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Introduction

The simplicial volume is a topological invariant of closed connected oriented
manifolds that was �rst de�ned by Gromov in the seminal article �Volume
and Bounded Cohomology� [Gro82]. This invariant is de�ned in the context
of singular homology: the l1-norm on singular chains naturally induces a
seminorm on homology and the simplicial volume is the value taken by this
seminorm on the fundamental class of the manifold.

An interesting feature of the simplicial volume is that it is related to
metric properties of the manifold even if its de�nition is purely topological.
Gromov and Thurston proved (respectively in [Gro82] and in [Thu79]) what
is known as Gromov's proportionality principle: for every manifold that
admits a Riemannian structure, the simplicial volume is proportional to the
Riemannian volume and the proportionality constant depends only on the
metric covering of the manifold.

The purpose of the thesis is to compute the value of the simplicial volume
of the product of two surfaces following Bucher-Karlsson [Buc08B]. Using
Gromov's proportionality principle, we will reduce to compute the propor-
tionality constant for the Riemannian manifolds covered by the product of
two hyperbolic planes. It is worth remarking that this is the unique non-
vanishing proportionality constant that is known, apart from the case of
hyperbolic manifolds.

A fundamental step in the computation of this proportionality coe�cient,
and, in general, in the study of the simplicial volume is a duality theorem
(due to Gromov) that translates the problems related to the simplicial vol-
ume in a cohomological language. The bounded cohomology of a topological
space is the homology of the complex of the bounded singular cochains, i.e.
the singular cochains with �nite l∞ norm. It can be proved (Theorem 3.2.2)
that the duality at the cochain level between the l1 norm and the l∞ norm
descends to a duality between the induced seminorms in homology. This
implies that the computation of the simplicial volume (i.e. the seminorm of
the fundamental class) is equivalent to the computation of the seminorm of
the fundamental coclass.

The cohomological translation is useful not only because of the richer
structure on the cohomological ring, but also because of the relationships be-
tween the bounded cohomology of topological spaces and of groups. The the-

3



ory of bounded cohomology of discrete groups, studied by Ivanov in [Iva87] is,
indeed, a valid tool: many results from classical homological algebra gener-
alize to this context, and this fact allows to choose simpler resolutions whose
homology is isometrically isomorphic to the group cohomology making the
simplicial volume explicitly computable. This sort of argument will be used
in order to compute the proportionality coe�cient for manifolds covered by
H2 ×H2.

Recently Burger and Monod (see [Mon01]) generalized the bounded group
cohomology to the context of Lie groups (or, more generally, of locally com-
pact topological groups). In this case it is important to consider also the
topology on the group and hence it is natural to study the continuous
bounded cohomology (i.e. the homology of the complex of the continu-
ous bounded G-invariant cochains). The continuous bounded cohomology
has strict, yet not fully understood, relationships with a third cohomolog-
ical theory (namely the continuous cohomology �rst studied by Mostow in
[Mos61]). All this theories (and the subtle relationships among them) have
important geometric applications, particularly in the study of the simplicial
volume.

For example, when we restrict to the class of locally simmetric spaces
(e.g. manifolds covered by H2 × H2), the bounded group cohomology is
a key tool for an easy proof of the proportionality principle (this proof is
due to Bucher-Karlsson, [Buc08A]). A symmetric space (e.g. H2 × H2) is
the quotient of its isometry group (that we denote by G) with respect to a
compact subgroup. Moreover the choice of a metric covering of a manifold
M induces an inclusion of the fundamental group of M in G and hence
induces, in cohomology, a map res : H∗(G,R) → H∗(π1(M),R). Using
arguments of group cohomology, it can be proved (Theorem 3.3.10) that,
whenever we consider the continuous cohomology of G, the map res is an
isometric inclusion. Then, in order to prove the proportionality principle it
is su�cient to study the preimage of the fundamental coclass.

An useful tool for this purpose is van Est's Theorem (Theorem 1.7.5) on
continuous cohomology. This fundamental theorem implies that the contin-
uous cohomology of a Lie group G can be computed from the complex of
the G-invariant di�erential forms on the homogeneous space G/K where K
is a maximal compact subgroup. In particular, starting from this descrip-
tion, it can be easily proved that res maps the class of the volume form of
H2 × H2, belonging to H∗c (G,R), to the class vol(M) · [M ]R. The propor-
tionality principle follows from this fact, moreover the proof explains what
should be computed in order to get the proportionality constant.

In this thesis we will introduce all the ingredients necessary to the study
of simplicial volume of locally symmetric spaces following the approach of
Bucher-Karlsson with a particular interest towards the computation of the
proportionality constant for manifolds covered by H2 ×H2.
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In the �rst part of the thesis we collect the algebraic prerequisites con-
cerning continuous (bounded) group cohomology. In the �rst chapter we
describe the theory of continuous cohomology for locally compact topologi-
cal groups that was �rst introduced by Mostow and Hochschild in 1960 (see
[Mos61] and [HoMo62]). We follow the exposition of Borel and Wallach that
can be found in [BoWa00]. After the combinatorial de�nition we develop
the useful homological approach that allows us to �nd many di�erent (and
useful) complexes whose homology is the continuous cohomology of a given
Lie group. In particular we discuss the resolutions provided by the contin-
uous functions, the locally integrable functions and the functions from the
homogeneous space associated to G. All these resolutions will be useful in
the study of the simplicial volume in the second part of the thesis. At the
end of Chapter 1 we prove Van Est's Theorem providing also an explicit
description (at the cochain level) of the map that induces the isomorphism
in cohomology.

In the second chapter we focus on the theory of continuous bounded coho-
mology as described in Monod's monography [Mon01]. We �nd analogies and
di�erences with respect to the theory of continuous cohomology described in
the �rst chapter and we follow, at least in the �rst sections, the structure of
Chapter 1. In the second part of the chapter we depart from that treatment:
no analogue of Van Est's Theorem is known to hold in the context of con-
tinuous bounded cohomology. Instead we describe the theory of amenability
for topological groups that is deeply related to continuous bounded cohomol-
ogy. A topological group is amenable if there exists a G-invariant projection
m : L∞(G;R) → R. This theory is a very useful tool since, on one hand
it provides many unexpected vanishing results (for example the continuous
bounded cohomology of any abelian group is null), on the other hand it will
allow us to choose, when computing the continuous bounded cohomology,
smaller complexes: taking advantage of the theory of amenability we show,
for example, that the continuous cohomology of PSL2(R) can be computed
from the complex of the invariant functions from S1 (regarded as the quo-
tient of PSL2(R) with respect to an amenable subgroup). In the last section
(Section 2.7) we de�ne the bounded cohomology for topological spaces and
discuss a deep theorem of Gromov that relates the bounded cohomology of
a topological space and that of its fundamental group.

The second part of the thesis is devoted to the study of simplicial vol-
ume. In the third chapter we focus on general properties of the simplicial
volume: we begin by giving the de�niton of this topological invariant and
studying its �rst properties (e.g. the behaviour under �nite coverings and
some vanishing results); then we translate the problem in a cohomological
setting proving the duality principle. As a �rst application we give extimates
on the simplicial volume of the product of manifolds. Starting from Section
3.3 we focus on locally symmetric spaces: after brie�y recalling their de�ni-
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tion and their properties, we prove the proportionality principle for locally
symmetric spaces following the approach of Bucher-Karlsson ([Buc08A]). As
an example we consider the hyperbolic case in which the cohomological proof
of the proportionality principle can be used in order to easily compute the
simplicial volume. We compute the simplicial volume also a homological
setting and compare the two approaches.

In the last chapter of the thesis we compute the simplicial volume of
manifolds covered by H2 ×H2. Let us denote by G = PSL2(R)× PSL2(R)
the connected component of the identity of the isometries of H2 ×H2. As a
consequence of the discussion of the third chapter, it is su�cient to compute
the seminorm of the image, under van Est's isomorphism, of the volume form
in H4

c (G;R). In the �rst sections of the chapter (Sections 4.1 to 4.3) we
take advantage of the homological algebra developed in the �rst chapters in
order to �nd a small complex in which the seminorm is actually computable
combinatorically. The suitable complex is the one given by the bounded
measurable alternating functions from S1×S1, that we regard as the product
of the boundaries of the two hyperbolic factors. This complex is useful for two
reason: the �rst is that G acts transitively on the triples of points, the other
is that an even permutation of the vertices of a 4-simplex can be realized
by an odd isometry; both this properties will be crucial in the proof of the
fact that our chosen representative of the class is, indeed, of minimal norm.
However S1 × S1 is the quotient of G with respect to a minimal parabolic
subgroup that is amenable but not compact. This implies that our chosen
complex is suitable for computing the continuous bounded cohomology of
G but not the continuous cohomology. In order to avoid this di�culty we
will have to show (in the whole Section 4.5) that the comparison map, i.e.
the map induced by the inclusion of the bounded cochains in the classical
cochains, induces an isomorphism c : H4

cb(G;R)→ H4
c (G;R).
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Chapter 1

Continuous cohomology of

topological groups

Let G be a group and R be a ring. The cohomology of G with ring of
coe�cients R can be de�ned as the cohomology of the complex formed by
the functions which are invariant with respect to a natural action that will
be properly introduced in the next section:

Cn(G,R)G = {φ : Gn+1 → R |φ is G-invariant}.

This de�nition has been �rst given by Eilenberg and Mac Lane in in 1943
and is now classical (see, for example, the �rst Chapter of [Gui80]).

When G is a topological group, this de�nition can be slightly modi�ed
(taking in account only continuous cochains) to obtain the continuous coho-
mology of G. The aim of this chapter is to de�ne the continuous cohomology:
it will be a fundamental tool in the study of the simplicial volume of mani-
folds covered by H2 ×H2.

A central theorem in the theory of continuous cohomology is van Est's
Theorem (Theorem 1.7.5) that describes the continuous cohomology of a Lie
group G as a quotient of the G-invariant di�erential forms on a adequate
symmetric space. This resul will be crucial in our geometric applications
and makes sense only when the coe�cients' module is a vector space.

In order to prove van Est's Theorem (and many other theorems in this
context), we will need subtle results on continuous cohomology that we will
deduce from some hard algebraic machinery. Since the coe�cients we will
be interested in later are �nite dimensional vector spaces, and homologi-
cal algebra works better in the context of topological vector spaces, we will
restrict to this class of coe�cients (even if the de�nition of continuous coho-
mology makes sense for a broader class of coe�cients). Anyway we will not
restrict to the case of �nite dimensional vector spaces: in�nite dimensonal
vector spaces naturally arise in the proofs even when one starts with �nite
dimensional vector spaces. On the contrary the category of Frechet separa-
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ble vector spaces is closed under the needed constructions, and this is the
reason why we work in this category.

1.1 Combinatorial de�nition

Let G be a Hausdor�, locally compact topological group that admits an ex-
haustion of compacts. Since in our applications G will be indeed a Lie group,
more precisely the Lie group of the isometries of a symmetric space, this as-
sumption is useful but not restrictive. A topological G-module is a Frechet
separable vector space V endowed with a representation π : G→ Aut(V )
that is strongly continuous: this means that the induced map G × V → V
has to be jointly continuous. When this does not cause confusion, we will
omit explicit reference to the representation and we will simply write g ·V v,
g · v or also gv instead of π(g)

(
v
)
. We will often call the representation a

G-action.
Given a G-module V we will denote by V G the elements of V that are

invariant with respect to the G action:

V G = {v ∈ V | g · v = v, ∀g ∈ G}.

Let us �x a topological G-module V (that will usually be R with the
trivial G-action). The module of the continuous n-cochains from G to V is

Cnc (G,V ) = {φ : Gn+1 → V |φ is continuous}. (1.1)

We can consider, on Cnc (G,V ), the G-action given by:

(g · φ)(g0, . . . , gn) = gφ(g−1g0, . . . , g
−1gn).

A coboundary operator δ : Cnc (G,V )→ Cn+1
c (G,V ) is de�ned by the for-

mula:

δ(φ)(g0, . . . , gn+1) =
n+1∑
i=0

(−1)iφ(g0, . . . , ĝi, . . . , gn+1).

Since the projection

πi : Gn+2 → Gn+1

(g0, . . . , gn+1) 7→ (g0, . . . , ĝi, . . . , gn+1)

is continuous, δ is well de�ned (i.e. it maps continuous cochains to continuous
cochains), moreover it is obvious that δ commutes with the G-action. This
implies that we may de�ne the subcomplex of C∗c (G,V ) given by:

0 // C0
c (G,V )G

δ // C1
c (G,V )G

δ // C2
c (G,V )G // . . . .
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De�nition 1.1.1. The continuous cohomology of the topological group G
with coe�cients in the topological G-module V is the homology of the com-
plex of continuous cochains:

H∗c (G,V ) = H∗(C
∗
c (G,V )G).

It is worth remarking that the classical cohomology of abstract groups
can be comprehended in this theory: if G is an abstract group, we can endow
it with the discrete topology and consider its continuous cohomology. Since
G is discrete, the continuity condition in (1.1) is empty, and hence

H∗c (G,V ) = H∗(G,V )

where H∗(G,V ) is the classical cohomology of G mentioned in the introduc-
tion of this chapter.

1.2 Some homological algebra

In this Section we will develop concepts coming from homological algebra
that are useful when dealing with the continuous cohomology of locally
compact groups. The notion of injectivity is classical in group cohomology
and has been adapted to continuous cohomology by Mostow [Mos61] and
Hochschild [HoMo62] around 1960. We will follow the approach of Borel
and Wallach described in Chapter IX of [BoWa00].

We work in the category of topological G-modules whose de�nition was
given in Section 1.1:

De�nition 1.2.1. A topological G-module is a Frechet vector space V en-
dowed with a strongly continuous representation π : G → GL(V ), where
GL(V ) denotes the continuous linear automorphisms of V .

Lemma 1.2.2. The representation is strongly continuous if and only if, for

every v in V , the map G→ V de�ned by g 7→ gv is continuous (if this second
condition holds, we will call the representation separately continuous).

Proof. Obviously, if the representation is strongly continuous, it is also sep-
arately continuous: the map g 7→ gv is the composition of the continuous
inclusion G → G × V given by g 7→ (g, v) and of the map G × V → V
induced by the representation (that is continuous by the assumption that
the representation is strongly continuous).

Let us prove the converse implication. We �rst show that, provided the
representation is separately continuous, the image, under π, of any compact
subsetK ofG is equicontinuous. Indeed, since π is separately continuous, the
map π : G→ GL(V ) is continuous when we endow GL(V ) with the topology
of the pointwise convergence. This implies that, for every compact subset
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K of G, its image is compact in that topology. Banach-Steinhaus Theorem
implies that, under this assumption, π(K) is equicontinuous (since, for every
v ∈ V , the set π(K)v is bounded).

Let us now prove that the representation is strongly continuous. Both G
(being Hausdor� and locally compact) and V (being Frechet) are metrizable.
Let us choose gn → g in G and vn → v in V , it is enough to show that gnvn
converges to gv. By triangular inequality we get d(gnvn, gv) ≤ d(gnvn, gnv)+
d(gnv, gv). Since G is locally compact, we can assume that every gn belongs
to a �xed compact neighborhood of e and hence π(gn) are equicontinuous.
This implies that the �rst term is small if vn is su�ciently close to v. The
continuity of g 7→ gv ensures that the second term is small when gn is close
to g.

The natural arrows in the category of topological G-modules are mor-
phisms that preserve the representations: a G-morphism between two G-
modules φ : V → W is a continuous linear map that commutes with
the G action. This means that, for every v ∈ V and g ∈ G, we have
φ(g ·V v) = g ·W φ(v).

A G-morphism between two topological G-modules φ : V → W is said
to be continuously strongly injective (or simply strongly injective) if it has a
continuous left inverse, i.e. if there exists a continuous linear map σ : W → V
such that σ · φ = idV . Note that σ ought not to be a G-map.

Obviously, if φ is continuously strongly injective, φ is also injective. More-
over, if φ is continuously strongly injective, (φσ)2 = φσ (since σφ = id) so
φσ is a continuous projector onto a closed subspace W ′. This implies that
W splits as a direct sum W = W ′⊕W ′′, where W ′′ = ker(φσ) and both W ′,
W ′′ are closed vector subspaces of W . Indeed W ′ = im(φ) ∼= V (because φ
is injective). Since φ is a topological G-morphism, W ′ is G-invariant, but
W ′′ ought not to be a G-module and so σ, that coresponds to the projection
on the �rst factor of the direct sum, is not necessarily a G-morphism.

The de�nition of continuously strongly injective morphism was necessary
to introduce the notion of relative injectivity for a topological G-module.
This notion will allow us to adapt tools from classical homological algebra
to the context of continuous cohomology.

De�nition 1.2.3. A topological G-module Z is continuously relatively in-

jective if, for every continuously strongly injective G-morphism φ : V →W ,
for every G-morphism α : V → Z, there exists a G-morphism β : W → Z
such that βφ = α.

V
φ

//

α

��

W
σuu

β~~
Z
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We will sometimes call the map β an extension of α: we have already re-
marked that, since φ is continuous strongly injective, it corresponds to an
inclusion of V as a G-subspace ofW , the morphism β extends the morphism
α already de�ned on this subspace. The following lemma is useful for proving
the relative injectivity of many modules:

Lemma 1.2.4. Let W be a continuously relatively injective G-module. As-

sume that α : V → W and β : W → V are G-morphisms such that

β ◦ α = idV . Then V is relatively injective.

Proof.

A
φ

//

γ

��

B
σ

uu

δ

��

~~
V

α

��
W

β

VV

Let A and B be two G-modules, let φ : A → B be a strongly injective G-
morphism, and let γ : A → V be any G-morphism. Since αγ : A → W is a
G-morphism, as a consequence of the relatively injectivity of W , there exists
a G-morphism δ : B →W such that δφ = αγ. The composition βδ : B → V
is a G-morphism such that (βδ)φ = β(αγ) = γ.

If V is a topological G-module, a G-resolution of V is an exact sequence
(F i, d) of topological G-modules and G-morphisms.

A resolution is strong if there exist continuous maps ki : F i → F i−1 such
that ki+1di + di−1ki = idF i . Note that, as in the de�nition of strongly in-
jective G-morphism, we do not require the contracting homotopy k∗ to be
made of G-morphisms.

0 // V // F 0
d0

//
k0

uu
F 1

d1
//

k1tt
F 2

d2
//

k2tt
F 3

d3
//

k3tt . . . .

Remark 1.2.5. As in the de�nition of strongly injective morphism, a con-
tracting homotopy induces a splitting of the topological vector spaces F i into
a direct sum of closed subspaces (of whom only one must be G-invariant).

To be more precise, but omitting apices for the sake of brevity, let us
consider the continuous automorphism kd of F i, it is a projector on a closed
subspace V i:

(kd)2 = k(dk)d =
= k(id)d− kkdd =
= kd
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and hence induces a splitting of F i as the direct sum V i ⊕ Qi where we
denoted by Qi the kernel of kd. The subspace Qi is indeed the kernel of
the boundary operator d: obviously ker d ⊆ Qi, moreover dQi = kddQi +
dkdQi = 0. Since d is a G-morphism Qi is G-invariant.

We have just proved that, if (F ∗, d) is a strong resolution, each vector
space F i splits as Qi⊕V i where Qi = ker d is a G-invariant closed subspace.
Moreover d : V i → Qi+1 is a topological isomorphism (it is bijective because
V i ∩ ker d = ∅, and Qi+1 = imd since the resolution is exact; a continuous
inverse of d is given by the restriction k| : Qi+1 → V i).

The next theorem is a continuous version of of the fundamental theorem
of homological algebra:

Theorem 1.2.6 (Uniqueness of the resolution). Let (F ∗1 , d1), (F ∗2 , d2) be

two strong G-resolutions of the topological G-module V . Assume also that

F i1 and F i2 are relatively injective for all i ∈ N. Then, for every i, there
exists a G-morphism hi : F i1 → F i2 such that the diagram below commutes.

Moreover the hi's are unique up to continuous G-chain homotopy.

V //

id

F 0
1

d //

h0
��

F 1
1

d //

h1
��

F 2
1

d //

h2
��

. . .

V // F 0
2

d // F 1
2

d // F 2
2

d // . . .

Proof. Consider the short strongly exact sequence of topological G-modules:

0 // Qi1 j1
//

gi

��

F i1

dktt d //

hi
��

Qi+1
1

gi+1

��

// 0

0 // Qi2 j2
// F i2

d //
dktt

Qi+1
2

// 0

where, accordingly with the notations of the previous remark, Qik = ker dik ⊂
F ik. The inclusions jk areG-morphisms sinceQik is aG-submodule. Moreover
j1 : Qi1 → F i1 is strongly injective (an inverse is provided by di−1 ◦ki). Let us
prove, by induction on i, that there exist G-morphisms hi : F i1 → F i2 unique
up to G-chain homotopy and these maps induce G-morphisms gi+1 : Qi+1

1 →
Qi+1

2 .
To begin the induction, note that Q0

k = V so that g0 = id is already de-
�ned. Suppose then that gi has been de�ned. Since F i2 is relatively injective
by assumption and j2 ◦ gi is a G-morphism, there exists a map hi making
the diagram commutative (we have already pointed out that j1 is strongly

injective). Moreover Qi+1
k
∼= F ik�Qik

as a topological G-module (Qik is G-

invariant and closed). Since hi(Qi1) ⊆ Qi2, the map hi induces a continuous
G-morphism gi+1 : Qi+1

1 → Qi+1
2 .
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The proof of the uniqueness up to chain homotopy is similar: suppose
that h∗, h′∗ are chain G-morphisms that extend the identity in degree −1, we
have to prove that there exists a chain homotopy T : F i1 → F i−1

2 such that
h− h′ = Td+ dT . Again (by induction on i) suppose that such a homotopy
has been de�ned for every n ≤ i+ 1.

// F i−1
1

d //

h−h′
��

F i1
d //

h−h′
��T~~||||||||

F i+1
1

d //

h−h′
��T~~||||||||

F i+2
1

T||
// F i−1

2
d // F i2

d // F i+1
2

Consider the morphism h−h′−dT : F i+1
1 → F i+1

2 , it is enough to show that
there exists a G-morphism T : F i+2

1 → F i+1
2 such that h − h′ − dT = Td.

By inductive hypothesis h− h′ − dT |Qi+1 = 0: we have already pointed out
that Qi+1

1 = im(d) and

hd− h′d− dTd = dh− dh′ − dTd =
= d(h− h′ − Td) =
= ddT = 0.

As in the �rst part of the proof, h−h′−dT induces a G-morphism a : Qi+2
1
∼=

F i+1
1 �Qi+1

1
→ F i+1

2 . Since F i+1
2 is relatively injective and j is strong, there

exists the desired map T :

Qi+2
1

j //

a

��

F i+2
1

T||
F i+1

2
.

Corollary 1.2.7. Fix (F ∗1 , d1), (F ∗2 , d2) two strong relatively injective reso-

lutions of the topological G-module V , and consider ((F ∗1 )G, d1), ((F ∗2 )G, d2)
the subcomplexes of the G-invariants. Then the homology groups of the two

complexes are isomorphic:

H∗((F
∗
1 )G, d1) ∼= H∗((F

∗
2 )G, d2)

Proof. Theorem 1.2.6 ensures the existence of G-morphisms hi : F i1 → F i2
and, arguing by symmetry, h′i : F i2 → F i1. The compositions hi ◦ h′i and
h′i ◦ hi are chain G-morphisms that extend the identity of V . Since also the
identity id : F ij → F ij is a chain G-morphism that extends the identity on V ,
the second statement of Theorem 1.2.6 ensures that hi ◦ h′i and h′i ◦ hi are
G-chain homotopic to the identity.
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Since all the maps just constructed are G-morphisms, they restrict to
the subcomplexes of the G-invariants inducing, in homology, the required
isomorphisms.

Theorem 1.2.6 will allow us to de�ne the continuous cohomology of a
topological group starting from di�erent resolutions. Infact we will prove
that the complex (C∗c (G,V ), d) is strong and relatively injective. Once this
result is estabilished, we will conclude that the continuous cohomology of
a topological group can be computed from an arbitrary strong, relatively
injective resolution of the G-module of the coe�cients.

1.3 The standard resolution

We will consider the topological vector space of the continuous functions
from G to V

Cc(G,V ) = {φ : G→ V |φ is continuous}

endowed with the compact-open topology. It can be proved that, provided
that V is a Frechet separable space, also Cc(G,V ) is. It is a standard fact
that, since G is locally compact and σ-compact and V is metrizable, the
compact-open topology coincides with the topology of the uniform conver-
gence on compact subsets.

We can endow this space with two di�erent (but both useful) G-actions:

� the regular left representation

(lg · φ)(g0) = g ·V φ(g−1g0)

� the regular right representation:

(rg · φ)(g0) = φ(g0g).

Lemma 1.3.1. The regular left representation is continuous.

Proof. As a consequence of Lemma 1.2.2, it is su�cient to show that the
map g 7→ lgφ is continuous for every φ in Cc(G,V ).

The sets of the form

U(K,B(x, ε)) = {f ∈ Cc(G,V ) | d(f(k), x) ≤ ε, k ∈ K},

where K is a compact subset of G and x is a point in V , are a prebasis of the
compact open topology of Cc(G,V ). Since a basis of the compact-open topol-
ogy can be obtained considering the �nite intersections of elements of the
form U(K,B(x, ε)), it is su�cient to show that, if φ belongs to U(K,B(x, ε)),
and ḡ is su�ciently small, then ḡφ belongs to U(K,B(x, ε)).

14



d((ḡφ)(k), x) = d(ḡφ(ḡ−1k), x)
≤ d(ḡφ(ḡ−1k), ḡx) + d(ḡx, x)
≤ cd(φ(ḡ−1k), x) + d(ḡx, x).

In the last inequality we used a re�nement of Banach-Steinhaus Theorem on
the representation π of G on V : we can choose a su�ciently small compact
neighborhoodW of e in G such that, not only the image π(W ) is equicontin-
uous, but also the constant of equicontinuity (on the compact set Wk − x)
can be choosen to be smaller than any constant c > 1. The thesis follows
from the continuity of φ (that allows to control the �rst summand) and that
of the representation of G on V .

It is even easier to verify that the regular right representation is continuous
(since the action of G on V is not involved) and hence both actions make
Cc(G,V ) a topological G-module.

Indeed the two representations are equivalent: there exists an operator
intertwining the two representations, i.e. a topological isomorphism T mak-
ing the diagram

Cc(G,V )
T //

lg
��

Cc(G,V )

rg

��
Cc(G,V )

T // Cc(G,V )

commutative for every g in G.
Let us consider the map T : Cc(G,V )→ Cc(G,V ) de�ned by (Tφ)(x) =

xφ(x−1). It is an involution since TTφ(x) = x(Tφ(x−1)) = xx−1φ(x). More-
over it intertwins the two representations:

lgTf(x) = g((Tf)(g−1x)
= gg−1xf(x−1g))
= x(rgf(x−1))
= T (rgf)(x).

Proposition 1.3.2. Cc(G,V ) endowed with the regular right representation

is relatively injective.

Proof.

A
φ

//

α
��

B
σ

tt

βzz
Cc(G,V )

Let b denote a generic element in B, de�ne β by putting βb(g) = ασgb(e).
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� The map βb is continuous (and hence β is well de�ned): since the
action G × B → B is continuous, the map G → B sending g to gb is
also continuous. This implies that βb : G → V is continuous because
it is a composition of continuous maps.

� TheG-invariance is obvious: β(hb)(g) = ασghb(e) = βb(gh) = rhβb(g).

� The map β is continuous: let us consider an open neighborhood U(K,U)
of β(b̄) in the compact open topology. We want to �nd an open neigh-
borhood W of b̄ such that β(W ) ⊆ U . The existence of such a neigh-
borhood is guaranteed from the continuity of the map K × B → V ,
(g, b) 7→ β(b)(g) and the compactness of K: since β(b̄) belongs to
U(K,U), the image of K × {b̄} is contained in the open set U and,
since K is compact, we can �nd a product neighborhood of K × {b̄}
with the same property.

� Also the fact that βφ = α follows from an easy computation:

ασgφ(a)(e) = ασφg(a)(e)
= αga(e)
= gαa(e)
= αa(e).

Remark 1.3.3. Since T is an involution that conjugates the regular left
representation with the regular right representation, also Cc(G,V ) endowed
with the left G-module structure is relatively injective (Lemma 1.2.4).

We will now turn back to the modules Cnc (G,V ) = Cc(G
n+1, V ) on which

we will always consider the (diagonal) left representation already de�ned in
Section 1.1:

(gφ)(g0, . . . , gn) = gφ(g−1g0, . . . , g
−1gn).

Proposition 1.3.4. There exists an isomorphism of G-modules Cnc (G,V ) =
Cc(G

n+1, V ) ∼= Cc(G,C
n−1
c (G,V )), where Cc(G,C

n−1
c (G,V )) is endowed

with the regular left representation.

Proof. Let us consider the map

Ψ : Cnc (G,V )→ Cc(G,C
n−1
c (G,V ))

Ψ(φ)(g0)(g1, . . . , gn) = φ(g0, g1, . . . , gn)

It is easy to show that it is well de�ned and bijective: since G is locally
compact, a map φ : Gn+1 → V is jointly continuous if and only if, for every
g in G, the map Ψ(φ)(g) is continuous and Ψ(φ) : G → Cn−1

c (G,V ) is a
continuous map (the proof is analogue to that of Lemma 1.2.2).
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�Ψ is also bicontinuous: we will show that the compact open topolo-
gies coincide under the identi�cation Ψ. A prebasis for the compact-open
topology on Cc(Gn;V ) is given by the sets

U(K1 × . . .×Kn+1, U) = {f ∈ Cc(Gn;V ) | f(K1 × . . .×Kn+1) ⊆ U}

where Ki is a compact in G and U belongs to a basis of the open sets of V .
Clearly Ψ restricts to a bijection of the sets

U(K1 × . . .×Kn+1, U) 7→ U(K1,U(K2 × . . .×Kn+1, U))

and hence Ψ is bicontinuous.
�Ψ is G-invariant: on one hand

Ψ(gφ)(g0)(g1, . . . , gn) = (gφ)(g0, . . . , gn)
= gφ(g−1g0, . . . , g

−1gn),

on the other hand:

(gΨ(φ))(g0)(g1, . . . , gn) = (gΨ(φ)(g−1g0))(g1, . . . , gn)
= g(Ψφ(g−1g0)(g−1g1, . . . , g

−1gn))
= gφ(g−1g0, . . . , g

−1gn).

This concludes the proof: the map Ψ is a bijective G-morphism that provides
the required isomorphism.

Lemma 1.3.5. The resolution:

0 // V // C0
c (G,V )

d // C1
c (G,V )

k1
mm

d // C2
c (G,V ) //

k2
mm . . . .

is strong.

Proof. We will construct the homotopy using the map dual to the continuous
inclusion

ie : Gn → Gn+1

(g1, . . . , gn) → (e, g1, . . . , gn)

This means that we are considering the homotopy

kn : Cn+1
c (G,V )→ Cnc (G,V )

kn(φ)(v1, . . . , vn) = φ(e, v1, . . . , vn)

� It is well de�ned (knφ is continuous being the composition of continu-
ous maps);

� k∗ is continuous with respect to the compact-open topologies (the proof
is analogue to that of the continuity of Ψ in Proposition 1.3.4);
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� it is a contracting homotopy (an easy computation shows that kd+dk =
id).

Proposition 1.3.4 combined with Proposition 1.3.2 imply that C∗c (G,V )
is relatively injective and thus, by Lemma 1.3.5, (C∗c (G,V ), d) provides a
strong relatively injective resolution of V . A consequence of this fact and
of the foundamental Theorem of homological algebra (Theorem 1.2.6) is the
following theorem:

Theorem 1.3.6. Let (F ∗, d) be any strong relatively injective resolution of

the topological G-module V . Then

H∗((F
∗)G, d) ∼= H∗c (G,V ).

1.4 Resolution via locally p-integrable functions

As a �rst application of the algebraic machinery we have developed, we
exhibit a di�erent strong relatively injective resolution of a topological G-
module V that will be useful in Section 3.4. As a consequence of Theorem
1.3.6, the homology of the subcomplex of G-invariants is canonically isomor-
phic to H∗c (G,V ).

As usual we will only sketch the proofs omitting many details. Com-
plete proofs can be found in P. Blanc original paper [Bla79] in wich locally
p-integrable class functions were �rst introduced to study continuous coho-
mology.

In order to construct maps and homotopies, it will be necessary to com-
pute integrals. Since G is, by assumption, Hausdor� and locally compact,
we will consider the left Haar measure µ on G, i.e. the unique (up to scaling)
left invariant measure on G that is �nite on compact sets. We address to
[Gui80, Chapter D.2] for de�nition and properties of integrals of functions
with values in a Frechet vector space.

The modules that we will study are:

Lploc(G
n+1, V ) = {f : Gn+1 → V | ∀K ⊆ Gn+1,

∫
K
‖f‖pi dµ

⊗n+1 ≤ ∞}

where {‖ · ‖i} are the seminorms that de�ne the Frechet space. It can be
proved that, if V is a Frechet separable vector space, and G is σ-compact,
then Lploc(G

n, V ) is a Frechet separable vector space with the seminorms
given by the integration on a family of compact subsets.

The space Cc(Gn;V ) is continuously included in Lploc(G
n, V ): the topol-

ogy of Cc(Gn;V ) is �ner than the one of Lploc(G
n, V ). Moreover Cc(Gn;V ) is

dense in Lploc(G
n, V ) as a consequence of standard approximation theorems.

The density of Cc(Gn;V ) allows to de�ne a G-morphism d : Lploc(G
n, V ) →
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Lploc(G
n+1, V ) by continuously extending the coboundary operator de�ned

on continuous cochains.
The same arguments imply that the regular left representation of G on

Lploc(G
n+1, V ) is well de�ned and continuous: it is the continuous extension

of the continuous representation of G on the dense subset Cnc (G,V ).
An application of Fubini-Tonelli's Theorem is the following useful lemma:

Lemma 1.4.1.

Lploc(G
n+1, V ) ∼= Lploc(G,L

p
loc(G

n, V )).

Proof. See [Gui80, D.2.2 vii].

We will now prove that (Lploc(G
n+1, V ), d) is a strong relatively injective

resolution of V :

Proposition 1.4.2. The resolution (Lploc(G
n+1, V ), d) is strong.

Proof. We de�ne the contracting homotopy averaging on a compact neigh-
borhood of the identity the cone de�ned for continuous cochains. Fix a con-
tinuous function χ : G→ R with compact support K and mean equal to one.
For every φ ∈ Lploc(G

n, V ), we denote by φ̃ the element of Lploc(G,L
p
loc(G

n−1, V ))
corresponding to φ under the isomorphism of Lemma 1.4.1 and we set

kn : Lploc(G
n, V )→ Lploc(G

n−1, V )

kn(φ) =
∫
K χ(g)φ̃(g)dµ.

This provides the contracting homotopy we were looking for.

It remains to prove that the modules Lploc(G
n, V ) are relatively injective.

Proposition 1.4.3. The topological G-module Lploc(G
n+1, V ) is relatively

injective.

Proof. As a consequence of Lemma 1.4.1, it is enough to show the the-
sis for the module Lploc(G,V ). Since we already know (see Proposition
1.3.2) that Cc(G,L

p
loc(G,V )) is relatively injective, by Lemma 1.2.4, it is

su�cient to exhibit G-morphisms α : Lploc(G,V ) → Cc(G,L
p
loc(G,V )), β :

Cc(G,L
p
loc(G,V ))→ Lploc(G,V ) such that βα = id.

We set α equal to the constant inclusion, namely αφ(g) = φ. An easy
computation shows that it is a G-morphism (its continuity is obvious). To
de�ne the map β let us consider the diagonal inclusion ∆ : G → G ×G. ∆
induces a G-morphism ∆∗ : Lploc(G × G,V ) → Lploc(G,V ) that induces the
required G-morphism β by composition:

β : Cc(G,L
p
loc(G,V )) ↪→ Lploc(G,L

p
loc(G,V )) ∼= Lploc(G×G,V )→ Lploc(G,V )

The composition βα is the identy by de�nition.
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We have thus proved the main theorem of this section:

Theorem 1.4.4. Let V be a topological G-module, the homology of the com-

plex

0 // Lploc(G,V )G // Lploc(G
2, V )G // Lploc(G

3, V )G // . . . .

is naturally isomorphic to H∗c (G,V ).

Explicit formulas for the isomorphims can be given: the inclusion of
Cnc (G,V ) in Lploc(G

n+1, V ) induces the isomorphism in cohomology. The
homotopical inverse to this map (at the cochain level) has been explicitly
de�ned by P. Blanc in [Bla79] by regularizing Lp functions.

1.5 Other useful complexes

Let K be a compact subgroup of the locally compact group G. We consider
the space G/K of left cosets {gK |g ∈ G} of K in G i.e the quotient of G
with respect to the right multiplication of K. We will denote by π : G →
G/K the projection. In this section we will study the topological G-module
Cc(G/K;V ) endowed with the regular left representation.

Proposition 1.5.1. The topological G-module Cc(G/K;V ) is relatively in-

jective

Proof. As a consequence of Lemma 1.2.4 and Proposition 1.3.2, we need only
to construct a left G-inverse α to π∗

Cc(G/K;V )
π∗ // Cc(G;V )

α // Cc(G/K;V ).

To construct the map α it is su�cient to observe that, since the projection
π is surjective and G/K is endowed with the quotient topology, the map π∗

identi�es Cc(G/K;V ) with the submodule of Cc(G;V ) invariant with respect
to the action of K on G via the right multiplication (i.e. the restriction to
K of the regular right representation).

Let dx denote the left invariant Haar measure on K, we consider the map
α : Cc(G;V )→ Cc(G;V ) de�ned by

αφ(g) =
1

µ(K)

∫
K
rxφ(g)dx =

1

µ(K)

∫
K
φ(gx)dx.

The map α is well de�ned (i.e. αφ is continuous) since we are averaging
continuous functions on a compact set. It is G-invariant (with respect to the
left action of G) since

lyαφ(g) = yαφ(y−1g)
= 1

µ(K)

∫
K yrxφ(y−1g)dx

= 1
µ(K)

∫
K rxyφ(y−1g)dx

α(lyφ)(g).
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Since the Haar measure on K is left invariant, the image of α is contained
in the submodule of the right K-invariant functions and hence α induces a
map α̃ : Cc(G;V )→ Cc(G/K;V ). It is moreover obvious from the de�nition
of α̃ that α̃ is a left inverse to π∗: if φ lies in the image of π∗ (and hence is
K-invariant), we get αφ = φ.

Theorem 1.5.2. The resolution

0 // V // Cc(G/K;V ) // Cc((G/K)2;V ) // . . .

is a strong relatively injective resolution of the topological G-module V .

Proof. The proof of Proposition 1.3.4 applies verbatim (we only used the fact
that G was locally compact and that all the spaces were endowed with the
compact open topology) in this context to show that Cc((G/K)n+1, V ) ∼=
Cc(G/K,Cc((G/K)n, V )) where both vector spaces are endowed with the
regular left representation. As a consequence of Proposition 1.5.1 each mod-
ule is continuously relatively injective.

It thus remains only to prove that the resolution is strong. The cone oper-
ator described in the proof of Lemma 1.3.5 provides the required contracting
homotopy.

Corollary 1.5.3. Let G be a Lie group, K a maximal compact subgroup,

M = G/K the associated homogeneous space. The continuous cohomology

of G can be computed from the complex (Cc(M
k, V )G, d).

We will use this result in Theorem 3.4.1 where we compute the continuous
cohomology of Isom+(Hn) from the complex (Cc((Hn)k,R)G, d).

1.6 Closed subgroups

In the previous section we have considered a smaller complex than C∗c (G;V )G

(namely Cc((G/K)∗;V )G) whose homology is isometric to the continuous
cohomology of G. It is sometimes useful to consider also bigger complexes
with the same homology, expecially when we need to compare the continuous
cohomology of di�erent groups.

For this purpose let Γ be a closed subgroup of a topological group G.
The aim of this section is to prove the following theorem:

Theorem 1.6.1. The vector space Cc(G;V ) is relatively injective as a topo-

logical Γ-module and hence the continuous cohomology of

0 // C0
c (G;V )Γ // C1

c (G;V )Γ // C2
c (G;V )Γ // . . .

is isomorphic to H∗c (Γ;V ).
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The proof or the relative injectivity of Cc(G;V ) as a Γ-module is based
on the existence of a generalized Bruhat function (compare [Mon01, page
42])

De�nition 1.6.2. Let Γ be a closed subgroup of the locally compact group
G. A generalized Bruhat function for the action (via left multiplication) of
Γ on G is a continuous function h : G→ R+ such that

� for every x in G,
∫

Γ h(γ−1x)dγ = 1;

� for every compact subset K of G, supp(h) ∩ ΓK is compact.

Generalized Bruhat functions exist for every closed subgroup of G pro-
vided G is locally compact. This is a non-elementary consequence of the
fact that the homogeneous space of right cosets Γ\G is paracompact (cfr.
[Mon01, Lemma 4.5.4]). We begin proving the existence of such a function
in the two easy cases that we will need.

Lemma 1.6.3. Let Γ < G be a subgroup of �nite index n = [G : Γ], then
there exists a Bruhat function for Γ in G.

Proof. Since Γ is closed and has �nite index, the group G is disconnected
and is the union of n disjoint copies Γi of Γ: the right lateral classes of Γ in
G. It is su�cient to consider the sum h of functions hi compactly supported
in Γi with mean 1. The �rst property of a Bruhat function follows from the
fact that, for any point x in Γi, we have Γx = Γi; the second frome the fact
that, since supp(h) is compact, also supp(h) ∩ ΓK is compact.

Lemma 1.6.4. Let Γ be a discrete subgroup of a locally compact group G.
Then there exists a Bruhat function for the action of Γ on G.

Proof. Since Γ is a discrete subgroup of a locally compact group, the projec-
tion π : G→ Γ\G is a covering map. Let us choose a locally �nite trivializing
covering {Ui} of Γ\G (with the additional property that Ūi is compact) and,
for every i, a preimage Ũi of Ui (so the restriction of π is a homeomorphism
between Ũi and Ui).

Let us moreover �x on the quotient space Γ\G a continuous partition of
unity φi (i.e. continuous functions φi : Γ\G → R+ such that

∑
φi = 1),

adapted to the covering {Ui}, i.e. with the property that supp(φi) ⊆ Ui.
For every i let us consider the function φ̃i : Ũi → R satisfying φ̃i = φπ.

The functions φ̃i extend to continuous functions φ̃i : G → R. The map
h =

∑
i φ̃i is the generalized Bruhat function we were looking for: it is

continuous since it is a locally �nite sum of continuous functions, and it is
easy to check that, since {φi} is a partition of unity, the sum h satis�es the
properties of a Bruhat function.
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Proposition 1.6.5. Let Γ be a closed subgroup of the locally compact group

G, let V be a topological G-module (and hence also a topological Γ-module

with the restricted action), then Cc(G,V ) is relatively injective as a topolog-

ical Γ-module.

Proof.

A
φ

//

α
��

B
σ

tt

βzz
Cc(G,V )

Let us consider the fuction β de�ned by

b 7→
∫

Γ
h(γ−1g)α(γσ(γ−1b))(g)dγ.

The function β(b) is continuous since we have proved in Proposition 1.3.2
that the function (γ, g) 7→ α(γσ(γ−1b))(g) is continuous and the second
property of a Bruhat function implies that, for every g in G, the function
γ 7→ h(γ−1g)α(γσ(γ−1b))(g) is di�erent from 0 only on a compact subset
of Γ. With similar arguments it can be proved that the linear map β is
continuous (see [Mon01, Lemmma 4.5.5]).

Moreover β is G-invariant:

β(g0b) =
∫

Γ h(γ−1g)α(γσ(γ−1g0b))(g)dγ =

=
∫

Γ h(γ−1g0g
−1
0 g)α(g0g

−1
0 γσ(γ−1g0b))(g)dγ =

=
∫

Γ h(γ−1g−1
0 g)g0α(γσ(γ−1b))(g−1

0 g)dγ =
= g0β(b).

And β satis�es β ◦ φ = α:

β(φ(a)) =
∫

Γ h(γ−1g)α(γσ(φγ−1a))(g)dγ =
=
∫

Γ h(γ−1g)α(a)(g)dγ = α(a).

Theorem 1.6.6. Let Γ be a closed subgroup of the topological group G, the
continuous cohomology of

0 // C0
c (G;V )Γ // C1

c (G;V )Γ // C2
c (G;V )Γ

is isomorphic to H∗c (Γ;V ).

Proof. The isomorphism Cnc (G,V ) ∼= Cc(G,C
n−1
c (G,V )) is also an isomor-

phism of Γ modules (since the representation of Γ is the restriction of that
of G) and hence Proposition 1.6.5 implies that the resolution is relatively
injective. Since the fact that a resolution is strong doesn't depend on the
representation, Lemma 1.3.5 implies that we are dealing with a strong reso-
lution. The thesis of the theorem is hence a consequence of the fundamental
Theorem of homological algebra.
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We will use this result in Theorem 3.3.10 (resp. in Proposition 4.1.1) to
show that, if Γ is a discrete subgroup of G (resp. a �nite index subgroup),
there is an injection

H∗c (G;V )→ H∗c (Γ;V ).

1.7 Van Est's Theorem

We can now turn to the main theorem of this chapter: van Est's Theorem
that relates continuous cohomology (with real coe�cients) of a Lie group
to the di�erential forms on the homogeneous space given by the quotient
of G with respect to any maximal compact subgroup K of G. Indeed this
theorem is much more general and an analogue statement is valid for a broad
class of coe�cient (namely the integrable di�erential G-modules) but for the
purposes of this thesis we will need only this elementary statement and the
loss of generality prevents us from a rather long functional analitic detour.

Let H be any compact subgroup of the Lie group G. The space of left
cosets G/H = {gH| g ∈ G} can be endowed with a unique smooth structure
such that the projection π : G → G/H is C∞ and there exist local smooth
sections of G/H in G [War83, Theorem 3.58]. If we consider this smooth
structure onG/H, the groupG acts transitively onG/H via di�eomorphisms
by left translations. We are interested in the complex formed by the modules

Ωi(G/H;R) = {R-valued di�erential i-forms on G/H}.

with the external di�erential. As usual we topologize this space with the
topology of the uniform convergence on compact sets.

Just as in the previous section, we are going to show that the di�erential
forms provide a relatively injective strong resolution of R (with the trivial
G-action) and hence the homology of the complex is Hc(G;R). We will
prove the result in several steps: it is rather easy to show that Ωi(G;R) is
relatively injective, however, in general, the complex of the di�erential forms
is not even exact and hence, in particular, is not a strong resolution. We will
restrict to K-invariant di�erential forms to get a strong resolution, here K
denotes a maximal compact subgroup.

The action of G on M = G/H via di�eomorphisms induces a represen-
tation of G on the di�erentiable functions on M : if we �x f in C∞(M ;R)
and g in G, we set

(g · f)(x) = f(g−1x).

It is naturally de�ned also an action of G on vector �elds: let us �x X ∈
T (M), if we denote by lg the di�eomorphism of M induced by the left
multiplication by g, we have

(g ·X)m = d(lg)g−1mXg−1m.
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A vector �eld on M is G-invariant if g ◦ X = X. Finally we consider the
action on Ωi(M,R) de�ned by

(g ◦ ω)m = ((lg−1)∗ω)m = ωg−1m ◦ (Λid(lg−1)m).

All these actions are compatible: (g ·X)(f) = g ◦ (X(g−1 ◦ f)), and, in
the same way,

〈g ◦ ω,X〉 = g〈ω, g−1 ◦X〉.

Let us now consider the caseH = {e} and hence work with the di�erential
forms on the group G itself. We denote by g the Lie algebra of the left
invariant vector �elds on G. Since g is a basis (over C∞(G;R)) of the vector
�elds in G, we have Ωi(G,R) ∼= Hom(Λig,R) ⊗ C∞(G;R), moreover, the
action on Hom(Λig,R)⊗C∞(G;R) is trivial on the �rst factor and the regular
left representation on the second.

The �rst step of the proof of van Est's Theorem is to show that C∞(G;R)
is relatively injective. This result will allow us to deduce that the modules
Ωi(G;R) are, in turn, relatively injective.

Proposition 1.7.1. The G-module C∞(G,R) is relatively injective.

Proof. The proof is very similar to the proof of Proposition 1.4.3. The only
di�erence is due to the fact that we do not have an immersion Cc(G,R) →
C∞(G,R) and thus we need to regularize continuous cochains. Fix a func-
tion χ ∈ C∞(G,R+) with compact support, and with mass one (that is∫
G χ(g−1)dµ = 1, where µ is the left Haar measure on G). Let us consider
the right convolution with χ:

α : Cc(G,C
∞(G,R))→ C∞(G×G,R)

αφ(g0, g1) =
∫
G χ(g−1g0)φ(g)(g1)dµ(g).

Since the convolution of the smooth map χ with the continuous map φ(·)(g1)
is smooth, αφ is smooth in the �rst variable. One can easily see that the
map α is well de�ned (αφ is smooth in both its variables). The continuity
of α descends from the de�nition of the topologies via some computations.
We will now prove that the left invariance of the Haar measure µ implies the
G-invariance of α:

α(lxφ)(g0, g1) =
∫
G χ(g−1g0)((lxφ)(g))(g1)dµ(g)

=
∫
G χ(g−1g0)(φ(x−1g))(x−1g1)dµ(g)

=
∫
G χ(g−1xx−1g0)φ(x−1g)(x−1g1)dµ(g)

=
∫
G χ(h−1x−1g0)φ(h)(x−1g1)dµ(h)

= (αφ)(x−1g0)(x−1g1)
= lxαφ(g0).
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Since we have chosen χ such that
∫
G χ(g−1)dµ = 1, if φ(g) = φ0 is an element

of Cc(G;C∞(G,R)) that doesn't depend on g, then α(φ)(g0, g1) = φ0(g1).
We thus have that the composition:

C∞(G,V ) ↪→ Cc(G,C
∞(G,V ))→ C∞(G×G,V )→ C∞(G,V )

is the identity, where the �rst G-morphism is the inclusion as constant func-
tions, the second is the just de�ned map α and the lastG-morphism is dual to
the diagonal map. All the involved maps are G-morphisms, and the composi-
tion is the identity of C∞(G,V ). We already know that Cc(G,C∞(G,V )) is
continuously relatively injective, so we get the thesis from Lemma 1.2.4.

Proposition 1.7.2. The G-module Ωi(G;R) is continuously relatively injec-
tive.

Proof. We have already pointed out that

Ωi(G;R) ∼= C∞(G;R)⊗Hom(Λig,R)

and that G acts only on the �rst factor. This implies that Ωi(G;R) is a
�nite direct sum of relatively injective G-modules (it is a consequence of
Proposition 1.7.1) and so is itself relatively injective.

Proposition 1.7.3. Let H be any compact subgroup of G, then Ωp(G/H;R)
is relatively injective.

Proof. Consider the projection π : G → G/H. The pullback via π gives an
inclusion

Ωp(G/H;R) ↪→ Ωp(G;R)

whose image are precisely the di�erential forms that are invariant with re-
spect to the action of H via right multiplication, i.e. the di�erential forms ω
such that r∗hω = ω for every h ∈ H. Since H is compact, µ(H) < ∞ hence
we can de�ne the map

α : Ω(G;R)→ Ω(G;R)
αω = 1

µ(H)

∫
H r
∗
gωdµ(g)

By de�nition, α is a projection on π∗Ωp(G/H;R). Moreover it is easy to
show that α is continuous and that it is G-invariant (since the actions of G
on itself via left and right multiplication commute). This is enough to ensure
that Ωp(G/H;R) is relatively injective, since we already know that Ωp(G;R)
is (see Proposition 1.7.2).

The �rst part of the proof of van Est's Theorem doesn't require that the
compact subgroup K is maximal. This is however necessary to guarantee
that the resolution of the trivial G-module R provided by the di�erential
forms is strong:
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Proposition 1.7.4. Let K be a maximal compact subgroup of G. Then the

resolution

0 // R // Ω0(G/K;R) // Ω1(G/K;R) // Ω2(G/K;R) //

is strong.

Proof. This is a consequence of Poincaré's Lemma: the quotient of a Lie
group G by a maximal compact subgroup is di�eomorphic to Rn (see [Hel62,
IV, Theorem 2.2(iii)]). The usual proof of Poincaré's Lemma (that can be
found, for example, in [War83, 4.18]) provides a continuous contracting ho-
motopy that ensures that the resolution is strong.

Combining Proposition 1.7.3 and Proposition 1.7.4, we have shown van
Est's Theorem:

Theorem 1.7.5 (van Est). Let G be a Lie group, K < G a maximal compact

subgroup, M the associated homogeneous space. Then

H∗c (G;R) ∼= H∗(Ω∗(M ;R)G, d).

1.8 Explicit isomorphism

In Section 3.4 we will need explicit formulas for van Est's isomorphism.
These formulas were �rst given by Dupont in [Dup76, Section 5]. We will
need the fact that the quotient of a Lie group with respect to a maximal
compact subgroup has non-positive sectional curvature at every point and
hence is a uniquely geodesic space (and geodesics depend continuously on
their endpoints).

In view of Theorem 1.2.6 a G-chain map I∗ : Ω∗(G/K;R) → C∗c (G;R)
that extends the identity of R is unique up to G-chain homotopy; thus it is
su�cient to exhibit a particular chain map.

Let us �x a point x ∈M = G/K. We will need, for every i and for every
(i+1)-uple (g0, . . . , gi), a simplex spanning (g0x, . . . , gix) such that its choice
is invariant with respect to the action of G on Gi+1 via left multiplication
and on G/K via isometries. Since G/K is uniquely geodesic and geodesics
depend continuously on their endpoints, we can de�ne, by induction on i,
a geodesic simplex 4(g0, . . . , gi), coning on the �rst vertex. This means
that we are considering the function from the linear parametrization of the
standard i-simplex with values in X given by the formulas:

4(g0, . . . , gi)(t(1, 0, . . . , 0) + (1− t)s) = [g0x,4(g1, . . . , gi)(s)](t)
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where we denote by [a, b] : [0, 1] → X the unique geodesic with [a, b](0) =
a and [a, b](1) = b. Since X is uniquely geodesic, and G acts on X by
isometries, for every g in G we get

g · 4(g0, . . . , gi) = 4(gg0, . . . , ggi).

We can now exhibit explicit formulas for van Est's isomorphism:

Proposition 1.8.1. The chain G-morphism:

In : Ωn(G/K;R)→ Cnc (G;R)
In(ω)(g0, . . . , gn) =

∫
4(g0,...,gn) ω

induces, in homology, van Est's isomorphism.

Proof. Since inX geodesics depend continuously on their endpoints (with re-
spect to the C1 topology), the map is well de�ned and continuous. Moreover,
it is G-invariant:

lg(I
n(ω))(g0, . . . , gn) = In(ω)(g−1g0, . . . , g

−1gn)
=
∫
4(g−1g0,...,g−1gn) ω

=
∫
g−14(g0,...,gn) ω

=
∫
4(g0,...,gn) l

∗
g−1ω

= Inl∗g−1ω.

The fact that I∗ is a chain map descends from Stokes theorem and the choice
of the geodesic simplex spanning (g0, . . . , gn+1):

(dIn(ω)(g0, . . . , gn+1)) =
∑n

i=0(−1)i
∫
4(g0,...,ĝi,...,gn) ω

=
∫
∂4(g0,...,gn+1) ω

=
∫
4(g0,...,gn+1) dω

= In+1dω.
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Chapter 2

Continuous bounded

cohomology

The purpose of this chapter is to develop another cohomological theory for
locally compact groups that will have deep geometric applications in the next
chapters. More precisely, we will study the cohomology of the complex

Cncb(G;V ) = {f : Gn+1 → V | f is continuous and bounded}

where V is a normed vector space.
The functorial approach to continuous bounded cohomology is less trans-

parent then the one we dealt with in the unbounded setting: it is natural to
put on Cncb(G;V ) the topology of the uniform convergence (induced by the
operatorial norm), unfortunately the regular actions of G on Cncb(G;V ) are
not continuous with respect to this topology, while, in Chapter 1, we used
widely the fact that the regular actions of G on Cnc (G;V ) are continuous
with respect to the compact-open topology (see Lemma 1.3.1). However it
is possible, with some e�orts, to adapt the algebraic tools we have developed
in the �rst chapter to the context of continuous bounded cohomology.

In the �rst part of the chapter we will describe the necessary ingredi-
ents that make the algebraic machinery work in this context. Then we will
closely follow the exposition of Chapter 1 and discuss the analogies and the
di�erences of the two theories. We will refer to the monograph [Mon01] for
complete proofs. In particular we will study the resolutions provided by
continuous bounded functions and measurable bounded functions (these are
the analogues in the bounded context of continuous and locally integrable
functions that we have studied in the �rst chapter).

A big di�erence with respect to continuous cohomology is that no ana-
logue of Van Est's Theorem is known to hold in the bounded setting and
hence continuous bounded cohomology is in general much more di�cult to
compute. One of the main advantages of this theory is that the continuous
bounded cohomology of a group can be endowed with a seminorm that has
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a deep geometric meaning, as we will show in the next chapters.
Another key feature of the theory of continuous bounded cohomology

is that there is a large class of groups (namely the amenable groups that
we will de�ne in Section 2.6) that, roughly speaking, can be ignored in
the study of continuous bounded cohomology. This means that, if H < G
is amenable, the continuous bounded cohomology of G can be computed
from the complex Ccb((G/H)n;V )G, in particular the continuous bounded
cohomology of amenable groups vanishes. This feature will play a crucial
role in Chapter 4. Section 2.6 will be devoted to the study of amenable
groups and of quotients by amenable groups.

The theory of continuous bounded cohomology of locally compact groups
has been developed by Monod in [Mon01] and much of the material of this
chapter can be found in that monograph. However the theory of bounded
cohomology of discrete groups (that can be considered as a subcase of locally
compact groups) is older: it had already been deeply studied by Ivanov in
the late eighties (see [Iva87]).

The theory of bounded cohomology of discrete groups has interesting ge-
ometric motivations �rst discovered by Gromov in the seminal article �Vol-
ume and bounded cohomology� [Gro82]. It is possible to de�ne also the
bounded cohomology of a topological space X and if the discrete group G
is the fundamental group of X, a deep result of Gromov states that the
bounded cohomology of G is isometrically isomorphic to that of X. In turn
the bounded cohomology of a topological space carries informations about
interesting geometric invariants such as the simplicial volume.

In the last section of this chapter we will properly de�ne the bounded
cohomology of a topological space and discuss the relations with the bounded
cohomology of its fundamental group. In the following chapters we will study
the simplicial volume and we will see many applications of the theory of
continuous (bounded) cohomology in that setting.

2.1 Normed chain complexes

Let G be a locally compact group. A Banach G-module is a Banach vector
space V endowed with a representation π of G in the group of the isometric
linear automorphisms of V . A Banach G-module is continuous if the repre-
sentation is jointly continuous. The analogue of Lemma 1.2.2 holds in this
context: it is su�cient to verify that, for every v in V , the map g 7→ gv is
continuous.

Lemma 2.1.1. Let E be a Banach space on which G acts by isometries, the

following statements are equivalent

1. the action is continuous

2. the map g 7→ gv is continuous for every v ∈ E.
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Proof. Clearly the �rst assertion implies the second and hence we have only
to show that the function

G× E → E
(g, v) 7→ gv

is continuous. For this purpose let gn → g and vn → v be convergent
sequences in G and E respectively. Then

‖gnvn − gv‖ ≤ ‖gnvn − gnv‖+ ‖gnv − gv‖ ≤ ‖vn − v‖+ ‖(gn − g)v‖.

As usual we will denote by V G the submodule of V �xed by G.

V G = {v ∈ V | gv = v, ∀g ∈ G}.

Since a continuous Banach G-module is in particular a topological G-module,
we can consider the complex of the continuous n-cochains from G to V (cfr
Section 1.1)

Cnc (G,V ) = {φ : Gn+1 → V |φ is continuous}.

The norm on V induces a norm on Cnc (G,V ):

‖φ‖∞ = sup
(g0,...,gn)∈Gn+1

‖φ(g0, . . . , gn)‖V ∈ [0,∞].

The continuous bounded cochains are the elements of the subspace of Cnc (G,V )

Cncb(G;V ) = {φ ∈ Cnc (G,V ) | ‖φ‖∞ < +∞}.

The ‖ · ‖∞ norm makes Cncb(G,V ) a Banach space.
Since G acts on V via isometries, the regular left (resp. right) repre-

sentations of G on Cnc (G;V ) restrict to well de�ned isometric actions on
Cncb(G;V ).

Remark 2.1.2. Unfortunately this action is, in general, not continuous:
indeed let us �x φ in Cncb(G;V ), the map g 7→ gφ is continuous with respect
to the l∞ topology if the map φ is uniformly continuous with respect to
diagonal left translations:

‖gφ− φ‖∞ = supx∈Gn+1 ‖gφ(g−1x)− φ(x)‖V
≤ supx∈Gn+1 ‖gφ(g−1x)− gφ(x)‖V + ‖gφ(x)− φ(x)‖V

where the �rst term is small, provided g is close to e if φ is uniformly contin-
uous, the second is small since the module V is continuous and φ is bounded.

In particular, when n = 0, if the map g 7→ gφ is continuous then φ is
uniformly continuous:

supx∈G ‖φ(g−1x)− φ(x)‖V = supx∈G ‖gφ(g−1x)− gφ(x)‖V
≤ supx∈G ‖gφ(g−1x)− φ(x)‖V + ‖φ(x)− gφ(x)‖V
≤ ‖gφ− φ‖∞ + ‖φ(x)− gφ(x)‖V ,
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the �rst term tends to zero (when g is small) since the representation is
continuous, the second since the module V is continuous and φ is bounded
(and hence ‖φ(x)‖V ≤ ‖φ‖∞.

This problem will make the functorial approach described in the next
section far more complicated than the one described in Chapter 1.

The coboundary operator δ : Cnc (G,V )→ Cn+1
c (G,V ) de�ned in Section

1.1 restricts to a bounded operator δ : Cncb(G,V ) → Cn+1
cb (G,V ) that is G-

invariant. This implies that it restricts to the subcomplex of the G-invariants
Cncb(G,V )G.

De�nition 2.1.3. The continuous bounded cohomology ofG with coe�cients
in V is the cohomology of this complex:

H∗cb(G,V ) = H∗(C
∗
cb(G,V )G).

The continuous G-invariant bounded cochains form a normed chain com-
plex.

De�nition 2.1.4. A normed chain complex is a complex (C∗, ‖ · ‖C∗ , d∗)
where (C∗, ‖ · ‖C∗) is a Banach G-module, and di : Ci → Ci+1 is a bounded
linear operator.

If (C∗, ‖ · ‖C∗ , d∗) is a normed chain complex, its homology is naturally
endowed with a seminorm: if a ∈ Hi(C

∗) is a class, we can de�ne its norm
as

‖a‖ = inf
[α]=a

‖α‖Ci .

It is easy to see that the seminorm is subadditive (i.e. ‖a+ b‖ ≤ ‖a‖+ ‖b‖)
and homogeneous (i.e. ‖λa‖ = λ‖a‖) while, in general, it is not a norm:
even if the spaces Ci are Banach spaces and the maps di are bounded, there
is no reason for the image dCi to be closed in Ci+1.

If we consider the normed complex (Cicb(G,V )G, ‖ · ‖∞, δ), the seminorm
induced in cohomology is called the canonical seminorm on H∗cb(G,V ). We
will see in Section 3.2 that this seminorm has interesting geometric meanings.

In the next section we will adapt the relative homological algebra to the
context of continuous bounded cohomology in order to �nd other complexes
whose homology is isomorphic to H∗cb(G;V ). Since the seminorm has a deep
importance in geometric applications we will always need to show that the
induced isomorphisms are isometric.

The inclusion i : C∗cb(G;V )→ C∗c (G;V ) induces a map in cohomology

c : H∗cb(G;V )→ H∗c (G;V )
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that is known as the comparison map. This map is, in general, not injective
nor surjective, however we will show in Section 4.5 that, if G = Isom(H2 ×
H2), the comparison map

c : H4
cb(G;V )→ H4

c (G;V )

is an isomorphism (this result is due to Bucher-Karlsson [Buc08B]).

2.2 Some homological algebra

We have pointed out in Remark 2.1.2 that the Banach G-modules C∗cb(G;V )
are, in general, not continuous. However the algebraic machinery works
only in the category of continuous G-modules: we will need to prove that
Ccb(G;V ) is relatively injective, but if the Banach G-modules on the �rst
row of the diagram below are not continuous, there is no hope that β(b) is
continuous, when b belongs to B.

A
φ

//

α
��

B
σ

tt

βzz
Ccb(G,V )

However it is worth remarking that the action of G on Ccb(G;V )G is continu-
ous (being trivial). We can hence consider, instead of Ccb(G;V ), its maximal
continuous submodule:

De�nition 2.2.1. Let V be a Banach G-module, the maximal continuous

submodule of V is

CV = {v ∈ V |G→ V, g 7→ gv is continuous}.

As a consequence of Lemma 2.1.1, the maximal continuous submodule of
a Banach G-module is a continuous Banach G-module.

Since we are working in the category of Banach G-modules, all the maps
will be linear and bounded, unless otherwise stated. Moreover, if V and W
are Banach G-modules, we will call a linear bounded morphism

φ : V →W

a G-morphism if it commutes with the representations, i.e. if φ(gv) = gφ(v),
for every v ∈ V . A useful lemma is the following

Lemma 2.2.2. Let A be a continuous Banach G-module, let B be a Banach

G-module, and φ : A→ B be a G-morphism. Then im(φ) ⊆ CB.

Proof. Let b = φ(a), the map g 7→ gb is continuous since gb = gφ(a) = φ(ga)
and hence it is a composition of continuous functions.
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Since we will need to control the seminorms, the appropriate notion of
strongly injective morphism in this context is slightly di�erent from the one
we gave in Chapter 1 (moreover we call it admissible injective following the
notation of [Mon01] and thus reserving the adjective strong for the continu-
ous submodules).

De�nition 2.2.3. A G-morphism between two Banach G-modules φ : V →
W is admissible injective if it has a linear left inverse σ : W → V with
‖σ‖ ≤ 1.

V
φ

// W
σuu

.

As in Chapter 1 we do not require σ to be a G-morphism. This de�nition
is more restrictive than the one we gave in Chapter 1. An admissible injec-
tive G-morphism is a continuously strongly injective G-morphism, but the
converse is not true: the requirement that the image of V is complemented
in W is necessary but not anymore su�cient to guarantee that the inclusion
V ↪→W is admissible injective.

De�nition 2.2.4. A Banach G-module Z is relatively injective if, for every
pair of continuous BanachG-modules V andW , for every admissible injective
G-morphism φ : V → W , for every G-morphism α : V → Z, there exists a
G-morphism β : W → Z with ‖β‖ ≤ ‖α‖, making the diagram commutative.

V
φ

//

α

��

W
σuu

β~~
Z

This de�nition shades light on the reason why we have required that the
norm of the inverse of a strongly injective G-morphism is smaller than one:
without that assumption, we wouldn't have been able to control the norm
of β.

Lemma 2.2.5. If Z is relatively injective, also CZ is.

Proof. Lemma 2.1.1 implies that, since V and W are continuous Banach
G-modules, and α and β are G-morphisms, the image of α and β is indeed
contained in CZ.

The analogue of Lemma 1.2.4 holds with these de�nitions:

Lemma 2.2.6. Let W be a relatively injective Banach G-module. Assume

that α, β are G-morphisms such that β ◦ α = idV , ‖β‖ ≤ 1. Then V is

relatively injective.
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A
φ

//

γ

��

B
σ

uu

δ

��

~~
V

α

��
W

β

VV

Let us now �x a continuous Banach G-module V . A Banach resolution
(F i, di) of the Banach G-module V is a resolution (i.e. an exact complex
null in negative dimension di�erent from -1 and with F−1 = V ) made by
Banach G-modules and G-morphisms. As a consequence of Lemma 2.2.2,
the di�erentials restrict to the maximal continuous subresolution (CF i, di).

The Banach resolution (F i, di) is strong if its maximal continuous sub-
resolution (CF i, di) admits a contracting homotopy, i.e. a collection of linear
maps ki : F i → F i−1 such that ‖ki‖ ≤ 1 and ki+1di + di−1ki = idF i .

0 // V // F 0
d0

//
k0

uu
F 1

d1
//

k1tt
F 2

d2
//

k2tt
F 3 //

k3tt . . .tt

This de�nition has two important di�erences from the de�nition of strong
resolution of a continuous G-module: the �rst is that we require the con-
tracting homotopy to have norm bounded by one, the second is that whether
a resolution is strong depends on the representation: the continuous sub-
module of a Banach G-module depends on the representation. Indeed, in
general, a contracting homotopy of the Banach resolution (F ∗, d) doesn't
induce a contracting homotopy of the continuous subresolution (since k is
not G-invariant).

We are now ready to restate the fundamental theorem of homological
algebra in the context of continuous bounded cohomology. We will omit
its proof that is analogue to that of Theorem 1.2.6, even though extra care
should be taken in passing from the Banach resolutions to the continuous
subresolutions. It can be found in [Mon01, Theorem 7.2.1(ii)].

Theorem 2.2.7. Let (F ∗1 , d1) and (F ∗2 , d2) be two strong Banach G-resolutions
of the Banach G-module V . If F i1 and F i2 are relatively injective Banach G-
modules for every i, there exist G-morphisms hi : CF i1 → CF i2 making the

diagram commutative. The hi are unique up to G-chain homotopy.

0 // CV //

id

CF 0
1

d //

h0
��

CF 1
1

d //

h1
��

CF 2
1

d //

h2
��

. . .

0 // CV // CF 0
2

d // CF 1
2

d // CF 2
2

d // . . .
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A consequence of Theorem 2.2.7 is that the homology of the invariants of
two strong relatively injective Banach resolutions of a Banach G-module are
isomorphic:

Corollary 2.2.8. Let (F ∗1 , d1), (F ∗2 , d2) two strong relatively injective Ba-

nach resolutions of the Banach G-module V . The homology group of the

subcomplexes ((F ∗1 )G, d1), ((F ∗2 )G, d2) are isomorphic:

H∗((F
∗
1 )G, d1) ∼= H∗((F

∗
2 )G, d2)

Proof. It is su�cient to remark that the G-invariants (F ∗i )G provide a G-
submodule of the continuous subresolutions and then apply the same argu-
ments of Corollary 1.2.7

The homological methods just introduced are powerful tools to show the
isomorphism of the homologies but cannot ensure that this isomorphism is
isometric. The following example shows that in general we cannot assume
that it is:

Example 2.2.9. Let us consider any strong, relatively injective Banach
resolution (F ∗, d) of a Banach G-module V . We denote by ‖ ·‖k the norm on
F k. Let us now consider the resolution (F̃ ∗, d) where F̃ k is the vector space
F k endowed with the norm k‖ · ‖k. Since we have rescaled the norm with
increasing factors also the resolution F̃ ∗ is strong (the maximal continuous
submodules coincide and the contracting homotopy has norm bounded by
1). The identity is an isomorphism between the two resolutions but its
operatorial norm in degree k is k and hence the isomorphism it induces in
homology isn't isometric.

Since we will be interested in the seminorms, we will need extra e�orts
to show that, in each relevant case, the isomorphisms we will be considering
are isometric.

2.3 The standard resolution

One big di�erence with respect to the unbounded case is that, in the context
of continuous bounded cohomology, the restriction of the map

Ψ : Cnc (G,V )→ Cc(G,C
n−1
c (G,V ))

Ψ(φ)(g0)(g1, . . . , gn) = φ(g0, g1, . . . , gn)

to bounded cochain is not well de�ned since the map Ψ(φ) isn't, in general,
continuous with respect to the norm of uniform convergence: the continuity
of Ψ(φ) corresponds to a uniform continuity of φ with respect to translations
in the �rst coordinate:

‖Ψ(φ)(g)−Ψ(φ)(e)‖∞ = sup
(g1,...,gn)∈Gn+1

‖φ(g, g1, . . . , gn)−φ(e, g1, . . . , gn)‖V .
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In this section we will show that the modules C̄ncb(G;V ) de�ned induc-
tively by

C̄n+1
cb (G,V ) = Ccb(G, C̄

n
cb(G,V ))

provide a strong relatively injective resolution of the Banach G-module V :
in the unbounded case we used this result to get that the same result is true
for Cnc (G,V ) (since C̄nc (G;V ) ∼= Cnc (G;V )).

In the bounded context the fact that Cncb(G,V ) is relatively injective
is not anymore a straightforward consequence of the relative injectivity of
Ccb(G,V ) but is still true provided G is locally compact. We will show how
it is possible to get this result in Section 2.5 using a generalized Bruhat
function.

Let us consider the Banach space Ccb(G;V ) with respect to the sup norm
as de�ned in Section 2.1. Both the regular left representation and the regular
right representation are isometric and hence make Ccb(G;V ) a Banach G-
module.

The operator T we have de�ned in Section 1.3 requiring that

(Tφ)(x) = xφ(x−1)

is isometric (since G acts on V via isometries) and intertwins the two repre-
sentations. It is hence su�cient to show that the regular right representation
is relatively injective.

Proposition 2.3.1. Ccb(G,V ) endowed with the regular right representation
is relatively injective.

Proof.

A
φ

//

γ

��

B
σ

tt

zz

δ

������������������

Ccb(G,V )

i
��

Cc(G;V )

Let us �x an admissible injective morphism of continuous Banach G-modules
φ : A → B. We have already pointed out that an admissible injective
morphism of Banach G-modules is in particular a strongly injective mor-
phism of topological G-modules and hence we can consider the extension
δ : B → Cc(G;V ) of i ◦ γ constructed in the proof of Proposition 1.3.2.

We recall that δb(g) = γ(σ(gb))(e) for every b ∈ B, g in G. We have
already proved that δ is continuous and G-invariant, it only remains to prove
that its image lies in Ccb(G;V ):

‖δb‖ = sup
g
‖γ(σ(gb))‖V = ‖γ‖‖σ‖‖b‖ ≤ ‖γ‖‖b‖.
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This concludes the proof since ‖δ‖ ≤ ‖γ‖ and hence δ satis�es the required
properties.

Let us now consider the coboundary operator inductively de�ned by

d̄ : C̄ncb(G,V )→ C̄n+1
cb (G,V )

(d̄φ)(g) = φ− d̄(φ(g)).

In the unbounded setting it holds d̄Ψ = Ψd with d the natural coboundary
operator. It is easy to verify that d̄ is a G-morphism. We will denote by
H̄∗cb(G,V ) the homology of the complex

0 // C̄0
cb(G,V ) // C̄1

cb(G,V ) // C̄2
cb(G,V ) //

In Section 2.5 we will get the isometric isomorphism H∗cb(G;V ) ∼= H̄∗cb(G;V ).

Theorem 2.3.2. Let (F ∗, d) be any strong relatively injective Banach reso-

lution of the Banach G-module V . Then

H∗((F
∗)G, d) ∼= H̄∗cb(G,V ).

Moreover the isomorphism doesn't increase the norm.

Proof. The Banach resolution (C̄ncb(G;V ), d̄n) is strong because the opera-
tors kn : C̄ncb(G,V ) → C̄n−1

cb (G,V ), φ 7→ φ(e) have norm bounded by one
and satisfy kd̄ + d̄k = id. Moreover the image of the restriction of k to the
continuous submodule CC̄ncb(G,V ) is contained in CC̄n−1

cb (G,V ) (this is ana-
logue to Lemma 2.1.2). Hence the �rst part of the theorem descends from
Theorem 2.2.7.

In order to prove the second statement it is su�cient to exhibit a chain
G-morphism α : F ∗ → C̄ncb(G,V ) that extends the identity on V and has
norm, in each dimension, bounded by one.

V //

id

F 0
d0 //

α0

��

F 1
d1 //

h

kk

α1

��

F 2

h

kk
d2 //

α2

��

. . .

V // C̄0
cb(G;V )

d̄0 // C̄1
cb(G;V )

d̄1 // C̄2
cb(G;V )

d̄2 // . . .

Let us de�ne inductively the map αi by the formula

αi(f)(g) = αi−1gh(g−1f)

Since G acts on F ∗ via isometries and ‖h‖ ≤ 1, it is obvious that the
norm of αi is not greater than the norm of αi−1 and hence is not greater
than one (since α−1 = id). Since we have already justi�ed the continuity
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and the G invariance of α (for example in Proposition 2.3.1), it only remains
to prove that α∗ commute with the di�erentials:

d̄i(αi(f))(g) = αi(f) + d̄i−1(αi(f)(g)) =
= αi(f) + d̄i−1(αi−1gh(g−1f)) =
= αi(f) + αigdi−1h(g−1f) =
= αi(f)− αi(f) + αighd(g−1f) =
= αighg

−1df =
= αi+1df(g)

where we used the de�nition, the inductive hypothesis, the fact that both α
and d are G-morphisms and the fact that hd− dh = id.

Remark 2.3.3. Theorem 2.3.2 explains the terminology we have used in
Section 2.1: the seminorm onH∗cb(G,V ) de�ned in Section 2.1 (that coincides
with the seminorm just de�ned on H̄∗cb(G,V ), as we will prove in the next
section) is canonical as much as it can be described as the in�mum of all the
seminorms induced by any Banach strong relatively injective resolution of V .
The requirement that ‖σ‖ ≤ 1 for any contracting homotopy is important
at this point: if we drop that requirement, we would only get, with the
notations of Proposition 2.3.1 that ‖δ‖ ≤ ‖γ‖‖σ‖. This wouldn't guarantee
that the canonical seminorm is indeed the in�mum.

2.4 Resolution via measurable bounded functions

The purpose of this section is the study of an analogue, in the bounded
context, of the locally integrable functions we have studied in Section 1.4. If
we restrict to the coe�cient module R, every bounded measurable function is
locally integrable with respect to the Haar measure (that is �nite on compact
subset): this because we are restricting to locally compact groups. This
implies that, for trivial coe�cients, the measurable functions are the bounded
version of locally integrable functions. In the more general context of Banach
G-module coe�cients, we need to �nd a suitable version of measurability (it
will be weak*-measurability), that has good properties. In order to properly
de�ning the concept of weak*-measurability we need to restrict ourselves to
a (broad) class of coe�cient, the coe�cient G-modules, that are, roughly
speaking, G-modules for wich a preferred predual that has good properties
is �xed:

De�nition 2.4.1. A coe�cient G-module is a Banach G-module (π,E) con-
tragradient to some separable continuous Banach G-module (π[, E[).

The contragradient of a Banach G-module V is its topological dual en-
dowed with the G-action de�ned by g · φ = φ ◦ g−1. This corresponds to the
G-module Hom(V,R) if R is endowed with the trivial G-structure.
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A �rst, elementary example of coe�cient G-modules are the �nite di-
mensional G-modules (that are, indeed, the only coe�cients in which we
will be interested for geometric applications). Another example are separa-
ble Hilbert spaces with any continuous G-action.

Let now (S, µ) be a measured space (for example the group G itself
with the Haar measure) endowed with a measure preserving G-action. Let,
moreover, V be a coe�cient G-module. We will denote by L∞(S, V ) the
G-module

L∞(S;V ) = {f : S → V | f is bounded, weak*-measurable}.

Here, by the weak*-measurability condition, we mean that, for every v ∈ V [,
the function s→ f(s)(v) is a measurable function from S to R. As usual we
endow L∞(S;V ) with the regular left representation: (gf)(s) = g(f(g−1s)).
An important feature of the theory of bounded weak*-measurable function
is that, if V is a coe�cient G-module, also L∞(S;V ) is:

Proposition 2.4.2. The module L∞(S;V ) is a coe�cient G-module in a

canonical way.

Proof. It can be proved that it is contragradient to L1(S, V ). See [Mon01,
Corollary 2.3.2].

One of the main advantages of weak*-measurability is that it can be
proved that, for weak*-measurabile functions, holds the exponential law:

Proposition 2.4.3. Let (S1, µ1) and (S2, µ2) be two measured G-spaces, and
let V be a coe�cient G-module, then

L∞(S1 × S2;V ) ∼= L∞(S1, L
∞(S2;V )).

Proof. See [Mon01, Corollary 2.3.3]

The thesis of Proposition 2.4.3 is the analogue of a statement that we
have widely used in Chapter 1 (and doesn't hold for continuous bounded
functions).

In the rest of the section we will study the Banach modules L∞(Gn;V ), with
the sup norm, and endowed with the regular left representation. As already
happened for the continuous bounded functions, the action on the bounded
measurable functions is clearly isometric, but it isn't continuous. As one
can easily guess, we want to show that the complex (L∞(G∗, V ), d) with the
usual coboundary operator provides a strong relatively injective resolution
of the Banach G-module V .

Proposition 2.4.4. The module L∞(Gn+1;V ) is a relatively injective Ba-

nach G-module.
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Proof.

A
φ

//

γ

��

B
σ

tt

δyy
L∞(Gn, V )

We have already pointed out in Proposition 2.4.3 that, for bounded weak*-
measurable functions, we can rely on the isomorphism

L∞(Gn+1;V ) ∼= L∞(G,L∞(Gn;V )).

and hence, we can reduce to prove that L∞(G;V ) is relatively injective.
Moreover we rely on the fact that

CL∞(G;V ) = CCcb(G;V )

(also this result comes from hard functional analysis and we refer to [Mon01,
Lemma 4.4.3] for a proof). Since we have already pointed out that a module
is relatively injective if and only if its maximal continuous submodule is, we
get the thesis of the proposition from Proposition 2.3.1.

Proposition 2.4.5. The Banach resolution of the continuous Banach G-
module V

0 // V // L∞(G;V ) // L∞(G2;V ) // . . .

is strong.

Proof. The result is proved in [Mon01, Lemma 7.5.5]. The contracting ho-
motopy

ki : CL∞(G;L∞(Gn;V ))→ CL∞(Gn;V )

can be constructed averaging with respect to any probability measure on G.
Explicit formulas for ki and the proof that im(ki) lies in CL∞(Gn;V ) are
given in [Mon01, Proposition 5.5.1].

Theorem 2.4.6. The cohomology of the complex

0 // L∞(G;V )G // L∞(G2;V )G // L∞(G3;V )G // . . .

(2.1)
is isometrically isomorphic to H∗cb(G;V ).

Proof. We have already proved that (L∞(Gi;V ), d) is a strong relatively
injective Banach resolution of V and hence the homology of the complex
(2.1) is isomorphic to H̄∗cb(G;V ).

To prove that the isomorphism is isometric it is su�cient to exhibit a
chain G-morphism CC̄icb(G,V )→ CL∞(Gi+1;V ) with norm bounded by one
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in each dimension: this would imply that the norm induced on H̄cb(G;V ) by
the resolution (CL∞(Gi;V ), d) is not greater than the canonical seminorm
and hence is equal to it (as a consequence of Remark 2.3.3).

To obtain such a chain G-morphism, we consider the composition

C̄icb(G;V ) ↪→ Cicb(G;V ) ↪→ L∞(Gi+1;V )

that is obviously G-invariant and isometric.

2.5 Other useful resolutions

One of the main problems in generalizing the results we have obtained in
Section 1.5 to the bounded context is that we cannot anymore rely on a
statement of the form

Ccb(S
2, V ) ∼= Ccb(S,Ccb(S, V )),

and hence the proof of the relative injectivity of the various modules is far
more complicated. One of the easiest way to overcome this di�culty is to
use a generalized Bruhat function. We have already de�ned (in Chapter 1)
a Bruhat function for the action of a closed subgroup on a locally compact
topological group via left multiplication (see De�nition 1.6.2). We now need a
slightly more general de�nition that comprehends the one we gave in Section
1.5:

De�nition 2.5.1. Let G be a group acting on a topological space X. A
generalized Bruhat function for the action of G on X is a continuous function
h : X → R+ such that

� for every x in X, then
∫
G h(g−1x)dg = 1;

� for every compact subset K of X, the set supp(h) ∩GK is compact.

We recall that a Hausdor� topological space is said paracompact if any
open cover admits a locally �nite open re�nement; it is a mild assumption
since, for example, every metrizable space is paracompact (see [Mon01, Re-
mark 4.5.3], and any locally compact, σ-�nite topological space is paracom-
pact. The following proposition assures that generalized Bruhat functions
exist if the action of G is proper.

Proposition 2.5.2. Let X be a locally compact topological space such that

G acts continuously and properly on X and such that the quotient is para-

compact. Then there exists a generalized Bruhat function for the G-action
on X.

Proof. See [Mon01, Lemma 4.5.4]
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Proposition 2.5.2 is useful to show that many modules are relatively
injective:

Theorem 2.5.3. Let G be a locally compact group that acts continuously

and properly on a locally compact space such that the quotient G\X is para-

compact. Then Ccb(X,V ) is a relatively injective Banach G-module.

Proof. The proof is analogue to the proof of Proposition 1.6.5: the general-
ized Bruhat function allows to average on the G-orbits the value of ασ and
hence to de�ne the extension β by the formula

β(b)(x) =

∫
G
h(g−1x)α(gσ(g−1b))(x).

The properties of the Bruhat function imply all the required properties (i.e.
that β is well de�ned, continuous, invariant, extends α and has norm smaller
then ‖α‖). See [Mon01, Theorem 4.5.2] for more details.

Theorem 2.5.4. Let G be a locally compact group, let X be a locally compact

topological space with a continuous proper G-action such that the quotient

G\Xn is paracompact for every n. Then the cohomology of the complex

0 // V // Ccb(X;V )G // Ccb(X
2;V )G // . . .

is isometrically isomorphic to H̄cb(G,V ).

Proof. We have already proved that, under these hypoteses, the modules
Ccb(X

n;V ) are relatively injective (using a Bruhat function for the action of
G on Xn).

It is not obvious that the complex is strong: the cone operator doesn't
induce a map between the maximal continuous submodules since the cone
of a function that is uniformly continuous with respect to the diagonal left
multiplication needs not to be uniformly continuous with respect to the left
multiplication. However the existence of a Bruhat function for the action
of G on the �rst factor X allows to construct a contracting homotopy that
restricts to the maximal continuous submodules. Let us de�ne the map σ:

σ : Ccb(X
n+1;V )→ Ccb(X

n;V )
σφ(x1, . . . , xn) =

∫
G h(g−1x)φ(gx, x1, . . . , xn)dx.

It is easy to verify (see [Mon01, Theorem 7.4.5]) that σ is continuous
(since h is continuous) and that σ restricts to the maximal continuous sub-
modules. Moreover the �rst property of a Bruhat function implies that σ
has norm at most one and hence the complex is indeed strong.

It only remains to prove that the isomorphism is isometric. As a conse-
quence of the minimality property of the canonical seminorm, it is su�cient
to exhibit a norm decreasing chain map
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V //

id

CC̄0
cb(G;V ) //

α

��

CC̄1
cb(G;V ) //

α

��

CC̄2
cb(G;V ) //

α

��

. . .

V // CCcb(X;V ) // CCcb(X2;V ) // CCcb(X3;V ) // . . .

Again this can be de�ned using a Bruhat function for the action of G onX: if
we identify the functions in C̄ncb(G,R) with bounded functions φ : Gn+1 → R,
we can de�ne

αφ(x0, . . . , xn) =

∫
Gn
h(g−1

0 x0) . . . h(g−1
n xn)φ(g0, . . . , gn)dg0 . . . dgn.

Since, under the identi�cation of C̄ncb(G,R) with a subspace of Cncb(G,R), the
inhomogeneous di�erential d̄ is precisely the restriction of the homogeneous
di�erential d, the maps α∗ commute with the di�erential. It is also easy
to verify that they are continuous and G-invariant and hence provide the
required chain G-morphism.

Remark 2.5.5. Let us denote by Ccb(Xn, V )alt the subcomplex of the al-
ternating functions. The alternating operator

Alt : Ccb(X
n, V )→ Ccb(X

n, V )alt
Alt(φ)(x0, . . . , xn) = 1

(n+1)!

∑
σ∈Sn+1

φ(xσ(0), . . . , xσ(n))

is a chain G-morphism that extends the identity and has norm, in every
dimension, not greater than one. Since the canonical seminorm is the small-
est norm on H̄∗cb(G,V ) (cfr. Remark 2.3.3), and since we have proved in
Theorem 2.5.4 that the canonical seminorm is induced by the sup norm on
Ccb(X

n, V )G, the homology of Ccb(Xn, V )Galt is isometrically isomorphic to
H̄∗cb(G,V ).

Theorem 2.5.4 has many applications and will allow us to �nd analogues,
in the bounded context, of the results of Section 1.3, Section 1.5 and Section
1.6.

A �rst important application is to show that the continuous bounded
cohomology of a locally compact topological group can be computed from
the homogeneous resolution:

Theorem 2.5.6. If G is a locally compact group, there exist an isometric

isomorphism

Hn
cb(G,V ) ∼= H̄n

cb(G,V ).

Proof. The topological space Gn satis�es the hypotesis of Theorem 2.5.4
since the action of G on Gn+1 via diagonal left multiplication is obviously
continuous and proper (since the diagonal is closed). Moreover the quotient
is paracompact by Proposition 13 in [Bou52, Chapter 4, Paragraph 6].
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Another important application of Theorem 2.5.4 is the bounded version of
Theorem 1.5.2 i.e. that we can factor a compact subgroup without changing
the continuous bounded cohomology. As we have already set in Section 1.5,
G will denote a locally compact group, K is a compact subgroup, G/K the
topological space of left cosets as a quotient of G with respect to the right
K action. We consider on G/K (and also on (G/K)i) the action of G via
left multiplication.

Theorem 2.5.7. For every Banach G-module V , the cohomology of

0 // Ccb(G/K;V )G // Ccb((G/K)2;V )G // . . .

is isometrically isomorphic to H∗cb(G;V ).

Proof. We have only to prove that (G/K)n satis�es the hypotesis of Theorem
2.5.4. Clearly G/K is localy compact and the action of G on it is continuous
and proper. It remains to prove that G\(G/K)n is paracompact. Since left
and right actions commute, we can �rst factor the diagonal action ∆(G)\Gn
and then consider the quotient with respect to the action of the compact
group Kn: if X is paracompact and X → X/R is proper, also X/R is
paracompact (see [Mon01, Lemma 4.5.9]).

As a consequence of Theorem 2.5.4, we also get that the seminorm in-
duced in cohomology from the resolution Ccb((G/K)n;V ) is the canonical
seminorm. Since the morphisms

π∗ : Ccb((G/K)n;V )→ Ccb(G
n;V )

form a chain G-morphism that extend the identity and have norm smaller
than one, we get that they induce isometric isomorphisms in cohomology.

Corollary 2.5.8. Let G = Isom+(Hn), let K be a maximal compact sub-

group (corresponding to the stabilizer of a point x ∈ Hn). The cohomology

H∗cb(G;R) can be computed from the complex C∗cb((Hn)k,R)Galt. Moreover the

sup norm on this complex induces the canonical seminorm.

Proof. It is joint corollary of Theorem 2.5.7 and Remark 2.5.5.

A last important application of Theorem 2.5.4 is the generalization of
Theorem 1.6.1 to the bounded context. Namely if H is a closed subgroup
of G we can compute the continuous bounded cohomolgy of H from the
subcomplex of the H invariants of the resolution (Cncb(G,V ), d).

Theorem 2.5.9. Let H be a closed subgroup of the locally compact group G.
The homology of

0 // Ccb(G;V )H // Ccb(G
2;V )H // Ccb(G

3;V )H

is isometrically isomorphic to H∗cb(H,V ).
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Proof. We have to prove that, for every n, the quotient ∆(H)\Gn is para-
compact and this fact follows from the fact that, since H is closed in H, also
∆(H) is closed in Gn.

The thesis of Theorem 2.5.9 is that the homology of Ccb(G∗;V )H is iso-
metric to H∗cb(H;V ) we will need an explicit description of a map at the
level of cochains that induces the isometry in cohomology. Let us consider
the restriction map

Cncb(G,V )→ Cncb(H,V )

induced by the inclusion of H in G. It is obviously norm non-increasing and
we have constructed, in the proof of Theorem 2.5.4, a homotopical inverse
that is norm not increasing; this implies that the restriction map induces an
isometry between the homologies of the subcomplexes of the H-invariants
of the two complexes. We will use this result in Theorem 3.3.10 and in
Proposition 4.1.1.

2.6 Amenable groups and amenable actions

A corollary of Theorem 1.5.2 is that the continuous cohomology of a compact
group is trivial. An interesting feature of continuous bounded cohomology is
that this fact can be generalized to a larger class, the amenable groups, that
will be the subject of this section. The de�nition and the �rst properties of
amenable topological groups can be found in [Gre69].

De�nition 2.6.1. A topological group G is amenable if there exist a G-
invariantmean on L∞(G,R) i.e. a linear, norm one functionm : L∞(G,R)→
R such that

� m(1) = 1, m(f) ≥ 0 if f ≥ 0

� (lg)∗m = m.

An useful tool in the study of amenable groups is the following theorem:

Theorem 2.6.2. The following statements are equivalent:

1. there exists a left invariant mean on L∞(G;R);

2. there exists a left invariant mean on Ccb(G;R).

Proof. Since Ccb(G;R) is a closed subspace of L∞(G;R), the invariant mean
on L∞(G;R) restricts to an invariant mean on Ccb(G;R), hence the proof of
the implication 1⇒ 2 is trivial.

In order to prove the converse implication, let us recall that the (right)
convolution of the functions φ ∈ L1(G;R) and f ∈ L∞(G;R) is de�ned by
the formula

f ∗ φ(s) =

∫
f(t)φ(t−1s)dt
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where dt denotes the left invariant Haar measure on G. The convolution has
the property that, if φ has compact support, then, for every f ∈ L∞(G;R),
the function f ∗ φ belongs to Ccb(G;R); this follows from the continuity of
the action (via left multiplication) of G on L1(G):

f ∗ φ(s)− f ∗ φ(sx) =
∫
f(t)φ(t−1s)− f(t)φ(t−1sx)dt

≤ ‖f‖∞
∫
φ(t−1s)− φ(t−1sx)dt.

Moreover, another useful property of the (right) convolution is that (lgf) ∗
φ = lg(f ∗ φ):

(lgf) ∗ φ(s) =
∫
f(gt)φ(t−1s)dt

=
∫
f(gt)φ(t−1g−1gs)dt

=
∫
f(t)φ(t−1gs)dt

= lg(f ∗ φ).

Let us now �x a left invariant mean m on Cc(G;R), we want to construct
a mean on L∞(G;R). Let us choose a compact neighborhood K of e and
consider φ the characteristic function of K normalized so that

∫
φ = 1.

The �rst property of convolution assures that, for every f ∈ L∞(G;R), the
function f∗φ belongs to Cc(G;R). We can thus de�ne a mean m̃ on L∞(G;R)
by requiring that m̃(f) = m(f ∗φ). The left invariance ofm implies that also
m̃ is invariant: m̃(lgf) = m((lgf)∗φ) = m(lg(f ∗φ)) = m(f∗φ) = m̃(f).

A �rst application of Theorem 2.6.2 is that it enables to deduce result
on the amenablity of topological groups from the amenability of discrete
groups. Here by a discrete amenable group G we mean a group that admits
a G-invariant mean on the bounded functions from G to R; the theory of
amenability for discrete groups is somehow easier than that for topological
groups. When we deal with topological group G, we can consider G as a
discrete group (forgetting its topology). Theorem 2.6.2 implies that if G is
amenable as a discrete group, it is also amenable as a topological group (since
the continuous bounded functions are a subspace of the bounded functions).
The converse implication is false, we will now prove that compact groups are
amenable as topological groups, but some ortogonal groups are not amenable
as discrete groups (see [Gre69, p.26]).

Proposition 2.6.3. Any compact group K is amenable.

Proof. The map
L∞(K,V ) → V

f 7→ 1
µ(K)

∫
K fdµ

is a desired mean (since the Haar measure is left invariant).

Another class of groups that are amenable are the abelian groups:

Theorem 2.6.4. Let A be abelian, then A is amenable.
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Proof. Any discrete group that is abelian is amenable (see [Gre69, Theorem
1.2.1]). In particular this implies that a topological abelian group is amenable
since the continuous bounded functions are a subspace of the bounded ones
(see [Gre69, Theorem 2.2.1]).

The class of amenable groups is closed with respect to quotients, closed
subgroups and extensions:

Theorem 2.6.5. Homomorphic images of amenable groups are amenable,

closed subgroups of amenable groups are amenable, extensions of amenable

groups via amenable groups are amenable.

Proof. The assertions are [Gre69, Theorem 2.3.1], [Gre69, Theorem 2.3.2]
and [Gre69, Theorem 2.3.3] respectively.

The importance of amenable groups in the theory of continuous bounded
cohomology is due to the fact that their cohomology is zero.

Proposition 2.6.6. If G is amenable, then H∗cb(G;R) = 0.

Proof. It is su�cient to show that R is relatively injective as G-module.
However, since there exists a G-invariant mean

m : L∞(G,R)→ R

that is left inverse to the inclusion of R as coe�cients, we get that R is
relatively injective (since L∞(G,R) is).

Proposition 2.6.6 is far more general: it can be proved that, for every
coe�cient G-module V , the mean m : L∞(G,R) → R allows to construct a
mean on L∞(G,V ) and thus that V is relatively injective; this implies that
H∗cb(G,V ) = 0. Since we will need that means on L∞(G,V ) exist we state
this result for further reference.

Proposition 2.6.7. Let G be an amenable group an V a separable re�exive

Banach G-module. Then there exists a G-invariant mean L∞(G,V )→ V .

Proof. The result follows from [Mon01, Example 5.7.3] and [Mon01, Theorem
5.6.1].

One of the most interesting features of amenable groups is that we can
use the invariant mean as an analogue of Haar measure in oreder to average
measurable cochains:

Proposition 2.6.8. Let P be an amenable group, then there exists a G-
invariant linear map

L∞(G,V )
α // L∞(G/P, V )

such that ‖α‖ ≤ 1 and such that α is left inverse to the inclusion i :
L∞(G/P, V )→ L∞(G,V ).
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Proof. We identify L∞(G/P, V ) with the submodule of L∞(G,V ) invariant
with respect to right translations of elements in P . The invariant mean on
L∞(P,L∞(G,V )) allows to generalize the proof of Proposition 1.5.1 in this
context interchanging the role of the integral with that of the mean.

Let us �x f ∈ L∞(G,V ), we de�ne the function

Φf : P → L∞(G,V )
p 7→ rpf

and we put α(f) = m(Φf ). The map α is obviously linear (since m is)
and has norm one. Moreover it is a G-morphism since left and right actions
commute. It only remains to prove that its image is contained in the space
of (right) P -invariant functions.

rpα(f)(g) = α(f)(gp)
= m(Φf )(gp)
= m(lp−1Φf )(g)
= α(f)(g).

Here above we used the fact that Φf (x)(gp) = rxf(gp) = f(gpx) = rpxf(g) =
(lp−1Φf (x))(g).

The theory of amenable groups has been widely developed by Zimmer
(see [Zim84]), who constructed the theory of amenable actions (of groups
on topological spaces). This theory has deep implications on continuous
bounded cohomology but relies on non-elementary results of ergodic theory
and goes behind the purposes of this thesis. We will only give a de�nition of
an amenable action (di�erent from Zimmer's original but equivalent to that)
and draw an elementary consequence.

De�nition 2.6.9. Let (S, µ) be a G-space with a quasiinvariant measure.
The action of G on (S, µ) is amenable if there exists a projectionm : L∞(G×
S;R)→ L∞(S;R) that is

� G-equivariant;

� L∞(S;R) linear,

� m(1G×S) = 1S , and m(f) ≥ 0 for every f ≥ 0.

Proposition 2.6.10. If the action of G on S is amenable, then L∞(S;R)
is relatively injective

Proof. We have seen in Proposition 2.4.3 that L∞(G×S;R) ∼= L∞(G;L∞(S;R)).
Under this identi�cation, the mean is the norm one G-invariant left inverse
to the coe�cient inclusion

L∞(S;R) ↪→ L∞(G;L∞(S;R)).

By Lemma 1.2.4 this implies that L∞(S;R) is relatively injective (since
L∞(G;L∞(S;R)) is.
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The following fundamental Theorem relates the amenability of a closed
subgroup P of G and that of the action of G on the coset space:

Theorem 2.6.11. Let G be a locally compact group and H a closed subgroup.

The action of G on G/H is amenable if and only if H is an amenable group.

Proof. We refer to [Zim84, Proposition 4.3.2].

We can now come back to the continuous bounded cohomology and use
the properties of amenable subgroups to �nd another useful resolution (that
will be fundamental in Chapter 4).

Proposition 2.6.12. The module L∞(G/P, V ) is relatively injective as Ba-

nach G module if P is amenable.

Proof. It is a consequence of Proposition 2.6.8.

Theorem 2.6.13. Let G be a locally compact second countable group. Let

P be an amenable subgroup, V a continuous Banach G-module. The coho-

mology of the complex

0 // L∞(G/P ;V )G // L∞((G/P )2;V )G // L∞((G/P )3;V )G

is isometrically isomorphic to Hcb(G,V ).

Proof. Since L∞((G/P )n+1, V ) ∼= L∞(G/P,L∞((G/P )n, V )), every module
in the associated resolution is relatively injective. We need to prove that
the resolution is strong, but, by the same arguments of Proposition 2.4.5, a
contracting homotopy corresponds to an inverse of the coe�cient inclusion
L∞((G/P )n, V ) ↪→ L∞(G/p, L∞((G/P )n, V )) and can be constructed by
averaging with respect to a probability measure on G/P (we do not require
any type of invariance on the contracting homotopy).

With the aid of the usual homological algebra this implies that the coho-
mology of the complex is isomorphic to the continuous bounded cohomology
of G.

It remains to show that this complex induces the canonical seminorm.
We have already pointed out that there exists a norm one G-morphism
L∞(G,V ) → L∞(G/P, V ) (in Proposition 2.6.8). This allows to construct
inductively a G-morphism α : L∞(Gn, V ) → L∞((G/P )n, V ) using twice
the isomorphism L∞(X,V ) ∼= L∞(X,L∞(Xn−1, V )), where X is any topo-
logical space. The proof that the constructed morphism has the required
properties is rather complicated and we refer to [Mon01, Lemma 7.5.6] for
the details.

50



2.7 Bounded cohomology of topological spaces

The aim of this section is to de�ne another cohomological theory that is closer
to the geometric applications and that will allow us, in the next chapters, to
interpret geometric problems using the group cohomology theories we have
just de�ned. Let us consider a topological space X. We will denote by

Si(X) = {σ : 4i → X |σ is continuous}

the set of singular simplices of X. Moreover we will denote by

Ci(X,R) = {f : Si(X)→ R}

the singular cochains with real coe�cent. We consider on these vector spaces
the l∞ norm with respect to the basis provided by the simplices and we
are interested in the subcomplex of the bounded functions. Obviously the
coboundary operator restricts to the submodules of the bounded cochains:

Cib(X,R) = {f ∈ Ci(X,R) | sup
σ∈Si
|f(σ)| = ‖f‖∞ <∞}.

De�nition 2.7.1. The bounded cohomology of X is the cohomology of the
complex of the bounded cochains.

We will denote by H i
b(X,R) the ith group of bounded cohomology of the

topological space X.
As one can easily guess, since we are talking about a normed chain com-

plex, the bounded cohomology is endowed with a seminorm (induced by the
l∞ norm on cochains) and we will be particularly interested in its properties.

It is rather easy to prove the fact that the bounded cohomology of a
topological space is a homotopy invariant, however it doesn't satisfy any
analogue of Mayer-Vietoris sequence and hence it is very di�cult to compute
and has some strange behaviours: for example, even when we restrict to a
manifold M , the bounded cohomology of M can be an in�nite dimensional
vector space even in dimension higher than the dimension of the manifold.

The inclusion of the bounded cochains in the singular cochains induces,
in cohomology, the comparison map that is, in general, not injective nor
surjective but, as we will see, has very interesting geometric applications.
We will always denote the comparison map by

c : H∗b (X;R)→ H∗(X;R).

A deep result by Gromov (see [Gro82, Section 3.3]), proved in detail by
Ivanov in [Iva87, Theorem 4.3] relates the bounded cohomology of a space
with that of its fundamental group:
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Theorem 2.7.2 (Gromov's mapping Theorem). Let X be a connected count-

able CW-complex. There exists an isomorphism

H i
b(X;R) ∼= H i

b(π1(X,x);R)

that is isometric.

Let us consider X̃ the universal covering of the topological space X. The
action of π1(X) on X̃ via deck transformation induces an action of π1(X)
on Cib(X̃,R). A crucial step in the proof of Gromov's mapping Theorem is
the observation that the projection p : X̃ → X induces an isomorphism

p∗ : Cib(X,R)→ Cib(X̃,R)π1(X).

This implies that the bounded cohomology of X with real coe�cients is the
homology of the complex

0 // C0
b (X̃,R)π1(X) // C1

b (X̃,R)π1(X) // C2
b (X̃,R)π1(X) // . . .

The latter is the complex of the π1(X) invariants of the resolution of R
provided by the modules Cib(X̃,R). So, in order to prove Gromov's mapping
Theorem, it is su�cient to show that that resolution is strong and relatively
injective. It is not di�cult to prove directly that the modules are relatively
injective:

Proposition 2.7.3. The modules Cib(X,R) are relatively injective as π1(X)-
modules.

Proof. The proof of the relative injectivity of Cib(X̃,R) is very easy. This is
because π1(X) is a discrete group and hence we do not have to deal with any
continuity problem. Let us consider a fundamental region F for the action of
π1(X) on X̃ and consider the subset S̄i(X̃) of Si(X̃) made of the simplexes
with �rst vertex belonging to F . The set S̄i(X̃) meets any π1(X)-orbit of
Si(X̃) in exactly one point. Moreover the action of π1(X) on Si(X̃) is free.
This means that, for every σ ∈ Si(X̃), there exist a unique σ̄ ∈ S̄i(X̃), and
a unique g ∈ π1(X) such that σ = gσ̄.

Let us consider, as usual, an extension problem

A α
//

β
��

B

γ
tt

δ{{

Cib(X̃,R)

Let us de�ne the function δ(σ) by requiring

δ(b)(σ) = βγg−1(b)(σ̄).

It is easy to verify that the map δ is well de�ned and G-invariant and that
makes the diagram commutative.
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Unfortunately the proof that the resolution is strong is, in general, very
di�cult and based on results on the amenability of abelian groups (an ana-
logue statement is false in the unbounded setting whenever the universal
covering of X is not contractible). Since we will not need this statement in
the general case, we omit the proof of the theorem in full generality.

Anyway, if the universal covering of X is contractible, the proof of the
fact that the resolution is strong is simple: let us consider the standard
proof of the fact that the singular cohomology of a contractible space is
trivial (see e.g. [Hat02, page 201]). The cone operator de�ned in that proof
restricts to the bounded cochains providing a contracting homotopy. This
result is su�cient for our applications since we will deal only with spaces
whose universal covering is di�eomorphic to Rn and hence, in particular,
contractible.

We will need (in the proof of Theorem 3.3.11) that the homology of
the complex (Cib(X̃;R)π1(X), d) is isometrically isomorphic to the bounded
cohomology of π1(X).

Proposition 2.7.4. Let X be a topological space whose universal covering is

contractible, then H∗b (π1(X),R) and H∗b (X,R) are isometrically isomorphic.

Proof. We have already justi�ed that the two groups are isomorphic. Let
us prove that the isomorphism is isometric. For an argument that we have
widely used in the chapter, it is su�cient to exhibit a chain π1(X)-morphism
α : Cib(π1(X);R) → Cib(X̃;R) that extends the identity on R and has norm
not greater than one.

Let us �x again a fundamental region F for the action of π1(X) on the
universal covering X̃. For every vertex xj of a simplex σ, there exists a
unique gj ∈ π1(X) such that xj ∈ gjF . We de�ne the morphism α by the
formula:

α(φ)(σ) = φ(g0, . . . , gi).

Obviously α is a chain morphism that extends the identity and has norm not
greater than one. Moreover it is easy to verify that α is π1(X)-invariant.

More details of the proofs of Proposition 2.7.3 and Proposition 2.7.4,
toghether with the complete proof of Gromov's mapping Theorem can be
found in Ivanov's paper [Iva87].
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Chapter 3

Simplicial volume

In this chapter we will introduce the central object in the thesis: the sim-
plicial volume. This invariant of closed connected oriented manifolds �rst
appeared in Gromov's seminal article �Volume and Bouded Cohomology�
[Gro82] and in Thurston's lecture notes [Thu79].

The simplicial volume, even if being a homotopical invariant, is deeply
related to metric properties. An example of these relations is given by Gro-
mov's Proportionality Principle: let us �x on M a Riemannian structure
(and hence a metric universal covering M̃), the rate ‖M‖/vol(M) depends
only on the isometry type of the Riemannian covering M̃ . This fundamental
Theorem has many applications in di�erent areas: for example, in case of
hyperbolic manifolds it is a fundamental tool in Gromov's simple proof of
Mostow rigidity Theorem [BePe92, Section C.5] and it is, in general, useful
in proving degree theorems [LoSa09].

In the next chapters we will study properties of the simplicial volume
with particular care towards the proportionality principle and, more pre-
cisely, to the explicit computation of the proportionality constant involved
in that theorem. In this chapter, in addition to the de�nition and the �rst
properties of simplicial volume, we will recall Bucher-Karlsson's proof of pro-
portionality principle for locally symmetric spaces that relies on the theory
of continuous and continuous and bounded cohomolgy introduced in the �rst
two chapters. In the last section we will study in detail the case of hyper-
bolic manifolds comparing the cohomological approach of Bucher-Karlsson
to Gromov's original approach.

Chapter 4 will be devoted to the case of manifolds covered by H2 × H2

where the introduced cohomological machinery can be used to give the exact
computation of the proportionality constant (note, however, that in this case
no homological version of the proof is known).
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3.1 Simplicial volume

In order to de�ne simplicial volume we will put a seminorm on singular
homology. Let M be a m-dimensional manifold. The singular homology of
M with real coe�cients is the homology of the complex

R C0(M ;R)
∂0oo C1(M ;R)

∂1oo C2(M ;R)
∂2oo . . .oo

where the i-singular chains are the free R-module over i-singular simplices:
if we denote by 4i the standard i-simplex, we call

Si(M) = {σi : 4i →M‖σ is continuous}.

With this convention, Ci(M ;R) is the free R-module on Si(M):

Ci(M ;R) =


n∑
j=1

ajσj

∣∣∣ aj ∈ R, σj ∈ Si(M)

 .

If we denote by fki : 4i → 4i+1 the linear parametrization of the k-th face
of 4i+1, the boundary operator is de�ned by linearly extending the operator

δj+1(σ) =

j+1∑
i=0

(−1)iσ ◦ f ij .

We can endow every vector space Ci(M ;R) with the l1-norm with respect
to the basis formed by the simplices:∥∥∥ n∑

j=1

ajσj

∥∥∥
1

=

n∑
j=1

|aj |.

It is easy to prove that this is actually a norm and that the boundary operator
is continuous with respect to this norm. This means that the l1-norm makes
(C∗(M ;R), δ) a normed chain complex.

As usual when dealing with a normed chain complex (see Section 1.1),
the norm we have just described at the cochain level induces a seminorm
in homology taking the in�mum over the norms of the representatives of a
homology class:

‖β‖ = inf
a∈Ci(M ;R)
[a]=β

‖a‖1.

Note that, since the image of δ oughts not to be closed, there is no reason,
in general, for ‖ · ‖ to be a norm, as we will see in the next example:
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Example 3.1.1. Let us consider M = S1 = {z ∈ C
∣∣ |z| = 1} and let [β] =

[S1] the class in H1(S1;R) of the simplex parametrized by t→ e2πit (i.e. the
fundamental class of S1). If we denote by βn the simplex

βn : I → S1

t → e2πint,

an easy application of Hurewicz Theorem shows that [βn] = n[β]. Since,
obviously, ‖[βn]‖ ≤ 1, we get that ‖[S1]‖ ≤ inf 1

n = 0.

The simplicial volume of a manifold M is the l1-seminorm of its funda-
mental class with real coe�cients. To make this statement more precise we
need to recall some other de�nitions from algebraic topology. The following
fact is well known [Hat02, Theorem 3.26]:

Theorem 3.1.2. Let M be a closed connected orientable manifold, with

m = dim(M). Let T be an arbitrary triangulation of M . If we consider the

singular homology with integral coe�cients, the following facts hold:

� Hm(M ;Z) ∼= Z;

� for an appropriate choice of signs ki, the class of
∑

σi∈T kiσi is a gen-

erator of Hm(M ;Z) that we will call [M ];

� for every x ∈M , we have Hm(M,M\{x};Z) ∼= Z and the projection

Hm(M ;Z)→ Hm(M,M\{x};Z)

maps [M ] to a generator of Hm(M,M\{x};Z).

Note that the choice of an orientation for M corresponds to the choice
of one of the two possible fundamental classes [M ] of the manifold.

An easy formulation of the Theorem of universal coe�cients for homology
implies thatH∗(M ;R) ∼= H∗(M ;Z)⊗R and, moreover, that the isomorphism
is induced by the inclusion

i : C∗(M,Z)→ C∗(M ;R).

The real fundamental class of M (that we will denote by [M ]R or also, when
this will not cause confusion, by [M ]) is the generator of H∗(M ;R) ∼= R
de�ned by:

[M ]R = i∗[M ].

De�nition 3.1.3. Let M be a closed, connected, orientable manifold of
dimension m, the simplicial volume of M is

‖M‖ = ‖[M ]R‖ = inf
a∈Cm(M ;R)
[a]=[M ]R

‖a‖1.
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We have de�ned the simplicial volume only for closed connected ori-
entable manifolds, and, moreover, it is easier to deal with a fundamental
class when a manifold is triangulable. Since we are interested in the study
of this invariant for symmetric spaces that are smooth manifolds (hence, in
particular, triangulable), from now on all manifolds will be understood to be
smooth, closed, connected and orientable, unless otherwise stated. Moreover
we will often denote the dimension of a manifold with an apex: with Mm

we mean that dim(M) = m.

Since in the de�nition of the simplicial volume only the singular homology
of a manifold is involved, the object we have just de�ned is a homotopy
invariant of closed manifolds:

Proposition 3.1.4. Let M and N be two manifolds of dimension n, let

moreover f : M → N be a homotopy equivalence, then ‖M‖ = ‖N‖.

Proof. The homotopy invariance of singular homology [Hat02, Corollary
2.11], implies that fn : Hn(M ;Z)→ Hn(N ;Z) is an isomorphism, in partic-
ular fn([M ]) = ±[N ]. Now the de�nition of simplicial volume as in�mum of
the l1-norm of the representatives of the real fundamental class implies that
‖N‖ ≤ ‖M‖: if the chain α =

∑
aiσi represents [M ], its image via f∗, the

chain
∑
aif ◦σi, represents ±[N ] and has norm equal to ‖α‖1. Applying the

same argument to the homotopical inverse of f we get the desired equality.

Recall that the degree of a map between two manifolds of the same di-
mension n can be de�ned as the integer d such that fn([M ]) = d[N ]. The
ideas at the base of the proof of Proposition 3.1.4 lead to vanishing results
for the simplicial volume:

Proposition 3.1.5. If a manifold Mm admits a self map of degree greater

than 1, then its simplicial volume vanishes:

‖M‖ = 0.

Proof. We have already pointed out that, for every selfmap f : M → M
and for every class a in H∗(M ;R), we have ‖f∗(a)‖ ≤ ‖a‖. Moreover the
seminorm induced in homology obviously satis�es ‖dα‖ = d‖α‖ for d in Z,
and α in Hi(M ;R). This implies that, if the map f : M →M has degree d,

d‖M‖ = ‖d[M ]‖ = ‖fn([M ])‖ ≤ ‖M‖,

that forces ‖M‖ to be zero.

In the next proposition we will examine another consequence of the def-
inition of simplicial volume, namely its behaviour under �nite coverings:
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Proposition 3.1.6. Let π : M̃ → M be a d-sheeted covering of a manifold

M . Then ‖M̃‖ = d‖M‖.

Proof. Since π has degree d, we have already shown that ‖M̃‖ ≥ d‖M‖. To
prove the equality, we construct a representative for the fundamental class
of M̃ starting from one of M .

Since π is a d-sheeted covering, every simplex σ in Sm(M) has d di�erent
lifts {σi}di=1 in Sm(M̃). Moreover, given a representative α =

∑
ajσj of the

fundamental class [M ], the chain α̃ =
∑
aj(
∑d

i=1 σ
i
j) is closed and represents

the fundamental class [M̃ ]. This implies our conclusion since

‖α̃‖1 = d‖α‖1.

Note that also the volume has the same behaviour under �nite coverings:
if M̃ is a d-sheeted metric covering of the Riemannian manifoldM , it is easy
to verify that vol M̃ = d vol M . This implies that

vol M̃

‖M̃‖
=

vol M
‖M‖

.

This fact is far more general: Gromov's Proportionality Principle (Theo-
rem 3.3.14) states that the hypotesis that the covering is �nite sheeted is
unnecessary.

A joint Corollary of Proposition 3.1.5 and Proposition 3.1.6 is that the
simplicial volume of �at and elliptic manifolds vanishes:

Proposition 3.1.7. Let Mm be a closed, connected oriented manifold that

admits a metric with constant sectional curvature equal to 0 or 1. Then

‖M‖ = 0.

Proof. The simplicial volume of the sphere Sm vanishes since this manifold
admits a selfmap of degree 2. To give an example of such a map we can view
the m-sphere as a subset of the product C× Rm−1

Sm = {(x, y) ∈ C× Rm−1
∣∣ |x|2 + ‖y‖2 = 1}

and consider the map
φ : Sm → Sm

(ρeit, y) 7→ (ρe2it, y)

that has degree 2. This implies that ‖Sm‖ = 0 for every m.
Let us now consider Mm a Riemannian closed manifold with sectional

curvature constant and equal to 1. Its universal metric covering is isomorphic
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to the sphere Sm (since the manifoldM is complete). ThusM is the quotient
of Sm with respect to a group of isomorphisms of Sm whose action is free
and properly discontinuous. Since Sm is compact, this group must be �nite
and hence π : Sm →M is a �nite covering. We have shown that ‖Sm‖ = 0,
this implies that also ‖M‖ = 0.

A similar argument applies for �at manifolds: a corollary of Bieberbach
Theorem [Rat06, Theorem 8.2.5] is that every compact n-dimensional Eu-
clidean manifold (whose universal metric covering is, hence, Rn) is �nitely
covered by an n-torus. Since, again, every torus admits self-maps of degree
strictly greater than 1, we get as a result that the simplicial volume of �at
manifolds is null.

The behaviour of hyperbolic manifolds is far di�erent: we will show in
Theorem 3.4.1 that if the manifoldMm admits a Riemannian structure with
constant sectional curvature equal to −1, its simplicial volume satis�es

‖M‖ =
1

vm
vol(M),

where vm denotes the volume of the ideal regular simplex in Hm. In partic-
ular the simplicial volume of M is di�erent from zero.

3.2 Relations with bounded cohomology

We have de�ned in Section 2.7 the bounded cohomology of a topological
space as the cohomology of the normed chain complex (C∗b (M ;R), δ) of
bounded cochains from S∗(X) to R. Indeed the bounded cochains (Cib(M ;R), ‖·
‖∞) form the topological dual of the normed vector space (Ci(M ;R), ‖ · ‖1):
from the de�nition of l∞-norm on bounded cochains it follows that, for every
cochain β ∈ Cib(M ;R),

‖β‖∞ = sup {β(α)|α ∈ Ci(M ;R), ‖α‖1 = 1}.

A standard consequence of Hahn-Banach Theorem is that also the con-
verse is true:

Proposition 3.2.1. For every chain α ∈ Ci(M ;R),

‖α‖1 = sup {β(α)|β ∈ Cib(M ;R), ‖β‖∞ = 1}.

We now aim to a result �rst pointed out by Gromov in [Gro82]: an
analogue of Proposition 3.2.1 holds also in cohomology. Since the cobound-
ary operator on bounded cochains is the dual to the boundary operator on
singular homology, it is easy to verify that the Kronecker product:

H∗(M ;R)⊗H∗b (M ;R)→ R
〈[α], [β]〉 = β(α).
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is well de�ned.
The Kronecker product allows to generalize the duality between the l1-

norm on chains and the l∞-norm on cochains highlighted in Proposition
3.2.1 to a duality between the l1-seminorm induced in homology and the l∞-
seminorm on bounded cohomology we studied in Section 2.7. The following
theorem makes this statement more precise and will be crucial since it relates
the simplicial volume and the bounded cohomolgy:

Theorem 3.2.2. Let us �x a ∈ Hi(M ;R) . If ‖a‖1 6= 0,

‖a‖−1
1 = inf{‖b‖∞ | b ∈ H i

b(M ;R), 〈a, b〉 = 1},

moreover ‖a‖1 = 0 if and only if the set on the right-hand side is empty.

Proof. The inequality ≤ descends from the de�nition of Kronecker product:
let us �x an element b in H i

b(M ;R) such that 〈a, b〉 = 1. If α ∈ Ci(M ;R)
represents a and β ∈ Cib(M ;R) represents b, then

1 = 〈a, b〉 = β(α) ≤ ‖β‖∞‖α‖1.

If we take the in�mum over the representatives at the right-hand side, we
get that

1 ≤ ‖b‖∞‖a‖1.

This means that, if ‖a‖1 = 0, then the set on the right-hand side in the
statement is empty, and, otherwise, that

‖a‖−1
1 ≤ inf{‖b‖∞ | b ∈ H i

b(M ;R), 〈a, b〉 = 1}.

The opposite inequality is more subtle and descends from Hahn-Banach The-
orem: let, again, α ∈ Ci(M ;R) be a representative for a and let V be the
subspace of Ci(M ;R) generated by α and the i-boundaries, i.e.

V = 〈α〉 ⊕ ∂Ci+1(M ;R).

Since we can assume ‖α‖1 > 0, the cycle α doesn't belong to ∂Ci+1(M ;R).
Let us consider the element β ∈ V ∗ de�ned by

β(∂Ci+1(M ;R)) = 0,

β(α) = 1. (3.1)

Hahn-Banach Theorem states that there exists an element β̃ ∈ Ci(M ;R)∗ =
Cib(M ;R) that extends β and such that ‖β̃‖∞ = ‖β‖∞. Clearly β̃ is a
coboundary: dβ̃ = 0 since β(∂Ci+1(M ;R)) = 0. Moreover the class [β̃]
satis�es 〈a, [β̃]〉 = 1. Let us compute its norm:

‖β̃‖∞ = ‖β‖∞ = sup
c∈Ci+1

β(a+ ∂c)

‖a+ ∂c‖1
=

1

inf ‖a+ ∂c‖1
=

1

‖a‖1
.
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If a is the fundamental class of a manifold M , Theorem 3.2.2 can be
restated as follows:

Corollary 3.2.3. Let Mm be a closed connected oriented manifold. Then

‖M‖−1 = inf{‖b‖∞ | b ∈ Hm
b (M ;R), 〈[M ], b〉 = 1},

where we consider ‖M‖ = 0 if and only if the in�mum is taken over the

empty set.

We can restate Corollary 3.2.3 in term of a fundamental coclass ofM , i.e.
the generator [M ]R of Hn(M ;R) ∼= R such that 〈[M ]R, [M ]R〉 = 1, where
we denoted by 〈 , 〉 the Kronecker product on singular cohomology that
induces (as a consequence of Universal Coe�cient Theorem for cohomolgy)
an isomorphism between the dual of Hn(M ;R) and Hn(M ;R).

The sup norm on singular cochains induces a seminorm also on singular
cohomology (if we let ‖ · ‖∞ assume also the value ∞). Namely, if β belongs
to Ci(M ;R), we put

‖β‖∞ = sup{|β(σ)|
∣∣σ ∈ Si(M)} ∈ [0,∞].

The seminorm induced in cohomology is, as usual, the in�mum of the norms
of the representatives, that is, if b belongs to H i(M ;R),

‖b‖∞ = inf{‖β‖∞
∣∣ [β] = b}.

It is worth remarking that the just de�ned seminorm on singular coho-
mology can also be expressed by

‖b‖∞ = inf{‖b̄‖∞ | b̄ ∈ H i
b(M ;R), c(b̄) = b}

where c denotes the comparison map de�ned in Section 2.7, and, as usual,
we consider ∞ the value of the in�mum over an empty set. Corollary 3.2.3
states that ‖M‖ = ‖[M ]R‖−1

∞ where we put ‖M‖ = 0 if ‖[M ]R‖∞ =∞.

A �rst application of the duality between simplicial volume and bounded
cohomology proved in Theorem 3.2.2 is the estimate of the simplicial volume
of a product of two manifolds.

Proposition 3.2.4. Let Mm and Nn be two manifolds. Then

‖M‖‖N‖ ≤ ‖M ×N‖ ≤
(
n+m

n

)
‖M‖‖N‖.

Proof. We will prove the two inequalities separately.
�The fact that ‖M × N‖ ≤

(
n+m
n

)
‖M‖‖N‖ is an application of the ho-

mological cross product: recall that the product of two standard simplices
4n ×4m can be triangulated by

(
n+m
n

)
simplices [EiSt52, page 68], we call
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σi : 4m+n → 4m × 4n the simplices in this triangulation. This allows to
de�ne a cross product on chains extending by linearity the map:

× : Sk(M)⊗ Sj(N)→ Ck+j(M ×N)
(f, g)→

∑
f × g|σi .

It is well known that this product induces a well de�ned cross product in
homology, i.e. a bilinear map

Hk(M ;R)⊗Hj(N ;R)→ Hk+j(M ×N ;R).

Moreover, the product of a triangulation of M and a triangulation of N , if
considered as a sum of simplices (after subdividing in the way we have just
shown) is a triangulation of the product manifold. This implies, because of
the characterization of fundamental classes in terms of triangulations, that

[M ]× [N ] = [M ×N ].

It follows from the de�nition of cross product that, if a ∈ Cm(M ;R) is
a cycle representing the class [M ] ∈ Hm(M ;R) of norm ‖a‖1 and b ∈
Cn(M ;R) is a representative of the class [N ] ∈ Hn(N ;R) of norm ‖b‖1,
a× b ∈ Cm+n(M ×N ;R) is a representative of the fundamental class of
M ×N of norm

(
n+m
n

)
‖a‖1‖b‖1. This implies the inequality we were looking

for.

�The �rst inequality, on the contrary, descends from the cohomological
cup product: it is a consequence of the fact that the fundamental coclass
[M ×N ]R is the cup product of the fundamental classes of the two factors,
more precisely

[M ×N ]R = p∗1[M ]R ∪ p∗2[N ]R

where p1 : M ×N →M and p2 : M ×N → N are the projections.
To see that this is true, let us call a simplex belongin to Si(X) degenerate

if it can be obtained as the composition

4i
ρ // 4i−1 τ // X

where the �rst map ρk : 4i → 4i−1 corresponds to the map linearly col-
lapsing 4i onto one of its faces and τ is a simplex in Si−1(X). We can
reduce without loss of generality to the representatives α of [M ]R and β of
[N ]R vanishing on degenerate simplices (for example by restricting to the
subcomplex of alternating cochains), in this case, if we consider the trian-
gulation of 4m × 4n given in [EiSt52, page 68], only in the �rst simplex
the projection on M of the �rst m-face is a nondegenerate m-simplex and
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the projection on N of the last n-face is a nondegenerate n simplex. This
implies that

(p∗1α ∪ p∗2β)(f × g) =
=
∑

i p
∗
1α ∪ p∗2β(f × g)|σi =

= p∗1α ∪ p∗2β(f × g)|σ0 = α(f)β(g).

This means, applying this formula to a representative of the fundamental
class constructed as the cross product of fundamental classes, that

p∗1α ∪ p∗2β([M ×N ]) = α([M ])β([N ]) = 1,

i.e. that p∗1α ∪ p∗2β is a fundamental coclass. Moreover ‖p∗1α ∪ p∗1β‖∞ ≤
‖p∗1α‖∞‖p∗2β‖∞ = ‖α‖∞‖β‖∞ and then

‖[M ×N ]R‖∞ ≤ ‖[M ]R‖∞‖[N ]R‖∞.

Since we have proved that ‖M‖ = ‖[M ]R‖−1
∞ (Corollary 3.2.3), we can con-

clude that ‖M‖‖N‖ ≤ ‖M ×N‖.

We have just seen one of the advantages of the use of bounded cohomology
in the treatment of simplicial volume: the presence of cup product allowed
us to deduce a lower estimate for the simplicial volume of a product of two
manifolds. One another powerful cohomological tool is Gromov's mapping
Theorem (Theorem 2.7.2) that allows to reformulate the problem of the
computation of simplicial volume in terms of group cohomology and then to
take advantage of the machinery we have developed in the �rst two chapters
of the thesis.

Let us �x a manifold M and let π = π1(M) its fundamental group. If
we consider K = K(π, 1) a CW-complex with π1(K) = π, πi(K) = 0 for
every i di�erent from 1 (such a space exists and is unique up to homotopy
equivalence), a classifying map for the manifold M is a continuous map
f : M → K with the property that π1(f) is an isomorphism. The classifying
map exists and is well de�ned up to homotopy as a consequence of cellular
approximation Theorems and of the fact that, since M is a manifold, it is
also a cellular space. Since the universal covering of K is contractible, the
group (bounded) cohomology of π is isomorphic to the singular (bounded)
cohomology of K, moreover the isomorphism is isometric. If we consider the
commutative diagram

H∗(π1(M);R)
f∗ // H∗(M ;R)

H∗b (π1(M);R) ∼=
//

f∗b //

c

OO

H∗b (M ;R)

c

OO
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Gromov's mapping Theorem (Theorem 2.7.2) states that f∗b is an isometric
isomorphism. This implies that the simplicial volume of a manifold M de-
pends only on the classifying map of the manifold. This approach provides
many vanishing results, for example when the cohomology of the fundamen-
tal group of M is null in dimension m:

Proposition 3.2.5. Let Mm be a manifold. Suppose that Hm(π1(M);R) =
0, then ‖M‖ = 0.

This applies, for example, when the manifold is simply connected:

Corollary 3.2.6. Let M be a manifold, if π1(M) = 0 or, more generally, if

π1(M), then ‖M‖ = 0.

We have proved the vanishing of simplicial volume for simply connected
manifolds translating the problem of its study to a group cohomology prob-
lem via the classifying map. A class of manifolds for which this approach is
particularly e�ective is the class of locally symmetric spaces of noncompact
type: on one way, since the universal covering of these manifolds is di�eo-
morphic to Rn and hence contractible, the classifyng map is an isomorphism,
on the other, for these spaces, we can rely on Van Est's Theorem (and sim-
ilar statements for π1(M) < Isom(M̃)). This theorems are very useful in
the study of the (continuous) cohomology of the relevant groups. In the
next section we will see how this idea can be used to give a simple proof of
Gromov's proportionality principle for locally symmetric spaces. In Chapter
4 we will use it to give the explicit computation of the simplicial volume of
manifolds covered by H2 ×H2.

3.3 Proportionality principle for locally symmetric

spaces

The aim of this section is to state and prove Gromov's Proportionality Prin-
ciple for locally symmetric spaces following the proof of Bucher-Karlsson
appeared in [Buc08C]. We begin recalling de�nitions, caracterizations and
properties of locally symmetric spaces. We refer to [Hel62] for proofs and
details.

To de�ne symmetric spaces we will need the concept of a geodesic sym-

metry with respect to a �xed point p ∈ M . Let us choose a normal neigh-
borhood of p, i.e. a an open neighborhood of p in M di�eomorphic, via the
exponential map, to a star-shaped neighborhood U of 0 in TpM . We more-
over require that U is symmetric with respect to the origin. The geodesic
symmetry sp : V → V is the di�eomorphism of V conjugated, by the expo-
nential map, to the involutive di�eomorphism of Rn given by x 7→ −x. This
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means that, in normal cohordinates (x1, . . . , xn), the di�eomorphism sp has
the expression

(x1, . . . , xn) 7→ (−x1, . . . ,−xn).

Note that, as a consequence of the de�nition of the exponential map, the
di�eomorphism we have just de�ned is a geodesic symmetry in the sense
that, if γ is a geodesic with the property that γ(0) = p and γ(1) = q, we
have sp(q) = γ(−1).

De�nition 3.3.1. A (Riemannian) locally symmetric space is a Riemannian
manifold such that every point p has a normal neighborhood V such that
the geodesic symmetry with respect to p restricts to an isometry of V .

Indeed any involutive isometry φ that has an isolated �xed point p is
a geodesic symmetry. Infact its di�erential in p equals to dφp = −Id: the
minimal polynomial of dφp divides x2 − 1 and hence dφp is diagonalizable,
moreover a geodesic tangent to an eigenvector of +1 eigenvalue would be left
�xed by φ but p is an isolated �xed point of φ. This implies that φ maps
the geodesic with tangent vector v in p isometrically in the geodesic with
tangent vector in p equal to −v and hence it is a geodesic symmetry. From
now on we will talk about involutive isometries with an isolated �xed point
instead of geodesic symmetries.

De�nition 3.3.2. A globally symmetric space (that we will also call just
symmetric space) is a Riemannian manifold M such that, for every point
p ∈M , there exists an involutive isometry sp of M that has p as an isolated
�xed point.

We have already pointed out out that a globally symmetric space is a
locally symmetric space. Moreover, if a locally symmetric space is complete
and simply connected, the local involutive isometry given by the geodesic
symmetry extends to an involutive isometry of the whole manifold that has
p as an isolated �xed point:

Theorem 3.3.3. Let M be a complete, simply connected, locally symmetric

space. Then M is a globally symmetric space.

Proof. See [Hel62, Theorem 5.6, page 187].

From this result it immediately follows that the universal covering of a
complete locally symmetric space is a symmetric space.

Some examples of symmetric spaces are the spaces of constant curvature
Hn, Rn and Sn: since the isometries of these spaces act transitively on them
it su�ces to exhibit an involutive isometry that has a speci�c isolated �xed
point: the inversion (x1, . . . , xn) 7→ (−x1, . . . ,−xn) provides such a map for
the point 0 in the Euclidean space Rn; if we consider the hyperboloid model
of Hn, i.e.

Hn = {(x0, . . . , xn) ∈ R(n,1)|〈x, x〉(n,1) = −1},

65



the isometry of R(n,1) given by (x0, . . . , xn−1, xn) 7→ (−x1, . . . ,−xn−1, xn)
restricts to an isometry of Hn having (0, . . . , 0, 1) as unique �xed point. The
same example can be given for the sphere Sn: we consider its model given
by

Sn = {x ∈ Rn+1 |‖x‖ = 1}

and restrict to Sn the ambient isometry given by

(x0, . . . , xn−1, xn) 7→ (−x1, . . . ,−xn−1, xn)

to get an isometry of Sn that has the north pole (0, . . . , 0, 1) as isolated �xed
point.

It is also clear that the product of two symmetric spaces is a symmetric
space: if γ1 : M → M and γ2 : N → N are two involutive isometries
having x1 and x2 respectively as isolated �xed points, the product (γ1, γ2) :
M × N → M × N is an involutive isometry of M × N that has (x1, x2) as
an isolated �xed point. We will consider in the next chapter the symmetric
space H2 ×H2.

Symmetric spaces are, in particular, homogeneous spaces: if we denote
by G = Isom0(M) the connected component of the identity in the group of
the isometries of M , we get

Theorem 3.3.4. If M is a symmetric space, then G is a locally compact

Lie group that acts transitively on M , and, for every x in M , the subgroup

K = stab(x) composed by the isometries that �x x is compact. Moreover M
is di�eomorphic to the quotient G/K.

Proof. It is proved in [Hel62]: the �rst assertion is Lemma 3.2 on page 170;
the second is Theorem 3.3 on page 173.

Let us �x a point x inM , whereM is a globally symmetric space, and set
K = stab(x) ⊆ G = Isom0(M). Since M is a symmetric space, there exists
an involutive isometry sx with x as an isolated �xed point. This property of
the space re�ects into an analogous property of the group G: the group of
isometries of M admits an involutive automorphism σ that leaves K �xed,
de�ned by the formula

σ : G→ G
γ 7→ sxγsx.

It is not di�cult to show that, if we denote by Kσ the subgroup of G of
the elements �xed by σ and by (Kσ)0 the component of the identity in this
group, (Kσ)0 < K < Kσ (obviouslyK is contained inKσ and the two groups
have the same lie algebra: the eigenspace of the eigenvector +1 of dσ0). The
pairs with this properties are called symmetric pairs:
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De�nition 3.3.5. Let G be a connected Lie group and let K be a compact
subgroup of G. If there exists an involutive isomorphism of G such that
(Kσ)0 < K < Kσ, the pair (G,K) is said a (Riemannian) symmetric pair.

It is equivalent to study symmetric spaces or Riemannian symmetric
pairs: Theorem 3.3.4 assigns to every symmetric space a Riemannian sym-
metric pair; viceversa, given a Riemannian symmetric pair (G,K), any G-
invariant Riemannian metric on the quotient G/K (such a metric exists)
makes G/K a symmetric space. Moreover, the Riemannian connection on
G/K is independent from the choice of the metric [Hel62, Proposition 3.4,
Chapter IV; Corollary 4.3, Chapter IV].

Another step is necessary towards the classi�cation of symmetric spaces:
we need to study the Lie algebra of the group G of the symmetric pair
associated to a symmetric space M . We will denote by g the Lie algebra
of G, and by k the Lie algebra of K. The Lie algebra g is endowed with
an involutive automorphism (s = dσ) with good properties that we will
enumerate in the next de�nition:

De�nition 3.3.6. A pair (g, s) is an e�ective orthogonal symmetric Lie

algebra if the following properties hold:

1. g is a real Lie algebra

2. s is an involutive automorphism of g

3. the set of �xed point of s, k, is a subalgebra of g such that Adg(k) is a
compact subgroup of Int(g)

4. k doesn't intersect the center of g.

Theorem 3.3.7. There is a corrispoondence between simply connected sym-

metric spaces and e�ective orthogonal symmetric Lie algebras.

Proof. We refer to [Hel62, Proposition 3.6, Chapter IV], see also [Loo69,
Theorem 4.12, page 116]

A fundamental result in the theory of symmetric spaces is the classi�-
cation of e�ective orthogonal symmetric Lie algebra [Hel62, Theorem 1.1,
Chapter V] that leads to the classi�cation of symmetric spaces:

Theorem 3.3.8 (Classi�cation of symmetric spaces). Let M be a simply

connected symmetric space, then M splits as a product K × E ×N where

� K has sectional curvature everywhere greater than 0 (and is compact)

� E has sectional curvature everywhere equal to 0 (and hence is isometric

to Rk)
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� N has sectional curvature everywhere ≤ 0. Moreover the Lie algebra

of the isometry group of N is semisimple of noncompact type.

Proof. This follows from Theorem 3.1 of Chapter V and Theorem 1.1 of
Chapter V in [Hel62]. See also [Loo69, Corollary 1, page 147]

We can now turn back to the study of the simplicial volume for locally
symmetric spaces. We begin with another vanishing result:

Proposition 3.3.9. Let Mm be a locally symmetric space whose universal

covering has a nontrivial compact factor, then ‖M‖ = 0

Proof. The result will follow from Proposition 3.2.5 once we have shown that
Hm(π1(M);R) = 0. Indeed, we will prove that, if M̃ ∼= K × H where K
is the compact factor in the decomposition of Theorem 3.3.8, it is easy to
show that (Ωi(H;R), d) is a strong relatively injective resolution of the trivial
π1(M)-module R.

The fact that the resolution is strong is a consequence of Poincarè Lemma:
since H is a locally simmetric space with no non-trivial compact factor, it is
di�eomorphic to Rn.

To prove that Ωi(H,R) is relatively injective as a π1(M)-module, let us
recall that, in the proof of van Est's Theorem (Theorem 1.7.5), we have
seen that Ωi(H;R) is relatively injective as G-module where G denotes the
identity component of the isometry group of M̃ : this is a consequence of
the fact that H is the quotient of G with respect to a compact subgroup
(the preimage of the compact factor K). Since π1(M) is a closed subgroup
of G, the di�erential forms on H are relatively injective as π1(M)-module
as a consequence of Theorem 1.6.6. This implies that the cohomology of
π1(M) can be computed from the complex (Ωi(H;R)π1(M), d). Since M̃ has
a nontrivial compact factor, the dimension of H is strictly lower than m and
hence Hm(π1(M);R) = 0.

A consequence of Proposition 3.3.9 is that, when we study the simplicial
volume of a locally symmetric space, we can assume that M̃ hasn't any
nontrivial compact factor, so it is di�eomorphic to Rn. Moreover Theorem
3.3.4 ensures that the universal covering of M is isometric to the quotient
M̃ = G/K where G denotes the connected component of the identity in
Isom(M̃), and hence it is a connected Lie group; furthermore K = stab(x)
is a maximal compact subgroup (the maximality follows from the fact that
M̃ has no nontrivial compact factor).

Moreover, since M is compact, its fundamental group, Γ = π1(M), sits
in G as a cocompact latex. A key step in the proof of Gromov's Proportion-
ality Principle (and hence in the study of the simplicial volume of locally
symmetric spaces) is the following:
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Theorem 3.3.10. It is naturally de�ned an embedding

H∗c (G;R)→ H∗(Γ;R)

isometric with respect to the seminorms induced via the comparison map from

the canonical seminorms on H∗cb(G;R) and H∗b (Γ;R) respectively.

Proof. We considerH∗c (G;R) as the cohomology of the complex (C∗c (G;R)G, d).
By de�nition of canonical seminorm, we are interested precisely in the semi-
norm induced in cohomology by the l∞-norm on this complex.

We have seen in Theorem 1.6.6 that the restriction isomorphism

ρ : C∗c (G;R)Γ → C∗(Γ;R)Γ

induces an isomorphism in cohomology since Γ is closed in G. Moreover the
restriction of ρ to the bounded cochains is isometric (Theorem 2.5.9). This
implies that the canonical seminorm on H∗(Γ;R) is induced by the sup norm
on the complex (C∗c (G)Γ, d).

We now want to de�ne a left inverse, trans, to the map res

C∗c (G;R)G
res // C∗c (G;R)Γ trans // C∗c (G;R)G

where the map res denotes the inclusion of the G-invariant cochains in the
Γ invariant (the action of the subgroup Γ < G on C∗c (G;R) is the restriction
of the diagonal left action of G). The idea is to average on a fundamental

domain F for the action of Γ on G.
We choose a domain F ⊂ G with the properties that

� F is an open connected set, F ∩ γiF = ∅ for all γi ∈ Γ;

� F is compact, and µ(F̄\F ) = 0;

� tγiF = G.

Let us denote by µ the biinvariant Haar measure on the group G (since G
is the group of the isometries of a Riemannian manifold, G is unimodular).
We de�ne the map trans by requiring that

trans c(g0, . . . , gi) =
1

µ(F )

∫
F̄
c(fg0, . . . , fgn)dµ(f)

We will now prove that the chain trans(c) is G-invariant whenever we start
with a Γ-invariant chain c.

Let us �x g in G and let us consider the family {Fi = γiFg
−1∩F}. Since

F is a fundamental domain for F , we have Fi ∩ Fj = ∅:

Fi ∩ Fj ⊆ γiFg−1 ∩ γjFg−1 = (γiF ∩ γjF )g−1 = ∅.
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The family is also �nite: let us consider the projection π : G→ M̃ , since the
action of Γ = π1(M) on M̃ is proper, also the action of Γ on G is proper and
hence the set {γi | γiF ∩Fg} is �nite since Fg is compact. To prove that the
family {Fi} gives a �nite partition of the fundamental domain F (negletting
a null-measure subset) it remains to prove that tF i = F and this follows
from the fact that the left-hand member is obviously contained in F and⊔

γi∈Γ

γiFg
−1 = (

⊔
γi∈Γ

γiF )g−1 = Gg−1 = G.

Note that, for the same reason, also the set {γ−1
i Fig = F ∩ γiFg} gives a

partition of F . We than have

lg−1trans c(g0, . . . , gi) = 1
µ(F )

∫
F c(fgg0, . . . , fggn)dµ(f) =

= 1
µ(F )

∑
i

∫
F i
c(fgg0, . . . , fggn)dµ(f) =

= 1
µ(F )

∑
i

∫
γ−1
i F ig

c(γifg0, . . . , γifgn)dµ(f) =

= 1
µ(F )

∑
i

∫
γ−1
i F ig

c(fg0, . . . , fgn)dµ(f) =

= 1
µ(F )

∫
F c(fg0, . . . , fgn)dµ(f).

where we have used the fact that µ is biinvariant, the Γ-invariance of c and
the observation that both {Fi} and {γ−1

i Fig} are partitions of F .
Moreover trans c is continuous since we are averaging on a compact set.

From the very de�nition of the map trans follows that it is a chain map (i.e.
commutes with the di�erential) and hence induces a map in cohomology.
Clearly the composition trans◦ res is the identity and both trans and res are
norm non-increasing at the cochain level. This implies that res induces the
required isometric embedding.

In the proof of this theorem we have never used the fact that M is a
locally symmetric space. However, in general, the continuous cohomology
of G can be null in top dimension and hence, in the general case, a result
analoguous to this theorem is not useful towards the study of simplicial
volume.

We have already pointed out that, ifM is a locally symmetric space whose
universal covering has no noncompact factor, the cohomology of M and of
π1(M) are isometrically isomorphic (this is because the universal covering
M̃ of M is contractible) and hence the top dimensional cohomology group
of Γ = π1(M) is one dimensional and generated by the preimage (via the
classifying map) of the fundamental coclass. We are now going to exhibit an
element in H∗c (G;R) whose restriction is the fundamental coclass.

Theorem 3.3.11. Let Mm be a locally simmetric space, let G be the con-

nected component of the identity in the group of the isometries of its universal
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covering M̃ , and let ω ∈ Hm
c (G;R) be the image under van Est's isomor-

phism of the volume form ω
M̃

on M̃ . Then

res(ω) = vol(M) · [M]R.

Proof. We have seen in Van Est Theorem (Theorem 1.7.5) that Hm
c (G;R)

is isomorphic to Ωm(M̃ ;R)G (since M̃ = G/K where G is a connected Lie
group and K is the maximal compact subgroup of G corresponding to the
stabilizer of a once and for all �xed point p). Moreover Ωm(M̃ ;R)G is one
dimensional: since G acts transitively on M̃ , the vector space Ωm(M̃ ;R)G

can be viewed as a subspace of ∧mTpM̃ ∼= R, furthermore Ωm(M̃ ;R)G is
not empty because the volume form ω

M̃
is obviously G-invariant (because

the group G acts on M̃ via isometries). This shows that Hm
c (G;R) is one

dimenisonal and generated by ω.
We will now track down the isomorphisms Ωm(M̃ ;R)G ∼= Hm(M ;R)

in order to understand in which multiple of the fundamental coclass ω is
mapped.

In Proposition 1.8.1 we have seen that, once a a point p ∈ M̃ is �xed, a
representative for ω in Cmc (G;R) is given by the cocycle Im(ω

M̃
) ∈ Cmc (G;R)G

de�ned by

Im(ω
M̃

)(g0, . . . , gm) =

∫
4(g0,...,gn)

ω
M̃

where 4(g0, . . . , gn) is the geodesic simplex with vertices (g0p, . . . , gnp) (we
de�ned the meaning of geodesic simplex in Section 1.8). Moreover the im-
age of Imω

M̃
in the complex C∗(Γ;R)Γ has the same expression (where we

assume that the elements gi belong to Γ instead of G): we have seen in
the proof of Theorem 3.3.10 that the embedding H∗c (G;R) → H∗(Γ;R) is
induced by the restriction C∗c (G;R)G → C∗(Γ;R)Γ.

It remains only to make explicit (at the cochain level) the isomorphism
between the singular cohomology Hm(M ;R) and the group cohomology
Hm(Γ;R). The covering map p : M̃ → M induces an isomorphism of
cochains

p∗ : C∗(M ;R)→ C∗(M̃ ;R)Γ.

Since M̃ is contractible, the latter is the subcomplex of the Γ-invariants of the
strong relatively injective Γ-resolution of R given by (C∗(M̃ ;R), d). We need
to give an explicit description of the chain morphism Ci(M̃ ;R) → Ci(Γ;R)
that induces the isometry in cohomology. We have proved in proposition
2.7.4 that the map

β : Ci(M̃ ;R)→ Ci(Γ;R)
β(c)(g0, . . . , gi) = c(4(g0p,...,gip)).

is a norm decreasing chain map that extends the identity in dimension 0,
and hence induces an isomorphism in cohomology that is moreover isometric.
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Clearly res Im(ω
M̃

) is the image, under β, of the cocycle γ̃ that assigns to

a given simplex σ ∈ Sm(M̃) the integral of ω
M̃

over the simplex σ (that we
can assume, up to homotopy, smooth or even straight). Moreover, if we call
ωM the volume form on M , ω

M̃
= p∗ωM and hence, in the identi�cation

p∗ : C∗(M ;R) → C∗(M̃ ;R)Γ, γ̃ corresponds to the cochain γ ∈ C∗(M ;R)
that assumes on a simplex σ ∈ Sm(M) the value of the integral of ωM over
the simplex. We can now compute what multiple of the fundamental coclass
γ is. If we choose a representative α =

∑
i σi for the fundamental class [M ]

that comes from a smooth triangulation, we get:

〈[M ], γ〉 = γ(α) =
∑
i

∫
σi

ωM =

∫
M
ωM = vol(M).

This implies our thesis: γ, the image of ω under res, is vol(M) · [M ]R.

An immediate consequence of Theorem 3.3.11 is the following result:

Corollary 3.3.12 (Proportionality constant for locally symmetric spaces).
Let ω be the class in Hm

c (Isom0(M);R) of the volume form on M̃ , then

‖M‖ =
vol(M)

‖ω‖∞
.

where we understand ‖M‖ = 0 if and only if ‖ω‖∞ = ∞ as an element of

H∗c (G;R).

Proof. We have proved (see Corollary 3.2.3) that the simplicial volume of the
manifoldM is the inverse of the seminorm of the fundamental coclass. Since
the restriction map res : Hm

c (G,R) → Hm(M,R) is isometric (as proved in
Theorem 3.3.10) and res(ω) = vol(M) · [M ]R, we get that

‖M‖ =
1

‖[MR]‖∞
=

vol(M)

‖ω
M̃
‖∞

.

Since the group G depends only on the universal covering of the manifold
M , another important consequence of Theorem 3.3.11 is the Proportionality
Principle for locally symmetric spaces:

Corollary 3.3.13 (Gromov Proportionality Principle for Locally Symmetric
Spaces). Let M be a closed connected orientable Riemannian manifold that

is a locally symmetric space, the rate

‖M‖
vol(M)

depends only on the universal cover of M .
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In the next section we will show that the proportionality constant for
hyperbolic manifolds equals vn, the volume of the ideal regular simplex in
Hn. Purpose of the next chapter is to study the case of manifolds covered by
H2×H2, we will see that in that case the constant is 2/3π2. In general these
are the only cases in which the proportionality constant is known explicitily.
It is worth remarking that Lafont and Schmidt proved in [LaSch06] that the
norm of the volume form is �nite (and hence the proportionality constant
is nonzero) for every locally symmetric space whose covering is a symmetric
space of noncompact type. Instead it is easy to prove that the simplicial vol-
ume of a symmetric space whose universal covering has a nontrivial Euclidean
factor vanishes: Eberlein proved that, in this case, M admits a �nite cover-
ing M that is a product of a torus with some closed manifold [Ebe83]. Since
we have proved that the simplicial volume of a torus vanishes (Proposition
3.1.7) and that the simplicial volume of a product vanishes if the simplicial
volume of one of its factors is null (Proposition 3.2.4), the simplicial volume
of M vanishes as a consequence Proposition 3.1.6.

Corollary 3.3.13 is far more general: it is valid for every closed compact
oriented manifold (and also for �nite volume manifold provided an appro-
priate de�nition of simplicial volume is given in that case):

Theorem 3.3.14 (Gromov Proportionality Principle). Let M be a closed

connected oriented manifold. Then the rate c(M̃) = ‖M‖
vol(M) depends only on

the universal covering of M .

In this case c(M̃) can be computed as the norm of the volume form seen
in a suitable cohomology group. Despite this result is far more general and
hence very interesting, it is less suited for explicit computations since, in
that case, one cannot rely on the fully developed tool of group (continuous,
bounded) cohomology. For this reason we will not prove it in full generality
and refer to [Gro82, Section 0.4], that �rst gave a sketch of the proof of
this theorem, [Löh06, Theorem 6.3] for a full proof relying on the theory
of measure homology introduced by Thurston, [Buc08A, Section 6] for a
detailed yet partially uncorret version of Gromov's arguments and [Fri11,
Section 9] where the remaining gap is �lled in.

3.4 Hyperbolic manifolds

As a �rst application of the techniques introduced in the previous section, we
compute the simplicial volume of hyperbolic manifolds via a cohomological
argument: we will compute the norm of the class in Hn

c (G;R) that is the
image, under Van Est's isomorphism, of the hyperbolic volume form. Let us
�x once and for all the dimension n of Hn. Moreover G will always denote
the connected component of the identity of the group of the isometries of
Hn, that is the subgroup of the isometries of Hn that preserve orientation.
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Theorem 3.4.1. Let vn be the volume of an ideal regular simplex in Hn, if
ω is the class of the volume form of Hn, then

‖ω‖∞ = vn.

Proof. We have proved in Corollary 1.5.3 and in Theorem 1.5.2 that the
continuous cohomology of G can be computed as the cohomology of the
complex of

Ckc (Hn)Galt = {f : (Hn)k+1 → R | f is continuous, alternating, G-invariant}

and that the sup norm on this complex induces the canonical seminorm on
H∗c (G;R). We recall that, if we �x a point x in Hn and hence a projection
π : G→ G/K = Hn, the isometric isomorphism between the cohomology of
the complexes (Ckc (Hn)alt; d) and (Ckc (G;R); d) is induced by the chain map

π∗ : Ckc (Hn)alt → Ckc (G)
π∗φ(g0, . . . , gk) = φ(g0x, . . . , gkx).

Let us consider the cocycle γ ∈ Cnc (Hn)G
alt

that assignes to an (n + 1)-uple
(x0, . . . , xn) in Hn the signed volume of the straight simplex with vertices
(x0, . . . , xn).

π∗γ(g0, . . . , gn) = γ(g0x, . . . , gnx) =

∫
4(g0x,...,gnx)

ω = Inω,

where Inω is the representative of the image under Van Est isomorphism of
the volume form we constructed in Section 1.8. It follows from the de�nition
of γ that its norm, as an element of the normed vector space Ckc (Hn)G

alt
, is

vn, the sup of the volumes of the geodesic simplices in Hn.
It remains only to show that γ has minimal norm among the represen-

tatives of [γ], in other words we shall compute the norm of γ + δβ with
β ∈ Cn−1

c (Hn)G
alt

and show that it is at least vn. Let us consider the vertices
(xR0 , . . . , x

R
n ) of a regular simplex σR in Hn of radius R. For every face σRj

of σR, any permutation of its vertices can be realized by an orientation pre-
serving isometry of Hn: infact, since σ is regular, there exists an isometry of
Hn �xing the vertex opposite to σRj and realizing the prescribed permutation
of the remaining vertices. Whenever the permutation is odd, this isometry
is orientation reversing and hence doesn't belong to G, but in this case it is
enough to compose this isometry with the re�exion with respect to the hy-
perplane through the face: the obtained element of G restricts to an isomety
of σRj that realizes the �xed permutation.

Since the cochain β is alternating and G-invariant, β(σRj ) = 0 for every
face σRj of σR: let g be the orientation-preserving isometry that realizes the
permutation of the �rst two vertices of the j-th face σRj and �xing all the
other vertices,

74



β(x0, x1, . . . , x̂j , . . . , xn) = β(gx0, gx1, . . . , x̂j , . . . , gxn))
= β(x1, x0, . . . , x̂j , . . . , xn)
= −β(x0, x1, . . . , x̂j , . . . , xn)

where in the �rst equality we have used the G-invariance of β, in the last
one the fact that β is alternating. This allows us to conclude the proof: the
volume of σR tends to vn and δβ(σR) = 0, hence

‖γ + δβ‖∞ ≥ supR |(γ + δβ)(σR)|
= supR |γ(σR)| = vn.

To conclude the Chapter we will see how the proportionality principle for
hyperbolic spaces can be proved in a purely homological way (i.e. without
recourse to bounded cohomology). Gromov, in [Gro82], attributed the idea
of this proof to N. H. Kupier, we will follow the approach of [BePe92, Chapter
C].

Proposition 3.4.2. LetMn be a hyperbolic closed connected oriented many-

fold. If vn is the volume of the regular ideal simplices in Hn,

‖M‖ ≥ vol(M)

vn
.

Proof. We will consider the straightening operator str : C∗(M,R)→ C∗(M,R)
i.e. the operator that assigns to a simplex σ the projection of the straight
simplex of Hn with the same vertices of an arbitrary lifting σ̃ of σ. It is
well known that the straightening is well de�ned and chain homotopic to the
identity.

Let us choose a representative α =
∑

i aiσi of the fundamental class [M ];
since the straightening operator has norm one and is chain homotopic to the
identity, we can assume (without changing the class of α nor its norm) that
every simplex σi in the sum is the projection of a straight simplex σ̃i of Hn.

Let us now consider the cocycle ω ∈ Cn(M ;R) that assigns to every
simplex σ the integral over σ of the volume form ωM . We have already
pointed out that ω([M ]) = vol(M) (this fact can be easily veri�ed choosing
a representative of the fundamental class coming from a triangulation). So
we get (recalling that Hn is the metric covering of M) that

vol(M) = ω([M ]) =

∣∣∣∣∣∑
i

ai

∫
σi

ωM

∣∣∣∣∣ ≤∑
i

|ai|
∣∣∣∣∫
σ̃i

ωHn

∣∣∣∣ ≤ vn∑
i

|ai|.

This formula gives the desired inequality.
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The other inequality is more di�cult, but it is very interesting since
it involves the explicit exhibition of a sequence of minimizing cycles, i.e.
cycles representing the fundamental class [M ] whose l1-norm is arbitrarily
colose to ‖M‖. To gain this result we �x ε and look for a representative∑

i aiσi of [M ] such that |vol(σi)| > vn − ε and that sgn(ai) is positive if
σi is orientation preserving, negative otherwise: this will be necessary since∫
σi
ωHn = −vol(σi) if and only if σi is orientation reversing.
In the proof of this theorem also orientation reversing isometries will

be important and will also be crucial the distinction between orientation
preserving and orientation reversing isometries. For this reason we slightly
modify our notation and we denote by G+ (resp. G−) the group of orien-
tation preserving (resp. reversing) isometries of Hn. As usual Γ will be the
fundamental group of M that we regard as a subgroup of G+, and µ the
biinvariant Haar measure on G = Isom(Hn) = G+ ∪G−.

Theorem 3.4.3. Under the same hypothesis of Proposition 3.4.2 it holds

‖M‖ ≤ vol(M)

vn
.

Proof. If we could consider an uniformly distributed chain with support on
the projections of all the regular simplices of radius R (with a sign re�ecting
the orientation of the simplex), we would have a chain made of simplices of
almost maximal volume (when R goes to in�nity). Such a chain would be
closed since, once a face fi of a simplex σ is �xed, if γ is the re�ection with
respect to the hyperplane through fi, γσ is a regular simplex that has fi as
ith face and opposite orientation (and hence would be counted with opposite
sign).

However this chain would not be a �nite combination of simplices and
hence wouldn't be a singular chain (a precise de�nition of a chain that is
uniformly distributed can be given within the theory of measure homology,
see [Thu79, Chapter 6] and [Löh04, Chapter 5] for more details). We will
give a discrete version of this chain splitting the set of straight simplices in
some suitable classes and taking a representative for each (with the right
weight).

Let us �x a convex fundamental domain F for the action of Γ on Hn
and a point x in F , and let d be the diameter of F . Let us moreover �x a
regular simplex σR of radius R in Hn. The vertices of σ will be the points
(xR0 , . . . , x

R
n ). Since G acts transitively and faithfully on the set SR of regular

simplices of radius R, the choice of σR corresponds to an identi�cation of G
with SR, where we associate to the element g in G the simplex gσR.

The function aR = a+
R − a

−
R we will now de�ne measures the amount of

regular simplices whose vertices (gxR0 , . . . , gx
R
n ) lie in the region F × γ1F ×
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. . .× γnF ⊆ (Hn)n+1:

a±R : Γn → R
a+
R(γ1, . . . , γn) = µ{g ∈ G+|g(xR0 ) ∈ F, g(xRi ) ∈ γiF},
a−R(γ1, . . . , γn) = µ{g ∈ G−|g(xR0 ) ∈ F, g(xRi ) ∈ γiF}.

Note that we are considering only the simplices whose �rst vertex belongs to
F , this is because we are implicitly identifying the straight simplices of M
with their unique lift with �rst vertex in the region F .

The function aR is almost everywhere zero: since σR is a regular simplex
of radius R, we have d(x0, xi) = R. This means that αR(γ1, . . . , γn) 6= 0 only
if γiF ∩B(x,R+ d) 6= ∅ for every i between 1 and n (both gx and x0 belong
to the region F whose diameter is d and hence d(g(xi), x) ≤ d(g(xi), g(x0))+
d(g(x0), x) ≤ R + d). Since the ball B(x,R+ d) ⊂ Hn is compact and the
action of Γ on Hn is proper, the set {j|γjF ∩B(x,R+ d) 6= ∅} is �nite.

Let us now consider, for every n-uple (γ1, . . . , γn) ∈ Γn, the straight
simplex σ̃(γ1,...,γn) ∈ Sn(Hn) that has vertices in the points (x, γ1x, . . . , γnx).
Let us moreover denote by σ(γ1,...,γn) the projection π∗σ̃(γ1,...,γn) ∈ Sn(M).
The simplex σ(γ1,...,γn) is our representative for the straight simplices that
admit a lift with vertices in the region F × γ1F × . . . × γnF . Despite σ is
not regular, we will see that, provided the class it represents is not empty, it
is close to a regular simplex and then its volume is close to vn whenever we
make this construction with a su�ciently big R. We choose, as a coe�cient
for σ(γ1,...,γn), the mass of the simplices it represents in order to obtain the
class

αR =
∑

aR(γ1, . . . , γn)σ(γ1,...,γn) ∈ Cn(M ;R).

We have to show that it is a cycle and that its class is a nonzero multiple of
the fundamental class [M ].

We have already pointed out that aR(γ1, . . . , γn) is almost always null
and hence αR is well de�ned (it is a �nite combination of singular simplices
of M).

�αR is closed

It is easy to see that, denoting by σ(γ1,...,γn−1) the projection of the straight
simplex with vertices in (x, γ1x, . . . , γn−1x), we have

∂αR =
∑
aR
(
γ1, . . . , γn)(

∑n
i=1(−1)iσ(γ1,...,γ̂i,...,γn) + π∗γ1σ̃(γ−1

1 γ2,...,γ
−1
1 γn−1)

)
=
∑
aR
(
γ1, . . . , γn)(

∑n
i=1(−1)iσ(γ1,...,γ̂i,...,γn) + σ(γ−1

1 γ2,...,γ
−1
1 γn−1)

)
.

Let us choose a simplex σ(γ1,...,γn−1) and show that its coe�cient c in this
sum is zero. We have

c =
∑
γ∈Γ

n∑
i=1

(−1)iaR(γ1, . . . , γ, γi, . . . , γn−1) +
∑
γ∈Γ

aR(γ, γγ1, . . . , γγn−1).
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Let us show that for every i, the sum
∑

γ aR(γ1, . . . , γ, γi, . . . , γn−1) = 0.∑
γ∈Γ aR(γ1, . . . , γi, γ, . . . , γn−1) =

=
∑

γ∈Γ µ{g ∈ G+|gx0 ∈ F, gxj ∈ γjF, gxi+1 ∈ γF}
−µ{g ∈ G−|gx0 ∈ F, gxj ∈ γjF, gxi+1 ∈ γF} =

=
∑

γ∈Γ µ{g ∈ G+|gx0 ∈ F, gxj ∈ γjF} − µ{g ∈ G−|gx0 ∈ F, gxj ∈ γjF} =

= 0

where in the �rst equality we used the fact that the measure is σ-additive,
and

⋃
γ∈Γ γF = Hn, in the second the fact that the two sets have equal

measure since they correspond via the right multiplication of the re�ection
with respect to the iperplane through (x0, . . . , x̂i, . . . , xn) and the measure
µ is right invariant.

In a similar way we have
∑

γ∈Γ aR(γ, γγ1, . . . , γγn−1) = 0:∑
γ∈Γ aR(γ, γγ1, . . . , γγn−1) =

=
∑

γ∈Γ µ{g ∈ G+|gx0 ∈ F, gx1 ∈ γF, gxi ∈ γγiF}
−µ{g ∈ G−|gx0 ∈ F, gx1 ∈ γF, gxi ∈ γγiF} =

=
∑

γ∈Γ µ{g ∈ G+|γ−1gx0 ∈ γ−1F, γ−1gx1 ∈ F, γ−1gxi ∈ γiF}
−µ{g ∈ G−|γ−1gx0 ∈ γ−1F, γ−1gx1 ∈ F, γ−1gxi ∈ γiF} =

=
∑

γ∈Γ µ(γ{ḡ ∈ G+|ḡx0 ∈ γ−1F, ḡx1 ∈ F, ḡxi ∈ γiF})
−µ(γ̄{g ∈ G−|ḡx0 ∈ γ−1F, ḡx1 ∈ F, ḡxi ∈ γiF}) = 0.

This means that c = 0 and hence αR is closed.

� [αR] is di�erent from 0 in Hn(M ;R)
If R is big enough (namely R > 2d), then aR(γ1, . . . , γn) is greater than
0 (resp. ≤ 0) only if the simplex with vertices (x, γ1x, . . . , γnx) is posi-
tively oriented (resp. negatively oriented). Indeed, if aR(γ1, . . . , γn) ≥ 0,
there exists a positively oriented regular simplex gσR with the property that
d(gxi, γix) < d for every i; this means that the (n+ 1)-uple (x, γ1x, . . . , γnx)
is positively oriented (since d(xi, xj) = R). This implies that σ̃(γ1,...,γn) is
positively oriented and hence also σ(γ1,...,γn) is.

This means that

vol(M)[M ]R[αR] =
∑

aR(γ1, . . . , γn)

∫
σ(γ1,...,γn)

ω =

=
∑
|aR(γ1, . . . , γn)|vol(σ(γ1,...,γn)) = a 6= 0.

This allows us to conclude that vol(M)[αR] = a[M ] i.e. that vol(M)[αR/a] =
[M ], moreover

1

‖αR/a‖1
≥ min

aR(γ1,...,γn) 6=0
vol(σ(γ1,...,γn)) = cR.
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Since, if aR(γ1, . . . , gn) 6= 0, σ̃(γ1,...,γn) is a straight simplex whose vertices
have distance at most d from a regular simplex of radius R and vol(σR) tends
to vn when R→∞, also cR tends to vn: this implies that we can choose R
such that cR ≥ vn − ε. This means that

‖M‖ ≤ vol(M)‖αR/a‖1 ≤
vol(M)

vn − ε
.

That leads to the desired inequality letting ε go to zero.
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Chapter 4

Manifolds covered by H2 ×H2

The aim of this chapter is to describe the method introduced by Bucher-
Karlsson in [Buc08B] in order to compute the proportionality constant be-
tween the Riemannian volume and the simplicial volume for manifolds cov-
ered by H2×H2. As we have already pointed out this is the only case, apart
from hyperbolic manifolds, in which a nonzero proportionality constant is
known.

The proof will follow the line of the proof of Theorem 3.4.1. In particular,
in Section 4.2 we give an explicit description of an expecially simple repre-
sentative of the volume form (this is someway a more sophisticated analogue
of Dupont's description of the cocycle Ixω we studied in Section 1.8).

In Section 4.3 we will reduce to a suitable complex in which the compu-
tation can be made with the aid of some combinatorics. Also in the proof
of Theorem 3.4.1 we have made something similar when we took advantage
of the homological algebra developed in the �rst two chapters in order to
reduce to the complex (Ckc (Hn)alt; d): it is not enough to �nd a good repre-
sentative for the volume form whose norm can be combinatorially computed
(as a cocycle), it is also necesary to show that the chosen representative is
indeed minimal and for this purpose is useful to �nd a small and tractable
complex to which our cocycle (or, more precisely, a slight modi�cation of our
cocycle) belongs.

There are two basic di�erences in the present approach with respect to
what we have already done: the �rst (and less important) is that we will need
the full group of isometries of H2×H2 instead of its identity component. In
order to show that our representative of the fundamental coclass has minimal
norm, we will have to prove that the coboundaries vanish on objects that
are the equivalent (in this new context) of the ideal regular simplices. In the
proof of this fact we will need extra symmetries that are isometries of H2×H2

but do not belong to PSL2(R)×PSL2(R), the component of the identity of
Isom(H2×H2). We will trace back to the full group of isometries of H2×H2 in
Section 4.1. In particular we will show in Proposition 4.1.1 that there exists
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an isometric inclusion H4
c (H; R̃) ↪→ H4

c (G;R) where H = Isom(H2 × H2),
and G is its identity component. Proposition 4.1.1 is analogue to Theorem
3.3.10 and in its proof we will use similar techniques.

The main di�erence respect to the hyperbolic case is, however, the fact
that in H2×H2 we cannot rely on the theory of regular simplices. The clever
idea of Bucher-Karlsson in order to avoid this di�culty is to work with the
topological space S1×S1 that is the quotient of Isom(H2×H2) with respect
to an (amenable) minimal parabolic subgroup and that should be regarded,
geometrically, as the product of the boundaries ∂H2 × ∂H2. However, in
order to reduce to such an easier context (in which combinatorics is much
more simple and, as we will see, we can rely on useful extra isometries), it is
necessary to use bounded cohomology. We will see how this can be done in
Section 4.3.

In particular we will be able only to compute the norm of the volume
form as an element of H4

cb(H; R̃) and we will actually do the computations
in Section 4.4. To complete the proof we will then need to show that the
comparison map c : H4

cb(H; R̃) → H4
c (H; R̃) is indeed an isomorphism: this

will be the topic of Section 4.5.

4.1 The group of isometries of H2 ×H2

We want to study the group of isometries of H2×H2 that we will denote, in
the whole chapter, with the letter H.

Clearly G = PSL2(R) × PSL2(R) is a subgroup of H: since the metric
on H2 × H2 is the product metric, the product of two isometries acting
separately on the two factors is an isometry of the product. Moreover the
identity belongs to G and, since PSL2(R) is connected, also G is.

We claim that G has index 8 in H and is the component of the identity of
H. Indeed we already know that PSL2(R) is a closed subgroup of Isom(H2)
of index 2. From this follows that G < Isom(H2) × Isom(H2) is a closed
subgroup of index 4. It only remains to show that Isom(H2) × Isom(H2) is
a closed subgroup of H of index 2.

Indeed let us consider the isometry (of order 2) switching the two factors:

σ : H2 ×H2 → H2 ×H2

(x, y) → (y, x).

Let us denote by H̃ the group generated by Isom(H2) × Isom(H2) and
σ. It is easy to verify that H̃ = H. Indeed the group H̃ acts transitively
on H2 × H2 (since it contains G that acts transitively itself), moreover it
contains the stabilizer of a generic point x: the tangent Tx(H2 × H2) splits
as a direct sum (where each factor corresponds to the image of the tangent
of one factor H2) and any isometry φ of H2×H2 �xing x must preserve this
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splitting. Up to precomposing with σ we can assume that dφx maps each
factor in itself and hence φ has the form (φ1, φ2) with φi ∈ Isom(H2).

Since G is closed and has �nite index in H, it is also open. Hence the
fact that G is the connected component of the identity follows from the fact
that G itself is connected (since PSL2(R) is).

In what follows, it will be useful to �nd explicit representatives for the
lateral classes of G in H. In particular, if we chose a re�ection τ with respect
to any geodesic of H2 (i.e. an orientation reversing isometry of H2 that has
order 2), we can consider the isometries of H2 ×H2 de�ned by

τ1 : H2 ×H2 → H2 ×H2 τ2 : H2 ×H2 → H2 ×H2

(x, y) → (τ(x), y) (x, y) → (x, τ(y)).

clearly στ1 = τ2σ. And, moreover, H = 〈G, σ, τ1〉. Since F = 〈σ, τ1〉 is a
discrete subgroup of order 8, H is the semidirect product H = Go F .

We are now ready to relate the cohomology of G with that of H. As
we have already done in the proof of Theorem 3.4.1 the idea is to construct
an inverse to the restriction C∗c (H;R)H → C∗c (G;R)G by averaging on the
lateral classes (indeed in this case the space of cosets is �nite and hence we
will substitute the integral with a �nite mean). This will allow us to deduce
that H∗c (H;R) injects in H∗c (G;R) and that the injection is isometric.

As we have done for the isometry group of a symmetric space, we will
then need to show that the cocycle we are interested in lies in the image of
the map res. Unfortunately, even though the representative of the volume
form (as a function in C4

c (G;R)G) has a natural extension in C4
c (H;R), such

an extension is not H-invariant: the function

φ : H5 → R
(g0, . . . , g4) 7→

∫
4(g0x,...,g4x) ωH2×H2

satis�es g · φ = −φ if g is any orientation reversing isometry of H2 × H2.
For this reason we need to work with the cohomology of H with twisted
coe�cients.

Let us denote by R̃ the H-module (R, π) where

π : H → Aut(R)
g 7→ sgn(g),

and sgn(g) denotes the multiplication by +1 if g is orientation preserving,
by −1 otherwise. Since G consists only of orientation preserving isometries
of H2 ×H2, the restriction of π to G is trivial.

Proposition 4.1.1. There exists an isometric inclusion

H∗c (H; R̃)→ H∗c (G;R).
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Proof. We have shown in Theorem 1.6.6 that the continuous cohomology
of G can be computed from the complex (C∗(H;R)G, d). Moreover we have
proved in Theorem 2.5.9 that the sup norm on C∗(H;R)G induces the canon-
ical seminorm. We �rst describe some maps at the cochain level that induce
the isometric isomorphism in cohomology.

The group H can be written as the union of right lateral classes of G:
we have already chosen preferred representatives

F = {id, τ1, τ2, τ1τ2, σ, τ1σ, τ2σ, τ1τ2σ},

and H =
⋃
f∈F Gf . This allows us to de�ne a chain map a : C∗(G;R) →

C∗(H;R) obtained gluing copies of a cochain φ on the various lateral classes.
The map a preserves the submodules of continuous functions sinceG is closed
in H.

It is moreover obvious that, if we denote by b the map induced by the
inclusion G ↪→ H, the composition

C∗c (G;R)
a // C∗c (H;R)

b // C∗c (G;R)

is the identity (and both maps are norm decreasing). Moreover, by con-
struction, the maps a and b are chain G-morphisms (if we consider on H the
diagonal left action of G) that extend the identity on R and hence induce an
isometric isomorphism in cohomology.

We have already observed that the restriction to G of the twisted repre-
sentation ofH on R̃ is the trivial one, this means that C∗c (H; R̃)H is naturally
a subcomplex of C∗c (H;R)G.

We will now de�ne the left inverse to the map (that we will denote by
res) corresponding to the inclusion

res : C∗c (H; R̃)H → C∗c (H; R̃)G.

The required inverse is provided by the map

trans(φ)(g0, . . . , gn) =
1

8

∑
f∈F

f · φ(g0, . . . , gn)

=
1

8

∑
f∈F

sgn(f) · φ(f−1g0, . . . , f
−1gn).

The proof that the map trans is well de�ned is anologous to that of The-
orem 3.4.1 (even if in this case one must take extra care since the coe�cients
are twisted). We will do it again for completeness. Since in this particu-
lar case we have an explicit description of H as an extension of G, we can
show the invariance explicitely. Indeed in order to prove that trans(φ) is
H-invariant it is su�cient to show that it is G-invariant, σ-invariant and
τ1-invariant.

83



The G-invariance of trans(φ) follows, almost immediately, from the G-
invariance of φ: since G is normal in H, for every g ∈ G, f ∈ F there exists
an element gf ∈ G such that fg = gff , hence

g−1 · trans(φ)(g0, . . . , gn) = 1
8

∑
f∈F sgn (f)φ(fgg0, . . . , fggn) =

= 1
8

∑
f∈F sgn(f)φ(gffg0, . . . , gffgn) =

= 1
8

∑
f∈F sgn(f) (g−1

f · φ)(fg0, . . . , fgn) =

= 1
8

∑
f∈F sgn(f)φ(fg0, . . . , fgn) =

= trans(φ)(g0, . . . , gn).

We will prove the σ and τ1 invariance together. Let ρ be any element of
the set {σ, τ1}. The right multiplication by ρ induces a permutation of the
set F . Furthermore sgn(fρ) = sgn(f)sgn(ρ). This implies that:

(ρ−1 · trans(φ))(g0, . . . , gn) = sgn(ρ−1) trans(φ)(ρg0, . . . , ρgn) =
= sgn(ρ)1

8

∑
f∈F sgn(f)φ(fρg0, . . . , fρgn) =

= 1
8

∑
f∈F sgn(f) sgn(ρ)φ(fρg0, . . . , fρgn) =

= 1
8

∑
f∈F sgn(fρ)φ(fρg0, . . . , fρgn) =

= trans(φ)(g0, . . . , gn)

(the sign of a permutation is the same of its inverse).
Furthermore it is obvious that the obtained function is continuous (being

a �nite sum of continuous functions), that trans is a chain map and that it
provides a left inverse to res. Summarizing we have the commutative diagram

C∗c (H; R̃)H
res //

id

22C∗c (H; R̃)G
trans // C∗c (H; R̃)H

that, since both res and trans are norm decreasing and their composition is
the identity at chain level, gives the isometric injection we were looking for.

4.2 A representative for the volume form

The purpose of this section is to �nd a suitable representative for the volume
form whose norm can be computed with the aid of some combinatorics. At
the beginning of the section we will consider a representative in the complex
C∗c (G;R). Then we will extend our cocycle in C∗c (H; R̃).

Our �rst goal is to express the volume form as the cup product of 2-
cocycles (that are evidently easier to deal with combinatorically). In order
to do this, we �rst note that an analogue of the cup product can be de�ned
also in the context of continuous (bounded) cohomology of groups. Namely
whenever we �x a group G, the continuous bounded cohomology H∗cb(G;R)
is the cohomology of the complex C∗cb(G;R)G.
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The bilinear pairing (at the cochain level) given by

Cic(G;R)⊗ Cjc (G;R)→ Ci+jc (G;R)
φ ∪ ψ(g0, . . . , gi+j) = φ(g0, . . . , gi)ψ(gi, . . . , gi+j)

is well de�ned since the projections Gi+j → Gi are continuous, this implies
that the cup φ ∪ ψ is a product of continuous functions, in particular is
continuous. Moreover, since ‖φ ∪ ψ‖∞ ≤ ‖φ‖∞‖ψ‖∞, the cup product of
bounded cochains is a bounded cochain and hence the cup product restricts
to a product of the bounded subcomplex. The veri�cations that d(φ ∪ ψ) =
dφ∪ψ+ (−1)iφ∪ dψ are formally the same of the corresponding in singular
cohomology and lead to the conclusion that the just de�ned pairing induces
a well de�ned map

∪ : H i(G;R)⊗Hj(G;R)→ H i+j(G;R).

Let us now came back to the isometries of H2 × H2. We �x notations
for the projections, in particular we will denote by πi : H2 × H2 → H2 the
projection on the i-th factor, and similarly by pi : PSL2(R) × PSL2(R) →
PSL2(R) the i-th projection. Let nowM be a symmetric space (that can be
either H2 or H2×H2) and I0(M) the connected component of the identity in
the isometry group of M (respectively PSL2(R) or PSL2(R) × PSL2(R)).
If α ∈ Ωi(M ;R)I0(M) is an invariant form, we denote by [α] the image of α
in H i

c(I0(M);R) under van Est isomorphism. The following lemma follows
from the functoriality of van Est isomorphism:

Lemma 4.2.1. For every α ∈ Ωi(H2;R),

[π∗jα] = p∗j [α]

as classes in H i
c(G;R).

Proof. The statement is true even at cocycle level, provided we choose suit-
able representatives: let us �x a point (x, y) in H2 × H2 and consider the
Dupont representative of α described in Section 1.8. According to the nota-
tion of Section 1.8, we denote by I(x,y)β the representative of β with respect
to the point (x, y). We are going to show that I(x,y)π

∗
1α = p∗1Ixα (the proof

for π∗2 and p∗2 being similar). Note that an element g of G is a product of
two isometries acting separately on the two factors, g = (g1, g2).

I(x,y)π
∗
1α((g1

0, g
2
0), . . . , (g1

i , g
2
i )) =

∫
4((g10x,g

2
0y),...,(g1i x,g

2
i y)) π

∗
1α =

=
∫
4(g10x,...,g

1
i x) α =

= Ixα(g1
0, . . . , g

1
i ) =

= p∗1Ixα((g1
0, g

2
0), . . . , (g1

i , g
2
i ))
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Another important property of van Est isomorphism is that it is multi-
plicative with respect to wedge product:

Proposition 4.2.2.

[ωH2×H2 ] = p∗1[ωH2 ] ∪ p∗2[ωH2 ].

Proof. Obviously [ωH2×H2 ] = [π∗1ωH2 ∧π∗2ωH2 ] hence it remains to prove that
van Est isomorphism is multiplicative. We will get this result as a conse-
quence of the multiplicativity of de Rham isomorphism between de Rham
cohomology and singular cohomology. Indeed let us consider the product
Σ2 × Σ2 of two surfaces of genus 2. We have seen in Theorem 3.3.10 that
there exists an isometric inclusion:

H∗c (G;R) ↪→ H∗(π1(Σ2 × Σ2);R) ∼= H∗(Σ2 × Σ2;R).

Moreover, as a consequence of the explicit description at the cochain level
of Van Est isomorphism and de Rham isomorphism, the following diagram
is commutative

Ω4(H2 ×H2)G
� � ρ //

I
��

Ω4(Σ2 × Σ2)

λ
��

H4
c (G;R)

� � res // H4(Σ2 × Σ2).

The arrow ρ corresponds to the pushforward of a π1(Σ2 × Σ2)-invariant
form and hence is injective and preserves the wedge product. We have proved
in Proposition 4.1.1 that the arrow res is injective, moreover it preserves the
cup product (since the de�nition at the cochain level of the cup product we
have given in group cohomology is formally the same to that on singular
cohomology). The second vertical arrow λ corresponds to de Rham isomor-
phism that is multiplicative [War83, Theorem 5.45], this implies that also
van Est isomorphism I is multiplicative.

Our next step is to �nd a more suitable representative for the class [ωH2 ] ∈
H2
c (PSL2(R)). The idea is to look for a cocycle that takes into account only

the action of PSL2(R) on the boundary of H2.
Let us consider the cocycle or : (S1)3 → {−π, 0, π} de�ned by

or(x0, x1, x2) =


+1 if (x0, x1, x2) are distinct and positively oriented
−1 if (x0, x1, x2) are distinct and negatively oriented
0 if #{x0, x1, x2} ≤ 2

Since or takes values in a discrete set, it is not a continuous function from
(S1)3 in R and hence it is not useful to de�ne a continuous cocycle from
PSL2(R)3 in R. Anyway we have proved in Section 1.4 that the continuous
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cohomology of G (for every Lie group G) can be computed as the cohomology
of the complex

L1
loc(G

i;R) = {f : Gi → R | f is locally integrable}.

And, since or is a measurable bounded function on (S1)3, it induces a mea-
surable bounded (and hence locally integrable) function on PSL2(R)3. In-
deed let us �x any point ξ ∈ S1 = ∂H2, since PSL2(R) = Isom+H2 acts
on S1 = ∂H2, we can assign to every triple (g0, g1, g2) in PSL2(R) a triple
(g0ξ, g1ξ, g2ξ) ∈ (S1)3. Precomposing with this action we can de�ne a cocy-
cle orξ ∈ L1

loc(G
3;R) de�ned by

orξ(g0, g1, g2) = or(g0ξ, g1ξ, g2ξ).

The volume of any ideal triangle in the hyperbolic plane is equal to π,
moreover the ideal simplex with vertices (g0ξ, g1ξ, g2ξ) is degenerate (and
hence has volume 0) if there exists i 6= j such that giξ = gjξ, otherwise is
positively (resp. negatively) oriented if and only if the triple of its endpoints
is. This means that, once we have multiplied it by π, the cocycle orξ is
somehow the analogous of the Dupont representative of the class of the
volume form, provided we allow the point x be in the boundary ∂H2 instead
of in H2.

The fact that dorξ = 0 descends from the de�nition (and the characteri-
zation in term of volume of convex hulls of ideal points). We will show that
[πorξ] = [ωH2 ].

Proposition 4.2.3. We can choose a point ξ in S1 = ∂H2 for which the

cocycle πorξ ∈ L1
loc(PSL2(R)3;R) belongs to the class of the volume form in

H2
c (PSL2(R);R):

[πorξ] = [ωH2 ].

Proof. Let us �x a hyperbolic surface Σ2 and a metric covering π : H2 → Σ2

(and hence an embedding of Γ = π1(Σ2) as a discrete subgroup of PSL2(R)).
We have proved in Theorem 3.3.10 that the group H∗c (PSL2(R);R) in-
jects isometrically in H∗(Γ;R) and that the injection can be realized, at
the cochain level, b the restriction

res : C∗c (PSL2(R);R)→ C∗(Γ;R).

Indeed the map res extends to a well de�ned map from L1
loc(PSL2(R)3;R):

the fundamental group Γ is discrete, and hence any continuity condition is
empty. Since the map induced in cohomology by res is injective, in order to
verify that [πorξ] = [ωH2 ], it is su�cient to show that the two classes have
the same image in the cohomology of Γ. Moreover H∗(Γ;R) is isomorphic to
H∗(Σ2,R) because H2 is contractible, and, in dimension two, these groups
are one dimensional. This implies that a cohomology class is identi�ed by
its value on the fundamental class of Σ2.

87



We can choose a representative of the fundamental class [Σ2] made of
six straight simplices that have in Σ2 only one vertex (the cycle corresponds
to an appropriate triangulation of a straight convex fundamental domain of
Σ2). If we choose a lifting x of the common vertex, every simplex σi of this
triangulation can be identi�ed with a triple (1, gi1, g

i
2) in PSL2(R)3 such that

(x, gi1x, g
i
2x) are the vertices of the lifting of σi.

x

g1x g2g1x

g−1
1 g2g1x

g−1
2 g−1

1 g2g1xg3x

g4g3x g−1
3 g4g3x

As a consequence of the explicit description (at the cochain level) of the
isomorphisms between H2

c (PSL2(R),R) and H2(Σ2,R), we can represent
the fundamental class [Σ2] with the sum γ =

∑6
i=1(1, gi1, g

i
2) and compute

the values of the cocycles on this sum.
We have only to show that, once any representative α of the volume form

[ωH2 ] is �xed,
πorξ(γ) = α(γ).

We will get this conclusion via a limiting process. Let us consider a pont
ξ ∈ ∂H2 that doesn't belong to the set of the �xed points of {gij , gi1(gi2)−1}:

ξ /∈
⋃
i

(�xgi1 ∪ �xgi2 ∪ �xgi1(gi2)−1).

Since the set on the right hand side is �nite this assumption is harmless but
will be useful in the limiting process (we are asking that, for every i, the
ideal simplex (ξ, gi1ξ, g

i
2ξ) is nondegenerate).

Let us now consider a sequence of points yj ∈ H2 that tends to ξ, and
�x the following Dupont representatives αyj of the volume form:

αyj (g0, g1, g2) =

∫
4(g0yj ,g1yj ,g2yj)

ωH2 .

For every i the value πorξ(1, gi1, g
i
2) is the limit of αyj (1, g

i
1, g

i
2): the sequence

{gikyj} tends to the point gikξ in the boundary of H2. Hence they de�nitely
belong to su�ciently small neighborhoods of the (distinct) points gikξ. This
means that the angles of the triangles with vertices (yj , g

i
1yj , g

i
2yj) have limit

0 when j goes to in�nity.
It is now su�cient to remark that we already know that, for every j, the

cocycle αyj represents the volume form and hence αyj (γ) = vol(Σ2) = 4π for
every j: summarizing we have
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πorξ(γ) =
∑
i

πor(ξ, gi1ξ, g
i
2ξ) = lim

j→∞

∑
αyj (1, g

i
1, g

i
2) = vol(Σ2).

This means that [πorξ] = [ωH2 ] and hence concludes the proof.

We need one more step in order to get the desired cocycle. As we have
already pointed out we want to extend the cocycle π2p∗1orξ ∪ p∗2orξ to an
element that de�nes a class in H4

c (H; R̃) and hence we want to see π2p∗1orξ ∪
p∗2orξ as the restriction of an element of L1

loc(H
5; R̃).

Indeed the original Dupont representative had a natural extension to
C4
c (H; R̃): the volume form is invariant with respect to the action of the

whole isometry group of H2×H2 hence, if R̃ is considered as a twisted coef-
�cient module, the same formula of IxωH2×H2 would provide an H-invariant
cocycle in C4

c (H; R̃):

IxωH2×H2 : H5 → R
(g0, . . . , g4) 7→

∫
4(g0x,...,g4x) ωH2×H2 .

However, when we reduced to the cup product of more elementary co-
cycles, we lost the H-invariance: for example even if we consider a Dupont
representative α = IxωH2 of [ωH2 ], the cocycle p∗1α ∪ p∗2α is not σ-invariant
(where σ is the isometry of H2 × H2 switching the factors). This is a con-
sequence of the fact that the formula we gave for the cup product is highly
asymmetric.

For this reason we will now alternate the cocycle. We already used in
Remark 2.5.5 that the alternating operator:

Alt : C∗(G;R)→ C∗(G;R)
Altφ(g0, . . . , gn) = 1

n+1!

∑
ρ∈Sn+1

sgn(ρ) φ(gρ(0), . . . , gρ(n))

is chain homotopic to the identity. We can de�ne with the same formula a
G-morphism of the complexes of locally integrable functions (L1

loc(H
5; R̃)),

that induces the identity in cohomology also in this context.
Since Alt is chain homotopic to the identity, if we de�ne the cocycle Θξ

by requiring
Θξ = Alt(p∗1orξ ∪ p∗2orξ),

π2Θξ represents the class of the volume form in H4
c (G;R).

The last step of the section is to show how Θξ can be naturally extended
to a class in H4

c (H; R̃). To prove this result we �rst notice that there is a
well de�ned action of H on S1×S1 = ∂H2×∂H2. We have already seen that
Isom(H2) × Isom(H2) is a subgroup of H of index 2 and obviously acts on
S1×S1 = ∂H2×∂H2 separately on the two factors. Moreover we can de�ne
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the action of σ on ∂H2 × ∂H2 analogously to its action on H2 ×H2, namely
with the homeomorphism of ∂H2 × ∂H2 that exchanges the two factors

σ : S1 × S1 → S1 × S1

(x, y)→ (y, x).

It descends from the structure of H as an extension of G that the action is
well de�ned.

Let us now extend the cocycle Θξ: if we call πi : S1 × S1 → S1 the ith
projection, we de�ne the function

π∗1or ∪ π∗2or : (S1 × S1)5 → R
(π∗1or ∪ π∗2or)((x0, y0), . . . (x4, y4)) = or(x0, x1, x2)or(y2, y3, y4).

Clearly Θξ satis�es

Θξ(g0, . . . , g4) = Alt(π∗1or ∪ π∗2or)(g0(ξ, ξ), . . . , g4(ξ, ξ)).

This formula extends to a cocycle Θξ in L1
loc(H

5;R) (since we have de�ned
the action of H on S1 × S1) and the following proposition holds:

Proposition 4.2.4. The extension Θξ in L1
loc(H

5;R) is H-invariant and

hence lies in the image of the map res de�ned in Proposition 4.1.1.

Proof. We �rst remark that, provided R is endowed with the twisted H-
module structure, the cocycle orξ is Isom(H2)-invariant. From this fact it
follows that the function Θξ is (Isom(H2)× Isom(H2))-invariant.

It only remains to prove that the cocycle Θξ is σ-invariant. This de-
scends from the fact that we alternated the cocycle and the observation that
σ · π∗1or = π∗2or. If we denote by ξ̄ the point (ξ, ξ) in S1 × S1, we get

σ ·Θξ(h0, . . . , h4) = Θξ(σh0, . . . , σh4) =
= Alt(π∗1or ∪ π∗2or)(σh0(ξ̄), . . . , σh4(ξ̄)) =
=
∑

ρ sgn(ρ)π∗1or(σhρ(0)(ξ̄), σhρ(1)(ξ̄), σhρ(2)(ξ̄))π
∗
2or(σhρ(2)(ξ̄), σhρ(3)(ξ̄), σhρ(4)(ξ̄)) =

=
∑

ρ sgn(ρ)π∗2or(hρ(0)(ξ̄), hρ(1)(ξ̄), hρ(2)(ξ̄))π
∗
1or(hρ(2)(ξ̄), hρ(3)(ξ̄), hρ(4)(ξ̄)) =

=
∑

ρ sgn(ρ)π∗2or(hρ(2)(ξ̄), hρ(0)(ξ̄), hρ(1)(ξ̄))π
∗
1or(hρ(3)(ξ̄), hρ(4)(ξ̄), hρ(2)(ξ̄)) =

=
∑

ρ sgn(ρ)π∗2or(hρ(2)(ξ̄), hρ(3)(ξ̄), hρ(4)(ξ̄))π
∗
1or(hρ(0)(ξ̄), hρ(1)(ξ̄), hρ(2)(ξ̄)) =

= Θξ(h0, . . . , h4).

where in the fourth equality we used that or is cyclic, in the �fth that the
precomposition with the (even) permutation (03)(14) is a bijection of the set
S5.
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4.3 A suitable complex

In the previous section we found a suitable representative for the volume
form belonging to the complex L1

loc(H
5; R̃). The norm of the cocycle Θξ is

indeed computable (and we will compute it in Section 4.4). However the
complex L1

loc(H
5; R̃) is far too big and we wouldn't be able to prove the

minimality of the norm of Θξ in its class. The aim of this section is to
show that the cocycle Θξ belongs to a smaller complex that has the same
(bounded) cohomology of L1

loc(H
5; R̃).

Indeed, since the cocycle Θξ takes into account only the action of H on
the product S1 × S1 of the boundaries of the two factors of H2 × H2, we
would like to reduce ourselves to a complex of the form C∗(S1 × S1; R̃) (we
have done something similar considering the complex C∗c (Hn;R) to compute
the norm of the volume form on hyperbolic spaces). However this is not
possible in the context of continuous cohomology since S1 × S1 is not the
quotient of H with respect to a compact subgroup.

However, the group H acts transitively on S1× S1 as a group of homeo-
morphisms, this implies that S1×S1 is the quotient of H with respect to the
stabilizer P of a point (for example the point (ξ, ξ)). We will now describe
this stabilizer.

The stabilizer in PSL2(R) of a point ξ ∈ ∂H2 is the group R o R+ =
A�+(R): we identify the orientation preserving isometries of the upper half
space model of H2 that �x the point ∞ with their trace on the boundary.
The normal subgroup of the parabolic isometries correspond to translations
of the real line, whereas the hyperbolic isometries �xing∞ and 0 correspond
to dilations of R. Together they generate the stabilizer of ∞ that hence
corresponds to the group of homeomorphisms of R generated by translation
and dilations, i.e. the positively-oriented a�nities of the real line. This
implies that A�+(R)× A�+(R) ⊆ PSL2(R)× PSL2(R) is contained in the
stabilizer of (ξ, ξ) and is the intersection stab(ξ, ξ)∩G. Moreover A�+(R)×
A�+(R) is a normal subgroup of index 8 of stab(ξ, ξ) (if we choose τ the
re�ection with respect to a geodesic having ξ as endpoint, both (τ, id) and
σ belongs to stab(ξ, ξ) and they generate a group of order 8).

The groups R and R+ are abelian and hence amenable. This implies that
also A�+(R) is amenable since it is an extension of an amenable group by
another amenable group (see Theorem 2.6.5). The same argument implies
that also A�+(R) × A�+(R) is amenable. The latter group is normal and
has �nite index in stab(ξ, ξ). We get that stab(ξ, ξ) is an amenable subgroup
of H. Hence S1 × S1 can be seen as the quotient of H with respect to an
amenable subgroup.

A consequence of Theorem 2.6.13 is that the continuous bounded co-
homolgy of H can be computed from the complex of bounded measurable
functions on S1×S1 with values in R̃. In the whole Chapter we will change
the notation of Chapter 2 and denote by Mn

b (S1 × S1; R̃) the modules of
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that complex. This is useful in order to shorten the notation and make the
dimension more visible.

Mn(S1 × S1; R̃) = {f : (S1 × S1)n+1 → R̃| f is bounded, measurable}.

We have already pointed out in Remark 2.5.5 that the continuous bounded
cohomology of H can be computed also from the complex

Mn
b,alt(S

1×S1; R̃) = {f : (S1×S1)n+1 → R̃| f is bounded, measurable, alternating}

and the l∞-norm on this complex induces the canonical seminorm in coho-
mology; this is a consequence of the fact that the alternating operator is
chain homotopic to the identity, it is norm decreasing and has image in the
alternating functions.

We will consider the cocycle belonging to M4
b,alt(S

1×S1; R̃) given by the
formula

Θb = Alt(π∗1or ∪ π∗2or).

The function Θb indeed belongs toM4
b,alt(S

1×S1; R̃) since it is always smaller
than 1 and hence bounded.

If we denote by c the comparison map c : Hcb(H; R̃)→ Hc(H; R̃) we get

Theorem 4.3.1.

c[Θb] = [Θξ]

Proof. We recall that a map

Mn
b,alt(S

1 × S1; R̃)
α // L∞(Hn+1; R̃)

that induces an isomorphism in cohomology can be described, at the cochain
level, by choosing a point (ξ, ξ) ∈ S1 × S1 and requiring that

α(φ)(h0, . . . , hn) = φ(h0(ξ, ξ), . . . , h4(ξ, ξ)) :

Since the cocycle Θξ is clearly bounded (‖Θξ‖∞ ≤ 1), we can consider it
as an element of L∞(H5; R̃). It is now an obvious consequence of the explicit
description of the map α that α(Θb) = Θξ and this concludes the proof.

In Section 4.4 we will compute the seminorm of [Θb] in H4
cb(H; R̃). Since

the seminorm of a class [φ] in continuous cohomology is the in�mum of the
seminorms of the classes [φ] in continuous bounded cohomology that satisfy
c([φ]) = [ψ], a consequence of Theorem 4.3.1 is that ‖Θξ‖∞ ≤ ‖Θb‖∞. To
get the opposite inequality we will show, in Section 4.4, that the comparison
map is indeed an isomorphism and hence ‖Θξ‖∞ = ‖Θb‖∞.
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4.4 Computation of the norm

The aim of this Section is the computation of the norm of Θb as a cocycle
in M4

b,alt(S
1 × S1; R̃)H (Proposition 4.4.1) and as a cohomology class in

H4
cb(H; R̃) (Theorem 4.4.2).

Proposition 4.4.1. The norm of the cocycle Θb ∈M4
b,alt(S

1 × S1; R̃)H is

‖Θb‖∞ =
2

3
.

Proof. The proof that ‖Θb‖∞ ≤ 2
3 is a combinatorial computation: we will

explicitly write down the formulas for Θb (indeed, studying the permutation
group and grouping some di�erent summands, we will write only six terms
instead of 120), and then we will use the cocycle relation (4.2) to reduce the
number of the summands and get the desired inequality.

Let us �x a 5-uple a = ((x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4)) be-
longing to (S1 × S1)5, it follows from the de�nitions that

Θb(a) =
1

120

∑
σ

sgn(σ)or(xσ(0), xσ(1), xσ(2))or(yσ(2), yσ(3), yσ(4)).

We want to reduce the number of the factors in this sum. First of all note
that every permutation can be written uniquely as a product τkα where
τ = (01234) is the 5-cycle, k ∈ {0, 1, 2, 3, 4}, an α is a permutation such that
α(2) = 0. Moreover, since or is alternating, given two permutations such
that ρ(1) = σ(2), ρ(2) = σ(1) and ρ(i) = σ(i) for every other index (i.e.
ρ = σ(12)), we get that

sgn(σ)or(xσ(0), xσ(1), xσ(2)) = sgn(ρ)or(xρ(0), xρ(1), xρ(2)).

This is a consequence of the fact that the sign of a permutation is multiplica-
tive (and hence sgn(σ) = −sgn(ρ)) and that the cocycle or is alternating (this
fact implies that or(xa, xb, xc) = −or(xa, xc, xb)). These considerations allow
us to group the possible permutations in six classes of four elements that give
the same value and get

Θb(a) =
1

120

4∑
k=0

4or(xτk(1), xτk(2), xτk(0))or(yτk(0), yτk(3), yτk(4)) +

+ 4or(xτk(3), xτk(4), xτk(0))or(yτk(0), yτk(1), yτk(2)) +

− 4or(xτk(1), xτk(3), xτk(0))or(yτk(0), yτk(2), yτk(4)) + (4.1)

+ 4or(xτk(1), xτk(4), xτk(0))or(yτk(0), yτk(2), yτk(3)) +

+ 4or(xτk(2), xτk(3), xτk(0))or(yτk(0), yτk(1), yτk(4)) +

− 4or(xτk(2), xτk(4), xτk(0))or(yτk(0), yτk(1), yτk(3)).
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In order to show that

Θb(a) ≤ 2

3

we have to consider two di�erent cases depending on whether the xi are all
distinct or #{x0, . . . , x4} ≤ 4.

�xi distinct
Let us assume that the xi are all distinct, we can suppose that they are
cyclically ordered according to their numbering: the cocycle Θb is alternating
and we can change the indices precomposing with the proper permutation.
This can only change the sign of Θb, but we are only interested in the absolute
value.

This means that or(xi, xj , xk) = 1 for all the summands in the expression
4.1: we have chosen representatives such that, before applying τ , the values
were positive and, since τ is a 5-cycle, it doesn't change the orientation.

Thus we have to compute the value of

1

30

4∑
k=0

or(yτk(0), yτk(3), yτk(4)) + or(yτk(0), yτk(1), yτk(2)) +

− or(yτk(0), yτk(2), yτk(4)) + or(yτk(0), yτk(2), yτk(3)) +

+ or(yτk(0), yτk(1), yτk(4))− or(yτk(0), yτk(1), yτk(3)).

We can now apply the cocycle relation

0 = δor(yτk(0), yτk(2), yτk(3), yτk(4)) = (4.2)

= or(yτk(2), yτk(3), yτk(4))− or(yτk(0), yτk(3), yτk(4))

+or(yτk(0), yτk(2), yτk(4))− or(yτk(0), yτk(2), yτk(3)).

This implies that we can rewrite the expression (4.2) as

1

30

4∑
k=0

or(yτk(2), yτk(3), yτk(4)) + or(yτk(0), yτk(1), yτk(2)) (4.3)

+or(yτk(0), yτk(1), yτk(4))− or(yτk(0), yτk(1), yτk(3)).

Since 20 summands appear in this sum and each of them is bounded by one,
we get

|Θb(a)| ≤ 20

30
=

2

3
.

�#{x0, . . . , x4} ≤ 4
If the xi are not all distinct we can assume that neither the yi are: otherwise
we can exchange the role of xi and yi taking advantage of the invariance of
Θb with respect to the isometry σ.
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We assume, up to precomposing with a permutation (Θb is alternating),
that x0 = x1. If y0 = y1, then Θb(a) = 0:to prove this fact we recall that Θb

is alternating, hence, if we call ρ the permutation (01), we get

Θb(a) = Θb((x1, y1), (x0, y0), (x2, y2), (x3, y3), (x4, y4)) =
= Θb((xρ(0), yρ(0)), (xρ(1), yρ(1)), (xρ(2), yρ(2)), (xρ(3), yρ(3)), (xρ(4), yρ(4))) =

= sgn(ρ) Θb((x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4)) =
= −Θb((x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4)) = −Θb(a).

In the whole paragraph, as we have already done previously, we denoted by
a the generic 5-uple ((x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4)). In order to
conclude the proof of the fact that

‖Θb‖∞ ≤
2

3
,

we need only to deal with the case x0 = x1, and y2 = yk for some k ∈
{0, 3, 4}. Let us consider the expression (4.3). We will �nd 10 di�erent
summands that vanish in that expression. Among the 30 summands there
are exactly 9 that have the factor or(x0, x1, xj) and hence vanish: if k =
0 there are three of them, if k = 1, then τ(0) = 1 and τ(4) = 0 hence
or(x0, x1, xj) appears in three summands. In the other cases k = 2, 3, 4 there
is only one summand with the factor or(x0, x1, xj). Moreover the summand
or(x0, x3, x4)or(y1, y2, yk) that occurs (up to a permutation of the entries)
in the sum (4.3) vanishes (since y2 = yk) and we haven't counted it among
the 9 vanishing summands (since it doesn't have a factor or(x0, x1, xj)).

It remains only to show that the value 2/3 is achieved. We choose a 5-uple

((x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4))

where the xi and the yi are all distinct and ordered as in the drawing, i.e. in
a way such that the xi are cyclically ordered according to their numbering
and the yi are ordered so that (y0, y3, y1, y4, y2) are cyclically ordered. The
5-uples of this form plays (here and in the proof of the next theorem) the
role of a simplex of maximal volume.

x4 x1

x3 x2

x0

y0

y2 y3

y4

y1
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If we compute Θb on this 5-uple using the formula (4.3), we get

Θb((x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4)) (4.4)

= 1
30

∑4
k=0 or(yτk(2), yτk(3), yτk(4)) + or(yτk(0), yτk(1), yτk(2))

+or(yτk(0), yτk(1), yτk(4))− or(yτk(0), yτk(1), yτk(3)) = 2
3 .

The last step of the section is to show that 2/3 is actually the norm of [Θb]
inH4

cb(H; R̃), more precisely we will show that, for every β inM3
b (S1×S1; R̃),

δβ((x0, y0), (x1, y1), (x2, y2), (x3, y3), (x4, y4)) = 0

whenever the points respect the condition given at the end of the proof
of Proposition 4.4.1, that is the xi are cyclically ordered and the yi are
ordered so that (y0, y3, y1, y4, y2) are cyclically ordered. Since in the proof of
Proposition 4.4.1 we have shown that, on this speci�c 5-uple a, Θb has the
value 2/3, we will get that

‖Θb + δβ‖∞ ≥ |(Θb + δβ)(a)| = 2

3
.

Theorem 4.4.2. The seminorm of the class [Θb] in H
4
cb(H; R̃) satis�es

‖[Θb]‖ = 2/3.

Proof. As we have already pointed out, we want to show that δβ(a) = 0.
We �rst show that

β((x1, y1), (x2, y2), (x3, y3), (x4, y4)) = 0.

Let us consider the geodesic α1 in H2 having as endpoints the points x1 and
x2 belonging to ∂H2 and the geodesic α2 having as endpoints x3 and x4.
Let α3 be the common orthogonal geodesic. Let us consider the orientation
reversing isometry γ1 of H2 corresponding to the re�ection with respect to
α3. Clearly this isometry leaves the points {xi}4i=1 invariant and acts on this
set as the even permutation (12)(34) = σ.

Let us now construct an orientation preserving isometry of H2 that re-
alizes the same (even) permutation of the points {yi}4i=1. We consider the
geodesic α4 in H2 having as endpoints the points y1 and y2 and the geodesic
α5 having as endpoints y3 and y4. The points yi are oriented in such a way
that the two geodesics meet in a unique point that we call ȳ. Let us consider
the orientation preserving isometry γ2 of H2 corresponding to the geodesic
symmetry in ȳ. Also γ2 leaves the points yi invariant and acts as the per-
mutation (12)(34).
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x4 x1

x3 x2

x0

α2 α1

α3

y0

y2 y3

y4

y1

α4 α5

ȳ

Let us consider the isometry γ = (γ1, γ2) of H2×H2. It realizes, on the 4-uple
((x1, y1), (x2, y2), (x3, y3), (x4, y4)), the permutation σ and hence

β((x1, y1), (x2, y2), (x3, y3), (x4, y4)) =
= sgn(σ)β(((xσ(1), yσ(1)), (xσ(2), yσ(2)), (xσ(3), yσ(3)), (xσ(4), yσ(4)))) =

= +β((x2, y2), (x1, y1), (x4, y4), (x3, y3)) =
= −(γ · β)((x1, y1), (x2, y2), (x3, y3), (x4, y4)) =
= −β((x1, y1), (x2, y2), (x3, y3), (x4, y4))

where the �rst equality is a consequence of the fact that β is alternating
(and σ is even), the third descends from the de�nition of the action of H
on M4

b (S1 × S1; R̃) and the fact that γ is orientation reversing, the last one
follows from the H-invariance of β. This implies that β vanishes on the �rst
�face� of the 5-uple α.

With similar arguments, we can prove that β vanishes on every �face�,
namely, as we have done in this case, we can construct an orientation revers-
ing isometry that realizes the permutation (04)(23) for the second �face�,
(01)(34) for the third, (04)(12) for the fourth and (01)(23) for the �fth. This
concludes the proof of Theorem 4.4.2

4.5 The comparison map is an isomorphism

We are now ready to �nish the proof of the central theorem of the chapter:

Theorem 4.5.1. The proportionality constant for the simplicial volume of

manifolds covered by H2 ×H2 is 2
3π

2.

We have already pointed out in Theorem 3.3.11 that the proportionality
constant for the simplicial volume of manifolds covered by H2 × H2 is one
over the norm ‖ωH2×H2‖∞ as a class in H4

c (Isom0(H2×H2),R) and we have
shown in Proposition 4.1.1 that we could compute its norm as an element
of H4

c (Isom(H2 × H2), R̃). Moreover we have described, in Theorem 4.3.1,
a class [π2Θb] in H4

cb(Isom(H2 × H2), R̃) whose image, via the comparison
map, is [ωH2×H2 ] and we have proved, in Theorem 4.4.2, that the norm of
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[π2Θb] is
2
3π

2. In order to �nish the proof, it is now su�cient to show that
the comparison map

c : H4
cb(Isom(H2 ×H2), R̃)→ H4

c (Isom(H2 ×H2), R̃)

is an isomorphism. We split the proof of the theorem in two parts. We will
start by showing an analogous result in the case of H2 instead of H2 × H2

and then deduce the thesis from this fact.

Proposition 4.5.2. The comparison map

c : H2
cb(Isom(H2), R̃)→ H2

c (Isom(H2), R̃)

is an isomorphism.

Proof. We already know that the group H2
c (Isom(H2), R̃) is one dimensional

and generated by the class of the volume form (this is a consequence of van
Est's Theorem 1.7.5). Moreover, we have already pointed out that Dupont's
representative of the volume form is bounded. This implies that the com-
parison map is surjective. In order to prove the proposition, we need only
to show that c is injective.

Theorem 2.6.13 ensures that the continuous bounded cohomology of
L = Isom(H2) can be computed from the complex of measurable, bounded,
alternating, L-invariant functions on S1 = ∂H2. Let us choose a cocycle
f belonging to M2

b,alt(S
1; R̃)L and let us assume that c([f ]) = 0. We want

to show that [f ] = 0. Since f is, by assumption, alternating, we get that
f(x, x, y) = 0 for every x, y in ∂H2. Moreover L acts transitively on the pos-
itively oriented triples of elements of ∂H2 and hence, since f is L invariant,
the value of f on a triple (x, y, z) depends only on the orientation or(x, y, z)
and hence f = λ or. Since the image of or via the comparison map is a
nonnull multiple of the class of the volume form, and since we assumed that
c([f ]) = 0, we get that λ = 0 and hence f = 0.

Let us now consider the commutative diagram

H2
c (Isom(H2); R̃)⊗H2

c (Isom(H2); R̃)
∪ // H4

c (Isom(H2 ×H2), R̃)

H2
cb(Isom(H2); R̃)⊗H2

cb(Isom(H2); R̃)

c⊗c

OO

∪ // H4
cb(Isom(H2 ×H2), R̃).

c

OO

Proposition 4.5.2 ensures that the �rst vertical arrow is an isomorphism
(because it is an isomorphism on each factor of the tensor product). Moreover
the description of the continuous cohomology of Isom(H2) via Isom(H2)-
invariant di�erential forms on H2 together with the multiplicativity of van
Est's Theorem (see Proposition 4.2.2) implies that the above arrow is an
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isomorphism: the groupH4
c (H, R̃) ∼= H4(Ωi(H2×H2,R))G is one dimensional

and generated by ωH2×H2 = p∗1ωH2 ∧ p∗2ωH2 .
In order to �nish the proof of Theorem 4.5.1 by showing that the com-

parison map (in dimension four) is an isomorphism, it is su�cient to show
that the cup product on continuous bounded cohomology is surjective:

Proposition 4.5.3. Every class ψ in H4
cb(Isom(H2×H2); R̃) can be written

as a product p∗1α ∪ p∗2β where α and β belong to H2
cb(Isom(H2); R̃).

Proof. Keeping the notation from the preceding section we will denote by H
the group Isom(H2 × H2). We compute the continuous bounded cohomol-
ogy of H (resp. of Isom(H2)) from the complex of the H-invariant (resp.
Isom(H2)-invariant), alternating, bounded, measurable functions de�ned on
S1 × S1 (resp. S1) with values in R̃. Let us �x f ∈ M4

b,alt(S
1 × S1; R̃)H

representing the class ψ.
Let us �x three points x, y, z in S1 that are cyclically ordered and consider

the value f((x, x), (x, y), (x, z), (y, x), (z, y)) = b. It is worth remarking that,
since Isom(H2) acts transitively on the 3-uples of S1 and since f is, by
assumption, H-invariant, b doesn't depend on the choice of the three points,
provided they are distinct and cyclically ordered.

Let us consider a 5-uple a = ((x0, y0), . . . , (x4, y4)) in (S1 × S1)5 and
de�ne n1(a) = #{x0, . . . , x4} (resp. n2(a) = #{y0, . . . , y4}). We want to
show that the cocycle f0 = f − 6bAlt(p∗1[or] ∪ p∗2[or]) is cohomologous to 0
as an element of M4

b,alt(S
1 × S1; R̃)H . In order to get this result, we will use

an induction on the couple (n1, n2) (with respect to an adequate ordering
that we will introduce in the proof) as follows: once we have constructed
a cochain fi−1 cohomologous to f0 and vanishing on the uples smaller than
(n1, n2), we will add a coboundary hi that is, too, null on the uples smaller
than (n1, n2) but has also the property that fi−1−hi = fi is null also on the
uples that have (n1, n2) distinct elements.

� ni ≤ 2
In this case f0 vanishes because it is H-invariant: let us assume, without loss
of generality, that n1 = 2. If we consider the geodesic with endpoints xi and
xj , the re�ection with respect to that geodesic is an orientation reversing
isometry that leaves the 5-uple a �xed.

� (n1, n2) = (3, 3).
From now on we will denote by c a 3-uple of the form ((x0, y0), . . . , (x3, y3))
Let us consider the element h1 in M3

b,alt(S
1 × S1; R̃)H that has the value

h1(c) =

{
f0((xi, yk), c) if xi = xj , yk = yl (with i 6= j, k 6= l)
0 otherwise.

The cochain h1 is well de�ned since, if there exist xi = xj 6= xk = xl, we get
n1((xi, ys), c) ≤ 2 and hence h1(c) = 0 for both choices (similarly for ym).
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Moreover, since f0 is H-invariant, alternating, bounded, measurable, h1 has
the same properties. Since we have proved that f0 vanishes on every 5-uple
with ni(a) ≤ 2 and h1 is de�ned from f0, the same result holds for h1.

Let us now consider the representative f1 = f0 − dh1 (that is obviously
cohomologous to f0). We want to prove that f1 vanishes on every 5-uple a
with ni(a) = 3. Since f1 is H-invariant and alternating, we need only to
show that f1(a) = 0 when a ranges among representatives of the 5-uples in
S1× S1 with ni(a) ≤ 3 up to permutations and isometries. We have that, if
two elements of the 5-uple a coincide, then f1(a) = 0 since f1 is alternating.
Therefore it is easy to verify that only three possible choice for the 5-uple a
have to be considered (once three cyclically ordered points x, y, z in S1 are
�xed):

a1 = ((x, x)(x, y)(x, z)(y, x)(z, x))
a2 = ((x, x)(x, y)(x, z)(y, x)(z, y))
a3 = ((x, x)(x, y)(y, x)(y, z)(z, y))

using the expression (4.1) for g = Alt(p∗1[or]∪ p∗2[or]) it is easy to verify that
g(a1) = 1

6 , g(a2) = 1
6 , g(a3) = −1

6 . Let us denote by λi = f0(ai), since
f0 = f − 6bg we get λ1 = 0 as a consequence of the choice of b. Moreover,
applying the cocycle relation we get:

0 = df0(a1, (y, y)) = 2λ1 + λ2 − λ0 = λ2 − λ0.

Moreover it is easy to verify that

dh1(a0) = f0((x, x)(x, y)(x, z)(y, x)(z, x)) = λ0

dh1(a2) = f0((y, y)(x, y)(y, x)(y, z)(z, y)) =
= f0((x, x)(y, x)(x, y)(x, z)(z, x)) = λ0.

where the �rst equality follows from the de�nition of λ0, the second from the
fact that f0 is invariant with respect to the orientation preserving isometry
that realizes the permutation (xy) on each factor, i.e. the isometry of H2×H2

that, on each factor, is the re�ection with respect to the geodesic γ with
endpoint z orthogonal to the geodesic with endpoints x, y.

z

γ

y x

This proves that f1 = f0− dh1 vanishes on every 5-uple with ni(a) ≤ 3.
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� n1 + n2 ≤ 7
Let us consider the element h2 in M3

b,alt(S
1 × S1; R̃)H that has the value

h2(c) =


1
2(f1((xi, yk), c) + f1((xi, yl), c) if xi = xj , #{i, j, k, l} = 4
1
2(f1((xk, yi), c) + f1((xl, yi), c) if yi = yj , #{i, j, k, l} = 4
0 otherwise.

The function h2 is well de�ned (since, if c satis�es both conditions, then
n1(c) + n2(c) ≤ 6 and hence f1((xm, yn), c) = 0 for every m, n, and if there
are more than two entries that are equal on one factor, then ni(c) ≤ 2 and
hence f1((xm, yn), c) = 0). Moreover h2 is bounded, measurable, alternating
and H-invariant since f1 is.

We will show that f2 = f1 − h2(a) = 0 provided (n1(a), n2(a)) = (3, 4);
the case (n1, n2) = (4, 3) follows by symmetry. Let us call {x0, x1, x2} the
three distinct points on the �rst factor, {y0, y1, y2.y3} the four distinct points
in the second factor. There are, up to the action of H and up to permuta-
tions, four possibilities for the 5-uple a and we will treat them separately:

� a1 = ((x0, y0)(x0, y1)(x0, y2)(x1, y3)(x2, y0))
An easy computation implies that (all the other summands vanish)

dh2(a1) = 1
2(f1((x0, y0)(x0, y1)(x0, y2)(x1, y3)(x2, y0))+
f1((x0, y3)(x0, y1)(x0, y2)(x1, y3)(x2, y0))).

There are two di�erent possibilities depending on the con�guration of the
points yi. If the geodesics γ1 with endpoints (y0, y3) and γ2 with endpoints
(y1, y2) don't intersect, then the permutation (y0y3)(y1y2) can be realized by
an orientation reversing isometry: the re�ection with respect to the geodesic
γ orthogonal to γ1 and γ2. Also the permutation (x1x2) can be realized by
an orientation reversing isometry, the re�ection with respect to the geodesic
from x0 orthogonal to the geodesic from x1 and x2.

y3

γ1
γ2

y1

y0

y2

γ

x0

x1 x2

In this case dh2(a1) = f1(a1) and hence f2(a1) = 0.
Otherwise dh2(a1) = 0 and we can obtain the desired result appliing the

cocycle relation
0 = df1((x0, x3), a1) = 2f1(a1)
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where the last equality is obtained using the invariance with respect to the
orientation preserving isometry corresponding to the geodesic symmetry in
ȳ.

y1 y3

y0 y2

ȳ

In both cases we get f2(a1) = f1(a1)− dh2(a1) = 0.

� a2 = ((x0, y0)(x0, y1)(x0, y2)(x1, y3)(x2, y3))
In this case it is su�cient to observe that df2((x0, x3), a2) = f2(a2) since
all the other terms involved in the expression of df2 vanish because they
correspond to f2 computed on a 5-uple with n1 + n2 ≤ 6. Since f2 is a
cocycle, follows that f2(a2) = 0.

� a3 = ((x0, y0)(x0, y1)(x1, y2)(x1, y3)(x2, y0))
Let us compute the cocycle relation df2 = 0 on the 6-uple ((x1, y0), a3). We
get

f2(a3) = f2((x1, y0)(x0, y1)(x1, y2)(x1, y3)(x2, y0))

and the second 5-uple has the form a1 and hence, as desired, f2(a3) = 0.

� a4 = ((x0, y0)(x0, y1)(x1, y0)(x1, y2)(x2, y3))
In this case we compute the cocycle relation 0 = df2 on the 6-uple ((x1, y3), a4).
It implies

f2(a4) = f2((x1, y3)(x0, y1)(x1, y0)(x1, y2)(x2, y3))

and the second 5-uple has the form a1 and hence, as desired, f2(a4) = 0.

� (n1, n2) = (3, 5)
In this case we do not even need to sum another coboundary. If the 5-uple
has three equal entries in the �rst factor (say x) it is su�cient to compute
the cocycle relation on the 6-uple (a, (x, y0)) obtaining df2(a, (x, y0)) = f2(a),
otherwise

a = ((x0, y0)(x0, y1)(x1, y2)(x1, y3)(x2, y4)),

and, in this case, df2(a, (x0, y4)) = f2(a) and hence f2(a) vanishes.

� (n1, n2) = (4, 4)
Let us de�ne the function

h3((x0, y0)(x1, y1)(x2, y2)(x3, y3)) = f2((xi, xj)(x0, y0)(x1, y1)(x2, y2)(x3, y3))
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for any i 6= j. By computing the value of 0 = df2 on the 6-uple

((xi′ , yj′)(xi, xj)(x0, y0)(x1, y1)(x2, y2)(x3, y3)),

it is indeed easy to verify that h3 doesn't depend on the choice of i, j As
usual h3 is well de�ned, bounded, measurable, alternating and H-invariant.
In order to show that f3 = f2 − dh3 vanishes on the 5-uples with ni(a) ≤ 4,
we need to consider two subcases:

� a1 = ((x0, y0)(x0, y1)(x1, y1)(x2, y2)(x3, y3))
In this case we have dh3(a1) = f2(a1). This implies that f3(a1) = f2(a1) −
h3(a1) = 0.

� a2 = ((x0, y0)(x0, y1)(x1, y2)(x2, y3)(x3, y3))
In this case it is su�cient to compute the value of df3 on the uple (a2, (x0, y3))
and show that every term, except from f3(a2), vanishes.

� (n1, n2) = (4, 5), a = ((x0, y0)(x0, y1)(x1, y2)(x2, y3)(x3, y4))
It is su�cient to compute the value of df3 on the 6-uple (a, (x0, y2)).

� (n1, n2) = (5, 5)
If one computes the value of df3 on the 6-uple (a, (x0, y1)), the only a pri-
ori non vanishing term is f3(a) and hence also f3(a) vanishes since f3 is a
coboundary.

We have thus proved that the cocycle f3 belonging toM4
b,alt(S

1×S1; R̃)H

is null and cobordant to f − 6bAlt(p∗1[or]∪ p∗2[or]). In particular we get that
[f ] = 6b p∗1[or] ∪ p∗2[or] and hence the cup product is surjective on the 4th
continuous bounded cohomology group of H.

In order to conclude the chapter we give the computation of the simplicial
volume of the product of two surfaces.

Corollary 4.5.4. Let Σg×Σh be the product of two surfaces of genus g ≥ 1
and h ≥ 1 respectively, then

‖Σg × Σh‖ = 24(g − 1)(h− 1)

Proof. If g or h is equal to 1 the simplicial volume of Σg (resp. Σh) is equal
to zero and hence the thesis follows from Proposition 3.2.4. Otherwise let us
�x a hyperbolic structure on each factor. The metric universal covering of
Σg×Σh is H2×H2. Moreover, Gauss Bonnet formula implies that vol(Σg) =
2πχ(Σg) = 4π(g−1). Hence we get, as a consequence of the multiplicativity
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of Riemannian volume, that:

‖Σg × Σh‖ =
vol(Σg × Σh)

‖ωH2×H2‖∞

=
3

2π2
vol(Σg)vol(Σh)

=
3

2π2
4π(g − 1)4π(h− 1)

= 24(g − 1)(h− 1).
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