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Set

Jig1= </Ié

Thus we have
fiyr = <

ds)zl?
Z (/9 / gr(t s)dtpd3>;

< C’Z (/U . lgy (t 5)|pdtd8>

< C'Z HngLP(ijff)'

J

p
dk+1TV

k+1
ds**

>p gr(t,s)= (gc(Xg(t,uy(t’s))>.

gktsdt

3 =

Then a simple inspection shows
HgZ”LP(U]'XIg) S CHuVHWkJ’(Uijg)'

e HAy(t,ul/)”WkJrl,p([]jXIg) < C.

The only quantity that need a careful estimate is

k=T Ju, Xg(t, Uu)Hwkvp(ijlg)-

hi, < CITollor 1) 1w, X g (8 wo) llwew v x 1)
< CHTuHck(zg)(feuly 172X (s 2) | emwy)) U+ Nuw lwss @, x 1))-
J

The uniform bound now follows, since the preceding point and the
Sobolev inequality give a bound for ||T, || cw (r)-

o [Juvllwrripw;xr) < C-

We are in position to apply Corollary [£.2.8| with ¢£:= k. Here there is
another subtlety, since the corollary gives the estimate for the W*+1r-
norm of u, on a smaller neighbourhood U J’», but we want that the new
sets still cover T. However, if we look at the proof of Theorem[4.2.7] the
shrinking of the neighbourhood is needed for the construction of the
chain )7 and the difference between U ]’ and U; can be made arbitrarily
small, so that Uj still cover T.
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Then we have completed the inductive step of the scheme and we have uni-
form bounds for the derivative of w, in each order. An application of the
Sobolev Embedding Theorem then gives a convergent subsequence.
Passing to the limit in

dyuy + A (-, u,) =0

and in Equation we find that the limit function is an r-Solution. O

Corollary 4.7.2. For each couple of natural numbers (h, k) and each natural
number m, there exist positive constants Cy . and C,, such that, for every

(r,(u,T)) €N,
0hOFu(t, s)| < Ci, 'szsf <Cp. (4.35)

Proof. Arguing by contradiction, there exist a multiindex (h, k), a sequence
of functions (u,,T,) in N and a sequence of points (t,,s,) such that

lim |8§8§ul,(t,,,sl,)] = 400.

v—+00

By compactness of T x [—o00,400] we can suppose that (t,,s,) — (¢, 53).
Hence applying the preceding theorem we find that the translated sequence
has a subsequence (4, T,) converging on compact sets. However this is a
contradiction since

108 0F 7, (0)] = [0F0Fuy (1, 5,)| — +oc.
O

Corollary 4.7.3. Let (r,,w,)) be a sequence in M and s, — 5 € [—00, +0]
and t, — t, two sequences of real numbers. Define the translated sequence

@y (t, 8):= (U (L, 8), Ty (s)) = (up(t + ty, s+ 5,), To(s + 51,))
Then there exists a subsequence (r,,,wW,,) such that

COO

loc -~
(Tyu,wyu) — (r,w).
Moreover if t =0 and 3 = 0, then w is an r-Solution, whereas if t = 0 and
5 € {—00,+00}, then W is a 0-Solution. In any case

E(w) < ||[F]].

Corollary 4.7.4. For each couple of natural numbers (h, k) and each natural
number m, there exist positive constants Cy, . and C, such that, for every

(r,(u,T)) € M,
@

< . 4.
| < Cm (4.36)

1020F u(t, s)| < Chi, '
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Proof of Corollaries[{.7.8 and[{.7.4 As we have pointed out before we can
take N := M. O

Let us tell something about the asymptotic behavior of elements in /. In
particular the next proposition shows that every bounded r-Solution yields
a number of critical points for Ayg. We hope to find Reeb orbits among them.

Proposition 4.7.5. Let w = (u,T) be a bounded r-Solution. Moreover let
Sy — +00 (the case s, — —oo is identical) and let t, — t. Then there exists
a subsequence sy, and (u,T) a constant path in Ey (i.e. (u(t,s),T(s)) =
(u(t),T)), such that

COO

loc

(- + tus s+ 5,0, T( 4 5,) ) —— (W, T).

This implies in particular that
Ey
(- + tu50,), T(s1,) ) —— (u,T),
If furthermore t = 0, (u,T) € Crit Ag and the following equality holds
Ag(u,T) = Ao(wy).

Proof. Set w,(t,s) := w(t + t,,s + s,). Then we can apply the point 2 of

COO
Theorem (4.7.1{to N':= {w} and find w,, —= @. We claim that @ is constant
in the variable s. If K is a compact subset of C, then, since the energy is
finite:

/ 0,0%dtds = lim / Oy, [Ytds
K n—too Ji

= lim |05w|*dtds = 0.
p—>—+00 K+(

tup, »Svy

So R
7:[7(8) = 7:0\0 = (ao,Tg).

The uniform convergence of w,,, on the compact set T x 0 yields the desired
conclusion on the convergence in FEjy.
The statement regarding the case t = 0 is obvious. O

Corollary 4.7.6. Let w = (u,T) be a bounded r-Solution and set
a_:=Aw_), ay:= Alwy).

Lets > max{|a"2’La2+|}+|‘Fll + 1 be a real number, then
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1.

2.

3.

for any € > 0 and any couple of integers h > 1, k > 0, there exists
Onk > 0 depending only on a—,ay,h, k, such that if

Ag(=3) > a— — p, Ao(3) < ay + ok,

hold true, then

sup  |OROFu(t, s)| <e; (4.37)
teTx{|s|>5}

for any € > 0 and any integer h > 1, there exists 6, > 0 depending
only on a_, a4, h, such that if

AO(_g) > a_ — 5ha AO(g) < a4 + 5h7

hold true, then
d"T

sup @(S)

§>5

<e; (4.38)

for any U,_, U, couple of neighborhoods of Crit Ag N Aal(a_) and
Crit Ag N Ay *(ay) respectively, there ewists 0, U., > 0 depending
only on U,_, U, , such that if

+
Ao(—=3) 2 a- —du, v.,,  Ao(3) < aq+du, .,
hold true, then

w(s) € U,_, for s < —5, w(s) € Uy, fors>3. (4.39)

Proof. We consider only the case of positive values of s. We argue by contra-
diction and suppose that for some couple (h, k), there exist g9 and sequences
ry,w, and s, > S such that

ry < max{la_, las [} + | P <5,
w, is a ry-Solution,

Ag(wy-) = a—, Ao(wyy) = ay,
limy— 400 Ao(w(sy)) = ay,

Sy — 5 € [s0, +00],

|0hOFu,, (t, 5)| > eo.

By Corollary the translated sequence w, (- + s,) admit a convergent
subsequence w,,, — w. Since w is a Cfy -limit we have

08 0Fu(t, s)| > e, Ao(w(0)) = ay
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and since s, > 5, w is a O-solution for positive values of s. Furthermore if
s >0, then
Ao(w(s)) = lim Ag(wy,(s+s,,)) > ay.

H—>—+00

Then Ag(w(s)) = a4, for s > 0. This implies

d
= —A = —[|9swl|?.
0 7 o(w(s)) |0sw]|

Finally 0;w = 0 implies the contradiction
0= |0"0Fu,(t,5)| > <.

The estimates for the derivatives of T' can be found following the same recipe.
As regard the last point of the corollary we observe that arguing by
contradiction one more time we find a function w such that for s > 0,

e w is a 0-Solution, o w=w(0)¢U,,, o Ag(w) = ay.
The first and third point imply that w(0) € Crit AgNAy*(ay) C U, , which
contadicts the second point. O

Remark 4.7.7. It is not true without further assumptions that there exists
(us,Ty) € Crit Ay such that

E
(u(- +ty,,s),T(s)) . (ug,Ty), as s — +oo.

The problem is that even if w gets closer and closer to the critical subsets
Crit Ag N Ay ' (a) and Crit Ag N Ay'(b) it may winds tangentially around
them without converging to a specific critical point. We will see in the next
chapter that this problem can be fixed by assuming that Crit Ag N A Ya)
and Crit Ag N Ay (b) are Morse-Bott component for the functional Ag.
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Chapter 5

Morse-Bott theory

Using the results from the preceding chapter we wish to study the asymp-
totic behavior of the class Ny of smooth functions w = (u: T x R — M, T
R — R), having the properties:

1. w is a bounded r-Solution,
2. A(wg) =A(w-) =0.

Obviously we have M C N, hence all the statements we are going to prove
for elements in A, are true also for elements in M.

The results of Section apply to Ny and they will be important in
several points of the discussion. However the convergence results we are
going to find rely on an additional crucial property, namely the fact that 0 is
a Morse-Bott critical value for Ag. This is a generalization of the notion
of Morse critical value.

5.1 Generalities

We say that b is a Morse critical value for a functional ¢ if, at the critical
subset Crit ¢ N ¢~1(b), the Hessian of ¢ is nondegenerate. This can be seen
as a particular case of the following notion.

Definition 5.1.1. Let ¢: N — R a functional of class C? on some Banach
manifold. A real number b € R is called a Morse-Bott critical value, if
the set N, := Crit ¢ N ¢~ 1(b) is a Banach submanifold of N and for every
q€ Ny

ker Hy(q) = TyNs,
where Hy is the Hessian of ¢. In this case N; is called a Morse-Bott
component for ¢.

The fact that 0 is a Morse-Bott critical value for Ay corresponding to the
component Y x 0 is the essential ingredient to prove the main theorem of
this chapter.
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Theorem 5.1.2. For each w € Ny there are two points z_ and zy in X,
such that .
w —> (24,0), as s — £oo.

Moreover there exist three positive constants 0,C,a not depending on w and
U_ C M, Uy CM two coordinate neighborhoods of z_ and zy respectively,
such that, if for some s > r the conditions

Ao(w(—5)) > =8, Ap(w(3)) <3,

hold true, then

Yl {£s>3) C Us.

and we have the exponential decay
dr $(-Is) .
max 4 [u — z4|, [T, |0sul, |Opul, I < Cez , for £s>35. (5.1)
S

We will carry out the discussion for the positive asymptot only. The
other case can be treated in a similar fashion.

As a first step observe that for some 7 > 0, X has an open neighborhood
in M of the form {H € (—7,7)} and such that

{H € (_gvg)} = U U.
z€X
For each z € 3, U, C M is a coordinate neighborhood of z, diffeomorphic
to U, x (—7,7) € R*"~! x R and such that the coordinate map extends to a
neighborhood of the closure of U,. Furthermore if x is the coordinate on the
R?"n~!_factor and y the coordinate on the R-factor, then the following three
conditions hold

eUNEX={y=0}, eH(zy =y,  oJ.=J,
where Jy is the standard complex structure in R?".

Remark 5.1.3. Observe that the y-coordinate of a point in U, does not
depend on z.

Suppose we are given an element w = (u,T') in Ny and an interval [ =
[s0, 51], such that u(T x I) C U.. Since by Proposition [4.6.3]

F
L
2p
we assume from now on that sg > % + 1, so that w is a O-solution on I.
Then using the coordinates on U, we split u in its components (u,,u,) and
write the 0-Equation in these coordinates:

T
<83u + Juopu — T f0O,, C;—S — / uyfdt> = (0,0) (5.2)
T
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(where f:= x and 0y is the y-coordinate vector).

In this equation we isolate the terms involving s-derivates from the others.
Then if we consider w as a path w: I — C*(T,U,) x R we see that the
latter terms operate on each w(s) € C°°(T,R?") x R separatedly. Thus we
are led to consider the path of linear maps, defined for s € I,

A(s): C®(T,R¥) x R — C(T, R x R
(0,9) (Jufi}—Sf&y,—/

T

vy fdt> . (5.3)

We notice that the dependance on s is due to the fact that the matrix J, is
dependent on u. Since u takes value in U, (in other words near z), we hope
that investigating the properties of the single operator

Ag: C®(T,R?") x R — C>®(T,R?") x R

(v,5) (Joﬁ_sfay,_Avyfdt> (5.4)

will give enough information on this path of operators.

5.2 The Hessian operator Ay

The first thing to do is to extend A(s) to a continuous linear map between
two suitable Hilbert space completions of C°°(T,R?") x R. The norms that
we will use to define the completions have to

e take into account also the derivatives of w (in view of (5.1))),

e be induced by a scalar product (in order to write explicitly their deriva-
tives).

Let k£ € N and endow C*(T,R?") x R with the W*2-scalar product:

dIuy diugy
<(u17T1)7(u17T2)>::/E;kgO(dtj7 dti )dt+TIT27
WSS

where go(-,-) is a scalar product compatible with Jy (the standard scalar
product on R?" will do):

go(Jour, Jouz) = go(u1, uz).

Then, we choose W*+12(T, R?") x R as the domain and W*2(T,R?") x R
as codomain, for some k € N (we will see that £k = 2 will suffice). We
denote still by A(s) and Ag the extended operators and notice that we can
regard them both as continuous linear map between these two spaces, and
as unbounded operators in W*2(T,R?") x R defined on the dense domain
WHFHL2(T R?") x R. Ag and A(s) belong to an important class of linear
operators, they are Fredholm operators.
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Definition 5.2.1. Let L: £y — Es be a continuous linear operator between
two Banach spaces. L is said to be a Fredholm operator if the following
three conditions hold:

e dimker L < o0, e im [ is closed, e dim coker L < oc.

We can associate to each Fredholm operator an integer number ¢(L) called
the Fredholm index of L:

1(L):= dim ker L — dim coker L.

In the next proposition we collect all the facts we need about these op-
erators. For a proof of these statements the reader can consult (32]).

Proposition 5.2.2. Let Ey, Es be two Banach spaces and denote by F(E1, E3)
the set of Fredholm operators from Ey to Eo. Then

e F(E1, Ey) is an open subset of all the linear operators from Ey to Eo
with respect to the topology of uniform convergence,

e the index function is continuous with respect to the uniform topology,
hence constant on the connected components of F(Eq, Es),

e if K is a compact operator and L € F(E1, Es), then

F+KEF(E1,E2), Z(F-I-K):Z(F),

e F' € F(E1, E2) if and only if there exist Ly and Lo, bounded operators
from Es to Ey, and two compact operatorsi K1: E1 — E1, Ko: Ey —
FEs, such that

LW F =idg, +K, FlLy =idg, +Ks.
We are now ready to prove the following statement about Ayp.
Lemma 5.2.3. Let Ag be the operator defined above. Then

1. Ag is symmetric with respect to the W*2-scalar product,

2. ker Ag = {(v,0) | v = (20,0) € R ' x 0},

im Ag = ker Ay = {/ vpdt = O},
T

where ker Ag is the orthogonal in W*?2(T,R?") x R,

3. Ay is an invertible operator between the Banach spaces ker A(J)-FTVV"”‘“’2
and im Ag.
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Proof. Let (v1,51), (v, S2) € WF+L2(T R?7) x R, then

<A0(01,Sl),(v2,52)>22(/ (L (ot —5110,). )dt> SQ/T(vl)yfdt

J<k

i+ dJ
=2 (/ 90 (Jo Gt g7 02 )dt>

i<k

—/gO(Slfﬁy,vg)dt—52/(v1)yfdt
T T
dj+1 d7
= Z (/ dt1+lvl’ dtjUQ)dt> +
—Sl /H‘(Ug)yfdt— SQ /T(Ul)yfdt.

The symmetry in the second and third term is clear. The symmetry in the
first summatory is a consequence of the compatibility between gy and Jy:

ditt dl d @ d?
AQO(JOCWW,CWUQ)dt:/TCﬁ(QO(J 077 Vs 7 ¥ 2)>dt+
dJ it
/gO(JOdtJ UL vg)dt
di 4+l
=0+ /Tgo(dtjvhjodtﬂﬂ Q)dt.
Now calculate ker Ag. (v, S) € ker Ay if and only if

0=0—-S5f0,
(5.5)
0= /Tvyfdt.

Integrating the first equation in (5.5)) we find

v(t) = v(0) + S(/Ot f(t’)dt’) Oy

Bearing in mind that [ f = 1 and v(0) = v(1), this implies S = 0 and hence
v(t) = vg = (x0,%0). Then the second equation in (5.5 becomes

O—yo/f—:l/o-
T

Thus we arrive to the conclusion

ker Ag = {(v,0) | v = (z0,0) € R*'x 0}.
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We claim that the symmetry implies the inclusion im Ay C ker AOL. Indeed,
if (v,5) € WFLZ(T,R?") x R and (9,5) € ker Ag N WHFHL2(T R?") x R,
then )

<A0(Uv S)? (0, S)> = <<’l), S)v Aﬁ(ﬁa S)) =0.

Since ker Ag N WkT1L2(T, R?") x R = ker Ay, the claim is proven.
We wish to show that the injective operator

Ao‘ ror 4 Ker Ay N WEFL2(T,R?™) % R — ker Ay

er Ay

is invertible. To this purpose is enough to prove that Ag is Fredholm with

index zero. Using Proposition the following couple of facts is sufficient:
e (v,5) — (Jov,0) is Fredholm with index 0,

e (v,5)— (=Sf0,,— / vy fdt) is compact.
T

The former point is proven by an explicit calculation and the latter by the
Arzela-Ascoli and Sobolev Embedding Theorem.
Finally let us characterize the elements (v, S) in ker Ag:

0= (1, ), ((20,0),0)) = /T golv, (0, 0))dt

=qo </ vdt, (w0,0)> . Vg e RL
T

This chain of equalities implies

ker Ay = {/Tvxdt = o}. (5.6)

O]

Remark 5.2.4. It is easy to show that Ag is the Hessian operator of Ay,
as soon as we express the elements of Ey near the constant loop (z,0) using
the coordinate chart U,. Then, the previous proposition tells us that ker Ay
is exactly the tangent space of the trivial critical set of Ag. Hence 0 is a
Morse-Bott critical value for Ag.

Denote by Py the orthogonal projection on ker Ay and by Qo:=1— Py
the projection on ker Aé. Then we have

Po(0.8) = ( [ vadt0)

and there exists a > 0 such that

[A0Qo (v, S)|x > al|Qo(v, S)|k+1, (5.7)
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where || - || is the norm in the space W*2(T,R?") x R. Furthermore for
every s € I we have ker Ay C ker A(s). This can be stated using one of the
equivalent equations

5.3 An application of the Maximum Principle

Let us resume the notation of the first section. We have a path w :
I — C(T,U,) x R, which solves the 0-Equation. Composing with the
inclusion C®(T,R?") x R — WktL2(T R?") x R we get a differentiable
path w: R — W*+12(T,R?") x R. The 0-Equation for w rewrites as

dw
T + A(s)w = 0. (5.8)

Define the following function
w: I — [0,400)

1 (5.9)
s o Qe

We aim to find a differential inequality for ¢. In order to do this we will see
that we must have a control on the following quantity:

Ou(8):= [10sA(s)llk+1.k + 1 AS) I+ 1.kl (A() — A0) " [l kt+15
+ [ Aok +1,£lA(s) — Aollrt1,

(where (A(s) — Ag)* is the adjoint with respect to the W*2-scalar product
and || - [|g+1.x is the uniform norm for operators from W**+12(T, R?") x R to
WH2(T,R?") x R). Let us analyze separatedly the different terms in ©,,.

1. ||[Ao|lk+1,% is a constant, which does not depend on w or s.

2. A(s) depends on s in the term J,0; only. The norm of this piece
involves the t-derivatives of u up to order k. By Corollary these
are uniformly bounded and therefore are independent of s.

3. The norm of 0;A(s) is bounded by a sum of terms of the form
Cllos0Mul|oo|0F ullso, O0<h<k, 1<h <k.

Combining Corollaries and the first point in we get that this
quantity is small if Ag(so) is sufficiently near to 0.

4. (A(s)—Ap)(v,S) = ((Jy — Jp)v,0). The first factor is the composition
of two bounded operators:
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e vy = Uy, from WFHL2(T R?") to W2(T, R?") and is independent
of s;

o vy — (Jy — Jp)ve, from W’“Q(T,RQ”) into itself. Its norm is
bounded by the sum

1w = Jolloo + D Cllofulloc-

1<h<k

We have ||J, — Jol/o < Clu — 2|oo. Thus, this number is small
provided the diameter of U, is sufficiently small. Moreover by
the third point of Corollary we know that [|9}ul|e is small
if Ag(sg) is sufficiently small, since {||0f'ullsc < €} is an open
neighborhood of ¥ x 0 in FEj.

5. Finally we deal with (A(s) — Ap)". We have to study the adjoint of
v — B, B:=J,—Jy

with respect to the W*2(T,R?")-scalar product. As we have said be-
fore, this operator is a composition. Hence,

d o d
(v1, Bov2) = (B™v1, —v2)
d .
= <—@ (B*v1),v9)
d
= <—8t (B*) V1 — B*—vl,v2>.

dt

We claim that 9; (B*) = (9;B)". Indeed,

(v1, 0 (B*) v2) = —(v1, B*02) — (01, B v2)
= —(Bwi,v2) — (BU1,v2)

d

(5 (Bv1),v2) = (B, ve)
< atB) U1,7)2> + <B’L')1,’L)2> — <Bi)1,v2>
< atB) 1)1,7)2>.

Then we have to bound the norm of — (8,B)*—B* 4 from W*+1.2(T, R?")
to Wk2(T,R?").

(
(

d d
~@By -5 5| <O o+ B
H At || i1 g LK dt || 1q g
* * d
< 0:B) [lgr + 1B" |l i i
k+1,k
= 0eBllkk + | Bl k-
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The latter term has been studied in the preceding point and the for-
mer can be treated in a similar way. To sum up also in this case
| A(s)* — Aol|k+1,k is small provided the diameter of U, and Ay(sg) are
sufficiently small.

Thus we get the following lemma.

Lemma 5.3.1. Let a be the positive constant introduced tn . There exist
a positive constant &4, which is universal in Ny, such that if the diameter
of U, is sufficiently small (and hence ) and w = (u,T) € Ny is such that
u(T X [so, $1]) C U, then

a?

Ap(w(so)) <0 = BOu(s) < 5 (5.10)
In the subsequent discussion we will always assume that U, is small
enough, so that we can apply the preceding lemma. This allows to prove a

crucial estimate for .

Proposition 5.3.2. Let I = [sg,s1] be an interval, z € ¥. Suppose that
w € Ny is such that w)y is a 0-Solution and Ag(w(so)) < 64. Then we have

<,0// 2 a2g0,

where ¢ is the function defined in (5.9)).
This implies that

cosh(a(s — —‘9042'51 )

cosh(a™5%2)

¢(s) < max{p(so), p(s1)} (5.11)

Proof. A derivation under the integral sign yields

¢" = |Qow 741 + (Qow, Qow") k11 > (Qow, Qow)jot1-

Then using the following three facts (see point 1 in Proposition [5.2.3] the
discussion following Remark and Equation [5.8)):

e Ag is symmetric,
o A(s) = A(s)Qo and 9;A(s) = 05A(s)Qo,
e w' = —A(s)w and differentiating,

w” = —A(s)w' — (9:A(s)) w

and the inequalities (see (5.7) and the preceding lemma)

a2

o @[ Qowlisr < AoQowlE, @ Ow < T,
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we find

(Qow, Qow") = (Qow, (—A(s)Qow' — (9sA(s))Qow))
— (Qow, (A(s) — Ag)Qow") — (Qow, AgQow’)+
—(Qow, (0sA(s))Qow)
— ((A(s) = A0)*Qow, Qow’) + (AoQow, A(s)Qow)+
— (Qow, (05 A(s))Qow)
— ((A(s) — 40)"Qow, A(s)Qow) + (AgQow, AgQow)+
+ (AoQow, (A(s) — Ao)Qow) — (Qow, (OsA(s))Qow)
> — [[(A(s) — Ao)* A() k41,1 Qowl 41+
+ | A0Qowlf7; — | Aollks 1.l A(s) —
— 105 A(5) k41,1 QowlIF 1
= [|40Qow|[§ = ©u [ Qowl|F 11
> (0% — 0u) ]| Qowlli

a2 2
> §||Q0w||k+1

2
a
> —||Qowl|}
=a%p.

Set
cosh(a(s — 2421

cosh(a ™52 )

P(s) = max{p(so), ¢(s1)}

Then " = a%i and, since cosh is an even function,

(a) = P(b) = max{d(so), ¢(s1)}-

Thus the function = ¢ — v still satisfies " > a?® and furthermore is not
positive on the boundary of I. Then the maximum of $ cannot be positive.
Arguing by contradiction, if the point of maximum s were in the interior of
I and @(5) > 0, we would have the impossible inequality

0> 3"(5) 2 ¢(3) > 0.
Therefore we get the desired inequality

0>p=p—1, on I.
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The previous proposition allows to give a bound on the space u travels
during the interval I.

Proposition 5.3.3. With the notation as above we have

lu(t, s) — u(t, s0)| < %maX{HQw(So)Hk, 1Qu(s1)lx} (5.12)
for some constant C' > 0.
Proof. Remember that Qow = (u — [; u.dt, T), then
IT] < Qo

and, when k > 2, the Sobolev Embedding Theorem yields also a constant C
such that
|Opu| = [0 Qow]| < Cl|Qow][-

Now get dsu from Equation and use the two estimates just found in order
to obtain

u(s) ~ulso)] £ [ [l <€ [ JQuuhds  (513)
S0 S0
Using (5.11) we know that

— saga))

[Qow(s)ll < mas{|[Qouw(s0)ll. ||Qow<sl>\k}\/ o
2

The subadditive inequality

Vb1 4 by < /b1 4 /ba, b1,b2 >0

yields

1
e Vcoshs < \/icoshg, e sinhs < ﬁ\/cosh(Qs).

Then we get the bound

/ cosh (a (s’ — w))ds’ < \/5/ cosh <a <s’ _ St 81>> ds
S0 2 S0 2 2
42 | <a §1 — 30>
= ——sinh | =
a 2 2
< 4\/cosh <a81 _ SO).
a 2

Continuing the chain of inequality in (5.13)), we get the thesis

1 1/ cosh(a*5°2)
u(s) — u(s0)| < max{ Qo (s0) . [ Qouw(sn) e} -V 2

cosh(a*5%)

= % max{||Qow(so) ||k |Qow(s1)llx}-
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5.4 Exponential decay

This last section will be entirely devoted to the proof of Theorem

Lemma 5.4.1. For every real number y with 0 < y < y there exists a real
number ¢ > 0 such that if we have a point zg € M with |H(z)| < y, then
there exist z € ¥ such that

e 2 e U, o inf |z —7|>c,
0 z z'edU, ‘ 0 ‘ -
where | - | is the standard Euclidean metric in the coordinate induced by U.

Proof. The set {H € [—y,y]} admits the open cover

{v.nqH e =301}
z€EX
Since {H € [—y,y]} is compact, the open cover admits a positive Lebesgue
number. This fact and 7 — y > 0 together imply that there exists ¢ > 0
such that the ball centered in zg with radius c is compactly contained in
some U,. Since the metric of M restricted to U, and the standard Euclidean
metric, which the coordinates (z,y) bring on U, differ by a constant factor
independent of z, the lemma follows. O

Proof of Theorem[5.1.2, First we apply Lemma with 7:= g and get a
positive constant ¢. Then we observe that, for every € > 0, the set

{we Ey | uC U, for some z € ¥, ||Qow|r < e}

is a neighborhood of ¥ x 0 in Ey. By Corollary [4.7.6] there exists §. > 0 such
that if Ag(w(sp)) < de, for some sy > 7, then, for every s > sg, there exist
U, (that may depend on s), such that u(s) lies in U, and ||Qow(s)||x < e.
Since we have the bound

max{[al, [uyl, |T|} < C[|Qowl[, (5.14)
then, for e sufficiently small,

luy(t,s)] < =, for s> sp.

S

This means that there exists g9 > 0 sufficiently small and a corresponding
ey, such that if Ag(w(sp)) < d¢, holds, then

1. there exists z € ¥ such that u(sg) C U, and
inf |u(t,so) — 2| > ¢;

2'edU,
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ac
9. o< 2
0= 50

3. |Qow|lx < eo-

Suppose now that, for every w € Ny, an sg is chosen in such a way that
Ag(w(sp)) < 0, (observe that sy may depend on w). We claim that for
every s > sg, u(s) C U,, z being given from the first point of the preceding
list. U, will be the neighborhood U; mentioned in the statement of the
theorem. Assume by contradiction that u(s) exits U,, for some s > sp.
Then there exists a couple (£, 3), with § > so such that

with C the constant contained in Proposition |5.3.3}

u(t,s) € Uy, fort € T, sop < s < 3§, e u(t,3) € OU,.

Then we can use Proposition with I = [sg, s], s < §, finding

o

ulF,) — ulf, 50)| < & mac ([ Quiso) s, | Quls) s} < S < &

l\D

Taking the limit s — 5§ we get

u(t, 3) — u(t, s0)| <

l\')\ﬁ

This is a contradiction because u(t,3) € OU,. Now that we have proven
that u(-,s) C U, for every s > sg, the function ||Qow(s)||x is well defined
for s > sg. By Corollary we know that ||Qow(s)||x tends to zero as s
goes to +oo. If s1, s2 > sp, we can apply once more Proposition [5.3.3] with
I = [s1,s9], and get

C
[u(t, 51) = u(t, s2)| < — max {||Qow(s1)llx, | Qow(s2)llx} -
Since ||Qow(s)||x tends to zero, we have
u(t,s) — u(t) and T(s) — 0, as s goes to +oo.

By Proposition we have that a(t) =2’ € ¥ N U, and

w(s) 2% (,0).

Let us study now the asymptotic behaviour of ||Qow(s)||x. The hypothe-
ses of Proposition are satisfied for every I = [sg, 1], with s; > sg. Thus
we get

cosh(a(s — —Sogsl )

cosh %))

[Qow(s)|lx < max{[|Qow(so)lx, |Qow(s1) \kz}\/

Letting s1 go to +00 we have

o max{[|Qow(so) |k |Qow(s1)|[x} — [[Qow(so)llx
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_g31—50

e 7+ p(s1) = €079 4 p(sq)

cosh(a(s — 20F21)) _a(tm )

cosh(a™5%)
and p(s1) — 0, as s1 — +oo. Hence we get the exponential decay:
1Qow(s) Ik < [|Qow(so)llxe2 0. (5.15)

The exponential decay of 4, u, and T follows from the inequality The
exponential decay of these three quantities imply that of d;u and via the
0-Equation [5.2] At last, the exponential decay of u — 2’ follows integrating
the inequality

|Bsu(t, s)| < Cez(s0=5)

we have just found. O
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Chapter 6

A noncompactness theorem:
the conclusion of the argument

In this final chapter we shall prove the Main Theorem stated at the
end of the second chapter. The next step to reach our goal is to give M an
alternative topology 7, that turns it into a noncompact set. In the end this
result will be combined with the CPX -relative compactness and Morse-Bott
theory in order to conclude the argument. For the sake of simplicity, in this
chapter we will carry out the details when M is R?™.

6.1 The Sobolev setting

In general, M can be seen as the zero set of a map F: [0, +00) x X > E,
where £ — X is a Banach vector bundle and each slice
Fri=F |[{r}xX
is a Fredholm section of this bundle. Then 7, is simply the topology that
[0,400) x X induces on its subset M. The topological features of (M, 7,)

can be investigated making use of some important properties of Fredholm
maps. When M is R?"”, the space X is simply chosen as

X =Y xX,

where X is some Banach space, the bundle F is trivial and its fibers are
isomorphic to a Banach space Y. Hence F' can be seen as a Fredholm map
F:]0,+00) X X — Y and M becomes the counterimage of the value 0. Let
us now describe in a precise manner this analytical setting.
Let a be the constant introduced in of the preceding chapter and,
for each p > 2, set
N
pi=
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Then define
X := WYP(T x R, R?™; el dtds) x WP (R, R; eP!®lds),

(the need for an exponential weight will be clear in the proof of Lemma
6.3.2). Moreover let

Y:= LP(T x R,R?"; e’ 5ldtds) x LP(R,R; e!*lds).
We can endow these Sobolev spaces with the obvious product norms:

o [[(uw, D := llullf, + 1T, where

foll = [ (1l + 00l + ) s,
X

dr
T = [(|T]P+|—
i1t = (e + |%

o [[(w, D)f = [lullj + Tl where

”u’;]g::/ ]u‘Pebp|S|dtds, HT|]£;:/ ]T‘pebp‘slds.
TxR R

We can suppose after a suitable translation that the distinguished point used
in the definition of M is zg = 0. Furthermore, let us consider a smooth step
function o: R — [0, 1] such that o(s) =0, for s <0 and o(s) =1, for s > 1.
Then every element (z,u,T) of the set

p
‘ )ebp\s\ds;

X=YxX

gives rise to a couple of continuous maps (this is a consequence of p > 2 and
the Sobolev Embedding Theorem [4.2.2))

(2, T) > (1, T) 2= (0(5)2 + u(t, ), T(s) ).

The function o(s)z +u(t, s) is a cylinder in R?", whose uniform limit at —oo
is the constant path zp = 0 and whose uniform limit at 400 is the constant
path z. T belongs to the class of real continuous functions, that go to 0 at
infinity. We notice that also the elements of M are continuous and satisfy
the same asymptotic conditions. They can be written as (r,oz + u,T), for
some z € . By Theorem we know that there exists s > 0, (possibly
depending on the element of M we are considering) such that

dT o
max{|u\, |Bsul, |Opul, | T|. ‘ds‘} < CesGll 5] >3, (6.1)

This imply |[(u,T)|x < +o0o. Then, we can identify M with a subset of
[0,4+00) x X.
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Remark 6.1.1. We point out that in the case M = R?", is not necessary
to pick p > 2. The argument works in the simpler Hilbert case p = 2, as
well. However in general we assume higher integrability because, in order
to construct an atlas for the manifold X , we need to deal with continuous
functions. See (42) for an overview of the general construction.

In the realm of smooth functions, M is characterized as being the set of
solutions of the r-Equations

dw
E(S) + VAﬁ(r,s) (w(s)) = 07

with certain asymptotic properties. We can regard the last equation as the
defining equation for the zero set of a map G,, indexed by a parameter r

G, (u, T):—<8su+Ju(8tu—TXﬁ(t,u)—ﬁ,.XF(t,u)),T’—/TI:I(t,u)dt> (6.2)

(here T" indicates the derivative of T'). We see that G, can be defined using
the same formula (substituting v with u,) as a function between the spaces
X and Y. This family of maps can be gathered in a single one:

G:0,40) x X — Y (6.3)
(r,z,u,T) — Gp(ug,T). '

Define the zero set of G:
My:=GH0)= ] {r} x G 10) (6.4)
re[0,400)

We know that M C M,, and we may wonder if the inclusion is strict or not.
We claim that
M = M,,.

In order to prove this, we must show that if w € X solves G,(w) = 0, then
w 18 indeed smooth. This follows from a regularity theorem similar to [4.2.7]
We will not prove this result and invite the interested reader to read the
Appendix B in (33). The precise statement is the following.

Theorem 6.1.2. Let w = (z,u,T) € X a solution of the equation
Gr(w) = 0.
Then u, and T are smooth functions such that

(us(-,8),T(s)) i> (0,0), ass— —oo,

(uz(-, s),T(s)) i) (2,0), ass— +o0

and therefore (r,u,,T) € M.
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To sum up we have found that M is also the zero set M, of the function
G. Thus, we can endow it with the topology 7, induced by [0, +00) X X.
When this is the case, we will use the notation M, instead of M. We wish
to investigate the topological properties of M,. We already know that is
closed (since it is the zero set of a continuous function) and we aim to show
that is noncompact. This is the content of the next two sections.

6.2 The Implicit Function Theorem and
the Sard-Smale Theorem

First we notice that a simple calculation shows that G, is of class C*. Tts
differential at a point w = (z, (u,T)) acts in the following way on a vector
(v,(&,m)) € TE x X:

duGr(v,€m) = (G0, €0), .G (v,€m)),
We find that
dL G (v,€,m) = a’v—i—@s&—i—JuZ(atf X gy () — Ty X ) (€ + Uv))—l-
~ Ju (B X) (€ + 00) ) +
+ (duJ) (€ + ov) <8tu — TX it us) — B Xpl(t, uz)>.
Rewrite the equation as
aL,Gr(p,0, (€)= 0u&+ T (0€ = Xy (1 02) = T(d gy X )+ 00) )+
+ (duJ)(€ + ov) (@u ~TXg(t, uz)> + 57, gy (0,6),
where
STrssarnir) (0:6): = 00 = o (Br(diy ) Xp) (€ + 00) ) +
~ (7Y + 00) (8, Xt u2)

is a term that vanish identically for s large.
For the second factor we have simply

@Gy (v,€,m) = 1f — / (s F)(E + o0t
T

Since the dependance on the parameter r is smooth, the fact that G, is of
class C' implies that G has the same regularity.

From the finite dimensional analysis we know that a way to investigate
the properties of a zero set of a continuously differentiable map is to study
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its differential at the points of the zero set. If the differential is surjective
then by the implicit function theorem we can deduce that this set is actually
a smooth manifold. Therefore our first task will be to study dG. In short
we will see that it turns out to be a Fredholm operator.

Thus is convenient to give the nonlinear counterpart of Definition [5.2.1]

Definition 6.2.1. A map A: N; — N, of class C' between two Banach
manifolds modeled on the Banach spaces E71, E5 is said to be a Fredholm
map if at every point ¢ € Ny its differential

qu: TqN1 — TA(q)NQ
is a Fredholm operator.

From Proposition descends that the index of dgA is locally constant
in ¢, hence on every connected component Ni C Nj the index of the map
A is well defined. This index ¢(A) is simply defined as 2(dyA), where ¢ is an
arbitrary point in Ny. For Fredholm maps an infinite dimensional analogue
of the implicit function theorem is available. Before we need a definition.

Definition 6.2.2. Let A: N; — Ny a map of class C! between two Banach
manifolds. A point ¢ € Ny is called a regular point if d,A has a right
inverse. A point p € N is called a regular value if every ¢ € A=1(p) is a
regular point.

A proof of the next theorem can be found in the Appendix A of (33)).

Theorem 6.2.3 (Implicit Function Theorem). Let A: Ny — No be a Fred-
holm map of class C', let Ny be connected (so that the index 1(A) is well
defined) and let p € Ny be a regular value. Then A=1(p) is a smooth sub-
manifold of Ny. Its dimension is 1(A).

At this point it might seem strange that we have defined the larger class
of Fredholm map, when the implicit function theorem we need holds only if
the differential has a right inverse. However we will see that the theorems at
our disposal yield only the Fredholm property of dG and not the existence of
a right inverse. Luckily this gap is bridged by an analogue of Sard’s Theorem
for Fredholm maps, proved by Smale in (44)). Before, we need to recall the
Baire’s Category Theorem.

Definition 6.2.4. Let N be a topological space. A set N’ C N is called
a residual set in [V if it contains a countable intersections of open dense
subsets of V.

Theorem 6.2.5 (Baire’s Category Theorem). Every residual set in a com-
plete metric space s dense.
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Theorem 6.2.6 (Sard-Smale Theorem). Let A: Ny — Na a Fredholm map
of class CF between two separable Banach manifolds. Let N1 be connected.
If k > max{1,2(A) + 1}, then the set of reqular values of A is residual in No.

Remark 6.2.7. Since every Banach manifold is locally homeomorphic to a
complete metric space, using Baire’s Category Theorem, we get that the set
of regqular values of A is actually dense in Ns.

In order to apply Theorem and hence Theorem we have to
prove that dG is Fredholm. This will be the content of the next section

6.3 The Fredholm property

In this section we prove the following statement.
Proposition 6.3.1. Let G: [0, +00) X XY defined by formula . Then
1. dio.0.0)Go: T.0)X = T0)Y is bijective,
2. G s a Fredholm map,
3. 1(G) = 1.
We begin with a preliminary result.
Lemma 6.3.2. dG, is a Fredholm operator and d 0,0))Go 15 bijective.

Proof. Fix some r € [0,+00) and consider the operator d(u,1)Gr restricted
to 0 x X C T, x X. It has the form

Dy (&,m):= (96,1 ) + Ars (& m).

Since the remaining factor T,% X 0 is finite dimensional, d(, , 7)G; is Fred-
holm if and only if D,. is Fredholm.

The operator A; s, tends to Ag when s — co. We know that Ay is not in-
vertible, however the introduction of the exponential weight in the definition
of the Sobolev spaces allows to construct an isomorphism with the standard
spaces

WHP(T xR, R?"; dtds) x WHP(R,R; ds), LP(TxR,R**; dtds)x LP(R,R; ds).

The isomorphism is obtained simply by mapping (u,T) in (e?®)u, e?)T),
where ¢ is a smooth function coinciding with %|s| for |s| large. We obtain an
operator, conjugated with D,, between these new spaces. It is of the form

Dy(&,1):= (856,0) + A (€,m,0) + &' -(€,m). (6.5)

The new limit operators are
a

a
Ag— — A+ -
0 4’ z+4
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and are invertible from W12(T,R?") x R to L?(T,R?") x R. Indeed, Ay — %
preserves the splitting im Qg @ im Py. The inequality yields that

ApQo — %QQ is invertible on the image of Q.

On the second factor the map is simply the scalar multiplication by —¢,
which is invertible, since a # 0.

Linear mappings of the kind were intensively studied, for instance in
the second lecture of D. Salamon in (42)). The discussion contained therein
implies that an operator of this type is Fredholm and hence so is
dG,, because the Fredholm property is preserved by conjugacy.

Prove now the second part of the lemma and start analyzing d g (0,0))Go-

The operator ﬁo in this case is simply

Do(€,m) = (9s&,11') + Ao(&,m) + &' (&,m).

We aim to find its index. Still referring to Salamon’s lectures, we know that

z(f)o) is minus the spectral flow of the path of operators Ag + ¢/,
considered as self-adjoint operator on L?(T,R?") x R.

Intuitively, the spectral flow counts with multeplicity the number of times
the following situation occurs:

an eigenvalue v(s) for Ag + ¢’ is negative in s € (sp — €, s9) and
positive in (sg, o + €), for some real numbers € > 0, sq.

Many things should be checked in order to prove that this definition makes
sense. The most evident is that one is able to select all the eigenvalues of
(Ao + ¢')(s) in a smooth way with respect to the s-variable, in such a way
that functions s + 7(s) are defined and they describe all the eigenvalues of
(Ao + ¢')(s) (this is essentially the content of Kato Selection Theorem). For
a rigourous treatment of the spectral flow and its application to the setting
we are dealing with, we suggest to take a look at (41).

Here we need only some basic properties that can be inferred from the
following discussion and that we give for granted. Thus, let us begin the line
of reasoning.

Since each element of the path preserves the splitting im Q¢ @ im Py the
spectral flow we need is the sum of the spectral flows on the two separated
factors. We need to calculate the spectral flow of Ay + ¢" and of ¢’ on im Qg
and im Py respectively.

In order to compute the former we use the fact that the spectral flow is
preserved under homotopies, which leave the endpoints in the space of self
adjoint invertible operators. Then we can define a homotopy of[6.9|depending
on a parameter J:

Ao +0Qod.
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As before we can see that as § goes to 0, the limit operators remain invertible.
Since the new path we obtain is constant, the spectral flow is zero.

As regard the path ¢’ on im Py, we notice that the limit operators are
simply —¢ and ¢, so that all the 2n eigenvalues pass from being negative to
being positive. Thus the spectral flow is 2n. Putting all together:

(Do) = 1(Dg) = —2n. (6.6)
Furthermore we claim that Dy is injective. Indeed, if Dy(§,n) = 0, then

(9:6,1") = —Ao(&,m) (6.7)

implies that (£,7) is smooth. We thus can apply Proposition [5.3.2] get the
inequality for an arbitrary I = [sg,s1] and then I go to the whole R.

As a result we find that Qo(&,n) = 0. Moreover taking the projection Py in
(6.7), the function 1:= Py(&, n) satisfies the equation

Y =0.
Since 1) tends to zero at infinity, we get ¢ = 0 and therefore

Observe now that:

d(O,(U,O))GO(va 3 "7) = D0(§7 77) +o'v.

The map 7: v — o’v is clearly injective. This implies that its range is 2n-
dimensional. We claim that im N im Dy = 0. This yields that dg 0,0))Go
is bijective. In order to prove the claim consider the linear continuous map
from Y to R?"

Em) /]R Potds.

Notice that it is well defined because Py makes sense also when p # 2 and
b
Py is in L(R,R?") since it belongs to LP(R, R*"; eT%'ds). We have

. / Po (06.7) + Aol&,m)) ds = / (Pot)'ds =0,
R R

° /Pjvds:/a’vdSZU.
R R

This equalities yields the claim and prove the lemma. O

Proof of Proposition [6.3.1] The first point was proven in the Lemma [6.3.2
The second point stems out from the fact that dG, is the restriction of
dG to a closed subspace of finite codimension.
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Finally, the index of G can be computed on an arbitrary point. We
choose (0, (0, (0,0))). Then

coker d(07(0’0))G0 =0, = coker d(07(07(070)))G =0.

If we X and ¢ € R we have
d(07(07(0’0)))G(68r, w) — 0 =c0.G+ d(07(070))G0w
-1
— w = —C (d(07(070))G0) orG.

Thus ker d g (,(0,0))G = Span ( (d(07(070))G0)_1&0G) has dimension one. [

6.4 A topological obstruction

In this section we use the previous results in order to prove that M, is
not a compact set. First we need to investigate a bit further Fredholm maps.

Definition 6.4.1. Let A : Ny — N> be a continuous map between two
topological spaces. A is said locally proper if for each point ¢ € Ny there
exists Uy a neighbourhood of ¢ such that Ay, is a proper map (i.e.if K C Ny
is compact, then A~'(K) is compact as well).

Remark 6.4.2. If A is locally proper then each compact set K’ C Ny has a
neighbourhood Uk such that Ay, is proper.

Lemma 6.4.3. Fredholm maps are locally proper.

Proof. Let A: E1 — FEs a Fredholm map. Fix a point qg € E1. Without loss
of generality we can assume go = 0, A(gp) = 0. Since dpA is Fredholm we
know by Proposition that there exist a bounded operator L: Ey — E;
and a compact operator K : F;y — FE; such that

LdoA = idg, +K. (6.8)

Define the map
I El — E]
g — LA(q) — Kq.

I is of class C! and by we have

(6.9)

dol" = idp, .

The inverse function theorem yields a neighbourhood U of 0 € E; and a
neighbourhood V of 0 € Ej such that I' is a homeomorphism between U
and V. Furthermore we can choose both neighbourhoods to be bounded and
closed.
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The lemma follows once we show that A:= Ao~ is proper. Substituting
q =T"1(p) in the definition of ' (6.9), we find the equation

p=LA(p) — K(p), Ki=Kol ™" (6.10)

Thus R R
LA = idE1 +K.

Since V and U are bounded, the map K is compact, i.e. the image of every
subset is relatively compact in E; and hence in V' (since V is closed). Con-
sider now C C FEs a compact set. We aim to show that /AX_l(C’) is compact.
As a preliminary observation we find that for every set A C Fy

(d+K)""(A) c A-K ((id +f{)—1(A)) .
Indeed, let z € V be such that
p+ K(p)=p € A
Then p=p — K(p) € A— K ((id +IA()*1(A)>. Now compute
AN C) c AYLLC) = (LA) YL
= (id+K)"'(LC
CLC-K ((1d +K) (LC))

)

c LO - K((1d+K) (LC)).

Both LC and K ((id +I/€)—1(LC)> are compact and therefore also their dif-

ference is compact. Thus we have found that A=(C) is closed and contained
in a compact set, hence it is compact. ]

With this lemma at our disposal we can prove the desired proposition.
Proposition 6.4.4. M, is not compact.

Proof. Let M; the connected component of M, passing through the point
(0,(0,(0,0))). Assume that M, is compact: we will see that this leads to a
contradiction. By Lemma and Remark[6.4.2] there exists a closed neigh-
bourhood U of ./\/l;, such that G|y is proper. Since dyg,(0,0))Go is invertible
we can shrink U if necessary and suppose that Gy is bijective on U N0 X X.
Observe that

M;m(anx)?):@. (6.11)

By Sard-Smale Theorem and the remark following it, we can find a
sequence ¢, C Y, such that

107



e ¢, — 0,
e ¢, is a regular value for G,
e there exists a unique ¢, € U N0 x X’, such that G(q,) = ¢,.

Consider the following sequence of decreasing compact subsets of Y

Cy:={0}U | J{eu}-

u=v

Then C) := (8U \ 0 x )A() N G|_U1(Cl,) is a decreasing sequence of compact

subsets in [0,400) x X. They are such that
Ne. = (aU\o x f() ¢ = (aU\()x)?) nG=1(0) = 0.
Therefore there exists 7 such that C, = (). This implies that

G} (er) N AU = Fi(er) N (aU\o x )?) U G er) N0 x X

=0u{q}
= {QI/}'

By the Implicit Function Theorem we find that Gl_Ul(cy) is a compact
manifold of dimension 1, whose boundary has a single element gz. However
every compact manifold of dimension 1 is homeomorphic to a disjoint union
of closed segments and circles, hence the cardinality of its boundary must be
even. This contradiction proves the theorem. ]

6.5 Conclusion

We begin with the fundamental proposition.
Proposition 6.5.1. Let (r,,w,) a sequence of elements in M such that

(o5

loc

(ry,wy) —— (r,w).
The following alternative holds

1. there exists 6o, a subsequence (ry,w, ) and a sequence of time s,/ pos-
itively or negatiwvely diverging such that

]Ao(wl,/(s,/)ﬂ Z 50.
In this case w is a bounded r-Solution, with

do < max{|Ag(w-)[, [Ao(wy)[} < [[F]. (6.12)
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2. for every § > 0, there exists Ss > % + 1, such that
max{Ag(wy,(—35)), Ao(w,(35))} <6, Vv e N. (6.13)
In this case

o (rrw)eM, e Erf wy (+00) = w(+00), e (ry,w,) LN (r,w)

(where the last convergence is in the space [0,+00) x X ).

Proof. Let us deal with the first case. By the C-convergence we know that

w is a bounded r-Solution. Fix s € R, with |s| > g%‘ + 1. Then Proposition
3.4.2l implies that
[Ao(wy ()] < [|F]

Passing to the limit in v we get
[Ao(w(s))| < [IF][.

Letting |s| go to infinity we have the right inequality in

Suppose now without loss of generality that s,, — +oo. If s > g% +1,
we have s < s,, for // bigger than some natural number v/(s). Then, since
Ap(w) is decreasing on the ray [s, +00), we get

Ap(w(s)) = lim Ag(wy,(s)) > limsup Ag(wy(syr)) > do.

v'—+o0 V' —+00

Letting s go to 400, we get the left inequality.

Examine now the second case. Set w = (u,T). Remembering the discus-
sion in the first section of this chapter, we know that the elements of M can
be written as quadruple (r,,w,) = (ry, u,(+00), uy, T,). Theorem and
the hypothesis of this case yield a 6; > 0 and an s5, > % + 1 that does not
depend on v, such that we have

max{—Ao(wy(—55,)), Ao(wy(ss,)} <6,
and

dT,
ds

max{m,,y T 10sus]  |9r

} < Ce%(551_|5|), for £5> s5,.

We point out that in the terms involving w,, in the preceding inequality we
can substitute the norm induced by the local charts Uy (as it was required
by Theorem with the Euclidean norm on M = R?” and on the fiber
of TM = R?" x R?". The price we pay is a constant factor that can be
absorbed in C.

The second and third point of the statement we aim to prove are equiv-
alent to showing that any subsequence of (r,,w,) has a further subsequence
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such that the two limits hold. We suppose from now on to have fixed a
subsequence of (r,,w,) and we shall denote this new sequence by the same
subscripts v. Then, since ¥ is compact, after passing to a subsequence v/
we can suppose that u,/(4+00) — z. This means that (u,,T,/) converges to
(u—oz,T) with respect to the C%-topology Indeed, we know by assumption
that w,, + ou,/(+00) is convergent in the CP°-topology to u.

On the other hand we claim that (u,/(4+00),u,,T,/) is convergent to
(z,u—o0z,T) also in the topology of X and thus (z,u—o0z,T) € X. Indeed,
we know already that u,/(4+00) — z. Then, (u,/,T,/) is a Cauchy sequence
in X. In order to show this we have to study the behavior of the norms

| (wyr — wprr, Ty — Ty x, V', V" sufficiently large.

Compute for example:
[, =y ”Ilg,p :/ (’uu’ _UV"‘p"’_‘at(uz/ _uu”)‘p+|as(ul/ _UV”)’p> e lldtds.
TxR
Let us deal with the first summand only:
Ao(ul, l///) :—/ ]u,,/ —ul,//‘pebplsldtds.
TxR
If 5> ss,, then
AoV V") = / |y —uyr |Peb? 1ol dtds
TxR

e / |uu,ful//|pebp‘s‘dtds + / ‘UV’*UV”|pebf"s‘dtd8

Tx{|s|<5} Tx{|s|>5}

< 25e%% sup  |uy —uyn [P + 2p/ (|uy/\p+ \ul,u|p>ebp‘5‘dtds
Tx{|s|<5}
Tx{|s|>5}

~ 5 ap _ap
< 25e”° sup  Juy —upn P+ 2p+1Cp62551/ er=3)lsldt s
Tx{|s|<5}
Tx{|s|=5}
p+4 R
2 CPeZ01e 4",

< 25e%% sup  |uy —uun P +
Tx{|s|<5}

For every ¢ > 0 we can choose § sufficiently large in order to make the

latter summand smaller than 5. Then we exploit the C*°-convergence on
the compact set T x {|s| < s} and find a v, such that if 2/, " > v, then also

the former summand is smaller than 5. Arguing in a similar manner for all

the other terms we find that (u,s,T,/) is a Cauchy sequence in X. Since

COO

loc

(), T)y) —— s (u— 02, T)
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we deduce
o (u—o02T) € X, o (uy,T,y) —— (u—o02,T).

From this we find that

o w=(z,u—o02T)¢€ )?,

o w(+o00) =(2,0)= lim (uy(+00),T,(+)),

v/ =400

® (TV/7wV/) i> (7’, U})

The proposition is thus proven. O

Before proving the Main Theorem we need a last result, which holds
under general assumptions.

Proposition 6.5.2. Let ¥ a compact closed manifold and W € T'(TY), a
vector field without zeros. Then there exists ny € (0,4+00) such that every
periodic orbit has period bigger than ng. As a consequence the set

Pw :={n > 0 | there exists a closed orbit of period n}

15 closed.

Proof. Consider a sequence of orbits v, : ®/p,z — ¥ with period 7, and
¢
i
sequence of 1-periodic functions ~};: T — X from the standard torus in X.
They satisfy

7, — 1n. Definining the reparametrized curves 7}(t) := ’y( ) we get a

3y =W (). (6.14)

Since ¥ is compact and the sequence 7}, is equicontinuous, by the Arzela-
Ascoli Theorem, after extracting a subsequence we can suppose v, — v*.
Using (6.14), we find that also 4}, converges uniformly. Then, v* is differen-
tiable and 4, — 4*. Passing to the limit in Equation [6.14] we get

V=W (). (6.15)

Thus n € Pw, provided 1 # 0. In order to show this last statement argue by
contradiction and assume n = 0. This implies that v* = z, for some z € X
and hence 4* = 0. By hypothesis W(z) # 0 and therefore there exists a
coordinate neighborhood of z, U,, such that W is a coordinate vector field
in U,. This implies that all the flow lines of W, and hence of , W, are open
on U,. This is a contradiction since, when v is large enough, 7 is contained
in U, and it is a closed trajectory of the vector field n, W. O

Now we can easily get the proof of the main theorem.
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Proof of Theorem [2.4.1. We know by Proposition [6.4.4] that M with the
T,-topology is non-compact. Hence there exists a sequence (r,,w,) € M
without 7,-convergent subsequences. Combining this fact with Corollary
We see that there exist a subsequence (r,/,w,/), an r € R and a bounded
r-Solution w, such that

COO

loc

(ryr,wy) — (r,w)

and (r,/,w,) is not convergent in the 7),-topology. Then we see that for
(117, w,r) the second alternative in Proposition[6.5.1]cannot occur. As a result
the first alternative tells us that one among |Ag(w_)| and |Ag(w )| is different
from zero and smaller than ||F||. Proposition yields (u,T) € Crit Ao,
whose action is non-zero and with modulus smaller than ||F'||. The Action-
Period Equality in implies that (u,T") is a Reeb orbit with period
smaller than || F.
Consider the set

P:={T > 0 | there exists a Reeb orbit on ¥ with period T'}.

By Proposition [6.5.2] the very definition of displacement energy (2.5) and
the discussion just made, we know that

min P = inf P < inf{||F|| | ®F displaces X } = egr(2). (6.16)

The Reeb orbit corresponding to the minimum of P, satisfies the require-
ments of the Main Theorem. This concludes the proof and hence our expo-
sition O
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