
Università di Pisa

Facoltà di Scienze Matematiche Fisiche e Naturali
Corso di Laurea Specialistica in Informatica

Tesi di Laurea

Secure multi-party contracts for web-services

Davide Basile

Relatori:
Prof. Pierpaolo Degano, Prof. Gian Luigi Ferrari

Controrelatore:
Prof. Giorgio Levi

Anno Accademico 2010/2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14702437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 2

2 Contracts 4

3 Call-by-contract and secure service orchestration with λreq 5
3.1 λreq expressions . 7
3.2 History expression . 9
3.3 Type and effect system and planning 9
3.4 Networks . 11

4 Getting into the problem 13
4.1 Input/Output actions . 13
4.2 Sessions . 15
4.3 Internal and external choice 16
4.4 Dual actions . 19
4.5 Validating a contract . 22
4.6 Types and contracts . 23

5 Writing contracts in λreq 23
5.1 Labeling contracts . 23
5.2 Balancing contracts . 26

6 From σb to λreq 29
6.1 On design the client specifications for a contract 29
6.2 On design the Server specifications for a contract 33

7 Validation 40
7.1 Subcontract . 45
7.2 Multi-Party . 46

8 Conclusions 51
Bibliografia52

1

Secure multi-party contracts for web-services

Davide Basile
Corso di laurea specialistica in Informatica , Università di Pisa

relatori : Prof. Pierpaolo Degano, Prof. Gian Luigi Ferrari
Dipartimento di Informatica, Università di Pisa, Italy

Abstract

We consider two complementary formal approaches for describing
services and their interactive behaviour.

The first approach is based on the notion of contracts. Contracts
are CCS-like processes that contain a description of the external ob-
servable behavior of a service. A notion of compliance has been intro-
duced allowing to check whether the interaction between two parties
terminate or gets stuck. The second proposal is based on λreq , a core
calculus for services, with primitives for expressing security policies
and for composing services in a call-by-contract fashion. In the dis-
sertation we express CCS contracts via λreq expressions and we prove
that the proposed transformation preserves compliance of contracts,
by exploiting the security mechanism of λreq .

The transformation enjoys further properties. Multi-party and se-
cure contracts are naturally handled. Moreover, the resulting notion
of compliance is compositional: one can substitute a service with an
equivalent one without breaking the security of the composition.

1 Introduction

In Service-Oriented Computing the applications are built by combining dif-
ferent distributed components, called services. Standard communication pro-
tocols are used for the interaction between the parties. Service composition
depends on which information about the services is made public. Service can

2

be discovered according to that information. Security issues can make more
complex service composition, since a service can impose constraints on the
interactions it can hold; the most common example of the SOC paradigm is
Web Services [4], whose languages for the description of their behavior and
interactions are WSDL WSCL WSBPEL [5] .
In this paper we take two different paradigms for describe a service. On
the one hand there are contracts which are CCS processes [6] that contain a
description of the external observable behavior of a service. Contracts can
describe if the interaction between two parties terminate or gets stuck, with
a mechanism for replacing one service with a more general one. On the other
hand we have λreq [2] [7] which is a core calculus for services that extends
the original λ-calculus [8] with primitives for composing services in a call-by-
contract fashion with the enforcement of safety properties. Indeed there is a
mechanism for extracting the abstract behavior of a service (called history
expression) in which we impose that policies. An orchestration machinery
constructs a plan that is a binding between requests and services guarantee-
ing that the safety properties are always satisfied.
Our work consists in expressing CCS contracts in λreq formalism. The task
is not trivial since circular requests are forbidden in λreq (two services cannot
invoke each other to serve a single request). This make it hard describing
sessions between two parties, a feature available in contracts instead. In the
original proposal [3] polices are regular expression that describe the opera-
tions not permitted to services. Instead the contracts of [3] are trees. Here
we propose a new type of policies that describe the behavior that a service
must respect; another extension concerns defining the notions of external
and internal choice in λreq . This operators are used in contracts to describe
collaborations between the parties.
Our results are: a formalism to define security policies over contracts and
to constrain the structure of interactions between services. Multi-party col-
laboration between contracts (a feature not enable in [3]). A mechanism to
define sessions between λreq services. A mechanism for replace a λreq service
with another one without breaking the correctness of the composition, and
a rule system for checking if a λreq expression respects a contract. Moreover
our solution solved the problem of deciding the service who has the priority
in a session where both the parties wait each other.

3

2 Contracts

In this section we define contracts, which are processes of a calculus intro-
duced in [3] for formalize reasoning on services. Contracts are an abstrac-
tions of the interactions of services, used to express when those interactions
succeed. Contracts are a subset of CCS processes built with three operators:
prefix α.σ, internal choice σ1 + σ2 and external choice σ1 ⊕ σ2. A contract
α.σ perform the action α and then continues as σ, where α in an abstraction
of an operation that involves two services. We have write or read action with
the former ones being topped by a bar, i.e. α, following the CCS notation.
The contract σ1 +σ2 describes a service that lets the client decide whether to
continue as σ1 or σ2. The contract σ1 ⊕ σ2 describe a service that internally
decides whether to continue as σ1 or σ2. In [3] there is a semantic model for
recursion, where contracts are regular tree, instead we use recursive contracts
which represents a syntactic approach with explicit recursion. We must use
regular contract since for our transformation we need a finite representation
of the infinite tree described by a contract.

Definition 1. A recursive contract is a finite term generated by the following
grammar :

σ ::= a.σ | a.σ | rec x = σ | (
∑

i∈I σi) | (
⊕

i∈I σi) | 0 | x a, a ∈ N

where N is a countable set of names, I is a finite set of index and every
variable x is guarded by at least one prefix constructor.

We require contracts to be guarded for ruling out meaningless contracts
like rec x = x + x. We write

∑
i∈I σi for σ1 + σ2 + · · · + σn and

⊕
i∈I σi for

σ1 ⊕ σ2 ⊕ · · · ⊕ σn where |I| = n, with (σ,+) and (σ,⊕) abelian groups with
identity 0 and +,⊕ idempotent; note that

∑
i∈I σi =

⊕
i∈I σi = 0 if I = ∅,

rec is a binder with variable x, we assume the term are α-convertible.
We introduce some standard notions. We say that a contract σ is closed if
fv(σ) = ∅ where fv(σ) is the set of free variables and we write σ{σ′/x} for
the contract obtained by replacing σ′ for every free occurrence of x within σ.
Contracts are used to ensure that interactions betweens client and service
always succeeds. This happens when a service offers some set of actions and
the client can synchronize with one of them performing the corresponding
co-actions or terminating. Given a service contract, it is possible to deter-
minate the set of clients that complies (written a) with it, that are those
that successfully terminates the interaction with the service. For example
a⊕ b a a+ b and also a⊕ b a a+ b+ c, moreover a a a+ b but a 6a a⊕ b since

4

a ⊕ b can internally decide to perform b and the interaction gets stuck . As
seen before, a service can comply with another one that offers more actions
that those the service need. There is then a sub-contract relation, written
σ1 � σ2, expressing that the services that comply with σ1 also comply with
σ2. We can replace a service with a one that offers more choices, allowing
more composition and reuse of services. For example a � a + b (width
sub-typing) or a � a.b (depth sub-typing), and with a one that is more de-
terministic, for example a⊕ b � a,
For safely replacing a service with a more general one , we use a filter that
blocks some not needed actions. For example, we have a ⊕ b.c � a and
a � a+ b.d, but a⊕ b.c 6� a+ b.d: if the service synchronize on b than he wait
for the action c while the other party is ready to perform d. This problem is
solving by applying a filter on the new service that only permits the a action.
We conclude with an example and we refer to [3] for more details of contracts
and filter:

Example 2.0.1
We model an authentication on a service via login. After the service received
the login, internal checks if the user name is valid and return the message of
Valid login or Invalid login. In the case the user is authenticated the service
continues with σ′1 :

σ1 = Login.(V alidLogin.σ′1 ⊕ InvalidLogin)

The following service sends the login action and then waits for the authenti-
cation message. If the login is valid then it continues with σ′1:

σ2 = Login.(V alidLogin.σ′1 + InvalidLogin)

3 Call-by-contract and secure service orches-

tration with λreq

λreq is a typed extension of the λ-calculus for service orchestrations, services
are modelled as expressions of λreq , where types are an abstractions of the
behaviors of services. We assume as given a set of primitive access events,
that abstract from activities with possible security concerns. Security policies
are regular properties of execution histories (i.e. sequences of access events).
There is a type and effect system for the calculus; types are standard, while

5

effects, called history expressions, represent all the possible behavior of ser-
vices, also there is a mechanism to extract the abstract behavior of services
that must enforce safety properties; given an expression e, a safety fram-
ing ϕ[e] enforces the policy ϕ at each step of the execution of e. We have
plans which are possible orchestrations, there is a static analysis technique
to determine plans that drive service executions enjoying safety properties.
A service is modelled as a λreq expressions with a functional type of the form

τ1
H−→ τ2; when supplied with an argument of type τ1, the service evaluates to

a value of type τ2, and the side effect of the invocation is an execution history
among those represented by the history expression H. A service request is
modelled by an expression reqrτ , where r uniquely identifies the request,
and τ is the type of the requested service, including the safety properties
that explain how the caller protects itself from the service. We assume here
that services are published in a global trusted repository, i.e. a set of typed

expressions {e1 : τ1
H1−→ τ ′1 · · · ek : τk

Hk−→ τ ′k}. Types are the semantic infor-
mation made visible about services. Operationally, a service request reqrτ
results in a sort of “call-by-contract”: the repository is searched for a service
with a functional type matching the request type τ ; additionally, its effect H
should respect the safety constraints in τ . The effect of a service invocation
reqrτ has the form {r[`1]BH1 · · · r[`k]BHk}, where r[`i] resolves the request
r with the service ei in the repository. We say that Hi is valid when it re-
spects the safety constraints in τ , as well as all the security framings within
Hi itself. The effect H of a service composition e is obtained by suitably
assembling the effects of the component services, and of those services they
may invoke in a nested fashion. The validity of the effect H of e depends
thus on the global orchestration that selects a service for each request. It is
convenient to lift all the service choices r[`] to the top-level of H, collecting
them in a set π, called plan, with a semantic-preserving transformation that
generates effects of the form {π1 BH1 · · · πn BHn}, where each Hi is free of
further choices. Its intuitive meaning is that, under the plan πi, the effect of
the overall service composition e is Hi. If some Hi is valid, then the plan πi
will safely drive the execution of e, without resorting to any run-time mon-
itor, and guaranteeing all the safety properties required. Validity of history
expressions is ascertained by model checking Basic Process Algebras with fi-
nite state automata; a history expressions H is naturally rendered as a BPA
process, while a finite state automaton models the validity of H.

6

3.1 λreq expressions

In λreq an access event α ∈ Ev abstracts from a security critical operation
(e.g. writing a file, opening a socket connection). A history η is a sequence of
access events. A security policy ϕ ∈ Pol is a regular property of histories. A
safety framing ϕ[e] enforces the policy ϕ at each step of the evaluation of e.
Services e : τ are typed λreq expressions, collected in a trusted, finite, and
global repository Srv . The types τ are annotated with history expressions
that over-approximate the possible run-time histories. The repository Srv
guarantees that H represents all the possible histories of e.

A service request has the form reqrτ . The label r uniquely identifies the
request in an expression; the syntax of request types τ is defined as follows:

τ ::= 1 | τ ϕ−→ τ

where 1 is the singleton type, and the annotations ϕ on the arrow are the
safety constraints imposed on the service. Operationally, reqrτ drives a
search in the repository Srv for a service with a functional type τ ′ “compat-
ible” with τ and such that τ ′ respects the constraints imposed by τ . Only
functional types are allowed in a request: this models services being consid-
ered as remote functions; if the type of a returned value is functional, then
the request can be seen as a code download, moreover no constraints should
be imposed over the type τ0 of a request type τ0

ϕ−→ τ1, i.e. in τ0 there are no
annotations. This is because the constraints on the selected service cannot
affect its argument. It follows the syntax of a λreq expression, we abstract
from the language for express ϕ and guards b:

e, e′ ::= ∗ unit
x variable
α event
if b then e else e conditional
λzx. e abstraction
e e′ application
ϕ[e] safety framing
reqrτ service request

The values v are the variables, the abstractions, the requests, and the distin-
guished element ∗. The following abbreviation is standard: e; e′ = (λ. e′) e,
the variable z in e′ = λzx. e stands for e′ itself within e.
A plan formalises how a request is resolved into an actual service, and takes
the form of an injective mapping from request labels to services. Plans have
the following syntax:

7

π, π′ ::= 0 empty
r[`] service choice
π | π′ composition

The empty plan 0 has no choices; the plan r[`] associates the service e` : τ`
with the request labelled r. Now we define the behaviour of expressions
through the following small-step operational semantics. The configurations
are pairs η, e. Transition have the form η, e→π η

′, e′ to mean that, starting
from a history η, the plan π allows the expression e to evolve to e′ and to
extend η to η′. An expression is initially evaluated starting from the empty
history ε. We write η |= ϕ when the history η obeys the (safety/liveness)
policy ϕ. We assume as given a total function B that evaluates the guards
in conditionals.

Operational semantics of λreq

η, e1 →π η
′, e′1

η, e1e2 →π η
′, e′1e2

(E-App1)
η, e2 →π η

′, e′2

η, ve2 →π η
′, ve′2

(E-App2)

η, (λzx. e)v →π η, e{v/x, λzx. e/z} (E-AbsApp)

η, α→π ηα, ∗ (E-Ev) η, if b then ett else eff →π η, eB(b) (E-If)

η, e→π η
′, e′ η′ |= ϕ

η, ϕ[e]→π η
′, ϕ[e′]

(E-SF1)
η |= ϕ

η, ϕ[v]→π η, v
(E-SF2)

e` : τ` ∈ Srv π = r[`] | π′

η, (reqrτ)v →π η, e` v
(E-Req)

The first two rules implement call-by-value evaluation; as usual, functions are
not reduced within their bodies. The third rule implements β-reduction. No-
tice that the whole function body λzx. e replaces the self variable z after the
substitution, so giving an explicit copy-rule semantics to recursive functions.
The evaluation of an event α consists in appending α to the current history,
and producing the no-operation value ∗. A conditional if b then ett else eff

evaluates to ett (resp. eff) if b evaluates to true (resp. false).
To evaluate a safety framing ϕ[e], we must consider two cases. If, starting

from the current history η, e may evolve to e′ and extend the history to η′,
then the whole framing ϕ[e] may evolve to ϕ[e′], provided that η′ satisfies ϕ.
Otherwise, if e is a value and the current history satisfies ϕ, then the scope

8

of the framing is left. In both cases, as soon as a history is found not to
respect ϕ, the evaluation gets stuck, to model a security exception.

The rule for service invocation enquires the orchestrator to select from
Srv a service that respects the types and the required constraints. If no such
service exists, the execution gets stuck.

3.2 History expression

To statically predict the histories generated by programs at run-time, as
well as the scopes of policies, we have history expressions with the follow-
ing abstract syntax. History expressions are a sort of context-free gram-
mars, and include the empty history ε, access events α, sequencing H ·
H ′, non-deterministic choice H + H ′, safety framings ϕ[H], recursion µh.H
(µ binds the occurrences of the variable h in H), and planned selection.

H,H ′ ::= ε empty
h variable
α access event
H ·H ′ sequence
H +H ′ choice
ϕ[H] safety framing
µh.H recursion
{π1 BH1 · · · πk BHk} planned selection

Safety framings are the abstract counterparts of the analogous constructs
in λreq . Given a plan π, a planned selection {π1 B H1 · · · πk B Hk} chooses
those Hi such that π includes πi. Intuitively, the history expression H =
{r[`1] B H1, r[`2] B H2} is associated with a request r that can be resolved
into either e`1 or e`2 . The histories denoted by H depend on the given plan π:
if π chooses `1 (resp. `2) for r, then H denotes one of the histories represented
by H1 (resp. H2); otherwise, H denotes no histories.
The denotational semantics of H is the set of histories H that represents all
the possible computations of the λreq expression . An history expressions is
valid if none of the possible computations violate some policy ϕ, where the
policy can inspect the whole history generated so far, a history-expression is
π valid if under that plan H is valid.

3.3 Type and effect system and planning

We now introduce a type and effect system for our calculus. Types and
type environments, ranged over by τ and Γ, are mostly standard and are

9

defined in the following table. The history expression H in the functional

type τ
H−→ τ ′ describes the latent effect associated with an abstraction, i.e.

one of the histories represented by H is generated when a value is applied to
an abstraction with that type. Note that we overload the symbol τ to range

over both expression types and request types τ
ϕ[•]−−→ τ ′.

Types and Type Environments

τ, τ ′ ::= 1 | τ H−→ τ ′ Γ ::= ∅ | Γ;x : τ (x 6∈ dom(Γ))

Typing judgment are in the form Γ, H `Srv e : τ meaning that, given a
service repository Srv, the expression e evaluates to a value of type τ , and
produces a history represented by the effect H.
The typing relation Γ, H `Srv e : τ is defined as the least relation closed under
the rules below. Typing judgments are similar to those of the simply-typed
λ-calculus. The effects in the rule for application are concatenated according
to the evaluation order of the call-by-value semantics (function, argument,
latent effect). The actual effect of an abstraction is the empty history ex-
pression, while the latent effect is equal to the actual effect of the function
body. The rule for abstraction constraints the premise to equate the actual
and latent effects, up to associativity, commutativity, and idempotency of +,
associativity and zero (ε) of · , α-conversion, unfolding of recursion, and elim-
ination of vacuous µ-binders. The last rule allows for weakening of effects. A
service invocation reqrτ has an empty actual effect, and a functional type τ ′,
whose latent effect is a planned selection that picks from Srv those services
matching the constraints on the request type τ . To give a type to requests,
we need to define the auxiliary operators ≈, ⊕ and d. We write τ ≈ τ ′, and
say τ, τ ′ compatible, whenever, omitting the annotations on the arrows, τ and
τ ′ are equal. The operator ⊕r[`] combines a request type τ and a service type
τ ′, when they are compatible. Eventually, the operator d combines the types
obtained by combining the request type with the service types.

10

Typing relation

Γ, ε ` ∗ : 1 (T-Unit) Γ, α ` α : 1 (T-Ev)

Γ, ε ` x : Γ(x) (T-Var)
Γ;x : τ ; z : τ

H−→ τ ′, H ` e : τ ′

Γ, ε ` λzx. e : τ
H−→ τ ′

(T-Abs)

Γ, H ` e : τ
H′′−−→ τ ′ Γ, H ′ ` e′ : τ

Γ, H ·H ′ ·H ′′ ` e e′ : τ ′
(T-App)

Γ, H ` e : τ

Γ, ϕ[H] ` ϕ[e] : τ
(T-SF)

τ ′ = d{ τ ⊕r[`] τ` | e` : τ` ∈ Srv ∧ τ` ≈ τ }

Γ, ε `Srv reqrτ : τ ′
(T-Req)

Γ, H ` e : τ Γ, H ` e′ : τ

Γ, H ` if b then e else e′ : τ
(T-If)

Γ, H ` e : τ

Γ, H +H ′ ` e : τ
(T-Wkn)

Once extracted a history expression H from an expression e, we have to
analyse H to find if there is any viable plan for the execution of e. Here we
only note that a plan π is well-typed if there are no circular request, that is
given a service at location `, we have that for all r[`′] in π we have ` ≺ `′.

3.4 Networks

A service e is plugged into a network by publishing it at a site `, together with
its interface τ . Hereafter, `〈e : τ〉 denotes such a published service. Labels `
can be seen as Uniform Resource Identifiers, and they are only known by the
orchestrator. We assume that each site publishes a single service, and that
interfaces are certified, i.e. they are inferred by the type system presented
later. As usual, we assume that services cannot invoke each other circularly.
A client is a special published service `〈e : 1〉, where 1 is the unit type. A
network is a set of clients and published services.

The state of a published service `〈e : τ〉 is denoted by:

`〈e : τ〉 : π B η, e′

11

[Sta]
η, e→ η′, e′

` : π B η, e→ ` : π B η′, e′

[Net]
N1 → N ′1

N1 ‖N2 → N ′1 ‖N2

[Req] ` : (r[`′] | π) B η, C(reqrρ v) ‖ `′〈e : τ〉 : 0 B ε, ∗ →
` : (r[`′] | π) B η, C(wait `′) ‖ `′〈e : τ〉 : (r[`′] | π) B σ, e v

[Ret] ` : π B η, wait `′ ‖ `′ : π′ B η′, v →
` : π B η, v ‖ `′ : 0 B ε, ∗

where π is the plan used by the current instantiation of the service, η is
the history generated so far, and e′ models the code in execution. When
unambiguous, we simply write ` for `〈e : τ〉 in states.

The syntax and the operational semantics of networks follows; the oper-
ator ‖ is associative and commutative. Given a network {`i〈ei : τi〉}i∈1..k, a
network configuration N has the form:

{`i : πi B ηi, e
′
i}i∈1..k = `1 : π1 B η1, e

′
1 ‖ · · · ‖ `k : πk B ηk, e

′
k.

To trigger a computation of the network, we single out a set of initiators,
and fix the plans πi for each of them. We associate the empty plan to the
other services. Then, for all i ∈ 1..k, the initial configuration has ηi = ε, and
e′i = ∗ if `i is a service, while e′i = ei if `i is an initiator.

We now comment on the semantic rules of networks in λreq . A transition
of a stand-alone service is localized at site ` (rule Sta), regardless of a plan
π. The rule Net specifies the asynchronous behaviour of the network: a
transition of a sub-network becomes a transition of the whole network. The
rules Req and Ret model successful requests and replies. A request r,
resolved by the current plan with the service `′, can be served if the service
is available, i.e. it is in the state `′ : 0 B ε, ∗. In this case, a new activation
of the service starts: e is applied to the received argument v, under the
plan π′, received as well from the invoker. The special event σ signals that
the service has started. The invoker waits until `′ has produced a value.
When this happens, the service becomes idle again. Since we follow here
the stateless approach, we clear the history of a service at each activation
(indeed, statefullness could be easily obtained by maintaining the history η′

at `′ in the last rule).
Note that each service has a single instance in network configurations. We

could easily model replication of services, by creating a new instance for each

12

request. Note also that a network evolves by interleaving the activities of its
components, which only synchronize when competing for the same service.
For further informations we refer to [1] [2].

4 Getting into the problem

In this section we discuss the issues of expressing contracts in λreq by devel-
oping examples which let emerges the limitations of the approach followed.
We first treat the problem of transforming input and output operations of
contracts into λreq expressions and policies, and we introduce a mechanism
for expressing sessions in λreq . After that we discuss about the interpretation
of internal and external choice in λreq . We then define a transformation of
contracts for simplifying the successive translations in λreq and ensure that at
runtime the λreq expressions behave as described by the corresponding con-
tracts. Finally we discuss the validation of contracts.
In sections 5 and 6 we formally define a method to generate λreq expressions
from contracts; this will allow us to introduce multi-party contracts and se-
cure service substitution, composition and reuse, as we will discuss in section
7.

4.1 Input/Output actions

First thing to decide is what is a contract in λreq . We could express a con-
tract as a new type of policy ϕσ, identical to a contract σ and with the same
meaning that describe the action that a service must perform. Then we could
write ϕσ[H] to check if the service with effect H satisfies the contract σ, that
is H is compliant with σ. One limitation of this approach emerges when we
deal with the interplay between read/write actions. A read action represents
a data provided in input to the service, while a write action represents a data
obtained as output from the service, to clarify this fact let us consider the
contracts:

σ1 = Login.(V alidLogin.σ′1 ⊕ InvalidLogin)
σ2 = Login.(V alidLogin.σ′1 + InvalidLogin)

Here σ1 receives in input the login data, checks if this login is valid and then
responds with the valid/invalid message, while σ2 offers the complementary
actions. In a λreq expression we have only access events without distinguish-
ing between input and output actions, and policies only check if the history

13

H fulfills the requirement without performing any action. If we translate a
contract completely in a policy ϕσ we loose the run-time actions that a con-
tract is supposed to perform. Therefore we need to translate contracts both
as λreq expressions and use ϕσ to check if they are compliant. Moreover, we
see that a contract specifies a session between a client and a server, i.e. when
the server receives the login it sends back the valid/invalid message. Taking
into account these considerations we shall write the following λreq service,
note that in σ2 we use a higher-order function f that represents the value
returned by reqr1

1:

Example 4.1.1

σ2 = (λf .if ((f∗) ==Valid) then

reqr2(· · ·)(σ′1))

(reqr1(1→ (1
ϕσ−→ 1))(Login))

σ1 =λx.ϕ′σ[x];
if (x==ValidLogin) then

λ.V alidLogin;
else

λ.InvalidLogin

ϕ′σ = Login
ϕσ = V alidLogin+ InvalidLogin

In this example we transform output actions in λreq expressions and input
actions in ϕσ. In σ2 first the service perform the request reqr1, the argument
of the request is the Login action, which is an output action; the policy ϕσ
checks that the selected service complies with the contract. At static time
the orchestrator selects the right contract that complies with σ2 that is σ1. If
the login is valid then the service continue performing another output action,
so generating a new request reqr2 as required by σ′1.
The service σ1 is chosen to take the request reqr1. After having received the
value Login (in fact this is an input action in the contract), the service in-
serts the value inside the frame ϕσ to statically checked that the two services
are compliant. This check yelds the V alidLogin or InvalidLogin. Both are

1We not specify the effects of a λreq expressions if is unneeded

14

output actions that became read actions by the side of σ2 and are used in
the if guard; the history generated by reqr1 is:

reqr1 : 1
{r[`σ1]B`σ1 :ϕ

′
σ [Login]}−−−−−−−−−−−−−→ (1

{r[`σ1]Bϕσ [(V alidLogin+InvalidLogin)]}−−−−−−−−−−−−−−−−−−−−−−−→ 1).

The histories generated in the locations of the two services are:

(`σ1 : ϕ′σ[Login])
(`σ2 : ϕσ[(V alidLogin+ InvalidLogin)] ·Hσ′1

)

These histories are valid since the actions do not violate policies.
The main problem of this approach is that circular requests cannot be spec-
ified, so contract can only perform a two-message interaction, after received
the V alidLogin message, the second request cannot be taken by the service
σ2. Moreover a contract is not completely rendered by a policy ϕσ or by
a history expression H, but it is split into both a policy ϕσ, for the input
actions, and a history expression H for the output actions. Another issue
that emerges in the example is that a contract σ can be translated into a
client that performs the request, or into a server that is planned to serve
the request. This two roles lead to different translations of a contract. One
important result is that in λreq we can perform many request as we want,
and even the server side can perform a request while he is serving another
contracts. This give us a notion of multi-contract party that is not available
in the contracts of [3].

4.2 Sessions

Since we cannot explicitly define a session in λreq , we can model it as a mi-
gration of code. The value of the request is the entire code of the client,
that is then executed by the server side. For doing so we embed every action
of the client contract into a λ-abstraction that the server will apply while
interacting with the client. We will also use a λ-abstraction where a local
variable will be used to represent the external choice: the server will make
its decision by applying that function.
We expect a system for encrypt this code by the orchestrator if one want to
protect the code, even if this is not significant since in that code are present
only the actions that the client want to execute in the server, that is the out-
put actions and the Server must have the rights to read those informations.
Let us see how the previous example becames now:

15

Example 4.2.1

σ2 = reqr1(1→ (1→ (1→ 1))
ϕσ−→ 1)((λcx.if (cx==ValidLogin) then

λ.σ′1)
(λ.Login))

σ1 =λf0.(λf1.if (f1 == V alid) then
(λf2.(σ

′
1))(f1V alidLogin)

else
(λf2.(∗))(f1V alidLogin))

(ϕ′σ[f∗])

The histories expression generated are :

(`σ1 : ϕσ[ϕ′σ[Login] · (V alidLogin ·Hσ′1
+ InvalidLogin)])

(`σ2 : ε)

As we see now the frame ϕ′σ is nested inside ϕσ. This is not a problem
since ϕσ checks only that the action required are performed. In this exam-
ple we want that V alidLogin or InvalidLogin are executed, and the action
Login, that is relevant for ϕ′σ, is ignored by ϕσ.
By executing the two contracts on the Server side we have not circular re-
quest, now not only two-message interactions are allowed, but after validating
the login the two services can continue to perform the other actions required
by the contract σ′1.
Note that we can naturally describe multi-party scenario. For example for
validating the login the server may need to make a request to an authority
for checking that the login is valid, so it behaves from one side as a server
and on the other side as a client, performing a request before returning the
V alidLogin or InvalidLogin message. In section 7 will examine multi-party
scenarios in details.

4.3 Internal and external choice

In the previous example, the contract V alidLogin⊕InvalidLogin were trans-
lated into history expressions of the form V alid+ Login.
A problem that emerges is that in history expression we have only the non

16

deterministic choice H1 +H2, that expresses the history generated by an ex-
pression H1 + H2 ` if b then e else e′ : τ with H1 ` e : τ and H2 ` e′ : τ .
But in contracts we have two different operators, internal and external choice,
with different meanings.
In a first attempt to solve this issue we shall say that an history H comply
with a contract σ = σ1 ⊕ σ2 if it has at least both H1 and H2 in the non
deterministic choice, i.e. is in the form H1 + H2 or

∑
i∈I Hi where |I| > 1

and ∀i, j ∈ I, i 6= j.Hi a σi ∧ Hi 6a σj, for example H1 + H3 do not comply
with σ since if the service internally decide σ2 the other service described by
H1 +H3 get stuck. We shall say that an history H complies with a contract
σ = σ1+σ2 if H contains H1 or H2 or both, since is the service H that decide
whether to continue as H1 or H2. A problem of this approach is that there
are contracts, like σ = σ1⊕σ2 and σ = σ1⊕σ2, that do not comply since one
can internally decides a branch while the other internally decides the other
branch and the interaction get stuck. Writing this contract in λreq we have
ϕσ = σ1 ⊕ σ2 and H = H1 + H2 , so following this approach the services
wrongly complies; since in H we don’t have the possibility to describe an
internal choice, so we must extend history expression introducing internal
and external choice if we want H to describe a contract.
We have to refine the if rule of the type and effect system to make history
expression able to distinguish between internal and external choice, we now
define internal and external choice in history expressions:

Definition 2. Let H1 and H2 be history expressions, we denote H1 +H2 as
the external choice between the two histories, and H1 ⊕ H2 as the internal
choice between the two histories.

We note that in an external choice another service is choosen by a re-
sorting on a value provided by another service; while in the internal choice
the service decide itself. Under this assumption we already have the internal
choice and we need to extend the rule to the external choice. To avoid con-
fusion from now onwards we follow the notation of contracts and we use the
operator ⊕ for the internal choice and + for the external choice.
As described above, there are two different transformations of a contract into
a λreq expression: we call there the client and the server transformation. We
formally set up the framework by giving the definitions of the internal and
external choice. In this way we get the λreq expression corresponding to the
contract.
We first discuss the λreq transformation for the client side. The external
choice is modelled through a λ-abstraction. When evaluating this expres-
sion the server makes its choice by giving the value cx, while in the internal
choice we abstract from the boolean guard: the client part makes its choice

17

to continue as σ1 or σ2.

Definition 3. Let σ1 and σ2 be contracts and e1, e2 the corresponding λreq client
transformations where H1 ` e1 : τ and H2 ` e2 : τ , we define the client trans-
formation in λreq for the external and internal choice as:

H1 +H2 `client λcx.if+ (cx = σ1) then
e1

else
e2

H1 ⊕H2 `clientif⊕ (· · ·) then
e1

else
e2

We give now the λreq expressions for the internal and external choice by
the server side:

Definition 4. Let σ1 and σ2 be contracts and e1, e2 the corresponding λreq server
transformations where H1 ` e1 : τ and H2 ` e2 : τ , we define the server trans-
formation in λreq for the external and internal choice as:

H1 +H2 `server λf.if+ (f = σ1) then
e1

else
e2

H1 ⊕H2 `serverif⊕ (· · ·) then
e1

else
e2

That transformations resemble those given for the client contract. The
main difference lies in the external choice where the server checks the boolean

18

guard depending on the client choice. We write f = σ1 to indicate the
abstraction step of this control. Note that the function f is the client code
and it is the value of the request.
We write if+ and if⊕ to make clearer the history expression generated. It
is useful if we want to express in the type and effect system the rule for
internal and external choice, however in this work we are only interested in
the transformation of contracts into λreq expression and not vice-versa. We
feel free to omit the specifications of the type of the if condition.

4.4 Dual actions

Assume that the client contract is of the form a ⊕ b. Intuitively, the client
makes an internal choice and decides whether to read from channel a or b.
In this case the server (abstracted by a λreq expression) should be able at
runtime to see which action the client is ready to receive to perform the
required co-action. Hence we cannot only render input actions as policies,
since they are only checked at static time. Another problem emerges in the
following contract:
Login.(V alidLogin.σ′1 ⊕ InvalidLogin) here the internal choice depends on
the input action Login, in the previous example the boolean guard check
if Login is valid or not. However in our λreq specification of a contract we
abstract from this level of detail and we are only interested in modelling the
values exchanged by the two parties when deciding the external choice.
We introduce a transformation of the contract with the aim to erase the
difference between an input operation or an output operation. The main
idea is to associate with each channel2 c a dual channel dc where no relevant
information is exchanged. For example, a contract like a + b is transformed
into a.da+ db.b. The client contract is the initiator, so his first operation to
be performed is always the write action while in the server contract we have
the opposite. Also, when a service receives a data on input it always reacts
with the dual action on output. Note that when the client is of the form
a⊕ b the server is able to decide the right co-action. We now prove that this
transformation preserves the compliance:

Lemma 1. Let σclient and σserver be contracts and σdclient,σ
d
server the corre-

sponding transformed contracts with dual actions, we have: σclient a σserver −→
σdclient a σdserver

Proof. Since σclient a σserver then σclient is able to terminate or the two con-
tracts synchronizes on an action α. In the transformed contracts, we only

2we refer to channel as the action of a CCS contract

19

change the prefix operators adding dual actions. If σclient = α.σ′client and
σserver = α.σ′server then σdclient = dα.α.σ′dclient and σdserver = dα.α.σ′dserver. We
have σdclient a σdserver.
If σserver = α.σ′server and σclient = α.σ′client then σdclient = α.dα.σ′dclient and
σdserver = α.dα.σ′dserver. We have σdclient a σdserver.

In the following example we see how the contracts of the previous exam-
ple are transformed:

Example 4.4.1
σserver = Login.(V alidLogin⊕ InvalidLogin)
⇒ Login.Dlogin(DvalidLogin.V alidLogin⊕DinvalidLogin.InvalidLogin)

σclient = Login.(V alidLogin+ InvalidLogin)
⇒ Login.Dlogin.(DvalidLogin.V alidLogin+DinvalidLogin.InvalidLogin)

The transformed contracts are compliant, so this is only a syntactic ma-
nipulation and the behavior of the contracts remains the same. This trans-
formation has the property that each action is performed both in input and
in output, on one side as a dual operation and on the other one as a normal
operation. So this action is present in both ϕσ and H.
Continuing the previous example we have:

Example 4.4.2
Hserver = Dlogin(V alidLogin⊕ InvalidLogin)
ϕserver = Login.(DvalidLogin⊕DinvalidLogin)

Hclient = Login.(DvalidLogin+DinvalidLogin)
ϕclient = Dlogin(V alidLogin+ InvalidLogin)

Hserver |= ϕclient
Hclient |= ϕserver

Note that in H we only have write actions and in ϕσ we only have read
actions, hence we can avoid to specify the type of the actions. Also we as-
sume that if the action occurs in H then the dual action occurs in ϕσ and
vice-versa, so we abstract from specifying dual actions. With this abstrac-
tion H and ϕσ are the same and when we are going to transform a contract

20

in a λreq expression we do not have to do any extra work for handling the
different type of actions.
In the following example we compute the λreq expressions of the previous
one. We use the following shorthands e1;x.e2 = (λx.e2)(e1) and ∗e for an
expression e with no effects.

Example 4.4.3

Client : Login.(DvalidLogin.σ′1 +DinvalidLogin)

reqr1(1→ (1→ (1→ 1))
ϕclient−−−−→ 1)(λ.Login;

λcx.if (cx == ∗DvalidLogin) then
DvalidLogin;λ.σ′1

else
DinvalidLogin;λ.∗)

Server: Dlogin(V alidLogin.σ′1 ⊕ InvalidLogin)

λf0.(ϕ
0
server[f0∗]; f1.(Dlogin;

if (· · ·) then
ϕ1
server[f1∗DvalidLogin]; f2.(V alidLogin; (σ′1))

else
ϕ1
server[f1∗DinvalidLogin]; f2.(InvalidLogin; ∗)))

ϕclient = Dlogin(V alidLogin+ InvalidLogin)

ϕ0
server = Login

ϕ1
server = DV alidLogin⊕DInvalidLogin

Hserver =ϕclient[ϕ
0
server[Login] ·Dlogin·

(ϕ1
server[DvalidLogin+DinvalidLogin] · V alidLogin · σ′1⊕

ϕ1
server[DvalidLogin+DinvalidLogin] · InvalidLogin)]

Note that dual actions don’t interfere with the validations, since we dis-
card the actions not required by ϕσ. The only if guard specified is the one
of the external choice of the client, while the boolean guard that checks if
the login is valid is hidden from the specifications. Finally we need to split
ϕserver into different parts. We will discuss this point further on.
Note that in a contract an action can be used both for read and write. For

21

example in σ = a.b+ a.c we have H = da.db+ a.dc and ϕσ = a.b+ da.c.
We also have solved the problem [3] of who has priority in a session between
two party like:

σclient = a+ b
σserver = a+ b

By the contract definitions, each service waits for the other to establish a
decision and the interaction gets stuck. As showed in the following example,
in a situation like this we determine that the server has the priority to per-
form the decision:

Example 4.4.4

Client:
reqr(· · ·)(λcx.if (cx == a) then a

else b

Server:
λf.if (f · · ·) then ϕs[fa]; a

else ϕs[fb]; b

The Server is able to check in the boolean guard whether the Client has
performed a decision or not. In the second case, the Server performs the
decision by applying the function Client so the interaction continue without
blocking.

4.5 Validating a contract

In λreq a history expression is valid under a plan π [2] if the set of all the
possible histories are recognized by the automata that describe the policy ϕ.
Contracts are not strings of a language but they are trees. In particular in the
internal choice a service must follow both the branch of the tree to comply
with that contract. Hence we can’t use automata to check the validity of an
history expression under a policy ϕσ. Here, to address this issue we introduce
a rule system to check if H |= ϕσ,and we demonstrate that is equivalent to say
that σ a σH where ϕσ represent the contract σ and H represent the contract
σH . A policy ϕσ only describes a set of strings of actions that a service

22

must performs before terminating, beside these actions it can perform other
actions not required by the contract without violating the policy ϕσ. The
scope of this kind of policy is only local to his frame and do not check all the
past histories as done before by a normal policy ϕ. In the section 7 we will
define the mechanism to validate history expressions over policies ϕσ.

4.6 Types and contracts

In a contract of the form σ = σ1 + σ2 we have that σ1 and σ2 are completely
independent. When we translate this contract in λreq we have the constraint
that the two branch of the if construct, that are σ1 and σ2, must have the
same type. In the following sections we define a method that taken a contract
return the corresponding balanced contract: a contract with the properties
that the translation in λreq is well-typed.

5 Writing contracts in λreq

In this section, we formally define a method to transform contracts into bal-
anced contracts by using an intermediary representation called labeling con-
tracts. Balanced contracts will be transformed into well-typed λreq expressions.
We assume that the contract to be transformed contains dual actions, in par-
ticular we select only write actions for the transformation in λreq expression,
and only read actions for the transformation in policy, as we discussed before.

5.1 Labeling contracts

Our first step is the introduction of a specific form of contracts called labeled
contracts.

Definition 5. Labeled contracts are special type of contracts generated by the
following grammar:3

σn ::= an.σn
′ | rec x = σn | (

∑
i∈I σ

ni
i)n | (

⊕
i∈I σ

ni
i)n | 0n | xn.σn′ n, n′ ∈ N

In a labeled contract each node is associated with a number that expresses
the depth of the node. We can avoid labeled contract and calculate the depth
directly, but we prefer this way for clearing the separation of concerns and
trying to reduce the complexity. We have two different types of contracts:

3We use x.σ instead of x.0 (even if σ is unreachable) because then we can add the unit
event * after x if needed

23

client contracts and server contracts, and two different ways of transforming
them into λreq expressions. Accordingly, we define two different functions
that compute the labeled client contract and the labeled server contract. In
particular, we start by the root with label 0 and we increase the label every
time we add a λ-abstractions in the λreq expression that we are constructing.
Note that technically the client contract anticipates the λ-abstractions for
the actions of an external choice, and consequently the server anticipates
the application of the function on input on the internal choice. We use a
boolean guard to keep track if we have already set the λ-abstraction or not
in the client contract, and if we already applied the function or not in the
server contract. The function L take in input the contract to transform, the
boolean guard and the temporary label, these two parameters are initially
set to zero.

Definition 6 (Labeled Client Contract). Given a contract σ we define the
corresponding labeled Client contract σnclient as : σnclient = LcJσK(0, 0) where :

Lc : σ −→ {0, 1} × N −→ σnclient

LcJ
∑

i∈I σiK(b, j) = (
∑

i∈I LcJσiK(1, j + 1))j b ∈ {0, 1}
LcJ
⊕

i∈I σiK(b, j) = (
⊕

i∈I LcJσiK(b, j))j b ∈ {0, 1}
LcJa.σK(0, j) = aj.LcJσK(0, j + 1)
LcJa.σK(1, j) = aj.LcJσK(0, j)
LcJx.σK(0, j) = xj.LcJσK(0, j + 1)
LcJx.σK(1, j) = xj.LcJσK(0, j)
LcJrec x = σK(b, j) = (rec x = LcJσiK(b, j)) b ∈ {0, 1}
LcJ0K(0, j) = 0j

Definition 7 (Labeled Server Contract). Given a contract σ we define the
corresponding labeled Server contract σnserver as : σnserver = LsJσK(0, 0)where :

Ls : σ −→ {0, 1} × N −→ σnserver

LsJ
∑

i∈I σiK(b, j) = (
∑

i∈I LsJσiK(b, j))j b ∈ {0, 1}
LsJ
⊕

i∈I σiK(b, j) = (
⊕

i∈I LsJσiK(1, j + 1))j b ∈ {0, 1}
LsJa.σK(0, j) = aj.LsJσK(0, j + 1)
LsJa.σK(1, j) = aj.LsJσK(0, j)
LsJx.σK(0, j) = xj.LsJσK(0, j + 1)
LsJx.σK(1, j) = xj.LsJσK(0, j)
LsJrec x = σK(b, j) = (rec x = LsJσiK(b, j)) b ∈ {0, 1}
LsJ0K(0, j) = 0j

24

For readability, we feel free to omit the type of the function L since the
following results hold both for the client and the server. We will only use
type annotations when expressing a contract in λreq.
The following examples show the steps of a computations of a labeled client
contract and a labeled server contract. In particular, we will see that starting
from the same contract the functions generate different labeled contracts,
because of the behavior in the internal/external choice.

Example 5.1.1
σ = ((a+ b)⊕ c) + d.e

σnclient = LcJ((a+ b)⊕ c) + d.eK(0, 0) =
(LcJ((a+ b)⊕ c)K(1, 1) + LcJd.eK(1, 1))0 =
((LcJa+ bK(1, 1)⊕ LcJcK(1, 1))1 + d1.LcJeK(0, 1))0 =
(((LcJaK(1, 2) + LcJbK(1, 2))1 ⊕ c1.LcJ0K(0, 1))1 + d1.e1.LcJ0K(0, 2))0 =
(((a2.LcJ0K(0, 2) + b2.LcJ0K(0, 2))1 ⊕ c1.01)1 + d1.e1.02)0 =
(((a2.02 + b2.02)1 ⊕ c1.01)1 + d1.e1.02)0

σnserver = LsJ((a+ b)⊕ c) + d.eK(0, 0) =
(LsJ((a+ b)⊕ c)K(0, 0) + LsJd.eK(0, 0))0 =
((LsJa+ bK(1, 1)⊕ LsJcK(1, 1))0 + d0.LsJeK(0, 1))0 =
(((LsJaK(1, 1) + LsJbK(1, 1))1 ⊕ c1.LsJ0K(0, 1))0 + d0.e1.LsJ0K(0, 2))0 =
(((a1.LsJ0K(0, 1) + b1.LsJ0K(0, 1))1 ⊕ c1.01)0 + d0.e1.02)0 =
(((a1.01 + b1.01)1 ⊕ c1.01)0 + d0.e1.02)0

The following examples show the steps of the computation of recursive
contracts

Example 5.1.2
σ = rec x = a.x⊕ b.c.x

σnclient = LcJrec x = a.x⊕ b.c.xK(0, 0) =
rec x = LcJa.x⊕ b.c.xK(0, 0) =
rec x = (LcJa.xK(0, 0)⊕ LcJb.c.xK(0, 0))0 =
rec x = (a0.LcJxK(0, 1)⊕ b0.LcJc.xK(0, 1))0 =
rec x = (a0.x1.LcJ0K(0, 2)⊕ b0.c1.LcJxK(0, 2))0 =
rec x = (a0.x1.02 ⊕ b0.c1.x2.LcJ0K(0, 3))0 =
rec x = (a0.x1.02 ⊕ b0.c1.x2.03)0 =

25

Example 5.1.3
σ = rec x = a.x+ b.c.x

σnserver = LsJrec x = a.x+ b.c.xK(0, 0) =
rec x = LsJa.x+ b.c.xK(0, 0) =
rec x = (LsJa.xK(0, 0) + LsJb.c.xK(0, 0))0 =
rec x = (a0.LsJxK(0, 1) + b0.LsJc.xK(0, 1))0 =
rec x = (a0.x1.LsJ0K(0, 2) + b0.c1.LsJxK(0, 2))0 =
rec x = (a0.x1.02 ⊕ b0.c1.x2.LsJ0K(0, 3))0 =
rec x = (a0.x1.02 ⊕ b0.c1.x2.03)0 =

Our next step is the calculation of the greatest label of a contract. This
intuitively represents the maximum number of λ-abstractions of the function.
We will use this information for giving the same maximum label to all the
branches of a contract, so the transformations in λreq will be well-typed.
Let D(σn) be the maximum depth of σn where the function D is defined as:

D : σn −→ N

D(
∑

i∈I σ
ni
i
n) = max

⋃
i∈I D(σnii)

D(
⊕

i∈I σ
ni
i
n) = max

⋃
i∈I D(σnii)

D(an.σn
′
) = D(σn

′
)

D(xn.σn
′
) = D(σn

′
)

D(rec x = σn) = D(σn)
D(0n) = n

5.2 Balancing contracts

The function that generates a balanced contract adds the unit event ∗ to
each leaf until it reach the maximum label given in input. The function take
in input the contract and the maximum label calculated by the function D:4

4Note that here we only use the labels of the leaf, the other labels will be used for the
translation of the λreq Server

26

Definition 8 (Balanced contract). Given a labeled contract σn we define the
corresponding balanced contract σb as : σb = BJσnKD(σn) where:

B : σn −→ N −→ σ

BJ
∑

i∈I σ
ni
i
nKp = (

∑
i∈I BJσnii Kp)

BJ
⊕

i∈I σ
ni
i
nKp = (

⊕
i∈I BJσnii Kp)

BJan.σn′Kp = a.BJσn′Kp
BJxn.σn′Kp = x.BJσn′Kp
BJrec x = σnKp = (rec x = BJσnKp)

BJ0nKp =

{
∗.BJ0n+1Kp if n < p
0 otherwise

The following examples show the steps of the computation of balanced con-
tracts. We take the examples above: after have computed the labeled con-
tracts now this contracts will be balanced.

Example 5.2.1
σnclient = (((a2.02 + b2.02)1 ⊕ c1.01)1 + d1.e1.02)0

D(σnclient) = 2

σbclient =BJ(((a2.02 + b2.02)1 ⊕ c1.01)1 + d1.e1.02)0K2 =
BJ((a2.02 + b2.02)1 ⊕ c1.01)1K2 + BJd1.e1.02K2 =
(BJ(a2.02 + b2.02)1K2⊕ BJc1.01K2) + d.BJe1.02K2 =
((BJa2.02K2 + BJb2.02K2)⊕ c.BJ01K2) + d.e.BJ02K2 =
((a.BJ02K2 + b.BJ02K2)⊕ c. ∗ .BJ02K2) + d.e.0 =
((a.0 + b.0)⊕ c. ∗ .0) + d.e.0

σnserver = (((a1.01 + b1.01)1 ⊕ c1.01)0 + d0.e1.02)0

D(σnserver) = 2

σbserver =BJ(((a1.01 + b1.01)1 ⊕ c1.01)0 + d0.e1.02)0K2
BJ((a1.01 + b1.01)1 ⊕ c1.01)0K2 + BJd0.e1.02K2 =
(BJ(a1.01 + b1.01)1K2⊕ BJc1.01K2) + d.BJe1.02K2 =
((BJa1.01K2 + BJb1.01K2)⊕ c.BJ01K2) + d.e.BJ02K2 =
((a.BJ01K2 + b.BJ01K2)⊕ c. ∗ .BJ02K2) + d.e.0 =
((a. ∗ .BJ02K2 + b. ∗ .BJ02K2)⊕ c. ∗ .0) + d.e.0 =
((a. ∗ .0 + b. ∗ .0)⊕ c. ∗ .0) + d.e.0

27

Example 5.2.2
σnclient = rec x = (a0.x1.02 ⊕ b0.c1.x2.03)0

σbclient = BJrec x = (a0.x1.02 ⊕ b0.c1.x2.03)0KDJrec x = (a0.x1.02 ⊕ b0.c1.x2.03)0K =
rec x = BJa0.x1.02 ⊕ b0.c1.x2.03)0K3 =
rec x = BJa0.x1.02K3⊕ BJb0.c1.x2.03K3 =
rec x = a.BJx1.02K3⊕ b.BJc1.x2.03K3 =
rec x = a.x.BJ02K3⊕ b.c.BJx2.03K3 =
rec x = a.x. ∗ .BJ03K3⊕ b.c.x.BJ03K3 =
rec x = a.x. ∗ .0⊕ b.c.x.0

Example 5.2.3
σnserver = rec x = (a0.x1.02 + b0.c1.x2.03)0

σbserver = BJrec x = (a0.x1.02 + b0.c1.x2.03)0KDJrec x = (a0.x1.02 + b0.c1.x2.03)0K =
rec x = BJa0.x1.02 + b0.c1.x2.03)0K3 =
rec x = BJa0.x1.02K3 + BJb0.c1.x2.03K3 =
rec x = a.BJx1.02K3 + b.BJc1.x2.03K3 =
rec x = a.x.BJ02K3 + b.c.BJx2.03K3 =
rec x = a.x. ∗ .BJ03K3 + b.c.x.BJ03K3 =
rec x = a.x. ∗ .0 + b.c.x.0

Property 1. D(σb) = D(σn)

Proof. We have that σb = BJσnKD(σn). By applying the rule BJ0nKp we
have p = D(σn), also we cannot have n > p since by definition of D p is the
maximum depth of the contract σ, also if n < p we apply the rule BJ(0b)nKp =
∗.BJ(0b)n+1Kp and we stop only when n = p, leading to D(σb) = D(σn).

Property 2. (σb)b = σb

Proof. Let (σb)n = LJσb K(0, 0) and (σb)b = BJ(σb)nKD((σb)n), by contradic-
tion assume BJ(σb)nKD((σb)n) 6= σb. We applied at least one time the rule
BJ(0b)nKp = ∗.BJ(0b)n+1Kp with n < p , but we have n = D(σn) (definition
of σb) and p = D(LJBJσnKD(σn)K(0, 0))) = D(σn) (definition of σb and σn)
so we obtain the contradiction D(σn) < D(σn)

Property 3. σb =
∑

i∈I σ
b
i ∨ σb =

⊕
i∈I σ

b
i → ∀i.D((σbi)

ni) = D(σb)

Proof. By definition of BJ
∑

i∈I σ
ni
i
nKp = (

∑
i∈I BJσnii Kp) and BJ

⊕
i∈I σ

ni
i
nKp =

(
⊕

i∈I BJσnii Kp) and p = D(σb). Then it follows that D(BJσnii KD(σb)) =
D(σb)

The last properties show that in a balanced contract every leaf node
occurs at the same depth. This will guarantee that the translation in λreq

will not lead to any type error.

28

6 From σb to λreq

In this section, we transform balanced contracts into a λreq expressions and
policies. First we introduce some shorthands 5 6 :

1. e1; e2 = (λ.e2)(e1)

2. e1;λ.e2 = λ.(e1; e2)

3. e1;x.e2 = (λx.e2)(e1)

4. e1;λx.e2 = (λ.λx.e2)(e1)

5. µz.(λy.e) = λzy.e

6. µz.e = e{µz.e/z}

6.1 On design the client specifications for a contract

We inductively define a function C that constructs the λreq client starting
from a balanced client contract. The function takes in input a boolean the
use of which has the same utility of the one in the labeling function: we
shall avoid to add the λ-abstraction to the first action performed after the
external choice. The rules of the internal and external choice are equals as
in the previous sections7.

Definition 9. The function C that generates the λreq expression of client
starting from a balanced client contract is defined as:

C : σ −→ {0, 1} −→ e

CJ
∑

i∈I σiKb = λcx.if (cx=σ1) then
CJσ1K1

else if (cx=σ2) then
CJσ2K1

· · ·
else
CJσnK1 b ∈ {0, 1}

5The last case is not a lambda abstraction, since we have only guarded contract we
rule out expression like µh.h+ h

6Note that 3 6= 4
7We avoid to specify the type of the contract if it is clear from the context

29

CJ
⊕

i∈I σiKb = if (...) then
CJσ1Kb

else if (...) then
CJσ2Kb

· · ·
else
CJσnKb b ∈ {0, 1}

CJa.σK0 = (λ.a; CJσK0)
CJa.σK1 = (a; CJσK0)
CJx.σK0 = (λ.x; CJσK0)
CJx.σK1 = (x; CJσK0)
CJrec x = σKb = µx.CJσKb b ∈ {0, 1}
CJ0Kb = ∗ b ∈ {0, 1}

We proceed now to compute the type of the lambda expression returned
by C. This inference rules are alternative to the Type and Effect system,
with more specific types additionally we don’t have weakening rule.

CJ0Kb : 1 b ∈ {0, 1}
CJa.σK0 : 1 7−→ τCJσK0

CJa.σK1 : τCJσK0

CJx.σK0 : 1 7−→ τCJσK0

CJx.σK1 : τCJσK0

CJrec x = σKb : τCJσKb b ∈ {0, 1}

CJ
∑

i∈I σiKb : 1 7−→ τCJσ1K0 if τCJσiK0 = τCJσjK0∀i, j ∈ I b ∈ {0, 1}
CJ
⊕

i∈I σiKb : τCJσ1Kb if τCJσiK0 = τCJσjK0∀i, j ∈ I b ∈ {0, 1}

For well-typing the lambda-expression in the internal and external choice
all their sub-terms must have the same type, in a balanced contract all the
sub-terms have the same depth, it suffice to prove that two such contracts
have the same type.

Lemma 2. D(σb1) = D(σb2) −→ τCJσb1K0 = τCJσb2K0

Proof. By definition of Lc and C we observe that the labels of the contract
σn only increase when we add a λ-abstraction in the λ-expression of σb:

30

CJ0Kb : 1 b ∈ {0, 1} LcJ0K(0, j) = 0j

CJa.σK0 : 1 7−→ τCJσK0 LcJa.σK(0, j) = aj.LcJσK(0, j + 1)
CJa.σK1 : τCJσK0 LcJa.σK(1, j) = aj.LcJσK(0, j)
CJx.σK0 : 1 7−→ τCJσK0 LcJx.σK(0, j) = xj.LcJσK(0, j + 1)
CJx.σK1 : τCJσK0 LcJx.σK(1, j) = xj.LcJσK(0, j)
CJrec x = σKb : τCJσKb b ∈ {0, 1} LcJrec x = σK(b, j) = (rec x = LcJσiK(b, j))
CJ
∑

i∈I σiKb : 1 7−→ τCJσ1K0 LcJ
∑

i∈I σiK(b, j) = (
∑

i∈I LcJσiK(1, j + 1))j

CJ
⊕

i∈I σiKb : τCJσ1Kb LcJ
⊕

i∈I σiK(b, j) = (
⊕

i∈I LcJσiK(b, j))j

The number of λ-abstractions equal the greatest label calculated by D (re-
call that we have balanced contract therefore all the leaf node have the same
label and the same number of λ-abstractions); by applying the typing rule
below we obtain:

τCJσb1K0 =

D(σb1)︷ ︸︸ ︷
1 −→ (1 −→ · · · (1 −→ 1)) · · ·)

τCJσb2K0 =

D(σb2)︷ ︸︸ ︷
1 −→ (1 −→ · · · (1 −→ 1)) · · ·)

and by hypothesis D(σb1) = D(σb2)

Definition 10. The specification in λreq of the Client contract σbclient is de-
fined as:
reqr(τCJσbclientK0

ϕc7−→ τval)(CJσbclientK0) where:

τCJσbclientK0 =

D(σbclient)︷ ︸︸ ︷
1 −→ (1 −→ · · · (1 −→ 1)) · · ·)

Assume τval = 1. The Server returns the unit value * because the code
of the Client migrates to the Server and all the interactions between the two
party occur by the Server Side. There is no need for the Client to get some
value. In the external choice we abstract from the if condition and we write
cx = σi for check what sub-term σi the Server has choose. As discussed in the
previous section ϕc is equal to σclient where the outputs action are replaced
by the corresponding dual actions.
We conclude by observing that in λreq a service can make more request in
cascade, leading to a multi-contract client.
In the following example we show the steps of the computation of a λreq client.
The contract in input is the one of the previous example. Note that we do
not have type errors since the contract is balanced.

31

Example 6.1.1
σbclient = ((a.0 + b.0)⊕ c. ∗ .0) + d.e.0

ϕc = ((a+ b)⊕ c) + d.e

CJ((a.0e+ b.0)⊕ c. ∗ .0) + d.e.0K0 =λcx.if (cx= · · ·)then
CJ(a.0 + b.0)⊕ c. ∗ .0K1

else
CJd.e.0K1

CJ(a.0 + b.0)⊕ c. ∗ .0K1 =if (· · ·) then
CJa.0 + b.0K1

else
CJc. ∗ .0K1

CJd.e.0K1 = d; CJe.0K0 = d;λ.e; CJ0K0 = d;λ.e; ∗

CJa.0 + b.0K1 = λcx. if (cx= · · ·) then
CJa.0K1

else
CJb.0K1

CJc. ∗ .0K1 = c; CJ∗.0K0 = c;λ.∗; CJ0K0 = c;λ.∗; ∗

CJa.0K1 = a; CJ0K0 = a; ∗;

τCJσbclientK0 = 1→ (1→ 1)

The λreq client of σbclient = ((a.0 + b.0)⊕ c. ∗ .0) + d.e.0 is:

reqr((1→ (1→ 1))
ϕc−→ 1) λcx.if (cx= · · ·)then

if (· · ·) then
λcx. if (cx= · · ·) then

a; ∗
else

b; ∗
else

c;λ.∗; ∗
else

d;λ.e; ∗

32

In the following example we show the steps of the computation of a re-
cursive contract. The contract in input is the one of the previous example.

Example 6.1.2
σbclient = rec x = a.x. ∗ .0⊕ b.c.x.0

ϕc = rec x = a.x⊕ b.c.x

CJrec x = a.x. ∗ .0⊕ b.c.x.0K0 =
µx.CJa.x. ∗ .0⊕ b.c.x.0K0 =
µx.if (· · ·) then

CJa.x. ∗ .0K0
else

CJb.c.x.0K0 =
µx.if (· · ·) then

λ.a;λ.x;λ.∗; ∗
else

λ.b;λ.c;λ.x; ∗

τσbclient = 1→ (1→ (1→ 1))

The λreq client is:

reqr(1→ (1→ (1→ 1))
ϕc−→ 1) µx.if (· · ·) then

λ.a;λ.x;λ.∗; ∗
else

λ.b;λ.c;λ.x; ∗

6.2 On design the Server specifications for a contract

Having defined the Client now we introduce the function S that constructs
the λreq Server starting from a labeled Server contract. Note that, while in
the Client we have a unique ϕc block, in the Server we need to break the ϕs in
different blocks, as many as the depth of σserver. We take in input a boolean
with the same role of the previous functions. The rule for the internal and
external choice equals the ones described in the previous sections. The λreq

server first applies the function client and then produces the corresponding
co-actions. Note that the history expression of the Server will be inside the

33

scope of ϕclient, hence the server will perform the actions requests by ϕclient:

Definition 11. The function S that generates the λreq expression of Server
starting from a labeled server contract is defined as:

S : σn −→ {0, 1} −→ e

SJ
∑

i∈I σ
ni
i
nKb = if (fn = σ1) then

SJσn1
1 Kb

else if (fn = σ2) then
SJσn2

2 Kb
· · ·
else
SJσnnn Kb b ∈ {0, 1}

SJ
⊕

i∈I σ
ni
i
nKb = if (...) then

ϕns [fn(∗σ1)]; fn1 .(SJσn1
1 K1)

else if (...) then
ϕns [fn(∗σ2)]; fn2 .(SJσn2

2 K1)
· · ·
else

ϕns [fn(∗σn)]; fnn .(SJσnnn K1) b ∈ {0, 1}

SJan.σn′K0 = ϕns [fn(∗a)]; fn′ .(a;SJσn′K0)
SJan.σn′K1 = a;SJσn′K0
SJxn.σn′K0 = ϕns [fn(∗x)]; fn′ .(x;SJσn′K0)
SJxn.σn′K1 = x;SJσn′K0
SJrec x = σnKb = µx.SJσnKb b ∈ {0, 1}
SJ0nKb = ∗ b ∈ {0, 1}

In the external choice we abstract from the if condition and we write
fn = σi for check what sub-term σi the client have choose, note that fn is
the code of the Client.
We denote by ∗σ a σ event passed to f that don’t generate any history locally
to the Server. Note that all the branches of the if have the same type τval = 1.

34

Definition 12. The specification in λreq of a Server contract σnserver is defined
as:
λf0.SJσnserverK0 where:

τf0 =

D(σnserver)︷ ︸︸ ︷
1 −→ (1 −→ · · · (1 −→ 1)) · · ·)

τserver = τf0 −→ τval

For computing the type of the argument f0 we proceed as done before
with the client. Note that in the rule of the function Ls we increase the label
of the node when we apply the function fi in the rule of S. The number of
the applications is then equals to D(σnserver).
Note that the service hold the request of the client only if τf0 = τclient, but if
D(σserver) > D(σclient) the interaction does not occur, and the two parties can
be compliant since the client can decide to terminate instead of synchronizing
with the co-action of the server. To avoid this problem when the orchestrator
plans the execution of the services, it can balance the client contract with
the depth of the server contract to equalize the type of the two expression.
In the following example we show the steps of the computation of a λreq server.
The contract in input is the one of the previous example.

Example 6.2.1
σnserver = (((a1.01 + b1.01)1 ⊕ c1.01)0 + d0.e1.02)0

SJ(((a1.01 + b1.01)1 ⊕ c1.01)0 + d0.e1.02)0K0 = if (f0 = · · ·) then
SJ((a1.01 + b1.01)1 ⊕ c1.01)0K0

else
SJd0.e1.02K0

SJ((a1.01 + b1.01)1 ⊕ c1.01)0K0 =if (...) then
ϕ0
s[f0(∗a+b)];

f1.(SJ(a1.01 + b1.01)1K1)
else

ϕ0
s[f0(∗c)];

f1.(SJc1.01K1)

SJd0.e1.02K0 = ϕ0
s[f0(∗d)];

f1.(d;SJe1.02K0)

= ϕ0
s[f0(∗d)];

f1.(d;ϕ1
s[f1(∗e)];

f2.(e;SJ02K0))

35

= ϕ0
s[f0(∗d)];

f1.(d;ϕ1
s[f1(∗e)];

f2.(e; ∗))

SJ(a1.01 + b1.01)1K1 = if (f1 = · · ·)then
SJa1.01K1

else
SJb1.01K1

SJc1.01K1 = c; ∗
SJa1.01K1 = a; ∗
SJb1.01K1 = b; ∗

The λreq Server is:

λf0.if (f0 = · · ·) then
if (...) then

ϕ0
s[f0(∗a+b)];

f1.(if (f1 = · · ·) then
a; ∗

else
b; ∗)

else
ϕ0
s[f0(∗c)]; f1.(c; ∗)

else
ϕ0
s[f0(∗d)];

f1.(d;ϕ1
s[f1(∗e)];

f2.(e; ∗))

τserver = (1→ (1→ 1)) −→ 1

In the following example we show the steps of a computation of a λreq recursive
server. The contract is the one of the previous example.

36

Example 6.2.2
σnserver = rec x = (a0.x1.02 + b0.c1.x2.03)0

SJrec x = (a0.x1.02 + b0.c1.x2.03)0K0 =

µx.SJ(a0.x1.02 + b0.c1.x2.03)0K0 =

µx. if(f0 = · · ·) then
SJa0.x1.02K0

else
SJb0.c1.x2.03K0 =

The λreq Server is:

λf0.µx. if(f0 = · · ·) then
ϕ0
s[f0∗a]; f1.(a;

ϕ1
s[f1∗x]; f2.(x, ∗))

else
ϕ0
s[f0∗b]; f1.(b;

ϕ1
s[f1∗c]; f2.(c;

ϕ2
s[f2∗x]; f3.(x; ∗)))

Now we define a formal method to compute ϕserver. We simply split the
policy into more policies, as many as the depth of the contract. Every policy
represents a level of the tree, and it will contain in his frame the application of
the function client at that level. The function Φ takes in input the contract,
a boolean with the same role of the previous functions, and the index of the
policy we want to generate. Note that for the recursion we need to make a
step of unfolding for avoiding meaningless policies like ϕis = x. The contract
in input is first balanced and then labeled, the label is used for check the
level of depth in the tree.

Definition 13. We define the policy ϕs of the server as the set ϕs = {ϕ0
s, · · · , ϕ

|I|
s }

where:
ϕis = ΦJLsJσbserverK(0, 0)K(0, i) i ∈ I = {0, · · · ,D(σbserver)− 1} where:

Φ : σn −→ {0, 1} × N −→ σ

ΦJ
∑

i∈I σ
ni
i
nK(b, z) =

∑
i∈I ΦJσnii K(b, z) b ∈ {0, 1}

ΦJ
⊕

i∈I σ
ni
i
nK(b, z) =

{ ⊕
i∈I ΦJσnii K(1, z) if z ≥ n

ε otherwise
b ∈ {0, 1}

37

ΦJan.σn′K(0, z) =

a if z = n
ΦJσn′K(0, z) if z > n
ε otherwise

ΦJan.σn′K(1, z) =

a if z = n− 1
ΦJσn′K(0, z) if z ≥ n
ε otherwise

ΦJxn.σn′K(0, z) =

x if z = n
ΦJσn′K(0, z) if z > n
ε otherwise

ΦJxn.σn′K(1, z) =

x if z = n− 1
ΦJσn′K(0, z) if z ≥ n
ε otherwise

ΦJrec x = σnK(b, z) = ΦJσ{rec x=σn/x}K(b, z) b ∈ {0, 1}

ΦJ(rec x = σn)mK(b, z) =

{
rec x = σ if z = m
ε otherwise

b ∈ {0, 1}

ΦJ0nK(b, z) = ε b ∈ {0, 1}

The following examples compute the ϕserver of the previous example.

Example 6.2.3
σbserver = ((a. ∗ .0 + b. ∗ .0)⊕ c. ∗ .0) + d.e.0

(σbserver)
n
server =LJ((a. ∗ .0 + b. ∗ .0)⊕ c. ∗ .0) + d.e.0K(0, 0) =

(((a1. ∗1 .02 + b1. ∗1 .02)1 ⊕ c1. ∗1 .02)0 + d0.e1.02)0

I = {0, 1}

ϕ0
s =ΦJ(((a1. ∗1 .02 + b1. ∗1 .02)1 ⊕ c1. ∗1 .02)0 + d0.e1.02)0K(0, 0) =

ΦJ(((a1. ∗1 .02 + b1. ∗1 .02)1 ⊕ c1. ∗1 .02)0K(0, 0) + ΦJd0.e1.02K(0, 0) =
(ΦJ((a1. ∗1 .02 + b1. ∗1 .02)1K(1, 0)⊕ ΦJc1. ∗1 .02K(1, 0)) + d =
((ΦJa1. ∗1 .02K(1, 0) + ΦJb1. ∗1 .02K(1, 0))⊕ c) + d =
((a+ b)⊕ c) + d

ϕ1
s =ΦJ(((a1. ∗1 .02 + b1. ∗1 .02)1 ⊕ c1. ∗1 .02)0 + d0.e1.02)0K(0, 1) =

ΦJ(((a1. ∗1 .02 + b1. ∗1 .02)1 ⊕ c1. ∗1 .02)0K(0, 1) + ΦJd0.e1.02K(0, 1) =
(ΦJ((a1. ∗1 .02 + b1. ∗1 .02)1K(1, 1)⊕ ΦJc1. ∗1 .02K(1, 1)) + ΦJe1.02K(0, 1) =
((ΦJa1. ∗1 .02K(1, 1) + ΦJb1. ∗1 .02K(1, 1))⊕ ΦJ∗1.02K(0, 1)) + e =
((ΦJ∗1.02K(0, 1) + ΦJ∗1.02K(0, 1))⊕ ε) + e =

38

((ε+ ε)⊕ ε) + e

Example 6.2.4
σbserver = rec x = a.x. ∗ .0 + b.c.x.0

(σbserver)
n
server = LJrec x = a.x. ∗ .0 + b.c.x.0K(0, 0) =

rec x = (a0.x1. ∗2 .03 + b0.c1.x2.03)0

I = {0, 1, 2}

ϕ0
s = ΦJrec x = (a0.x1. ∗2 .03 + b0.c1.x2.03)0K(0, 0) =

ΦJ(a0.(rec x = a.x. ∗+b.c.x)1. ∗2 .03+
b0.c1.(rec x = a.x. ∗+b.c.x)2.03)0K(0, 0) =

ΦJa0.(rec x = a.x. ∗+b.c.x)1. ∗2 .03K(0, 0)+
ΦJb0.c1.(rec x = a.x. ∗+b.c.x)2.03K(0, 0) =

a + b

ϕ1
s = ΦJrec x = (a0.x1. ∗2 .03 + b0.c1.x2.03)0K(0, 1) =

ΦJ(a0.(rec x = a.x. ∗+b.c.x)1. ∗2 .03+
b0.c1.(rec x = a.x. ∗+b.c.x)2.03)0K(0, 1) =

ΦJa0.(rec x = a.x. ∗+b.c.x)1. ∗2 .03K(0, 1)+
ΦJb0.c1.(rec x = a.x. ∗+b.c.x)2.03K(0, 1) =

ΦJ(rec x = a.x. ∗+b.c.x)1. ∗2 .03K(0, 1)+
ΦJc1.(rec x = a.x. ∗+b.c.x)2.03K(0, 1) =

(rec x = a.x.ε+ b.c.x) + c

ϕ2
s = ΦJrec x = (a0.x1. ∗2 .03 + b0.c1.x2.03)0K(0, 2) =

ΦJ(a0.(rec x = a.x. ∗+b.c.x)1. ∗2 .03+
b0.c1.(rec x = a.x. ∗+b.c.x)2.03)0K(0, 2) =

ΦJa0.(rec x = a.x. ∗+b.c.x)1. ∗2 .03K(0, 2)+
ΦJb0.c1.(rec x = a.x. ∗+b.c.x)2.03K(0, 2) =

ΦJ(rec x = a.x. ∗+b.c.x)1. ∗2 .03K(0, 2)+
ΦJc1.(rec x = a.x. ∗+b.c.x)2.03K(0, 2) =

ΦJ∗2.03K(0, 2) + ΦJ(rec x = a.x. ∗+b.c.x)2.03K(0, 2) =
ε+ (rec x = a.x.ε+ b.c.x)

39

7 Validation

In this section we define a formal method for checking whether an history
H complies with a contract ϕσ. As discussed above we can’t use automata
since our contract are not languages of strings, so we define a rule system
that work on trees and decides the clause H |= ϕσ.
At static time the orchestrator will associate with each request the right ser-
vice that comply with the client. Note that we have defined a type of policies
that can interleave with safety policies, so we can impose safety properties
over a CCS contract. The orchestrator checks if the policy ϕσ is valid by
the rule system we define below. The first step consists in removing from
the history expression H all the safety policies ϕ, we write H[for an his-
tory expression without safety policies, for checking only policies ϕσ. Note
that for the safety policies ϕ the internal and external choice are treated
in the same manner. When the orchestrator encounters a history expression
ϕσ[H] it will check if it is valid by computing the value of the clause H |= ϕσ .

Definition 14. A history expression ϕσ[H] is valid if and only if H |= ϕσ
where:
H |= ϕσ ←→ (H[, ∅) |= ϕσ

Here we define when a history expression is ϕσ-valid, that is when a
history expression respects the contracts which occuring in it. Here we noting
that a contract ϕσ only inspects its local histories and not all the past histories
as done before by safety policies [2].

Definition 15. A history expression H[is ϕσ − valid if and only if:

H = h
H = ε
H = ϕσ[H ′]⇒ H ′ |= ϕσ ∧H ′ is ϕσ − valid
H = H ′ ·H ′′ ⇒ H ′ is ϕσ − valid ∧H ′′ is ϕσ − valid
H = H ′ ⊕H ′′ ⇒ H ′ is ϕσ − valid ∧H ′′ is ϕσ − valid
H = H ′ +H ′′ ⇒ H ′ is ϕσ − valid ∧H ′′ is ϕσ − valid
H = µh.H ′ ⇒ H ′ is ϕσ − valid
H = α.H ′ ⇒ H ′ is ϕσ − valid
H = {π1 BH1 · · · πk BHk} ⇒ H1 is ϕσ − valid ∧ · · · ∧Hk is ϕσ − valid

The rules for checking wheter ϕσ[H] is valid are defined below. We use
a set ∆ of pairs of H × ϕσ for the unfolding of recursion and we start with
∆ = ∅. In IC1, ϕσ internally decides to continue as ϕσi and H must comply

40

with all the possible choice, so we have all the possible clauses in and. In
IC2, H makes the internal choice, note that we impose |I| > 1 since if |I| = 1
we use the rule EC. In EC, it suffices that one of the possible choice is valid,
so we have an or of all the possible clauses. In ST1, H and ϕσ are able to
synchronize on an action and both made a step. In ST2, H and ϕσ cannot
synchronize so the action of H is discarded. This rule can be used only for
ϕclient, since inside the history expression of the server there could be other
requests or operations different of those specified by the policy. This is not
true for ϕserver since we split the policy into different level and inside each
level we require H i

client to perform only the actions of ϕiserver. Note that the
client service can perform other actions or requests since σclient represent a
single request and not all the history expression.
In ST3 we skip another frame, this happens when inside a ϕclient frame
there are ϕserver frames. In RE1 and RE2, we made a step in the unfolding
for H and ϕσ respectively. Note that in ϕσ it is necessary to use a marker ϕσ

∗

to check that the rule has been applied at least once. In RJ1, we reject if H
haven’t performed all the actions required by ϕσ. In RJ2, we reject because
we get into an infinite loop where the two services never synchronize. In
AC1, we accept since all the actions of ϕσ are performed. In AC2, we accept
since the two services comply infinitely. In AC3, we accept since the client
has decided to terminate. Note that * does not represent the empty his-
tory ε but the special character introduced by the function B only in σclient.
We need rule AC3 for accepting ϕserver on a client that is already terminated.

∆ = H × ϕσ
(H,∆) |= ϕσ :
IC1 : (H,ϕσ) 6∈ ∆ ∧ ϕσ =

⊕
i∈I,|I|>1 ϕσi =⇒

∧
i∈I(H,∆) |= ϕσi

IC2 : (H,ϕσ) 6∈ ∆ ∧H =
⊕

i∈I,|I|>1Hi =⇒
∧
i∈I(Hi,∆) |= ϕσ

EC : (H,ϕσ) 6∈ ∆∧ϕσ =
∑

i∈I ϕσi∧H =
∑

j∈J Hj =⇒
∨
i∈I,j∈J(Hj,∆) |= ϕσi

ST1 : (H,ϕσ) 6∈ ∆ ∧ ϕσ = a.ϕσ′ ∧H = b.H ′ ∧ a = b =⇒ (H ′,∆) |= ϕσ′
ST2 : (H,ϕσ) 6∈ ∆ ∧ ϕσ = a.ϕσ′ ∧ H = b.H ′ ∧ a 6= b ∧ σ = σclient =⇒
(H ′,∆) |= ϕσ
ST3 : (H,ϕσ) 6∈ ∆ ∧H = ϕ′σ[H ′] ·H ′′ =⇒ (H ′′,∆) |= ϕσ
RE1 : (H,ϕσ) 6∈ ∆ ∧H = µh.H ′ =⇒ (H ′{H/h},∆ ∪ {(H,ϕσ)}) |= ϕσ
RE2 : (H,ϕσ) 6∈ ∆ ∧ ϕσ = rec x = ϕ′σ =⇒ (H,∆ ∪ {(H,ϕσ)}) |= ϕ′σ{ϕ

∗
σ/x}

RJ1 : H = ∅ ∧ ϕσ 6= 0 =⇒ false
RJ2 : (H,ϕσ) ∈ ∆ ∧ ¬ϕ∗σ =⇒ false
AC1 : ϕσ = 0 =⇒ true
AC2 : (H,ϕσ) ∈ ∆ ∧ ϕ∗σ =⇒ true
AC3 : H = ∗.H ′ =⇒ true

41

With this rules the orchestrator binds services and requests only if the
compliance is ensured by the policy ϕclient and ϕserver. Note that if we only
use ϕclient, two contract like σ1 = a and σ2 = b.a result valid while they are
not compliant, since we have the weakening rule ST2. To ensure that the
contracts synchronize on an action, we need both ϕclient and ϕserver. In the
following theorem we use unfolded contracts which are infinite terms gener-
ated by repeated infinitely the unfolding of recursive contracts. We know that
a recursive contract σ = rec x = σ′ equals his unfolded contract σ′{σ/x}8,
so we have: σclient a σserver ←→ σ′client{σclient/x} a σ′server{σserver/x}. The
following results are stated for unfolded contracts, we conjecture that they
hold for the corresponding recursive contracts too. In the following theorem
we show that two unfolded contracts complies if and only if the respective
translation in λreq is valid.

Theorem 1. Given two unfolded contract σclient and σserver and the asso-
ciates λreq expressions :
eclient : reqrclient(τclient

ϕc7−→ 1)(CJBJσclientKD(σserver)K0)
with Hclient ` CJBJσclientKD(σserver)K0 : τclient
eserver : λf0.SJσnserverK0 we have:

σclient a σserver ←→ {rclient[`server] BHserver} is ϕσ-valid

Proof. −→ By structural induction on σclient:
σclient = 0 : we have ϕclient = ∅ that is compliant with every σserver; by
rule AC1 ϕclient[Hserver] evaluates to true. Also since σclient is balanced with
D(σserver), we have that ∀i.ϕis[∗] evaluates to true by rule AC3.

σclient = α.σ′client : since the two contracts are compliant the server contract
is able to synchronize with α, so it is in the form σserver = α.σ′server + σ′′server
and σ′client a σ′server. We have ϕclient = α.ϕ′client, ϕ

i
s = α + · · · and Hserver =

ϕclient[ϕ
i
s[α] ·α ·H ′server +ϕis[α] ·H ′′server], for ϕclient by rule EC ST3 and ST1

we obtain H ′server |= ϕ′client∨ · · · ⇒ true, for ϕis we have α |= α+ · · · ⇒ true .

σclient =
∑

i∈I σ
i
client : since the two contracts are compliant the server is

able to synchronize with one or more σiclient, so it is in the form σserver =∑
z∈Z σ

z
server + σ′′server or σserver =

⊕
j∈J σ

j
server + σ′′server where 0 < |J | ≤

|I|, |Z| > 0 and ∀j ∈ J, z ∈ Z.σjclient a σjserver ∧σzclient a σzserver. So we have at

least one σ
j/z
server that complies with σ

j/z
client. We have ϕclient =

∑
i∈I ϕ

i
client and

8a complete proof can be found on [3]

42

Hserver = ϕclient[
∑

z∈Z H
z
server + H ′′server] or Hserver = ϕclient[

⊕
j∈J H

j
server +

H ′′server]. In the first case by rule EC we obtain Hz
server |= ϕzclient∨ · · · ⇒ true

and in the second case by rule EC and IC2 we obtain Hj
server |=

∧
j∈J ϕ

j
client∨

· · · ⇒ true by induction hypothesis.

σclient =
⊕

i∈I σ
i
client : since the two contracts comply the server is able to syn-

chronize with all the σiclient, so it is in the form σserver =
∑

j∈J σ
j
server+σ′′server

where |J | > |I| and ∀i ∈ I : σiclient a σiserver. We have ϕclient =
⊕

i∈I ϕ
i
client

and Hserver = ϕclient[
∑

j∈J H
j
server + H ′′server] and by rule IC1 and EC we

obtain H i
server |=

∧
i∈I ϕ

i
client ∨ · · · ⇒ true by induction hypothesis.

←− by structural induction on σclient:
σclient = 0 : for every σserver we have σclient a σserver

σclient = α.σ′client : since Hserver is ϕσ−valid it must be in the form α.σ′server+
σ′′server or by contradiction ϕis[α] is not valid, by induction hypothesis we have
σ′client a σ′server, and we conclude σclient a σserver

σclient =
∑

i∈I σ
i
client : by hypothesis we have thatHserver = H ′′′server·(

∑
z∈Z H

z
server+

H ′′server) or Hserver = H ′′′server · (
⊕

j∈J H
j
server + H ′′server) where 0 < |J | ≤

|I|, |Z| > 0 and there must be H ′′′server = ε or we have ϕH′′′server 6= 0 and by
contradiction Hserver is not valid; so we have σserver =

∑
z∈Z σ

z
server + σ′′server

or Hserver =
⊕

j∈J σ
j
server + σ′′server and by induction hypothesis we obtain

σclient a σserver

σclient =
⊕

i∈I σ
i
client : by hypothesis we haveHserver = H ′′′server·(

∑
j∈J H

j
server+

H ′′server) where |J | > |I| and there must be H ′′′server = ε or we have ϕH′′′server 6= 0
and by contradiction Hserver is not valid; so we have σclient =

⊕
i∈I σ

i
client and

σserver =
∑

j∈J σ
j
server + σ′′server and we have σclient a σserver

The following example show the use of the marker ϕσ
∗, if we do not use

the marker the two following services would comply:

Example 7.0.5
ϕσ = b H = µh.ah

(µh.ah, ∅) |= b
RE1
=⇒ (a.H, {(H, b)}) |= b

ST2
=⇒

(H, {(H, b)}) |= b
RJ2
=⇒ false

43

In the following example the two services correctly complies:

Example 7.0.6
ϕσ = ((a+ b)⊕ c) + d.e H = (b+ c)⊕ d.e

((b+ c)⊕ d.e, ∅) |= ((a+ b)⊕ c) + d.e
IC2
=⇒

(b+ c, ∅) |= ((a+ b)⊕ c) + d.e ∧ (d.e, ∅) |= ((a+ b)⊕ c) + d.e
EC
=⇒

(
1

(b+ c, ∅) |= (a+ b)⊕ c ∨
2

(b+ c, ∅) |= d.e) ∧
3

((d.e, ∅) |= (a+ b)⊕ c ∨
4

(d.e, ∅) |= d.e)

1 (b+ c, ∅) |= (a+ b)⊕ c IC1
=⇒ ((b+ c, ∅) |= a+ b) ∧ ((b+ c, ∅) |= c)

EC
=⇒

((b, ∅) |= a ∨ (b, ∅) |= b) ∨ (c, ∅) |= a ∨ (c, ∅) |= b))∧
((b, ∅) |= c) ∨ (c, ∅) |= c)

ST1,ST2,RJ1,AC1
=⇒ · · ·

(false ∨ true ∨ false ∨ false) ∧ (false ∨ true) = true

2 (b+ c, ∅) |= d.e
EC
=⇒ (b, ∅) |= d.e ∨ (c, ∅) |= d.e

ST2
=⇒

(0, ∅) |= d.e ∨ (0, ∅) |= d.e
RJ1
=⇒ false

3 (d.e, ∅) |= (a+ b)⊕ c IC1
=⇒ (d.e, ∅) |= a+ b ∧ (d.e, ∅) |= c

EC
=⇒

((d.e, ∅) |= a ∨ (d.e, ∅) |= b) ∧ (d.e, ∅) |= c
ST2×2
=⇒

((0, ∅) |= a ∨ (0, ∅) |= b) ∧ (0, ∅) |= c
RJ1
=⇒ (false ∨ false) ∧ false = false

4 (d.e, ∅) |= d.e)
ST1×2
=⇒ (0, ∅) |= 0

AC1
=⇒ true

(true ∨ false) ∧ (false ∨ true) = true =⇒ H |= ϕσ : true

The following examples show the use of the rule RE2 and AC2:

Example 7.0.7
ϕσ = rec x = a.x⊕ b.c.x H = µh.a.h+ b.c.h

(µh.a.h+ b.c.h, ∅) |= rec x = a.x⊕ b.c.x RE1
=⇒

(H ′ = a.H + b.c.H, {(H,ϕσ)}) |= rec x = a.x⊕ b.c.x RE2
=⇒

(H ′,∆ = {(H,ϕσ), (H ′, ϕσ)}) |= a.ϕ∗σ ⊕ b.c.ϕ∗σ
IC1
=⇒

1

(H ′,∆) |= a.ϕ∗σ ∧
2

(H ′,∆) |= b.c.ϕ∗σ

44

1 (a.H + b.c.H,∆) |= a.ϕ∗σ
EC
=⇒

(a.H,∆) |= a.ϕ∗σ ∨ (b.c.H,∆) |= a.ϕ∗σ
ST1
=⇒

(H,∆) |= ϕ∗σ ∨ (b.c.H,∆) |= a.ϕ∗σ
AC2
=⇒

true ∨ (b.c.H,∆) |= a.ϕ∗σ = true

2 (a.H + b.c.H,∆) |= b.c.ϕ∗σ
EC
=⇒

(a.H,∆) |= b.c.ϕ∗σ ∨ (b.c.H,∆) |= b.c.ϕ∗σ
ST1×2
=⇒

(a.H,∆) |= b.c.ϕ∗σ ∨ (H,∆) |= ϕ∗σ
AC2
=⇒

(a.H,∆) |= b.c.ϕ∗σ ∨ true = true

(µh.a.h+ b.c.h, ∅) |= rec x = a.x⊕ b.c.x : true ∧ true = true

Example 7.0.8
ϕσ = rec x = a.x H = a.µh.a.h

(a.µh.a.h, ∅) |= rec x = a.x
RE1
=⇒

(a.µh.a.h, {(a.µh.a.h, ϕσ)}) |= a.ϕ∗σ
ST1
=⇒

(µh.a.h, {(a.µh.a.h, ϕσ)}) |= ϕ∗σ = (rec x = a.x)∗
RE2
=⇒

(µh.a.h, {(a.µh.a.h, ϕσ), (µh.a.h, ϕ∗σ)}) |= a.ϕ∗σ
RE1
=⇒

(a.µh.a.h,∆ = {(a.µh.a.h, ϕσ), (µh.a.h, ϕ∗σ), (µh.a.h, a.ϕ∗σ)}) |= a.ϕ∗σ
ST1
=⇒

(µh.ah,∆) |= ϕ∗σ
AC2
=⇒ true

(a.µh.a.h, ∅) |= rec x = a.x : true

7.1 Subcontract

In the first section we recalled the subcontract relation �. This relation holds
in λreq too, so we can replace a service σ1 with another service σ2 if σ1 � σ2.
Before stating the theorem, we give some intuition: for the width sub-typing
we note that adding more choices in an external choice(i.e. a+ b � a+ b+ c)
can never break the validity of the composition since in the validations we
have another clause in or(i.e. a ∨ b = true → a ∨ b ∨ c = true). For a
more deterministic contract like a ⊕ b � a we note that erasing an internal

45

choice cannot break validity, since in the validations we erase a clause in and
with other clauses(i.e. a ∧ b = true → a = true). For the depth sub-typing
like a � a.b we note that Hserver |= ϕclient is true when all the actions in
ϕclient are performed by Hserver; validity is preserved also if Hserver performs
other actions. H i

client |= ϕis is true since the λreq client is balanced with the
depth of the server and this will add special actions ∗ that by rule AC3 are
recognized by the policies ϕis.
The following theorem shows that the substitution never breaks validity of
compositions.

Theorem 2. Let σc be a client contract and σs1, σs2 be server contracts where
σc a σs1, let ec be the λreq expression for the client contract and es1, es2 be
the λreq expressions for the server contracts and let π = rclient[`s1]|π′′ be the
plan that binds the request of the client ec to the server es1, furthermore the
history generated is π-valid.

If σs1 � σs2 then the history generated under the new plan π′ = rclient[`s2]|π′′
is π-valid.

Proof. Since σs1 � σs2 and σc a σs1 it follows that σc a σs2 by definition of
�, the thesis follow from Theorem 1.

7.2 Multi-Party

In λreq we can model multi-party interaction: if we want a service to performs
different client contracts σc1 · · · σcn we simply create the λreq client service
with all the requests in cascade. In this way each request can be taken by
a different service. Note that if we make a single request with the contract
σ =

⊕
i∈I σci, the request will be satisfied only if there is a single service able

to comply with all the client contracts.

Definition 16. Let σc1 · · ·σcn be client contracts, we define the λreq multi-
party client as:

reqr1(τval1
ϕc1−−→ 1)(CJσbc1K0);

reqr2(τval2
ϕc2−−→ 1)(CJσbc2K0);

· · ·
reqrn(τvaln

ϕcn−−→ 1)(CJσbcnK0)

with CJσbc1K0 : τval1, · · · , CJσbcnK0 : τvaln

46

If we want a service to perform different service contracts σs1 · · ·σsn,
we can compose the services with the external choice. The service will be
planned to hold more requests. Note that all the σsi are balanced with the
most general contracts.

Definition 17. Let σs1 · · · σsn be server contracts, we define the λreq multi-
party server as:

λf0.SJ((
∑

i∈I σsi)
b)nK0

We can also make a service perform a client contract and a server contract.
Let [σ] be a client contract inside a server contract, we define the rule for the
compositions of a client contract and a server contract.

Definition 18. Let σc be a client contract and σs a server contract. The
λreq server of the composition [σc].σs is defined as:

SJ[σc].σsKb =reqr(τval
ϕc−→ 1)(CJσbcK0)

SJσsKb b ∈ 0, 1
with CJσbcK0 : τval

Here we give the classic example where a client asks a service to book a
flight and book an hotel room. The service acts like a broker: by asking an
airline to book the flight and an hotel to book a room. Then it answer the
client.

Example 7.2.1
The contracts to be transformed are:

σclient =FlightRequest(FlightConfirmed.

.HotelRoomRequest(RoomConfirmed+RoomDenied) + FlightDenied)

σbroker−server = FlightRequest.[σbroker−airline−client].(FlightConfirmed.

HotelRoomRequest.[σbroker−hotel−client].(RoomConfirmed⊕RoomDenied)

⊕FlightDenied)

σbroker−airline−client = BookF light.(BookF lightConfirmed+BookF lightDenied)

47

σbroker−hotel−client = BookRoom.(BookRoomConfirmed+BookRoomDenied)

σairline−server = BookF light.(BookF lightConfirmed+BookF lightDenied)

σhotel−server = BookRoom.(BookRoomConfirmed⊕BookRoomDenied)

Note that the broker service implements three different contracts.
Here we give the λreq expressions:

Client :

reqr1(1→ (1→ (1→ (1→ 1)))
ϕclient−−−−→ 1)

(λ.F lightRequest;
λcx.if (cx = ∗FlightConfirmed) then

DflightConfirmed;
λ.HotelRoomRequest;
λcx2.if (cx2 = ∗RoomConfirmed) then

DRoomConfirmed;
else

DRoomDenied;
else

DFlightDenied;
λ.∗;
λ.∗);

ϕclient = DFlightRequest(FlightConfirmed.
.DHotelRoomRequest(RoomConfirmed+RoomDenied) + FlightDenied)

AirlineServer :
λf0.ϕ

0
as[f0∗bookflight]; f1.(DBookF light;

if (· · ·) then
ϕ1
as[f1∗bookflightconfirmed]; f2.(

BookF lightConfirmed)
else

ϕ1
as[f1∗bookflightdenied]; f2.(

BookF lightDenied))

ϕ0
as = BookF light

ϕ1
as = DBookF lightConfirmed⊕DBookF lightDenied

48

HotelServer :
λf0.ϕ

0
hs[f0∗bookroom]; f1.(DBookRoom;

if (· · ·) then
ϕ1
hs[f1∗bookroomconfirmed]; f2.(

BookRoomConfirmed)
else

ϕ1
hs[f1∗bookroomdenied]; f2.(

BookRoomDenied))

ϕ0
hs = BookRoom

ϕ1
hs = DBookRoomConfirmed⊕DBookRoomDenied

Broker :
λf0.ϕ

0
is[f0∗flightrequest]; f1.(DFlightRequest;

(reqr2(1→ (1→ 1)
ϕairline−client−−−−−−−−→ 1)

(λ.BookF light;
λcx.if (cx == ∗bookflightconfirmed) then

DBookF lightConfirmed;
else

DBookF lightDenied;))

if (· · ·) then
ϕ1
is[f1∗flightconfirmed]; f2.(FlightConfirmed;

ϕ2
is[f2∗DHotelRoomRequest]; f3.(DHotelRoomRequest;

(reqr3(1→ (1→ 1)
ϕhotel−client−−−−−−−→ 1)

(λ.BookRoom;
λcx.if (cx == ∗bookroomconfirmed) then

DBookRoomConfirmed;
else

DBookRoomDenied;))

if (· · ·) then
ϕ3
is[f3∗RoomConfirmed]; f4.(RoomConfirmed; ∗)

else
ϕ3
is[f3∗RoomDenied]; f4.(RoomDenied; ∗)))

else
ϕ1
hs[f1∗flightdenied]; f2.(FlightDenied; ∗))

49

ϕairline−client = DBookF light(BookF lightConfirmed+BookF lightDenied)
ϕhotel−client = DBookRoom(BookRoomConfirmed+BookRoomDenied)
ϕ0
is = FlightRequest

ϕ1
is = DFlightConfirmed⊕DFlightDenied

ϕ2
is = HotelRoomRequest⊕ ε

ϕ3
is = (DRoomConfirmed⊕DRoomDenied)⊕ ε

τbroker = (1→ (1→ (1→ (1→ 1)))) −→ 1
τairline−server = (1→ (1→ 1)) −→ 1
τhotel−server = (1→ (1→ 1)) −→ 1

The plan will be :
π = r1[`broker]|r2[`airline−server]|r3[`hotel−server]

The history expressions generated will be:

Hclient = ε

Hairline =ϕairline−client[ϕ
0
as[BookF light] ·DBookF light(

ϕ1
as[DBookF lightConfirmed+DBookF lightDenied] ·BookF lightConfirmed
⊕ϕ1

as[DBookF lightConfirmed+DBookF lightDenied] ·BookF lightDenied)]

Hhotel =ϕhotel−client[ϕ
0
hs[BookRoom] ·DBookRoom(

ϕ1
hs[DBookRoomConfirmed+DBookRoomDenied] ·BookRoomConfirmed
⊕ϕ1

hs[DBookRoomConfirmed+DBookRoomDenied] ·BookRoomDenied)]

Hbroker =ϕclient[ϕ
0
is[FlightRequest] ·DFlightRequest(

ϕ1
is[DFlightConfirmed+DFlightDenied] · FlightConfirmed·

ϕ2
is[HotelRoomRequest+ ε] ·DHotelRoomRequest(

ϕ2
is[(DRoomConfirmed+DRoomDenied) + ε] ·RoomConfirmed⊕

ϕ2
is[(DRoomConfirmed+DRoomDenied) + ε] ·RoomDenied)
⊕ϕ1

is[DFlightConfirmed+DFlightDenied] · FlightConfirmed]

As we can see, all the history expressions are valid. Thus at runtime
the services will behave as defined by their contracts, and the interactions
terminate successfully.

50

8 Conclusions

In this dissertation we introduced contracts in λreq . This gave us the ad-
vantage of expressing multi-party interactions, which is not possible with
the contracts of [3]. It was also possible to express security policies on con-
tracts, sessions in λreq , and the substitution of a service with an equivalent
one without breaking the validity of the composition. The transformation
of contracts in λreq expressions also provide an executable specification of a
service.

Other extensions concerns the extension of the proof of validity from con-
tracts as infinite trees to recursive finite contracts. Furthermore we would like
to study if it is possible to avoid dual actions, and checking the compliance
with a single policy for both clients and services.

51

References

[1] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, Roberto
Zunino. Call-by-Contract and Secure Service Orchestration, 2009.

[2] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari. Planning and
verifying service composition, 2009.

[3] Giuseppe Castagna, Niel Gesbert, Luca Padovani. A Theory of Contracts
for Web Services, 2008.

[4] M.Papazoglou and D.Georgakopoulos. Special issue on service oriented
computing, 2003.

[5] G.Alonso, F.Casati,H.Kuno and V.Machiraju. Web service: Concepts,
Architectures and Applications, 2004.

[6] R.Milner. A Calculus of Communicating Systems, 1980

[7] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari. Types and
effects for secure service orchestration, 2006.

[8] A. Church. A Formulation of the Simple Theory of Types, 1940

52

