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Introduction

This thesis deals with the study of the stochastic continuity equation (SCE)
on Rd

dµt +

[
−1

2

d∑
i,j=1

(aijD
2µt)div(bµt)

]
dt+

∞∑
k=1

div(σkµt)dW
k
t = 0, (1)

under low regularity assumptions on the coefficients. Here b and σk, k ∈ N+,
are deterministic vector fields, a =

∑
k σkσ

∗
k, W is a cylindrical Brownian

motion on a probability space (Ω,A, P ). The solution (µt)t is a family of
random measures on Rd; the equation must be understood in the distribu-
tional sense. We will assume a ≡ Id (the d-dimensional identity matrix).

We use also the SCE for observables or generalized flows

Stϕ = ϕ+

∫ t

0

Sr[b · ∇ϕ+
1

2
tr(aD2ϕ)]dr +

∞∑
k=1

∫ t

0

Sr[σk · ∇ϕ]dW k
r , (2)

for every ϕ in C∞c (Rd); the solution (St)t is a family of random operators on
L2(Rd).

The importance of these equations is in their link with the stochastic
differential equation (SDE) on Rd

dXt = b(Xt)dt+
∞∑
k=1

σk(Xt)dW
k
t . (3)

To fix the ideas, consider first the deterministic case, i.e. when σ ≡ 0.
Suppose that all the objects are regular (for instance, when b is regular
bounded), let X be a flow which solves the ODE, that is

dXt(x)

dt
= b(Xt(x)), (4)

X0(x) = x,

iii



INTRODUCTION iv

for every t in [0, T ], x in Rd. Let ϕ be a regular observable, which represents
a certain feature of the flow, and let µ0 be a positive finite measure on Rd,
which represents the distribution of the mass at time 0. We are interested
in the evolution of these feature and mass, i.e. in Stϕ(x) := ϕ(Xt(x)) and
µt := (Xt)#µ0. By the chain rule, it holds

d(ϕ(Xt)) = ∇ϕ(Xt) · b(Xt)dt (5)

and so

dStϕ = St[b · ∇ϕ]dt, d(〈µt, ϕ〉) = 〈µt, b · ∇ϕ〉dt, (6)

which are the continuity equations (CEs) for observables and measures.
The same reasoning is valid in the stochastic context. Precisely, in the

regular case, one takes the stochastic flow X solution of the SDE, which is a
family Xω of flows parametrized by ω, such that

d(Xt(x)) = b(Xt(x))dt+
∑
k

σk(Xt(x))dW k
t , (7)

X0(x) = x.

Then, given ϕ regular observable and µ0 initial measure, one defines, ω by
ω, Stϕ(ω) = ϕ(Xt(ω)) and µωt = (Xω

t )#µ0 and finally checks the SCEs, using
Itô’s formula, which is the chain rule for stochastic differentials.

The SCE for observables and for measures are morally the same equation:
if S is a flow solution and S∗ is its dual on the space of measure, then S∗µ0

solved the SCE.
In the first chapter Wiener pathwise uniqueness (i.e. uniqueness for so-

lutions adapted to Brownian filtration) is proved for the SCE, among L2

solutions; we suppose only some integrability conditions on b and low reg-
ularity assumptions on σ. The proof is in two steps. In the first step, we
reduce Wiener uniqueness for the SCE to uniqueness for the Fokker-Planck
equation (FPE)

dνt + div(bνt)dt =
1

2
∆νt. (8)

The method is presented in a more general framework, for stochastic linear
equations on Hilbert spaces, and is based on Wiener chaos decomposition.
This states that, given the Brownian filtration (Ft = σ(Ws|s ≤ t))t on Ω,
L2(Ω,Ft, P ) is decomposed in the orthogonal sum of the Wiener chaos spaces,
where the n-th Wiener chaos is the space of stochastic n-time iterated in-
tegrals of deterministic functions. The method consists of projecting the
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equation on the Wiener chaos spaces and using the shift effect of the projec-
tors in order to discard the Itô integral. The second step is a self-contained
proof of uniqueness for the FPE.

The second chapter deals with the SCE for flows, following Le Jan-
Raimond’s approach. Here we need that the FPE admits a particular semi-
group as solution, which is guaranteed by the theory of Dirichlet forms under
mild assumptions on the coefficients. Wiener chaos gives Wiener uniqueness
(as before) and also existence, defining inductively the projections of the so-
lution S on Wiener chaos spaces. Another method of existence is based on
filtering a weak solution X of the associated SDE with respect to a certain
cylindrical Brownian motion W :

Stϕ(x, ω) =

∫
ΓT

ϕ(πt(γ))Kx,ω(dγ), (9)

where ΓT := C([0, T ])d, πt is the evaluation at t and Kx,ω is the conditional
law of X with respect to W and X0.

In the third chapter, we consider the case b rough and σ ≡ Id. Here a
phenomenon of regularization by noise can be observed: the results in the first
chapter give immediately Wiener uniqueness for the SCE, while uniqueness
does not hold in the deterministic case (that is with σ ≡ 0) without additional
hypotheses on b. We cite an example of this phenomenon.

We prove also that, in many cases, strong uniqueness (i.e. uniqueness
with respect to every filtration, not only Brownian filtration) holds for the
SCE. This is not surprising since a strong uniqueness result (due to Krylov-
Röckner) holds for the SDE. First, extending Ambrosio’s approach, we asso-
ciate to every measure-valued solution of the SCE a superposition solution
N , i.e.

µωt =

∫
Rd

(πt)#N
x,ωµ0(dx), (10)

where Nx,ω is roughly an “adapted” kernel from Rd×Ω to ΓT , concentrated
on solutions of the SDE with ω blocked and initial datum x. Then, starting
from N , we build a weak solution of the SDE. This correspondence and
Krylov-Röckner’s result imply strong uniqueness for the SCE.

The last chapter is about a particular class of generalized flows, the
isotropic Brownian flows (IBFs). An IBF is a family of Brownian mo-
tions, indexed by their starting points in Rd, which are invariant in law
for translation and rotation; it can be found as (possibly generalized) solu-
tion S of an SCE with b ≡ 0 and isotropic infinitesimal covariance function
K(x, y) :=

∑
k σk(x)σk(y)∗. Here we consider K’s driven by two parameters

α and η, related respectively to the correlation of the two-point motion and
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to the compressibility of the flow. Studying the distance between the motions
of two points (which is a 1-dimensional diffusion), we find that coalescence
and/or splitting occur, depending of the values of α, η and d. By coalescence
we mean roughly that the mass initially on more points can coalesce in one
point (it cannot be Stϕ = ϕ(Xt) with X injective flow of maps); by split-
ting we mean that the mass initially concentrated on one point can split (it
cannot be Stϕ = ϕ(Xt) with X flow of maps).

This analysis makes rigorous the results for a simple model of turbulence
and shows that this situation cannot be described classically, thus motivating
the theory of generalized flows.

Finally two appendices recall preliminaries and technical results.
In the end, we make some remarks on notation. When not specified, 〈·, ·〉

usually denotes the duality “scalar product” in L2 (for instance between a
measure and a continuous function). The quadratic variation for martingales
is denoted by [·]t. `2(H) is the space of sequences (an) in a Hilbert space H
with

∑
n ‖an‖2

H < +∞. For the Sobolev spaces we use the notation W k,p (k
is the number of weak derivatives). ΓT is C([0, T ];Rd). For a matrix a, a∗

denotes its adjoint matrix.



Chapter 1

Uniqueness by Wiener chaos
method

1.1 Introduction

In this chapter we consider the linear stochastic partial differential equation
(SPDE) on an Hilbert space H

dut = But +
∞∑
k=1

CutdW
k
t . (1.1)

We want to study the problem of uniqueness for this SPDE. We will con-
centrate on Wiener pathwise uniqueness, that is uniqueness among solutions
adapted to Brownian filtration. Using Wiener chaos we will be able to reduce
Wiener uniqueness to the corresponding Kolmogorov equation

dvt = Bvt, (1.2)

which is obtained by (1.1) by taking the expectation.
As we will see, this is a generalization of the SCE on Rd for measures

(and also for flows in some sense). Nevertheless, this setting allows to cover
other cases on Rd, such as stochastic transport equation; we hope it could
be applied succefully to SCEs associated to infinite-dimensional SDEs and
to other linear equations.

The technique developed in this chapter are inspired by [16] and used in
[17].

Precisely, we are given the following spaces: V ⊆ H ' H∗ ⊆ V ∗, where
H is a separable Hilbert space, V is a Fréchet space and the injection V ⊆ H
is dense. We assume B, Ck, k ∈ N+, are linear bounded operators from H
to V ∗, such that

∑∞
k=1 ‖Cku‖2

H ≤ c‖u‖H for every u in H.

1



CHAPTER 1. UNIQUENESS BY WIENER CHAOS METHOD 2

In many applications, H is an L2 space, V is a subspace of functions with
two or more (weak) derivatives (e.g. W 2,2, W 2,∞ or C∞c ).

We fix a probability space (Ω,A, P ) and a cylindrical Brownian motion
W on it. We call (Ft)t the natural (completed) Brownian filtration. We say
that a filtration (Gt)t is a W -filtration if W remains a Brownian motion with
respect to G.

Definition 1. An H-valued (weak) solution of (1.1) is a process u in L2([0, T ]×
Ω;H), progressively measurable with respect to a W -filtration (Gt)t, such that,
for every ϕ in V , it holds

〈ut, ϕ〉 = 〈u0, ϕ〉+

∫ t

0

〈ur, B∗ϕ〉dr +
∞∑
k=1

∫ t

0

〈ur, C∗kϕ〉dW k
r . (1.3)

This solution is said to be Wiener (or strong) if it is adapted to the Brownian
filtration F .

By progressive measurability we mean here that 〈ut, ϕ〉 must be progres-
sively measurable for every ϕ in V .

Definition 2. The SPDE (1.1) has Wiener pathwise (resp. strong) unique-
ness if uniqueness holds in the class of Wiener (resp. weak) solutions.

Definition 3. An H-valued solution of (1.2) is a function v in L2([0, T ];H),
such that, for every ϕ ∈ V , it holds

〈vt, ϕ〉 = 〈v0, ϕ〉+

∫ t

0

〈ur, B∗ϕ〉dr. (1.4)

1.2 Wiener chaos

The next result is classical, see e.g. [5]. In the following, we consider as Ω
the classical Wiener space Ω = C([0,+∞[,R)N

+
, with its Wiener measure P

(i.e. such that the identity W on Ω is a cylindrical Brownian motion); (Ft)t
will denote the Brownian filtration (generated by the projections up to time
t). H will be a separable Hilbert space.

Definition 4. For n in N+, call ∆n(T ) = {(t1, . . . tn)|0 ≤ t1 ≤ . . . tn ≤ T}.
For f in L2(∆n(T ); `2(H)⊗n) define∫

∆n(T )

frd
nWr =

∑
k1,...kn

∫ t

0

∫ rn

0

. . .

∫ r2

0

fk1,...kn(r1, . . . rn)dW k1
r1
. . . dW kn

rn .

(1.5)
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The process (Ω, (Ft)t, (
∫

∆(t)
frd

nWr)t, P ) is a continuous square integrable

martingale with mean value 0. Besides, the above integral is an isometry
between the Hilbert spaces L2(∆n(T ); `2(H)⊗n) e L2(Ω,FT , P ;H).

Theorem 5. Call Π0 = H, Πn =
{∫

∆n(T )
frd

nWr|f ∈ L2(∆n(T ); `2(H)⊗n)
}

for n ∈ N+. Then L2(Ω,FT , P ;H) admits the following orthogonal decompo-
sition:

L2(Ω,FT , P ;H) = ⊕∞n=0Πn. (1.6)

Definition 6. The decomposition above is called Wiener chaos decomposi-
tion. The subspace Πn is called n-th Wiener chaos.

Proof. Orthogonality and closure of the Wiener chaos spaces and complete-
ness of the sum follow easily from the definition.

It remains to prove that the sum in 1.6 is dense in L2(FT ). It is enough
to prove that, if X ∈ (⊕∞n=0Πn)⊥, then X = 0, i.e., for every basis (ej)j of
H, for every j and 0 ≤ t1 ≤ . . . ≤ tn, the image measure of (X · ej)dP under
the map (W k1

t1 , . . .W
km
tm ) is null (here we use the adaptedness of X to FT ).

We will show that its Fourier transform is null, i.e. for every ξ in Rd,

P [exp(iξ · (Wk1(t1), . . .Wkm(tm)))X · ej] = 0.

Lemma 7. Take f in L∞([0, T ]; `2(H)), h in H, λ in C. Then it holds (with
convergence in L2(Ω))

exp

(
λ

∫ T

0

〈fr, h〉dWr −
λ2

2

∫ T

0

‖〈fr, h〉‖2
`2dr

)
= 1+λ

∞∑
n=1

∫
∆n(t)

〈f, h〉⊗ns dnWs,

where 〈f(r), h〉 denotes the element in `2(R) with k-th coordinate 〈fk(r), h〉.

Proof. The convergence is ensured by the following estimates (proved by
induction)

E

[(∫
∆n(T )

〈f, h〉⊗ns dnWs

)2
]
≤ T n‖〈f, h〉‖2n

L∞

n!
.

Let Mt, Nt resp. the LHS and the RHS of the above equality with T replaced
by t. Then by Ito formula, M solves the SDE

Mt = 1 +

∫ t

0

λMr〈fr, h〉dWr.

Since N satisfies the same equation, we have M = N by strong uniqueness.
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Because of the orthogonality condition of X, we have E [X] = 0 and, for
every n and f in L2([0, t]; `2(H)),

P

[∑
q

∫
∆n(T )

〈f, eq〉⊗n(r)dnW (r)〈X, eq〉

]
= 0.

Now fix ξ in Rm and choose f with fkr =
∑m

p=1 δk,kpξp1r≤tpej. Summing over
n the above equality and using the previous lemma, we get

P [exp(iξ · (W k1
t1 , . . .W

km
tm ))〈X, ej〉] =

= e−
1
2
mT |ξ|2

(
P [〈X, ej〉] + i

∞∑
n=1

E[

∫
∆n(t)

〈f, ej〉⊗ns dnWs〈X, ek〉]

)
= 0.

Thus the Fourier transform of (W k1
t1 , . . .W

km
tm )#(〈X, ej〉)dP is null. The proof

is complete.

1.3 Wiener pathwise uniqueness

The main idea is the following. The stochastic (standard) integral acts like a
shift for the Wiener chaos, i.e. formula (1.7). Then, if u is a solution of (1.1),
Qnu solves an equation which is (1.2) but for the stochastic part, which is
driven by Qn−1u and thus can be regarded as a random external force, fixed
a priori by inductive hypothesis. So the equation for Qnu is morally the
Kolmogorov equation for (1.1).

Lemma 8. Let X be a stochastic process, progressively measurable with re-
spect to (Ft)t, in L2([0, T ]×Ω; `2(H)); for n ∈ N, let Qn be the projector on
the n-th Wiener chaos. Then it holds the following shift property:

Qn+1

∑
k

∫ t

0

Xk(r)dW
k
r =

∑
k

∫ t

0

QnXk(r)dW
k
r . (1.7)

Proof. Since
∑

k

∫ t
0
Xk(r)dW

k
r =

∑
n

∑
k

∫ t
0
QnXk(r)dW

k
r (in L2(Ω;H)), it

is enough to prove that the LHS of (1.7) belongs to the (n + 1)-th Wiener
chaos.

But, for every k, QnXk(r) is an n-times iterated stochastic Wiener inte-
gral, so that

∑
k

∫ t
0
QnXk(r)dW

k(r) is an (n + 1)-times iterated stochastic
Wiener integral (with the isometry property, it is easy to check the mea-
surability and the square-integrability of the integrated function). We are
done.
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Now we state the main result.

Theorem 9. Suppose uniqueness, in the class of H-valued solutions, for
Kolmogorov equation (1.2). Then there is Wiener pathwise uniqueness, in
the class of H-valued solutions, for the SPDE (1.1).

Proof. Let u be a solution of (1.1) with u0 = 0. By Wiener chaos decom-
position, it is enough to show Qnu ≡ 0 for every n ∈ N. We will prove it
inductively.

Projecting equation (1.3) on the n-th Wiener chaos, by the previous
lemma, we obtain, for every ϕ in V ,

〈Qnut, ϕ〉 =

∫ t

0

〈Qnur, B
∗ϕ〉dr +

∑
k

∫ t

0

〈Qn−1ur, C
∗
kϕ〉dW k

r ,

where we have posed Q−1 ≡ 0. By inductive hypothesis Qn−1u ≡ 0, this
equation becomes equation (1.2), which has uniqueness property among H-
valued solutions (by hypothesis). The proof is complete.

1.4 An application to stochastic linear hyper-

bolic equations on Rd

In this section we apply the previous result to stochastic linear hyperbolic
equations (SLHEs) on Rd

dut + [−1

2

d∑
i,j=1

(aijD
2ut) + div(but)− cut]dt+

∞∑
k=1

div(σkut)dW
k
t = 0. (1.8)

Here b, σk, k ∈ N+ are deterministic fields of vectors, a =
∑

k σkσ
∗
k, c is a

deterministic function, Ω and W are as in the previous section. The solution
is a random scalar function. Notice that

∑
k |σk|2 = tr(a).

In the case c = 0, we find the stochastic continuity equation (SCE). In
the case c = divb, we find the stochastic transport equation (STE), which
expresses the evolution of a certain feature of the flow with solves the SDE
(3). Indeed, in the regular case, if X is such a flow, for every function u0,
u0(Xt(ω)−1) solves the STE.

The name “hyperbolic” comes from this two cases: with the representa-
tion formulae ut = u0(X−1

t )| det(DXt)| for SCE and ut = u0(X−1
t ) for STE,

we see that no regularization effect is expected if u0 is not regular, even
where the coefficients are smooth. Thus it is not clear that the precence of
the Laplacian term gives some benefits for uniqueness: in principle we could
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have ill-posed problems, as in the deterministic case (see Chapter 3). It will
give, however, for Wiener chaos method.

For an SLHE, the Kolmogorov equation takes the form of

dvt + [div(but) + cut]dt =
1

2

d∑
i,j=1

D2(aijut)dt. (1.9)

In the case c = 0, this equation is called Fokker-Planck equation (FPE).

Definition 10. Suppose u0 is in Lp(Rd), 2 ≤ p ≤ +∞. Suppose also a, b, c

are in Lp
′

loc(Rd), where 1
p
+ 1
p′

= 1, a =
∑

k σkσ
∗
k with covergence in L2

loc(Rd). A

distributional Lp solution is a function u in Lp([0, T ]×Rd×Ω), progressively
measurable with respect to a W -filtration (Gt)t, such that it holds, for every
ϕ in C∞c (Rd),

〈ut, ϕ〉 = 〈u0, ϕ〉+
∫ t

0

〈ur, [
1

2
tr(aD2)+b ·∇+c]ϕ〉dr+

∞∑
k=1

∫ t

0

〈ur, σk ·∇ϕ〉dW k
r .

(1.10)

A similar definition can be given for Kolmogorov equation (1.9) (without
the requirement of progressive measurability). Wiener and strong uniqueness
are defined obviously.

It is easy to see that, in the case p = 2, the above definition coincides
with the general Definition 1, with H = L2(Rd), V = C∞c (Rd), Bϕ =
1
2

∑d
i,j=1(aijD

2ϕ)− div(bϕ) + cϕ, Ckϕ = −div(σkϕ).

Theorem 11. Suppose a, b, c, σk, k ∈ N+, are in L2
loc(Rd) (resp. in L1

loc(Rd)),
a =

∑
k σkσ

∗
k with covergence in L2

loc(Rd). Suppose uniqueness for Kol-
mogorov equation (1.9) in the class of distributional L2 (resp. L∞) solutions.
Then Wiener pathwise uniqueness holds for the SLHE (1.8) in the class of
distributional L2 (resp. L∞) solutions.

Proof. In the L2 case, the result is a direct application of Theorem 9.
In the L∞ case, we use the projections on the Wiener chaos spaces of

L2(Ω,Ft, P ;R) of the solution valued in x. Again we obtain inductively that
Qnu satisfies Kolmogorov equation (1.9), but is not a priori in L∞. However,
we know that Qnut(x) =

∫
∆n(t)

f(r, t, x)dnWr, for a certain deterministic f ;

for the L∞ bound on u,
∫

∆n(t)
‖f(r, t, x)‖2

`2d
nr ≤ C for a.e. (t, x). Now take

g in L∞(∆n(T ); `2(R)n) and define h(t, x) =
∫

∆n(t)

∑
k fk(r, t, x) · gk(r)dnr;

obviously h is in L∞. Starting from the equation satisfies by Qnu, with some
exchanges of integrals, we get that h is a distributional solution of (1.9), so,
by uniqueness hypothesis, h ≡ 0. Since this happens for all g, it must be
f ≡ 0, i.e. Qnu ≡ 0.
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To state a uniqueness result, we must have uniqueness for the Kolmorogov
equation (1.9).

Condition 12. b is in Lp(Rd) and c is in Lq(Rd) for some p > d, q > d/2
(p = +∞, q = +∞ are allowed). a ≡ id.

Lemma 13. Suppose Condition 12; suppose also, in the L2 case, p, q ≥ 2.
Then equation (1.9) has uniqueness property in the class of distributional L2

solutions and in the class of distributional L∞ solutions.

We first need the following technical lemma, which extends the distribu-
tional formulation to time-dependent test functions; its proof is posponed in
Appendix B.

Lemma 14. Let G be a domain of Rd and let A∗ be a linear operator de-
fined on a dense domain of L2(G), suppose that it is bounded as an operator
C∞c (G)→ L2(G). Let u be a function in L2([0, T ]×G) such that, for every
ψ in C∞c , for a.e. t it holds

〈ut, ψ〉 = 〈u0, ψ〉+

∫ t

0

〈ur, A∗ψ〉dr. (1.11)

Then, for every φ in C∞c (G), it holds

〈ut, φt〉 = 〈u0, φ0〉+

∫ t

0

〈ur, A∗φr〉dr +

∫ t

0

〈ur,
∂φr
∂t
〉dr. (1.12)

Proof. By the previous lemma with A∗ = B∗, if v is a solution of (1.9), then,
for every ϕ in C∞c ([0, T ]× Rd),

〈vt, ϕt〉 = 〈v0, ϕ0〉+

∫ t

0

〈vr, cϕr〉dr +

∫ t

0

〈vr, b · ∇ϕr〉dr +

+

∫ t

0

〈vr,
1

2
∆ϕr〉dr +

∫ t

0

〈vr,
∂ϕr
∂t
〉dr. (1.13)

Now consider functions

ϕs,x(r, y) = ψ(s− r, x− y) = (2π(s− r))−d/2 exp

(
− |x− y|

2

2(s− r)

)
,

with x ∈ Rd, 0 ≤ r < s. It is not difficult to see that, for every s, x, ϕs,x

can be approximated with functions ϕn in C∞c ([0, t] × Rd), if t < s, in such

a way that B∗φn, ∂ϕn(r)
∂r

converge in L∞([0, t];Lγ(Rd)) respectively to B∗ϕ,
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∂ϕ
∂t

, for every γ in [1,+∞]; thus (1.13) holds also for ϕs,x (here we use, in the
L2 case, p, q ≥ 2).

With an easy computation, we have

∇ψ(ε, z) = −z
ε
ψ(ε, z),

∆ψ(ε, z) = 2
∂ψ

∂ε
(ε, z) =

(
|z|2

ε2
− d

ε

)
ψ(ε, z),

‖ψ(ε, ·)‖Lp′ = Cd,pε
−d/(2p),

‖∂iψ(ε, ·)‖Lp′ = Cd,pε
−d/(2p)−1/2.

So, if t < s, (1.13) becomes

〈ut, ϕt〉 = 〈u0, ϕ0〉+

∫ t

0

〈ur, cϕr〉dr +

∫ t

0

〈ur, b · ∇ϕr〉dr. (1.14)

We start with an L∞ estimate. We analyze the two integrals in (1.14)
separately. For the first integral, we have∣∣∣∣∫ t

0

〈ur, cϕr〉dr
∣∣∣∣

≤
∫ t

0

‖ur‖L∞(Rd)‖c‖Lq(Rd)‖ϕ(r, ·)‖Lq′ (Rd)dr

≤ C‖c‖Lq(Rd)

∫ t

0

‖ur‖L∞(Rd)(s− r)−d/(2q)dr. (1.15)

For the second integral, we have∣∣∣∣∫ t

0

〈ur, b · ∇ϕr〉dr
∣∣∣∣

≤
∫ t

0

‖ur‖L∞(Rd)‖b‖Lp(Rd)‖∇ϕ(r, ·)‖Lp′ (Rd)dr

≤ C‖b‖Lp(Rd)

∫ t

0

‖ur‖L∞(Rd)(s− r)−d/(2p)−1/2dt. (1.16)

For the L2 estimates, we take q̃ such that 1
q̃

+ 1
q′

= 1+ 1
2

and we use Young
inequality for convolutions; the same with p in place of q. Then for the first
integral we have∥∥∥∥∫ t

0

〈ur, cϕs,·r 〉dr
∥∥∥∥
L2(Rd)
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≤ t1/2
∫ t

0

‖(urc) ∗ ψ(s− r, ·)‖L2(Rd)dr

≤ t1/2
∫ t

0

‖(urc)‖Lq̃(Rd)‖ψ(s− r, ·)‖Lq′ (Rd)dr

≤ C‖c‖Lq(Rd)t
1/2

∫ t

0

‖ur‖L2(Rd)(s− r)−d/(2q)dr. (1.17)

For the second integral we have∥∥∥∥∫ t

0

〈ur, b · ∇ϕs,·r 〉dr
∥∥∥∥
L2(Rd)

≤ t1/2
∫ t

0

‖(urb) ∗ ∇ψ(s− r, ·)‖L2(Rd)dr

≤ t1/2
∫ t

0

‖urb‖Lp̃(Rd)‖∇ψ(s− r, ·)‖Lp′ (Rd)dr

≤ C‖b‖Lp(Rd)t
1/2

∫ t

0

‖ur‖L2(Rd)(s− r)−d/(2p)−1/2dr. (1.18)

Now we take u0 ≡ 0, s = t + h. Then for (1.15) and (1.16), since p > d
and q > d/2, it holds for some α ∈]0, 1[

‖ut ∗ ψh‖L∞(Rd) ≤ C

∫ t

0

‖ur‖L∞(Rd)(t+ h− r)−αdr.

Since ‖ut‖L∞(Rd) ≤ ¯limh→0‖ut ∗ ψh‖, for h→ 0 the previous bound becomes

‖ut‖L∞(Rd) ≤ C

∫ t

0

‖ur‖L∞(Rd)(t− r)−αdr. (1.19)

The conclusion follows from a Gronwall-type argument. Precisely, we iterate
formula (1.19):

‖ut‖L∞(Rd) ≤ C

∫ t

0

∫ s

0

‖ur‖L∞(Rd)(s− r)−α(t− s)−αdrds

≤ C

∫ t

0

‖ur‖L∞(Rd)(t− r)−2α+1dr;

interating again, we obtain

‖ut‖L∞(Rd) ≤ C

∫ t

0

‖ur‖L∞(Rd)(t− r)−2kα+2k−1dr.

Since α < 1, we can take k such that −2kα + 2k − 1 > 0. Now the thesis in
the L∞ case follows from Gronwall lemma. The same reasoning works in the
L2 case.
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Now we can conclude:

Corollary 15. Suppose Condition 12; suppose also, in the L2 case, p, q ≥
2. Then the SHLE (1.8) has Wiener pathwise uniqueness in the class of
distributional L2 solutions and in the class of distributional L∞ solutions.



Chapter 2

Generalized stochastic flows

2.1 Introduction

This chapter is devoted to the study of the SCE for observables

Stϕ = ϕ+

∫ t

0

Sr[b · ∇ϕ+
1

2
tr(aD2ϕ)]dr +

∞∑
k=1

∫ t

0

Sr[σk · ∇ϕ]dW k
r , (2.1)

mainly as a tool for the corresponding possibly ill-posed SDE

dXt = b(Xt)dt+
∞∑
k=1

σk(Xt)dW
k
t . (2.2)

Here we follow and readapt the famous results by Le Jan-Raimond [16],
while some of the ideas of this introduction are inspired by [2].

The idea is that, in some rough situations, at fixed ω, the mass initially
concentrated on a point can split under the action of the SDE. This corre-
sponds to the absence of strong solutions and the presence of more than one
weak solution of the SDE. To understand this fact, we refer to the following
intuition about the concepts of strong and weak solution of the SDE.

Suppose Ω = ΓT := C([0, T ];Rd) is the canonical Wiener space. Roughly
speaking, with an analytical point of view, an SDE can be seen as a collection
of ODEs parametrized by ω in Ω, plus a mass assigned to every ODE (the
probability measure P ) and a constraint on the information brought by the
solutions of such ODEs (the filtration (Gt)t).

A strictly weak solution (i.e. a solution which is not strong) represents in
some sense a non-uniqueness situation. Indeed, suppose that the SDE with
ω blocked has more than one solution, for ω in a non-P -null set of Ω. For
every ω, we can take a measure Nω on Γt concentrated on the solutions of

11
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the SDE with ω blocked (this is what is called a superposition solution); by
teh non-uniqueness hypothesis, this measure Nω will be non trivial (i.e. not
concentrated on a Dirac delta) for ω in a non-P -null set of Ω. The advantage
of the weak formulation is that now we can enlarge the probability space to
create a solution. Precisely, we observe that, under Nω, the canonical process
on ΓT solves the SDE with ω blocked. Thus, assuming suitable adaptedness
conditions and taking Ω̃ = Ω × ΓT and P̃ = P ⊗ Nω, it is clear that the
canonical process X(ω, γ) = γ on ΓT is a weak solution of the SDE.

Now we consider a situation of possible non-uniqueness and see how the
probability P and the filtration Ft play a fundamental role. The precence
of a probability measure allows us to use the law of the solution. This must
satisfy the Fokker-Planck equation (FPE), i.e. its marginals νt’s verify

dνt + div(bνt)dt =
1

2
∆νt. (2.3)

This equation has often uniqueness property, for the precence of the Lapla-
cian term. Thus uniqueness in law holds for the SDE.

Having a filtration (Gt)t, we can “filter” a weak solution with respect
to G, thus obtaining flow of stochastic kernels; in some sense, these kernels
are measures concentrated to solutions of the SDE at fixed ω and initial
datum x. The new fact that happens in the stochastic case is that all weak
solutions reduce to the same (stochastic) kernel, if we filter with respect to the
Brownian filtration. This Wiener uniqueness result is achieved using Wiener
chaos decomposition, which reduces the SCE to the FPE. This way has also
a physical meaning, since, among all the possible kernels, it choose the only
one which is a function of the random perturbation up to that moment.

Thus, in the stochastic case, even if we do not have strong uniqueness,
there is a way to select a kernel uniquely. As we will see in Chapter 4, this is
particularly useful, since it captures a possible split of the mass (a situation
which corresponds to flows of kernels).

2.2 Existence and uniqueness

We work under the following hypotheses.

Condition 16. b is in L∞(Rd); [divb]− is in L∞(Rd); a ≡ Id; σk’s are
measurable functions with

∑
k σkσ

∗
k = a in L2(Rd).

We will use the following notation. K is the measurable function on R2d

with values in the d× d matrices, defined by

K = σk ⊗ σ∗k; (2.4)
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it is called infinitesimal covariance and it is bounded (since a is bounded):
v ·K(x, y)w ≤ [tr(a(x))tr(a(y))]1/2|v||w| for every x, y in Rd and v, w vectors
in Rd. In particular, the σk’s are bounded.

The operators A, Dk, k ∈ N+, are the closures in L2(Rd) of the following
operators, defined for ϕ in C∞c (Rd):

Aϕ = b · ∇ϕ+
1

2
tr(aD2ϕ) = b · ∇ϕ+

1

2
∆ϕ,

Dkϕ = σk · ∇ϕ.

We also define, for ϕ, ψ in C∞c (Rd),

Γ(ϕ, ψ) = A(ϕψ)− ϕAψ − ψAϕ =
∑
k

Dkϕ ·Dkψ = ∇ϕ · a∇ψ

and extend it to ϕ, ψ in the Sobolev space W 1,2(Rd).
Of course, Hypotheses (16) are not the most general ones. One could take

a general bounded uniformly elliptic covariance function K (i.e. K(x, x) =
a(x) ≥ cId for some c > 0 independent of x), such that a is continuous. We
suppose a ≡ Id because we only deal with examples in this case. Notice that
both b and σ can be very rough.

We fix the probability space (Ω,A, P ) and a cylindrical Brownian motion
W on it, with its natural filtration (Ft)t. We recall that a filtration (Gt)t is
a W -filtration if W remains a Brownian motion with respect to G.

Definition 17. A solution of the SCE for observables is a family (St)t∈[0,T ] of
linear bounded operators from L2(Rd,Ld) with values in L2(Rd×Ω,Ld⊗P ),
adapted to a certain W -filtration (Gt)t, with uniformly (in time) bounded
operator norms, such that, for every ϕ ∈ C∞c (Rd), it holds in L2(Rd)

Stϕ = ϕ+

∫ t

0

SrAϕdr +
∞∑
k=1

∫ t

0

SrDkϕdW
k
r . (2.5)

This solution is called Markovian if, for every t and every positive f in
L2(Rd), Stf is positive and if St1 = 1.

The concepts of Wiener solution and Wiener and strong uniqueness are
defined naturally as in Chapter 1.

A Markovian solution expresses the evolution, in the values of the ob-
servable, of a “family of solutions (X(x))x” (x being the initial point) to the
given SDE (2.2). Indeed we recall that, in the regular case, if X is such a
family and ϕ is a regular function, then by Ito formula Stϕ = ϕ(Xt) satisfies
(2.5) and is Markovian.
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However, if we want a proper substitute of a flow, we must require the
cocycle law. In the regular case, this states that a stochastic flow X satisfies,
outside a P -null set (independent of space and time), Xu,t(Xs,u(x)) = Xs,t(x).
We cannot hope in such a strong property: the random operators St are
defined up to a P -null set, which depends on the argument φ and on time
t. So we will obtain an analogue of cocycle property but, in some sense, at
fixed space and time.

To do this, we use the Wiener space Ω = ΓT = C([0, T ];Rd) and we
notice that, in the homogeneous case, Xt,t+s(x, ω) = X0,s(x, θtω), where θt is
the shift operator θtω = ω(t + ·) − ω(t) (i.e. Ws(θt) = Wt+s −Wt): indeed
we have the following simple rule (which can be proved first for elementary
processes and then in the general case by approximation):(∫ β+t

α+t

Zr−t(θt)dWr

)
(ω) =

(∫ β

α

ZrdWr

)
(θtω). (2.6)

Then the following definition appears natural.

Definition 18. A statistical solution (or generalized stochastic flow solution)
of the SDE is a Markovian Wiener solution of the SCE for observables which
verifies the cocycle law: for every s, t ≥ 0,

St+s = St(Ss ◦ θt). (2.7)

This property seems to be a refinement of the concept Markov process:
we find the Markov property by taking the expectiation. The last formula
must be read as: for every s, t ≥ 0, for every f in L2(Rd), for Ld-a.e. x, for
P -a.e. ω,

Ss+tf(x, ω) = St[Ssf(·, θtω)](x, ω), (2.8)

Notice that the RHS makes sense, since Ssf ◦ θt and Stf are independent;
more precisely, they can be defined resp. on C([s, t]) and on C([0, t]).

The SCE for observable is morally a usual SCE (for measures), because,
for every positive finite measure µ0 on Rd, “µωt = St(ω)∗µ0” (in the sense
of 〈µt, ϕ〉 = 〈µ0, §tϕ〉) solves the SCE. Thus, in order to find existence and
(Wiener) uniqueness, we want to expoit again Wiener chaos method; so
we need some well-posedness properties for the associated Fokker-Planck
equation (FPE)

dvt = Avtdt. (2.9)

In particular, we hope to have existence by building the projections on each
Wiener chaos. But, to ensure the convergence of the sum of this projections,
we need some control, in L2, L∞ and L1 of the solution v of the FPE: as we
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will see, we would like to have vt = P ∗t vo, where (Pt)t is a suitable semigroup.
All the technical assumptions holds under our hypotheses, as the following
proposition says.

Proposition 19. Suppose Condition 16. Then A is the infinitesimal gener-
ator of a semigroup (Pt)t on L2(Rd). This semigroup is Markovian, i.e., for
every t, Ptf ≥ 0 for every f positive in L2(Rd) and Pt1 = 1. The domain
D(A) is in W 1,2(Rd). For every t > 0, Pt maps L2(Rd) into D(A). Finally
(Pt)t extends to a family of L1 operators with ‖Pt‖L1 ≤ C for every t.

Now we come to the desired existence and uniqueness result. It is valid
whenever the thesis of the previous proposition holds; this happens when A
is associated to a certain Dirichlet form (see Appendix B).

Theorem 20. There exists a unique Wiener solution S of the SCE for ob-
servable and it is a generalized flow. It satisfies, for every ϕ ∈ C∞c (Rd),

P [(Stϕ)2] ≤ Pt(ϕ
2), (2.10)

Stϕ = Ptϕ+
∞∑
k=1

∫ t

0

SrDkPt−rϕdW
k
r . (2.11)

Proof. The proof of Markovian property will be given in the next section.
Make the projection of equation (2.5) on the n-Wiener chaos: calling Qn the
projector and Jnt = QnSt, then the shift effect gives, for every n positive
integer and every regular ϕ,

J0
t ϕ = ϕ+

∫ t

0

J0
rAϕdr, (2.12)

Jnt ϕ =

∫ t

0

Jnr Aϕdr +
∑
k

∫ t

0

Jn−1
r AϕdW k

r . (2.13)

Uniqueness: Uniqueness for equation (2.5) can be reduced to uniqueness
for SCE using the adjoint S∗t of the random operator St. To avoid the theory
of random operators, we can proceed directly. Let S, T two generalized flows
solutions of the SCE (2.5), let Kn

t = Qn(St − Tt). we will prove inductively
that Kn ≡ 0 for all n. For the above formulae, K0 satisfies

K0
t ϕ =

∫ t

0

K0
rAϕdr. (2.14)

Fix t > 0 and, for every regular ϕ, consider the function s 7→ KsPt− sϕ,
s ∈ [0, t]. Using the uniform (in s) L2 boundedness of K0

s , we apply the
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chain rule to find d
dt

(KsPt−sϕ) = 0, so that Ktϕ = KOPtϕ ≡ 0. Now suppose
inductively that Kn−1 ≡ 0, then Kn satisfies the same equation (2.14), so is
0. Uniqueness is proved.

Existence: For every regular ϕ, define

J0
t ϕ = Ptϕ,

Jnt ϕ =

∫ t

0

Jn−1
r DkPt−rϕdW

k
r , n ∈ N+.

Call Snt =
∑n

j=0 J
j
t ; it satisfies

Snt ϕ = Ptϕ+

∫ t

0

Sn−1
r DkPt−rϕdW

k
r . (2.15)

Claim 21. For every n and t, Jnt and Snt can be extended to bounded adapted
operators L2(Rd)→ L2(Rd × Ω); it holds a.e., for every f in L2(Rd),

P [(Snt f)2] ≤ Pt(f
2). (2.16)

Then the family S of random operators defined by Stf = L2− limn S
nf =∑∞

j=0 J
j
t f is well defined and uniformly bounded, because Pt is uniformly

bounded in L1. It is a solution of the SCE for observables and (2.10), (2.11)
hold passing to the limit in (2.16), (2.15).

claim. It is enough to prove inductively the claim for f = ϕ in C∞c (Rd). In
the case n = 0 we must prove (Ptf)2 ≤ Pt(f

2) a.e.. Note that ∂
∂v
Pu(Pvf)2 =

2Pu((Pvf)(APvf)), so that

d

dr
(Pr(Pt−rf)2) = PrΓ(Pt−rf, Pt−rf).

Then we have

Pt(f
2) = (Ptf)2 +

∫ t

0

PrΓ(Pt−rf, Pt−rf)dr. (2.17)

Since Γ is positive semi-definite and Pt is monotone, the integrand in (2.17)
is non-negative. The proof for n = 0 is complete.

In the case n + 1, it is clear that Sn+1ϕ is (B(Rd)⊗ Ft)-measurable. To
verify the well posedness and (2.16), note that

P [(Sn+1ϕ)2] = (Ptf)2 +
∑
k

∫ t

0

P [(SnrDkPt−rϕ)2]dr
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≤ (Ptϕ)2 +
∑
k

∫ t

0

Pr((DkPt−rϕ)2)dr

≤ (Ptϕ)2 +

∫ t

0

PrΓ(Pt−rϕ, Pt−rϕ)dr

≤ Pt(ϕ
2)

where I have used the inductive hypothesis and (2.17).

It remains to prove the cocycle law. For this, we use the Wiener chaos
decomposition of St, which can be obtained by induction, using the fact that
Pt(L

2) is contained in D(A) and so in W 1,2: we can extend (2.11), so that,
for every ϕ in C∞C (Rd),

Jnt ϕ =
∑
k1,...kn

∫ t

0

∫ rn

0

. . .

∫ r2

0

Pr1Dk1Pr2−r1 . . . DknPt−rnϕdW
k1
r1
dW k2

r2
. . . dW kn

rn .

Using formula (2.6), one sees that
∑n

j=0 J
j
t (Jn−js ϕ(θtω))(ω) = Jnt+sϕ(ω) for

a.e. ω.

2.3 A representation formula

In this section we give a representation formula for the Wiener generalized
flow S: S is the conditional law of a weak solution X of the SDE (2.2), with
respect to the initial datum X0 and the Brownian filtration. This will make
rigorous the intuition in the introduction and prove the Markovian property
of S.

To do this, we need first the existence of a weak solution.

Theorem 22. Under Condition 16, for a.e. x in Rd, there exists a probability
P x on (Rd)[0,T ] such that the canonical process on (Rd)[0,T ] is a Markov process
associated to the semigroup (Pt)t.

This theorem is a consequence of the fact that A generates a regular local
conservative Dirichlet form (see Appendix B). We will suppose also that the
process is a.e. continuous, so that we work with ΓT = C([0, T ];Rd) in place of
(Rd)[0,T ]. Uned our hypotheses (Condition 16), this is always true a posteriori
(for other results), and in many (if not all) cases it is a consequence of the
theory of Dirichlet form.

The canonical process above is a natural candidate for a weak solution,
since every solution of the SDE has marginal laws which verifies the FPE
with generator A (this is implication 1 → 2 in the theorem below). In the
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regular case, when W is replaced by a d-dimensional Brownian motion B, it
is well known that the converse holds, i.e. every Markov process associated
to (Pt)t is a weak solution of the SDE. The following result extends this
equivalence to our case, thus proving the existence of a weak solution.

Theorem 23. Let (Ω,A, (Gt)t, X, P ) be a continuous Markov process. Then
the following facts are equivalent:

1. on an enlarged probability space, there exists a cylindrical Brownian
motion W such that (X,W ) is a weak solution of the SDE;

2. X is a Markov process associated to the semigroup (Pt)t.

3. the law (X)#P is a martingale solution of the SDE, i.e., for every ϕ

in C∞c (Rd), Mϕ
t = ϕ(Xt)− ϕ(X0)−

∫ t
0
Aϕ(Xr)dr is a G-martingale.

Proof. The implications 1⇒ 2 and 2⇒ 3 are standard. 1⇒ 2 follows from
Ito formula: indeed, if X is a weak solution, then, for every ϕ ∈ C∞c (Rd),

ϕ(Xt) = ϕ(X0) +

∫ t

0

Aϕ(Xr)dr +
∑
k

∫ t

0

Dkϕ(Xr)dW
k
r ,

and the stochastic integral is a martingale.
As for 2⇒ 3, notice that, for s < t,

P [Mϕ
t |Gs] = Pt−sϕ(Xs)−ϕ(X0)−

∫ t

s

Pr−sAϕ(Xs)dr−
∫ s

0

Aϕ(Xr)dr = Mϕ
s .

The implication 3⇒ 1 is more complex and requires the construnction of
a cylindrical Brownian motion such that the SDE is satisfied. Theorem 26
will complete the proof.

Lemma 24. For every ϕ, ψ in C∞c , it holds

[Mϕ,Mψ]t =

∫ t

0

Γ(ϕ, ψ)(Xr)dr. (2.18)

In particular, Y = M id is a d-dimensional Brownian motion.

Proof. It is enough to prove that Y is a Brownian motion, i.e. (by Lévy
theorem) a centered local martingale with quadratic variation [Y i, Y j]t = tδij.
We will use the notation Z ∼ Z ′ to say that Z − Z ′ is a local martingale.
We suppose for the sake of simplicity that X0 = 0. Using first ϕ(x) = x and
then ϕ(x) = xixj, we find that Yt = M id

t = Xt −
∫ t

0
b(Xr)dr and

Mxixj = X i
tX

j
t −

∫ t

0

X i
rb
j(Xr)dr −

∫ t

0

Xj
r b
i(Xr)dr + tδij
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are local martingales. So, calling At =
∫ t

0
b(Xr)dr,

Y i
t Y

j
t − tδij = X i

tX
j
t − tδij −X i

tA
j
t −X

j
tA

j
t + AitA

j
t

∼
∫ t

0

X i
rdA

j
r +

∫ t

0

Xj
rdA

i
r −X i

tA
j
t −X

j
tA

i
t + AitA

j
t

∼ −
∫ t

0

AjrdX
i
r −

∫ t

0

AirdX
j
r + AitA

j
t

∼ −
∫ t

0

AjrbdA
i
r −

∫ t

0

AirbdA
j
r + AitA

j
t = 0.

where we have use Ito formula applied to the product X i
t

∫ t
0
bj(Xr)dr. The

proof is complete.

We now define our desired Brownian motion. Consider the space Ω̃ =
Ω × ΓN+

T . Call W̃ the canonical process on ΓN+

T , with its natural completed
filtration F̃ and the Wiener measure Q which makes W̃ a cylindrical Brow-
nian motion. On Ω̃ put the filtration G̃ defined by G̃t = G ⊗ F̃t and the
probability measure P̃ = P ⊗Q. Define, for k ∈ N+,

dW k
t = dW̃ k

t + σk(Xt) · dYt −
∞∑
l=1

σk(Xt) · σl(Xt)dW̃
l
t . (2.19)

Lemma 25. W is a cylindrical Brownian motion with respect to G̃ under
the probability P̃ .

Proof. For every k, W k is a local martingale with respect to G̃; by Levy
theorem, it is enough to verity 〈W h,W k〉t = tδhk. This is true because, by
the previous lemma,

d

dt
[W h,W k]t

= δhk − 2σh · σk(Xt) +
∑
l

σ∗hσlσ
∗
l σk(Xt) + σ∗hσk(Xt) = δhk

Theorem 26. For every ϕ in C∞c (Rd), it holds under the probability P̃

ϕ(Xt) = ϕ(X0) +

∫ t

0

Aϕ(Xr)dr +
∞∑
k=1

∫ t

0

Dkϕ(Xr)dW
k
r (2.20)

In particular (Ω̃, G̃,W,X, P̃ ) is a weak canonical solution of the SDE starting
from (X0)#P .
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Proof. It is enough to prove that Mϕ
t =

∑∞
k=1

∫ t
0
Dkϕ(Xr)dW

k
r . The two

sides of this equality are continuous square-integrable martingales with re-
spect to G̃, so it is enough

[Mϕ −
∞∑
k=1

∫ ·
0

Dkϕ(Xr)dW
k
r ] ≡ 0.

This holds since, for (2.18),

[Mϕ −
∞∑
k=1

∫ ·
0

Dkϕ(Xr)dW
k
r ]t

=

∫ t

0

[Γ(ϕ, ϕ) + Γ(ϕ, ϕ)− 2
∑
k

Dkϕ ·
d∑
j=1

[σk]jΓ(ϕ, xj)](Xr)dr = 0.

To prove that X is a weak solution of the SDE, it is enough to apply the
result to ϕ = id: precisely, we approximate id with ϕn regular with compact
support and we pass to the limit in (2.20).

A similar reasoning holds also for more general (regular) diffusion matrices
a. Indeed, Lemma 24 holds with a similar proof and again a cylindrical
Brownian motion W can be defined:

dW k
t = dW̃ k

t + σk(Xt) · a−1(Xt)dYt −
∞∑
l=1

σk(Xt) · a−1(Xt)σl(Xt)dW̃
l
t ,

where a−1(x) is the pseudo-inverse matrix of a(x).
Now we have (Ω̃, Ã, (G̃t)t,W,X, P̃ λ) a weak solution of the SDE with

initial measure λ; we proceed to filter. We say that a (right-continuous
completed) filtration (Ht)t on (Ω̃, Ã, P̃ λ) is a (W, G̃)-filtration if W remains
a Brownian motion with respect to H and, for every t, for every Y G̃t-
measurable, P [Y |X0,HT ] = P [Y |X0,Ht]. Of course, G̃ and the Brownian
filtration F are (W, G̃)-filtrations.

Consider (Ht)t a (W, G̃)-filtration. Consider a version N of the conditional
law of X with respect to X0 and HT (where X takes values in ΓT ). For t in
[0, T ], define, for every f measurable bounded function on Rd,

Ttf(x, ω) =

∫ t

0

f(γt)N
x,ω(dγ). (2.21)

It is clear that Tt is the conditional law of Xt with respect to X0 and HT

(in the sense that is the operator associated to such conditional law). Now
take λ(dx) = h(x)dx, with h strictly positive function (so that λ and Ld are
equivalent).
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Theorem 27. (Tt)t can be extended to a Markovian solution of the SCE for
observables.

We call T a solution associated to H.

Proof. The Markovian property is clear. Adaptedness follows from the con-
dition of (W, G̃)-filtration, since P [f(Xt)|X0,Ht] = P [f(Xt)|X0,HT ]. The
uniform L2 bound comes from Jensen inequality:

P [(Ttf)2] ≤ P [f(Xt)
2] = Pt(f

2).

Finally the SCE for ooblservales is obtained filtering the SDE with respect
to Ht and using the condition of (W, G̃)-filtration.

Finally we find the desired result.

Corollary 28. Let S be the solution associated to the Brownian filtration F .
Then S is the generalized flow which solves the SDE.

Note that this representation gives also a Wiener existence result for the
SCE for measures. We call M+ the set of positive finite measure on Rd.

Definition 29. Given µ0 in M+, a distributional M+ solution of the SCE
is a family µ = (µωt )t,ω of measures in M+, weakly progressively measurable,
with total mass µ(Rd) in L∞([0, T ] × Ω), such that, for every ϕ ∈ C∞c (Rd),
it holds

〈µt, ϕ〉 = 〈µ0, ϕ〉+

∫ t

0

〈µr, Aϕ〉dr +
d∑

k=1

〈µr, Dkϕ〉dW k
r . (2.22)

Corollary 30. Let µ0 be in M+. Then the family of random measures (µt)t
defined by

〈µωt , f〉 = 〈µ0, Ttf(ω)〉 =

∫ t

0

f(γt)N
x,ω(dγ)µ0(dx) (2.23)

is a Wiener distributional M+ solution of the SCE.

2.4 Flows of maps and flows of kernels

For n positive integer, define, for f1, . . . fn in L∞(Rd),

P
(n)
t (f1 ⊗ . . .⊗ fn) = P [Stf1 ⊗ . . .⊗ Stfn]. (2.24)
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Proposition 31. (P
(n)
t )t is a Markovian semigroup associated to the canon-

ical process on ΓnT = C([0, T ];Rnd) with probability measure P [⊗nj=1N
xj ,·].

Proof. The fact that P
(n)
t is Markovian can be checked using the cocycle law

and the Markovian property of S. Using representation formula (2.21), we
get, for Lnd ⊗ P -a.e. (x, ω) in Rnd × Ω,

S⊗nt (⊗nj=1fj)(x, ω) := (⊗nj=1Stfj)(x, ω)

= Πn
j=1

∫
ΓT

fj(γt)N
xj ,ω(dγ) =

∫
ΓnT

(⊗nj=1fj)(γt)[⊗nj=1N
xj ,ω](dγ),

Thus the canonical process on (ΓnT , P [⊗nj=1N
xj ,·]) is associated to (P

(n)
t )t.

We can see this process as the projection Xn on ΓnT in the space (Ω ×
ΓnT , P ⊗⊗nj=1N

xj ,·. At fied ω, Xn represents the motion of n particles driven
by the SDE blocked at ω. This explains the following definition.

Definition 32. Xn is called the n-point motion of S.

Proposition 33. For every ϕ1, . . . ϕn in D(A) ∩ L∞(Rd), it holds

d[S⊗nt (⊗nj=1ϕj)] = S⊗nt A(n)(⊗nj=1ϕj)dt+
∞∑
k=1

S⊗nt D
(n)
k (⊗nj=1ϕj)dW

k
t . (2.25)

Proof. It is enough to apply Ito formula to (2.5).

Definition 34. (St)t is a flow of maps if it exists a family of measurable
maps (Φt)t from Rd × Ω to Rd such that Stf = f ◦ Φt for every t and f in
L2(Rd). It is a flows of non-trivial kernels otherwise.

In the previous section, we have seen that S is a kernel. Thus it is clear
that S is a flow of maps if and only if this kernel is “trivial”, i.e. a Dirac
delta.

In the following, we denote by (Xt, Yt)t the two-point motion starting
from (x, y) in R2d.

Definition 35. (St)t is an injective flow of maps if it is a flow of maps and,
for every x 6= y and t > 0, P -a.s. Φt(x) 6= Φt(y).
(St)t is a coalescing flow of maps if it is a flow of maps and, for every x, y,
P -a.s. there exists t ≥ 0 such that Φt(x) = Φt(y) for all u ≥ t.
St)t is a splitting flow without hitting if it is a flow of non-trivial kernels and,
for every x = y, Xt 6= Yt for all t > 0.
St)t is a splitting flow with hitting (or coalescence) if it is a flow of non-trivial
kernels and, for every x, y, there exists t > 0 such that Xt = Yt with positive
probability.
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Lemma 36. S is a flow of maps if and only if, for every f in L2(Rd) and
every t ≥ 0, it holds

P [(Stf)2] = Ptf
2. (2.26)

Proof. Notice that Pt(f
2)(x)−P [(Stf(x))2] = P [St(f

2)(x)−(Stf(x))2]. Since
St is a kernel, St(f

2)(x) − (Stf(x))2 ≥ 0 and equality holds for all x if and
only if S is concentrated on a Dirac delta.

Intuitively, a flow is of maps if and only if the two-point motion strating
from (x, x) remains on the diagonal. Thus it is natural to use this motion
in the classification of flows. In particular, we have two useful results (see
Chapter 4).

Proposition 37. Suppose that, for every t, r > 0, for a.e. x,

lim
y→x

P
(2)
(x,y){d(Xt, Yt) ≥ r} = 0

Then (St)t is a flow of maps.

Proposition 38. Suppose that there exists r, t, p > 0 such that, for a.e.
(x, y),

P
(2)
(x,y){d(Xt, Yt) ≥ r} ≥ p.

Then (St)t is a flow of non-trivial kernels.



Chapter 3

The case of a rough drift

3.1 Introduction

In this chapter we study the SCE with an irregular drift b and with σ ≡ 0.
The interest in this case is due to the so-called phenomenon of regularization
by noise.

Precisely, we are interested in the SDE

dXt = b(Xt)dt+ dWt (3.1)

(where, for this chapter, W will be a d-dimensional Brownian motion) and
in the corresponding SCE

dµt + div(bµt)dt+
d∑

k=1

∂xkµtdW
k
t =

1

2
∆µt. (3.2)

The classical theory for the deterministic CE and TE (transport equa-
tion), developed by DiPerna-Lions ([10]) and Ambrosio ([1]) and based on
renormalized solutions, gives existence and uniqueness in the class of weak
L∞ solutions under hypotheses (a bit simplified for brevity) b ∈ L∞(Rd) ∩
BVloc(Rd) and divb ∈ L∞(Rd); such hypotheses cannot be relaxed too much.
As Flandoli et al. have shown, the introduction of noise allows some improve-
ments: in the case of stochastic transport equation, existence and unique-
ness hold asking b Hölder continuous, divb ∈ Lq(Rd) for q > 2 ([12]) or
b ∈ L∞(Rd) ∩BVloc(Rd), divb ∈ L1(Rd) ([3].

Following this line, we will state two uniqueness results for the SCE and
recall an example when the corresponding deterministic case has no unique-
ness. This is what is called regularization by noise.

24
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3.2 An example of regularization by noise

The following uniqueness result is a particular case of Theorem 9 (see [17]):

Theorem 39. Suppose b is in Lp(Rd) for some p > d and, in the L2 case,
p ≥ 2. Then there is Wiener uniqueness in the class of distributional L2

solutions and in the class of distributional L∞ solutions.

This result is an example of regularization by noise, since the correspond-
ing deterministic result is false. A counterexample is due to Depauw ([9]),
who shows non-uniqueness (among L∞ solutions) for the CE with a drift b
in L∞([0, T ] × Rd) with divb ≡ 0. In the stochastic case, Wiener existence
holds for the SCE (which is also a transport equation) by approximations
method, while uniqueness holds by the above result, extended (easily) to the
case of bounded time-dependent drifts.

3.3 Uniqueness by superposition solutions

The previous uniqueness result is limited to Brownian filtrations. However,
uniqueness for the corresponding SDE holds among all the filtrations, as
proved by Krylov-Röckner ([13]) and Fedrizzi-Flandoli ([11]):

Theorem 40. Suppose b is in Lp(Rd). Then strong existence and uniqueness
holds for the SDE (3.1). Furthermore there is a stochastic flow of homeo-
morphisms which solves the SDE.

Now one imagines a solution of the SCE as induced by a solution of
the SDE, that is µt = (Xt)#µ0, and so is brought to believe that strong
uniqueness holds also for the SCE. We will prove this (under slightly different
hypotheses), making rigorous the intuition above. Our approach is inspired
by the deterministic superposition principle ([2]).

Fix a probability space (Ω,A, P ) and a cylindrical Brownian motion W on
it, with its natural filtration F . Call ΓT = C([0, T ];Rd), with the canonical
filtration Ht = σ(πs|s ≤ t) (πt being the evaluation map at time t).

Definition 41. A superposition solution is a measure µ0 ⊗ P ⊗ Nx,ω on
Rd × Ω× ΓT , where:

• µ0 is a measure on Rd;

• Nx,ω is a kernel from Rd×Ω to ΓT such that, for every t, (π[0,t])#N
x,ω

is (weakly) measurable with respect to B(Rd)⊗Gt, where G is a certain
W -filtration;



CHAPTER 3. THE CASE OF A ROUGH DRIFT 26

• for µ0 ⊗ P -a.e. (x, ω), Nx,ω is concentrated on solutions of the SDE
with ω fixed and initial datum x.

The second condition is an adaptedness condition. It can be easily re-
stated as follows: for every t, for every B in Ht, N

x,ω(B) is measurable with
respect to B(Rd)⊗ Gt.

Superposition solutions are particular solutions of the SCE: given N and
µ0, ∫

Rd
(πt)#N

x,ωµ0(dx) (3.3)

is a solution of the SCE starting from µ0.
We now state the uniqueness result.

Theorem 42. Suppose b in L∞(Rd). Then strong existence and strong
uniqueness holds for the SCE among M+ solutions.

Proof. Existence follows by taking µωt = (Xt(ω))#µ0, where Xt is a flow
solution of the SDE. We will prove uniqueness in two steps:

1. strong uniqueness for the SDE implies strong uniqueness among super-
position solutions;

2. every M+ solution can be represented as a superposition solution.

3.3.1 First step

Take µ0 ⊗ P ⊗N superposition solution. Fix the intial datum x and define

• Ω̃ = Ω× ΓT ,

• G̃t = Gt ⊗Ht (where Ht = σ(πs|s ≤ t)),

• P̃ x = P ⊗Nx,ω,

• Wt(ω, γ) = Wt(ω),

• X(ω, γ) = γ.

Proposition 43. The process W remains a Brownian motion under P̃ x with
respect to (G̃t)t and (Ω̃, G̃, P̃ x, W̃ ,X) is a solution of the SDE with initial
datum x.
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Proof. Take s < t and A×B in G̃s. Then

P̃ x[1A×B(Wt −Ws)] = P [1AN
x,·(B)(Wt −Ws)]

= P [1AN
x,·(B)]P [Wt −Ws] = P̃ x(A×B)P̃ x[Wt −Ws],

where in the third equality we have used the adaptedness condition. So
Wt−Ws is independent of G̃s and obviously it has law N (0, t− s). The first
part of the statement is proved.

The second part follows from the fact that X is (G̃t)t-progressively mea-
surable and that for P -a.s. ω, for Nx,ω-a.s. γ, X(ω, γ) = γ solves the SDE
with ω blocked.

For the following, the next remark will be useful: a continuous process
Z is adapted to a certain filtration G if and only if, for every t, for every B
in Ht, the event {Z ∈ B} is in Gt. One verifies easily this fact, using the
definition Ht = σ{πs|s ≤ t}. We also notice that ΓT is a complete metric
space with the metric of uniform convergence and that its Borel σ-algebra is
precisely HT .

Theorem 44. Suppose strong existence and strong uniqueness for the SDE
with initial datum x, for µ0-a.e. x. Then there is strong existence and strong
uniqueness among superposition solutions starting from µ0. The superposi-
tion solution is given by µ0 ⊗ P ⊗ δY (x,ω), where Y is the solution of the
SDE.

Proof. Fix x in the set where strong existence and uniqueness holds. With
the previous notation, X must be the unique strong solution of the SDE; in
particular X must be adapted to (Ft)t (with a little abuse of notation, we
use again Ft for Ft⊗T , where T is the trivial σ-algebra generated by P̃ x-null
sets).

Lemma 45. For P -a.s. ω, Nx,ω must be concentrated on a single γ = γω.

Proof. It is enough to verify that, for every B in HT , for P -a.e. ω, Nx,ω(B)
is 0 or 1. Indeed, suppose this is the case and consider a partition of ΓT in
countably many sets (Bj)j with diameter less than ε, ε > 0 (here we take
ΓT with the metric of uniform convergence). Then, for P -a.e. ω, Nx,ω is
concentrated on a single Bj(ω); since this holds for every ε > 0, Nx,ω must be
a Dirac delta.

Since X is FT -measurable, the event {X ∈ B} = Ω × B must be equiv-
alent to a set A × ΓT , for some A in FT , modulo P̃ x. This means that
P [1AcN

x(B)] = P [1AN
x(Bc)] = 0, that is Nx(B) is equivalent to 1A modulo

P , in particolar it assumes values 0 or 1 a.s..
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Thus the superposition solution must be concentrated on a process. Since
the SDE has strong uniqueness among processes, the superposition solution
is strong and coincides with µ0 ⊗ P ⊗ δX(x,ω). The proof is complete.

3.3.2 Second step

Theorem 46 (Superposition principle). Suppose b in L∞. Let µ be a dis-
tributional M+ solution of SCE. Then µ is representable as a superposition
solution (as in (3.3)).

This theorem generalizes a deterministic result. The idea of the proof is
the following: first we mollify µ with µε’s regular measures which are solutions
of regular SCEs, thus superposition solutions; then we pass to the limit with
a compactness method, finding the required superposition solution. In the
stochastic case we have two difficulties: the regular SCEs have stochastic
coefficients (but one can reduce these SCEs to a family of deterministic CEs)
and a compactness method made ω by ω does not preserve adaptedness, so
we have to use Crauel theory for random measures. We can suppose µ0 a
probability measure, without loss of generality. We will need the supeposition
principle for regular deterministic cases:

Lemma 47. Suppose v in L1([0, T ];W 1,∞
loc (Rd)). Then every regular solution

of the deterministic CE

dλt + div(vtλt)dt = 0 (3.4)

is a deterministic superposition solution, i.e. λt = (πt)#K
xµ0(dx) and, for

µ0-a.e. x, Kx is a measure on ΓT concentrated on the solutions of the ODE
dyt = vt(yt)dt.

Proof. (of superposition principle). Step 1: regularization. Take

µω,εt = µωt ∗ ρε, (3.5)

bω,εt =
(bµt) ∗ ρε

µεt
. (3.6)

Lemma 48. Fix ε > 0. Then

µω,εt dx =

∫
Rd

(πt)#δXε(x,ω)µ0(dx) (3.7)

where Xε is a regular flow solution of the SDE

dXε
t = bεt(X

ε
t )dt+ dWt. (3.8)
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Here, by “regular flow solution of the SDE”, we mean that, for every t,
Xε
t is measurable with respect to B([0, t]) ⊗ B(Rd) ⊗ Ft and that, for every

x, Xε(x) is a solution of the given SDE.

Proof. Using ρε as test function, it is easy to see that µε is a regular solution
of the SCE with b as stochastic drift, i.e. it safisfies

dµεt + div(bεµεt)dt+
∑
k

(∂xkµ
ε
t)dW

k
t =

1

2
∆µεt

in the strong (spatial) sense. Call µ̃ω,εt = µω,εt (· + Wt(ω)) (this corresponds,
in terms of measures, to µ̃ω,εt = (· −Wt(ω))#µ

ω,ε
t ). To obtain the expression

of µ̃ω,εt as a stochastic differential, we could use a generalized Ito formula,
but we proceed following the interpretation in terms of measures. Take ϕ in
C∞c (Rd), then, by Ito formula and integration by parts,

d(〈µεt, ϕ(· −Wt)〉) + 〈div(bεtµ
ε
t), ϕ(· −Wt)〉dt = 0.

Changing variable and using the spatial regularity of µ̃εt, the previous formula
reads

µ̃εt − µε0 +

∫ t

0

div(b̃εtµ
ε
r)dr = 0,

where b̃ω,εt (x) = bω,εt (x+Wt(ω)).
Fix the parameter ω. Then the above formula is a deterministic CE with

regular velocity field b̃ω,ε and regular solution µ̃ω,ε. Thus, by the deterministic
lemma above, µ̃ω,ε is representable as a deterministic superposition solution.
Precisely, the ODE

dX̃ω,ε
t = b̃ω,εt (X̃ω,ε

t )dt

admits a unique regular flow X̃ε(ω) as solution and it holds

µ̃ω,εt dx =

∫
Rd

(πt)#δX̃ε(x,ω)µ0(dx), (3.9)

or equivalently

µω,εt dx =

∫
Rd

(πt)#δXε(x,ω)µ0(dx),

where Xε(x, ω) = X̃ε(x, ω) +Wt(ω). Note that Xε “solves the SDE” (we do
not have yet adaptedness)

dXε
t = bεt(X

ε
t )dt+ dWt.
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In order to conclude, we must show the progressive measurability of Xε

or equivalently for X̃ε. But X̃ε(x, ω) is the pointwise limit of (X̃ε,n(x, ω))n,
where X̃ε,0(x, ω) ≡ x and

X̃ε,n+1
t (x, ω) = x+

∫ t

0

b̃ω,εr (X̃ε,n
r (x, ω))dr.

Since both X̃ε,n and b̃ε are measurable with respect to B([0, t])⊗B(Rd)⊗Ft,
so is X̃ε. The lemma is proved.

Step 2: tightness and adaptedness. Being (µ0 ∗ ρε)ε tight, we can choose
a function ψ : R → [0,+∞[, with ψ(x) → +∞ as |x| → +∞, such that∫
Rd ψµ0 ∗ ρεdx ≤ 1. Applying the characterization of uniform integrability

given by Dunford-Pettis to the singleton {b}, we can find a convex nonde-
creasing function Θ : [0,+∞[→ [0,+∞[, with more than linear growth at
infinity, such that ∫ T

0

P

[∫
Rd

Θ(|bt|)dµt
]
dt < +∞.

Consider the functional on {(x, γ) ∈ Rd × ΓT |γ0 = x} defined by

Ψ(x, γ) = ψ(x) +

∫ T

0

Θ(| d
dt
γt|)dt.

It is a coercive functional. Indeed, given α > 0, if Ψ(x, γ) ≤ α, then:

• x = γ0 belongs to a compact set of Rd;

• the family d
dt
γ is uniformly integrable on [0, T ], so that the functions

γ’s are equicontinuous;

so, by Arzelà-Ascoli theorem, the set {Ψ ≤ α} is compact.
Tightness of (η̃ε := P [µ0 ⊗ Ñ ε])ε follows from the fact that

∫
Ψdη̃ε is

uniformly bounded:∫
Ψdη̃ε

=

∫
ψ(x)µ0(dx) +

∫ T

0

∫
Ω

∫
Rd

Θ(|b̃ω,εt (x)|)dµ̃ω,εt P (dω)dt

=

∫
ψ(x)µ0(dx) +

∫ T

0

∫
Ω

∫
Rd

Θ(|bω,εt (x)|)dµω,εt P (dω)dt

≤
∫
ψ(x)µ0(dx) + (1 + εM)

∫ T

0

P

[∫
Rd

(Θ(|bt(x)|)µt) ∗ ρεdx
]
dt
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≤
∫
ψ(x)µ0(dx) + (1 + εM)

∫ T

0

P

[∫
Rd

Θ(|bt(x)|)µt(dx)

]
dt (3.10)

We have used the inequality Θ(|bω,εt (x)|)dµω,εt ≤ (Θ(|bt(x)|)µt) ∗ ρε. It follows
by Jensen inequality applied to the convex l.s.c. function (t, z) 7→ tΘ(|z|/t)
and the measure ρε(x− ·)Ld.

By Crauel theory, the family of random measures (µ0 ⊗ Ñω,ε)ε converges
narrowly to a random measure, which can be written as µ0 ⊗ Ñω. Passing
to the limit in (3.9), we obtain

µ̃t =

∫
Rd

(πt)#Ñ
x,ωµ0(dx);

calling Nx,ω = (·+W (ω))#Ñ
x,ω, the previous equation reads

µt =

∫
Rd

(πt)#N
x,ωµ0(dx). (3.11)

We now verify adaptedness of N (that is of Ñ). Note this is equivalent to
show that, for every f in Cb(Rd), G in L1(Ω,GT , P ), ϕ in Cb(ΓT ) measurable
with respect to Ht, t in [0, T ], it holds∫

Rd

∫
Ω

f(x)G(ω)Nx,ω(ϕ)P (dω)µ0(dx)

=

∫
Rd

∫
Ω

f(x)P [G|Gt](ω)Nx,ω(ϕ)P (dω)µ0(dx).

Since this formula is true for N ε, it is enough to pass to the limit.
Step 3: η is concentrated on solutions of the SDE. We will prove that, for

every t in [0, T ],

Λ(b,N) :=

∫
Rd

∫
Ω

∫
ΓT

∣∣∣γt − x−Wt(ω)−
∫ t

0
b(γr)dr

∣∣∣
1 + max[0,T ] |γ|

Nx,ω(dγ)P (dω)µ0(dx) = 0.

To fix the ideas, suppose first b countinuous with compact support. Since
Λ(bε, N ε) = 0 by step 1, we have

Λ(b,N) ≤ |Λ(b,N)− Λ(b,N ε)|+ |Λ(b,N ε)− Λ(bε, N ε)|.

Now Λ(b,N) − Λ(b,N ε) goes to 0, by definition of narrow convergence of
measure, since, in this case, the integrand is in Cb(Rd × ΓT ;L1(Ω)). Also
Λ(bε, N ε)−Λ(b,N ε) goes to 0, using the triangle inequality and the uniform
convergence of b− bε towards 0 uniformly (since b is uniformly continuous).
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In the general case, we approximate b with continuous functions with
compact support; precisely, if c is such a function on Rd, it holds

Λ(b,N)

≤ |Λ(b,N)− Λ(c,N)|+ |Λ(c,N)− Λ(c,N ε)|+
+|Λ(c,N ε)− Λ(cε, N ε)|+ |Λ(cε, N ε)− Λ(bε, N ε)|.

As before, |Λ(c,N)− Λ(c,N ε)|+ |Λ(c,N ε)− Λ(cε, N ε)| goes to 0. We notice
that

|Λ(cε, N ε)− Λ(bε, N ε)| ≤
∫ t

0

∫
Rd
P [|cεr − bεr|dµεr] dr

and that the same holds without the ε’s. The RHS in the previous inequality
converges, as ε→ 0, towards∫ t

0

∫
Rd
|c− b|dνrdr,

where νt = P [µt]. Now it is enough to approximate b with functions cn in

L1(Rd,
∫ T

0
νrdr).



Chapter 4

Isotropic Brownian flows

4.1 Definition and properties

In this chapter we consider a special case of generalized flows. This kind of
flow is suitable for a rigorous description of certain simple models in fluid
dynamics (essentially for turbulence), where splitting and/or coalescence oc-
cur. Again, we follow [16] for the generalized case, while we refer to [4] and
[15] for the classical regular results.

Definition 49. A generalized isotropic Brownian flow (IBF) is a generalized
flow which solves an SCE with b ≡ 0 and K isotropic Brownian covariance,
i.e.:

1. K(x, x) = id for every x in Rd;

2. K omogeneous (invariant under translation): K(x, y) = K(x − y) for
every x, y in Rd;

3. K invariant under rotation: G∗K(Gx,Gy)G = K(x, y) for every x, y
in Rd.

Proposition 50. A measurable isotropic covariance K can be written as

K(z) = (KL(|z|)−KN(|z|))zz
∗

|z|2
+KN(|z|)Id, (4.1)

where

KL(r) = Kpp(rep),

KN(r) = Kpp(req), p 6= q.

KL and KN do not depend on the choise of the basis (en)n of Rd.

33
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Theorem 51. There exist isotropic Brownian flows of diffeomorphisms. Ev-
ery regular IBF Φ is characterized by the following properties (besides regu-
larity):

1. Φ(x) is a Brownian motion starting from x;

2. the law of Φ is omogeneous;

3. the law of Φ is invariant under rotation.

Furthermore, for every x, y in Rd, the process dist(Φ(x),Φ(y)) is a diffusion
with drift b and diffusion coefficient σ given by

b(r) = (d− 1)
1−KN(r)

r
, (4.2)

σ(r)2 = 2(1−KL(r)). (4.3)

We will prove a similar result also for generalized IBFs.

Theorem 52. A generalized IBF enjoys the following properties:

1. every one-point motion is a Brownian motion;

2. the law of every two-point motion at fixed time is omogeneous;

3. the law of every two-point motion at fixed time is invariant under ro-
tation;

4. for every two-point motion (X, Y ), the process dist(X, Y ) is a diffusion
with drift and diffusion coefficient given by the above formulas.

Proof. The first statement follows from the fact that the infinitesimal gener-
ator of the one-point motion is 1

2
∆, since K(x, x) = id.

The second and the third statement can be proven using the Wiener chaos
expansion of the generalized flow S: indeed, for every ϕ, ψ regular functions
in L2(Rd), it holds

P [Sn+1
t ϕ⊗ Sn+1

t ψ] = Ptϕ⊗ Ptψ +

∫ t

0

P [Snr ⊗ Snr (K(Pt−rϕ, Pt−rψ))]dr,

so one proves inductively that the law of Snt ⊗ Snt depends only on K; with
similar computations we get that the law of Sn⊗Sn depends only on K, and
the conclusion follows passing to the limit.

As for the fourth statement, we apply (2.25) first to the process dist(X, Y )2

(which is in the domain of the infinitesimal generator of the two-point mo-
tion) and then to its square root; in this way we get that dist(X, Y ) satisfies
an SDE with b and σ as required.
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In Chapter 2 we have seen some criteria, based on the two-point motion,
to determine the nature of a generalized flow. Now we can apply these results,
because the two-point motion dist(X, Y ) is a diffusion. Indeed, we will see
in the next section that there are two tools which characterize the behaviour
of dist(X, Y ) near 0.

4.2 Singular one-dimensional diffusions

Let Z be a diffusion with an interval I as state space, let l, r be the two
(possibly non-finite) extrema of I; for y in I, call Ty the time when Z first
reach y; for J = [c, d] interval in I, x in J , call m(x, J) = P x[min{Tc, Td}].
We want to analyze the behaviour of the diffusion near c. The following
results are in [6].

Theorem 53. There exists a continuous, strictly increasing function s : I →
R, unique up to a linear transformation, such that, for every c, d, x in I with
c < x < d,

P x{Td < Tc} =
s(x)− s(c)
s(d)− s(c)

. (4.4)

Proof. Uniqueness of s is clear. As for existence, suppose first I = [l, r]. In
this case the thesis follows from

P x{Tr < Tl} = P x{Td < Tc}P d{Tr < Tl}+ P x{Td > Tc}P c{Tr < Tl},

which is a consequence of the strong Markov property. The general case can
be obtained by approximation of l, r.

Definition 54. The function s is called the scale function of Z.

Let J be an interval in
∫

(I); define GJ as

GJ(x, y) =
2(s(x ∧ y)− s(c))(s(d)− s(c ∨ y))

s(d)− s(c)

if x, y in J , GJ = 0 otherwise.

Theorem 55. There exists a unique Radon measure on int(I) such that, for
every interval J =]c, d[ with J̄ in I and every x in J , it holds

m(x, J) =

∫
I

GJ(x, y)m(dy). (4.5)
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This measure m (or better m(dx)/dx) represents in some sense the aver-
age speed of the process Z. This explains the folllowing definition.

Definition 56. The measure m is called the speed measure of Z.

Definition 57. The point c is said to be open if c does not belong to I, closed
otherwise.

Definition 58. If c is open, c is said to be natural if, for every x in int(I)
and every t > 0,

lim
y→c

P y[Tx < t] = 0;

otherwise, c is said to be entrance.

Definition 59. If c is closed, c is said to be exit if, for every x in int(I),

m(]c, x[) = +∞;

otherwise, c is said to be regular.

Proposition 60. Suppose c closed. It is possible to extend m on [c, d[ such
that (4.5) remains true for J = [c, g[ in I.

Definition 61. If c is closed regular, c is said to be:

• absorbing: if m{c} = +∞;

• slowly reflecting: if 0 < m{c} < +∞;

• instantaneously reflecting: if m{c} = 0.

Proposition 62. The point c is closed if and only if, for every x in int(I),∫ x

c

|s(y)− s(c)|m(dy) < +∞.

Proposition 63. If c is open, c is entrance if and only if s(c) is infinite and,
for every x in int(I), ∫ x

c

|s(y)|m(dy) < +∞.

Proposition 64. If c is exit closed, then it holds, for every x > c and t > 0,

P c[Tx < t] = 0.
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Proposition 65. Let Z be a diffusion on I with infinitesimal generator

Lϕ = bϕ′ +
1

2
σ2ϕ′′.

Then the following formulas hold for s and m on I (x0 is a point in I):

s(x) =

∫ x

x0

exp

(
−
∫ y

x0

2b(z)

σ(z)2
dz

)
dy, (4.6)

m(dx) =
2

s′(x)σ(x)2
dx. (4.7)

4.3 Classification of generalized IBFs

Now we come back to our diffusion dist(X, Y ), the two-point motion of a
generalized IBF starting from (x, y); here the space state is the interval with
extrema 0 and +∞. The previous propositions allow us to study its behaviour
by means of b and σ and so by means of K. So we suppose:

b(r) = cbr
α−1(1 + o(1)), (4.8)

σ(r)2 = 2cσr
α(1 + o(1)). (4.9)

for some α, cb, cσ positive real numbers. This means that

KL(r) = 1− cσrα(1 + o(1)), (4.10)

KN(r) = 1− cb
d− 1

rα(1 + o(1)). (4.11)

Proposition 66. The following facts hold.

1. The point 0 is closed if and only if hitting occurs.

2. If 0 is natural open, then the flow is an injective flow of maps.

3. If 0 is entrance open, then the flow is diffusive without hitting.

4. If 0 is exit closed, then the flow is a coalescent flow of maps.

5. If 0 is instantaneously reflecting regular closed, then the flow is diffusive
with hitting.

Proof. The first statement is clear from the definition of closed point.
Suppose 0 is natural open. Then, for every t > 0, r > 0, we have

lim
y→x

P{dist(Xt, Yt) ≥ r} = 0,
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so that the flow is of maps by Proposition 37; it is injective since 0 is open.
Suppose 0 is entrance open. Then there esist t > 0, r > 0, p > 0 such

that, for every distinct points x, y in Rd,

P{dist(Xt, Yt) ≥ r} ≥ p,

so that the flow is not of maps by Proposition 38; it is without hitting since
0 is open.

Suppose 0 exit closed. Then, if x = y, by Proposition 64 it must be
Xt = Yt, so that the flow is of maps; it is coalescent since 0 is closed.

The last stetement follow from the definition of instantaneously reflecting
regular closed point.

Proposition 67. The following facts hold.

1. If α > 2, then 0 is natural open and so the flow is an injective flow of
maps.

2. If α < 2 and cb
cσ
> 1, then 0 is entrance open and so the flow is splitting

without hitting.

3. If α < 2 and α− 1 < cb
cσ
< 1, then 0 is regular closed.

4. If α < 2 and cb
cσ
< α − 1, then 0 is exit closed and so the flow is a

coalescent flow of maps.

Proof. With some computations, using (4.7) and (4.7).

It remains to analyze the case α < 2, α−1 < cb
cσ
< 1, where we know that

hitting must occur but we still have to check if 0 is absorbing or reflecting.
Here b and σ do not give any information on m{0}.

4.4 Interpretation of the results

In this section we analyze the intuitive meaning of the parameters and the
results obtained, making use of a concrete example.

First, we note that the infinitesimal convariance K can be interpreted as
the correlation function of a “generating” random field U . Precisely,

K(x, y) = P [U(x)U(y)], (4.12)

where U(x) =
∑

k σk(x)Bk and (Bk)k is a sequence of independent Rd-valued
N (0, Id) r.v.’s. The field U is generating in the following sense. Take (Un)n
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a sequence of indepenent r.v.’s with the same law as U ; for j positive in-
teger, take Xj(x) the flow, with 1

j
N as time set, defined by Xj

0(x, ω) = x,

Xj
(n+1)/j(x, ω) = 1√

j
Un+1(Xj

n/j(x, ω), ω). The intuitive idea is that, as j goes

to +∞, X converge in law to the (generalized) flow S; so U is a sort of
velocity with a different rescaling of space and time in the approximation.

Thus α is related to the correlation of the random field U : if α is close
to 0, then U(x) and U(y) have low correlation even if they are closed each
other.

To introduce our examples, we need reproducing kernel Hilbert spaces.
Denote with L the linear bounded operator on L2(Rd)d given by

LU(x) =

∫
Rd
K(x− y)U(y)dy. (4.13)

Let H0 be the image of L2(Rd)d under L; let H be the complection of H0

with respect to the scalar product

〈LU,LV 〉H =

∫
Rd

∫
Rd
V (x)·K(x−y)U(y)dxdy =

∫
Rd
V (x)·LU(x)dx. (4.14)

Note that ‖LU‖H ≤ ‖U‖L2 (so H is separable) and ‖LU‖L2 ≤ ‖LU‖H . Take
(σk)k∈N+ a basis in H.

Definition 68. H is called the reproducing kernel Hilbert space associated
to K.

Proposition 69. It holds K(x−y) =
∑

k σk(x)σk(y)∗ (in the sense that, for
every y the sum converges in H as a function of x).

Proof. It is enough to observe that, for every U, V in L2(Rd)d,∫
Rd

∫
Rd
V (x) ·

∑
k

σk(x)σk(y)∗U(y)dxdy

=
∑
k

(〈σk, LU〉H)(〈σk, LV 〉H) =

∫
Rd

∫
Rd
V (x) ·K(x− y)U(y)dxdy.

A similar reasoning can be done for a general L2(R2d) covariance function.
Now consider the Fourier representation of L:

L̂U(ξ) = K̂(ξ)Û(ξ). (4.15)
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In our case, this will allow to identify the space H. Indeed, take the covari-
ance K with the following Fourier transform:

K̂(ξ) = c(|ξ|2 + 1)−(d+α)/2

(
a
ξ ⊗ ξ
|ξ|2

+
b

d− 1

(
Id −

ξ ⊗ ξ
|ξ|2

))
, (4.16)

where a, b > 0. It is well known that the Fourier representation of the
Laplacian operator is the multiplication by the function −|ξ|2. For the other
term, we use the following result.

Proposition 70. The space L2(Rd)2 can be decomposed in an orthogonal sum
of the spaces of gradient and divergence-free vector fields. If Π is the projec-
tion on the space of gradient vector fields, then the Fourier representation of

Π is the operator Û → ξ·Û(ξ)
|ξ|2 ξ.

Proof. The orthogonality of the two spaces follows from the formula 〈V,∇ψ〉L2 =
〈divV, ψ〉L2 . As for completeness, let U be a W 1,2(Rd) vector field. Let ϕ
be the unique W 2,2(Rd) solution to the problem ∆ϕ = divU ; then clearly
U − ∇ϕ is divergence-free, so U = (∇ϕ) + (U − ∇ϕ) is the decomposition
required.

Since the Fourier representations of ∂j and of ∆−1 are resp. the multiplica-
tion by iξj and the multiplication by −1/|ξ|2, then Π admits the representa-
tion above. Finally Π is bounded because so is its Fourier representation.

Then (−∆ + 1)(d+α)/2LU = aΠU + b
d−1

(1− Π)U and so

‖LU‖2
H = 〈U,LU〉L2

=
1

a
〈aΠU,ΠLU〉L2 +

d− 1

b
〈 b

d− 1
(1− Π)U, (1− Π)LU〉L2

=
1

a
〈(−∆ + 1)(d+α)/2ΠLU,ΠLU〉L2 +

+
d− 1

b
〈(−∆ + 1)(d+α)/2(1− Π)LU, (1− Π)LU〉L2 . (4.17)

Thus the space H is the Sobolev space W s,2(Rd)d, where s = (d + α)/2,
equipped with the norm ‖V ‖2

H = 1
a
‖ΠV ‖2

W s,2 + d−1
b
‖(1 − Π)V ‖2

W s,2 , where
‖V ‖W s,2 = 〈(−∆ + 1)(d+α)/2V, V 〉L2 is the usual Sobolev norm.

The parameter η = b
a+b

measures the “grade of compressibility” of the
RKHS H. Indeed, given an element V of fixed H norm, the smaller is η, the
smaller will be the zero-divergence component (1− Π)V . Since the σk’s are
in H, η is an indicator of the compressibility of the generating random field
U and α an indicator of its regularity.
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Expression (4.16) for K̂ allows to compute the behaviour of KL and KN

near 0. It can be proved the following representation in spherical coordinates:

K̂(ξ) = u⊗ uλ(du)(FL − FN)(dρ) + Idλ(du)FN(dρ), (4.18)

where (ρ, u) = (|ξ|, ξ/|ξ|), λ is the normalized Lebesgue measure on Sd−1, FL
and FN are positive measures on [0,+∞[ with all finite moments. Given such
measures, one can produce any isotropic covariance K with known formulas.
Finally, with some real analysis, one gets that

cb = Cα,η(d− 1 + αη),

cσ = Cα,η(α + 1− αη),

so that
cb
cσ

=
d− 1 + αη

α + 1− αη
. (4.19)

Fixed α, this ratio is an increasing function of η; thus, fixed α, cb/cσ can be
seen as a parameter for the compressibility.

Now we can obtain a classification result for this example:

Theorem 71. The following facts hold.

1. If α > 2, then the flow is an injective flow of maps.

2. If α < 2 and η > 1
2
− d−2

2α
, then the flow is splitting without hitting.

3. If α < 2 and 1 − d
α2 < η < 1

2
− d−2

2α
, then the flow is splitting with

hitting.

4. If α < 2 and η < 1− d
α2 , then the flow is a coalescent flow of maps.

Note that, for α < 2 and d ≥ 4, the flow is always splitting without
hitting.

Proof. For the cases 1,2 and 4, it is enough to apply Propositions 67, using
(4.19) for cb/cσ. In the case 3, a rahter technical approximation method
can be used to show that 0 is instantaneously reflecting for the diffusion
dist(X, Y ), so that the flow is splitting; it is coalescent since 0 is closed.

Roughly speaking, this theorem tells that, if α < 2,

• the increase of α brings less splitting for d = 2, 3 and more coalescence
for d = 3;

• the increase of η brings more splitting for d = 2, 3 and less coalescence
for d = 2, 3;
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• the increase of d brings more splitting and less coalescence.

This facts can be understood as follows.

• If the motions of two points x and y are very uncorrelated (i.e. if α
is small), then, in the limit x = y, the mass initially at x cannot stay
together in one point, causing splitting.

• The increase of compressibility (i.e. the decrease of η) brings the mass
to be “compressed” and stay concentrated, causing coalescence and
preventing splitting.

• The increase of the dimension d brings more degrees of freedom, so that
the mass can easily split and rarely come back together.

We must say this explanation is not complete: for example, one can
expect that, in the gradient case U = ∇ψ, there is splitting around the points
wherethe minimum of ψ is reached, but this does not happen. Furthermore,
we do not know for instance if a mass concentrated in a point splits in
countably many parts or if it spreads over a whole region. Thus, generalized
IBFs require more investigation.



Appendix A: preliminary
results

Here we recall some preliminaries; one can find these classical results on [14],
[18].

Definition 72. A stochastic process (with values in a measurable space (E, E))
the object

X = (Ω,A, (Gt)t∈[α,β], (Xt)t∈T , P ) (4.20)

with (Ω,A, P ) probability space, (Gt)t∈[α,β] filtration (i.e. family of increasing
σ-algebras) in A and, for every t in [α, β], Xt r.v. (Ω,Gt)-measurable with
values in (E, E).

We will always consider completed right-continuous filtrations (i.e. G0

contains all the P -null sets and, for all t, Gt = ∩ε>0Gt+ε). We will also
suppose E metric space and E = B(E).

A process X is said to be progressively measurable if, for every u, the
map (t, ω) 7→ Xt(ω) is measurable on ([0, u]×Ω,B([0, u])⊗Fu). X is said to
be continuous if, for every (or a.e.) ω in Ω, the map t 7→ Xt(ω) is conitnuous.
A right-continuous process is progressively measurable.

Definition 73. A real Brownian motion (BM) is a stochastic process B =
(Ω, (Ft)t≥0, (Bt)t≥0, P ) such that:

1. B(0) = 0;

2. for every 0 ≤ s ≤ t, the r.v. Bt −Bs is independent of Fs;

3. for every 0 ≤ s ≤ t, the r.v. Bt − Bs has law N(0, (t − s)) (where
N(m, a) is the Gaussian law with mean value m e covariance a);

4. B has continuous trajectories.

A cylindrical Brownian motion is a stochastic process W = (Ω, (Ft)t≥0, (Wt)t≥0, P ),
with Wt = (W k

t )k∈N+ RN+
-valued, such that the coordinates Bk’s are indepen-

dent and real Brownian motions (with respect to (F)).

43
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Theorem 74. There exists a cylindrical Brownian motion.

Definition 75. A martingale is an Rd-valued stochastic process M =
(Ω, (Gt)t, (Mt)t, P ) such that, for every s <, Mt is integrable and P [Mt|Gs] =
Ms.

A local martingale is an Rd-valued stochastic process M = (Ω, (Gt)t, (Mt)t, P )
such that there exists an increasing sequence of stopping times (τn)n, with
τn ↗ +∞ as n→∞, such that M τn := (Mt∧τn)t is a martingale for all n.

A semimartingale is the sum of a local martingale and a process with
bounded total variation (i.e. whose trajectories have bounded total variation).

Definition 76. Let X, Y be Rd-valued processes. For every partition ∆ =
{0 = t0 < t1 < . . . < tl = T} define

[X, Y ]∆t :=
l−1∑
j=0

(X(tj+1 ∧ t)−X(tj ∧ t))(Y (tj+1 ∧ t)− Y (tj ∧ t))∗

The joint quadratic variation of X and Y , if it exists, is the process [X, Y ]
such that, for every t, [X, Y ]t = P - lim‖∆‖→0[X, Y ]∆t (limit in probability).
The quadratic variation of X is the process [X] = [X,X].

Theorem 77 (Doob-Meyer). Let M,N be two continuous real (local) mar-
tingales with filtration (Gt)t. Then there exists a unique increasing continuous
process A, with A0 = 0, such that MN − A is a (local) martingale. It holds
A = [M,N ].

Theorem 78 (Lévy). The cylindrical Brownian motion W is the only infinite-
dimentional process starting from 0 such that its coordinates W k’s are con-
tinuous square-integrable martingales with [W h,W k] = δhk for every h, k.

In the following, H is a separable Hilbert space with · as scalar product;
if H = Rd, · denotes the canonical scalar product. We define `2(H)⊗n as the
set of multi-sequences (ak)k∈(N+)n , indexed by (N+)n, with values in H, such
that

∑
k ‖ak‖2

H < +∞. `2(H)⊗n is a Hilbert space with the scalar product
〈a, b〉`2 =

∑
k(ak · bk).

We fix a cilindrical Brownain motion W on a probability space (Ω,A, P ),
we call (Ft)t the natural completed Brownian filtration. We also fix (Gt)t a
W -filtration (i.e. Gt ⊇ Ft).

Definition 79. Fix T > 0. A process in Λp(H) is a process with values in
`2(H), progressively measurable with respect to (Gt)t, such that, for P -a.e. ω,∫ T

0
‖Xr(ω)‖p`2dr < +∞. Such a process is in Mp(H) if P [

∫ T
0
‖Xr‖p`2dr] <

+∞. Sometimes we will use the same notation for a process with value in H
(not in `2(H)).
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Definition 80. A process in Λ2(Rd) is elementary if Xk’s are definitively
null and X(t) =

∑n−1
j=0 Z

j1[tj ,tj+1](t), with 0 = t0 < t1 < . . . < tn = T , where

Zj is a Gtj -measurable r.v. with values in `2(Rd) for every j (since the Xk’s

are definitively null in k, so are the Zj
k’s).

We define stochastic integral of X with respect to W the r.v.∫ T

0

XrdWr =
n−1∑
j=0

〈Zj,W (tj+1)−W (tk)〉`2 . (4.21)

Proposition 81. A process X in Λ2(Rd) (resp. in M2(H)) can be approx-
imated by processes (Xn)n in Λ2(Rd) (resp. in M2(H)), in such a way that

there exists the limit in probability (resp. in L2) of (
∫ T

0
Xn
r dWr)n, and does

not depend on the choise of the approximated sequence (Xn)n.

Definition 82. The above limit is called stochastic integral of X with respect
ot W and is denoted by

∫ T
0
XrdWr.

Definition 83. Given a process X in M2(H), we define the stochastic inte-
gral of X with respect to W by∫ T

0

XrdWr =
∑
n

∫ T

0

Xr · endWr, (4.22)

where (en)n is a basis of H (one can prove that the definition is independent
of the choise of the basis).

Theorem 84. Given X, Y in Λ2(R), the process (I(X)t =
∫ t

0
XrdWr)t is

(up to modifications) a continuous G-local martingale. The joint quadratic
variation [I(X), I(Y )] is given by

[I(X), I(Y )]t =

∫ t

0

〈Xr, Yr〉`2dr. (4.23)

In particular, if X is in M2(R), I(X) is a continuous square-integrable G-
martingale which satisfies the Ito isometry

P [I(X)2
t ] =

∫ t

0

P [‖Xr‖2
`2 ]dr. (4.24)

Given X in M2(H), the H-valued process (I(X)t =
∫ t

0
XrdWr)t is a weakly

continuous square-integrable G-martingale which satisfies the Ito isometry

P [‖I(X)‖2
t ] =

∫ t

0

P [‖Xr‖2
`2(H)]dr. (4.25)
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Definition 85. We say that a process X with values in Rd admits stochastic
differential if dXt = Ftdt+GtdWt, with G in Λ1(Rd) and G in Λ2(Rd), if it
holds

Xt = X0 +

∫ t

0

Frdr +

∫ t

0

GrdWr. (4.26)

Theorem 86 (Ito formula). Let X be a process as above and ϕ a function
in C2(Rd). Then the process ϕ(X) admits stochastic differential

d(ϕ(X))t (4.27)

= Ft · ∇ϕ(Xt)dt+ (Gk)t · ∇ϕ(Xt)dW
k
t +

1

2
tr[(Gk)t(Gk)

∗
t (D

2ϕ)(Xt)]dt

(the sum over k being omitted).

More in general, one can define an integral with respect to a martingale
M . In this case we have

Theorem 87 (Ito formula). Let X be a Rd process with dXt = Ftdt+dMt and
ϕ a function in C2(Rd). Then the process ϕ(X) admits stochastic differential

d(ϕ(X))t

= Ft · ∇ϕ(Xt)dt+∇ϕ(Xt) · dMt +
1

2
tr[(D2ϕ)(Xt)d[M,M ]t]. (4.28)

Definition 88. A weak solution of the stochastic differential equation (SDE)

dXt = b(Xt, t)dt+
∑
k

σk(Xt, t)dW
k
t (4.29)

is a pair of stochastic processes (Ω, (Gt)t, (Wt)t(Xt)t, P ), where W is a Brow-
nian motion with respect to G, the processes (b(Xt, t))t, (σ(Xt, t))t are in
Λ1([0, T ]), Λ2([0, T ]) resp. and, for every t, it holds

Xt = X0 +

∫ t

0

b(Xr, r)dr +
∑
k

∫ t

0

σk(Xr, r)dW
k
r .

b and σ are called resp. drift and diffusion coefficient.

Definition 89. A weak solution is a strong solution if X is adapted to the
Brownian completed filtration (Ft)t.

Definition 90. The SDE has strong uniqueness if every two weak solutions
of the SDE with the same initial datum coincide.
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In the following, (Fs,t)0≤s≤t will be a double-indices filtration, that is a
family of σ-algebras with Fs,t ⊆ Fs′,t′ for every 0 ≤ s′ ≤ s ≤ t ≤ t′.

Definition 91. A stochastic flow of Ck-diffeomorphisms is a measurable map
Φ : {(s, t)|0 ≤ s ≤ t ≤ T}×Rd×Ω→ Rd such that, for every s and x in Rd,
the process (Φ(s, t, x, ·))t∈[s,T ] is adapted to (Fs,t)t∈[s,T ] and, for P -a.e. ω in
Ω the following properties hold:

1. for every 0 ≤ s ≤ t ≤ u ≤ T , we have Φ(s, u, ·, ω) = Φ(t, u, ·, ω) ◦
Φ(s, t, ·, ω);

2. for every s in [0, T ], we have Φ(s, s, ·, ω) = idRd;

3. for every 0 ≤ s ≤ t ≤ T , Φ(s, t, ·, ω) is a Ck-diffeomorphism of Rd;

4. for every h in Nd with supi hi ≤ k, DhΦ(·, ·, ·, ω) is continuous.

Definition 92. A stochastic flow Φ of diffeomorphisms is a weak (resp.
strong) solution of an SDE if, for all s in [0, T ] and x in Rd, (Φ(s, t, x, ·))t∈[s,T ]

is a weak (resp. strong) solution of the SDE with initial datum x and initial
time s.

Theorem 93. Suppose b and σ bounded and smooth functions (with values
resp. in Rd and `2(Rd)). Then, for every initial datum x in Rd, the SDE has
strong existence and strong uniqueness. Furthermore there exists a (unique)
stochastic flow of diffeomorphisms which is a strong solution to the SDE.

Definition 94. Let (Pt)t be a semigroup on L2(Rd). A process (Ω, (Gt)t, X, P )
is said to be Markov associated to (Pt)t if, for every s, t and every f in L2(Rd),
P [f(Xt+s)|Gt] = Psf(Xt).

Proposition 95. In the regular case, every stochastic flow solution of an
SDE is a family of Markov processes.



Appendix B: technical results

4.5 Dirichlet forms

The following exposition is mainly adapted from [7] and [19].

Definition 96. We are given a measure space (X,A,m), with m σ-finite.
A functional space on X is a subspace H of L2(X,A,m), which is an Hilbert
space with a scalar product 〈·, ·〉H , such that f ∧ 1 is in H for every f in H
and the injection of H in L2 is continuous.

Definition 97. A Dirichlet space is a pair (E , H), where

• H is a functional space on L2(X,A,m).

• E is a bilinear form on H;

• there exists α in R suhc that E + α〈·, ·〉 is coercive and continuous in
H;

• for every ϕ in H, c > 0, it holds E(ϕ ∧ c, [ϕ− c]+) ≥ 0.

Definition 98. Now suppose X a topological locally compact a base numer-
abile space, with Borel σ-algebra A = B(X). A Dirichlet space (E , H) is
called:

• regular: if Cc(X) ∩H is dense both in Cc and in H;

• local: if, for every ϕ, ψ in H with disjoint supports, E(ϕ, ψ) = 0.

We will always deal with regular local Dirichlet forms.

Definition 99. A semigroup (Pt)t on L2(X) is sub-Markovian if, for every
f in L2 with 0 ≤ f ≤ 1, it holds 0 ≤ Ptf ≤ 1. It is Markovian if it is
sub-Markovian and conservative (i.e. Pt1 = 1).

The conservative condition makes sense also if m is not finite, because Pt
can be extended to positive functions by the sub-Markovian condition.

48
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Definition 100. Let A be an unbounded operator on L2(X), with domain
D(A). We say that (E , H) is associated with A if D(A) is contained in H
and, for every ϕ in D(A), ψ in H, E(ϕ, ψ) = 〈−Aϕ,ψ〉.

Theorem 101. Let (E , H) a regular Dirichlet form. Then there exists a
unique sub-Markovian semigroup (Pt)t with infinitesimal generator A associ-
ated to (E , H). Besides, for every t > 0, Pt maps L2 into D(A).

Proposition 102. Suppose that the dual form E is a (regular) Dirichlet form.
Then (Pt)t extends to a family of L1 operators with norms ‖Pt‖L1 ≤ 1.

Theorem 103. Let (E , H) and (Pt)t as above. Suppose local and conservative
conditions. Then there exist a Markov process associated to (Pt)t and with
state space a set G with Ld(Gc) = 0.

In many cases (if not all), this process is continuous.

Proposition 104. Let A be the differential operator defined on D(A) =
W 2,2(Rd) by

Aϕ =
1

2
tr(aD2ϕ) + b · ∇ϕ+ cϕ. (4.30)

Suppose: a is a field of symmetric matrices, uniformly continuous, buonded,
unformly elliptic (v ·av ≥ ν|v| for every v in Rd); b is a bounded vector field;
c is a bounded measurable function with c ≤ 0. For ϕ in W 2,2(Rd), ψ in
W 1,2(Rd), define

E(ϕ, ψ) = 〈−Aϕ,ψ〉. (4.31)

Then the natural extension of E to H = W 1,2(Rd) gives a regular local Dirich-
let form. Furthermore, if c = 0, the associated semigroup is Markovian; if
c− divb ≤ 0 (in distributional sense), the dual form is a Dirichlet form.

Many results about semigroups can be applied also to generators A such
that A−λI is associated to a Dirichlet form for some real λ: indeed, if (Qt)t
is the semigroup with generator A− λI, then (Pt = eλtQt)t is the semigropu
with generator A.

4.6 Convergence of (random) measures

The following results are classical or taken from [8].

Theorem 105 (Prokhorov). Let E be a Polish space. A sequence of measures
(µn)n on E is tight (i.e., for every ε > 0, there exists a compact set Kε

such that, for every n, µn(Kc
ε ) < ε) if and only if, possibly passing to a

subsequence, µn converges weakly to a measure µ on E (i.e., for every f in
Cb(E), µn[f ] tends to µ[f ]).
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Proposition 106. A sequence (µn)n is tight if and only if there exists a
coercive positive functional Ψ on E which verifies µn[Ψ] ≤ C for every n.

Definition 107. Given a Polish space E, a random measure on E is a family
of probability measures on E (µω)ω, parametrized by ω in Ω, such that, for
every f in Cb(E), the function µ[f ] is a r.v. on (ΩA, P ).

Definition 108. We say that a sequance of random measures (µn)n con-
verges towards a random measure µ if, for every f in Cb(E) and Z in L1(Ω),
(P [Zµn[f ]])n tends to P [Zµ[f ]].

This implies the convergence of
∫

Ω
µωn(F (·, ω))P (dω) to

∫
Ω
µω(F (·, ω))P (dω)

for every F in Cb(E;L1(Ω)).

Theorem 109. Let (Xn)n be a sequence of r.v.’s, with values in a Polish
space E, call ρn the law of Xn, n positive integer. Suppose (ρn) is tight. Then,
possibly passing to a subsequence, the random measures (δXn(ω))ω converges
to a random measure µ, with P [µ] = ρ, where ρ is a limit point of (ρn)n.

4.7 Proof of Lemma 14

Proof. For n ∈ N+, we take h = t
n
, ti = ih, i = 0, ...n; then we write

〈ut, φt〉 − 〈u0, φ0〉 −
∫ t

0

〈ur, A∗φr〉dr −
∫ t

0

〈ur,
∂φr
∂r
〉dr =

=
n∑
i=1

〈uti , φti〉 − 〈uti−1
, φti−1

〉 −
∫ ti

ti−1

〈ur, A∗φr〉dr −
∫ ti

ti−1

〈ur,
∂φr
∂r
〉dr,

so that it is enough to show 〈uti , φti〉 − 〈uti−1
, φti−1

〉 −
∫ ti
ti−1
〈ur, A∗φr〉dr −∫ ti

ti−1
〈ur, ∂φr∂r 〉dr = o(h) uniformly in i as h→ 0.

Using equation (1.11) for u and identity φti −φti−1
=
∫ ti
ti−1

∂φr
∂t
dr, we have

〈uti , φti〉 − 〈uti−1
, φti−1

〉 −
∫ ti

ti−1

〈ur, A∗φr〉dr −
∫ ti

ti−1

〈ur,
∂φr
∂r
〉dr =

=

∫ ti

ti−1

〈uti − ur,
∂φr
∂t
〉dr +

∫ ti

ti−1

〈ur, A∗(φr − φti−1
)〉dr

For the first integral, using Hölder inequality and
∫ s
ti−1
‖∂φr
∂t
‖dr ≤ (s −

ti−1)‖∂φ
∂t
‖, we have∣∣∣∣∫ ti

ti−1

〈uti − ur,
∂φr
∂t
〉dr
∣∣∣∣ =

∣∣∣∣∫ ti

ti−1

∫ ti

r

〈us, A∗
∂φr
∂t
〉dsdr

∣∣∣∣ ≤
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≤
∫ ti

ti−1

∫ ti

r

‖us‖‖A∗‖‖
∂φr
∂t
‖dsdr =

∫ ti

ti−1

‖us‖‖A∗‖
(∫ s

ti−1

‖∂φr
∂t
‖dr
)
ds ≤

≤ C

∫ ti

ti−1

(s− ti−1)‖us‖ds ≤ C

(∫ ti

ti−1

‖ur‖2dr

)1/2(∫ ti

ti−1

(r − ti−1)2dr

)1/2

≤

≤ Ch3/2

(∫ T

0

‖ur‖2dr

)1/2

.

For the second integral, using Hölder inequality and ‖φr − φti−1
‖ ≤ (r −

ti−1)‖∂φ
∂t
‖, we have∣∣∣∣∫ ti

ti−1

〈ur, A∗(φr − φti−1
)〉dr

∣∣∣∣ ≤ ∫ ti

ti−1

‖ur‖‖A∗‖‖φr − φti−1
‖dr ≤

≤ C

∫ ti

ti−1

(r − ti−1)‖ur‖dr ≤ C

(∫ ti

ti−1

‖ur‖2dr

)1/2(∫ ti

ti−1

(r − ti−1)2dr

)1/2

≤

≤ Ch3/2

(∫ T

0

‖ur‖2dr

)1/2

.

So it holds 〈uti , φti〉− 〈uti−1
, φti−1

〉−
∫ ti
ti−1
〈ur, A∗φr〉dr−

∫ ti
ti−1
〈ur, ∂φr∂r 〉dr =

o(h) uniformly in i and we are done.
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