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Foreword

The field of shape optimization problems has received a lot of attention in recent
years, particularly in relation to a number of applications in physics and engineering
that require a focus on shapes instead of parameters or functions. In general for ap-
plications the aim is to deform and modify the admissible shapes in order to optimize
a given cost function. The fascinating feature is that the variables are shapes, i.e., do-
mains of Rd, instead of functions. This choice often produces additional difficulties for
the existence of a classical solution (that is an optimizing domain) and the introduc-
tion of suitable relaxed formulation of the problem is needed in order to get a solution
which is in this case a measure. However, we may obtain a classical solution by im-
posing some geometrical constraint on the class of competing domains or requiring the
cost functional verifies some particular conditions. The shape optimization problem is
in general an optimization problem of the form

min{F (Ω) : Ω ∈ O},

where F is a given cost functional and O a class of domains in Rd. They are many
books written on shape optimization problems; among them we may cite [4], [18], [21],
[23], [31], [55], [63], [64], [67], [70], [73], [79] [80], [87], [92]. The thesis is organized
as follows: the first chapter is dedicated to the brief introduction and presentation of
some examples. In Academic examples, we present the isoperimetric problems, min-
imal and capillary surface problems and the spectral optimization problems while in
applied examples the Newton’s problem of optimal aerodynamical profile and optimal
mixture of two conductors are considered. The second chapter is concerned with some
basics elements of geometric measure theory that will be used in the sequel. After re-
calling some notions of abstract measure theory, we deal with the Hausdorff measures
which are important for defining the notion of approximate tangent space. Finally we
introduce the notion of approximate tangent space to a measure and to a set and also
some differential operators like tangential differential, tangential gradient and tangen-
tial divergence. The third chapter is devoted to the topologies on the set of domains in
Rd. Three topologies induced by convergence of domains are presented namely the con-
vergence of characteristic functions, the convergence in the sense of Hausdorff and the
convergence in the sense of compacts as well as the relationship between those different
topologies. In the fourth chapter we present a shape optimization problem governed by
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linear state equations. After dealing with the continuity of the solution of the Lapla-
cian problem with respect to the domain variation (including counter-examples to the
continuity and the introduction to a new topology: the γ- convergence), we analyze the
existence of optimal shapes and the necessary condition of optimality in the case where
an optimal shape exists. The shape optimization problems governed by nonlinear state
equations are treated in chapter five. The plan of study is the same as in chapter
four that is continuity with respect to the domain variation of the solution of the p-
Laplacian problem (and more general operator in divergence form), the existence of
optimal shapes and the necessary condition of optimality in the case where an optimal
shape exists. The last chapter deals with asymptotical shapes. After recalling the no-
tion of Γ-convergence, we study the asymptotic of the compliance functional in different
situations. First we study the asymptotic of an optimal p-compliance-networks which
is the compliance associated to p-Laplacian problem with control variables running in
the class of one dimensional closed connected sets with assigned length. We provide
also the connection with other asymptotic problems like the average distance problem.
The asymptotic of the p-compliance-location which deal with the compliance associ-
ated to the p-Laplacian problem with control variables running in the class of sets of
finite numbers of points, is deduced from the study of the asymptotic of p-compliance-
networks. Secondly we study the asymptotic of an optimal compliance-location. In
this case we deal with the compliance associated to the classical Laplacian problem
and the class of control variables is the class of identics n balls with radius depending
on n and with fixed capacity.
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Main Notations

Lk k-dimensional Lebesgue measure
Hk k-dimensional Hausdorff measure
dµ
dν

Radon-Nikodym derivative of µ w.r.t. ν
µ� ν the measure µ is absolutely continuous w.r.t. ν
µ ⊥ ν measures µ and ν are mutually singular
µn ⇀ ν the sequence of measures µn converges weakly to the measure µ
µn

∗
⇀ ν the sequence of measures µn converges weakly∗ to the measure µ

µ = fν measure µ absolutely continuous w.r.t. ν
A b B A has compact closure in B
χA characteristic function of A e.i. χA(X) = 1 if x ∈ A and 0 otherwise
Sk−1
r sphere of radius r in Rk

Br(x) ball of radius r centered at x
dH(K1, K2) Hausdorff distance between compact sets K1 and K2

dH(A,B) Hausdorff distance between open sets A and B
O class of domains in Rd

P (Ω) perimeter of the set Ω
PD(Ω) perimeter of the set Ω relative to D
∂Ω boundary of the set Ω
C0(Ω, B) space of continuous functions from Ω to B
Cc(Ω) space of continuous functions with compact support in Ω
C∞c (Ω, B) space of smooth functions from Ω to B with compact support
Lp(Ω) space of p-sommable Lebesgue measurable functions
W 1,p(Ω) standard Sobolev space of Lp functions, with distributional gradient in Lp

W 1,p
0 (Ω) closure of C∞c (Ω) in the W 1,p norm
P(Ω) space of Borel probability measures over Ω

div divergence operator, if u : Rd → Rd then divu =
∑d

j=1
∂uj
∂xj

∇ gradient operator, if u : Rd → R then ∇u =
(
∂u
∂x1
· · · ∂u

∂xd

)
∆ Laplace operator, if u : Rd → R then ∆u =

∑d
j=1

∂2uj
∂x2j

∆p p-Laplace operator, if u : Rd → R then ∆pu =
∑d

j=1
∂
∂xj

(
|∇u|p−2 ∂u

∂xj

)
dEf tangential differential of f on E
divEf tangential divergence of f on E
∇Ef tangential gradient of f on E
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Chapter 1

Introduction and Examples

This first chapter is dedicated to the brief introduction and presentation of some
examples. After a brief presentation of the shape optimization problems, we describe
two categories of examples: academics and applied. In Academic examples, we present
the isoperimetric problems, minimal and capillary surface problems and the spectral
optimization problems while in applied examples the Newton’s problem of optimal
aerodynamical profile and optimal mixture of two conductors are considered.

1.1 Introduction

In this chapter, we present a shape optimization problem in a general setting and
describe some practical shape optimization problems or some problems that can be seen
as a shape optimization problems. A shape optimization problem is an optimization
problem of the form:

min{F (Ω) : Ω ∈ O},

where F is a given cost functional that has to be optimized and O a class of domains
in Rd. In this kind of optimization problems, we do not have always the existence
of an optimal solution and we may need some additional conditions under which the
existence of an optimal shape occurs. These conditions are either restricting the set
of competing domains or assume the cost functional to satisfy some particular form.
We want to stress that, in several situations an optimal domain does not exist; this is
mainly due to the fact that in these cases the minimizing sequences are highly oscillating
and converge to a limit object which is a measure. Then the solutions in these cases
are measures (in general not domains). One class of optimal shape problems is the
following: minimizing the integral functional of the form∫

D

F (x, u(x),∇u(x))dx

where u is the solution of some partial differential equation solved on Ω subset of D. In
this thesis, we will deal mostly with this kind of shape optimization problems where u is
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a solution of an elliptic equation in divergence form with Dirichlet boundary conditions.
A variant of this formulation is that of control problems; in this formulation the shape
is in general the control. In this case one minimizes an energy or work functional with
respect to the design parameters. The nature of these parameters can vary. They may
reflect material properties of the structure. In this case, the control variables enter
into coefficients of differential equation (as in the example of an optimal mixture of
two conductors given below). If one optimizes the distribution of loads applied to the
structure, then the control variables appear in the right hand side of the equation.

If an optimal shape exists, in general we do not know it. In order to give a qualitative
description of the optimal solutions of a shape optimization problem, it is important to
derive the so-called necessary conditions of optimality. These conditions, as it usually
happens in all optimization problems, have to be derived from the comparison of the
cost of an optimal solution Ω to the cost of other suitable admissible domains, close
enough to Ω. This procedure is what is usually called a variation near the solution.
The difficulty in obtaining necessary conditions of optimality for shape optimization
problems consists in the fact that, being the unknown domain, the notion of neighbor-
hood is not a priori clear; the possibility of choosing a domain variation could then
be rather wide. The same method can be applied, when no classical solution exists,
to relaxed solutions, and this will provide qualitative information about the behavior
of minimizing sequences of the original problem. One may be interested also in other
questions such as the geometric or topological properties of an optimal shape (symme-
try, convexity, connectedness, open sets...) and other regularity properties. In general
we may distinguish three branches of shape optimization.

1. Sizing optimization: a typical size of a structure is optimized (for example, a
thickness distribution of a beam or a plate);

2. shape optimization itself: the shape of a structure is optimized without changing
the topology;

3. topology optimization: the topology of a structure, as well as the shape is opti-
mized.

In the following section, some examples of shapes are described.

1.2 Some academic examples

We present three academic examples. The isoperimetric problems which have many
variants and are seen as one of the classical example of shape optimization problems, the
minimal and capillary surfaces and the spectral optimization problems are discussed.
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1.2.1 Isoperimetric Problems

The Isoperimetric problems go back to the antiquity. One classical example is
as follows: We have in possession the cloture of given length and we want to find a
shape of a camp that can be enclosed by this cloture and has maximal area. It is well
known since Greek mathematicians that the solution of this problem is a disc. The
mathematical formulation is the so called isoperimetric inequality which is: if Ω is a
planar domain with finite area (|Ω| <∞) and of perimeter P (Ω), then

|Ω| ≤ 1

4π
P (Ω)2

and the equality occurs when Ω is a disc. A variance of this problem is sometimes
associated to the name of queen Dido. In fact Dido was daughter of the phenician king
Tiro. Her brother Pygmalion, after the dead of their father, killed Dido’s husband which
was a rich and powerful priest of the God Melkart. So she decided to leave with her
husband’s treasures and some followers and docked at the African north coast. There
she bought from the king of Messitania, Jarbas as much land as it can be contained in
ox-skin. Dido cut that skin in many thin strips and them she stringed them together
getting the longest possible strip of skin. The queen Dido chosen to draw her Cartage
(new kingdom or new city) in a such a way that one border is the African coast (fix
border) and the other free border (materialized by strip of skin) is an arc of circle which
provided effectively a domain with the greatest possible area. This gives a solution to
the isoperimetric problem.

An analogous isoperimetric inequality in any dimension d can be written as follows:

|Ω|d−1 ≤ 1

ddwd
P (Ω)d

where P (Ω) stands for the area of the boundary of the d- dimensional domain Ω, |Ω| its
volume and ωd is the d-dimensional volume of the unit ball. One interesting problem
is to exchange the role of the volume and the perimeter, that is looking for a domain
which has a minimal perimeter among all domains with given volume. Mathematically,
this is given by the following shape optimization problem:

min{P (Ω), Ω bounded domain of Rd, |Ω| = m0} (1.1)

where m0 is a given positive real number. Here, once again the solution is a ball. An
other version is to consider the problem of minimization of the perimeter of all domains
with given volume and contained in a given domain T . The solution of this problem
is either a ball if the domain T can contain a ball of volume m0 or a domain whose
one boundary is part of a sphere and the other is part of the boundary of T (Dido’s
problem). To conclude this part we give the general formulation of the isoperimetric
problem. Given a closed D subset of Rd and f a given L1

loc(Rd) function. We minimize
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the perimeter among all Borel subsets Ω ⊂ D once the quantity
∫

Ω
f(x)dx is prescribed.

The perimeter of a Borel set Ω is defined by

P (Ω) =

∫
Rd
|∇χΩ|dx = Hd−1(∂∗Ω)

where ∇χΩ is the distributional derivative of the characteristic function of Ω and ∂∗Ω
is the reduced boundary of Ω in the sense of geometric measure theory. By using the
property of the BV spaces, when D is bounded we obtain the lower semicontinuity
and the coercivity of the perimeter for the L1 convergence. This allows us to apply the
Direct method of the calculus of variations and to obtain the existence of an optimal
solution for the problem

min{P (Ω) : Ω ⊂ D,

∫
Ω

f(x)dx = m0}. (1.2)

It is easy to see that in general the problem (1.2) may have no solution if we drop the
assumption D is bounded (see for instance [20], [31]).

1.2.2 Minimal and Capillary Surfaces

The minimal surface called also Plateau’s problem is considered to be the wellspring
of questions in geometric measure theory. Named in honor of the nineteenth century
Belgian physicist Joseph Plateau who studied surface tension phenomena in general,
and soap films and soap bubbles in particular, the question (in its original formulation)
was to show that a fixed, simple closed curve in three-space will bound a surface of the
type of a disc and having minimal area. Further, one wishes to study uniqueness for
this minimal surface, and also to determine its other properties. This problem may be
seen as a shape optimization problem. Given a simple closed curve γ in R3 we have
the following minimization problem

min{area(Ω) : Ω surface with boundary γ} (1.3)

Jesse Douglas solved the original Plateau’s problem by considering the minimal
surface to be a harmonic mapping (which one sees by studying the Dirichlet integral).
Unfortunately, Douglas methods do not adapt well to higher dimensions, so it is desir-
able to find other techniques with broader applicability. A capillary surface is one of
the generalization of the minimal surface. Consider an interact container containing
a liquid. This liquid acts to the internal wall of the container by capillarity and the
question is to find a form taken by the interface liquid-air (free boundary of the liquid).
More details may be found in [61]. The mathematical formulation is: assume we have
an open bounded set with smooth boundary D in R3 which represent the interior of
the container and the volume of the liquid v, denoting by Ω the space occupied by
the liquid, the total energy of the system (container plus liquid) is the sum of surface
tension
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E1(Ω) := area(∂Ω ∩D) + (cos γ)area(∂Ω ∩ ∂D) (1.4)

and of the potential energy of gravity

E2(Ω) := −
∫

Ω

K(x)dx (1.5)

where γ is a given angle and K a bounded function both from the characteristic of the
liquid. The shape optimization considered is of the form

min{E1(Ω) + E2(Ω) : Ω ⊂ D, |Ω| = v} (1.6)

The solution of this problem that is the optimal domain has a mean curvature
equals to K everywhere on the free boundary ∂Ω ∩D and the free boundary make an
angle θ with the wall of the container.

1.2.3 Spectral optimization problems

For every admissible domain Ω we consider the Dirichlet Laplacian −∆ which,
under mild conditions on Ω, admits a compact resolvent and so a discrete spectrum
λ(Ω). The cost functional is of the form

F (Ω) = Φ(λ(Ω))

for a suitable function Φ. For instance, taking Φ(λ) = λk we may consider the opti-
mization problem for the k-th eigenvalue of −∆

min{λk(Ω) : Ω ⊂ O}. (1.7)

The volume constraint implies the existence of the classical solution of the minimiza-
tion problem (1.7). More generally the volume constraint implies also the existence of
the classical solution of minimization problem (1.7) where the cost functional is Φ(λ(Ω))

for some increasing and lower semicontinuous function Φ. A detailed presentation of
the spectral optimization problem may be found in [36]

1.3 Some applied examples

We present two applied examples namely the Newton’s problem of optimal aerodi-
namical profiles and the optimal mixture of two conductors. Let us mention also that
they are other applied examples like image segmentation, identification of cracks or
default, magnetic shaping and so on.
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1.3.1 Newton’s problem of optimal aerodynamical profiles

The problem of finding the best aerodynamical profile for a body in a fluid stream
under some constraints on its size can be seen as a shape optimization problem. This
problem was first considered by Newton, who gave a rather simple variational expres-
sion for the aerodynamical resistance of a convex body in a fluid stream, assuming
that the competing bodies are radially symmetric, which makes the problem one di-
mensional. Here are his words:

If in a rare medium, consisting of equal particles freely disposed at equal distances from
each other, a globe and a cylinder described on equal diameter move with equal velocities in
the given direction of the axis of the cylinder, (then) the resistance of the globe will be half as
great as that of the cylinder. ... I reckon that this proposition will be not without application
in the building of ships.

Under the assumption that the resistance is due to the impact of fluid particles
against the body surface, that the particles are supposed all independent, and the
tangential friction is negligible, by simple geometric considerations we may obtain the
following expression of the resistance along the direction of the fluid stream, where we
normalize all the physical constant to one:

F (u) =

∫
Ω

1

1 + |∇u|2
dx. (1.8)

In the expression above Ω stands for the cross section of the body at the basis level,
and u(x) a function whose graph is the body boundary. The geometrical constraint
in the problem consists in requiring that the admissible competing bodies be convex;
this is also consistent with the physical assumption that all the fluid particles hit the
body at most once. In problem (1.8) this turns out to be equivalent to assume that Ω

is convex and u : Ω→ [0,+∞) is concave. We consider the minimization problem

min{F (u) : u concave, 0 ≤ u ≤M}, (1.9)

where F is the functional in (1.8). Notice that the integral functional F is neither
convex nor coercive, therefore we cannot apply the direct method of the calculus of
variations for getting the existence of an optimal solution. However thanks to the
concavity constraint, the existence of a minimizer u has been proved in [40]. A complete
discussion on the problem may be found in [31].

1.3.2 Optimal mixtures of two conductors

This is another problem which can be seen as a shape optimization problem. It
consists of the determination of the optimal distribution of two given conductors (for
instance in the thermostatic model, where the state function is the temperature of the
system) into a given region. If Ω denotes a given bounded open subset of Rd (the
prescribed container), denoting by α and β the conductivities of the two materials,
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the problem consists in filling Ω with the two materials in the most performant way
according to some given cost functional. The volume of each material can be prescribed.
We denote by A the domain where the conductivity is α and by aA(x) the conductivity
coefficient

aA(x) = αχA(x) + βχΩ\A(x).

Then the state equation which associates the control A to the state u (the temperature
of the system, once the conductor α fills the domain A) becomes{

div(aA(x)∇u) = f in Ω
u = 0 on ∂Ω

(1.10)

where f is the given source density. We denote by uA the unique solution of (1.10).
If we take as a cost functional an integral of the form∫

Ω

F (x, χA, uA,∇uA)dx

in general an optimal configuration does not exist (see [71], [82]). However the addi-
tion of a perimeter penalization is enough to have the existence of optimal classical
optimizers. More precisely, we take as a cost functional

J(u,A) =

∫
Ω

F (x, χA, uA,∇uA)dx+ λPΩ(A)

where λ > 0, and the minimization problem take the form

min{J(u,A) : A ⊂ Ω, u solves (1.10)} (1.11)

Notice that the existence result above still holds if we replace the perimeter constraint
by the volume constraint of the form |A| = m. Let us mention also a similar problem
considered in [8] which is

min{E(u,A) + λPΩ(A) : u ∈ H1
0 (Ω), A ⊂ Ω}

where λ > 0 and

E(u,A) =

∫
Ω

(
aA(x)|∇u|2 + χA(x)g1(x, u) + χΩ\A(x)g2(x, u)

)
dx.

It has been proved that this optimization problem has classical solutions and every
solution A is an open set provided g1 and g2 are Borel measurable functions and satisfy
the inequalities

gi(x, s) ≥ b(x)− k|s|2, i = 1, 2

where b ∈ L1(Ω) and k < αλ1, being λ1 the first eigenvalue of −∆ on Ω.
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Chapter 2

Elements of geometric measure theory

This chapter is concerned with some basics elements of geometric measure theory
that will be used in the sequel. After recalling some notions of abstract measure theory,
we deal with the Hausdorff measures which are important for defining the notion of
approximate tangent space to measures and sets. Finally we introduce the notion
of approximate tangent space to a measure and to a set and also some differential
operators like tangential differential, tangential gradient and tangential divergence.

2.1 Measure theory

We recall briefly some results on abstract measure theory. For proofs and more
details see [10], [57], [88], [90]. Let X be a topological space, denote by B(X) the
σ-algebra of all Borel subsets of X that is, the smallest σ-algebra containing all open
subsets of X and by P(X) the collection of all subsets of X.

Definition 2.1.1. A function µ : P(X) → [0,+∞] is called an outer measure if
µ(∅) = 0 and µ is countably subadditive, i.e.

µ(A) ≤
∞∑
i=1

µ(Ai), whenever A ⊂
∞⋃
i=1

Ai.

Definition 2.1.2. If µ is an outer measure on P(X) and C is a σ-algebra, µ is said
to be countably additive (or σ-additive) on C if

µ

(⊔
i

Ai

)
=
∑
i

µ(Ai)

for every countable family (Ai)i ⊂ C and
⊔

stands for disjoint union.

Definition 2.1.3. (Carathéodory measurability) If µ is an outer measure, a set A ⊂ X

is said to be µ-measurable if

µ(F ) = µ(F ∪ A) + µ(F \ A), for every F ⊂ X.
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Proposition 2.1.4. If µ is an outer measure, then the collection of µ-measurable sets
is a σ-algebra.

If we restrict the outer measure µ to the σ-algebra of all µ-measurable sets, we get
a nonnegative and countably additive set function that we will call measure.

Definition 2.1.5. (regular outer measure) Let µ be an outer measure on X. We say
that µ is regular if for any set A ⊂ X there exists a µ-measurable set B such that
A ⊂ B and µ(A) = µ(B).

Now we will introduce the notion of signed and vector measures.

Definition 2.1.6. Let X be a set and C ⊂ P(X) be a σ-algebra. A function µ : C → Rd

is called a vector-valued measure if µ is additive in the sense that

µ

(
∞⊔
i

Ai

)
=
∞∑
i

µ(Ai) (2.1)

for every countable family (Ai)i of pairwise disjoint subsets of C and the right hand
side of (2.1) is assumed to be finite. Moreover, given µ as above we define the function
|µ| : C → [0,+∞) as

|µ|(A) = sup

{
∞∑
i=1

||µ(Ai)|| : A =
∞⊔
i=1

Ai, Ai ∈ C

}
. (2.2)

The function |µ| is called the variation of µ and the quantity |µ|(X) the total variation
of µ.

Theorem 2.1.7. Let X, C and µ be as in Definition 2.1.6, then the following hold:

1. Every infinite sum as in (2.1) is absolutely convergent;

2. the total variation |µ| is countably additive on C, hence it is a measure;

3. the quantity |µ|(X) is finite, therefore |µ| is a finite measure.

They are several topologies on the set of measures. We give here the weak∗ con-
vergence. Let (µn)n be a sequence of measures, we say that µn converges weakly∗ to
the measure µ and we write µn

∗
⇀ µ if

lim
n→+∞

∫
X

fdµn =

∫
X

fdµ ∀f ∈ C0(X,Rd).

Proposition 2.1.8. Let (µn)n be a sequence of Radon measure on the locally compact,
separable metric space X such that µn ⇀ µ, then
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1. if the measures µn are positive, then for every lower semicontinuous function
f : X → [0,+∞]

lim inf
n→+∞

∫
X

fdµn ≥
∫
X

fdµ

and for every upper semicontinuous function g : X → [0,+∞] with compact
support

lim sup
n→+∞

∫
X

gdµn ≤
∫
X

gdµ :

2. if |µn| is locally weakly∗ convergent to λ, then λ ≥ |µ|. Moreover if X is a
relatively compact set such that λ(∂X) = 0, then µn(X) → µ(X) as n → +∞.
More generally ∫

X

fdµ = lim
n→+∞

∫
X

fdµn

for any bounded Borel function f : X → R with compact support such that the
set of its discontinuity points is λ-negligible.

We may apply the part 1 of the statement to the characteristic functions of open
and compact sets and obtaining some particular interesting cases. Assume µn is locally
weakly∗ convergent to µ. Then for every compact set K, we have

µ(K) ≥ lim sup
n→+∞

µn(K) (2.3)

and for every open set A it holds

µ(A) ≤ lim inf
n→+∞

µn(A) (2.4)

2.2 Hausdorff Measure

In this section, we introduce the Hausdorff measures Hk. This class of measures
provide a general extension of the classical notion of length, surface area and volume.

Definition 2.2.1. For k ≥ 0, we set

ωk =
π
k
2

Γ(1 + k
2
)
, where Γ(t) :=

∫ ∞
0

xt−1e−xdx

(Γ is the well-known Euler function). If δ ∈ (0,+∞] and A ⊂ Rd, we define

Hh
δ :=

ωk
2k

{∑
i∈I

(diam(Ai))
k : diam(Ai) < δ, A ⊂

⋃
i∈I

Ai

}
. (2.5)

and
Hk(A) := sup

δ>0
Hk
δ (A) = lim

δ→0
Hk
δ (A),
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where the second equality is obtained from the fact that Hk
δ is nonincreasing with respect

to δ. The quantity Hk(A) is called the k-dimensional Hausdorff measure of the set A.

Proposition 2.2.2. (properties of Hausdorff measures)

1. For every k ≥ 0, Hk is a Borel measure;

2. For 0 ≤ s < m < +∞ and A ⊂ Rd.

Hs(A) < +∞ =⇒ Hm(A) = 0

Hm(A) > 0 =⇒ Hs(A) = +∞;

3. For every Borel set A ⊂ Rd and every δ ∈ (0,+∞]

Hd(A) = Hd
δ(A) = Ld(A),

where Ld stands for the d-dimensional Lebesgue measure;

4. every Hausdorff measure Hk is Borel regular that is for every set A there exists
a Borel set B such that A ⊂ B and Hk(A) = Hk(B);

5. for every x ∈ Rd and every positive real number λ

Hk(x+ A) = Hk(A), Hk(λA) = λkHk(A)

We introduce also a notation for the restriction HkxB of the Hausdorff measure to
a set B ⊂ Rd, defined by

HkxB(A) := Hk(B ∩ A) ∀A ⊂ Rd.

Definition 2.2.3. (definition of Hausdorff dimension) Let A ⊂ Rd be a given subset.
we define the Hausdorff dimension of the set A as

H− dim(A) := inf{k ≥ 0 : Hk(A) = 0}.

If k > H − dim(A) then Hk(A) = 0, and if k < H-dim(A) then Hk(A) = +∞. In
the case k = H-dim(A) nothing can be say a priori about the value of Hk(A).

2.3 Approximate tangent space

We start by the countably Hk-rectifiable set.

Definition 2.3.1. Let E be a Hk-measurable subset of Rd and k = 0, · · · , d. We say
that the set E is countably Hk- rectifiable if E =

⋃∞
j=0Ej so that:
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1. Hk(E0) = 0;

2. for j > 0, Ej ⊂ fj(Rk) where fj : Rk −→ Rd are Lipschitz maps.

The following proposition whose proof can be found in [59] [10] gives the different
characterizations of countably Hk-rectifiable set.

Proposition 2.3.2. The following statement are equivalent
a) E is countably Hk-rectifiable set;
b) E =

⋃∞
j=0 Ej with Hk(E0) = 0 and Ej ⊂ Sj where Sj are k-dimensional Lipschitz

surfaces in Rd for j > 0;
b′) E =

⋃∞
j=0Ej with Hk(E0) = 0 and for j > 0, Ej ⊂ Sj where Sj are k-dimensional

surfaces of class C1in Rd;
c) E =

⋃∞
j=0Ej with Hk(E0) = 0 and for j > 0, Ej ⊂ Γj where Γj are graphs of

Lipschitz maps gj : Rk → Rd−k (up to identification of Rk×Rd−k with Rd, and rotation);
c′) E =

⋃∞
j=0Ej with Hk(E0) = 0 and for j > 0, Ej ⊂ Γj where Γj are graphs of C1

maps gj : Rk → Rd−k.

Now, we are interested in defining the tangent bundle of a countably Hk-rectifiable
set. We start by the definition of the approximated tangent space to a vector valued
Radon measure. In the sequel G(k, d) will denote the Grassmaniann manifold of k-
dimensional non-oriented planes in Rd.

Definition 2.3.3. (Approximate tangent space to a measure) Let µ be an Rm-valued
Radon measure in an open set Ω ⊂ Rd and x ∈ Ω. We say that µ has an approximate
tangent π ∈ G(k, d) with multiplicity θ ∈ Rm at x, and denoted by

Tank(µ, x) = θHkxπ

if ρ−kµx,ρ locally weakly∗ converge to θHkxπ in Rd as ρ ↓ 0 where

µx,ρ(B) = µ(x+ ρB) for B ∈ B(Rd), B ⊂ Ω− x
ρ

According to the definition of µx,ρ, the existence of the approximate tangent space
with multiplicity θ can be rewrite as follows:

lim
ρ↓0

ρ−k
∫

Ω

φ(
y − x
ρ

)dµ(y) = θ

∫
π

φ(y)dHk(y), ∀φ ∈ Cc(Rd)

For ρ > 0 small enough the support of the function y 7→ φ((y − x)/ρ) is contained in
Ω, then the formula does make sense.

Remark 2.3.4 Let E be anHk-measurable subset of Rd with locally finiteHk-measure
and let µ = HkxE. By the behavior of the Hausdorff measure under translations and
homotheties, one can easily check that ρ−kµx,ρ = HkxEx,ρ where Ex,ρ = (E − x)/ρ.
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Therefore π ∈ G(k, d) is the approximate tangent space to HkxE at x with multiplicity
1 if and only

lim
ρ↓0

∫
Ex,ρ

φ(y)dHk(y) =

∫
π

φ(y)dHk(y), ∀φ ∈ Cc(Rd).

In the following proposition we give a local property of the approximate tangent
space. This result will be useful to the definition of the tangent space to a set. Proof
can be found in [10].

Proposition 2.3.5. Let µj = θjHkxSj, j = 1, 2 be positive k-rectifiable measures and
let πj be the approximate tangent space to µj, defined for Hk − a.e x ∈ Sj. Then

π1(x) = π2(x) for Hk − a.e. x ∈ S1 ∩ S2 (2.6)

By positive k-rectifiable measure, we mean the measure θHkxS where S is a count-
ably Hk-rectifiable set and θ positive function

If we assume S1 = S2 in proposition 2.3.5, we realize that the approximate tangent
space to θHkxS does not depend on θ but only on S; the equation (2.6) suggests
the possibility to define the approximate tangent space Tank(S, x) to a countably Hk-
rectifiable set S in the following way.

Definition 2.3.6. Let S ⊂ Rd be a countably Hk-rectifiable set and let Sj be a partition
of Hk-almost all S into Hk-rectifiable sets; we define Tank(S, x) to be the approximate
tangent space to HkxSj at x for any x ∈ Sj where the latter is defined.

Remark 2.3.7 Notice that the measure Tan(µ, x) is univocally defined at any point
x where it exists, and from this measure both the approximate tangent space and
the multiplicity at x can be recovered. In contrast, the definition 2.3.6 is well posed
(i.e. independent of the partition (Sj) chosen) only if we understand Tank(S, x) as
an equivalent class of Hk-measurable maps from S to G(k, d). In fact by a simple
application of (2.6), two different partition produce tangent space maps coinciding
Hk-a.e. on S and satisfying the locality property

Tank(S, x) = Tank(S ′, x) for Hk − a.e. x ∈ S ∩ S ′

for any pair of countably Hk-rectifiable sets S, S ′ and the consistency property

supp
[
Tank(θHkxS, x)

]
= Tank(S, x) for Hk − a.e. x ∈ S

for any Borel function θ : S → (0;∞) locally summable with respect to HkxS.
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The following remark stress the particular case of the approximate tangent space
to C1 and Lipschitz k-graphs.

Remark 2.3.8 Let Γ =
{
x : f(πx) = π⊥x

}
be a k-dimensional graph of class C1,

and consider P (x) = {v + dfπx(v) : v ∈ π}. Then

Tank(HkxΓ, x) = HkxP (x) ∀x ∈ Γ.

Now we want to define differentiability and some other differential operator on the
countably Hk-rectifiable set. We start by the following definition.

Definition 2.3.9. Let E be a countably Hk-rectifiable set in Rd and f : Rd → Rm

a Lipschitz function. We say that f is tangentially differentiable at x ∈ E if the
restriction of f to the affine space x+Tank(E, x) is differentiable at x. The tangential
differential dEfx : Tank(E, x) 7→ Rm is a linear map.

It is clear that if f is differentiable at x, then dEfx is the restriction of the differential
dfx to Tank(E, x) provided that the approximate tangent space exists. Since x 7→
Tank(E, x) is understood as an equivalent class of map from E to G(k, d), the same
is true for tangential differential dE. Hence, even for smooth functions in the ambient
space, the tangential differential dEfx is not well defined at a specific point x, but
quantities such as

∫
F
Jkd

Efxdx are well defined for every Borel set F ∈ B(E). The
tangential differential inherits from approximate tangent spaces a very useful locality
property:

∃dEfx Hk − a.e.on E =⇒ ∃dFfx = dEfx Hk − a.e.on E ∩ F

for E and F countably Hk-rectifiable. The following result whose proof can found in
[10] is a natural extension of Rademacher’s differentiability theorem.

Proposition 2.3.10. Under the same notation of definition (2.3.9) dEfx exists for
Hk-a.e. x ∈ E.

Definition 2.3.11. (tangential gradient) Let E be a countably Hk-rectifiable set and
φ ∈ C1(Ω). If x ∈ E ∩ Ω and h is any vector belonging to the approximate tangent
space Tank(E, x) to E at x , the directional derivative ∇hφ(x) is defined as

∇hφ(x) = 〈∇φ(x), h〉

where ∇φ(x) is the restriction of the gradient of φ as function of Ω to the set E and
the tangential gradient ∇Eφ(x) of φ at x is defined as

∇Eφ(x) =
k∑
j=1

∇τjφ(x)τj,
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where τ1, · · · , τk is an orthonormal basis of the approximate tangent space Tank(E, x).
Thus the tangential gradient is just the orthogonal projection of ∇φ(x) on the approx-
imate tangent plane Tank(E, x). The linear map dEfx : Tank(E, x) 7→ R is related to
the directional derivative as follows:

dEfx(h) = ∇hφ(x) h ∈ Tank(E, x)

provided the approximate tangent space exists.

Definition 2.3.12. Let E be a countably Hk-rectifiable subset of a set Ω and φ ∈
[C1(Ω)]d. The tangential divergence of φ on E is defined by

divEφ(x) =
d∑

m=1

〈∇Eφm(x), em〉 for Hk − a.e. x ∈ E

where φ = (φ1, · · · , φd) and (e1, · · · , ed) is the standard orthonormal basis of Rd.

We can rewrite divEφ(x) in this way

divEφ(x) =
d∑

m=1

k∑
j=1

〈∇φm(x), τj〉〈τj, em〉 =
k∑
j=1

〈∇τjφ(x), τj〉.

This expression shows that divEφ(x) is the orthogonal projection of the divφ to the
approximate tangent space Tank(E, x)
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Chapter 3

Topology on Domains of Rd

A shape optimization problem is an optimization of the form

min
Ω∈O

F (Ω), (3.1)

where O is a collection of subsets of Rd. To prove the existence of such a minimum, we
use the so called Directs methods of the calculus of variations which is as follows: first
ensure that m = {inf F (Ω),Ω ∈ O} is finite; second take a minimizing sequence that
is a sequence {Ωn}n of elements of O such that limn→+∞ F (Ωn) = m which converges
in some sense to a set Ω ∈ O and F (Ω) ≤ m. Therefore we need some topology on the
set of domains.

3.1 Different Topologies on Domains

In the set of domains there is not a canonical topology. This fact allows us to
consider many topologies on the set of domains. We will consider here three topologies
which are topologies induced by the convergence of characteristics functions, conver-
gence in the sense of Hausdorff and convergence in the sense of compacts.

3.1.1 The Convergence of Characteristic functions

Let Ω ⊂ Rd be a measurable set then we call the characteristic function of Ω the
function χΩ which takes the value 1 on Ω and 0 outside. Let (Ωn)n be any sequence of
measurable sets; then the sequence of characteristic functions χΩn is weakly∗ compact
in L∞ that is there exists χ ∈ L∞(Rd) such that

lim
n→+∞

∫
Rd
ϕχΩndx =

∫
Rd
ϕχdx, ∀ϕ ∈ L1(Rd).

Notice that the function χ is not in general a characteristic function unless the con-
vergence is strong in Lploc for some p ∈ [1,+∞). More precisely the weak∗ limit is a
characteristic function only if the convergence is strong.
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Proposition 3.1.1. If (Ωn)n and Ω are measurable subsets of Rd such that χΩn weakly∗

converges in L∞(Rd) to χΩ, then χΩn → χΩ in Lploc(Rd) for all p ∈ [1,+∞) and almost
everywhere.

Proof: By hypothesis we have

lim
n→+∞

∫
Rd

(χΩn − χΩ)ϕdx = 0, ∀ϕ ∈ L1(Rd). (3.2)

Let Br be a ball of center 0 and radius r and Ωc the complement of Ω. Taking
ϕ = χBrχΩc in (3.2) we have

0 = lim
n→+∞

∫
Rd
χΩnχBrχΩc(x)dx = lim

n→+∞
|Br ∩ (Ωn \ Ω)|.

Now taking ϕ = χBr in (3.2) we get

0 = lim
n→+∞

∫
Br

(χΩn − χΩ)(x)dx = lim
n→+∞

{|Br ∩ (Ωn \ Ω)| − |Br ∩ (Ω \ Ωn)|}.

Hence getting also |Br ∩ (Ω \ Ωn)| → 0 as n→ +∞. But∫
Br

|(χΩn − χΩ)(x)|pdx = |Br ∩ (Ωn \ Ω)|+ |Br ∩ (Ω \ Ωn)|,

and the proof is over. 2

Definition 3.1.2. Let (Ωn)n and Ω be measurable subsets of Rd. We say that Ωn

converges to Ω in the sense of characteristic functions as n→ +∞ if

χΩn → χΩ in Lploc(R
d), ∀p ∈ [1,+∞).

3.1.2 The Convergence in the sense of Hausdorff

Let D be a compact set in Rd, KD the set of all compact non empty subsets of D
and d the Euclidean distance on Rd.

Definition 3.1.3. Given K1, K2 ∈ KD we define

∀x ∈ D, d(x,K1) := inf
y∈K1

d(x, y)

ρ(K1, K2) := sup
x∈K1

d(x,K2)

dH(K1, K2) := max{ρ(K1, K2), ρ(K2, K1)}.

(3.3)

It is easy to check that dH is a distance on KD and it is called Hausdorff distance.
One may show that (KD, dH) is a compact complete metric space. Now we give the
definition of convergence of compact and open sets in the sense of Hausdorff.
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Definition 3.1.4. Let (Kn)n∈N and K be compact sets contained in D. We say that
Kn converges to K as n→ +∞ in the Hausdorff sense if

dH(Kn, K)→ 0 as n→ +∞.

We denote this convergence by Kn
H→ K.

Definition 3.1.5. Let (Ωn)n∈N and Ω be open sets contained in D. We say that Ωn

converges to Ω as n→ +∞ in the sense of Hausdorff if

dH(Ωn,Ω) := dH(D \ Ωn, D \ Ω)→ 0 as n→ +∞. (3.4)

We denote this convergence by Ωn
H→ Ω.

We should mention that the distance dH(Ω1,Ω2) of two open sets contained in D is
independent of the compact D. In fact if we take another compact D̃ containing both
open sets, it holds

dH(Ω1,Ω2) := dH(D \ Ω1, D \ Ω2) = dH(D̃ \ Ω1, D̃ \ Ω2).

We should mention also that here and after on we use the same terminology (conver-
gence in the sens of Hausdorff , Hausdorff topology) for compact and open sets. We
summarize some properties of Hausdorff distance. For some details see [56], [65] and
[87]. Convergence of compact sets in the sense of Hausdorff.

1. A nonincreasing sequence of non empty compact sets converges to their intersec-
tion;

2. a nondecreasing sequence of non empty compact sets contained in D converges
to their union;

3. if Kn converges to K in the Hausdorff sense then K = ∩n(∪p≥nKp);

4. the inclusion is stable under Hausdorff convergence.

Convergence of open sets in the sense of Hausdorff.

1. a nondecreasing sequence of open sets contained in D converges in Hausdorff
sense to the union;

2. a nonincreasing sequence of open sets converges to the interior of the intersection;

3. inclusion is stable under Hausdorff convergence;

4. intersection is stable under Hausdorff convergence;
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5. the union is not stable under Hausdorff convergence. More precisely we have

Ω1
n

H→ Ω1

Ω2
n

H→ Ω2

Ω1
n ∪ Ω2

n
H→ Ω

⇒ Ω1 ∪ Ω2 ⊂ Ω,

and the inclusion may be strict;

6. if (Ωn)n is a sequence of open sets converging to Ω and K a compact set contained
in Ω then K is contained in Ωn for n large enough;

7. the convexity is preserved by Hausdorff convergence;

8. the connectedness is not preserved by Hausdorff convergence;

9. the volume is not preserved by Hausdorff convergence. In fact the volume is lower
semicontinuous for convergence of open sets;

3.1.3 The Convergence in the sense of Compacts

Definition 3.1.6. Let (Ωn)n∈N and Ω be open sets in Rd. We say that Ωn converges
to Ω in the sense of compacts if

∀Kcompact ⊂ Ω, we have K ⊂ Ωn for n large enough

∀Lcompact ⊂ Ω
c
, we have L ⊂ Ω

c

n for n large enough.
(3.5)

The big inconvenient of this topology is that the limit is not unique. We may
check that a sequence of open sets (Ωn)n which converges to Ω in the sense of compact
converges also to any open set ω such that ω = Ω. In fact this topology is not separable.
To have the uniqueness, instead of working with open sets one may work with the class
of open sets given by the following equivalent relation

Ω1 ' Ω2 ⇔ Ω1 = Ω2.

3.2 Link between those different topologies

The aim of this part is to show by some examples that the three topologies defined
previously doest not imply each other. We give three examples where we have conver-
gence in one topology and not in the others or we have convergence to another open
set.

Example 3.2.1 Let Ω1 be an open set obtained by removing from a unit disc in R2

the segment [0, 1]×{0} and Ω2 = B(0, 1)∩
⋃∞
k=1B(xk, rk) where xk is a dense sequence

of B(0, 1) and (rk) sequence of positive real numbers such that
∑

k≥1 r
d
k < 1. Let
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Ωn := B(0, 1 + 1/n) then we easily have that Ωn converges to Ω1 and Ω2 in the sense
of compacts. The sequence Ωn converges in the Hausdorff topology to B(0, 1) 6= Ω1

therefore it cannot converges to Ω1 in the sense of Hausdorff. Since Ω2 does not have
the same measure as B(0, 1) it cannot be a limit of Ωn in the sense of characteristics
functions.

Example 3.2.2 ([87]) In R2, set F = [0, 3]2 and

Ωn = {(x, y) ∈ F : 0 < x < 3, 0 < y < 2 + sin(nx)}, Kn = Ωc,
Ω = (0, 3)× (0, 1), K = Ωc.

Then Ωn converges to Ω in the sense of Hausdorff since

• ρ(Kn, K) = 0 since Kn ⊂ K

• ∀x ∈ K, we have d(x,Kn) ≤ π/n and then ρ(K,Kn)→ 0 as n→ +∞.

Any compact of type [a, b]× [c, d] where 0 < a < b < 3 and 1 < c < d < 3 is contained
in Ω

c but never contained in Ω
c

n for n large enough. It is also clear that it does not
converge to Ω in the sense of characteristic functions since∫

F

|χΩ − χΩ|dx =

∫
F

χΩn\Ωdx =

∫ 3

0

∫ 2+sin(nx)

1

dydx = 3 +
1− cos(3n)

n

which converges to 3 as n→ +∞.

Example 3.2.3 In R let us set

Ωn =
2n−1⋃
k=0

(
k

2n
,
k + 1

2n
) = [0, 1] \

2n⋃
k=0

{ k
2n
}.

Then Ωn converges in the sense of Hausdorff to the empty set, in the sense of charac-
teristics functions to (0, 1) (since χΩn = χ(0,1) a.e.) does not converge in the sense of
compact to some open set.

In the sequel, we will be concerned only with the Hausdorff convergence. In relation
with this restriction, we give the following compactness result.

Theorem 3.2.4. Let Kn be a sequence of compact sets contained in a fixed compact
set D. Then there exists a compact set K contained in D and a subsequence Knj which
converges in Hausdorff sense to K as j → +∞.

Corollary 3.2.5. Let Ωn be a sequence of open sets contained in a fixed compact set D.
Then there exists an open set Ω contained in D and a subsequence Ωnj which converges
in Hausdorff sense to Ω as j → +∞.

For the proof of the Theorem and Corollary one may consult [67].
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Chapter 4

Shape optimization problems
governed by linear state equations

This chapter deals with the shape optimization problems governed by linear state
equations. After studying the continuity of the solution of the Laplacian problem with
respect to the domain variation (including counter-examples to the continuity and
the introduction to a new topology: the γ- convergence), we analyze the existence of
optimal shapes and the necessary condition of optimality in the case where an optimal
shape exists.

4.1 Continuity with respect to a domain

The existence of the optimal shape needs the continuity, or at least the lower semi-
continuity of the functional associated to the problem, that is also the continuity of
the solution of the partial differential equation associated to the functional, for some
topology of domains variation. In this section, we analyze the continuity of the map
Ω→ uΩ ∈ H1

0 (D) where uΩ is the solution of the Dirichlet problem on an open variable
Ω domain contained in a fixed open set D. The class of admissible domains Ω will be
endowed with the Hausdorff topology.

4.1.1 Dirichlet problem for the Laplacian

Let Ω be a bounded open subset in Rd and f ∈ H−1(Ω). The Dirichlet problem is
to find u solution of the equation

u ∈ H1
0 (Ω), −∆u = f

in distributional sense that means

u ∈ H1
0 (Ω),

∫
Ω

∇u∇vdx = 〈f, v〉H−1(D)×H1
0 (D) ∀v ∈ H1

0 (Ω), (4.1)
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It is well known that this problem has a unique solution. Moreover the solution
u minimizes the functional J(v) = 1

2

∫
Ω
|∇v|2dx − 〈f, v〉H−1(D)×H1

0 (D) v ∈ H1
0 (Ω) and

satisfies ∫
Ω

|∇u|2dx = 〈f, v〉H−1(D)×H1
0 (D). (4.2)

The continuity problem is as follows: given a sequence of open sets (Ωn)n∈N contained
in a fixed open set D and converging in some sense to an open set Ω. Can we say that
ufΩn "converges" to ufΩ where ufΩn and ufΩ are respectively the solution of the Dirichlet
problem associated to Ωn and Ω. Quite often, the "classical" topologies defined in the
third chapter do not ensure this convergence. Therefore the question is reformulated
as follows: under which additional conditions the continuity takes place? Or can we
define a convergence on Ωn which ensure that of ufΩn? It has been proved (see [94])
that this continuity property does not depend on f ; in fact, if the continuity holds for
f ≡ 1 then it holds for any f . Let us start by this fundamental estimate.

Proposition 4.1.1. There exists a constant C = C(D) such that for any open Ω ⊂ D,
the solution of (4.1) extended by zero on D \ Ω satisfies

||ufΩ||H1
0 (D) ≤ C||f ||H−1(D) ∀f ∈ H−1(D). (4.3)

Proof: setting u = ufΩ it follows from (4.2) that∫
Ω

|∇u|2dx ≤ ||f ||H−1(D)||u||H1
0 (Ω).

By Poincaré inequality, there exists a constant C1 depending only on D such that

C1||u||2H1
0 (D) ≤

∫
D

|∇u|2dx =

∫
Ω

|∇u|2dx ≤ ||f ||H−1(D)||u||H1
0 (D)

and the result follows. 2

Corollary 4.1.2. Let Ωn be a sequence of open sets in D. Then up to a subsequence
ufΩn converges weakly to u∗ ∈ H1

0 (D). Moreover, if there exists an open set Ω ⊂ D such
that u∗ = ufΩ, then the convergence is strong in H1

0 (D).

Proof: The first part is just a consequence of the uniform boundedness in (4.3) and of
the weakly sequentially compactness of the closed unit ball in Hilbert’s space H1

0 (D).
The second part follows from the passage to the limit (weak) in the equality:∫

D

|∇ufΩn|
2dx =

∫
D

fufΩndx
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Using the fact that u∗ coincide with ufΩ, we have

lim
n→∞

∫
D

|∇ufΩn|
2dx =

∫
D

fufΩdx =

∫
D

|∇ufΩ|
2dx

which proves a strong convergence of ∇ufΩn in (L2(D))d. 2

We would like that the limit u∗ coincides with ufΩ, where Ω is the limit in some
sense of Ωn. This is not always the case. We give below some counter-examples.

4.1.2 Counter-examples to the continuity

Let (xn)n∈N be a dense sequence in the unit disc D, let Γn be the n first points of
the sequence (xn)n∈N and Ωn = D \ Γn. Then Ωn converges in the Hausdorff sense to
the empty set, but ufΩn does not converge to uf∅ = 0. In fact H1

0 (Ωn) = H1
0 (D), hence

ufΩn = ufD. This result comes from the fact that point has capacity zero in dimension
greater or equal to 2 (as we will see later). More precisely for fixed n, we can find a
sequence vs ∈ C∞c (D) such that

vs → 0 in H1
0 (D), vs = 1 in a neighborhood of Γn, 0 ≤ vs ≤ 1.

Therefore every v ∈ C∞c (D) is the limit in H1
0 (D) of v(1 − vs) ∈ C∞c (Ωn) and the

announced equality ufΩn = ufD follows. We can even make a hole around each point
xn without getting convergence of the sequence ufΩn to 0. More precisely, let Ωn =

D \
⋃

1≤k≤nB(xk, rk) where rk is a sequence of positive real numbers satisfying∑
n≥1

− 1/ log(rn) < η,
∑
n≥1

r2
n < 1. (4.4)

The sequence of open sets Ωn decreases to E = D \
⋃
n≥1B(xn, rn) which has non

zero measure thanks to the second condition on the sequence rn. On the other hand,
Ωn converges to the empty set in Hausdorff sense. But again u1

Ωn
does not converge to

u1
∅ = 0. In fact let ψ ∈ C∞c (D)+ and consider the function

∀x ∈ D,φ(x) := ψ(x)[1 +
∑
n≥1

αn log(|x− xn|)]+,

where αn = −1/ log(rn) and a+ stands for the positive part of a. This function is well
defined thanks to the first condition on the sequence rn: in fact, since each function
[x → log |x − xn|] belongs to L1(D), the series

∑
n≥1αn log(|x − xn|) is convergent in

L1(D) and of norm bounded by kη where k = || log(·)||L1(2D). The function vanishes
on the union of balls B(xn, rn), that is vanishes outside E and has compact support in
each Ωn. It is not identically zero if we chose η small enough and ψ of support large
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enough. Moreover, it is in H1
0 (D) (we can compute easily its H1 norm). It is then in

H1
0 (Ωn). In particular we have∫

Ωn

∇u1
Ωn∇φdx =

∫
Ωn

φdx.

Assuming u∗ as the weak limit of a subsequence of u1
Ωn

and passing to the limit we
get: ∫

D

∇u∗∇φdx =

∫
E

φdx.

Since E has non zero measure and φ is nonnegative and not identically zero on E, we
deduce that u∗ is not identically zero. In general, when Ωn has holes whose number
tends to infinity with n, the continuity may fail. Moreover the sequence u1

Ωn
may

converge to a solution of a problem which is not associated to the Laplace operator
itself. In fact let us consider the classical situation in the setting of the homogenization
where the open sets Ωn are obtained from an open set D by removing a big number of
small holes uniformly distributed. The sequence Ωn tends to the empty set in Hausdorff
sense. But, the limit of the sequence ufΩn depends on the size of holes. We have the
following intuitive idea.

• If the holes are "small", then ufΩn converges to ufD;

• if the holes are "big", then ufΩn converges to 0;

• there exists a critical size for the holes such that u∗ is the solution of another
partial differential equation on D.

Let us consider the following bidimensional classical example due to F. Murat and
D. Cioranescu [47]. Let D = (0, 1)2 and, for 0 < i, j < n, xij = ( i

n
, j
n
). Let us consider

Ωn = D \
⋃

1<i,j<nB(xij, rn). By Proposition 4.1.1, up to a subsequence, ufΩn converges
weakly to u∗ in H1

0 (D) and u∗ is characterized according to the size of the holes:

Proposition 4.1.3. 1. If limn→∞
log rn
n2 = −∞, then u∗ = ufD;

2. if limn→∞
log rn
n2 = 0, then u∗ = 0 ;

3. if limn→∞
log rn
n2 = −c < 0, then u∗ is the solution of the problem

u∗ ∈ H1
0 (D), −∆u∗ +

2π

c
u∗ = f.

Proof: Let us denote by un the solution of the equation{
−∆u = f in Ωn

u = 0 in ∂Ωn.
(4.5)

we start by the last assertion. Let us set Bn =
⋃

0<i,j<nB
n
i,j and the Cn =

⋃
0<i,j<nC

n
i,j

where Bn
i,j is the open ball with center xi,j and radius 1/2n, and Cn

i,j the closed ball with
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center xi,j and radius rn = e−cn
2 for c a fixed constant (the constant appearing in the

last statement of the proposition). For every n and 0 < i, j < n let wni,j ∈ H1(Bn
i,j \Cn

i,j)
be the solution of the equation ∆wni,j = 0 on Bn

i,j \ Cn
i,j which satisfies the boundary

conditions wni,j = 0 on ∂Cn
i,j and wni,j = 1 on ∂Bn

i,j. An explicit computation of the
solution gives

wni,j(x) =
ln |x− xi,j|+ cn2

cn2 − ln(2n)
for x ∈ Bn

i,j \ Cn
i,j.

We define wn as the function which is equal to wni,j on Bn
i,j \Cn

i,j, extended by 0 on Cn
and by 1 on D \Bn. We may observe that

• 0 ≤ wn ≤ 1;

• ∇wn ⇀ 0 in (L2(D))2 as n → +∞, hence wn converges weakly in H1(D) to a
constant function. The computation of the limit of the integral

∫
D
wndx shows

that the constant is equal to 1.

Let ϕ ∈ C∞c (D). Then ϕwn ∈ H1
0 (Ωn), hence ϕwn may be chosen as a test function

for the equation (4.5):∫
D

∇un∇wnϕdx+

∫
D

∇un∇ϕwndx =

∫
D

fϕwndx.

The second and the third terms of this equality converge respectively to
∫
D
∇u∗∇ϕdx

and
∫
D
fϕdx. For the first term the Green formulas gives∫

D

∇un∇wnϕdx =
∑

0<i,j<n

∫
∂Bni,j

un
∂wn
∂ν

ϕdσ −
∫
D

un∇wn∇ϕdx.

The boundary term on ∂Cn
i,j does not appear since un vanishes on it. The last term of

the identity converges to 0 as n→∞. We get∑
0<i,j<n

∫
∂Bni,j

un
∂wn
∂ν

ϕdσ =
∑

0<i,j<n

∫
∂Bni,j

2n

cn2 − ln(2n)
unϕdσ

=
2n2

cn2 − ln(2n)

∑
0<i,j<n

∫
∂Bni,j

1

n
unϕdσ.

Let us denote by µn ∈ H−1(D) the distribution defined

〈µn, ψ〉H−1(D)×H1
0 (D) =

∑
0<i,j<n

∫
∂Bni,j

1

n
ψdσ.

We will prove that this distribution converges strongly in H−1(D) to πdx. Let vn be
the solution of the equation{

−∆vn = 4 in ∪0<i,j<nB
n
i,j

vn = 0 on D \ ∪0<i,j<nB
n
i,j.
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then we have

∂vn
∂ν

=
1

n
on

⋃
∂Bn

i,j.

We notice that vn → 0 strongly in H1(D), therefore ∆vn → 0 strongly in H−1(D).
One may observe also that

〈−∆vn, ψ〉H−1(D)×H1
0 (D) =

∑
0<i,j<n

∫
Bni,j

∇vn∇ψdx

=
∑

0<i,j<n

∫
∂Bni,j

1

n
ψdσ −

∑
0<i,j<n

∫
Bni,j

4ψdx.

Passing to the limit as n → ∞ and using the fact that 1∪Bni,j ⇀
π
4
1D weakly in L2

we get that
µn → πdx strongly in H−1(D).

Consequently u∗ ∈ H1
0 (D) satisfies the equation

∀ϕ ∈ C∞c (D)

∫
D

∇u∗∇ϕdx+
2π

c

∫
D

u∗ϕdx =

∫
D

fϕdx,

that is {
−∆u∗ + 2π

c
u∗ = f in D
u∗ = 0 on ∂D.

One may adapt this proof for the first two points. 2

4.1.3 The γ-Convergence

Here we introduce a new topology on the class of sets in Rd. The γ-convergence is
nothing else than the topology on the set of open sets which expresses the continuity
with respect to a domain of the solution of Dirichlet’s problem.

Definition 4.1.4. We say that a sequence of open sets Ωn contained in D γ-converges
to the open set Ω ⊂ D, and we denote Ωn

γ→ Ω, if for all f ∈ H−1(D) we have
ufΩn → ufΩ in H1

0 (D).

The deal here is to find a class of subset of Rd for which the γ-convergence is
compact. We start by the set that has the ε-cone property (domains satisfying a
uniform exterior cone property ).

Definition 4.1.5. Let y be a point in Rd, ζ a unitary vector and ε a positive real
number. We call cone of summit y of direction ζ and opening ε, the cone defined by

C(y, ζ, ε) = {z ∈ Rd, (z − y, ζ) ≥ cos(ε)|z − y| and 0 < |z − y| < ε}.
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We say that an open set Ω has the ε-cone property if

∀x ∈ ∂Ω, ∃ζx unitary vector such that ∀y ∈ Ω ∩B(x, ε) C(y, ζx, ε) ⊂ Ω

As example an Euclidean ball in Rd has ε-cone property. The following open sets
do not have the ε-cone property: Rd \ {0}, {(x, y) ∈ Rd;xy > 0}.

Remark 4.1.6 It is easily shown that open convex sets have ε-cone property.
Now we introduce the notion of capacity associated to the H1 norm. We define first

the capacity of compact sets, then of open sets and finally the capacity of any sets.

Definition 4.1.7. Let K be a compact set of Rd, we define

cap(K) := inf{
∫
Rd
|∇u|2dx; u ∈ C∞c (Rd), u ≥ 1 on K}

and for ω open set in Rd, we define

cap(ω) := sup{cap(K), Kcompact K ⊂ ω}

We check that

Lemma 4.1.8. For all compact K,

cap(K) = inf{cap(ω); ω open, K ⊂ ω}

Proof: By definition cap(K) ≤ inf{cap(ω); ω open, K ⊂ ω}. Since the map K →
cap(K) is nondecreasing for the inclusion of compact sets, if ω ⊂ K1, ω open set and
K1 compact set, we have cap(ω) ≤ cap(K1). Let now ε > 0 and u ∈ C∞c (Rd) with
u ≥ χK , ||u||H1 ≤ (1 + ε)cap(K1)- Let us consider the open set ω = [(1 + ε)u > 1] and
the compact set K1 = [(1 + ε)u ≥ 1]. We get

K ⊂ ω, cap(ω) ≤ (1 + ε)2||u||2H1 ≤ (1 + ε)2[cap(K) + ε],

and the desired result follows. 2

Definition 4.1.9. If E is a subset of Rd, we define

cap(E) := inf{cap(ω); ω open, E ⊂ ω}.

We have the following property which provides another definition of capacity.

Proposition 4.1.10. For all E ⊂ Rd,

cap(E) = inf{
∫
Rd
|∇u|2dx : u ≥ 1 a.e in a neighborhood of E}.
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It follows that cap(E) = 0 is equivalent to the existence of a sequence un converging
to 0 in H1(Rd) and greater than 1 in a neighborhood of E. Therefore a set of capacity
zero has zero Lebesgue measure.

In the same way, for an open bounded set D in Rd, we define the relative capacity
to D denoted by capD(·) or cap(·, D).

Definition 4.1.11. For all compact K ⊂ D, we define

capD(K) := inf{
∫
D

|∇u|2dx; u ∈ C∞c (D), u ≥ 1 on K}.

For all open sets ω of D, we define

capD(ω) := sup{capD(K); K compact, K ⊂ ω}.

If E is any subset of D, we define

capD(E) := inf{capD(ω); ω open, E ⊂ ω}.

Remark 4.1.12 The capacity of a point in Rd for d ≥ 2 is zero. See [67] for the
proof. In general we have:
if E is a subset of Rd contained in the manifold of dimension d− 2, then cap(E) = 0,
if E is a subset of Rd which contains a piece of smooth hypersurface, then cap(E) > 0,
if E is smooth manifold of dimension dE, then cap(E) = 0 is equivalent to dE ≤ d− 2.
See for example [2] for the proof and more general calculus.

Here we give a quick overview of quasi-continuity and quasi-open sets

Definition 4.1.13. We say that a property holds quasi-everywhere (q.e) if it holds
outside a set of capacity zero.

Definition 4.1.14. A function f : Rd → R is said to be quasi-continuous if there exists
a nonincreasing sequence of open sets ωn of Rd satisfying limn→∞ cap(ωn) = 0 and the
restriction of f to the complement ωcn of ωn is continuous.

Proposition 4.1.15. All f ∈ H1(Rd) have unique quasi-continuous representative that
is for every f ∈ H1(Rd) there exists a unique quasi-continuous function u such that
f = u q.e..

For proof see [67] Theorem 3.3.29

Definition 4.1.16. A subset Ω of D is called quasi-open if there exists a nonincreasing
sequence of open sets ωn such that: limn→∞ cap(ωn) = 0 and ∀n, Ω ∪ ωn is open.

Proposition 4.1.17. A countable union of quasi-open sets is quasi-open set. Let
f : Rd → R be a quasi-continuous function and α a real number. Then [f > α] is
quasi-open. In particular, if u ∈ H1(Rd), then [ũ > α] is quasi-open where ũ is a
quasi-continuous representation of u.

34



For proof see [67] page 102.

Definition 4.1.18. Let α and r be two positive real numbers. We say that an open set
Ω ⊂ D has the capacity density (α, r) if

∀x ∈ ∂Ω,
cap(Ωc ∩Br(x), B2r(x))

cap(Br(x), Br(x))
≥ α > 0.

For α < 1 fixed, denote

Oα,r0 = {Ω ⊂ D, ∀r, 0 < r < r0, Ω has capacity density (α, r)}.

We see that this condition is weaker than the ε-cone property. In fact it holds if
for all point x on the boundary such that there exists a cone of size independent of
x contained in Ωc. This boundary regularity implies Hölderian regularity up to the
boundary of solution of Dirichlet’s problem provided f is sufficiently regular.

Now we introduce the Wiener’s condition which is weaker than the capacity density.
A set Ω is regular in the Wiener’s sense if it belongs to the following set

Ww(D) = {Ω ⊂ D : ∀x ∈ ∂Ω, ∀0 < r < R < 1;∫ R

r

(
cap(Ωc ∩Bt(x), B2t(x))

cap(Bt(x), B2t(x))

)
dt

t
≥ w(r, R, x)

}
where Bt(x) is the ball with center x and radius t, and

w : (0, 1)× (0, 1)×D → [0,+∞)

is such that

1. limr→0w(r, R, x) = +∞, locally uniformly on x;

2. w is lower semicontinuous in the third variable.

Let us introduce those notations that we will use in the sequel.

• The class Oconvex ⊂ O(D) of convex sets contained in D;

• the class Ounif cone ⊂ O(D) of domains satisfying a uniform exterior cone property;

• the class Ounif flat cone ⊂ O(D) of domains satisfying a uniform flat cone condition,
i.e., as above, but with the weaker requirement that the cone may be flat, that
is of dimension d− 1;

• Ocap density ⊂ O(D) of domains satisfying a uniform capacity density condition for
some α, r;

• Ounif Wiener ⊂ O(D) of domains satisfying a uniformWiener condition i.e. Ounif Wiener =

Ww(D).
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Roughly speaking, we may establish the following inclusions :

Oconvex ⊂ Ounif cone ⊂ Ounif flat cone ⊂ Ocap density ⊂ Ounif Wiener. (4.6)

Proposition 4.1.19. Each of previous classes of domains is compact with respect to
the Hausdorff convergence.

Taking into account the Proposition 4.1.19 and the inclusions (4.6), it suffices to
prove the following theorem for having γ-compactness in each of the previous classes.

Theorem 4.1.20. (Uniform Wiener’s condition) Let (Ωn)n ⊂ Ww(D) which converges
to Ω in the Hausdorff topology. Then Ω ∈ Ww(D) and Ωn γ-converges to Ω

We conclude the part of continuity of the Dirichlet’s problem by this result due
to Šverák which turns out to be a consequence of Theorem 4.1.20. Let l ≥ 1 be an
integer, for all Ω ⊂ D open sets, we denote #Ωc the number of connected components
of the complement of Ω. We define the class
Ol(D) = {Ω ⊂ D, Ω, open, #Ωc ≤ l}.

Theorem 4.1.21. Let Ωn be a sequence of open sets in the class Ol(D) which converge
to an open set Ω in the sense of Hausdorff and assume d = 2. Then for all f ∈ H−1(D),
ufΩn converges to ufΩ.

We will prove these two theorems in a general setting in Section 5.2, Theorem 5.2.10
and Theorem 5.2.13.

4.2 Existence of Optimal Shapes

Let O be a class of admissible open subsets of D and J : O → [0,+∞] be a γ-lower
semicontinuous functional. We consider the following minimization problem.

min{J(Ω) : |Ω| ≤ m, Ω ⊂ O}. (4.7)

The γ-convergence on the class of all open subsets of D is not compact if the
dimension d is greater than 1; In fact several shape optimization problems of the
form (4.7) do not admit any solution, and the introduction of a relaxed formulation is
needed in order to describe the behavior of minimizing sequences. We describe some
particular cases where the problem (4.7) admits a solution and give some examples
where the existence of optimal domain fails.

4.2.1 Existence of optimal domains under some constraints

The direct method of the calculus of variation and the Proposition 4.1.19 Theorem
4.1.20 and Theorem 4.1.21 give the following result.

36



Theorem 4.2.1. Let F : D×R×Rd → R be a Carathéodory function. Then the shape
optimization problem

min

{∫
Ω

F (x, ufΩ,∇u
f
Ω)dx : Ω ∈ Oad

}
has at least one solution for

Oad = Oconvex,Ounif cone,Ounif flat cone,Ocap density,Ounif wiener,Ol(d = 2)

respectively. Here ufΩ stands for the solution of the Dirichlet’s problem associated to f
and Ω.

Another interesting result of the existence of the optimal domain is the following
theorem due to Buttazzo and Dal Maso. For the proof see [38].

Theorem 4.2.2. (Buttazzo - Dal Maso) Let J : O → R be a function which is γ-lower
semicontinuous and monotone decreasing with respect to the set inclusion where O is
the class quasi-open sets. Then the optimization problem

min {J(Ω) : |Ω| = m, Ω ∈ O}

admits at least one solution in O.

4.2.2 Example of non existence of an optimal shape

We give three examples of non-existence of an optimal domain.

Example 4.2.3 Let D = (0, 1)2, f ∈ L2(D), f > 0 a.e. on D, m a positive real
number and w the solution of{

w ∈ H1
0 (D) ∩H2

0 (D)
−∆w + 2π

m
w = f in D

Let us consider the functional J defined by

J(Ω) =

∫
Ω

(ufΩ − w)2dx

this is a functional of least square type useful in applications. Fix a real number a,
0 < a < 1 and let us consider

Oa = {Ω ⊂ D, Ω open, |Ω| ≥ a}.

Then the problem minΩ∈Oa J(Ω) does not admit a solution. In fact, we have seen in
the counterexample to the continuity that if we set

Ωn = D \
⋃
i,j

B(xij, e
−mn2

),
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then, ufΩn converges to w weakly in H1
0 (D) and strongly in L2(D). Therefore J(Ωn) =

||ufΩn −w||L2(D) converges to 0. Since it is clear that the measure of Ωn tends to 1 > a,

the open sets Ωn are in the class Oa for n large enough and thus the infimum of J
is equal to 0. If this infimum is achieved for some open set Ω we should get ufΩ = w

in L2(Ω) and since −∆ufΩ = f in D′(Ω), we should have −∆w = f in D′(Ω). But,
by definition of w, −∆w + 2π

m
w = fa.e. in D. This should implies that w = 0 on Ω,

which is contradictory with the fact that f > 0, a.e. on D and |Ω| > 0. This argu-
ment can easily be adapted for proving that there exists not even a quasi-open solution.

Example 4.2.4 We bring this second example from [31]. Let D be a bounded open
set and f ∈ L2(D), we want to minimize the functional

J(Ω) =

∫
D

(ufΩ − u0)2dx,

where u0 is a given function in L2(D). A physical interpretation of this problem
can be the following: D is a box or a room heated from a source of heat f and
D \ Ω represents a place where we put a cooling device (say ice). The purpose of
the problem is to determine the ice position for which the temperature of the box is
close as much as possible to the known ideal temperature u0. We set the problem in a
simple configuration and prove the non existence of optimal domains. Let us choose
f ≡ 1, u0 ≡ c ≡ constant and D the unit ball in R2. By the maximum principle, for
all Ω ⊂ D,we have

0 ≤ u1
Ω ≤ u1

D =
1− r2

4
≤ 1

4
.

If c ≥ 1
4
we have

u1
Ω − c ≤ u1

D − c ≤ 0,

therefore
J(Ω) =

∫
D

(u1
Ω − c)2dx ≥

∫
D

(u1
D − c)2dx = J(D),

this proves that Ω = D realize the minimum of J .
If 0 < c < 1

8
it is easy to see that D is not the minimum of J . In fact, denoting by

BR the disc of center O and radius R < 1, we have u1
BR

= R2−r2
4

for r = |x| < R and
J(BR) is given by

2π

∫ R

0

(
R2 − r2

4
− c)2rdr + 2π

∫ 1

R

(0− c)2 =
π

48
(R6 − 12cR4 + 48c2).

A simple calculation shows that J(BR) < J(D) for R =
√

8c < 1. Let us prove that
J cannot admit a minimum (at least regular) in this case. Assume that there exists a
regular minimum Ω, It is different from D, and |Ω| < |D|. Suppose that its closure is
different from D (this happen when Ω regular). Let Bε be a ball of radius ε contained
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in D \ Ω. Set Ωε = Ω ∪ Bε and let us show that for ε small enough, Ωε is a better
open set than Ω. Since Ωε has two disjoints connected components, we may compute
separately the solution on each connected component. But on Ω, u1

Ωε
coincides with

u1
Ω and on Bε it may be computed explicitly. It is easy to see that, for ε small enough,

we have 0 < u1
Ω < c on Bε. Let us compare J(Ωε), J(Ω).

J(Ωε) =

∫
Ωε

(u1
Ωε − c)

2dx+

∫
D\Ωε

c2dx

=

∫
Ω

(u1
Ω − c)2dx+

∫
Bε

(u1
Bε − c)

2dx+

∫
D\Ω

c2dx−
∫
Bε

c2dx

= J(Ω) +

∫
Bε

(u1
Bε − c)

2 − c2dx.

For ε small enough, 0 < u1
Ωε

< c, and thus (u1
Ωε
− c)2 < c2, this implies that

J(Ωε) < J(Ω). Therefore J cannot have a regular minimum. Moreover we may prove
that there exists not even a non regular minimum as it has been done in [46]

Example 4.2.5 ([84]) Let D1 and D2 be two open bounded subsets of Rd such that
the closure of D1 is contained in D2. Let O be the set of all open sets Ω such that
D1 ⊂ Ω ⊂ D2 that is

O =
{

Ω ⊂ Rd open D1 ⊂ Ω ⊂ D2

}
.

Let z ∈ L2(D1) be a given function. Consider the functional defined on O by

J(Ω) =

∫
D1

(ufΩ − z)2dx;

where ufΩ stands for the solution of the Dirichlet problem{
−∆u+ u = f in Ω

u = 0 on ∂Ω

We are interested in the problem

min {J(Ω) : Ω ∈ O} (4.8)

To prove that the problem (4.8) does not admit in general a solution we restrict
ourselves to the very particular 2-dimensional setting. Put D1 = B1(0)∪B4(0)\B3(0),
D2 = B5(0), f = 1 on D2, z = u1 on B1(0) and z = u2 on B4(0) \B3(0). where u1 is
the solution of {

−∆u+ u = 1 in B2(0)
u = δ on ∂B2(0)

and u2 the solution of
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 −∆u+ u = 1 in B5(0) \B2(0)
u = δ on ∂B2(0)
u = 0 on ∂B5(0)

δ is a positive number less than the value of u1
D2

on ∂B2(0). Let us consider the sequence
(Ωn)n, n ≥ 6, of domains

Ωn = D2 \
n⋃
i=1

Bδn(xni ),

where xni ∈ ∂B2(0), i = 1, · · · , n, are the vertices of a regular n-polygons, and the
number δn > 0 is chosen so that∫

∂B2(0)

u1
ΩndH

1 = 4πδ,

(for Ω ⊂ O, we assume u1
Ω extended by zero to D2). The sequence u1

Ωn
converges

weakly in H1(D2) to

u∞(x) =

{
u1(x), |x| < 2
u2(x), |x| ≥ 2

Therefore inf{J(Ω) : Ω ∈ O} = 0. At the same time, for all Ω ∈ O we have u1
Ω 6= z in

D1.
The previous examples show that some shape optimization problems do not admit

a solution. It is then, useful to search the solution outside of the setting of domains
in Rd, introducing the relaxed form of the Dirichet problem. The relaxed form of
a shape optimization problem with Dirichlet condition on the free boundary involve
relaxed controls which are measures. See for Example [31] for more details and [37] for
complete discussion. It is known that the relaxed control depends only on the state
equation. If we take the equation of the form

−∆u = f in Ω, u ∈ H1
0 (Ω)

where the control variable runs in the class of opens subsets of a given bounded domain
D ⊂ Rd and f is a given function in L2(D). For a sequence (Ωn)n of open subsets of
D we denote by un the solution of the equation

−∆u = f in Ωn, u ∈ H1
0 (Ωn). (4.9)

The relaxation consists of studying the limit behavior of the sequence un as n→ +∞.
the relaxed problem has been shown to be equal

−∆u+ µu = f in Ω, u ∈ H1
0 (Ω)

where µ is the Borel measure defined by
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µ(B) =

{
+∞ if cap(B ∩ {w = 0}) > 0∫
B

1
w
dν if cap(B ∩ {w = 0}) = 0.

(4.10)

Here ν = ∆w+ 1 ≥ 0 in D′(D) is a nonnegative Radon measure belonging to H−1(D),

and w is the limit of the solution of the equation (4.9) with f = 1

4.3 Necessary Condition of Optimality

We recall some derivation formulas of integral on moving domains. We consider the
function of the form

ε 7→ I(ε) =

∫
Ωε

f(ε,Φε(x))dx,

Ωε = Φε(Ω) is the image of a measurable set Ω ⊂ Rd by a family of diffeomorphisms
Φε : Rd → Rd defined for all ε ∈ [0, T ) and for all y ∈ Rd,Φ0(y) = y. By a change of
variable of the type x = Φε(y) we get

I(ε) =

∫
Ω

f(ε,Φε(y))Jε(y)dy,

where Jε(y) = det(DyΦε(y)) stands for the Jacobian of Φε (we will use the notation Φε

or Φ(ε)).Assume

Φ : ε ∈ [0, T )→ W 1,∞(Rd,Rd) differentiable at 0 with Φ(0) = I,
∂Φ

∂ε
(0) = V, (4.11)

where I is the identity matrix. In other word Φ is the family of diffeomorphisms
generated by the vector field V . We have the following differentiability formulas.

Theorem 4.3.1. Let Φ satisfying (4.11) be given. Assume that

ε ∈ [0, T ) ∈ L1(Rd) is differentiable at 0, (4.12)

f(0, ·) ∈ W 1,1(Rd). (4.13)

Then the function ε→ I(ε) =
∫

Ωε
f(ε, x)dx is differentiable at 0 and we have

I ′(0) =

∫
Ω

[
∂f

∂ε
(0, y) + divy(fV )(0, y)]dx. (4.14)

Moreover if Ω is an open set with Lipschitz boundary, then

I ′(0) =

∫
Ω

∂f

∂ε
(0, y)dx+

∫
∂Ω

(fV )(0, y)ν(y)dHd−1(y), (4.15)

where ν denotes the unit normal of ∂Ω.
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It may happens that the function f(ε, ·) is defined only on the moving domain Ωε

but not on all Rd. In this case the previous theorem still works provided f admits an
extension. We have

Corollary 4.3.2. Let Φ satisfying (4.11) and ε ∈ [0, T )→ f(ε, ·) ∈ L1(Ωε). Let assume
that

ε ∈ [0, T )→ F (ε) = f(ε,Φ(ε, ·)) is differentiable at 0, (4.16)

and there exits a linear continuous extension operator P : L1(Ω) → L1(Rd) such that
P (f(0, ·)) ∈ W 1,1(Rd). Then there exists an extension ε ∈ [0, T ) → f̃(ε, ) ∈ L1(Rd)

which is differentiable at 0 and

∂f̃

∂ε
(0, ·) =

∂F

∂ε
(0, ·)−∇P (f(0, ·))V.

Moreover the function ε→
∫

Ωε
f(ε, x)dx is differentiable at 0 and the formulas (4.14)

holds by setting for a.e.x ∈ Ω, ∂f
∂ε

(0, x) = ∂f̃
∂ε

(0, x).

We give a consequence of the theorem concerning the derivation on an interval

Corollary 4.3.3. Let us assume

Φ ∈ C1([0, T );W 1,∞(Rd)), f ∈ C1([0, T );L1(Rd)) ∩ C1([0, T );W 1,∞(Rd)),

We set V (ε, x) = ∂Φ
∂ε

(ε,Φ(ε)−1(x)). Then the function ε ∈ [0, T )→ I(ε) is continuously
differentiable on [0, T ) and we have

I ′(ε) =

∫
Ωε

[
∂f

∂ε
(ε, x) + div(fV )(ε, x)]dx. (4.17)

We consider also the surface integral of the form

G(θ) =

∫
Γθ

g(θ)dσ(θ) =

∫
Γθ

g(θ) ◦ (I + θ)Jθdσ(θ)

where Jθ is the tangential Jacobian of the map x 7→ x+θ(x) that is Jθ = JacΓθ(I+θ) =

det(I +∇θ)||t(I +∇θ)−1ν|| and Γ = ∂Ω, Γθ = (I + θ)(Γ) and θ is an element of the
space C1,∞ := C1 ∩W 1,∞ endowed with the W 1,∞ norm.

Theorem 4.3.4. Assume that Ω is a bounded open set of class C1. Let θ ∈ C1,∞ 7→
g(θ) ∈ W 1,1(Ωθ) be a map such that the map θ ∈ C1,∞ 7→ h(θ) ◦ (I + θ) ∈ W 1,1(Ω) is
differentiable at 0. Then the map θ 7→ G(θ) =

∫
Γθ
g(θ)dσ(θ) is differentiable at 0 and

we have

∀ξ ∈ C1,∞, G ′(0)ξ =

∫
Γ

h′(0)ξ + g(0)divΓξ.
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For every compact K ⊂ Ω, θ ∈ C1,∞ 7→ g(θ)|K ∈ L1(K) is differentiable at 0 and we
have

∀ξ ∈ C1,∞, g′(0)ξ = h′(0)ξ −∇g(0)ξ ∈ L1(Ω).

Moreover, if Ω is of class C2 and g(0) ∈ W 2,1(Ω), then

G ′(0)ξ =

∫
Γ

g′(0)ξ +∇g(0)ξ + g(0)divΓξ

=

∫
Γ

g′(0)ξ + [
∂g(0)

∂ν
+Hg(0)](ξ · ν).

where ν denotes the unit normal and H the mean curvature of Γ.

Proposition 4.3.5. Let Ω be a bounded open set of class C2 and Φ : ε ∈ [0, T ) →
C1,∞(Rd,Rd) differentiable at 0 with Φ(0) = I, ∂Φ

∂ε
(0) = V. Assume the map ε 7→

g(ε) ◦ Φ(ε) ∈ W 1,1(Ω) is differentiable at 0 with g(0) ∈ W 2,1(Ω). Then the map
ε 7→ G(ε) =

∫
Γε
g(ε)dσ is differentiable at 0, ε 7→ g(ε)|ω ∈ W 1,1(ω) is differentiable at

0 for every open set ω compactly supported in Ω; the derivative g′(0) is in W 1,1(Ω) and
we have

G′(0) =

∫
Γ

g′(0) + [
∂g(0)

∂ν
+Hg(0)](V · ν).

The goal is to apply those differentiability formulas to shape optimization problem
in order to derive the shape derivative. The minimization problem we consider is the
following

min{J(Ω) : Ω ∈ Oad}

where J(Ω) =
∫

Ω
F (x, u(x),∇u(x))dx +

∫
Γ
G(x, u(x),∇u(x))dσ, Oad is a class of do-

mains for which the minimization problem has a solution and u the solution of the
linear equation

A(x,∇u) = f in Ω, B(x,∇u) = g on Γ.

The functions F = F (x, u, z), G = G(x, u, z) are assumed to be smooth. We assume
also that the domain Ω is of class Ck, k ≥ 1. Let Φε be a smooth diffeomorphism
from Rd to Rd (which is a flow generated by a smooth vector field V ) and denote by
Ωε = Φε(Ω) the transported domain and by uε the state function corresponding to the
transformed domain that is the solution of the equation

A(x,∇uε) = f in Ωε, B(x,∇uε) = g on Γε.

The new functional is the following
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J(Ωε) =

∫
Ωε

F (x, uε(x),∇uε(x))dx+

∫
Γε

G(x, uε(x),∇uε(x))dσ.

We will not give details but only main steps. We have

d

dε
|ε=0J(Ωε) = lim

ε→0

J(Ωε)− J(Ω))

ε

=

∫
Ω

Fu(x, u(x),∇u(x))u′(x)dx+

∫
Ω

Fz(x, u(x),∇u(x)) · ∇u′dx

+

∫
Γ

F (x, u(x),∇u(x))V · νdσ +

∫
Γ

G(x, u(x),∇u(x))z′dσ

+

∫
Γ

Gz(x, u(x),∇u(x)) · ∇u′dσ +

∫
Γ

[Gz(x, u(x),∇u(x)) · (∇2u)ν)]V · νdσ

+

∫
Γ

H(x)G(x, u(x),∇u(x))V · νdσ,

,

where z = u|Γ, ν the unit normal vector of Γ andH the mean curvature of Γ. Moreover
we have

z′ = u′ +
∂u

∂ν
V · ν on Γ. (4.18)

Let us assume that the shape derivative u′ ∈ W s,l(Ω) is determined as the unique
solution of the following linear equation

〈Au′, ϕ〉W−s,l′ (Ω)×W s,l(Ω) = L(ϕ) ∀ϕ ∈ W s,l(Ω), (4.19)

where A ∈ L(W s,l(Ω),W−s,l′(Ω)) and L(·) ∈ W−s,l′(Ω) are given elements. Let us
denote by q ∈ W−s,l′(Ω) the adjoint state that is the solution of the equation

〈ψ,A∗q〉 =

∫
Ω

Fu(x, u(x),∇u(x))ψ(x)dx+

∫
Ω

Fz(x, u(x),∇u(x)) · ∇ψ(x)dx

+

∫
Γ

G(x, u(x),∇u(x))ψ(x)dσ +

∫
Γ

Gz(x, u(x),∇u(x)) · ∇ψ(x)dσ

(4.20)

∀ψ ∈ W s,l(Ω), where A∗ is the adjoint operator of A. Using the fact that

〈u′, A∗q〉 = 〈Au′, q〉 = L(q)

we get
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d

dε
|ε=0J(Ωε) = L(q) +

∫
Γ

F (x, u(x),∇u(x))V · νdσ

+

∫
Γ

G(x, u(x),∇u(x))
∂u

∂ν
V · νdσ

+

∫
Γ

[Gz(x, u(x),∇u(x)) · (∇2u)ν)]V · νdσ

+

∫
Γ

H(x)G(x, u(x),∇u(x))V · νdσ.

(4.21)

If Ω is the optimal domain then

d

dε
|ε=0J(Ωε) = 0.

This gives the necessary condition of optimality. In the previous computation the
existence of u′ and the equation satisfied by it are crucial. We give below the general
way to find them. Assume formally that we have the following linear or nonlinear
boundary value problem (equation on transported domain)

A(ε, uε) = f in Ωε, B(ε, uε) = g on Γε, (4.22)

where A(ε, ·) and B(ε, ·) are operators on the spaces functions defined on Ωε and Γε.

The first step is to show the derivability of the function ε 7→ uε. This may be done
by applying the theorem of implicit functions to the transported operators on Ω and
Γ.We get first the regularity of the function ε 7→ Uε = uε ◦Φε and then the derivability
of ε 7→ uε at least inside Ω. This allows to define u′ = u′(0) on the entire Ω and the
regularity up to the boundary is deduced from the expression u′ = U ′ − ∇u · Φ′ (at
ε = 0).

The second step is the computation of the derivative u′. To this aim we differentiate
the equation (4.22) under appropriate regularity assumption. It follows that u′ satisfies
the new boundary value problem

∂εA(0, u) + ∂uA(0, u)u′ = 0 in Ω, (4.23)

∂εB(0, u) + ∂uB(0, u)u′ =
∂

∂ν
(g −B(0, u))(V · ν) on Γ. (4.24)

The equation (4.23) is easily obtained by differentiating the equation in distributional
sense. For the equation (4.24), let us set Zε = B(ε, uε)−g and differentiate the equation
Zε ◦ Φε = 0 on Γ at ε = 0. Then we get

Z ′ +∇Z · V = 0, ∇ΓZ = 0,

which implies
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∇Z =
∂Z

∂ν
ν, Z ′ = −∂Z

∂ν
(V · ν).

Here Z ′ = ∂εB(0, u) + ∂uB(0, u)u′ and the expression (4.24) follows. For rigorous
statement and more details see [80], [81], [89], [92].
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Chapter 5

Shape optimization problems
governed by nonlinear state equations

This chapter treats the shape optimization problems governed by nonlinear state
equations. It is a nonlinear version of Chapter 4. We study first the continuity of the
solution of the p-Laplacian problem (and also of the more general monotone operator
in divergence form) with respect to the domain variation. secondly we analyze the
existence of optimal shapes and give the necessary condition of optimality in the case
where an optimal shape exists.

5.1 p-Capacity of a set

In the remark 4.1.3 , we have seen that set of Hausdorff dimension less than d− 2

has capacity zero. To measure a set of capacity zero, we need a more general capacity
that will be called p-capacity (the capacity is a particular case of the p-capacity when
p = 2).

Definition 5.1.1. (p-capacity of a set)
For a set K contained Rd,

capp(K) := inf

{∫
Rd
|∇ϕ|pdx, ϕ ∈ C∞c (Rd), ϕ ≥ 1 on K

}
.

For the general elliptic operator in divergence form div(A(∇u)), the capacity is
defined in the same way by replacing the integrand |∇ϕ|p by A(∇ϕ)∇ϕ. More details
may be found in [54]. The capp is also called the p-capacity or the capacity associated
to the norm of W 1,p. In the same way we may define also the p-capacity of a set K
relative to a bounded set B containing K.

capp(K,B) := inf

{∫
B

|∇ϕ|pdx, ϕ ∈ C∞c (B), ϕ ≥ 1 on K

}
.
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It is said that a property holds p-quasi everywhere (in short p − q.e.) if it holds
outside a set of p-capacity zero. It said that a property holds almost everywhere (in
short a.e.) if it holds outside a set of Lebesgue measure zero.

A function u is said p-quasi-continuous if for any ε there exists an open set Aε
such that capp(Aε, B) < ε and u is continuous in Ω \ Aε. Let us recall that any
function u ∈ W 1,p(Ω) has a unique (up to a set of p-capacity zero) p-quasi continuous
representative. Let us also recall the following results from [16] and [66] respectively.

Theorem 5.1.2. If u ∈ W 1,p(Rd), then u|Ω ∈ W 1,p(Ω) if and only if u = 0 p −
q.e on Ωc for a p-quasi-continuous representative.

Theorem 5.1.3. Let Ω be a bounded open subset of Rd, and u ∈ W 1,p(Ω). If u = 0 a.e.

in Ω, then u = 0 p− q.e. in Ω.

We summarize here some properties of the p-capacity. For the proof see for example
[57].

Proposition 5.1.4. A,B ⊂ Rd

• A ⊂ B =⇒ capp(A) ≤ capp(B);

• capp(A) = inf {capp(U) : U open A ⊂ U} ;

• capp(λA) = λd−pcapp(A) for λ > 0;

• capp(L(A)) = capp(A) for any affine isometry L : Rd → Rd;

• capp(A) ≤ CHd−p(A) for some constant C depending only on d and p;

• Ld(A) ≤ Ccapp(A)d/d−p for some constant C depending only on d and p;

• capp(A ∪B) + capp(A ∩B) ≤ capp(A) + capp(B);

• if A1 ⊂ · · · ⊂ Ak ⊂ Ak+1 · · · then

lim
k→∞

capp(Ak) = capp

(
∞⋃
k=1

Ak

)

• if A1 ⊃ · · · ⊃ Ak ⊃ Ak+1 · · · are compact, then

lim
k→∞

capp(Ak) = capp

(
∞⋂
k=1

Ak

)
.
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5.2 Continuity with respect to a domain

The aims of this paragraph is to prove some continuity result of the solution of the
p-Laplacian equation with respect to a domain. We follow [33]. For Ω open subset of
a fixed ball D in Rd, d ≥ 2 and h ∈ W 1,p

0 (D), f ∈ W−1,q(D) given, we are interested
in the study of the continuity of the map: Ω 7→ uΩ,f,h where uΩ,f,h is the weak solution
of the Dirichlet problem {

∆pu = f in Ω
u = h on ∂Ω

(5.1)

In Chapter 4 section 1.3, we have characterized the continuity in terms of the γ-
convergence (p = 2) of domains. Here we will do it for general p. We prove first the
continuity result for the p-Laplacian (γp-convergence) and in a second step, we prove
that γp-convergence implies the weak continuity for the solution of a more general
Dirichlet problem associated with a monotone operator. For this reason we introduce
this large class of operators and, in the next section, we prove for them some preliminary
results necessaries for the continuity , which are obviously true for the p-Laplacian.
Assume that a : Rd × Rd 7→ Rd, d ≥ 2 , satisfies:

for every ζ ∈ Rd the function a(·, ζ) is measurable (5.2)

for a.e. x ∈ Rd the function a(x, ·) is continuous (5.3)

a(x, tζ) = |t|p−2ta(x, ζ), t ∈ Rd, t 6= 0. (5.4)

The monotonicity assumption on a(x, ζ) are as usual that is there exist two positive
constant c0, c1 with 0 < c0 ≤ c1 <∞ such that, for a.e.x ∈ Rd and for every ζ1, ζ2 ∈ Rd

we have:
in the case 2 ≤ p < +∞

〈a(x, ζ1)− a(x, ζ2), ζ1 − ζ2〉 ≥ c0|ζ1 − ζ2|p (5.5)

|a(x, ζ1)− a(x, ζ2)| ≤ c1(|ζ1|+ |ζ2|)p−2|ζ1 − ζ2| (5.6)

in the case 1 < p ≤ 2

〈a(x, ζ1)− a(x, ζ2), ζ1 − ζ2〉 ≥ c0(|ζ1|+ |ζ2|)p−2|ζ1 − ζ2|2 (5.7)

|a(x, ζ1)− a(x, ζ2)| ≤ c1|ζ1 − ζ2|p−1 (5.8)

In particular equation (5.4)-(5.8) imply that for a.e. x ∈ Rd and for any ζ ∈ Rd:
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〈a(x, ζ), ζ〉 ≥ c0|ζ|p (5.9)

|a(x, ζ)| ≤ c1|ζ|p−1 (5.10)

Let us fix a ball D in Rd. By the assumption made on a(x, ζ) the operator Au =

−div(a(x,Du)) turns out to be continuous and strongly monotone from W 1,p
0 (D) into

its dual W−1,q(D) via the pairing:

〈Au, v〉 =

∫
B

a(x,∇u)∇vdx ∀u, v ∈ W 1,p
0 (D) (5.11)

The particular case where a(x, ζ) = |ζ|p−2ζ, A is the p-Laplacian operator

−∆pu = −div(|∇u|p−2∇u)

in this case (5.5)-(5.8) are satisfied with c0 = 22−p and c1 = p − 1 for p ≥ 2 and
c0 = 1, c1 = 22−p for p ≤ 2.

The scheme of the proof of the continuity is as follows. we are interested in equation
(5.1) and consider a sequence of open sets {Ωn}n∈N converging in the Hausdorff topology
to some set Ω.

1. The sequence of the solution of equation (5.1) on Ωn (with a general monotone
operator) is bounded in W 1,p

0 (D) and any weak limit term of the subsequence
solve equation (5.1) on Ω.

2. For the p-Laplacian it is sufficient to study continuity for equation (5.12) with
f = 0.

3. Using the capacity density conditions, we prove that the limit term satisfies the
boundary condition on Ω and hence it is solution on Ω.

4. The passage from the p-Laplacian to the general monotone operator in divergence
form is obtained via Mosco convergence.

5.2.1 Some estimate for the solution and passage to the limit
for the moving domain

Here we will focus on the general operator. Let us consider a mapping a(x, ζ)

satisfying (5.2)-(5.10) and A be the operator defined by (5.11). Fix f ∈ W−1,q(D) and
h ∈ W 1,p

0 (D). Then for any open subset Ω of D, we consider the following Dirichlet
problem: find u such that {

Au = f in Ω
u = h on ∂Ω

(5.12)
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in the weak sense that means∫
Ω

a(x,∇u)∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ C∞c (Ω).

From [53] we have the existence and the uniqueness of the equation (5.12) and some
estimate for the solution in terms of the data f and h. From these estimates it follows
a boundedness result for the solution of (5.12) which is uniform with respect to Ω, and
a result on the continuous dependence of the solution of (5.12) on f and h. Let us
denote the solution of (5.12) by uΩ,f,h. Then uΩ,f,h ∈ W 1,p(Ω). We can extend the
function uΩ,f,h by h outside Ω to an element of W 1,p

0 (D) since uΩ,f,h− h ∈ W 1,p
0 . ũΩ,f,h

will stand for this extension. It follows that

||ũΩ,f,h||pW p
0 (D)

=

∫
Ω

|∇uΩ,f,h|pdx+

∫
D\Ω
|∇h|pdx.

Proposition 5.2.1. For every f ∈ W−1,q(D), and h ∈ W 1,p
0 (D) the problem (5.12)

has a unique solution which satisfies:∫
Ω

|∇uΩ,f,h|p ≤ C(||f ||qW−1,q(D) +

∫
D

|∇h|pdx)

where C is a constant depends only on p, c0, c1.

This proposition helps to prove a boundedness result, uniformly with respect to Ω,
for the function ũΩ,f,h. The proof can be found in [53], theorem 2.1

Corollary 5.2.2. For any Ω ⊆ B, let uΩ,f,h be the solution of (5.12). Then ||ũΩ,f,h||W 1,p
0 (D) ≤

C where C is a constant depending only on f, h, p, c0, c1.

Proof: Setting u = uΩ,f,h, from proposition 5.2.1 we have:∫
Ω

|∇u|p ≤ C(||f ||qW−1,q(D) +

∫
D

|∇h|pdx)

By adding
∫
D\Ω |∇h|

pdx to both sides, we get

||ũΩ,f,h||pW 1,p
0

≤ C̃(||f ||qW−1,q(D) +

∫
D

|∇h|pdx)

which gives a desired conclusion. 2

The following lemma will be used to prove the continuous dependence of the solution of
(5.12) on f and h. The Lemma is true for any pairs of functions u1 and u2 ∈ W 1,p(Ω).

We are going to use this result in the case of two solutions of (5.12) on Ω with respect
to different pairs of data (f, h). For proof see [53], lemma 2.2
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Lemma 5.2.3. Let u1, u2 ∈ W 1,p(Ω). If 2 ≤ p <∞, then

c0

∫
Ω

|∇u1 −∇u2|pdx ≤
∫

Ω

〈a(x,∇u1)− a(x,∇u2),∇u1 −∇u2〉dx. (5.13)

If 1 < p ≤ 2, then

c0(

∫
Ω

|∇u1 −∇u2|pdx)
2
p ≤ K(u1, u2)

∫
Ω

〈a(x,∇u1)− a(x,∇u2),∇u1 −∇u2〉dx (5.14)

where K(u1, u2) = 2(
∫

Ω
|∇u1|pdx+

∫
Ω
|∇u2|pdx)

2−p
p .

Now fix f1, f2 ∈ W−1,q(D) and h1, h2 ∈ W 1,p
0 (D). By ui = uΩ,fi,hi for i = 1, 2 we

denote the solution of (5.12) on the same domain Ω associated to the data (fi, hi), i =

1, 2. We get:

Lemma 5.2.4. Fix f1, f2, h1, h2 as above. Let u1, u2 be the corresponding solution of
(5.12). If 2 ≤ p < +∞, then:

c0

∫
Ω

|∇u1 −∇u2|pdx ≤ K(||∇h1 −∇h2||Lp(D) + ||f1 − f2||W−1,q(D)). (5.15)

If 1 < p ≤ 2, then:

c0(

∫
Ω

|∇u1−∇u2|pdx)
2
p ≤ KK(u1, u2)(||∇h1−∇h2||Lp(D) + ||f1− f2||W−1,q(D)) (5.16)

where K is a constant depending only on ||f1||W−1,q(D), ||f2||W−1,q(D),

||h1||W 1,p
0 (D), ||h2||W 1,p

0 (D), c0, c1, p and K(u1, u2) is the constant in Lemma 5.2.3.

Proof: Writing (5.12) for u1 and u2 and the test function ϕ = u1−h1 and ϕ = u2−h2,
we have ∫

Ω

〈a(x,∇u1)− a(x,∇u2),∇u1 −∇u2〉dx =∫
Ω

〈a(x,∇u1)− a(x,∇u2),∇h1 −∇h2〉dx+

〈f1 − f2, u1 − h1〉 − 〈f1 − f2, u2 − h2〉 = A+B + C

(5.17)

We will consider the three term separately. Let us start by the first one. Using
(5.10) and the Hölder’s inequality we obtain:
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A =

∫
Ω

〈a(x,∇u1)− a(x,∇u2),∇h1 −∇h2〉dx

≤
∫

Ω

|a(x,∇u1)||∇h1 −∇h2|dx+

∫
Ω

|a(x,∇u2)||∇h1 −∇h2|dx

≤ c1

(∫
Ω

|∇u1|p−1|∇h1 −∇h2|dx+

∫
Ω

|Du2|p−1|∇h1 −∇h2|dx
)

≤ c1

2∑
i=1

(∫
Ω

|∇ui|pdx
) 1

q
(∫

Ω

|∇h1 −∇h2|pdx
) 1

p

Now it follows from Proposition 5.2.1 that for i = 1, 2

(

∫
Ω

|∇ui|pdx)
1
q ≤ c(||fi||qW−1,q(D) +

∫
D

|∇hi|pdx)
1
q .

Therefore there exists a constant α0 such that

A ≤ α0||∇h1 −∇h2||Lp(Ω) ≤ α0||∇h1 −∇h2||Lp(D) (5.18)

where α0 depends on f1, f2, h1, h2, c0, c1, p. Let us consider B. The Cauchy-Schwarz’s
inequality yields

B ≤ ||f1 − f2||W−1,q(D)||u1 − h1||W 1,p
0 (B)

≤ ||f1 − f2||W−1,q(D)(||ũ1||W 1,p
0 (D) + ||h1||W 1,p

0 (D)),

and from corollary 5.2.2 we get:

B ≤ α1||f1 − f2||W−1,q(D) (5.19)

where α1 depends on f1, h1, c0, c1, p. From the part C again the Cauchy-Schawrz’s
inequality gives

C ≤ α2||f1 − f2||W−1,q(D) (5.20)

where α2 depends on f2, h2, c0, c1, p. Now combining (5.17)-(5.20) we get

∫
Ω

〈a(x,∇u1)− a(x,∇u2),∇u1 −∇u2〉 ≤ K(||∇h1 −∇h2||Lp(D) + ||f1 − f2||W−1,q(D)),

(5.21)
where K = max(α0, α1, α2).

If p ≥ 2, from (5.13) and (5.21) we have:

c0

∫
Ω

|∇u1 −∇u2|pdx ≤ K(||∇h1 −∇h2||Lp(D) + ||f1 − f2||W−1,q(D)),

while for 1 < p ≤ 2, from (5.14) and (5.21) we get

c0(

∫
Ω

|∇u1 −∇u2|pdx)
2
p ≤ K(u1, u2)K(||∇h1 −∇h2||Lp(D) + ||f1 − f2||W−1,q(D))
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as desired. 2

Remark 5.2.5 If hn → h in W 1.p
0 (D) and fn → f in W−1,q(D), then α0, α1, α2 can

be chosen independently of n and bounded. So the constant K in Lemma 5.2.4 is
uniformly bounded, and using Proposition 5.2.1, the same is true for K(un, u).

From Lemma 5.2.4 and this remark we can prove the continuous dependence on f
and h of the solution uΩ,f,h which is uniform with respect to Ω.

Theorem 5.2.6. If hn → h strongly in W 1,p
0 (D) and fn → f in W−1,q(D), then:

ũΩ,fn,hn → ũΩ,f,h uniformly with respect to Ω.

Proof: We set ũn = ũΩ,fn,hn and ũ = ũΩ,f,h. We recall that

||ũ− ũn||pW 1,p
0 (D)

= ||∇u−∇un||pLp(Ω) + ||∇h−∇hn||pLp(D\Ω).

If p ≥ 2, from (5.14) we have

||ũ− ũn||pW 1,p
0 (D)

≤ K̃(||Dh−Dhn||Lp(D) + ||∇h−∇hn||pLp(D\Ω) + ||f − fn||W−1,q(D)),

and since hn → h strongly in W 1,p
0 (D) and fn → f strongly in W−1,q(D), we have

||ũ− ũn||pW 1,p(D) ≤ ε for n large enough.

If < p ≤ 2 from (5.15) we get

||ũ− ũn||2W 1,p
0 (D)

≤M(||∇h−∇hn||Lp(D) + ||∇h−∇hn||2Lp(D\Ω) + ||f − fn||W−1,q(D)),

where M is a constant independent of n (see Remark 5.2.1). It follows as previously
that

||ũ− ũn||2W 1,p(D) ≤ ε for n large enough.

These estimates for the solution, allow us to consider the moving domain case.
Classically, if Ωn converge to Ω in the Hausdorff topology, the continuity is achieved by
proving that any weak convergent subsequence of solution of the equation in Ωn tends
to the solution of the equation on Ω.

A given function is a solution of the equation in Ω if it satisfies the equation in
distributional sense and satisfies the boundary condition. Let us consider a sequence
of domains , which is convergent in Hausdorff topology. We start by the passage to the
limit in the equation. 2

Proposition 5.2.7. Let {Ωn}n∈N,Ω ⊂ D and Ωn
H−→ Ω. Then ||ũΩn,f,h||W p

0 (D) is
uniformly bounded, and if ũΩ,f,h ⇀ u, then∫

Ω

a(x,∇u)∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ C∞c (Ω).

54



Proof: Set un = uΩn,f,h. To prove the above equality, it is enough to prove that

a(x,∇un) ⇀ a(x,∇u) in Lp(Ω).

Let us consider a test function ϕ ∈ C∞c (Ω) , set K = sptϕ b Ω, and since Ωn
H→ Ω, we

have that K b Ωn for n large enough. Then ϕ ∈ C∞c (Ωn) and since un is a solution in
Ωn, we can write ∫

Ωn

a(x,∇un)∇ϕdx =

∫
Ωn

fϕdx.

Consider the set Kε = {x ∈ Rd : d(x,K) < ε} with ε small enough so that Kε b Ω; if
n is large enough, we still have Kε b Ωn. Let us prove that:

a(x,∇un) ⇀ a(x,∇u) in Lp(K
ε
2 ).

Fix g ∈ C∞c (Ω) such that g = 1 on K
ε
2 , g = 0 on ext(K

ε
2 ), and 0 ≤ g ≤ 1 on Kε.

Consider the test function

φn = g(un − u) ∈ W 1,p
0 (Kε).

If we write the equation for un in Ωn with the test function φn we have∫
Kε

a(x,∇un)∇(g(un − u))dx =

∫
Kε

fg(un − u)dx.

Performing the derivative of test function in the left hand side we get

∫
Kε

a(x,∇un)g∇(un − u)dx =

∫
Kε

fg(un − u)dx−
∫
Kε

a(x,∇un)(un − u)∇gdx

≤
∫
Kε

fg(un − u)dx

+ (

∫
D

|a(x,∇ũn)|qdx)
1
q (

∫
D

|∇g(ũn − u)|pdx)
1
p .

Remark that up to a subsequence the first term of right hand side tends to zero for
n → ∞ since gun ⇀ gu in W 1,p(Kε). The second term is a product of a uniformly
bounded sequence (by the assumption on a(x, ζ)) and of a vanishing term since ũn →
u in Lp(D). Finally we conclude with the following inequality:

lim sup
n→∞

∫
Kε

a(x,∇un)g∇(un − u)dx ≤ 0.

On the other hand, we get∫
Kε

a(x,∇u)g∇(un − u)dx→ 0, as n→∞

since ∇un ⇀ ∇u in Lp(Kε); therefore, by subtracting, we have

lim sup
n→∞

∫
Kε

g[a(x,∇un)− a(x,∇u)]∇(un − u)dx ≤ 0.
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By the monotonicity assumption on a(x, ζ) and the positivity of g we have

g[a(x,∇un)− a(x,∇u)]∇(un − u) ≥ 0 ∀x ∈ Kε,

and hence
lim
n→∞

∫
Kε

g[a(x,∇un)− a(x,∇u)]∇(un − u)dx = 0.

By the positivity of the integrand and by the equality g = 1 on Kε we have

lim
n→∞

∫
K
ε
2

[a(x,∇un)− a(x,∇u)]∇(un − u)dx = 0.

From [66], Lemma 3.73, we get that a(x,∇un) ⇀ a(x,∇u) in Lp(K
ε
2 ), so that we can

write ∫
K
ε
2

a(x,∇un)∇ϕdx =

∫
K
ε
2

fϕdx,

where ϕ is the chosen test function. If we compute the limit for n→∞ we have∫
K
ε
2

a(x,∇u)∇ϕdx =

∫
K
ε
2

fϕdx,

since sptϕ = K b K
ε
2 the previous equality holds in Ω . As ϕ was arbitrarily chosen,

u satisfies the equation on Ω in the sense of distributions. 2

5.2.2 Behavior on the boundary of the limit term for the p-
Laplacian

This section is devoted to the p-Laplacian 1 < p < +∞. We want to prove the
γp-convergence result, so in order to obtain the continuity of the map Ω 7→ uΩ,f,0, from
Proposition 5.2.7, we have just to prove that u|Ω ∈ W 1,p

0 (Ω), and hence u will be the
unique solution of the equation on Ω.

Lemma 5.2.8. Let Ωn,Ω ⊂ D be open subsets of D. If

ũΩn,0,h → ũΩ,0,h ∀h ∈ W 1,p
0 (D),

then
ũΩn,f,0 → ũΩ,f,0 ∀f ∈ W−1,q(D).

Proof: Set vn = uΩn,0,h, v = uΩ,0,h and un = uΩn,f,0, u = uΩ,f,0. We have u ∈ W 1,p
0 (Ω) ⊂

W 1,p
0 (D). Since ũn is bounded in W 1,p

0 (D), up to a subsequence

ũn ⇀ w in W 1,p
0 (D).

We prove that u = w. We consider the new problem:
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{
∆pϕn = 0 in Ωn

ϕn = −w on D \ Ωn.
(5.22)

Taking into (5.22) as test function ϕ̃n + w − ũn ∈ W 1,p
0 (Ωn) we have∫

D

|∇ϕ̃n|p−2∇ϕ̃n∇(ϕ̃n + w − ũn)dx = 0.

Now denoting by ϕ the solution of (5.22) on Ω, we have ∇(ϕ̃n + w − ũn) ⇀ ∇ϕ in
Lp(D) and |∇ϕ̃n|p−2∇ϕ̃n → |∇ϕ̃|p−2∇ϕ̃ in Lq(D) (this comes from the convergence of
the norm in Lp(D) and a.e. pointwise convergence which derives from ∇ϕ̃n → ∇ϕ̃ in
Lp(D)), so passing to the limit we get∫

D

|∇ϕ̃|p−2∇ϕ̃∇ϕ̃dx = 0

which means ϕ̃ = 0. But we know that ϕ̃ = −w in D \ Ω, so w = 0 in D \ Ω. We have
just proved that the weak limit w satisfy the boundary condition, and from Proposition
5.2.7, the equation on the limit set Ω, hence w = u from the uniqueness of the solution.
We have just proved that ũn ⇀ ũ. To conclude, it is sufficient to prove the convergence
of the norm ||ũn||W 1,p

0 (D) → ||ũ||W 1,p
0 (D) which implies the strong convergence. Using

the weak formulation of the equation on Ωn and Ω we obtain

lim
n→+∞

||ũn||pW 1,p
0 (D)

= lim
n→+∞

〈−∆pũn, ũn〉 = lim
n→+∞

〈f, ũn〉

= 〈f, ũ〉 = 〈−∆pũ, ũ〉 = ||ũ||p
W 1,p

0 (D)
.

(5.23)

which concludes the proof 2

The previous Lemma suggests us the study of the oscillation of the solution of the
problem {

∆pu = 0 in Ω
u = h on D \ Ω

(5.24)

near the boundary, for smooth function h.
Let us first introduce this class of domains which is the generalization of the one

introduced in Section 4.1.3 (regular Wiener sets)

Ww(D) = {Ω ⊂ D : ∀x ∈ ∂Ω, ∀0 < r < R < 1;∫ R

r

(
capp(Ω

c ∩Bt(x), B2t(x))

capp(Bt(x), B2t(x))

) 1
p−1 dt

t
≥ w(r, R, x)

}
where Bt(x) is the ball with center x and radius t, and

w : (0, 1)× (0, 1)×D → [0,+∞)

is such that
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1. limr→0w(r, R, x) = +∞, locally uniformly on x;

2. w is lower semicontinuous in the third variable.

We recall the following theorem from [66].

Theorem 5.2.9. Suppose that Ω is bounded. Let h ∈ W 1,p(Ω)∩C(Ω) and let u be the
solution of the equation (5.24). If y ∈ ∂Ω, then for all 0 < r ≤ R it holds

osc(u,Ω ∩Br(y)) ≤ osc(h, ∂Ω ∩B2R(y))+

+ osc(h, ∂Ω) exp

(
−c
∫ R

r

(
capp(Ω

c ∩Bt(y);B2t(y))

capp(Bt(y);B2t(y))

) 1
p−1 dt

t

)
,

where c is a fixed constant and

osc(u,A) = sup
x∈A

u(x)− inf
x∈A

u(x).

If h ∈ C∞c (D) and Ω ∈ Ww(D) there exists some constantM such that ∀x, z ∈ Ω∩Br(y)

|u(x)− u(z)| ≤MR +M exp(−cw(r, R, y)).

Since y is a regular point (by hypothesis Ω ∈ Ww(D) and limr→0w(r, R, y) = +∞) we
have

lim
z→y,z∈Ω∩Br(y)

u(z) = h(y).

Then we can write

|u(x)− h(y)| ≤MR +M exp(−cw(r, R, y)),

hence
|u(x)− u(y)| ≤ |h(x)− h(y)|+MR +M exp(−cw(r, R, y)),

or

|u(x)− u(y)| ≤ 2MR +M exp(−cw(r, R, y)) (5.25)

We have all the necessary ingredients for proving the following principal result of
this section.

Theorem 5.2.10. Let Ωn ∈ Ww(D), and assume Ωn converges in the Hausdorff topol-
ogy to Ω. Then Ω ∈ Ww(D) and Ωn γp-converges to Ω.
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Proof: The family Ww(D) is compact in the Hausdorff topology. The nonlinear case
may be proved as the linear one therefore Ω ∈ Ww(D). From Lemma 5.2.8 we have
only to prove that ũΩn,0,h → ũΩ,0,h for every h ∈ W 1,p

0 (D).
Step 1: Let h ∈ C∞c (D); we start by proving that ũΩn,0,h → ũΩ,0,h. For simplicity

set un = uΩn,0,h, then up to extraction of a subsequence ũn → u in W 1,p
0 (D). from

Proposition 5.2.7 we know that u satisfies the equation on Ω, so it is sufficient to prove
that u = h p-q.e. on D \ Ω. From the Banach-Saks theorem, we can construct a
sequence of convex function combinations

ψn =
Nn∑
k=n

αnk ũk with
Nn∑
k=n

αnk = 1 (5.26)

such that

ψn(x)→ u(x) p− q.e.onD. (5.27)

So let us consider a point x ∈ D \ Ω were (5.27) holds. For any ε > 0 we will prove
that |u(x) − h(x)| ≤ ε which implies that u(x) = h(x) p-q.e. on D \ Ω. From (5.26)
we get

|u(x)− h(x)| ≤
Nn∑
k=n

αnk |ũk(x)− h(x)|,

so it is sufficient to prove that there exists kε such that, ∀k ≥ kε we have

|ũk(x)− h(x)| ≤ ε. (5.28)

If x ∈ D \ Ωk then (5.28) is true. In order to apply inequality (5.25) for the open
set Ωk we fix R0 small enough such that

2MR0 ≤
ε

4
.

using the fact limr→0w(r, R, x) =∞, locally uniformly on x we find a neighborhood U
of x and r0 small enough such that Br0(x) ⊂ U and

M exp(−cw(r, R, y)) ≤ ε

4

for all r ≤ r0, and for all y ∈ U. Using the Hausdorff topology properties, there exists
some k0 large enough, such that for all k ≥ k0 we have Br0(y) ∩ Ωc

k 6= ∅. If x ∈ Ωk,
there exists some sequence zk ∈ Br0(x) ∩ ∂Ωk and one can apply inequality (5.25) for
uk, r0, R0, zk and get

|uk(x)− h(x)| ≤ ε ∀k ≥ k0

which implies (5.28).
Step 2: we have un ∈ W 1,p

0 (Ωn) and∫
Ωn

|∇un|p−2∇un∇ϕdx = 0 ∀ϕ ∈ W 1,p
0 (Ωn).
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We choose ϕ = un − h as a test function then it follows∫
Ωn

|∇un|p−2∇un∇undx =

∫
Ωn

|∇un|p−2∇un∇hdx. (5.29)

From step 1 we have ũn ⇀ u in W 1,p
0 (D) and from [24] theorem 2.1, we have (passing

to a subsequence if necessary)

∇ũn → ∇ũ, a.e. in D.

For getting the strong convergence of the solution we prove convergence of norms.
Using (5.29) we have

||ũn||pW 1,p
0 (D)

:=

∫
Ωn

|∇un|pdx+

∫
D\Ωn

|∇h|pdx

=

∫
Ωn

|∇un|p−2∇un∇undx+

∫
D\Ωn

|∇h|pdx

=

∫
Ωn

|∇un|p−2∇un∇hdx+

∫
D\Ωn

|∇h|pdx

=

∫
D

|∇ũn|p−2∇ũn∇hdx+

∫
D\Ωn

|∇h|pdx−
∫
D\Ωn

|∇ũn|p−2∇ũn∇hdx

=

∫
D

|∇ũn|p−2∇ũn∇hdx.

Therefore passing to the limit and using (5.29)

lim
n→+∞

||ũn||pW 1,p
0 (D)

= lim
n→+∞

∫
D

|∇ũn|p−2∇ũn∇hdx

=

∫
D

|∇ũ|p−2∇ũ∇hdx

=

∫
D\Ω
|∇h|p−2∇h∇hdx+

∫
Ω

|∇h|p−2∇h∇hdx

=

∫
D\Ω
|∇h|pdx+

∫
Ω

|∇u|pdx = ||ũ||p
W 1,p

0 (D)

where we have used the weak Lp convergence of ∇ũn to ∇ũ and the almost everywhere
pointwise convergence via the Mazur’s lemma to obtain the weak Lq convergence of
|∇ũn|p−2∇ũn to |∇ũ|p−2∇ũ.

Step 3: Fix h ∈ W 1,p
0 (D). By density we have the existence of a sequence (hk)k ⊂

C∞c (D) such that hk → h strongly inW 1,p
0 (D). Then ||hk||W 1,p

0 (D) is uniformly bounded
and we get

||ũΩn,0,h − ũΩ,0,h||W 1,p
0 (D) ≤ ||ũΩn,0,h − ũΩ,0,hk ||W 1,p

0 (D)

≤ ||ũΩn,0,hk − ũΩ,0,hk ||W 1,p
0 (D)

≤ ||ũΩ,0,hk − ũΩ,0,h||W 1,p
0 (D) <

ε

3
+
ε

3
+
ε

3
,
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where we have used the continuity result of the Step 2 in the smooth boundary data
for the second term and from the continuity dependence of the solution ũΩn,0,h with
respect to the variation of the boundary data which is uniform in Ωn. 2

A particular class contained in the family Ww(D) is the following (for the linear
case section) For c, r > 0, we said that Ω satisfies the p− (r, c) capacity condition if:

∀x ∈ ∂Ω,∀0 < δ < r
capp(Ω

c ∩Bδ(x), B2δ(x))

capp(Bδ(x), B2δ(x))
≥ c.

Op,c,r(D) will denote the set of all open subsets of D which satisfy the p−(r, c) capacity
density condition. This family is compact in the Hausdorff topology.

5.2.3 Generalized Šverák result for d− 1 < p ≤ d

In this section we extend the result of Šverák Theorem 4.1.21 to the arbitrary
dimension d and for p ∈ (d− 1, d]. The reason of this choice is that in Rd every piece
of curve has positive p-capacity for p > d − 1. The case p > d is trivial since all the
functions in W 1,p(Rd) are continuous. To prove the Šverák type result we give some
preliminary lemmas.

Lemma 5.2.11. Let γ[x,ξ] ⊂ Br(x) be a curve joining x to ξ such that ξ ∈ ∂Br(x).

Then
capp(γ[x,ξ];B2r(x)) ≥ capp([x, ξ];B2r(x)),

where [x, ξ] denotes the segment with extrema x and ξ.

Proof: For some ε > 0 we consider a nonnegative function ϕ ∈ C∞c (B2R(x)) such that∫
B2r(x)

|∇ϕ|pdx ≤ capp(γ[x,ξ];B2r(x)) + ε

and ϕ ≥ 1 on a neighborhood of γ[x,ξ]. Then we denote by ϕ∗ the Steiner symmetriza-
tion of ϕ with respect to the line xξ. Then ϕ∗ ∈ W 1,p

0 (B2r(x)), ϕ∗ ≥ 1 on U∗ ⊃ [x, ξ]
and ∫

B2r(x)

|∇ϕ∗|pdx ≤
∫
B2r(x)

|∇ϕ|pdx.

Since capp([x, ξ];B2r(x)) ≤
∫
B2r(x)

|∇ϕ∗|pdx, letting ε→ 0 concludes the proof. 2

Lemma 5.2.12. Let K ⊂ Rd be a compact connected set. Then for all x ∈ K and
r < 1

2
diamK we have

capp(K ∩Br(x), B2r(x))

capp(Br(x), B2r(x))
≥ capp([0, 1]× {0}d−1, B2(0))

capp(B1(0), B2(0))
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Proof: Let us take x ∈ K and consider the set Kδ = {x ∈ Rd : d(x,K) < δ}. Then
Kδ ⊂ Kδ+ε for all ε > 0 and the property of the capacity on decreasing sequences of
compact sets together with its monotonicity gives

capp(K ∩Br(x), B2r(x)) = lim
δ→0

capp(K
δ ∩Br(x), B2r(x)). (5.30)

The set Kδ is open, contains K and so it is connected by curves. Since Kδ is not
contained in Br(x) (since r < 1

2
diamK), there exists ξ ∈ ∂Br(x)∩Kδ and a continuous

curve γ[x,ξ] which connect x to ξ and lies in Br(x) ∩ Kδ. To conclude the proof it is
sufficient to use Lemma 5.2.11 and the behavior of the capacity on homothetic sets. In
fact we have

capp(K
δ ∩Br(x), B2r(x)) ≥ capp(γ[x,ξ] ∩Br(x), B2r(x))

≥ capp([x, ξ] ∩Br(x), B2r(x))

The using (5.30) and letting δ → 0, we obtain

capp(K ∩Br(x), B2r(x)) ≥ capp([x, ξ] ∩Br(x), B2r(x)).

Since
capp([x, ξ] ∩Br(x), B2r(x))

capp(Br(x), B2r(x))
=
capp([0, 1]× {0}d−1, B2(0))

capp(B1(0), B2(0))

we conclude the proof. 2

Now, we give a generalized Šverák result

Theorem 5.2.13. Let d − 1 < p ≤ d. Consider the sequence (Ωn)n ⊂ Ol(D) which
converges to the Hausdorff topology to Ω. Then Ω ∈ Ol(D) and Ωn γp-converges to Ω.

Proof: The set Ol(D) is compact in the Hausdorff topology, so Ω ∈ Ol(D). we decom-
pose D \ Ωn into its connected components

D \ Ωn = Kn
1 ∪ · ∪Kn

l .

Some of these components may be empty. Using the compactness of the Hausdorff
topology, we have (up to extracting subsequences)

Kn
i → Ki ∀i = 1, · · · , k.

Then Ki are still compact, connected and

Ω = D \K1(∪ · · · ∪Kl).

There are three types of connected components for the limit set: Ki = ∅, Ki is a
point, Ki contains at least two points. Consider the following family of indices which
corresponds to the first two cases: I = {i : diamKi = 0} and consider the new sets

Ω+
n = D \

⋃
i∈{1,··· ,l}\I

Kn
i .
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Then Ω+
n ⊃ Ωn and Ω+

n → Ω+ in Hausdorff topology where Ω+ = D \
⋃
i∈{1,··· ,l}\I Ki.

For n large enough there exists some r > 0 such that diam Kn
i > r, ∀i ∈ {1, · · · , l} \ I

and using Lemma 5.2.12 and Theorem 5.2.10 we have

uΩ+
n ,f,0
→ uΩ+,f,0.

Let us fix f = 1. We have

uΩ+
n ,1,0
→ uΩ+,1,0 (5.31)

and from the boundedness of uΩn,1,0 (possibly passing to a subsequence)

uΩn,1,0 ⇀ u (5.32)

from which

uΩ+
n ,1,0
− uΩn,1,0 ⇀ uΩ+,1,0 − u. (5.33)

From the maximum principle we have

uΩ+
n ,1,0
≥ uΩn,1,0 ≥ 0. (5.34)

From (5.31) and (5.34) we get u ≥ 0, and from (5.33) and (5.34) we get uΩ+,1,0 ≥ u. So

0 ≤ u ≤ uΩ+,1,0 (5.35)

which implies that u ∈ W 1,p
0 (Ω+). Since capp(Ω+ \ Ω) = 0 then u ∈ W 1,p

0 (Ω), i.e.
u = uΩ,1,0 thanks to Proposition 5.2.7. We have proved that uΩn,1,0 ⇀ uΩ,1,0 and from
theorem 6.3 of [53] we have

uΩn,f,0 ⇀ uΩ,f,0, ∀W−1,q(D). (5.36)

Now, using the equation on Ωn and Ω, we have:

lim
n→+∞

||uΩn,f,0||
p

W 1,p
0 (Ωn)

= lim
n→+∞

〈−∆pun, un〉 = lim
n→+∞

〈f, un〉

= 〈f, u〉 = 〈−∆pu, u〉 = ||uΩ,f,0||pW 1,p
0 (Ω)

.
(5.37)

(5.36) and (5.37) give

uΩn,f,0 → uΩ,f,0 strongly in W 1,p
0 (D) ∀f ∈ W−1,q(D),

i.e. the γp-convergence. 2

Remark 5.2.14 The γp-convergence is equivalent to the convergence in the sense
of Mosco of the associated Sobolev spaces. A sequence of Sobolev spaces W 1,p

0 (Ωn)

converges in the sense of Mosco to W 1,p
0 (Ω) if the following two conditions hold:

1. ∀u ∈ W 1,p
0 (Ω) ∃un ∈ W 1,p

0 (Ωn) such that un → u strongly in W 1,p(Rd);
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2. ∀unk ∈ W
1,p
0 (Ωnk) unk→u strongly in W 1,p(Rd) we have u ∈ W 1,p

0 (Ω).

If Ωn → Ω in the Hausdorff topology the condition 1 follows from the fact that
any compact contained in Ω is also contained in Ωn for n large enough. Condition 2

generally fails, but it is sufficient to prove only for a particular sequence of functions
unk ∈ W

1,p
0 (Ωnk), namely the solution of the equation (5.1) with f = 1 and h = 0 (see

[53]). As an immediate consequence, the γp-convergence implies the stability of the
solution of a more general equation (5.2)-(5.10). In this case, we have only the weak
continuity of the solution in W 1,p

0 (D). Let Au = −div(a(x,∇u)), where a(x, ζ) satisfies
the assumption (5.2)-(5.10).

Theorem 5.2.15. Let Ωn ∈ Ww(D) be a sequence which converges to Ω in Hausdorff
topology. Then

ũΩn,f,h ⇀ ũΩ,f,h.

Proof: Let ũΩn,f,h be the solution of the general equation (5.12). From Proposition
5.2.7 we have ũΩn,f,h ⇀ u, where u|Ω satisfies the equation on Ω. The capacitary con-
straint implies the Mosco convergence of W 1,p

0 (Ωn) to W 1,p
0 (Ω). Using the definition of

the limit in the sense of Mosco we have (u− h)|Ω ∈ W 1,p
0 (Ω), and from the uniqueness

of the solution of the equation (5.12) we get u = uΩ,f,h. 2

5.3 Existence of Optimal Shapes

Proposition 5.3.1. The following classes of domains are γp-compact:
Oconvex,Op−unif cone,Op−unif flat coneOp−cap density,Op−unif wiener,Ol(d− 1 < p ≤ d).

Proof: We know that all those classes are compact in the Hausdorff topology. The
inclusions (4.6) remains valid then the γp compactness of those classes follows from
Theorem 5.2.10 and Theorem 5.2.13 2

The direct method of the calculus of variation and the Proposition 5.3.1 give the
following result.

Theorem 5.3.2. Let F : D×R×Rd → R be a Carathéodory function. Then the shape
optimization problem

min

{∫
Ω

F (x, ufΩ,∇u
f
Ω)dx : Ω ∈ Oad

}
has at least one solution for

Oad = Oconvex,Op−unif cone,Op−unif flat cone,Op−cap density,Op−unif wiener,Ol(d− 1 < p ≤ d)
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respectively. Here ufΩ stands for the solution of the Dirichlet’s problem associated to f
and Ω.

As in section 4.2 of the previous chapter, we may construct the relaxed form of the
Dirichlet problem for some nonlinear elliptic equations of monotone type. Let D be a
bounded open subset of Rd, and let A : W 1,p

0 (D)→ W−1,q(D) be a monotone operator
of the form

Au = −div(a(x,∇u)),

where a satisfies the conditions (5.2)-(5.10) and 1 < p ≤ +∞ and q is the conjugate
exponent of p. We denote byMp

0(D) the set of all nonnegative Borel measure µ on D
(+ ∞ valued is allowed), such that

• µ(B) = 0 for every Borel set B ⊂ D with capp(B) = 0;

• µ(B) = inf{µ(U), Uquasi-open B ⊂ U} for every Borel set B ⊂ D.

If µ ∈ Mp
0(D), then space W 1,p

0 (D) ∩ Lpµ(D) is well defined, since all functions in
W 1,p

0 (D) are defined µ-almost everywhere in D. It is easy to see that W 1,p
0 (D)∩Lpµ(D)

is Banach space with the norm ||u||p
W 1,p

0 (D)∩Lpµ(D)
= ||u||p

W 1,p
0 (D)

+ ||u||p
Lpµ(D)

. Here we will
give just the relaxed form. All the details and proofs can be found in [53]. Given
f ∈ W−1,q(D) and a sequence Ωn of open subsets of D, we denote by un the solution
of the following equation {

Aun = f in Ωn

un = 0 on ∂Ωn.
(5.38)

We extend un to all D by setting the value zero outside Ω. This equation has to be
understood in the weak sense that is∫

D

a(x,∇un)∇vdx = 〈f, v〉, ∀v ∈ W 1,p
0 (Ωn).

Following [53], there exists a subsequence (not relabeled) of (Ωn)n such that for every
f ∈ W−1,q(D), the sequence (un)n weakly converges to the solution of the equation{

Au+ µ|u|p−2 = f

u ∈ W 1,p
0 (D) ∩ Lpµ(D),

(5.39)

where µ is the Radon measure defined by

µ(B) =


+∞ if capp(B ∩ {w = 0}) > 0∫

B

1

wp−1
dν if capp(B ∩ {w = 0}) = 0.

(5.40)

Here ν = 1−Aw ≥ 0 in D′(D) is a nonnegative Radon measure belonging toW−1,q(D)

and w the weak limit in W 1,p
0 (D) of the equation (5.38) with f = 1. In the case where

the operator A is the p-Laplacian operator, the equation (5.39) takes the form
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{
−∆pu+ µ|u|p−2 = f

u ∈ W 1,p
0 (D) ∩ Lpµ(D),

(5.41)

and the expression of the Radon measure µ remains unchanged except that ν = ∆pw+1.

5.4 Necessary Condition of Optimality

This section is dedicated to the necessary conditions of optimality. We try to give
the stationary configuration when the optimal shape exists. In this case we consider
the following classes of control variables Σ: the class of closed connected subsets of R2,

the class of finite numbers of points of Rd for d > 1 and the class of closed connected
subsets in Rd for d > 2. In the two last cases, some extra difficulty arrive because
of the codimension of Σ which is greater than 1. For simplicity, we assume Ω has
Lipschitz boundary and u = 0 on ∂Ω∪Σ. We assume as much as needed the regularity
on the data. Before looking for the necessary conditions of optimality, we recall some
definitions and results which will be helpful; we refer to [28] for more details

For a measure µ we denote for µ a.e. x by Pµ(x, ·) : Rd → Tan(µ, x) the orthogonal
projection of Rd on Tan(µ, x).

Definition 5.4.1. The curvature of µ is defined as the vector valued distribution

Hµ := div(Pµµ).

In other words Hµ is defined by

〈Hµ, X〉 = −
∫
Rd

divµXdµ ∀X ∈ C∞c (Rd,Rd),

where divµX =
∑d

j=1(Pµ(∇Xj))j.

We denote byMBC the set of all positive and finite Borel regular measures of Rd

whose curvature is a Borel regular measure with finite total mass. Since the curvature
Hµ of a measure µ ∈ MBC is not necessary absolutely continuous with respect to µ,
by Radon-Nikodym theorem, we can write

Hµ = h(µ)µ+ ∂µ,

where h(µ) ∈ L1
µ(Rd,Rd) is the density ofHµ with respect to µ (also called the pointwise

curvature) and ∂µ is the singular part of Hµ with respect to µ (also called the boundary
of µ).

Remark 5.4.2 If µ = HkxΣ, with Σ a C2 k-manifold with boundary in Rd, then by
classical divergence theorem we have

Hµ = νHk−1x∂Σ + hHkxΣ,
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where h stands for the mean curvature vector of Σ and ν the co-normal unit vector of
∂Σ.

When the tangent space to µ is reduced to zero µ a.e., Hµ is zero. This is for instance
the case where µ is a finite sum of Dirac masses, or µ is concentrated on α-dimensional
Cantor subset C of [0, 1] with Hα(C) ∈ (0,+∞).

Definition 5.4.3. Let Σ be a countable Hk rectifiable set and µ = θHkxΣ be the
associated rectifiable measure. A function h ∈ L1

µ(Σ,Rd) is said to be generalized mean
curvature of Σ if ∫

Rd
divΣXdµ = −

∫
Rd
X · hdµ ∀X ∈ C∞c (Rd,Rd).

In this case we denote the generalized mean curvature of Σ by HΣ.

Theorem 5.4.4. Let (µr)r be a bounded sequence in MBC such that µr weakly con-
verges to µ and dimTan(µr)µr weakly converges to gµ. Then the condition

dimTan(µ, x) ≤ g(x) µ− a.e. (5.42)

is necessary and sufficient to have

Pµrµr ⇀ Pµµ. (5.43)

In this case we have

Hµr ⇀ Hµ. (5.44)

Proof: see [28] 2

Let Ω be an open subset of Rd and F : Ω×R×Rd → [0,+∞] be a positive Carathédory
function. We assume F smooth and satisfying the condition

F (x, u, z) ≤ a(x) + up + |z|p,

where a is an L1(Ω) function. We consider the functional

J(Σ) :=

∫
Ω

F (x, u(x),∇u(x))dx

where u is the solution of the equation{
−div(|∇u|p−2∇u) = f in Ω \ Σ

u = 0 on ∂Ω ∪ Σ.
(5.45)

Let us consider the following classes of control variables:

A(Ω) :=
{

Σ ⊂ Ω : Σ closed connected, H1(Σ) < +∞
}
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B(Ω) :=
{

Σ ⊂ Ω : Σ discrete, H0(Σ) = #(Σ) < +∞
}

and the shape optimization problems

min
{
J(Σ) + λH1(Σ) : Σ ∈ A(Ω)

}
(5.46)

min
{
J(Σ) + λH0(Σ) : Σ ∈ B(Ω)

}
. (5.47)

The penalization terms λH1(Σ) and λH0(Σ) with λ > 0 replace the constraint on
H1(Σ) and H0(Σ) prevent the minimization sequence to spread over all the domain
Ω and hence getting a trivial solution. The existence of minimizer in the two shape
optimization problems (5.46) and (5.47) is just a consequence of the Šverák (see [94]
for p = 2 and [33] for general p) and the Blaschke and Go`ab theorems. Our goal is to
derive the first order necessary condition of optimality. We try to give the stationary
configuration of the optimal shape by distinguish three cases according to technical
computations.

5.4.1 Case of closed connected subsets in R2

Let u be the weak solution of the state equation{
−div(|∇u|p−2∇u) = f in Ω \ Σ

u = 0 on ∂Ω ∪ Σ
(5.48)

that means ∫
Ω

|∇u|p−2∇u∇vdx =

∫
Ω

fvdx ∀v ∈ W 1,p
0 (Ω \ Σ).

As done in section 4.4.1 let us introduce the family of diffeomorphisms. ϕε(x) =

x+ εX(x) where X is a smooth vector field from Rd to Rd supported in Ω. For ε small
enough, ϕε maps Ω into Ω. Set Aε = ϕε(A) and consider the new state equation in the
deformed domain {

−div(|∇uε|p−2)∇uε) = f in Ω \ Σε

uε = 0 on ∂Ω ∪ Σε.
(5.49)

The corresponding functional is

F(Σε) =

∫
Ω

F (x, uε(x),∇uε(x))dx+ λH1(Σε). (5.50)

To differentiate the above function, we use Theorem 4.3.1 since ϕ satisfies (4.11) and
F smooth. By taking the derivative of the functional (5.50) at ε = 0 we get, thanks to
(4.14) the following result

∂

∂ε
|ε=0 F(Σε) =

∫
Ω

(Fuu
′ + Fz · ∇u′ + div(FX)))dx+ λ

∂

∂ε
|ε=0 H1(Σε)

where u′ is the solution of the equation
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−div(Gu(∇u′)) = 0 in Ω \ Σ

u′ = 0 on ∂Ω
u′ = −∇u ·X on Σ

(5.51)

and
Gu(Z) = |∇u|p−2Z + (p− 2)|∇u|p−4(∇u · Z)∇u.

The functional Gu is computed according to the procedure introduced in Chapter 4 for
computing u′ and the equation (5.51) is the precise version of equations (4.23), (4.24)
associated to the p-Laplacian operator. The derivative ∂

∂ε
|ε=0 H1(Σε) that appears in

the above variation, according to theorem 7.31 of [10], gives the following

∂

∂ε
|ε=0 H1(Σε) =

∫
Σ

divΣXdH1 = −〈HΣ, X〉

As Σ is countably H1-rectifiable, divΣ should be the projection of the divergence to the
approximate tangent of Σ at H1-a.e point of Σ. Unfortunately, the quantity

∫
Ω

(Fuu
′+

Fz ·∇u′)dx is not exploitable. To overcome this problem we introduce the adjoint state
equation. {

−div(Gu(∇q)) = Fu − div(Fz) in Ω \ Σ
q = 0 on ∂Ω ∪ Σ

(5.52)

which has to be understood in the distributional sense∫
Ω

(Fuv + div(Fz)v)dx−
∫

Ω\Σ
(div(Gu(∇q))v)dx = 0 ∀v ∈ D′(Ω \ Σ).

We are not interested in the regularity of the functions u and q in the whole domain
Ω but only near the optimal set. Close to the optimal set, q is H1

loc. In the variational
formulation of the equation (5.52) if we take u′ as a test function, we have∫

Ω

(Fuu
′ − div(Fz)u

′)dx+

∫
Ω\Σ

(div(Gu(∇q))u′)dx = 0. (5.53)

Let Ω+ and Ω− be two sets such that Ω = Ω+ ∪Ω− and Σ ⊂ ∂Ω+ ∩ ∂Ω−. Assume
that Σ, ∂Ω and f provide sufficient regularity for u, u′ and q so that the Green formula
can be applied to (5.53). For the sequel, we use the following notation. ∇u+ stands
for the trace on Σ of ∇u restricted to Ω+, ∂u+

∂ν
for the trace of the respective normal

derivative, F+
z · ν = Fz(x, 0,∇u+) · ν. Similarly ∇u− stands for the trace on Σ of

∇u restricted to Ω−, ∂u−

∂ν
for the trace of the respective normal derivative , F−z · ν =

Fz(x, 0,∇u−) · ν. Recall also that

∇u± =
∂u±

∂ν
ν

because u± = u = 0 on Σ (i.e the tangential derivative of u± over Σ vanishes). Let us
compute separately the term of the equation (5.53) and starting by the first part, we
get
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A+ =

∫
Ω+

(Fuu
′ − div(Fz)u

′)dx =

∫
Ω+

(Fuu
′ + Fz · ∇u′)dx−

∫
∂Ω+

u′Fz · νdH1

where ν is the outer normal of Ω+. It is easy to observe that u′ = 0 on ∂Ω ∩ ∂Ω+ and
∂Ω+ = Σ ∪ (∂Ω+ \ (∂Ω ∪ Σ)) ∪ (∂Ω ∩ ∂Ω+) so

A+ =

∫
Ω+

(Fuu
′ + Fz · ∇u′)dx+

∫
Σ

∂u+

∂ν
(F+

z · ν)XνdH1 −
∫
∂Ω+\(∂Ω∪Σ)

u′Fz · νdH1.

Likewise, taking into account the fact the outer normal of Ω− restricted to Ω+ ∩Ω− is
−ν, one gets

A− =

∫
Ω−

(Fuu
′ + Fz · ∇u′)dx−

∫
Σ

∂u−

∂n
(F−z · ν)XνdH1 +

∫
∂Ω−\(∂Ω∪Σ)

u′Fz · νdH1.

Then, combining both of them and using the fact that the two sets ∂Ω+ \ (∂Ω ∪ Σ)

and ∂Ω− \ (∂Ω ∪ Σ) coincides, give

A = A+ + A− =

∫
Ω

(Fuu
′ + Fz · ∇u′)dx+

∫
Σ

(
∂u+

∂ν
F+
z · ν −

∂u−

∂ν
F−z · ν

)
XνdH1.

For the second term, the integration by part leads to

B+ =

∫
Ω+\Σ

divGu(∇q)u′dx = −
∫

Ω+\Σ
Gu(∇q) · ∇u′dx+

∫
∂(Ω+\Σ)

u′Gu(∇q) · νdH1

where ν is the outer normal of Ω+ as in the previous case. It is easily seen that

B+ = −
∫

Ω+\Σ
Gu(∇q)·∇u′dx−

∫
Σ

∂u+

∂ν
(Gu(∇q)+·ν)XνdH1+

∫
∂Ω+\(∂Ω∪Σ)

u′Gu(∇q)·νdH1.

Similarly, under the same observation as above, we have

B− = −
∫

Ω−\Σ
Gu(∇q)∇u′dx+

∫
Σ

∂u−

∂ν
(Gu(∇q)−·ν)XνdH1−

∫
∂Ω−\(∂Ω∪Σ)

u′Gu(∇q)·νdH1.

Therefore, summing up one obtains (B = B+ +B−)

B = −
∫

Ω\Σ
Gu(∇q) · ∇u′dx+

∫
Σ

(
∂u−

∂ν
Gu(∇q)− · ν −

∂u+

∂ν
Gu(∇q)+ · ν

)
XνdH1.

By the linearity of the function Gu, we get∫
Ω\Σ

Gu(∇q) · ∇u′dx =

∫
Ω\Σ

Gu(∇u′) · ∇qdx
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but, by integration by parts, it follows that∫
Ω\Σ

Gu(∇u′) · ∇qdx = −
∫

Ω\Σ
div(Gu(∇u′))qdx+

∫
∂Ω∪Σ

qGu(∇u′) · νdH1 = 0

because u′ is the weak solution of equation (5.51) and q vanishes on ∂Ω ∪ Σ. Finally
we obtain

∫
Ω

Fuu
′ + Fz · ∇u′dx =−

∫
Σ

(
∂u+

∂ν
F+
z · ν −

∂u−

∂ν
F−z · ν +

∂u−

∂n
Gu(∇q)− · ν

− ∂u+

∂ν
Gu(∇q)+ · ν

)
XνdH1.

To compute the term
∫

Ω
div(FX)dx, we assume for simplicity that Ω has a Lipschitz

boundary. Then ∫
Ω

div(FX)dx =

∫
∂Ω

FXνdHd−1 = 0

since X is supported in Ω. It follows that∫
Ω

(Fuu
′ + Fz · ∇u′ + div(FX))dx− λ〈HΣ, X〉 = −λ〈HΣ, X〉

−
∫

Σ

(
∂u+

∂ν
F+
z · ν −

∂u−

∂ν
F−z · ν −

∂u−

∂ν
Gu(∇q)− · ν +

∂u+

∂ν
Gu(∇q)+ · ν

)
XνdH1

but, by simple computation, we have

Gu(∇q)+ · ν =
∣∣∇u+

∣∣p−2∇q+ · ν + (p− 2)
∣∣∇u+

∣∣p−4
(∇u+ · ∇q+)∇u+ · ν + t∇q+ · ν

=

∣∣∣∣∂u+

∂ν

∣∣∣∣p−2
∂q+

∂ν
+ (p− 2)

∣∣∣∣∂u+

∂ν

∣∣∣∣p−4(
∂u+

∂ν

∂q+

∂ν

)
∂u+

∂ν

= (p− 1)

∣∣∣∣∂u+

∂ν

∣∣∣∣p−2
∂q+

∂ν

and also similarly

Gu(∇q)− · ν = (p− 1)

∣∣∣∣∂u−∂ν
∣∣∣∣p−2

∂q−

∂ν
,

therefore combining all the computations together we have∫
Ω

(Fuu
′ + Fz∇u′+div(FX))dx− λ〈HΣ, X〉 = −λ〈HΣ, X〉

−
∫

Σ

(
∂u+

∂ν
F+
z · ν −

∂u−

∂ν
F−z · ν

)
XνdH1

+ (p− 1)

∫
Σ

(∣∣∣∣∂u−∂ν
∣∣∣∣p−2

∂u−

∂ν

∂q−

∂ν
−
∣∣∣∣∂u+

∂ν

∣∣∣∣p−2
∂u+

∂ν

∂q+

∂ν

)
XνdH1
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This equality holds for every vector field X, then we derive the following optimality
condition:

λ〈HΣ, ν〉 −
(
∂u+

∂ν
F+
z · ν −

∂u−

∂ν
F−z · ν

)
+ (p− 1)

(∣∣∣∣∂u−∂ν
∣∣∣∣p−2

∂u−

∂ν

∂q−

∂ν
−
∣∣∣∣∂u+

∂ν

∣∣∣∣p−2
∂u+

∂ν

∂q+

∂ν

)
= 0.

We can rewrite this optimality condition in this form:

λ〈HΣ, ν〉+

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)±
= 0.

We have proved the following result.

Theorem 5.4.5. Let Σ be an optimal set in the minimization problem (5.46) and u
the corresponding solution of the state equation. Assume d = 2, then u satisfies the
following necessary condition of optimality:

λ〈HΣ, ν〉+

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)±
= 0,

where ν is the unit normal vector of Σ, HΣ the generalized mean curvature of Σ and q
the solution of the adjoint state equation (5.52).

5.4.2 Case of points in Rd, d > 1

In the case of points, some extra difficulties arise. For a similar equation as in (5.51)
we need to define a gradient on the point. But the gradient and the normal are not
defined on points (in fact there are infinite many choices which depend on the direction).
The strategy is to study configurations which are close to the optimal one and obtain
the optimal configuration as a limit of the studied configurations. Let x0 be the optimal
point. We consider, for r small and positive real number, the set Σr = ψ(Br(x0)) where
Br(x0) is the ball centered at x0 and ψ is a smooth diffeomorphism from Ω to Ω such
that x0 is invariant by ψ. The associated state equation is{

−div(|∇u|p−2∇u) = f in Ω \ Σr

u = 0 on ∂Ω ∪ Σr.
(5.54)

For the functional, we consider

F(Σr) =
1

rd

∫
Ω

F (x, u(x),∇u(x))dx+ λ
1

rd
Hd(Σr).

The factors 1
rd−1 and 1

rd
are in order to avoid the functional to degenerate to the trivial

limit functional which vanishes everywhere. Notice that as r → 0 the solution of the
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equation (5.54) converges strongly in W 1,p
0 (Ω) to the solution of the same equation

defined on Ω \ {x0}. Moreover since p > d thanks to Sobolev embedding theorem, the
solution is Hölder continuous. Using the same trick as above that is transforming the
domain by ϕε, find the new state equation and new functional, by taking the derivative
of the functional at ε = 0, one gets

∂

∂ε
|ε=0 F((Σr)ε) =

1

rd−1

∫
Ω

(Fuu
′ + Fz · ∇u′ + div(FX)) dx− λ 1

rd
〈HΣr , X〉

where u′ is solution of the equation
−div(Gu(∇u′)) = 0 in Ω \ Σr

u′ = 0 on ∂Ω
u′ = −∇u ·X on Σr,

(5.55)

Gu(∇u′) is as before and HΣr is the mean curvature of Σr. Using the fact that x0 is
optimal and r is small enough (we are in a small neighborhood of the optimal point),
we obtain ∂

∂ε
|ε=0 F((Σr)ε) = o(1)

To overcome the problem of ∇u′ as in the previous case, we introduce the adjoint state
equation. {

−div(Gu(∇q)) = Fu − div(Fz) in Ω \ Σr

q = 0 on ∂Ω ∪ Σr.
(5.56)

This equation has to be understood in the distributional sense

∫
Ω\Σr

(Fuv − div(Fz)v)dx+

∫
Ω\Σr

div(Gu(∇q))vdx = 0 ∀v ∈ D′(Ω \ Σr).

In particular ∫
Ω\Σr

(Fuu
′ − div(Fz)u

′)dx+

∫
Ω\Σr

div(Gu(∇q))u′dx = 0.

By integration by parts, the first term of the equation yields∫
Ω\Σr

(Fuu
′ − div(Fz)u

′)dx =

∫
Ω\Σr

(Fuu
′ + Fz · ∇u′)dx−

∫
∂Σr

u′Fz · νrdHd−1

where νr is the inward normal of Σr. The computation is quite similar to the case of
closed connected subset of R2 and one gets∫

Ω\Σr
div(Gu(∇q))u′dx = −

∫
∂Σr

(
(p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
XνdHd−1.

Here ∂Σr plays the role of Σ in the two dimensional case. Moreover all the quantities
vanish in the interior side of Σ then we are interested only on the other side that is the
exterior side of Σr∫

Ω\Σr
(Fuu

′ + Fz · ∇u′)dx = −
∫
∂Σr

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
XνdHd−1.
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Using the above calculation, one can rewrite the derivative of the functional as
follows:

∂

∂ε
|ε=0 F((Sr)ε) = − λ

rd
〈HΣr , X〉+

− λ

rd−1

∫
Sr

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
XνdHd−1.

By the change of variables of type x = ψ(r, θ), θ ∈ Sd−1 we get

−
∫
Sd−1

∫ r

0

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
XνJ(θ)drdθ

− λ

rd
〈HSr , X〉 = o(1).

In this notation u = u(ψ(r, θ)), q = q(ψ(r, θ)), ν = ν(ψ(r, θ)),
Fz = Fz(ψ(r, θ), u(ψ(r, θ)),∇u(ψ(r, θ))) and J(θ) is the Jacobian determinant of the
function: θ 7→ ψ(θ). It remains to study the limit as r tends to 0. We do it in
the particular way by letting ψ(r, θ) goes to x0 in a fixed direction as r goes to 0.
To express the dependence of the limit on the direction ψ(θ), we use the following
notation: ν(ψ(r, θ)) → ν(ψ(θ)) as r −→ 0; the same notation will be also used for
other functions in the integrand. This gives:∫

Sd−1

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
XνJdθ = 0. (5.57)

All the terms in the integrand are evaluated at ψ(θ). The quantity r−d〈HΣr , X〉
goes to zero as r goes to zero. In fact if we set µr = r−dHdxΣr this measure be-
longs toMBC and weakly converges to the Dirac mass ωdδx0 concentrated at x0. Since
dimTan(µr) = d for all r > 0 it follows that (dimTan(µr))µr = dµr weakly converges
to dωdδx0 . Therefore since dimTan(δ0) = 0 < d we may apply Theorem 5.4.4 with f
equals to the constant function d to have the weak convergence of the mean curvature
Hµr to the mean curvature Hδx0

which is identically zero. As a consequence the gener-
alized mean curvature HΣr of Σr weakly converges to the generalized mean curvature
Hδx0

of the point x0. The equality in (5.57) holds for every X ∈ C∞c (Ω) and every ψ
diffeomorphism. Again it holds true for X constant in the neighborhood of the optimal
point and for all ψ diffeomorphism satisfying the condition∫

Sd−1

ν(ψ(θ))J(θ)dθ = 0.

This allows us to write

∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν
= const.
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This expression is constant for all ψ and θ ∈ Sd−1. This means that it is constant in
any direction. Then we have following optimality condition:

∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν
= const.

Let us consider a particular case of this problem. We assume d = 2 and F = f(x)u

where u is the solution of the p-Laplacian equation. To express the dependence of u on
p we denote it by up instead of u and the same for q. Since p > 2 we want to study the
limit as p→ 2+ of the problem. The sequence up are bounded in H1

0 (Ω \Σ) then up to
extracting subsequence, it converges weakly to some function u. It is easy to see that u
coincides with the solution of the classical Laplacian that is solution of the p-Laplacian
equation when p = 2. From the adjoint state equation, we may deduce also that the
limit of qp as p → 2+ coincides with the solution of the classical Laplacian equation.
We may then rewrite the necessary condition of optimality in the following form:∣∣∣∣∂u∂ν

∣∣∣∣ = const.

The result proved is summarized below.

Theorem 5.4.6. Let Σ be an optimal set in the minimization problem (5.47) and u
the corresponding solution of the state equation. Assume d > 1, then u satisfies the
following necessary condition of optimality:

∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν
= const,

where ν and q are respectively the limit as r goes to zero in a given direction of the
unit normal vector of Σr and the solution of the adjoint state equation (5.56)

Remark 5.4.7 The case of points in R is similar to the case of closed connected
subset in R2.

5.4.3 Case of closed connected subsets in Rd with d > 2

Here the strategy is the same. Let Σ be the optimal configuration. We study the
configuration which is close to the optimal one and pass to the limit. As in the case of
points, we consider a tube Σr = {x ∈ Rx : d(x,Σ) ≤ r} . The associated state equation
is the following {

−div(|∇u|p−2∇u) = f in Ω \ Σr

u = 0 on ∂Ω ∪ Σr.
(5.58)
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The procedure is quite similar to the previous case. The corresponding general
functional is set as follows.

F(Σr) =
1

Hd−2(Sd−2
r )

∫
Ω

F (x, u(x),∇u(x)) +
λ

|Σr|
Hd−1(Σr),

where Sd−2
r is a (d− 2)- dimensional sphere of radius r and centered on points of Σ.

From the previous computation, we deduce the derivative of the functional:

∂

∂ε
|ε=0F((Σr)ε) = − λ

|Σr|
〈HΣr , X〉,

− 1

Hd−2(Sd−2
r )

∫
∂Σr

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν
+ t

∣∣∣∣∂u∂ν
∣∣∣∣2
)
XνdHd−1

where HΣr is the generalized mean curvature of Σr. Remark that all the equations are
the same as in the case of points in Rd. To pass to the limit, we use the same trick as
in the case of points in Rd. First we disintegrate the measure Hd−1 and get

∂

∂ε
|ε=0 F((Σr)ε) = − λ

|Σr|
〈HΣr , X〉

− 1

Hd−2(Sd−2
r )

∫
Σ

∫
Sd−2
r

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
XνdHd−2dH1.

The measure Hd−2(Sd−2
r )−1Hd−2xSd−2

r converges weakly to (d−1)ωd−1δx where x is the
center of the sphere Sd−2

r and ωd−1 is the volume of the unit d − 1-dimensional ball.
Due to the hypothesis made on data of the problem the measure(

∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
νHd−2(Sd−2

r )−1Hd−2xSd−2
r

weakly converges to the measure(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
(d− 1)ωd−1νδx

for H1 a.e. x ∈ Σ. The limit here is computed in a fixed direction θ ∈ Sd−2. For
the curvature part, notice first that the measure µr = |Σr|−1HdxΣr ∈ MBC weakly
converges to the measure ωd−1H1xΣ and (dimTan(µr))µr = dµr weakly converges to
the measure ddωd−1H1xΣ. The fact that dimTanH1xΣ = 1 < d allows to apply again
the Theorem 5.4.4 to have weak convergence of mean curvature of µr to that of H1xΣ

and consequently the weak convergence of HΣr to HΣ. Summarizing all computed
results we get

76



∂

∂ε
|ε=0 F(Σε) = −ωd−1λ〈HΣ, X〉

− (d− 1)ωd−1

∫
Σ

(
∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
XνdH1 = 0.

This relation is true for every vector field X therefore we get the following necessary
of optimality: (

∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
=

λ

d− 1
〈HΣ, ν〉.

The result proved is summarized below.

Theorem 5.4.8. Let Σ be an optimal set in the minimization problem (5.46) and u the
solution of the associated state equation. Assume d > 2, then u satisfies the following
necessary condition of optimality:(

∂u

∂ν
Fz · ν − (p− 1)

∣∣∣∣∂u∂ν
∣∣∣∣p−2

∂u

∂ν

∂q

∂ν

)
+

λ

d− 1
〈HΣ, ν〉 = 0,

where ν is the unit normal vector of Σ in a given direction, HΣ the generalized mean
curvature of Σ and q the limit as r goes to zero of the solution of the adjoint state

Remark that this necessary condition of optimality depends on the direction θ ∈
Sd−2. Those directions are contained in the d − 1 plane which is orthogonal to the
approximate tangent line to Σ.
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Chapter 6

Asymptotic shapes

The study of asymptotical problems in the optimal location of an increasing amount
of resources has been developed intensively, even in recent time, mainly using an ap-
proach based on Γ-convergence. In [29] the so-called location problem (choosing a set
Σ composed by n points in a domain Ω in order to minimize the average distance of
the points of Ω to Σ) is studied when n → +∞, finding a Γ-limit of a suitable se-
quence of functionals defined on the space of probability measures on Ω. In [76] the
same analysis has been performed for the so-called irrigation problem, where points are
replaced by closed connected one dimensional sets of finite length, and the constraint
#Σ ≤ n by H1(Σ) ≤ l. Both problems are linked to the Monge-Kantorovich optimal
transportation theory (see e.g. [7] [29]). However these asymptotical problems are
not completely understood since explicit minimizing sequences are not known in gen-
eral, apart some simple cases, usually in dimension two. For instance, for the location
problem it is known that placing the points on a regular triangular grid, so that each
one is in the middle of a cell shaped like a regular hexagon, gives an asymptotically
minimizing sequence (see [60] or [25] for stronger results). For the irrigation problem,
the asymptotically minimizing sequence is obtained by considering the set made by n
segments of length 1 equi-spaced and parallel to two faces of the unit square union the
boundary of unit square (see [76] or Lemma 6.2.26).

On the other hand, many researches have been carried out on shape optimization
problems involving PDEs, more precisely optimizing the shape of a domain where
to solve a PDE (in general of elliptic type with prescribed boundary conditions), in
order to minimize the value of an objective functional depending on the solution of the
PDE. There is a wide literature on shape optimization problems, both from theoretical
and numerical point of view. The reader may find a lot of examples and details in
the following books: [4], [23], [31], [67], [92]. One of the simplest shape optimization
problem, which is also one of the most important in application, is the compliance
minimization problem. It consists in finding a domain Ω which minimize the integral∫

Ω
fudx where u is the solution of elliptic equation −∆u = f (or more general elliptic

equation) with Dirichlet boundary condition on ∂Ω. Here we consider three compliance
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minimization problem. First we deal with the p-compliance-Network which is the
compliance minimization problem where the unknown domain where to solve the PDE
with Dirichlet boundary conditions is the complement of an one dimension set with
assigned length. The second is the p-compliance-location where we replace the one
dimensional closed connected set with length l by a set of n points. The last one
is compliance-location and the domain is searched among the complement of a finite
union of balls with given radius. The aim of this chapter is to study the asymptotic
behavior of the optimal sets.

6.1 Γ-Convergence

This section is devoted to the main properties of Γ-convergence, in particular to
those that are useful in the actual computation of Γ-limits. For more details, one may
consult [51], [30].

6.1.1 The definition of Γ-convergence

Let us consider the family Fn : X → [−∞,+∞] defined on topological space X.
We say that Fn Γ-converges to F : X → [−∞,+∞] at x ∈ X as n→ +∞ if we have

F (x) = sup
U∈N (x)

lim inf
n→+∞

inf
y∈U

Fn(y) = sup
U∈N (x)

lim sup
n→+∞

inf
y∈U

Fn(y) (6.1)

where N (x) denotes the family of all neighborhoods of x in X. In this case we say
that F (x) is the Γ-limit of Fn at x and we write

F (x) = Γ− lim
n→+∞

Fn(x). (6.2)

If (6.2) holds for every x ∈ X we say that Fn Γ-converges to F . Sometime one may
consider family of functionals Fn : Xn → [−∞,+∞], where the domain depend on n.
In this case it is understood that we identify such functionals with

F̃n(x) =

{
Fn(x) if x ∈ Xn

+∞ if x ∈ X \Xn,

where X is a space containing all Xn where the convergence take place. In applications
we will deal with metric spaces (as Lp spaces) or metrizable spaces (as bounded subsets
of Sobolev spaces or of spaces of measures, equipped with weak topology), that in
addition are also separable. For such spaces the definitions above are simplified as
follows.

Theorem 6.1.1. (equivalent definition of Γ-convergence) Let X be a metric space and
Fn, F :→ [−∞,+∞]. Then the Γ-convergence of Fn to F at x is equivalent to any of
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the following conditions
(a) we have

F (x) = inf{lim inf
n→+∞

Fn(xn) : xn → x} = inf{lim sup
n→+∞

Fn(xn) : xn → x}; (6.3)

(b) we have

F (x) = min{lim inf
n→+∞

Fn(xn) : xn → x} = min{lim sup
n→+∞

Fn(xn) : xn → x}; (6.4)

(c)(sequential Γ-convergence) we have

(i)(lim inf inequality) for every sequence (xn)n converging to x

F (x) ≤ lim inf
n→+∞

Fn(xn); (6.5)

(ii)(lim sup inequality) there exists a sequence (xn) converging to x such that

F (x) ≥ lim sup
n→+∞

Fn(xn); (6.6)

(d) the lim inf inequality (c)(i) holds and
(ii)’ (existence of recovery sequence) there exists a sequence xn converging to x such
that

F (x) = lim
n→+∞

Fn(xn); (6.7)

(e) the lim inf inequality (c)(i) holds and
(ii)’ (approximate lim sup inequality) for all η > 0 there exists a sequence xn converging
to x such that

F (x) ≥ lim sup
n→+∞

Fn(xn)− η; (6.8)

Moreover, the Γ-convergence of Fn to F on the whole X is equivalent to
(f)(limit of minimum problems) inequality

inf
U
F ≥ lim sup

n→+∞
inf
U
Fn (6.9)

holds for all open sets U and inequality

inf
K
F ≤ sup{lim inf

n→+∞
inf
U
Fn : U ⊃ K,U open} (6.10)

holds for all compact sets K.
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Remark 6.1.2 From the definition above we can make some observation

1. Stability under continuous perturbation: if Fn Γ-converges to F and G : X →
[−∞,+∞] is d-continuous function then Fn + G Γ-converges to F + G. This is
an immediate consequence of the definition (e.g. from condition (d));

2. Γ-limit of a constant sequence: Γ-convergence does not enjoy the property that
a constant family Fn = F converges to F . In fact if this where true, then from
the lim inf inequality we would have F (x) ≤ lim infn→+∞ F (xn) for all xn → x;

i.e., F is lower semicontinuous (which is not always true);

3. Comparison with uniform and pointwise convergence. the previous observation
in particular shows that we cannot deduce the existence of the Γ-limit from the
pointwise convergence. if Fn converges to G pointwise and F = Γ− limn→+∞ Fn
then F ≤ G. However, if Fn converges uniformly to a continuous function on an
open set U the we easily see that Fn Γ-converges to F ;

Upper and lower Γ-limits

As for usual limits, it is convenient to define quantity that always exist (as upper
and lower limits) and express the existence of the Γ-limits as an equality between those
two quantities. From Theorem 6.1.1(a) we may define the upper and lower Γ-limits in
the following way.

Γ− lim inf
n→+∞

Fn(x) = inf{lim inf
n→+∞

Fn(xn) : xn → x}, (6.11)

Γ− lim sup
n→+∞

Fn(x) = inf{lim sup
n→+∞

Fn(xn) : xn → x}, (6.12)

In this case the existence of the Γ-limits is formulated as

Γ− lim inf
n→+∞

Fn(x) = Γ− lim sup
n→+∞

Fn(x) = F (x). (6.13)

Remark 6.1.3 If Fnk is a subsequence of Fn then

Γ− lim inf
n→+∞

Fn ≤ Γ− lim inf
k→+∞

Fnk , Γ− lim sup
k→+∞

Fnk ≤ Γ− lim sup
n→+∞

Fn.

In particular, if F = Γ− limn→+∞ Fn exists then F = Γ− limk→+∞ Fnk
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6.1.2 Γ-convergence and lower semicontinuity

As remarked above the Γ-limit of a constant family Fn = F does not converges
to F. This is true, however, if F is d-lower semicontinuous. More, the class of lower
semicontinuous functions provides a stable class for Γ-convergence. This is summarized
in the following propositions.

Proposition 6.1.4. (lower semicontinuous of Γ-limits) The Γ-upper and lower limits
of a family Fn are d-lower semicontinuous functions.

Proposition 6.1.5. (Γ-limits and lower semicontinuous envelopes)

1. The Γ-limit of a constant sequence Fn = F is equal to

F (x) = lim inf
y→x

F (y); (6.14)

that is, the lower semicontinuous envelope of F , defined as the largest lower
semicontinuous function not greater that F .

2. The Γ-limit is stable by substituting Fn by its lower semicontinuous envelope F n

i.e.

Γ− lim inf
n→+∞

Fn = Γ− lim inf
n→+∞

Fn, Γ− lim sup
n→+∞

Fn = Γ− lim sup
n→+∞

Fn. (6.15)

Remark 6.1.6 If Fn → F pointwise then Γ− lim supn→+∞ Fn ≤ F , and hence, taking
both lower semicontinuous envelopes, it holds Γ− lim supn→+∞ Fn ≤ F .

6.1.3 Computation of Γ-limits

In general, the computation of the Γ-limits of a family Fn is divided into the com-
putation of the lower and upper bound. A lower bound is a functional G such that
G ≤ Γ− lim infn→+∞ Fn i.e.

G(x) ≤ lim inf
n→+∞

Fnk(xnk) for all k → +∞ and xnk → x. (6.16)

The lower semicontinuity of the Γ-limit allows us to limit our research for lower bound
to the class of lower semicontinuous G. If we can characterize a large enough family G
of G satisfying (6.16) then the optimal lower bound obtained as G(x) =: sup{G(x) :

G ∈ G}. Since G is the supremum of the family of lower semicontinuous functions
it is lower semicontinuous. The optimization of the lower bound suggests an anzatz
to approximate a target element x ∈ X by a family xn → x, thus defining H(x) :=

limn→+∞ Fn(xn). By definition H ≥ lim supn→+∞ Fn, so that H is an upper bound for
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the Γ-limit. If we use more ansatze, we obtain a family H and then a candidate optimal
upper bound as H(x) = inf{H(x) : H ∈ H}. The existence (and computation) of the
Γ-limits is then expressed in the equality G = H.

Remark 6.1.7 (a density argument) The lower semicontinuity of the Γ-lim sup can be
used to reduce its computation to a dense class. Let d′ be a distance on X inducing a
topology which is weaker than that induced by d i.e. d′(xn, x)→ 0 implies d(xn, x)→ 0,
and suppose that
(i)D is a dense subset of X for d′;
(ii) we have Γ − lim supn→+∞ Fn(x) ≤ F (x) on D, where F is a function which is
continuous with respect to d; then we have Γ− lim supn→+∞ Fn ≤ F on X. To check
this, it suffices to note that if d′(xk, x)→ 0 and xk ∈ D then

Γ− lim sup
n→+∞

Fn(x) ≤ lim inf
k

(Γ− lim sup
n→+∞

Fn(xk))

≤ lim inf
k

F (xk) = F (x).

6.1.4 Properties of Γ-convergence

Definition 6.1.8. We will say that a sequence Fn : X → R is equi-coercive if for all
t ∈ R there exists a compact set Kt such that {Fn ≤ t} ⊂ Kt.

We can state now the main convergence result of Γ-convergence.

Theorem 6.1.9. (fundamental theorem of Γ-convergence) Let (X, d) be a metric space,
let Fn be a equi-coercive sequence of functions on X, and let F = Γ− lim supn→+∞ Fn;
then

∃min
X

F = lim
n→+∞

inf
X
Fn. (6.17)

Moreover, if (xn)n is a precompact sequence such that limn→+∞ Fn(xn) = limn→+∞ infX Fn,
then every limit of a subsequence of (xn)n is a minimum for F .

Γ-limits of monotone sequences

We give some simple examples when the Γ-limit does exist and is easily computed.
(i) Fn+1 ≤ Fn for all n ∈ N, then

Γ− lim
n
Fn = (inf

n
Fn) = (lim

n
Fn). (6.18)

In fact as Fn → infk Fk pointwise, by Remark 6.1.2 we have Γ− lim supn Fn ≤ (infk Fk)

wile the other inequality comes from the inequality (infk Fk) ≤ infk Fk ≤ Fk;
(ii) if Fn ≤ Fn+1 for all n ∈ N, then

Γ− lim
n
Fn = sup

n
F n = lim

n
F n; (6.19)
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in particular if Fn is lower semicontinuous for every n ∈ N, then

Γ− lim
n
Fn = lim

n
Fn.

In fact, since F n → supk F k pointwise,

Γ− lim sup
n

Fn = Γ− lim sup
n

F n ≤ sup
k
F k

by Remark 6.1.2. On the other hand F k ≤ Fn for all n ≥ k so that the convex
inequality easily follows.

Γ-limits and pointwise properties

Proposition 6.1.10. If each element of the family (Fn) is positively homogeneous
of degree d (respectively convex, a quadratic form) then their Γ-limit F is positively
homogeneous of degree d (respectively convex, a quadratic form).

Topological properties of Γ-convergence

Proposition 6.1.11. (compactness) Let (X, d) be a separable metric space, and for
all n ∈ N let Fn : X → R be a function. Then there exists an increasing sequence of
integers nk such that the Γ− limk Fnk(x) exists for all x ∈ X.

Proposition 6.1.12. (Urysohn property) We have Γ− limn Fn = F if and only if for
every subsequence Fnk there exists a further subsequence which Γ-converges to F .

In the following section we will apply this general theory of Γ-convergence for study-
ing the limits behavior of some precise functional namely the compliance functional.

6.2 Asymptotics of an optimal p-compliance-networks

We consider the problem of the optimal location of a Dirichlet region in a d-
dimensional domain Ω subjected to a given force f in order to minimize the p-compliance
of the configuration. We look for the optimal region among the class all closed con-
nected sets of assigned length l. Then we let l tends to infinity and we look for the
Γ-limit of a suitable rescaled functional, in order to get information of the asymptotical
distribution of the optimal set. We highlight as well the case where the Dirichlet region
is searched among discrete sets of finite cardinality. We consider the problem of finding
the best location of the Dirichlet region Σ in a d-dimensional domain Ω associated to
an elliptic equation in divergence form, namely{

∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,
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where the right hand side f is a nonnegative element of Lq(Ω), q being the conjugate
exponent of p. We are interested in the minimization of the p-compliance functional

Cp(Σ) =

∫
Ω

fuf,Σ,Ωdx,

where uf,Σ,Ω stands for the unique solution of the above equation. The admissible
class for control variables Σ we consider here is the class of all closed connected sets
with given one dimensional Hausdorff measure. We assume that p > d − 1 otherwise
one dimensional set will have zero p-capacity and the problem will be meaningless.
It is easy to obtain the optimal configuration Σl of the above optimization problem
(see Theorem 6.2.1) as a consequence of Ševerák result (see Theorem 4.1.21 for p = 2

and Theorem 5.2.13 for general p). We are interested in the asymptotic behavior of
Σl as l → +∞; more precisely we want to obtain the limit distribution of Σl as a
limit probability measure that minimize the Γ-limit functional of the suitable rescaled
p-compliance functional. In the last section, we deal with the case where the Dirichlet
region is searched among the class of discrete sets on finite number of elements under
the assumption that p > d.

6.2.1 p-compliance under length constraint

Let p > d− 1 be fixed and q = p/(p− 1) the conjugate exponent of p. For an open
set Ω ⊂ Rd and l a positive given real number, we define

Al(Ω) = {Σ ⊂ Ω, closed and connected, 0 < H1(Σ) ≤ l}.

For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive p-capacity,
we denote by uf,Σ,Ω the weak solution of the equation{

−∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

that is u ∈ W 1,p
0 (Ω \ Σ) and∫

Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ W 1,p
0 (Ω \ Σ). (6.20)

By the maximum principle, the nonnegativity of the function f implies that of u.
For f ≥ 0, we define the p-compliance functional as follows:

Cp(Σ) = Fp(Σ, f,Ω) =

∫
Ω

fuf,Σ,Ωdx =

∫
Ω

|∇uf,Σ,Ω|pdx

= qmax

{∫
Ω

(v − 1

p
|∇v|p)dx : v ∈ W 1,p

0 (Ω \ Σ)

}
,

where q stands for the conjugate exponent of p. The existence of the minimal p-
compliance configuration is just a consequence of a generalized Šverák compactness-
continuity result (see Theorem 5.2.13).
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Theorem 6.2.1. For any real number l > 0, Ω bounded open subset of Rd, d ≥ 2 and
f a nonnegative function belonging to Lq(Ω), the problem

min{Cp(Σ) : Σ ∈ Al(Ω)} (6.21)

admits at least one solution.

Here we are interested to the asymptotic behavior of the optimal set Σl of the
problem (6.21) as l→ +∞. Let us associate to every Σ ∈ Al(Ω) a probability measure
on Ω, given by

µΣ =
H1xΣ

H1(Σ)

and define a functional Fl : P(Ω)→ [0; +∞] by

Fl(µ) =

{
l
q
d−1Cp(Σ) if µ = µΣ, Σ ∈ Al(Ω)

+∞ otherwise.
(6.22)

The scaling factor l
q
d−1 is needed in order to avoid the functional to degenerate to

the trivial limit functional which vanishes everywhere. Our main result deal with the
behavior as l→ +∞ of the functional Fl, and we state it in terms of Γ-convergence.

Theorem 6.2.2. The functional Fl defined in (6.22) Γ-converges, with respect to the
weak∗ topology on the class P(Ω) of probabilities on Ω, to the functional F defined on
P(Ω) by

F (µ) = θ

∫
Ω

f q

µ
q
d−1
a

dx, (6.23)

where µa stands for the density of the absolutely continuous part of µ with respect
to the Lebesgue measure, and θ is a positive constant depending only on d and p and
is defined by

θ = inf{lim inf
l→+∞

l
q
d−1Fp(Σl, 1, I

d) : Σl ∈ Al(Id)} (6.24)

Id = (0, 1)d being the unit cube in Rd. When the dependence of θ on p will be necessary,
we will use the notation θ(p).

According to the general theory of Γ-convergence (see Theorem 6.1.9), we deduce
the following consequence of Theorem 6.2.2:

• if Σl is a solution of the minimization problem (6.21), then up to a subsequence
µΣl ⇀ µ as l→ +∞, where µ is a minimizer of F ;

• since F has a unique minimizer in P(Ω), the whole sequence µΣl converges to
the unique minimizer µ of F given by µ = cf

q(d−1)
q+d−1Ld where c is such that µ is a

probability measure that is c = 1/
(∫

Ω
f
q(d−1)
q+d−1dx

)
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• the minimal value of F is equal to θc
q+d−1
d−1 , and the sequence of the values

inf {Fp(Σ, f,Ω) : Σ ∈ Al(Ω)}

is asymptotically equivalent to l
q
d−1 inf

{
F (µ) : µ ∈ P(Ω)

}
.

6.2.2 Proof of Γ-limit in R2

We will prove Theorem 6.2.2 in several steps, the most important two correspond
to Γ-lim inf and Γ-lim sup inequalities.

The Γ-lim inf inequality

In the following proposition we prove that the Γ-lim inf functional is bounded below
by the candidate limit F .

Proposition 6.2.3. Under the same hypotheses of Theorem 6.2.2, denoting by F− the
functional Γ-lim inf l Fl, it holds F−(µ) ≥ F (µ) for any µ ∈ P(Ω). This means that for
any sequence (Σl)l ⊂ Al(Ω) such that µΣl weakly

∗ converges to µ, we have

lim inf
l→+∞

lq
∫

Ω

fuf,Σl,Ωdx ≥ F (µ).

Proof: Let us fix ε and define a set Gε,l in the following way: for a positive number a,
denote by I2

a = (−a, a)2 a square large enough to contain Ω, the set Gε,l is a regular
grid composed by n horizontal lines and n vertical lines with n = b εl

4a
c, so that the

total length is approximatively εl; then we intersect the grid with Ω. Let Σ
′

l = Σl∪Gε,l

and set u′l = uf,Σ′l ,Ω
. Since ul ≥ u

′

l, it is enough to estimate the integral lq
∫

Ω
fu
′

l. It is
obvious that 0 ≤ u

′

l ≤ uf,Gε,l,Ω and Lemma 6.2.4 gives

||uf,Gε,l,Ω||Lp(Ω) ≤ C(d, ε0, ε, f)l−q.

It follows that lqu′l is Lp bounded, so up to a subsequence lqu′l ⇀ w weakly in Lp(Ω).
Thus

lim
l→+∞

lq
∫

Ω

gu
′

ldx =

∫
Ω

gwdx, ∀g ∈ Lq(Ω).

So it is enough to estimate w from below. We will show that, for almost any x0 ∈ Ω,
it holds

w(x0) ≥ θ
f(x0)1/(p−1)

(µa + ε)q
. (6.25)

To this aim, we first estimate w on a square Q centered at the point x0 ∈ Ω. We
assume that x0 is a Lebesgue point for f and |Q|−1µ(Q)→ µa(x0) as Q shrinks around
x0. Assume also f(x0) > 0 otherwise (6.25) would be trivial. We have

lim
l→+∞

lq
∫

Ω

u
′

ldx =

∫
Ω

wdx,
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we use
u′l ≥ uf,Σ′l ,Q

≥ uf(x0),Σ
′
l ,Q
− |uf,Σ′l ,Q − uf(x0),Σ

′
l ,Q
| in Q,

where the first inequality comes from the fact that we add Dirichlet boundary condition
on Q. The second part of Lemma 6.2.5 or Lemma 6.2.6 give∫

Q

|uf,Σ′l ,Q − uf(x0),Σ
′
l ,Q
|dx ≤ l−q|Q|r(Q).

It remains to estimate the second term. First of all let us define the number L(l, Q) =
H1(Σ

′

l ∩Q) and observe that

uf(x0),Σ
′
l ,Q

= f(x0)1/(p−1)u1,Σ
′
l ,Q
.

For simplicity of the notation, we denote u1,Σ
′
l ,Q

by vl. By a change of variables, if
we assume the side of square Q to be λ and we define vl,λ = λqvl(λx) (thinking for
instance that both squares are centered at the origin), we get vl,λ = u1,λ−1Σ

′
l ,I

d . It is
easy to see that

λ−1Σ
′

l ∈ AL(l,Q)/λ(I
d);

moreover, it holds L(l, Q)→ +∞ as l→ +∞, since

L(l, Q) ≥ H1(Gε,l ∩Q) ≈ εl|Q|. (6.26)

Using (6.26) and the fact that µl = l−1H1(Σl), we may estimate the ratio between
L(l, Q) and l. It follows from the weak∗ convergence of µl to µ (and using 2.3)that
lim supl→+∞ µl(Q) ≤ µ(Q). So we have

lim sup
l→+∞

L(l, Q)

l
≤ µ(Q) + ε|Q|. (6.27)

Using the definition of θ and the change of variables y = λx we have,

lim inf
l→+∞

L(l, Q)q
∫
Q

vl(y)dy = lim inf
l→+∞

L(l, Q)qλ2

∫
Id
vl,λ(x)dx

= lim inf
l→+∞

(
λ−1L(l, Q)

)q
λ2+2q

∫
Id
vl,λ(x)dx

≥ λ2+qθ,

hence using the fact that λ2 = |Q| we get

lim inf
l→+∞

lq
∫
Q

vl(y)dy ≥ lim inf
l→+∞

(
l

L(l, Q)

)q
lim inf
l→+∞

L(l, Q)q
∫
Q

vl(y)dy

≥ λ2+qθ

(
1

µ(Q) + ε|Q|

)q
=

(
|Q|

µ(Q) + ε|Q|

)q
|Q|θ.

88



This implies that

|Q|−1

∫
Q

wdx ≥ −r(Q) +

(
|Q|

µ(Q) + ε|Q|

)q
θf(x0)1/(p−1).

We know that r(Q) tends to 0 when the square Q shrinks to x0, whenever x0 is a
Lebesgue point for f . Now we let the square Q shrinks toward x0 with x0 satisfying
the previous assumption, then we get

w(x0) ≥ θf(x0)1/(p−1)

(µa(x0) + ε)q
.

It follows that

lim inf
l→+∞

lq
∫

Ω

fuldx ≥
∫

Ω

fwdx ≥ θ

∫
Ω

f q

(µa + ε)q
dx,

and the desired inequality holds by letting ε tend to 0 that is

lim inf
l→+∞

lq
∫

Ω

fuldx ≥ θ

∫
Ω

f q

µqa
dx.

2

Lemma 6.2.4. The following facts hold

1. There exists a constant C such that, for all functions v ∈ W 1,p
0 (I2) we have∫

I2
|v|pdx ≤ C

∫
I2
|∇v|pdx.

2. If we replace I2 by a square Q of side λ, the inequality remains valid with the
constant λpC instead of C.

3. As a consequence, for any ε > 0, any 0 < l <∞, any domain Ω and any function
v ∈ W 1,p

0 (Ω \ Gε,l) ⊂ W 1,p
0 (Ω) (where Gε,l is the grid introduced in the proof of

Proposition 6.2.3) we have ||v||Lp(Ω) ≤ C(ε)l−1||u||W 1,p
0 (Ω) for a suitable constant

C(ε).

4. As a further consequence, if f ∈ Lq(Ω) with f ≥ 0 the function uf,Gε,l,Ω satisfies
||uf,Gε,l,Ω||Lp(Ω) ≤ l−q||f ||1/(p−1)

Lq(Ω) .

Proof: The first assertion is the well-known Poincaré inequality. The second is obtained
just by a scaling of the first. To prove the third, let us extend the function v to the large
square I2

a ⊃ Ω by setting the value zero outside Ω. Such an extension is in W 1,p
0 (I2

a)
due to the Dirichlet boundary condition on Ω. Then we consider the squares Qj which
come from the subdivision of I2

a into the squares given by the grid Gε,l. Their side is of
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order l−1. Notice that the extended function vanishes on the boundary of each square
Qj. By applying the second statement of this Lemma, we get∫

Qj

|v|pdx ≤ C(ε)l−p
∫
Qj

|∇v|pdx,

and by summing over j, we get∫
I2a

|v|pdx ≤ C(ε)l−p
∫
I2a

|∇v|pdx.

Since v vanishes outside Ω we may restrict the integrals to Ω and raise to the power
1/p, thus getting the desired result. In the sequel of this section, the norm ||v||W 1,p

0 (Ω)

will stands for the Lp norm of the gradient ||∇v||Lp(Ω). It remains to prove the last
assertion. By using the weak formulation of PDE defined by uf,Gε,l,Ω we have∫

Ω

|∇uf,Gε,l,Ω|pdx =

∫
Ω

fuf,Gε,l,Ωdx ≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω).

Recalling the fact that uf,Gε,l,Ω ∈ W
1,p
0 (Ω \Gε,l), we get

||uf,Gε,l,Ω||
p

W 1,p
0 (Ω)

≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω)

≤ C(ε)l−1||uf,Gε,l,Ω||W 1,p
0 (Ω)||f ||Lq(Ω),

and the result follows. 2

Lemma 6.2.5. Assume p ≥ 2. If f, g ∈ Lq(Ω) and uf and ug denote the respective
solution of the p-Laplacian Equation with Dirichlet boundary conditions on Σ′l, then

lq||uf − ug||L1(Ω) ≤ C||f − g||1/(p−1)
Lq(Ω) |Ω|

1/q,

where the constant C depends only on p. If Ω = Q (a square centered at x0), g = f(x0)

and x0 is a Lebesgue point for f, we have

lq||uf − ug||L1(Q) ≤ C|Q|

(∫
Q
|f(x)− f(x0)|qdx

|Q|

)1/p

= |Q|r(Q).

Proof: The starting point is the inequality

||uf − ug||pW 1,p
0 (Ω)

≤ C||uf − ug||Lp(Ω)||f − g||Lq(Ω),

that comes from the monotonicity inequality

|z − w|p ≤ C(|z|p−2z − |w|p−2w) · (z − w),
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which is valid for any p ≥ 2 and pair of vectors (z, w) (see equation (5.5)). Thanks to
Lemma 6.2.4, we know that the inequality ||v||Lp(Ω) ≤ Cl−1||v||W 1,p

0 (Ω) is valid for any
function vanishing on Σ′l. Since uf − ug vanishes on Σ′l, we have

||uf − ug||pW 1,p
0 (Ω)

≤ Cl−1||uf − ug||W 1,p
0 (Ω)||f − g||Lq(Ω),

which implies that

||uf − ug||W 1,p
0 (Ω) ≤ Cl1/(1−p)||f − g||1/(p−1)

Lq(Ω) ,

and then

||uf − ug||L1(Ω) ≤ C|Q|1/q||uf − ug||Lp(Ω)

≤ C|Q|1/ql−1||uf − ug||W 1,p
0 (Ω)

≤ C|Q|l−q||f − g||1/(p−1)
Lq(Ω) .

This proves the first assertion; the second one is just a simple consequence. 2

Lemma 6.2.6. Assume p ≤ 2. If f, g ∈ Lq(Ω) and uf and ug denote the respective
solution of the p-Laplacian Equation with Dirichlet boundary conditions on Σ′l, then

lq||uf − ug||L1(Ω) ≤ C||f − g||Lq(Ω)|Ω|1/q
(
||f ||qLq(Ω) + ||||qLq(Ω)

)(2−p)/p
,

where the constant C depends only on p. If Ω = Q (a square centered at x0), g = f(x0)

and x0 is a Lebesgue point for f , with f(x0) 6= 0, we have

lq||uf − ug||L1(Q) ≤ C|Q||f(x0)|(2−p)/(p−1)

(∫
Q
|f(x)− f(x0)|qdx

|Q|

)1/q

= |Q|r(Q).

Proof: Here the starting point is the inequality

||uf − ug||2pW 1,p
0 (Ω)

≤ C||uf − ug||pLp(Ω)||f − g||
p
Lq(Ω)

(
||uf ||pW 1,p

0 (Ω)
+ ||ug||pW 1,p

0 (Ω)

)(2−p)
,

(6.28)
that follows from the monotonicity inequality which is valid for any p ≤ 2 and any pair
of vectors (z, w) (see equation (5.7) ). Choosing z = ∇uf , w = ∇ug using the weak
formulation of the p-Laplacian equation and integrating, we get∫

Ω

|∇uf −∇ug|p(|∇uf |+ |∇ug|)p−2dx ≤
∫

Ω

(uf − ug)(f − g)dx.

The inequality (6.28) is a consequence of a suitable Hölder inequality. We estimate the
term ||uf ||pW 1,p

0 (Ω)
. Since

∫
Ω
|∇uf |pdx =

∫
Ω
fufdx we get

||uf ||pW 1,p
0 (Ω)

≤ ||uf ||Lp(Ω)||f ||Lq(Ω) ≤ Cl−1||uf ||W 1,p
0 (Ω)||f ||Lq(Ω)
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(we have used the fact that uf vanishes on Σ′l) and we deduce

||uf ||W 1,p
0 (Ω) ≤ Cl1/(1−p)||f ||1/(p−1)

Lq(Ω) .

A similar estimate holds for ||ug||W 1,p
0 (Ω). Using the inequalities just proved and estimate

||uf − ug||Lp(Ω) by ||uf − ug||W 1,p
0 (Ω), the inequality (6.28) becomes

||uf−ug||pW 1,p
0 (Ω)

≤ Cl−p/2||uf−ug||p/2W 1,p
0 (Ω)

||f−g||p/2Lq(Ω)l
q(p/2−1)

(
||f ||pLq(Ω) + ||g||Lq(Ω)

)1−p/2
.

This implies, by simplifying and raising to the power 2/p:

||uf − ug||W 1,p
0 (Ω) ≤ Cl1/(1−p)||f − g||Lq(Ω)l

q(p/2−1)
(
||f ||pLq(Ω) + ||g||Lq(Ω)

)(2−p)/p
.

The estimate on the L1(Ω) norm is obtained as usual by passing first to the Lp(Ω)
norm (up to a factor |Ω|1/q) and then to W 1,p

0 (Ω) norm (up to a factor l−1):

||uf − ug||L1(Ω) ≤ C|Ω|1/ql−q||f − g||Lq(Ω)

(
||f ||pLq(Ω) + ||g||Lq(Ω)

)(2−p)/p
,

which gives the first part of the thesis. For the second part it is sufficient to notice
that, if x0 is a Lebesgue point for f and g = f(x0), one gets (assuming f(x0) 6= 0)

||f ||Lq(Q)

||g||Lq(Q)

= 1 + r(Q).

This allows us to write |Q|1/qf(x0) instead of ||f ||Lq(Q), making an error which is neg-
ligeable (and of the from |Q|r(Q)). The inequality in the second statement follows and
the proof is over. 2

The Γ-lim sup inequality

To get the Γ-lim sup inequality, we need this crucial lemma.

Lemma 6.2.7. Given Σ0 ∈ Al0(I2), a domain Ω ⊂ R2 and f ∈ L2(Ω), we consider
the sequence of sets

Σk =
⋃

y∈k−1Z2

(y + k−1Σ0) ∩ Ω.

We have Σk ∈ Al(k,Ω)(Ω), where l(k,Ω) ≈ |Ω|kl0, Then we consider the sequence (uk)k
given by

uk = kquf,Σk,Ω.

If we assume ∂I2 ⊂ Σ0, then we have uk ⇀ c(Σ0)f 1/(p−1) as k → ∞, where the weak
convergence is in the Lp(Ω) sense and c(Σ0) is the constant given by

∫
I2
u1,Σ0,I2dx.
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Proof: First notice that the sequence (uk)k is bounded in Lp(Ω), thanks to Lemma
6.2.4. So up to a subsequence it converges weakly in Lp(Ω) to some function. Let
us consider the subsequence (denoted by the same indices) (uk)k and its weak limit
wf,Σ0,Ω. It is obvious that the pointwise value of this limit function depends only
on the local behavior of f. In fact, we may produce small cubes around each point
x ∈ Ω which do not affect each other and if f =

∑
j fj1Aj is piecewise constant (the

pieces Aj being disjoint open sets, for instance), then for k large enough the value
of uk at x ∈ Aj depends only of fj (uk vanishes on k−1∂I2). From the rescaling
property of the p-Laplacian operator ∆p, if f is a piecewise constant function, it holds
wf,Σ0,Ω = f 1/(p−1)w1,Σ0,Ω. It is clear that in the case f = 1, since we are simply
homogenizing the function u1,Σ0,I2 , the limit of the whole sequence (uk)k exists and does
not depend on the global geometry of Ω, but it is a constant and it is the same constant
if we have I2 instead of Ω. An easy computation shows that the constant is c(Σ0).
It remains to extend the equality for non piecewise constant function belonging to
Lq(Ω). Let f ∈ Lq(Ω) be a generic function and (fn)n a sequence of piecewise constant
functions approaching f in Lq(Ω). Up to a subsequence it holds kquf,Σk,Ω ⇀ wf,Σ0,Ω and
kqufn,Σk,Ω ⇀ f

1/(p−1)
n c(Σ0) as k → +∞. By Lemma 6.2.4 or Lemma 6.2.5 depending

on p it holds also

||kquf,Σk,Ω − kqufn,Σk,Ω||L1(Ω) ≤ R(||f − fn||Lq(Ω)),

where R(t) ≈ t1/(p−1) or R(t) ≈ t depending on p. Taking into account the lower
semicontinuity of the L1(Ω)-norm with respect to the Lp(Ω)-weak topology, we get,
passing to the limit as k → +∞,

||wf,Σ0,Ω − f 1/(p−1)
n c(Σ0)||L1(Ω) ≤ R(||f − fn||Lq(Ω)).

We now pass to the limit as n→ +∞ and using Fatou’s Lemma (up to a subsequence
fn converges pointwise a.e. to f), we get wf,Σ0,Ω = f 1/(p−1)c(Σ0) and the proof is over.

2

Now we want to build efficient sets Σ0 satisfying the key assumption of our previous
Lemma, that is ∂I2 ⊂ Σ0 (we will call boundary-covering sets those sets for which such
an inclusion holds).

Remark 6.2.8 This is a point where we strongly use the two-dimensional setting
we have chosen in this section. In higher dimension, it is not possible to cover all the
boundary by the means of a finite length. A strategy to overcome this difficulty is
"almost-covering" the boundary of [0, 1]d by means of grid of finite length and then
estimating the difference between the solution with the Dirichlet boundary conditions
on this grid and on the faces of the cubes. This strategy will be developed in the next
section for proving the Γ-limit result in the higher dimension.

Lemma 6.2.9. For any ε > 0 there exists l0 > 0 such that for any l > l0 we find a set
Σ ∈ Al(I2) which is boundary-covering, with

lq
∫
I2
u1,Σ,I2dx < (1 + ε)θ.
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Proof: Given a small positive number δ , by definition of θ, we may find a set Σ1 ∈
Al1(I2) such that

lq1

∫
I2
u1,Σ1,I2dx < (1 + δ)θ

and moreover the number l1 may be chosen as large as we want. Now, we want to
enlarge the set Σ1 to get a set Σ2 which is boundary-covering. We add to Σ1 the
boundary of I2 and some segments to connect it to the original set. The new length
l2 = H1(Σ2) does not exceed l1 + 5. It is possible to choose l1 so that(

l1 + 5

l1

)q
≤ 1 + δ.

This implies that

lq2

∫
I2
u1,Σ2,I2dx < (1 + δ)2θ.

Now, if we are given a large number l, we homogenize the set Σ2 into I2 of order
k = bl/l2c and obtain the set Σ ∈ Akl2(I2). Thanks to the rescaling property of the
p-Laplacian operator, we have (kl2)q

∫
I2
u1,Σ,I2dx = lq2

∫
I2
u1,Σ2,I2dx. Therefore

lq
∫
I2
u1,Σ,I2dx ≤

(
k + 1

k

)q
(1 + δ)2θ.

If l > l2δ
−1, then k > δ−1 and 1 + 1/k < 1 + δ, so that we get

lq
∫
I2
u1,Σ,I2dx ≤ (1 + δ)2+qθ.

It is now sufficient to choose δ sufficiently small so that (1 + δ)2+q < 1 + ε and set
l0 = l2δ

−1. 2

We have all the ingredients for proving the Γ-lim sup inequality. We will start from a
particular class of measures. Let us call piecewise constant probability measures those
probability measures µ ∈ P(Ω) which are of the form

µ = ρdx, with, ρ ∈ L1(Ω),

∫
Ω

ρdx = 1, ρ > 0,

for a piecewise constant function ρ =
∑m

j=1 ρjIΩj , the pieces Ωj being disjoint Lipschitz
open subsets with the possible exception of Ω0 = Ω \ ∪mj=1Ωj.

Proposition 6.2.10. Under the same hypotheses of Theorem 6.2.2, we have

F+(µ) ≤ F (µ), where F+ = Γ− lim sup
l→+∞

Fl,

for any piecewise constant measure µ ∈ P(Ω). This means that for any such a measure µ
and ε > 0, there exists a family of sets (Σl)l ⊂ Al(Ω) such that the measure µΣl weakly∗

converges to the measure µ and moreover

lim sup
l→+∞

lq
∫

Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

f q

ρq
dx.
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Proof: Apply Lemma 6.2.9 and take a boundary-covering set Σ0 ∈ Al0(I2) such that

lq0

∫
I2
u1,Σ0,I2dx < (1 + ε)θ.

Now, we define the set Σj
l by homogenizing into Ωj the set Σ0 of order k(l, j) that is

Σj
l = Ωj ∩ k(l, j)−1(Zd + Σ0).

Then we choose Σl = ∪jΣj
l ∪ ∪j∂Ωj and l1 = H1(∪j∂Ω). The family Σl is admissible

(i.e. Σl ∈ Al(Ω) and µΣl ⇀ µ) if we have, as l→∞,
m∑
j=0

|Ωj|k(l, j)l0 + l1 ≤ l and is asymptotic to l;

k(l, j)l0
l

→ ρj for j = 0, · · · ,m.

All theses conditions are satisfied if we set

k(l, j) =

⌊
(l − l1)ρj

l0

⌋
.

We have covered the internal boundary of the sets Ωj in order to get the local behavior
in which different zones Ωj are independent on each other. We are interested in the
estimate of the functional Fl(Σl) that is

lq
∫

Ω

fuf,Σl,Ωdx =
∑m

j=0

(
l

k(l, j)

)q ∫
Ωj

fk(l, j)quf,Σjl ,Ωj
dx.

The disintegration of the integral performed here allows to apply on each Ωj Lemma
6.2.7, which gives the weak convergence in Lp

k(l, j)quf,Σjl ,Ωj
⇀ c(Σ0)f 1/(p−1).

The factors (l/k(l, j))q converge to (l0/ρj)
q as l→ +∞. The choice of the set Σ0 gives

lq0c(Σ0) ≤ (1 + ε)θ, so that we obtain

lim sup
l→+∞

lq
∫

Ωj

fuf,Σjl ,Ωj
dx ≤ (1 + ε)θρ−qj

∫
Ωj

f qdx,

and summing up over j, we get

lim sup
l→+∞

lq
∫

Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

f q

ρq
dx.

2

We have to extend the result to non piecewise constant measures. By the general theory
of Γ-convergence (see Remark 6.1.3), we know that it is enough to prove the Γ-lim sup

inequality on a class which is dense in energy. Hence, due to the lower semicontinuity
of the functional F , it is sufficient to prove the following
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Proposition 6.2.11. For any measure µ ∈ P(Ω) there exists a sequence (µn)n of
piecewise constant measures such that µn ⇀ µ and

lim sup
n

F (µn) ≤ F (µ) = θ

∫
Ω

f q

µqa
dx.

Proof: First observe that the inequality is trivial whenever F (µ) = +∞. Assume now
that F (µ) < +∞ and start proving the inequality for measures which are absolutely
continuous with respect to the Lebesgue measure and have positive densities bounded
away from zero. Given a measure µ = ρdx, with ρ ≥ c > 0, it is possible to find
a sequence of measures µn = ρndx such ρn → ρ strongly in L1 and µn are piecewise
constant with ρn ≥ c. The pointwise a.e convergence of ρn to ρ may be assumed and the
inequality F (µ) ≥ lim supn F (µn) follows easily (we have even an equality). So we have
extended the result to any absolutely continuous measure with density bounded below
away from zero. To get the result for any measure µ ∈ P(Ω), it is sufficient to prove
that any measure µmay be approximated weakly* by absolutely continuous measure µn
with densities bounded below away from zero and lim supn F (µn) ≤ F (µ). Let us take
µ = ρdx+µs, where µs is the singular part of the measure µ with respect to the Lebesgue
measure and ρ the density of the absolutely continuous part. We construct the sequence
of absolutely continuous measure µn by setting µn = ((1− 1/n)ρ+ an + φn)dx, where
an = n−1

∫
Ω
ρdx and φndx ⇀ µs with

∫
Ω
φndx =

∫
Ω
dµs. The fact that F (µ) < +∞

implies that ρ cannot vanish, hence an > 0 and ρn = (1− 1/n)ρ+ an + φn is bounded
below by the positive constant an. We have as well that µn weakly∗ converges to µ
and

F (µn) = θ

∫
Ω

f q

((1− 1/n)ρ+ an + φn)q
≤ θ

∫
Ω

f q

((1− 1/n)ρ)q
dx

= (1− 1

n
)−qF (µ)

.

Passing to the lim sup on the inequality, we get the desired result. 2

6.2.3 Proof of Γ-limit in Rd, d ≥ 3

We will prove the Γ-convergence result in two steps corresponding to Γ-lim inf and
Γ-lim sup.

Γ-lim inf inequality

Before proving the Γ-lim inf inequality, we need some results and constructions. We
start by a construction of a set Gε,l which will be useful later. Let Ω be a domain,
Id be a unit cube in Rd and a be a positive real number such that the cube (−a, a)d,
that we will denote by Ida contains Ω. Let M be a union of d segments of length 1

joining at the center of the unit cube Id and connecting two parallel faces of the unit
cube in the given direction. The segments are made in such a way that their endpoints
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coincide with the middle points of the faces of Id. We consider the set Gε,l to be the
homogenization of the set M of order b( εl

2ad
)1/(d−1)c into Ida . It is clear that due to the

particularity of the set M , the set Gε,l is connected and H1(Gε,l) ≈ εl.

Lemma 6.2.12. 1. Let QR ⊂ Rd be a cube of side R and A ⊂ QR a closed subset
of QR of positive p-capacity, then there exists a constant C = C(d, p) such that,
for all functions v ∈ C∞(QR) with nonnegative mean value and vanishing on A,
we have ∫

QR

|v|pdx ≤ CRd

Capp(A,Q2R)

∫
QR

|∇v|pdx,

where capp(A,Q2R) stands for the relative p-capacity of the set A inside Q2R.

2. For any ε > 0, any 0 < l < +∞, any domain Ω and any function v ∈ W 1,p
0 (Ω \

Gε,l) ⊂ W 1,p
0 (Ω) (Gε,l is the network constructed above) it holds ||v||Lp(Ω) ≤

C(d, ε, ε0)l
1

1−d ||v||W 1,p
0 (Ω), where ε0 = capp(M, 2Id).

3. As a consequence, if we have a nonnegative function f ∈ Lq(Ω), then the function
uf,Gε,l,Ω satisfies ||uf,Gε,l,Ω||Lp(Ω) ≤ C(d, ε, ε0)l

q
1−d ||f ||q/(d−1)

Lq(Ω)

Proof: The first assertion is a variant of the well-known Poincaré inequality. See [74]
for more comment. For proving the second one, we first choose the function v to
be a nonnegative smooth function on a large cube Ida which vanish outside Ω \ Gε,l.
We consider the subdivision of cube Ida into subcubes as done above and consider
the associated network Gε,l. The side of subcubes is of order l1/(1−d). Let us denote
the subcubes by Qj. The set Ida \ Gε,l can be seen as the homogenized of order k =
b( εl
ad

)1/(d−1)c of Id \ M into Ida (M is the set constructed above). Let us set ε0 =
capp(M, 2Id) and notice that v vanishes on Gε,l. By applying the first statement of this
Lemma, it follows that∫

Qj

|v|pdx ≤ Ck−d

Capp(k−1M, 2Qj)

∫
Qj

|∇v|pdx ≤ Clp/(1−d)

Capp(M, 2Id)

∫
Qj

|∇v|pdx

and by summing up over j we get∫
Ida

|v|pdx ≤ C

ε0

lp/(1−d)

∫
Ida

|∇v|pdx.

Using the fact that v vanishes outside Ω, we may restrict the integrand to Ω, raise each
term of the inequality to the power 1/p and thus getting the result by noticing that the
Lp norm of the gradient ||∇v||Lp(Ω) stands for the norm ||v||W 1,p

0 (Ω). The general case
follows by density. For the last inequality, we use the weak version of the PDE which
gives ∫

Ω

|∇uf,Gε,l,Ω|pdx =

∫
Ω

fuf,Gε,l,Ωdx ≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω).
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Since uf,Gε,l,Ω ∈ W
1,p
0 (Ω \Gε,l) we get

||uf,Gε,l,Ω||
p

W 1,p
0 (Ω)

≤ ||uf,Gε,l,Ω||Lp(Ω)||f ||Lq(Ω)

≤ C(d, ε0, ε)l
1/(1−d)||uf,Gε,l,Ω||W 1,p

0 (Ω)||f ||Lq(Ω),
,

and the desired result follows. 2

Before proving the Γ-lim inf inequality, we need the following estimate which will be
helpful. It is the equivalent of Lemma 6.2.5

Lemma 6.2.13. Let f, g ∈ Lq(Ω) be given and uf and ug denote the solution of p-
Laplacian equation with respective right hand side f, g and with Dirichlet boundary
condition on Σ

′

l = Σl ∪ Gε,l (where Σl is an element of Al(Ω) and Gε,l the above
constructed network), then

lq/(d−1)||uf − ug||L1(Ω) ≤ C|Ω|1/q||f − g||1/(d−1)
Lq(Ω) ,

where C = C(d, p, ε0, ε). In particular, if Ω = Q a cube centered at x0, g = f(x0) and
x0 is a Lebesgue point for f , then

lq/(d−1)||uf − ug||L1(Q) ≤ C|Q|

(∫
Q
|f(x)− f(x0)|qdx

|Q|

)1/p

= |Q|r(Q).

Proof: p > d − 1 ≥ 2 and from monotonicity formulas (see equation (5.5)), it follows
that

||uf − ug||pW 1,p
0 (Ω)

≤ C||uf − ug||Lp(Ω)||f − g||Lq(Ω),

where we have used z = ∇uf and w = ∇ug. From Lemma 6.2.12, we have the inequality
||v||Lp(Ω) ≤ Cl1/(1−d)||v||W 1,p

0 (Ω) which holds for every function v vanishing on Σ
′

l. Since
the function uf − ug vanishes on Σ

′

l, we have

||uf − ug||pW 1,p
0 (Ω)

≤ Cl1/(1−d)||uf − ug||W 1,p
0 (Ω)||f − g||Lq(Ω),

which gives
||uf − ug||W 1,p

0 (Ω) ≤ Cl1/(1−d)(p−1)||f − g||1/(p−1)
Lq(Ω) ,

and using Hölder inequality, we get

||uf − ug||L1(Ω) ≤ |Ω|1/q||uf − ug||Lp(Ω)

≤ C|Ω|1/ql1/(1−d)||uf − ug||W 1,p
0 (Ω)

≤ C|Ω|1/qlq/(1−d)||f − g||1/(p−1)
Lq(Ω) ,

and the first part of the statement follows. The second part is an obvious consequence
of the first part.

2

In the following proposition, we prove that the Γ-lim inf functional is bounded below
by the candidate limit functional F in (6.23).
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Proposition 6.2.14. Under the same hypotheses of Theorem 6.2.2, denoting by F−

the functional Γ-lim inf l Fl, it holds F−(µ) ≥ F (µ) for any µ ∈ P(Ω). This means that
for any sequence (Σl)l ⊂ Al(Ω) such that µΣl weakly

∗ converges to µ, we have

lim inf
l→+∞

l
q
d−1

∫
Ω

fuf,Σl,Ωdx ≥ F (µ).

Proof: Let Σ′l = Σl ∪ Gε,l and set u′l = uf,Σ′l,Ω. Since ul ≥ u′l, it is enough to estimate
the integral l

q
d−1

∫
Ω
fu′l. It is obvious that 0 ≤ u′l ≤ uf,Gε,l,Ω and Lemma 6.2.12 gives

||uf,Gε,l,Ω||Lp(Ω) ≤ C(d, ε0, ε, f)l
q

1−d .

It follows that l
q
d−1u′l is Lp bounded, so up to a subsequence l

q
d−1u′l ⇀ w weakly in

Lp(Ω). Thus

lim
l→+∞

l
q
d−1

∫
Ω

gu′ldx =

∫
Ω

gwdx, ∀g ∈ Lq(Ω).

So it is enough to estimate w from below. We will show that, for almost any x0 ∈ Ω,
it holds

w(x0) ≥ θf(x0)1/(p−1)

(µa + ε)
q
d−1

. (6.29)

As in the two-dimensional case, we first estimate w on a cube Q centered at the
point x0 ∈ Ω. We assume that x0 is a Lebesgue point for f and |Q|−1µ(Q) → µa(x0)
as Q shrinks around x0. Assume also f(x0) > 0 otherwise (6.29) would be trivial. We
have

lim
l→+∞

l
q
d−1

∫
Ω

u′ldx =

∫
Ω

wdx,

we use
u′l ≥ uf,Σ′l,Q ≥ uf(x0),Σ′l,Q

− |uf,Σ′l,Q − uf(x0),Σ′l,Q
| in Q,

where the first inequality comes from the fact that we add Dirichlet boundary condition
on Q. The second part of Lemma 6.2.13 gives∫

Q

|uf,Σ′l,Q − uf(x0),Σ′l,Q
|dx ≤ l

q
1−d |Q|r(Q).

It remains to estimate the second term. First of all let us define the number L(l, Q) =
H1(Σ′l ∩Q) and observe that

uf(x0),Σ′l,Q
= f(x0)1/(p−1)u1,Σ′l,Q

.

For simplicity of the notation, we denote u1,Σ′l,Q
by vl. By a change of variables, if we

assume the side of cube Q to be λ and we define vl,λ = λqvl(λx) (thinking for instance
that both cubes are centered at the origin), we get vl,λ = u1,λ−1Σ

′
l ,I

d . It is easy to see
that

λ−1Σ′l ∈ AL(l,Q)/λ(I
d);
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moreover, it holds L(l, Q)→ +∞ as l→ +∞, since

L(l, Q) ≥ H1(Gε,l ∩Q) ≈ εl|Q|. (6.30)
Using (6.30) and the fact that µl = l−1H1(Σl), we may estimate the ratio between

L(l, Q) and l. It follows from the weak* convergence of µl to µ that lim supl→+∞ µl(Q) ≤
µ(Q). So we have

lim sup
l→+∞

L(l, Q)

l
≤ µ(Q) + ε|Q|. (6.31)

Using the definition of θ and the change of variables y = λx we have,

lim inf
l→+∞

L(l, Q)
q
d−1

∫
Q

vl(y)dy = lim inf
l→+∞

L(l, Q)
q
d−1λd

∫
Id
vl,λ(x)dx

= lim inf
l→+∞

(
λ−1L(l, Q)

) q
d−1 λd+q+ q

d−1

∫
Id
vl,λ(x)dx

≥ λd+q+ q
d−1 θ

.

hence using the fact that λd = |Q| we get

lim inf
l→+∞

l
q
d−1

∫
Q

vl(y)dy ≥ lim inf
l→+∞

(
l

L(l, Q)

) q
d−1

lim inf
l→+∞

L(l, Q)
q
d−1

∫
Q

vl(y)dy

≥ λd+q+ q
d−1 θ

(
1

µ(Q) + ε|Q|

) q
d−1

=

(
|Q|

µ(Q) + ε|Q|

) q
d−1

|Q|θ.

This implies that

|Q|−1

∫
Q

wdx ≥ −r(Q) +

(
|Q|

µ(Q) + ε|Q|

) q
d−1

θf(x0)1/(p−1).

We know that r(Q) tends to 0 when the cube Q shrinks to x0, whenever x0 is a Lebesgue
point for f . Now we let the cube Q shrinks toward x0 with x0 satisfying the previous
assumption, then we get

w(x0) ≥ θf(x0)1/(p−1)

(µa(x0) + ε)
q
d−1

.

It follows that

lim inf
l→+∞

l
q
d−1

∫
Ω

fuldx ≥
∫

Ω

fwdx ≥ θ

∫
Ω

f q

(µa + ε)
q
d−1

dx,

and the desired inequality holds by letting ε tend to 0 that is

lim inf
l→+∞

l
q
d−1

∫
Ω

fuldx ≥ θ

∫
Ω

f q

µ
q
d−1
a

dx.

2
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Γ-lim sup inequality

Before proving the Γ-lim sup inequality we introduce one definition and prove some
preliminaries results. We start by the definition of tiling set.

Definition 6.2.15. A set Σ ∈ Al(Id) is called tiling set if Σ ∩ ∂Id coincides with the
2d vertices of Id.

Remark 6.2.16 If Σ ∈ Al(Id) is tiling set and Σk is the homogenization of order k
of Σ into Id, then Σk remains connected and

H1(Σk) = kd−1H1(Σ).

Lemma 6.2.17. Given Σ0 ∈ Al0(Id) a tiling set, a domain Ω ⊂ Rd and f ∈ Lq(Ω),
we consider the sequence of sets

Σk =
⋃

y∈k−1Zd
(y + k−1Σ0 ∪ ∂Id) ∩ Ω

and consider the sequence of functions (uk)k given by

uk = kquf,Σk,Ω,

then uk ⇀ c(Σ0)f 1/(p−1) in Lp(Ω) as k → +∞, where c(Σ0) is a constant given by∫
Ω
u1,Σ0,Iddx.

Proof: The proof is the same as the proof of Lemma 6.2.7 2

Remark 6.2.18 This result remains true even if Σ0 is not tiling. In fact in the
proof we do not need to use the fact that Σ0 is tiling . We keep it for the up coming
construction. One problem in the previous Lemma is that we have used the whole
boundary of the unit cube which is not an one dimensional set (since d ≥ 3) and
consequently the set Σk is not an one dimensional set. In the following Lemma, we
prove an estimate on an unit cube which will be useful for proving that uf,Σk,Ω may be
approximated by uf,Σkl ,Ω where Σk

l is an one dimensional closed and connected set.

Lemma 6.2.19. Let Σ ∈ Al(Id) be a tiling set, then for every α > 0 there exists
Tαl ∈ Al(Id) such that if we denote by ul = uf,Σ∪Tαl ,Id and vl the solution of the
equation {

−∆pu = f in Id \ Σ ∪ Tαl
u = 0 in Σ ∪ Tαl ,

then vl ≤ ul + α−qCl
q

1−d on Id where C is a constant independent of l and α.
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Proof: The boundary of the d-dimensional unit cube is a union of d−1-dimensional unit
cubes. On each d−1-dimensional unit cube, let us consider a type of set Gα,l previously
constructed by choosing k = bαl1/d−1

d
c (in the this case the set M is constructed in the

same way but as subset of Id−1 instead of Id) and then take the union of all these
sets. It is clear that it is a closed connected one dimensional subset of ∂Id and his
length is approximatively (αl

1
d−1 )d−2. To this set, we add another one which is the

homogenization of order k = bαl1/(d−1)2

d
c of the unit segment passing by the center

and joining two opposite face of the unit cube into the unit cube. This set whose
length is approximatively (αl

1
d−1 )d−2 is not connected but his union with the Gα,l is

connected. Denoting this union by Tαl , we observe that it is a closed connected one
dimensional set and H1(Tαl ) ≈ (αl

1
d−1 )d−2. We may assume Σl ∪ Tαl connected since it

suffice to add some segment to connect them. Adapting the proof of Lemma 6.2.12 by
writing more precisely inequalities and replacing ε by α, we get ||vl||Lp(Id) ≤ Cα−ql

q
1−d

and ||ul||Lp(Id) ≤ Cα−ql
q

1−d where C = C(p, f, d) and vl and ul are functions of the
statement of the Lemma. From the maximum principle we get vl − ul ≥ 0 and from
the above boundedness and Hölder inequality it holds

0 ≤
∫
Id

(vl − ul)dx ≤ Cα−ql
q

1−d .

We obtain easily the existence of some constant C = C(p, f, d) (it may be different
from the above constant C) such that the inequality

vl − ul ≤ Cα−ql
q

1−d

holds in Id and the proof is over. 2

The sets satisfying the hypothesis of the Lemma 6.2.19 will be called almost boundary-
covering sets. Now we built an almost boundary-covering set that will be used for the
construction of the recovering sequence for the Γ-lim sup inequality.

Lemma 6.2.20. For any ε > 0, there exists l0 > 0 such that for all l > l0 we find a
set Σ ∈ Al(Id) which is almost boundary-covering, with

l
q
d−1

∫
Id
u1,Σ,Iddx < (1 + ε)θ

and consequently if we denote by u1,Σ the solution of the same equation which vanish
only on Σ and not on whole the boundary of Id we get

l
q
d−1

∫
Id
u1,Σdx < (1 + ε)θ + Cα−q.

Proof: Given a small positive number δ (0 < δ � 1), by definition of θ, we may find
a set Σ1 ∈ Al1(Id) such that

l
q
d−1

1

∫
Id
u1,Σ1,Iddx < (1 + δ)θ
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and moreover the number l1 may be chosen as large as we want. Now, we want to
enlarge the set Σ1 to get a set Σ2 which is almost boundary-covering. Let γ =

⋃2d

j=1 Sj
where Sj is the shortest segment joining Σ1 to the jth vertex of Id cube. We set
Σ2 = Σ1 ∪ Tαl1 ∪ γ where Tαl1 is the set Tαl previously constructed with l replaced by
l1. Up to adding one segment, we may assume Σ2 connected. The length l2 = H1(Σ2)

does not exceed the number l1 + (αl
1
d−1

1 )d−2 + (2d + 1)
√
d. It is possible to chose l1 so

that  l1 + (αl
1
d−1

1 )d−2 + (2d + 1)
√
d

l1


q
d−1

≤ 1 + δ.

This implies

l
q
d−1

2

∫
Id
u1,Σ2,Iddx ≤

(
l2
l1

) q
d−1

l
q
d−1

1

∫
Id
u1,Σ1,Iddx ≤ (1 + δ)2θ.

Now if we are given a large number l, we homogenize the set Σ2 of order k = b
(
l
l2

) 1
d−1 c

into Id and the homogenized set Σ belongs to Akd−1l2(I
d) and is still almost boundary-

covering. For this set Σ it holds (using the rescaling property)

(kd−1l2)
q
d−1

∫
Id
u1,Σ,Iddx = l

q
d−1

2

∫
Id
u1,Σ2,Iddx.

Noticing that l
q
d−1 ≤

(
k+1
k

)q (
kd−1l2

) q
d−1 , we get

l
q
d−1

∫
Id
u1,Σ,Iddx ≤

(
k + 1

k

)q
(1 + δ)2θ.

If l > l2δ
−1, using the fact that δ � 1, an easy computation shows that 1+1/k < 1+ δ

so that we get

l
q
d−1

∫
Id
u1,Σ,Iddx ≤ (1 + δ)2+qθ.

Now it is sufficient to choose δ so small that (1 + δ)2+q < 1 + ε, choose l0 = l2δ
−1 and

the result follows. 2

We have all the ingredients for proving the Γ-lim sup inequality. We will start
from a class of piecewise constant measures (see the definition of piecewise constant
measures just before Proposition 6.2.10 and we will keep the same notation) µ = ρdx

with ρ =
∑m

j=1 ρjIΩj .

Proposition 6.2.21. Under the same hypotheses of Theorem 6.2.2, we have

F+(µ) ≤ F (µ), where F+ = Γ− lim sup
l→+∞

Fl,
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for any piecewise constant measure µ ∈ P(Ω). This means that for any such a measure
µ and ε > 0, there exists a family of sets (Σl)l ⊂ Al(Ω) such that the measure µΣl

weakly* converges to the measure µ and moreover

lim sup
l→+∞

l
q
d−1

∫
Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

f q

ρ
q
d−1

dx.

Proof: Apply Lemma 6.2.20 and take an almost boundary-covering set Σ0 ∈ Al0(Id)
such that

l
q
d−1

0

∫
Id
u1,Σ0,Iddx < (1 + ε)θ.

Now, we define the set Σj
l by homogenizing into Ωj the set Σ0 of order k(l, j) that is

Σj
l = Ωj ∩ k(l, j)−1(Zd + Σ0).

Since Σ0 is tiling , for k(l, j) large enough Σj
l remains connected and

H1(Σj
l ) = |Ωj|K(l, j)d−1H1(Σ0) ≤ |Ωj|K(l, j)d−1l0.

Let Σl1 ∈ Al1(Ω) be a set contained in the internal boundary of the union of Ωj and
converges to it in the Hausdorff topology as l1 → +∞ (Σl1 may obtained by homog-
enizing some kind of grid contained in ∂Id of some order into ∪mj=0∂Ωj ). Due to the
connectedness of Σl1 , the corresponding solution converges to the solution associated
to the internal boundary of ∪mj=0Ωj as well. Then we choose Σl = ∪mj=0Σj

l ∪Σl1 .We may
assume Σl connected otherwise we add some segments to connect all the pieces. The
family of sets Σl is admissible (i.e. Σl ∈ Al(Ω) and µΣl ⇀ µ) if we have, as l→ +∞,

m∑
j=0

|Ωj|k(l, j)d−1l0 + l1 ≤ l and is asymptotic to l;

k(l, j)d−1l0
l

→ ρj for j = 0, · · · ,m.

It is easy to see that all theses conditions are satisfied if we set

k(l, j) =

⌊(
l − l1
l0

ρj

) 1
d−1

⌋
.

Let us introduce the following sets

Γjl = Ωj ∩ k(l, j)−1(Zd + ∂Id), Γl =
⋃
j

Γjl .

Thanks to Lemma 6.2.19 we have∫
Ωj

fk(l, j)quf,Σjl ,Ωj
dx ≤

∫
Ωj

fk(l, j)quf,Σl∪Γjl ,Ωj
dx+ Cα−ql

q
1−d
0 .
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In fact, we consider subcubes Qk(l,j) which are obtained by the partition of Ωj made
by Γjl , then in each subcube Qk(l,j), the Lemma 6.2.19 gives

uf,Σjl
≤ uf,Σjl ,Qk(l,j)

+ Cα−q(k(l, j)l
1
d−1

0 )−q.

By multiplying this inequality by f (notice that f ≥ 0), Integrating over Qk(l,j) and
summing up, we get∫

Ωj

fuf,Σjl ,Ωj
dx ≤

∫
Ωj

fuf,Σjl
dx ≤

∫
Ωj

fuf,Σjl∪Γjl ,Ωj
dx+ Cα−q(k(l, j)l

1
d−1

0 )−q

where the first inequality comes from the maximum principle and the second is obtained
by observing that on each cube Qk(l,j) it holds uf,Σjl∪Γjl ,Ωj

= uf,Σjl ,Qk(l,j)
We choose l1 to be a function of l (for example l1 = l

d−1
d ) in such a way that l1

goes to +∞ whenever l goes to +∞. We are interested in the estimate of the value of
Fl(Σl)

l
q
d−1

∫
Ω

fuf,Σl,Ωdx =
m∑
j=0

(
l

k(l, j)d−1

) q
d−1
∫

Ωj

fk(l, j)quf,Σl,Ωdx

≤
m∑
j=0

(
l

k(l, j)d−1

) q
d−1

(∫
Ωj

fk(l, j)quf,Σl,Ωjdx+ c(l1)

)

≤
m∑
j=0

(
l

k(l, j)d−1

) q
d−1

(∫
Ωj

fk(l, j)quf,Σjl∪Γjl ,Ωj
dx+ c(l1) + Cα−ql

q
1−d
0

)

where c(l1) goes to zero as l1 tend to infinity. By applying Lemma 6.2.17 to each Ωj

we get the following weak convergence in Lp.

k(l, j)quf,Σjl∪Γjl ,Ωj
⇀ c(Σ0)f 1/(p−1) as l→ +∞

and the term
(

l
k(l,j)d−1

) q
d−1 converges to

(
l0
ρj

) q
d−1 as l → +∞ for j = 0, · · · ,m. The

choice of the set Σ0 implies that l
q
d−1

0 c(Σ0) < (1 + ε)θ, so we have

lim sup
l→+∞

l
q
d−1

∫
Ωj

fuf,Σl,Ωdx ≤ (1 + ε)θρ
q
d−1

j

∫
Ωj

f qdx+ Cα−q, for j = 0, · · · ,m

and summing up and using the fact that α−q → 0 as α→ +∞, we get

lim sup
l→+∞

l
q
d−1

∫
Ω

fuf,Σl,Ωdx ≤ (1 + ε)θ

∫
Ω

f q

ρ
q
d−1

dx.

2
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Extending this result to a non piecewise constant measures is just a consequence
of the general theory of Γ-convergence stating that it is sufficient to verify the lim sup

inequality in a class which is dense in energy. Hence, to conclude, we need only this
result that may be proved in the same way as the Proposition 6.2.11

Proposition 6.2.22. For any measure µ ∈ P(Ω) there exists a sequence (µn)n of
piecewise constant measures such that µn ⇀ µ and

lim
n
F (µn) = F (µ) = θ

∫
Ω

f q

µ
q
d−1
a

dx.

6.2.4 Some estimate on θ

In this section we will prove some estimate on the constant θ(p) and in particular
we will show that θ(p) is neither 0 nor +∞ so that our limit functional is not trivial.

Proposition 6.2.23. We have

θ(p) < +∞ ∀p > d− 1.

Proof: Let Σl ∈ Al(Id) be a tiling set. For any positive integer number n, let us denote
by Σn

l the homogenization of the set Σl of order n into Id. Clearly, Σn
l is connected and

H1(Σn
l ) = nd−1l. Using the rescaling property of the p-Laplacian operator, it follows

that
θ(p) ≤ lim inf

n
(nd−1l)

q
d−1Fp(Σ

n
l , 1, I

d) = l
q
d−1Fp(Σl, 1, I

d) < +∞

which concludes the proof. 2

For proving the lower bound, we need some preliminary results. We start by this lemma
which is a consequence of the proof of Theorem 4.4.5 in [11].

Lemma 6.2.24. Given a closed connected set Σ ∈ Rd with H1(Σ) < +∞, there exists a
sequence of connected sets Σj such that each Σj is a union of finite number of segments,
H1(Σj) ≤ H1(Σ) and Σj → Σ in the Hausdorff distance.

Lemma 6.2.25. Let Σ be a closed connected subset of Rd with H1(Σ) < +∞. Then

|{x ∈ Rd : hΣ(x) ≤ t}| ≤ H1(Σ)ωd−1t
d−1 + ωdt

d, (6.32)

where ωk denotes the volume of the unit ball in Rk and hΣ(x) = d(x,Σ) is the distance
from x to the compact Σ.

Proof: For every E ⊂ Rd, set At(E) = {x ∈ Rd : hΣ(x) < t}. We first suppose that
Σ =

⋃m
i=1 si where each si is a segment. Let Σj =

⋃j
i=1 si. Since Σ is connected, we

may suppose that sj+1 ∩ Σj 6= ∅ for j < m. For a single segment s,

|At(s)| = H1(s)ωd−1t
d−1 + ωdt

d, (6.33)
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and hence the claim of the lemma is true for m = 1. Now suppose that

|At(Σj)| ≤ H1(Σj)ωd−1t
d−1 + ωdt

d, (6.34)

for some j < m, and let us prove the same estimate with j + 1 in the place of j. Using
(6.33) and (6.34) we have

|At(Σj+1)| = |At(Σj ∪ sj+1)| = |At(Σj) ∪ At(sj+1)|
= |At(Σj)|+ |At(sj+1)| − |At(Σj) ∩ At(sj+1)|
≤ (H1(Σj) +H1(sj+1))ωd−1t

d−1 + 2ωdt
d − |At(Σj) ∩ At(sj+1)|.

Now it suffice to observe that, since Σj ∩ sj+1 6= ∅, then At(Σj) ∩ At(sj+1) contains a
ball of radius t. Therefore the claim follows by induction on m. The general case follows
from Lemma 6.2.24, approximating Σ by union of segments in the Hausdorff distance
(which implies the uniform convergence of the corresponding distance functions), and
observing that the functional |At(Σ)| is lower semicontinuous in this topology (see [9],
Prop. 2.1.). 2

Lemma 6.2.26. Let Σ ∈ Al(Id) and r > 0, then

lim inf
l→+∞

l
r
d−1

∫
Id

(hΣ(x))rdx ≥ d− 1

(r + d− 1)ω
r
d−1

d−1

.

Moreover as far as d = 2 it holds

inf

{
lim inf
l→+∞

lr
∫
Id

(hΣ(x))rdx : Σ ∈ Al(I2)

}
=

1

2r(r + 1)
.

Proof: Let At denotes the set of points x ∈ Rd such that hΣ(x) < t. By Lemma 6.2.25,

|At ∩ Id| ≤ lωd−1t
d−1

(
1 +

tωd
lωd−1

)
≤ lωd−1t

d−1

(
1 +

√
dωd

lωd−1

)
, t ∈ (0,

√
d)

and hence raising to the power r/(d− 1), we get

|At ∩ Id|
r
d−1 ≤ (lωd−1)

r
d−1 tr

(
1 +

K

l

) r
d−1

, t ∈ (0,
√
d) (6.35)

where K is a constant depending only on p, d. Now using |∇hΣ| = 1 a.e. on Id and the
coarea formulas, we have

|At ∩ Id| =
∫ t

0

Psds,

∫
At∩Id

(hΣ(x))rdx =

∫ t

0

srPsds, t > 0
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where Ps is the perimeter of As in Id, hence

d

dt
|At ∩ Id| = Pt,

d

dt

∫
At∩Id

(hΣ(x))rdx = trPt, t > 0.

Therefore, multiplying (6.35) by Pt we obtain that

d

dt
|At ∩ Id|

r+d−1
d−1 ≤ (lωd−1)

r
d−1

(
1 +

K

l

) r
d−1 d

dt

∫
At∩Id

(hΣ(x))rdx,

for every t ∈ (0,
√
d). Since supId hΣ ≤ diamId =

√
d, by integrating the last inequality

over (0,
√
d), we get

1 = |Id| ≤ r + d− 1

d− 1
(lωd−1)

r
d−1

(
1 +

K

l

) r
d−1
∫
Id

(hΣ(x))rdx,

and passing to the lim inf as l → +∞ in the inequality, the desired result follows. For
the two dimensional situation, since the above result holds for every Σ ∈ Al(Id), it
follows that

inf

{
lim inf
l→+∞

lr
∫
Id

(hΣ(x))rdx : Σ ∈ Al(I2)

}
≥ 1

(r + 1)ωr1
=

1

2r(r + 1)
.

it remains to prove the reverse inequality. Let Sn be the subset of the closed unit square
in R2 made of n+ 1 equi-spaced vertical segments of unit length, and let Σn = Sn ∪B
where B is the base of the square. Clearly, Σn is connected and H1(Σn) = n + 2.
Moreover ∫

Id
(hΣn(x))rdx ≤

∫
Id

(hSn(x))rdx = 2n

∫ 1
2n

0

trdt =
1

(r + 1)(2n)r
.

Therefore

lim inf
n→+∞

H1(Σn)r
∫
Id

(hΣn(x))rdx ≤ lim inf
n→+∞

(n+ 2)r

(r + 1)(2n)r
=

1

2r(r + 1)
.

This proves the opposite inequality. 2

Proposition 6.2.27.

θ(p) ≥ (d− 1)q−q

(q + d− 1)ω
q
d−1

d−1

,

where ωr stands for the volume of unit ball in Rr.

Proof: First, we prove that

Fp(Σl, 1, I
d) ≥ q−qDq(Σl ∪ ∂Id),
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where Dr(Σ) =
∫
Id

(hΣ(x))rdx. For every real number A and for every real number
r > 1, we have

Fp(Σl, 1, I
d) = qmax

{∫
Id

(v − 1

p
|∇v|p)dx : v ∈ W 1,p

0 (Id \ Σl)

}
≥ q

∫
Id

(A(h(x))r − 1

p
|∇(A(h(x))r)|p)dx,

where h is a distance function given by h(x) = d(x,Σl ∪ ∂Id) and satisfied |∇h| = 1
(and consequently |∇hr| = rhr−1). Choosing r = q the conjugate exponent of p, we
get

Fp(Σl, 1, I
d) ≥ q(A− Aq

(
qp

p

)
)

∫
Id
hqdx.

The result follows by optimizing on A (the optimal choice is A = q−q). In the Lemma
6.2.26 we have proved that for any set Σl ∈ Al(Id) it holds

lim inf
l

l
q
d−1

∫
Id

(hΣ(x))qdx ≥ d− 1

(q + d− 1)ω
q
d−1

d−1

.

Here, in the case d = 2, ∂I2 is a one dimensional set then we apply Lemma 6.2.26
to Σ ∪ ∂I2 (adding one segment to make it connected if necessary) and getting the
lower bound. For the case where d ≥ 3 the same proof may be adapted by doing some
modification and obtaining the same result even if Σl ∪ ∂Id is not an one dimensional
set i.e.

lim inf
l

l
q
d−1

∫
Id
h(x)qdx ≥ d− 1

(q + d− 1)ω
q
d−1

d−1

,

and the desired result holds. 2

6.2.5 Average distance as limit as p→∞
In this section our general presentation of the problem for any p > d−1 is exploited

to let p → +∞: this allows us to compare it to some average distance problems. In
some sense, the limit of these problems as p → +∞ correspond to the minimization
of the functional D1 introduced in the previous section. The goal of this section is to
complete the previous results by showing a commutative Γ-convergence diagram: if we
fix p and let the length constraint tends to +∞ we get a limit depending p, given by
(6.23). We want to show that both at finite level of fixed l and at the asymptotic level
of the limit functional, we have Γ-convergence as p→ to the corresponding functional
arising in the average distance theory. The following Lemma is well-known.

Lemma 6.2.28. Let Ω be a fixed domain, p0 < +∞ a fixed exponent with the conju-
gate q0 = p0/(p0 − 1) and f ∈ Lq0(Ω) a nonnegative function. Then the sequence of
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functionals Kp : W 1,p0
0 (Ω)→ [0,+∞] defined by

Kp(v) =
1

p

∫
Ω

|∇v|pdx−
∫

Ω

fvdx

Γ-converges as p → +∞, with respect to the weak convergence in W 1,p0
0 (Ω), to the

functional K∞ given by

K∞(v) =

{
−
∫

Ω
fvdx if ||v||W 1,∞ ≤ 1

+∞ otherwise.

In particular we have

lim
p→+∞

min{Kp(v) : v ∈ W 1,p0
0 (Ω)} = −

∫
Ω

f(x)h∂Ω(x)dx,

where h∂Ω(x) = d(x, ∂Ω)

Theorem 6.2.29. Fix l > 0, an exponent p0 > d with conjugate q0, and a nonnegative
function f ∈ Lq0(Ω). Consider the functionals

Cp(Σ) = F (Σ, f,Ω) for all Σ ∈ Al(Ω),

where Al(Ω) is endowed with the Hausdorff convergence. As p → +∞ we have Γ-
convergence of (Cp)p to the average distance functional D given by

D(Σ) =

∫
Ω

h(x)f(x)dx,

where h(x) = d(x,Σ ∪ ∂Ω).

Proof: To prove the Γ-lim sup inequality we will prove pointwise convergence. This
is to be done by fixing Σ, regarding the compliance as a maximum, and considering
Γ-convergence on these problems, which would give us as byproduct the convergence of
the optimal values. This Γ-convergence follows from Lemma 6.2.28, changing the signs
in the functionals and applying it to the domain Ω \ Σ. For the Γ-lim inf inequality
take Σp → Σ and the corresponding potentials up. It is easy to see that this sequence
is bounded in W 1,p0(Ω) and, since p0 > d, thanks to the compact embedding in C0 of
the Sobolev space W 1,p0(Ω), we may also suppose up → u uniformly. If we prove, for
almost any x0 ∈ Ω such that f(x0) > 0, the inequality u(x0) ≥ d(x0,Σ∪∂Ω), the goal is
achieved. To prove the inequality take x0 ∈ Σ∪∂Ω and a radius r < d(x0,Σ∪∂Ω). Since
Σp converges in the Hausdorff topology to Σ it will eventually hold r < d(x0,Σp ∪ ∂Ω)
as well. Hence, if we take the solution up of the p-Laplacian equation{

∆pvp = f in Br(x0)
vp = 0 on ∂Br(x0),

we have the inequality vp ≤ up. hence it is sufficient to estimate the uniform limit of
vp. Since vp is bounded in W 1,p0(Br(x0)) we may suppose weak (and hence uniform)

110



convergence to a function. By a Γ-convergence result of Lemma 6.2.28, we know that
such a limit must optimize the limit problem, i.e. it must realize the maximum of∫
Br(x0)

fvdx among all 1-Lipschitz function v vanishing on ∂Br(x0). The maximum is
realized by the function x 7→ d(x, ∂Br(x0)), which is the highest among these func-
tions, but it could be realized by other functions as well. Those maximizing functions
v should satisfy v(x) = d(x, ∂Br(x0))a.e. on {f > 0}. Yet, if f(x0) > 0 and x0 is a
Lebesgue point for f, using the continuity of v and of the distance function (which are
both Lipschitz continuous) we obtain v(x0) = d(x0, ∂Br(x0)) = r. Actually, by using
again the 1-Lipschitz behavior of v, this proves the equality v(x) = d(x, ∂Br(x0)) for
any x ∈ Br(x0). This easily proves that the uniform limit u of the function up must
satisfy u(x0) ≥ r and letting r tend to d(x0,Σ∪ ∂Ω), we get the desired inequality and
the Γ-lim inf inequality we were looking for. 2

Theorem 6.2.30. Fix a nonnegative function f ∈ Lq0(Ω) and consider the sequence
of functionals Cp,∞ on P(Ω)(endowed with the weak topology) given, for p > 1, by

Cp,∞(µ) :=

∫
Ω

(
f

µ
1/(d−1)
a

)q

dx, where q =
p

p− 1
.

Then as p→ +∞ we have the Γ-convergence of the sequence (Cp,∞)p to the functional
C∞,∞ defined by

C∞,∞(µ) :=

∫
Ω

f

µ
1/(d−1)
a

dx.

Proof: The result is straightforward, since we are considering the Lq of the same
function f/µ1/(d−1)

a . The inequality

||v||qLq(Ω) ≥ ||v||L1(Ω)|Ω|−1/(p−1)

is sufficient to deal with the Γ-lim inf inequality: let µp ⇀ µ then

lim inf
p
||f/(µp)1/(d−1)

a ||qLq(Ω) ≥ lim inf
p
||f/(µp)1/(d−1)

a ||L1(Ω)|Ω|−1/(p−1)

≥ ||f/µ1/(d−1)
a ||L1(Ω)

,

where the last inequality comes from the semicontinuity of the limit functional and
from the fact that |Ω|−1/(p−1) → |Ω|0 = 1. The Γ-lim sup inequality follows from the
convergence of the Lq norm to the L1 norm. 2

Theorem 6.2.31. Let Fl be the functional defined on P(Ω) by

Fl(µ) :=

{
l

1
d−1

∫
Ω
fh(x)dx if µ = H1(Σ)−1H1xΣ, Σ ∈ Al(Ω)

+∞ otherwise,
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where h(x) = d(x,Σ ∪ ∂Ω). Then the functional Fl Γ-converges with respect to the
weak∗ topology of P(Ω), to the functional F∞ defined on P(Ω) by

F∞(µ) := θ∞

∫
Ω

f

µ
1
d−1
a

dx,

where µa stands for the absolutely continuous part of µ with respect to the Lebesgue
measure and θ∞ is given by

θ∞ = inf{lim inf
l→∞

l
1
d−1

∫
Id
h1(x)dx,Σ ∈ Al(Id)},

with h1(x) = d(x,Σ ∪ ∂Id)

Proof: See [76]. 2

To complete the framework of the convergence as p → +∞, we have just to control
the constants θ(p). From the proof of Proposition 6.2.27 we have

Fp(Σl, 1, I
d) ≥ q−q

∫
Id
h1(x)qdx,

hence

lim inf
l→+∞

l
1
d−1Fp(Σl, 1, I

d) ≥ q−q lim inf
l→+∞

l
1
d−1

∫
Id
h1(x)qdx

≥ q−q lim inf
l→+∞

(
l

1
d−1

∫
Id
h1(x)dx

)q
≥ q−q

(
lim inf
l→+∞

l
1
d−1

∫
Id
h1(x)dx

)q
≥ q−q(θ∞)q

.

We obtain
θ(p) ≥ q−q(θ∞)q,

therefore
lim inf
p→+∞

θ(p) ≥ lim inf
p→+∞

q−q(θ∞)q = θ∞.

For the upper bound, using Lemma 6.2.28 we have

lim sup
p→+∞

θ(p) ≤ lim sup
p→+∞

l
q
d−1Fp(Σ, 1, I

d) = l
1
d−1

∫
Id
h1(x)dx,

for all Σ ∈ Al(Id). Passing to the limit as l → +∞ and optimization over Σ ∈ Al(Id)
we get

lim sup
p→+∞

≤ θ∞.
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According to Proposition 6.2.27 we have θ∞ = 1
4
for d = 2 and θ∞ ≥ d−1

dω
1
d−1
d−1

for higher

dimension. The commutative diagram we highlighted in this section is summarized in
the following diagram:

Al(Ω) 3 Σ 7→ l
q
d−1

∫
Ω
fu

(p)
f,Σ,Ωdx P(Ω) 3 µ 7→ θ(p)

∫
Ω

fq

µ
q
d−1
a

dx

Al(Ω) 3 Σ 7→ l
1
d−1

∫
Ω
f(x)h(x)dx P(Ω) 3 µ 7→ θ∞

∫
Ω

f

µ
1
d−1
a

dx

l→ +∞

p→ +∞ p→ +∞

l→ +∞

6.2.6 Asymptotics of an optimal p-compliance-location

In this section we consider the case where the control variables are searched among
discrete sets of finite elements. Let p > d be fixed and q = p/(p − 1) the conjugate
exponent of p. For an open set Ω ⊂ Rd and n a positive given integer number, we
define

An(Ω) = {Σ ⊂ Ω : 0 < H0(Σ) ≤ n}.

For a nonnegative function f ∈ Lq(Ω) and Σ a compact set with positive p-capacity
(since p > d, every point has positive p-capacity), we denote as before by uf,Σ,Ω the
weak solution of the equation{

−∆pu = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

that is u ∈ W 1,p
0 (Ω \ Σ) and∫

Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕdx ∀ϕ ∈ W 1,p
0 (Ω \ Σ). (6.36)

For f ≥ 0, we define the p-compliance functional as before and again the existence
of the minimal p-compliance configuration is just a consequence of the Hölderianity of
uf,Σn,Ω.

Theorem 6.2.32. For any integer number n > 0, Ω a bounded open subset of Rd,
d ≥ 2 and f a nonnegative function belonging to Lq(Ω), the problem

min{Cp(Σ) : Σ ∈ An(Ω)} (6.37)

admits at least one solution.

As before, we are interested to the asymptotic behavior of the optimal set Σn of
the problem (6.37) as n → +∞. Let us associate to every Σ ∈ An(Ω) a probability
measure on Ω, given by

µΣ = n−1δΣ
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and define a functional Gn : P(Ω)→ [0; +∞] by

Gn(µ) =

{
n
q
dCp(Σ) if µ = µΣ,Σ ∈ An(Ω)

+∞ otherwise. (6.38)

The scaling factor n
q
d is needed in order to avoid the functionals to degenerate to

the trivial limit functional which vanishes everywhere. Again the main result deal with
the behavior as n→ +∞ of the functional Gn, and is stated in terms of Γ-convergence.

Theorem 6.2.33. The functional Gn defined in (6.38) Γ-converges, with respect to the
weak∗ topology on the class P(Ω) of probabilities on Ω, to the functional G defined on
P(Ω) by

G(µ) = θ1

∫
Ω

f q

µ
q
d
a

dx, (6.39)

where µa stands for the density of the absolutely continuous part of µ with respect to
the Lebesgue measure, and θ is a positive constant depending only on d and p and is
defined by

θ1 = inf{lim inf
n→+∞

n
q
dFp(Σn, 1, I

d) : Σn ∈ An(Id)} (6.40)

Id = (0, 1)d being the unit cube in Rd.

We deduce the following consequence of Theorem 6.2.33:

• if Σn is a solution of the minimization problem (6.37), then up to a subsequence
µΣn ⇀ µ as n→ +∞, where µ is a minimizer of G;

• since G has a unique minimizer in P(Ω), the whole sequence µΣn converges to
the unique minimizer µ of G given by µ = cf

qd
q+dLd where c is such that µ is a

probability measure that is c = 1/
(∫

Ω
f

qd
q+ddx

)
• the minimal value of G is equal to θ1c

q+d
d , and the sequence of the values

inf {Fp(Σ, f,Ω) : Σ ∈ An(Ω)} is asymptotically equivalent to n
q
d θ1c

q+d
d .

We will not prove Theorem 6.2.33 since the proof follows the same line as the proof
of Theorem 6.2.2 but we will point out some necessary modifications. The Lemma
6.2.12 is crucial for the proof of the Γ-lim inf inequality. This Lemma remains valid in
the case of discrete set provided that the power d − 1 is replaced by d. In this case it
suffices that v vanishes on one point since point has positive p-capacity (remember that
p > d). An other important element in the proof of the Γ-lim inf inequality is the set
Gε,l. Here, we will call it Gε,n and its construction is obtained by the homogenization
of order b

(
εn
2ad

)1/dc of the center of the unit cube into the cube Ida = (−a, a)d which
contains Ω. For the Γ-lim sup inequality, proofs are essentially the same except the fact
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that we do not need tiling set and replace l by n. We conclude this section with the
estimate of the constant θ1. To prove the finiteness it suffice to use the set Σn which
the homogenization of order n of the center of the unit cube into the unit cube. For
the lower bound, the proof follows that of Proposition 6.2.27 and gives

θ1 ≥
d

(q + d)w
q
d
d

.

Also in this case we may have a commutative diagram that we summarize below

An(Ω) 3 Σ 7→ n
q
d

∫
Ω
fu

(p)
f,Σ,Ωdx P(Ω) 3 µ 7→ θ(p)

∫
Ω

fq

µ
q
d
a

dx

An(Ω) 3 Σ 7→ n
1
d

∫
Ω
f(x)h(x)dx P(Ω) 3 µ 7→ θ∞

∫
Ω

f

µ
1
d
a

dx

n→ +∞

p→ +∞ p→ +∞

n→ +∞

6.3 Asymptotics of an optimal compliance-location in
Rd

We consider the problem of finding the best location of the Dirichlet region Σ

for a d-dimensional membrane Ω subjected to a given vertical force f . The vertical
displacement of the membrane satisfies the elliptic equation{

−∆u = f in Ω \ Σ
u = 0 inΣ ∪ ∂Ω,

and the rigidity of the membrane is measured through the compliance functional

C(Σ) =

∫
Ω

fuf,Σ,Ωdx,

where uf,Σ,Ω stands for the unique solution of the above equation. The maximal rigidity
of the membrane is obtained by minimizing the compliance functional C(Σ) in a class
of admissible regions Σ. The admissible class for control variables Σ we consider is the
class of all n identical balls with prescribed capacity β. It is easy to obtain the optimal
configuration Σn of the above optimization problem (see Theorem 6.3.1).As before we
are interested in the asymptotic behavior of Σn as n → +∞; more precisely we want
to obtain the limit distribution of Σn as a limit probability measure that minimize the
Γ-limit functional of the suitable rescaled compliance functional.

6.3.1 Compliance under capacity constraint

For any bounded open set Ω ⊂ Rd, β > 0 and R > 0 both real numbers and n ∈ N
we define:

A(β, n)(Ω) =

{
Σ ⊂ Ω : Σ = Ω ∩

n⋃
i=1

B(xi, r) for xi ∈ Ωr, r = rn

}
,
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where rn = β
1
d−2n−1/(d−2) if d ≥ 3 and rn = e−n/β if d = 2 and Ωr stands for the

r-neighborhood of Ω. When the dependence of the radius on the β will be necessary,
we will write explicitly rn = rn(β)

Given Ω ⊂ Rd and f ∈ L2(Ω), for any compact set Σ ⊂ Ω with positive Lebesgue
measure, we define the function uf,Σ,Ω as the weak solution of the problem{

−∆u = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

which means precisely u ∈ H1
0 (Ω \ Σ) and∫

Ω

∇u · ∇ϕdx =

∫
Ω

fϕdx for any ϕ ∈ H1
0 (Ω \ Σ). (6.41)

Notice that by the maximum principle, f ≥ 0 implies uf,Σ,Ω ≥ 0. For f ≥ 0, we
define the compliance over a subset of a given domain Ω as

F (Σ, f,Ω) =

∫
Ω

fuf,Σ,Ωdx =

∫
Ω

|∇uf,Σ,Ω|2dx.

Now we restrict such a compliance functional to the sets in A(β, n)(Ω), that is adding
both the capacity constraint cap(Σ) = β and a geometrical constraint that is force Σ

to be composed by an assigned number of identical balls. This is our nth compliance
minimization problem. The severe geometric constraint of the elements of A(β, n)(Ω)

gives a necessary compactness to get the following existence result.

Theorem 6.3.1. For any n ∈ N and R > 0, β > 0 fixed, if Ω is any bounded open
subset of Rd and f ≥ 0 belongs to L2(Ω), the problem

min {F (Σ, f,Ω) : Σ ∈ A(β, n)(Ω)} , (6.42)

admits a solution.

Then we would like to let n tends to infinity and look at the asymptotic of the
problem, mainly at the distribution of the centers of balls. To this aim let us associate
to each Σ ∈ A(β, n)(Ω) a probability measure on Ω, given by µΣ = n−1

∑n
i=1 δp(xi)

where p : Rd → Ω is a fixed projection of the whole space Rd to Ω and (xi)i=1,··· ,n are
the centers of the balls composing Σ. The role of the projection p is simply to hand
the case where the center of the ball B(xi, r) lies outside Ω. Such an measure is an
atomic measure uniformly distributed on the centers of ball (or on their projection).
Now define functionals Fn : P(Ω)→ [0; +∞] by

Fn(µ) =

{
F (Σ, f,Ω) if µ = µΣ, Σ ∈ A(β, n)(Ω);
+∞ otherwise.

We will prove a Γ-convergence for the sequence Fn when the space P(Ω) is endowed
with the weak∗ topology of probability measures. To introduce the limit functional F
we need to define the quantity:
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θ(β) := inf

{
lim inf
n→+∞

F (Σn, 1, I
d) : Σn ∈ A(β, n)(Id)

}
, (6.43)

where Id = (0, 1)d is the unit cube in Rd. It is easy to see that θ is a decreasing
function on R+ which vanishes after some point. In fact for β ≥ (

√
d/2)(d−2) for d ≥ 3

and β ≥ (ln
√

2)−1 , it is possible to use n balls of radius r = rn with β large enough
to build a set Σ ∈ A(β, n)(Id) covering the whole cube Id, thus getting a vanishing
solution uf,Σ,Id = 0 and F (Σ, f, Id) = 0. Let us call t1 the first vanishing point, i.e.

t1 := inf {t ∈ R : θ(t) = 0} .

We denote by θ− and θ+ the lower and upper semicontinuous envelopes of θ, respec-
tively. They are given by

θ−(β) = sup {θ(α) : α > β} ;

θ+(β) = inf {θ(α) : α < β} .
It is easy to check that the following formula holds:

θ−(β) = inf
{

lim inf
n

F (Σn, 1, I
d) : Σn ∈ A(βn, n)(Id), βn → β

}
. (6.44)

Remark 6.3.2 Due to the monotonicity of the function θ it is easy to see that for
any β1 < β2 we have θ+(β2) ≤ θ−(β1) and in particular θ−(0) ≥ θ+(β) for any β > 0.

We may now define the candidate limit functional F by setting, for µ ∈ P(Ω)

F (µ) = θ−(0)

∫
Ω

f 2

µ
2/d
a

dx, (6.45)

where µa denotes the density of the absolutely continuous part of µ with respect to the
Lebesgue measure. It is clear from (6.45) that the behavior of the function θ does not
affect the minimization problem for F . The result we will prove is the following.

Theorem 6.3.3. Given any bounded open set Ω ⊂ Rd with d ≥ 2, a nonnegative
function f ∈ L2(Ω) and R, β > 0, the sequence of functional (Fn)n previously defined
Γ-converges to F as n→ +∞ with respect to the weak∗ topology on P(Ω).

We deduce the following consequence of the Theorem 6.3.3

• if Σn is a solution of the minimization problem (6.42), it holds up to a subse-
quence, µΣn ⇀ µ as n→ +∞, where µ is a minimizer of F ;

• since F has a unique minimizer in P(Ω), we have the convergence of the whole
sequence µΣn to the unique minimizer µ, which is given by µ = cf 2d/(d+2)dx (and
c is computed so that µ is a probability measure, i.e. c = 1/

∫
Ω
f 2d/(d+2)dx);

• the minimal value of F is equal to θ−(0)c−
d+2
d and the sequence of the values

inf {F (Σ, f,Ω) : Σ ∈ A(β, n)(Ω)} is asymptotical to inf
{
F (µ) : µ ∈ P(Ω)

}
.
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6.3.2 Proof of Γ-limit

Also here we will prove Theorem 6.3.3 in several steps, the most important two
corresponding to the Γ-lim inf and Γ-lim sup. Before that we need some preliminaries
results. Let us fix ε > 0, in analogy to the constructed set Gε,l, define the set Gε,n as
follows

Gε,n =
⋃

y∈k−1Zd∩[−a,a]d

B(y, r), r = rn, k = b(εn)1/dc.

Now we define Σ′n = Σn ∪Gε,n and we set u′n = uf,Σ′n,Ω. Let us introduce the number

k(n,Q) = #
({
i : B(xi, r) ∩Q 6= ∅

}
∪
{
j : B(yj, r) ∩Q 6= ∅

})
.

It holds k(n,Q)→ +∞ as n→ +∞, since

k(n,Q) ≥ #
{
j : B(yj, r) ∩Q 6= ∅

}
≈ εn|Q|. (6.46)

We may also estimate the ratio k(n,Q) by n, by using (6.46) and the fact that
#
{
i : B(xi, r) ∩Q 6= ∅

}
= nµn(Qr), where r = rn → 0 as n → +∞ and Qr denotes

the r-neighborhood of Q. From µn ⇀ µ it follows that lim supn µn(Qrn) ≤ µ(Q), so
that

lim sup
n

k(n,Q)

n
≤ µ(Q) + ε|Q|. (6.47)

Lemma 6.3.4. The following facts hold.

1. For any ε > 0, any 0 < n < +∞, any domain Ω and any function v ∈
H1

0 (Ω \ Gε,l) ⊂ H1
0 (Ω) (Gε,n is the set constructed above) it holds ||v||L2(Ω) ≤

C(d, ε)||v||H1
0 (Ω).

2. As a consequence, if we have a nonnegative function f ∈ L2(Ω), then the function
uf,Gε,n,Ω satisfies ||uf,Gε,n,Ω||L2(Ω) ≤ C(d)||f ||L2(Ω).

3. For any Σn ∈ A(β, n)(Ω), f ∈ L2(Ω) a nonnegative function and Q ⊂ Ω a cube
it holds

uf,Σn,Ω ≥
(

n

k(n,Q)

) 2
d

uf,Σ′n,Q + bn on Q,

where bn ⇀ 0 in H1
0 (Q) and

||uf,Gε,n,Ω||L2(Q) ≤ C(d)

(
n

k(n,Q)

)−2
d

||f ||L2(Q)
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Proof: The proof is along the line of the proof of Lemma 6.2.12. We choose A to
be balls composing Gε,n and p = 2. For proving the first part, we first choose the
function v to be a nonnegative smooth function on the large cube Ida which vanish
outside Ω \Gε,n. We consider the subdivision of cube Ida into subcubes as done above
and consider the associated set Gε,n. The side of subcubes is of order n−1/d. Let us
denote the subcubes by Qj. The set Ida \Gε,n can be seen as the homogenized of order
k = b( εn

ad
)1/dc of Id \M into Ida (M is the a ball of radius n−2/(d(d−2)) for d ≥ 3 and of

radius
√
ne−n for d = 2). Let us set ε0 = cap(M, 2Id) and notice that v vanishes on

Gε,n. By applying the first statement of the Lemma 6.2.12, it follows that∫
Qj

|v|2dx ≤ Ck−d

cap(k−1M, 2Qj)

∫
Qj

|∇v|2dx ≤ Cn−2/d

cap(M, 2Id)

∫
Qj

|∇v|2dx.

Observing that cap(M, 2Id) is bounded below by Cn−2/d with C independent of n we
have ∫

Qj

|v|2dx ≤ C

∫
Qj

|∇v|2dx

and by summing up over j we get∫
Ida

|v|2dx ≤ C

∫
Ida

|∇v|2dx.

Using the fact that v vanishes outside Ω, we may restrict the integrand to Ω, raise
each term of the inequality to the power 1/2 and thus getting the result by noticing
that the L2 norm of the gradient ||∇v||L2(Ω) stands for the norm ||v||H1

0 (Ω). The general
case follows by density. For the second inequality, we use the weak version of the PDE
which gives∫

Ω

|∇uf,Gε,n,Ω|2dx =

∫
Ω

fuf,Gε,n,Ωdx ≤ ||uf,Gε,n,Ω||L2(Ω)||f ||L2(Ω).

Since uf,Gε,n,Ω ∈ H1
0 (Ω \Gε,n) we get

||uf,Gε,n,Ω||2H1
0 (Ω) ≤ ||uf,Gε,n,Ω||L2(Ω)||f ||L2(Ω) ≤ C(d, ε)||uf,Gε,n,Ω||H1

0 (Ω)||f ||L2(Ω),

and the desired result follows. For the first of the third point take

bn = min{uf,Σn,Ω −
(

n

k(n,Q)

) 2
d

uf,Σ′n,Q, 0}

and for the second part, repeat the proof of the second point and observing that
|Q|n ≤ k(n,Q). 2
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Γ-lim inf inequality

In the following proposition we prove that the Γ-lim inf is bounded below by the
candidate limit functional F introduced in (6.45).

Proposition 6.3.5. Under the same hypotheses of Theorem 6.3.3, denoting by F−

the Γ-lim infn Fn, it holds F−(µ) ≥ F (µ) for any µ ∈ P(Ω). This means that, for a
sequence (Σn)n such that µΣn weakly* converges to µ and Σn ∈ A(β, n)(Ω), it holds
lim infn

∫
Ω
fundx ≥ F (µ), where un stands for uf,Σn,Ω.

Proof: We set u′n = uf,Σ′n,Q and we have un ≥
(

n
k(n,Q)

) 2
d
u′n + bn. The sequence

(
(

n
k(n,Q)

) 2
d
u′n)n is L2- bounded thanks to Lemma 6.3.4. Due to the particular setting we

have to study the local behavior of the energy. Let x0 ∈ Ω and take a cube Q centered
at the point x0 ∈ Ω. We will assume that x0 is a Lebesgue point for f and it satisfies the
condition |Q|−1µ(Q)→ µa(x0) as Q shrinks around x0. These assumptions are verified

for almost any point x0 ∈ Ω. The sequence
(

n
k(n,Q)

) 2
d
u′n is L2 bounded then it converges

weakly to a function w ∈ L2(Q). we have lim infn

(
n

k(n,Q)

)2/d ∫
Q
fu′ndx =

∫
Q
fwdx.

This shows that it is enough to estimate w from below. We have∫
Q

wdx = lim
n

(
n

k(n,Q)

)2/d ∫
Q

u′ndx.

We use

u′n = uf,Σ′n,Q = uf(x0),Σ′n,Q + uf−f(x0),Σ′n,Q ≥ uf(x0),Σ′n,Q − u|f−f(x0)|,Σ′n,Q in Q,

where the inequality is obtained by the maximum principle. By applying Lemma 6.3.4
to the cube Q it follows that

||u|f−f(x0)|,Σ′n,Q||L2(Q) ≤
(

n

k(n,Q)

)−2/d

C(d)||f − f(x0)||L2(Q).

By Hölder inequality, we have the following estimate(
n

k(n,Q)

)2/d ∫
Q

u|f−f(x0)|,Σ′n,Qdx ≤ |Q|
1/2||u|f−f(x0)|,Σ′n,Q||L2(Q)

≤ C(d)|Q|1/2||f − f(x0)||L2(Q)

(6.48)

Now we have to evaluate the remaining term. Remark that uf(x0),Σ′n,Q = f(x0)u1,Σ′n,Q.
For simplicity of the notation, we set vn = u1,Σ′n,Q. By a change of variable, if we as-
sume λ to be the side of cube Q, we get vn,λ = u1,λ−1Σ′n,Q where vn,λ is defined by
vn,λ(x) = λ−2vn(λx). A simple computation shows that

λ−1Σ′n ∈ A (ζn, k(n,Q)) (Id),

120



where ζn = βk(n,Q)
λd−2n

if d ≥ 3 and ζn = βk(n,Q)
n

if d = 2.
Taking into account the equality (6.44), we easily check that for d ≥ 3 we have

lim inf
n

∫
Q

vndx = lim inf
n

λd+2

∫
Id
vn,λdx

≥ λd+2θ−
(

β

λd−2
(µ(Q) + ε|Q|)

)
So noticing that λd = |Q| we get

lim inf
n

(
n

k(n,Q)

)2/d ∫
Q

vndx ≥ lim inf
n

(
n

k(n,Q)

)2/d

lim inf
n

∫
Q

vndx

≥ λd+2θ−
(

β

λd−2
(µ(Q) + ε|Q|)

)(
1

µ(Q) + ε|Q|

)2/d

= θ−
(
β|Q|2/d(µ(Q) + ε|Q|

|Q|
)

)
|Q|
(

|Q|
µ(Q) + ε|Q|

)2/d

.

This implies, recalling (6.48),

|Q|−1

∫
Q

wdx ≥ −C(d)|Q|−1/2||f − f(x0)||L2(Q)

+ f(x0)θ−
(
β|Q|2/d(µ(Q) + ε|Q|

|Q|
)

)(
|Q|

µ(Q) + ε|Q|

)2/d

.

For the case of dimension d = 2, the computations are quite similar and we obtain
exactly the above inequality with d = 2.

Now we let Q shrink towards x0, thus getting, using the lower semicontinuity of the
function θ−, for a.e.x0 ∈ Ω (x0 satisfies the previous assumption)

w(x0) ≥ f(x0)θ−(0)

(
1

µa(x0) + ε

)2/d

.

It follows that

lim inf
n

∫
Ω

fundx ≥
∫

Ω

fwdx ≥ θ−(0)

∫
Ω

f 2dx

(µa(x) + ε)2/d
.

We let ε tends to zero and hence getting the desired result that is

lim inf
n

∫
Ω

fundx ≥ θ−(0)

∫
Ω

f 2dx

µa(x)2/d
.

2

121



Γ-lim sup inequality

Now, we have to prove the Γ-lim sup that is the reverse inequality. To this aim, we
need this crucial Lemma

Lemma 6.3.6. Given Σ0 ∈ A(β0, n0)(Id), a domain Ω ⊂ Rd and f ∈ L2(Ω), we
consider this sequence of sets

Σk =
⋃

y∈k−1Zd
(y + k−1Σ0 ∪ ∂Id) ∩ Ω

and the sequence functions (uk)k, defined by

uk = k2uf,Σk,Ω.

We have uk ⇀ c(Σ0)f as k → ∞, where the weak convergence is in the L2 sense and
c(Σ0) is the constant given by

∫
Id
u1,Σ0,Iddx.

Proof: The proof is the same as the proof of Lemma 6.2.7 2

Remark 6.3.7 The problem in the previous Lemma is that we have used the whole
boundary of the unit cube which is not an union of balls of radius rn and consequently
the set Σk is not an element of the set A(β, n). In the following Lemma, we will prove
that uf,Σk,Ω may be approximate by uf,Σkl ,Ω where Σk

n is an union of n0 identical balls
of radius rn and capacity β (we will call those sets for which this condition is satisfied,
almost boundary-covering sets).

We will use the technics developed for perforated domains in general or of sieves
(see for example [12], [13],[47],[78], [86] for details). In those situations one proves that
there exists a critical radius (perforated domains are obtained by removing balls from
fixed domain) such that the Dirichlet problem converges to a limit problem which is not
associated to the Laplacian operator (it appears a strange term) and when the radius
is large or small enough, we are in a trivial case where the limit problem is associated
to the Laplacian operator.

Let Tn be a set of n1−1/d balls of radius r = rn (depending on the dimension d)
such that the centers are uniformly distributed on the boundary of the unit cube Id.
Let Σn and Σ be the respective homogenized of Tn and ∂Id of order 1 into Ω that is

Σn = Ω ∩ (Zd + Tn), Σ = Ω ∩ (Zd + ∂Id).

Moreover we choose Tn to be such that Σn is a set of balls whose centers are n
−1
d -

periodically distributed on Σ and Σ is a plane of symmetric of balls composing Σn. Let
un and u be two sequences of functions defined by

un = uf,Σn,Ω, u = uf,Σ,Ω.
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Our goal is to prove that we may approximate u by the function un solution of the
equation {

−∆un = f in Ω \ Σn

un = 0 in Σn ∪ ∂Ω.
(6.49)

Let us denote by {xnj }j∈J the set of centers of the balls in Σn, and consider the open

ball Bn
j with center xnj and radius n

−1
d

2
and the closed ball Cn

j with center xnj and radius

rn = δn = n−
d−1
d(d−2) if d ≥ 3 and δn = e−

√
n if d = 2. The sets (Bn

j )j are pairwise disjoint
and Cn

j ⊂ Bn
j for every j. In this part, operations as sum, union, intersection are made

for j running in J (J depend on n). We begin with the case d ≥ 3

Lemma 6.3.8. Let wn be the function which is equal on Bn
j to the solution of the

equation 
−∆wn = 0 in (Bn

j \ Cn
j ) \ (Ω \ Σ)

wn = 1 on Cn
j

wn = 0 on ∂Bn
j

∂wn
∂ν

= 0 on (Bn
j ∩ Σ) \ Cn

j ,

and wn = 0 on Ω \ ∪Bn
j . Then wn converges weakly to zero in H1

0 (Ω) and the measure
|∇wn|2dx weakly converges to the measure CHd−1xΣ where C is the capacity of the
unit ball in Rd.

Proof: The weak convergence of wn to zero is straightforward. For the convergence of
the measure we have:

∫
Ω

|∇wn|2dx =
∑
j

∫
Bnj

|∇wn|2dx =
Hd−1(Σ)

n1−1/d

∫
B
n−1/d/2

(0)

|∇wn|2dx

=
Hd−1(Σ)

n1−1/d
min


∫
B
n−1/d

2

(0)

|∇u|2dx : u ∈ H1
0 (Bn−1/d

2

(0)), u = 1 on Cn
j


=
Hd−1(Σ)

n1−1/d
min


∫
B
n−1/d

2δn

(0)

|∇u|2δd−2
n dy : u ∈ H1

0 (Bn−1/d

2δn

(0)), u = 1 on B1(0)


= Hd−1(Σ) min


∫
B

1
2n

1
d(d−2)

(0)

|∇u|2dy : u ∈ H1
0 (B

1
2
n

1
d(d−2)

(0)), u = 1 on B1(0)


where in the third equality we have used the change of variable of type x = δny. Pass-
ing to the limit as n tends to +∞ the min in the right hand side converges to the
capacity of the unit ball relative to Rd. Since there is convergence of mass we get the
weak convergence of measure. 2
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Lemma 6.3.9. Set Cn = ∪jCn
j and define the functionals

Fn(v) :=

{ ∫
Ω
|∇v|2dx if v ∈ H1

0 (Ω \ Cn),
+∞ otherwise,

and
F (v) :=

∫
Ω

|∇v|2dx+ C

∫
Σ

v2dHd−1,

where C is capacity of the unit ball in Rd. Then Fn Γ-converges to F in the weak
topology of H1

0 (Ω). Moreover if we replace the radius δn of balls of Cn by the radius rn
then Fn Γ-converges to G in the weak topology of H1

0 (Ω) where G is defined by

G(v) :=

∫
Ω

|∇v|2dx, v ∈ H1
0 (Ω \ Σ).

Proof: For the Γ-lim sup we will prove pointwise convergence. Let ϕ ∈ C∞c (Ω) and
take vn = v−wnv where wn is the function defined in the Lemma 6.3.8 then vn ⇀ v in
H1

0 (Ω) since wn ⇀ 0 in H1
0 (Ω). We have also vn = 0 on Cn (since wn = 1 on Cn) and

lim
n→+∞

∫
Ω

|∇vn|2dx =

∫
Ω

|∇v|2dx+ C

∫
Σ

|v|2dHd−1

and by the density of C∞c (Ω) in H1
0 (Ω) the required result follows. To prove the Γ-

lim inf inequality let vn, v ∈ H1
0 (Ω) be such that vn ⇀ v in H1

0 (Ω) and vn = 0 on Cn.
Let ϕ ∈ C∞c (Ω) be given and set ϕn = ϕ− wnϕ then it holds∫

Ω

|∇vn|2dx ≥ 2

∫
Ω

∇vn∇ϕndx−
∫

Ω

|∇ϕn|2dx.

From the proof of Γ-lim sup we have∫
Ω

|∇ϕn|2dx→
∫

Ω

|∇ϕ|2dx+ C

∫
Σ

ϕ2dHd−1.

lim inf
n→+∞

∫
Ω

∇vn∇ϕn = lim inf
n→+∞

∫
Ω

∇vn(∇ϕ−∇(wnϕ))dx

≥ lim inf
n→+∞

∫
Ω

∇vn∇ϕdx− lim sup
n→+∞

∫
Ω

∇vn∇(wnϕ)dx

=

∫
Ω

∇v∇ϕdx− lim sup
n→+∞

∫
Ω

∇(vnϕ)∇wndx

.

Using the Green formulas, we get∫
Ω

∇(vnϕ)∇wndx =
∑
j

∫
Bnj ∩Ω

∇(vnϕ)∇wndx

=
∑
j

∫
∂Bnj ∩Ω

ϕvn
∂wn
∂ν

dHd−1 +
∑
j

∫
∂Cnj ∩Ω

ϕvn
∂wn
∂ν

dHd−1

+
∑
j

∫
(Bnj ∩Σ)\Cnj

ϕvn
∂wn
∂ν

dHd−1 +
∑
j

∫
Cnj ∩Σ

ϕvn
∂wn
∂ν

dHd−1.
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On the right hand, the two last terms vanish since ∂wn
∂ν

= 0 on (Bn
j ∩ Σ) \ Cn

j (due to
last condition of the equation satisfied by wn) and on Cn

j ∩ Σ (since wn = 1 on Cn
j ).∑

j

χ∂Bnj
∂wn
∂ν

dHd−1 → −CHd−1xΣ

in H−1
loc (Rd) strongly and as consequence

∑
j χ∂Cnj

∂wn
∂ν
dHd−1 converges strongly to zero

in H−1
loc (Rd). Using the fact that ϕvn ⇀ ϕv in H1

0 (Ω) we obtain

lim inf
n→+∞

∫
Ω

∇vn∇ϕndx ≥
∫

Ω

∇v∇ϕdx+ C

∫
Σ

vϕdHd−1,

therefore we have

lim inf
n→+∞

∫
Ω

|∇vn|2dx ≥ 2

∫
Ω

∇v∇ϕdx+ 2C

∫
Σ

vϕdHd−1 −
∫

Ω

|∇ϕ|2dx− C
∫

Σ

ϕ2dHd−1.

Now, we let ϕ tend to v strongly in H1
0 (Ω) and thus getting

lim inf
n→+∞

∫
Ω

|∇vn|2dx ≥
∫

Ω

|∇v|2dx+ C

∫
Σ

v2dHd−1

and the first part of the Lemma is proved. For the second point, let us denote by C ′n
the union of balls Cn

j with radius rn instead of δn. For all real number ξ > 1, we have
rn ≥ ξδn for n large enough. Since balls Bξδn are contained in balls Brn with same
centers (that is ξCn ⊂ C ′n) then{

v ∈ H1
0 (Ω \ C ′n)

}
⊃
{
v ∈ H1

0 (Ω \ ξCn)
}
.

Therefore
S− = Γ− lim inf

n→+∞

{ ∫
Ω
|∇v|2dx if v ∈ H1

0 (Ω \ C ′n),
+∞ otherwise,

≥ Γ− lim

{ ∫
Ω
|∇v|2dx if v ∈ H1

0 (Ω \ ξCn),
+∞ otherwise,

=

∫
Ω

|∇v|2dx+ ξd−2

∫
Σ

v2dHd−1, v ∈ H1
0 (Ω)

.

The coefficient ξd−2 is due to the property of the capacity. This inequality holds for
every ξ > 1, then we deduce that S− ≥ G(v). The Γ-lim sup holds by pointwise limit
as before then S+ ≤ G(v) and the proof is over. As consequence, the solution un of
the equation (6.49) up to extraction of subsequence converges weakly in H1

0 (Ω) to the
minimizer u of v 7→ G(v) +

∫
Ω
fvdx which is the solution of the equation{
−∆u = f on Ω \ Σ

u = 0 on ∂Ω ∪ Σ

notice that we have used the continuity of the map v 7→
∫

Ω
fvdx in the weak topol-

ogy of H1
0 (Ω) for getting the Γ-convergence of v 7→ Fn(v) +

∫
Ω
fvdx toward the map
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v 7→ G(v) +
∫

Ω
fvdx. 2

For the case d = 2 we cannot use the same result as in the case d ≥ 3 since Lemma
6.3.8 fails. we adapt the counter example to the continuity of Proposition 4.1.3. The
notations are those of Lemma 6.3.9 and we choose δn the radius of Cn

j to be equal
e−
√
n and the radius of Bn

j is 1/(2
√
n). For every n and j let wnj ∈ H1(Bn

j \Cn
j ) be the

solution of the equation ∆wnj = 0 on Bn
j \ Cn

j which satisfies the boundary conditions
wnj = 0 on ∂Cn

j and wnj = 1 on ∂Bn
j . An explicit computation of the solution gives

wnj (x) =
ln |x− xj|+

√
n√

n− ln(2
√
n)

for x ∈ Bn
j \ Cn

j .

We define wn as the function which is equal to wnj on Bn
j \ Cn

j , extended by 0 on Cn
and by 1 on D \Bn. We may observe that

• 0 ≤ wn ≤ 1;

• ∇wn ⇀ 0 in L2(Ω)2 as n → +∞, hence wn converges weakly in H1(Ω) to a
constant function. The computation of the limit of the integral

∫
Ω
wndx shows

that the constant is equal to 1.

Let ϕ ∈ C∞c (Ω). Then ϕwn ∈ H1
0 (Ωn), hence ϕwn may be chosen as a test function

for the equation (6.49):∫
Ω

∇un∇wnϕdx+

∫
Ω

∇un∇ϕwndx =

∫
Ω

fϕwndx.

The second and the third terms of this equality converge respectively to
∫

Ω
∇u∇ϕdx

and
∫

Ω
fϕdx. For the first term the Green formulas gives∫

Ω

∇un∇wnϕdx =
∑
j

∫
∂Bnj

un
∂wn
∂ν

ϕdσ −
∫

Ω

un∇wn∇ϕdx.

The boundary term on ∂Cn
j does not appear since un vanishes on it. The last term of

the identity converges to 0 as n→∞. We get

∑
j

∫
∂Bnj

un
∂wn
∂ν

ϕdσ =
∑
j

∫
∂Bnj

2
√
n√

n− ln(2
√
n)
unϕdσ

=
2
√
n√

n− ln(2
√
n)

∑
j

∫
∂Bnj

unϕdσ.

Let us denote by µn ∈ H−1(Ω) the distribution defined

〈µn, ψ〉H−1(Ω)×H1
0 (Ω) =

∑
j

∫
∂Bnj

ψdσ.
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We will prove that this distribution converges strongly in H−1(Ω) to HxΣ. Let vn
be the solution of the equation{

−∆vn = 4 in ∪jBn
j

vn = 0 on Ω \ ∪jBn
j .

then we have

∂vn
∂ν

=
1√
n

on
⋃

∂Bn
j .

An easy computation shows that
√
nvn → 0 strongly in H1(Ω), therefore

√
n∆vn → 0

strongly in H−1(Ω). One may check also that

〈−∆vn, ψ〉H−1(Ω)×H1
0 (Ω) =

∑
j

∫
Bnj

∇vn∇ψdx

=
∑
j

∫
∂Bnj

1√
n
ψdσ −

∑
j

∫
Bnj

4ψdx.

Let us introduce the measure λn =
∑

j 4
√
nL2xBn

j . This is a sequence of positive finite
Radon measure uniformly bounded (one may check easily that |λn|(R2) ≤ C for all n
and some C independent of n). We have

λn(R2) =

∫
R2

dλn =
∑
j

4
√
n

∫
Bnj

dx→ H1xΣ(R2) as n→ +∞.

Let A be an open set in R2 then

H1(Σ∩A) = H1(Σ∩A∩(∪jBn
j )) =

∑
j

H1(Σ∩A∩Bn
j ) ≤

∑
j

4
√
nL2(A∩Bn

j ) = λn(A)

where for the two first equalities we have used the fact (Bn
j )j are pairwise disjoint

and cover Σ up to a set of H1 measure zero (Σ \ ∪jBn
j is a discrete set) and for the

inequality we have used H1(Σ∩A∩Bn
j ) ≤ 4

√
nL2(Bn

j ∩A). Then passing to the lim inf

as n → +∞ in the inequality we get lim inf λn(A) ≥ H1xΣ(A) = H1(Σ ∩ A). Since
λn is a positive finite Radon measure such that λn(R2) converges to H1xΣ(R2) and for
any open set A of R2 it holds lim inf λn(A) ≥ H1xΣ(A) = H1(Σ ∩ A) then

lim
n→+∞

∫
R2

ψdλn =

∫
R2

ψdH1xΣ =

∫
Σ

ψdH1

for any continuous and bounded function ψ. The measure λn weakly converges toH1xΣ

and since
∑

j 4
√
nχBnj is L∞ bounded the convergence is strong in H−1(Ω). From this

we deduce
µn → H1xΣ strongly in H−1(Ω).
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Consequently u ∈ H1
0 (Ω) satisfies the equation

∀ϕ ∈ C∞c (Ω)

∫
Ω

∇u∇ϕdx+ 2

∫
Σ

uϕdH1 =

∫
Ω

fϕdx.

If we change δn into the radius of balls composing Σn that is rn = e−n/β then the
solution of the equation (6.49) converges strongly to the solution of equation{

−∆u = f in Ω \ Σ
u = 0 in Σ ∪ ∂Ω,

(6.50)

Lemma 6.3.10. For any β > 0 and ε > 0, there exists n0 ∈ N such that for any n > n0,
we find β” < β and a set Σ ∈ AR(β”, n)(Id) which is almost boundary-covering, with∫
Id
u1,Σ,Iddx < (1 + ε)θ+(β).

Proof: let us fix δ > 0 and β′ < β such that θ(β′) < (1 + δ)θ+(β). From the definition
θ(β′) there exists a set Σ1 ∈ AR(β′, n1)(Id) such that∫

Id
u1,Σ1,Iddx < (1 + δ)θ(β′)

and, moreover the number n1 may be chosen as large as we want. Now we enlarge the
set Σ1 to get a set Σ2 which is almost boundary-covering: we add to Σ1 some m balls
of radius r = rn1(β

′) where rn1(β
′) = ( β

n1
)1/(d−2) if d ≥ 3 and rn1(β

′) = e
−n1
β′ if d = 2

(the same radius of balls composing Σ1). In order to almost cover ∂Id in the sense of
our definition, we chose m so that n1δ > m� n1−ε

1 where 0 < ε ≤ 1/d. We distribute
uniformly the centers of the m balls on the boundary of the unit cube. It follows from
the previous Lemma that Σ2 is almost boundary-covering set. With our setting it is
possible to chose n1 so that m ≤ δn1 and β′(n1+m

n1
) = β” < β. Notice that

Σ2 ∈ AR
(
β′(

n1 +m

n1

), n1 +m

)
(Id).

If we set n2 = n1 +m then Σ2 ∈ A(β”, n2)(Id). Moreover∫
Id
u1,Σ2,Iddx ≤

∫
Id
u1,Σ1,Iddx < (1 + δ)2θ+(β).

Let us choose n0 to be the smallest value of n2. Now, if we are giving a large num-
ber n, by the flexibility of the choice of n1, we may choose n1 (and m ≤ δn1) so
that n2 = n and moreover the new set Σn2 is still almost boundary-covering. It is
sufficient to choose δ sufficiently small so that (1 + δ)2 < 1 + ε to get the result.

2

Lemma 6.3.11. For any β > 0, it holds θ(β) ≤ β
−2
d θ−(0)

128



Proof: If β ≤ 1, the inequality follows easily from the definition of θ− and the fact
that β

−2
d ≥ 1. To prove the inequality in the case where β > 1, we will prove for every

integer k and α > 0 the inequality θ(k2α) ≤ k−2θ(α). For any Σ ∈ A(α, n)(Id) we take
Σk as its homogenization of order k into Id. The capacity of Σk is k2α. Due to the
rescaling property of the Laplacian operator we have

k2

∫
Id
u1,Σk,Iddx =

∫
Id
u1,Σ,Iddx.

Then passing to the lim inf as n→ +∞ and minimizing over Σ ∈ A(α, n)(Id), the right
hand side of the equality is equal to θ(α) wile the left hand side is bigger than k2θ(k2α)
since the set {Σk : Σ ∈ A(α, n)(Id)} is a subset of A(k2α, kdn)(Id). The inequality
θ(kα) ≤ k−2θ(α) follows. Now let δ be a positive number such that b(β+δ)

1
d c−2 ≤ β

−2
d

and set k = b(β + δ)
1
d c

θ(β) = θ(k2 × k−2β) ≤ k−2θ(k−2β) ≤ k−2θ−(0) ≤ β
−2
d θ−(0),

where we have used the previous inequality with α = k−2β. With this we conclude the
proof. 2

As before we will prove first the Γ-lim sup inequality for a class of piecewise constant
probability measures. Let µ ∈ P(Ω) be of the form

µ = ρdx, with ρ ∈ L1(Ω),

∫
Ω

ρdx = 1, ρ > 0,

for a piecewise constant function ρ =
∑m

j=0 ρjIΩj , the pieces Ωj being disjoint Lipschitz
open subsets with the possible exception of Ω0 = Ω \ ∪mj=1Ωj. For the simplicity of the
notation, we set

F̃ (µ) = θ−(0)

∫
Ω

f 2

µ
2/d
a

dx.

Proposition 6.3.12. Under the same hypotheses of the Theorem 6.3.3, we have

F+(µ) ≤ F̃ (µ),where F+ = Γ− lim sup
n

Fn,

for any piecewise constant measure µ ∈ P(Ω). This means that, for any such a measure
µ and any ε > 0, there exists a sequence of sets (Σn)n such that µΣn weakly∗ converges
to µ, Σn ∈ A(β, n)(Ω) and moreover

lim sup
n

∫
Ω

fuf,Σn,Ωdx ≤ (1 + ε)θ−(0)

∫
Ω

f 2

ρ2/d
dx.

Proof: By applying the Lemma 6.3.10 to all of the numbers ρj, we may find some
numbers nj and some sets Σj ∈ A(ρj”, nj)(I

d) which are all almost boundary-covering
and such that ∫

Id
u1,Σj ,Iddx < (1 + ε)θ+(ρj).
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Since nj may be chosen as large as we want, we choose them in such a way that all
balls have approximatively the same radius. Now we define for every integer k and
every j = 0, · · · ,m the set

Ak,j =
{
y ∈ k−1Zd : (y + k−1Σj) ∩ Ωj 6= ∅

}
.

and the following sets.

Σj
1 :=

⋃
y∈A1,j

y + Σj, Σj
k :=

⋃
y∈An,j

y + k−1Σj, Σj
k,1 :=

⋃
y∈An,j

y + k−1Σj
1.

We may notice that

Σj
1 ∈ A(ρ′j|Ωj|, |Ωj|nj) and Σj

k ⊂ Σj
k,1, for j = 0, · · · ,m and ∀k,

and the total number of balls in the union is n1 =
∑m

j=0 ρ
′
jnj and the capacity is∑m

j=0 ρ
′
j|Ωj| < 1 since ρ′j < ρj for every j. Let Σm1 be a set of m1 balls for almost

covering the internal boundary of the union of Ωj inside Ω. Thanks to Lemma 6.3.10, it
is sufficient to choose m1 so that n1−ε

1 ≤ m1 < n1 for 1/d ≤ ε < 1. We chose m1 so that
m1/n1 → 0 as n → +∞. Define the set Σn = Σm1 ∪

⋃m
j=0 Σj

1 then Σn ∈ A(βn, n)(Ω)

where n = n1 + m1 and βn = cap(Σn) ≈ m1ρ′j
nj

+
∑m

j=0 ρ
′
j|Ω|. An easy computation

shows that
n =

1

ρj

(
1 +

m1

n1

)
nj.

As consequence nj
n
→ ρj as n → +∞ and βn →

∑m
j=0 ρ

′
j|Ω| as n → +∞ because

nj ≈ ρjn and m1/n → 0 as n → +∞. We have constructed a set Σn ∈ A(βn, n)(Ω)
and the measure µn = µΣn weakly∗ converges to the measure µ = ρdx. Now it remains
the estimate of the lim sup of the quantity

∫
Ω
fuf,Σn,Ωdx as n tends to the infinity. We

will do estimate first on Ωj. It holds∫
Ωj

fuf,Σj1,Ωj
dx = k2

∫
Ωj

fuf,Σjk,Ωj
dx ≤ k2

∫
Ωj

fuf,Σjk,Ωj
dx ∀k ∈ N∗,

where the equality follows from the rescaling property of the Laplacian operator and the
inequality from uf,Σjk,1,Ωj

≤ uf,Σjk,Ωj
which is a consequence of the fact that Σj

k ⊂ Σj
k,1

and the maximum principle. Passing to the limit as k → +∞ and using Lemma 6.3.6
we get ∫

Ωj

fuf,Σj1,Ωj
dx ≤ lim

k→+∞
k2

∫
Ωj

fuf,Σjk,Ωj
dx = C(Σj)

∫
Ωj

f 2dx.

The Lemma 6.3.10, Lemma 6.3.11 and the definition of θ+ give for ε < ρj

C(Σj) < (1 + ε)θ+(ρj) ≤ (1 + ε)θ(ρj − ε) ≤ (1 + ε)(ρj − ε)
−2
d θ−(0).

Therefore ∫
Ωj

fuf,Σj1,Ωj
dx ≤ (1 + ε)(ρj − ε)

−2
d θ−(0)

∫
Ωj

f 2dx.
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The Lemma 6.3.9 allows us to write∫
Ωj

fuf,Σn,Ωdx =

∫
Ωj

fuf,Σn,Ωjdx+ o(nj) =

∫
Ωj

fuf,Σj1,Ωj
dx+ o(nj)

and then ∫
Ω

fuf,Σn,Ωdx =
m∑
j=0

∫
Ωj

fuf,Σn,Ωdx =
m∑
j=0

∫
Ωj

fuf,Σj1,Ωj
dx+ o(n).

The previous result implies that

lim sup
n→+∞

∫
Ω

fuf,Σn,Ωdx ≤ (1 + ε)θ−(0)
m∑
j=0

(ρj − ε)
−2
d

∫
Ωj

f 2dx,

and the desired result follows by letting ε goes to zero that is

lim sup
n→+∞

∫
Ω

fuf,Σn,Ωdx ≤ θ−(0)
m∑
j=0

ρ
−2
d
j

∫
Ωj

f 2dx = θ−(0)

∫
Ω

f 2

ρ
2
d

dx.

2

The extension of this result to the case of a generic probability measure is the same as
those in Proposition 6.2.22 and Proposition 6.2.11 and the proof is the same.

6.3.3 Some estimate on θ

This section is dedicated to the study of the function θ. We already stressed that θ
is non increasing function and vanishes from a point t1 on. In the following, we prove
that θ is piecewise constant.

Proposition 6.3.13.

θ(β) =

{
θ−(0) if β < t1

0 if β ≥ t1

Proof: From the definition of the function θ we have

θ(β) = inf
{

lim inf
n

F (Σn, 1, I
d) : Σn ∈ A(β, n)(Id)

}
= lim inf

n
min

{
F (Σn, 1, I

d) : Σn ∈ A(β, n)(Id)
}
.

By the general theory of Γ-convergence such a lim inf is in fact a limit equal to the
minimum of the limit problem in Id with f = 1. Therefore

θ(β) = min

{
θ−(0)

∫
Id
ρ−2/ddx : ρ ≥ 0, ρ ∈ L1(Id),

∫
Id
ρdx = 1

}
= θ−(0) min

{∫
Id
ρ−2/ddx : ρ ≥ 0, ρ ∈ L1(Id),

∫
Id
ρdx = 1

}
.
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It is clear that the minimum is achieved for ρ = 1 and consequently θ(β) = θ−(0) for
β < t1. 2

Remark 6.3.14 From Lemma 6.3.11 and Proposition 6.3.13, it follows that t1 (the

first vanishing point of the function θ) is less or equal to 1.
It remains now to prove that θ−(0) is neither 0 nor +∞ so that our limit functional

is not trivial. First we will prove that θ(β) < +∞ for any β > 0.

Proposition 6.3.15. For any β > 0, θ(β) < +∞.

Proof: To prove that θ(β) is finite for every β > 0 it is sufficient to consider a particular
sequence of sets Σn ∈ A(β, n)(Id) and then compute the lim inf in the definition of θ(β).
Let us consider the number n of the form n = kd where k ∈ N and build for each k, a
set Σn which is composed by n = kd balls of radius r = (β

n
)1/(d−2) if d ≥ 3 and r = e−

n
β

if d = 2 with their centers placed at the middle points of a kd cubes of side 1/k of
a regular lattice partitioning the cube Id. The set Σn ∈ A(β, n)(Id) and the Lemma
6.3.4 gives

||u1,Σn,Id ||L2(Id) ≤ C(d).

Moreover by the maximum principle u1,Σn,Id ≤ v where v is the solution of the equation{
−∆v = 1 in Br0(x0)

v = 0 on ∂Bro(xo)

r0 =
√
d

2
is the radius of the smallest ball containing the cube Id and centered at its

same center and x0 the center of the unit cube. The function v may be explicitly
computed and an easy calculation shows that∫

Id
u1,Σn,Iddx ≤

∫
Id
vdx ≤ d

4
.

As consequence for all β > 0 we have θ(β) ≤ d
4
. 2

We complete the part of the property of the function θ by proving that θ−(0) > 0.

Proposition 6.3.16. For any 0 < β < t1, we have θ(β) > 0

Proof: For a fixed n ∈ N, let us take n fixed points (xj)
n
j=1 ∈ Id, consider the set

Σβ =
⋃n
j=1B(xj, r) ∈ A(β, n)(Id) and set Ωβ = Id \ Σβ. By the Holder inequality, we

get the following estimate:

Hd−1(∂Ωβ)

(∫
∂Ωβ

| ∂
∂ν
u1,Σβ ,Id |

2dHd−1

)
≥

(∫
∂Ωβ

∂

∂ν
u1,Σβ ,IddH

d−1

)2

= |Ωβ|2, (6.51)

where the last equality follows by integrating by part
∫

Ωβ
−∆u1,Σβ ,Iddx. We may esti-

mate as well the surface measure of the boundary of Ωβ. More precisely
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Hd−1(∂Ωβ) ≤ ndωd(rn(β))d−1, (6.52)

where rn(β) is the radius of the balls and depends on the dimension d. We use now
shape derivative (see Corollary 4.3.3) by perturbing the domain Ωβ by a vector field
which is normal to the boundary of the balls and proportional to nd and get

− d

dβ
F (Σβ, 1, I

d) = nd

∫
∂Ωβ

| ∂
∂ν
u1,Σβ ,Id |

2dHd−1, (6.53)

where

nd =

{
n
−1
d−2 if d ≥ 3
e−n if d = 2

Let us consider first the case d ≥ 3. By combining equations (6.51), (6.52) and (6.53)
it holds

− d

dβ
F (Σβ, 1, I

d) ≥ nd|Ωβ|2

ndωd(rn(β))d−1
≥ nd(1− ωdrdn(β))2

ndωd(rn(β))d−1

≥ 1

dωd
β−

d−1
d−2 − 2

ωd
β−1n−

d
d−2 ,

where we have used the inequalities |Ωβ|2 ≥ (1−ωdrdn(β))2 ≥ (1−2wdr
d
n(β)) to get the

two last inequalities. For any β ∈ (0, t1), we integrate the inequality over the interval
(β, t1) and obtain

F (Σβ, 1, I
d) ≥ F (Σt1 , 1, I

d) +
d− 2

dωd

(
β
−1
d−2 − t

−1
d−2

1

)
− 2

ωd
n−d/(d−2)(ln(

t1
β

)).

Passing to the inf over (xj)j and to the lim inf over n, we get

θ(β) ≥ θ(t1) +
d− 2

dωd

(
β
−1
d−2 − t

−1
d−2

1

)
.

Using the fact that θ(t1) = 0 and β < t1, we get

θ(β) ≥ d− 2

dωd

(
β
−1
d−2 − t

−1
d−2

1

)
> 0.

For the case d = 2 we have

− d

dβ
F (Σβ, 1, I

d) ≥ 1

2ω2

− e−
2n
β .

For any β ∈ (0, t1), we integrate the inequality as before over (β, t1) and get

F (Σβ, 1, I
d) ≥ F (Σt1 , 1, I

d) +

(
t1 − β
2ω2

−
∫ t1

β

e−
2n
β dβ

)
.
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Following the same argument as in the case d ≥ 3, and using the fact that
∫ t1
β
e−

2n
β dβ

converges to zero as n→ +∞ and ω2 = π we have

θ(β) ≥ t1 − β
2π

> 0

which concludes the proof. 2

6.3.4 One dimensional case

In the case of dimension 1 we are able to compute explicitly the function θ. Every-
thing is simpler in dimension 1 since the balls we removed are intervals which disconnect
the domain of the differential equation which is in this case an ODE, and so we can
compute explicitly the solution. We point out that in dimension 1 the compliance
is well-posed also for finite union of points and not only for small intervals. We can
consider also the minimization problem with n points instead of n balls with fixed
capacity. In this case, for an open interval J = (a, b) we have the following functional

Fn(µ) =

{
n2F (Σ, f, J) if µ = µΣ and #Σ ≤ n

+∞ otherwise

Theorem 6.3.17. Let [a, b] be an interval of R and f ∈ L2([a, b]) be a given nonnegative
function. Then the functional Fn Γ-converges with respect to the weak start topology
of P([a, b]) to the functional

F (µ) =
1

12

∫ b

a

f 2

µ2
a

dx

Proof: If we set θ = inf{n2F (Σ, 1, (0, 1)), #Σ ≤ n} then from the section of asymp-
totic of an optimal p-compliance-location we have the Γ convergence of Fn with respect
to the weak∗ topology of P([a, b]) to the functional θ

∫ b
a
f2

µ2a
dx (proofs are essentially the

same). It remains to show that θ = 1
12
. Let Σ be the set of n distinct points of (0, 1)

then Σ partition (0, 1) in n+ 1 intervals. Let

x0 = 0 < x1 <, · · · , < xn = 1

be this partition and lj = xj+1 − xj for j = 0, · · · , n the length of each subinterval
(xj, xj+1). On (xj, xj+1) we have u(x) = − (x−xj+1)(x−xj)

2
. The energy is

I(u) =
1

12

n∑
j=1

l3j .

We minimize I(u) under the constraint
∑n

j=1 lj = 1. By the convexity of the function
l 7→ l3, the minimum is achieved for lj = n−1, and so I(u) = (1/12)n−2 and hence
θ = lim inf n2I(u) = 1/12 and the proof is over. 2
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