Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC

Michele Cascella

Graduate Course in Physics University of Pisa

The School of Graduate Studies in Basic Sciences "GALILEO GALILEI"

June 10, 2011

Outline

- Introduction
 - The direct photon channel
 - The Atlas experiment
 - Jets at Atlas
- Calorimeter response to hadrons
 - The TileCal stand-alone test beam
 - Validation of the Monte Carlo simulation
- Photon + Jet physics
 - Measurement of the associated production cross section
 - Validation of the jet calibration in Atlas

The direct photon channel

The direct photon channel

- Final state photons at pp colliders
- $2 \alpha \alpha_{s}$ diagrams
 - qq annihilation (~10%)
 - "Compton" scattering (~90%)
 - Bremsstrahlung

The direct photon channel

- Direct photon production in hadronic interactions observed for the first time at ISR
- Latest measurements at Tevatron: CDF (inclusive cross section) and D0 (jet-photon relative direction)
- Both experiments use transverse momentum balancing to set or validate the jet energy scale
- σ (LHC@7TeV)=6x σ (Tevatron) 10/6/2011 M. Cascella

Summary

- Very interesting physics channel
- Backgrounds for many new physics searches
- Direct access to gluon PDF
- Transverse momentum balancing can be used in jet calibration

The LHC accelerator and the Atlas detector

The LHC accelerator

Parameters	
Design c.m. energy (TeV)	14
Current c.m. Energy (TeV)	7
Design bunch spacing (ns)	25
Current bunch spacing (ns)	50
Protons per bunch	10 ¹¹
2010 peak luminosity (cm ⁻² s ⁻¹)	10 ³²
2011 peak luminosity (cm ⁻² s ⁻¹)	10 ³³
Design luminosity (cm ⁻² s ⁻¹)	1034
Luminosity lifetime (h)	10

10/6/2011

The Atlas experiment

- Central solenoidal B field (2T) + external toroidal B field (max 4T)
- Muon spectrometer
 - MDT/CSC
 - RPC/TGC (trigger)

$$|\eta| < 2.7$$

 $rac{\Delta P_{\rm T}}{P_{\rm T}} (P_{\rm T} = 1 \ {
m TeV/c}) = 10\%$

• Central tracker $|\eta| < 2.5$ $\frac{\Delta p_T}{p_T}(p_T = 100 \text{ GeV}) = 4\%$

The Atlas calorimeters

	EM Barrel	TileCal
Tech.	Cu/LAr	Fe/sci.
coverage	η < 1.4	η < 1.3
Min. depth	24 Χ ₀ (~1λ)	9λ
Δ η x Δ φ (mid.)	0.025 x 0.025	0.1 x 0.1
σ (E=100 GeV)	1.2%	6%
Linearity	0.2%	1%
Uniformity	0.5%	2.4%
e/h	1.5	1.36

	EndCap	Forward
tech	Cu/LAr	Cu-W/LAr
coverage	$1.4 < \eta < 3.2$	$3.1 < \eta < 4.9$
Min. depth	~20 X_0 + 9 λ	9.5 λ
$\Delta \eta \ge \Delta \phi$ (mid.)	0.025 x 0.025	0.2 x 0.2

Summary

- Atlas is a general purpose experiment at LHC
- Precision SM measurements
- Discovery: Higgs and beyond
- Calorimeters:
 - Good energy resolution and linearity for em and hadronic particles
 - Non compensating → need calibration procedure to correctly measure jet energy

Jets at Atlas

Jet algorithms

- A jet is a collection of four vectors (MC particles, calorimeter topo-clusters)
- Algorithms: Iterative cones, sequential recombination (k_T)
- Anti- $k_{\rm T}$ (R= 0.4 0.6)
 - Good theoretical and experimental properties

Jet calibration

- Reference energy: particle jet (jet reconstructed on MC final state)
- Non compensating calorimeters, out-of-cone, dead material, UE...
- Calibration methods:
 - Jet Energy Scale
 - Global Cell Weights
 - Local Cell Weights

The TileCal stand alone test beam

Motivation

- The response of a calorimeter to hadrons (and jets) is non-linear because of non compensation
- A (Monte Carlo based) calibration procedure is needed to recover linearity and improve resolution
- MC simulation is tuned and validated against test beam measurement

The TileCal stand alone test beam

- TileCal stand alone test beam
 - $e, \mu, \pi (E = 20 350 \text{ GeV})$
- Validation of the Geant4 and Fluka MC simulations
 - Geant4 v7.0 e v8.1 (QGSP e QGSP_BERT)
 - Fluka 2006.3 CALORIMEter
- π , p at $\theta = 20^{\circ} (\eta \sim 0.35)$

Calorimeter response and resolution

Longitudinal and lateral shower shape

- Geant4 showers develop too early
- Bulk is ok
- All MC showers are too short

10/6/2011

Lateral shower shape

- Core is ok
- All simulations predict too little energy in the halo

halo

core

Summary

- The Bertini intra-nuclear cascade mechanism is the clear winner (default for Atlas now)
- Several area where Geant4 (and Fluka) needs to improve to match experimental data
- This study, together with many others, motivated several improvements in subsequent versions of Geant4

The photon + jet associated production cross section

Photon identification

- Good tracker coverage and efficiency: γ/e up to η=2.5
- Different corrections for converted/unconverted γ
- First layer of the LAr calorimeter highly segmented to assist γ/π⁰ separation
- Tight and Loose selections based on several shower shape and isolation variables

Dataset and event selection

- 38 pb⁻¹ of data analysed (2010 statistics)
- Low threshold photon trigger (15 GeV)
- Several quality cuts:
 - vertex position and number of tracks pointing to it
 - Problematic LAr calorimeter regions
 - Bad jets
- Kinematic selection:
 - $\gamma: p_T > 20 \text{ GeV}, |\eta| < 1.37$
 - Jets: $|\eta| < 2.8$ ($|\eta| < 0.8$ central, $1.8 < |\eta| < 2.8$ forward)

Selection purity

- Side-band method to estimate residual background
- B, C, D defined by cut reversal

 Better than 90% after 60 GeV

Systematic uncertainties

- Photon purity/efficiency: cut variation and photon shower shape variation
- Photon energy scale: assumed ~ 1%
- Photon resolution: MC
- Jet efficiency: MC
- Luminosity determination with dedicated measurements

Background and efficiency corrections

- Background: from side band measurements
- Efficiency: use MC to compute bin-by-bin unfolding coefficients

Inclusive cross section

- All jets with $|\eta| < 2.8$
- All photons with $|\eta| < 1.37$

M. Cascella

Central jets cross sections

M. Cascella

Forward jets cross sections

1/4/2011

M. Cascella

Summary

- First measurement of the photon+jet associated production cross section at Atlas
- Good agreement with Pythia MC simulation with the exception of data sample with the largest rapidity gap (need NLO MC)

Jet energy scale validation using photon + jet events

Motivation

- Calorimeter response to photon is well understood
- Use transverse momentum balancing to obtain an independent measure of the jet energy
- In-situ validation of the MC based calibration schemes

Selection performance and systematics

- Same selection as previous analysis
 - $|\eta_{jet}| < 1.2$
- Soft radiation cuts
 - $\Delta \phi > \pi 0.2$
 - $p_{T,j2} / p_{T,j1} < 10\%$

Data - MC comparison (uncalibrated jets)

M. Cascella

Systematic uncertainties over the Data/MC ratio

	systematics $(\%)$	
p_T^{γ} range (GeV)	(45, 60)	(110, 160)
Photon Energy Scale	$^{+0.5}_{-0.3}$	$+0.5 \\ -0.3$
Dijet Background	± 1.0	± 0.4
Soft Radiation	± 0.8	± 0.9
In-time Pile-up	± 0.8	± 0.8
Total Systematic Uncertainty	$^{+1.6}_{-1.5}$	$+1.4 \\ -1.3$

- Photon energy scale: estimated with $Z \rightarrow ee$
- QCD background: side-bands method
- Soft radiation: cut variation
- Pile up: require only 1 vertex in event

Validation of the EM+JES calibration scheme

 Data / MC ratio for the EM+JES scheme

- JES uncertainty constrained within 5%
- Similar results for other calibrations

Validation of the JES uncertainty

1/4/2011

Summary

- Validation of the Atlas MC simulation
- Verification of the MC based jet calibration
 - All the 3 methods developed by the collaboration have been validated
- Systematic uncertainty of the method is below 2% for $p_T > 45$ GeV

Conclusions

- Investigate jet calibration in several key aspects
 - Validation (and tuning) of the Geant4 MC simulation
 - Verification of the Atlas MC simulation
 - Cross check of the jet calibrations schemes
- The in-situ validation of the JES is an essential ingredient of many results that Atlas has produced (and will produce) in 2011
- First measurement of the cross section for the associated production of photons and jets

The End

The gluon density inside the proton

Figure 2.4: Generic 2 body scattering.

$$x_{min} = \frac{x_T e^{-\eta_\gamma}}{2 - x_T e^{\eta_\gamma}}$$
$$x_T = 2p_T / \sqrt{s}$$

10/6/2011

- Gluon PDF determined via DIS + sum rule
- x_{min} is most likely the x of the gluon
- In the low $p_T high \eta$ LHC will be sensible to x ~ 10⁻³ - 10⁻⁴

42

The gluon content of the proton

10/6/2011

IR and colinear safeness

Iterative cone algorithms

- Combination:
 - Progressive removal
 - Split and merge
 - Seedless
- Unsafe or computationally intensive
- Dark towers

$$\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 < R^2$$

Sequential recombination algorithms

- Merge if $d_{ij} < \min(d_{ii}, d_{jj})$
- Parameters:
 - $k_{T}: p = 1$
 - Cambridge/Aachen:
 p = 0
 - Anti- k_T : p = -1
- Theoretically safe
- R = 0.4 0.6

$$d_{ij} = \min(k_{T,i}^{2p}, k_{T,j}^{2p}) \frac{\Delta_{ij}^2}{R^2}$$
$$d_{ii} = k_{T,i}^{2p}$$

Calorimetric topo-clusters

- 4-2-0 clustering scheme to group calorimetric cells
- Split merge procedure based on local minima/maxima

Particle identification

- e/π separation
 - Cherenkov (20 GeV)
 - Calorimetric selection (systematics!)
- π /p separation:
 - Cherenkov (50 GeV)
- Residual contamination reproduced in MC simulations

Validation of the jet energy scale calibration anti-k_T 0.6

M. Cascella

Validation of the jet energy scale calibration anti-k_T 0.4

M. Cascella

Calorimeter response to jets

- Project the photon pT on the jet direction to estimate the true jet energy
- Measure the calorimeter response to jets

Calorimeter response to jets

Validation of the JES uncertainty

1/4/2011